WO2008072382A1 - 固定化酵素を用いた有用物質の製造方法 - Google Patents

固定化酵素を用いた有用物質の製造方法 Download PDF

Info

Publication number
WO2008072382A1
WO2008072382A1 PCT/JP2007/001403 JP2007001403W WO2008072382A1 WO 2008072382 A1 WO2008072382 A1 WO 2008072382A1 JP 2007001403 W JP2007001403 W JP 2007001403W WO 2008072382 A1 WO2008072382 A1 WO 2008072382A1
Authority
WO
WIPO (PCT)
Prior art keywords
enzyme
immobilized enzyme
useful substance
producing
fixed bed
Prior art date
Application number
PCT/JP2007/001403
Other languages
English (en)
French (fr)
Inventor
Jun Saito
Yoshitaka Senda
Keigo Hanaki
Toshiteru Komatsu
Original Assignee
Kao Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006337889A external-priority patent/JP5080797B2/ja
Priority claimed from JP2007057541A external-priority patent/JP5080828B2/ja
Application filed by Kao Corporation filed Critical Kao Corporation
Priority to US12/518,285 priority Critical patent/US8252560B2/en
Priority to CN200780046399.5A priority patent/CN101558162B/zh
Priority to EP07849833A priority patent/EP2096175A4/en
Publication of WO2008072382A1 publication Critical patent/WO2008072382A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6409Fatty acids
    • C12P7/6418Fatty acids by hydrolysis of fatty acid esters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/18Carboxylic ester hydrolases (3.1.1)
    • C12N9/20Triglyceride splitting, e.g. by means of lipase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats

Definitions

  • the present invention relates to a method for producing a useful substance by a reaction using a fixed bed type reaction column packed with an immobilized enzyme.
  • Immobilized enzymes used for L-aspartic acid production, transesterified oil and fat production, lactose hydrolysis, fat and oil hydrolysis, etc. are conducted by passing a liquid through a fixed bed type reaction tower.
  • the reaction used is known. Since these reactions all have a relatively small calorific value, the simplest drum reactor is usually used.
  • reaction liquids are mixed uniformly from the viewpoint of improving reaction efficiency.
  • the liquid is preferably passed in the state.
  • the oil phase substrate and the aqueous phase substrate used for the hydrolysis do not usually become one phase even when mixed, so it is common to use emulsion.
  • emulsion particles are difficult to reach the enzyme adsorbed in the pores of the carrier, there is a technique in which the liquid flow rate is within a range where the reaction solution is not emulsified (see Patent Document 1).
  • Patent Documents 1 and 2 As a method of circulating an oil phase substrate and an aqueous phase substrate through a fixed bed, a method of flowing in a countercurrent (see Patent Documents 1 and 2) and a method of circulating in a parallel flow (Patent Document 3).
  • Patent Documents 1 and 2 As a method of circulating an oil phase substrate and an aqueous phase substrate through a fixed bed, a method of flowing in a countercurrent (see Patent Documents 1 and 2) and a method of circulating in a parallel flow (Patent Document 3).
  • Patent Document 3 since the former requires a special mechanism and operation method, it is generally adopted to distribute in parallel flow.
  • Patent Document 1 JP-A-6 1-8 5 1 95
  • Patent Document 2 Japanese Patent Laid-Open No. 1-9 8 4 94
  • Patent Document 3 Japanese Patent Laid-Open No. 2 00 0 _ 1 6 0 1 8 8
  • the present invention relates to a liquid that forms a two-liquid phase in a fixed bed type reaction tower packed with an immobilized enzyme.
  • a method for producing a useful substance in which a mixture is supplied and reacted in parallel in the same direction at least one part of the cross section of one tube is not closed, and the representative length is 100 mm or less.
  • a fixed bed type reaction column in which a partition plate is inserted in the vertical direction of the fixed bed type reaction column so as to form a plurality of tubular structures having a polygonal shape is used, and the tubular structure is filled with an immobilized enzyme, and the tubular structure is formed.
  • a method for producing a useful substance for supplying the liquid mixture into the structure is provided.
  • a liquid mixture forming a two-liquid phase is supplied to a fixed bed type reaction tower packed with an immobilized enzyme having a tube diameter of 35 mm 0 or more, and the reaction is carried out in the same direction.
  • the ratio of the tube diameter (mm) of the fixed bed reaction tower to the average particle diameter (mm) of the immobilized enzyme (tube diameter /) provides a method for producing useful substances using a fixed bed type reaction column packed with an immobilized enzyme so that the average particle diameter is 1 35 (mm / mm) or less.
  • FIG. 1 is a diagram showing a cross-section of an enzyme tower loaded with an uneven partition plate.
  • FIG. 2 is a diagram showing a cross section of an enzyme tower loaded with a zigzag partition plate.
  • FIG. 3 is a diagram showing a cross section of an enzyme tower in which a polygonal shape formed by loading a concave partition plate is divided by another plate-like partition plate.
  • FIG. 4 is a diagram showing a cross section of an enzyme tower loaded with a combination of slitting partition plates.
  • FIG. 4- (a) A diagram showing a partition plate with slits for combination.
  • FIG. 5 is a conceptual diagram showing the flow of a reaction solution in an enzyme tower.
  • the present invention relates to a method for producing a useful substance in which a reaction is performed by circulating a liquid mixture forming a two-liquid phase through a fixed bed type reaction column packed with an immobilized enzyme.
  • the present invention relates to a method for producing a useful substance more efficiently by increasing reactivity and improving productivity.
  • the present inventor has conducted various studies on the enzyme expression activity in a fixed bed type reaction column packed with an immobilized enzyme.
  • the tube diameter of the reaction column is determined. It was found that by defining the ratio of the particle size of the immobilized enzyme, the enzyme activity can be effectively expressed, and the productivity can be improved while maintaining high reactivity.
  • a reaction column having a large tube diameter is used.
  • the flow of the entire reaction liquid in the tower can be made uniform, and the enzyme activity can be effectively expressed.
  • reactivity and productivity can be improved.
  • the enzyme activity can be effectively expressed and fatty acids can be produced efficiently.
  • the operability when removing the immobilized enzyme packed in the reaction tower is good.
  • a liquid mixture that forms a two-liquid phase is supplied to a fixed bed type reaction column packed with an immobilized enzyme.
  • the fixed bed type reaction tower (hereinafter also referred to as “enzyme tower”) is a column in which immobilized enzyme is packed so that the reaction solution can be circulated through the gaps between the immobilized carriers and the pores of the immobilized carriers.
  • the two-liquid phase refers to a state in which two types of liquids do not become one phase even after mixing, and includes those that are phase-separated or even in an emulsified state.
  • an enzyme in which an oleolytic enzyme is adsorbed on an immobilization carrier is used as an immobilization enzyme, and an oil phase substrate and an aqueous phase substrate are mixed as two liquid phases in a reaction tower packed with the enzyme.
  • a method of producing fatty acids as useful substances by a hydrolysis reaction of fats and oils by circulation is preferable.
  • the two liquid phases are caused to flow in the same direction.
  • the two liquid phases may be mixed in advance and supplied as an emulsified state, or may be supplied while being separated. Further, the two liquid phases may be alternately supplied at regular intervals.
  • Each substrate may be supplied to the enzyme tower in a downward flow from the tower top to the tower bottom or in an upward flow from the tower bottom to the tower top.
  • the immobilized enzyme used in the present invention is one in which an enzyme is supported on an immobilization carrier by adsorption or the like.
  • the immobilization carrier include celite, diatomaceous earth, force orientate, silica gel, molecular sieve, porous glass, activated carbon, calcium carbonate, ceramics and other inorganic carriers, ceramic powder, polyvinyl alcohol, polypropylene, chitosan And organic polymers such as ion exchange resins, hydrophobic adsorption resins, chelate resins, and synthetic adsorption resins.
  • ion exchange resins are particularly preferred because of their high water retention.
  • a porous surface is preferable because it has a large surface area and can increase the amount of adsorbed enzyme.
  • the particle size of the resin used as the immobilization carrier is preferably 0.1 to 1 O mm.
  • the thickness is preferably 0.2 to 6 mm, particularly preferably 0.25 to 4 mm, and more preferably 0.3 to 2 mm.
  • the pore diameter is preferably 10 to 150 nm, more preferably 10 to 100 nm.
  • Materials include phenol formaldehyde, polystyrene, acrylic amide, divinyl benzene, etc., especially phenol formaldehyde resin (eg Duo Iite A-568 manufactured by Rohm and Hass). Is preferable from the viewpoint of enzyme adsorption.
  • the enzyme used for the immobilized enzyme of the present invention is not particularly limited, but lipase as an enzyme for decomposing oils and fats is preferred from the viewpoint of a large productivity improvement effect.
  • lipase not only those derived from animals and plants but also commercially available lipases derived from microorganisms can be used.
  • Microbial lipases include: Rhizopus 1 i, Aspergi II us Mucor, Pseud omo nas I ⁇ , Geotrich um; I ⁇ , Penici II ium genus, Candida genus and so on.
  • the temperature at which the enzyme is immobilized can be determined depending on the properties of the enzyme, but it is preferably 0 to 60 ° C, particularly 5 to 40 ° C, in which the enzyme is not deactivated.
  • the pH of the enzyme solution used for immobilization may be in a range where no denaturation of the enzyme occurs and can be determined by the enzyme characteristics as well as the temperature, but pH 3-9 is preferred.
  • a buffer solution is used. Examples of the buffer solution include an acetate buffer solution, a phosphate buffer solution, and a tris hydrochloride buffer solution.
  • the enzyme concentration in the enzyme solution is preferably not more than the saturation solubility of the enzyme and sufficient concentration from the viewpoint of immobilization efficiency.
  • the enzyme solution a supernatant obtained by removing an insoluble part by centrifugation, if necessary, or a solution purified by ultrafiltration can be used.
  • the enzyme mass to be used varies depending on the enzyme activity, but is preferably 5 to 1,000 mass%, particularly preferably 10 to 500 mass%, based on the mass of the carrier.
  • the carrier and the enzyme may be directly adsorbed.
  • the carrier in order to obtain an adsorption state that expresses high activity, the carrier is preliminarily fixed with a fat-soluble fatty acid or its derivative before the enzyme adsorption. It is preferable to treat with.
  • Fat-soluble fatty acid or its derivative and carrier As a body contact method, these may be directly added to water or an organic solvent.
  • a fat-soluble fatty acid or a derivative thereof is once dispersed and dissolved in an organic solvent, and then dissolved in water. It may be added to the dispersed carrier.
  • the organic solvent include black mouth form, hexane, ethanol and the like.
  • the mass of the fat-soluble fatty acid or derivative thereof used is 1 to 500 mass%, particularly 10 to
  • the contact temperature is preferably 0 to 100 ° C., particularly preferably 20 to 60 ° C., and the contact time is preferably about 5 minutes to 5 hours.
  • the carrier after this treatment is recovered by filtration, but may be dried.
  • the drying temperature is preferably room temperature to 100 ° C., and may be dried under reduced pressure.
  • the fat-soluble fatty acid is a saturated or unsaturated, linear or straight chain or 4 to 24 carbon atoms, preferably 8 to 18 carbon atoms.
  • examples include branched-chain fatty acids which may have a hydroxyl group. Specific examples include strong puric acid, lauric acid, myristic acid, oleic acid, linoleic acid, monolinolenic acid, ricinoleic acid, and isostearic acid.
  • the fat-soluble fatty acid derivatives include esters of these fat-soluble fatty acids with monohydric or polyhydric alcohols or saccharides, phospholipids, and those obtained by adding ethylene oxide to these esters. Specific examples include methyl esters, ethyl esters, monoglycerides, diglycerides, ethylene oxide adducts thereof, polyglycerin esters, sorbitan esters, and sucrose esters of the above fatty acids. It is preferable in the process of immobilizing the enzyme on the carrier that these fat-soluble fatty acids and derivatives thereof are liquid at room temperature. As these fat-soluble fatty acids or derivatives thereof, two or more of the above may be used in combination, and naturally derived fatty acids such as rapeseed fatty acid and soybean fatty acid may be used.
  • the hydrolytic activity of the immobilized enzyme is preferably 20 U / g or more, more preferably 10 00 to 1 OOOOUZ g, and particularly preferably in the range of 5 0 0 to 5 0 00 U / g.
  • To I Shows the resolution of the enzymes that produce the free fatty acids.
  • the hydrolysis activity (U / g—oi I) of the immobilized enzyme given per unit mass of fats and oils and the time required to reach a certain hydrolysis rate are in an inversely proportional relationship.
  • the volume of the immobilized enzyme packed part is multiplied by the porosity of the packed part, the volume ratio of the fats and oils in the reaction solution, and the specific gravity of the fats and oils. Ask for.
  • a preferred kind of the liquid mixture forming two liquid phases in the present invention is an oil phase substrate.
  • the oil phase substrate is mainly vegetable oil, animal oil or a combination of these oils, but the fats and oils may contain diacyl glycerol, monoacyl glycerol, or fatty acids in addition to triacylglycerol. It may contain fatty acids obtained as a result of hydrolysis.
  • Specific examples of the oil phase substrate include vegetable oils such as rapeseed oil, soybean oil, castor oil, palm oil and linseed oil, animal oils such as beef tallow, pork tallow and fish oil, or a combination of these.
  • fats and oils can be used in addition to deodorized oil, non-deodorized fats and oils that have not been deodorized in advance, but it is possible to use non-deodorized fats and oils for some or all of these fats and oils, trans unsaturated fatty acids, conjugates It is preferable from the viewpoint that unsaturated fatty acids can be reduced, and plant sterols, plant sterol fatty acid esters, and tofu straws derived from raw oils and fats can remain.
  • an oil-soluble component such as a fatty acid may be mixed in addition to the fats and oils.
  • Fatty acids refer to fatty acids obtained as a result of hydrolysis, as well as those containing one or more of the above glycerides.
  • Another preferred type of the liquid mixture forming the two liquid phases in the present invention is an aqueous phase substrate.
  • the aqueous phase substrate is water, but other water-soluble components such as glycerin obtained as a result of hydrolysis may be mixed.
  • the shape of the fixed bed type reaction column (enzyme column) used in the present invention is not limited as long as it can withstand the indentation pressure of the pump used. Further, it is preferable that a jacket be provided around the enzyme tower so that the reaction liquid flowing through the enzyme tower can be adjusted to a temperature suitable for the enzyme reaction.
  • the temperature in the enzyme tower is preferably 0 to 60 ° C., more preferably 20 to 40 ° C., in order to extract the activity of the immobilized enzyme more effectively.
  • the length of the enzyme column may be a length necessary for obtaining a desired decomposition rate.
  • 0.1-1 to 10 m preferably 0.1 to A range of 5 m is preferable.
  • a plurality of tubular structures having a circular or polygonal shape with a representative length of 10 O mm or less, in which at least one part of the cross section of one tube is not closed, are formed in the enzyme tower.
  • a partition plate is inserted in the longitudinal direction of the enzyme tower, the immobilized enzyme is filled into the tubular structure, and the liquid mixture is supplied into the tubular structure to perform the reaction.
  • the volume ratio of the immobilized enzyme filling part is increased, the reactivity is increased, and the cost can be reduced. Furthermore, the operability of removing the immobilized enzyme is good.
  • the “representative length” means the length of the diagonal line if the cross section is rectangular, the diameter if it is circular, and the projected area if it is other ellipse, polygon, etc. The diameter of a circle with the same area.
  • the partition plate may be inserted in the longitudinal direction so that a plurality of tubular structures having the cross-sectional area can be formed in the enzyme column.
  • a method of loading an uneven partition plate (flat plate, corrugated plate, etc.) inside the enzyme tower Fig. 1
  • a method of loading a zigzag partition plate Fig. 2
  • Fig. 3 With another partition plate in the polygonal shape Separation method
  • Combination method with multiple slitting partition plates Fig. 4 (a)) (Fig. 4).
  • a method of loading a corrugated partition plate a method of dividing a circular shape formed by loading a corrugated partition plate with another partition plate, and a circular shape by combining a plurality of curved or plate-shaped partition plates. And a method of loading to form a polygonal shape.
  • the shape of the cross section of the tube is preferably a regular triangle, a square, or a regular hexagon in the case of a polygon, and is preferably a circle or an ellipse in the case of a circle.
  • the typical length of the cross section of one tube (one flow path) of the plurality of tubular structures formed by the partition plate is 100 mm or less, but from the viewpoint of improving reactivity, preferably 75 mm or less. Further, it is preferably 5 Omm or less, particularly 35 mm or less.
  • the length of the non-closed portion in the circular or polygonal cross section is set to 0.1 to 10 mm, more preferably 0.5 to 8 mm, particularly 1 to 6 mm from the viewpoint of improving the reactivity. Is preferred. Note that a spacer may be partially inserted in order to maintain a constant distance between the partition plate and the partition plate. In addition, in the case of the partition plate with the combination slit, the width of the slit should be set to 0.2 to 20 mm, further 1 to 16 mm, especially 2 to 12 mm wider than the thickness of the partition plate. Is preferred
  • the tubular structure formed by loading the partition plate into the enzyme tower is filled with the immobilized enzyme, and a two-liquid phase liquid mixture (reaction solution) is supplied into the tubular structure (Fig. 5)
  • the gap between the partition plate and the inner wall of the enzyme tower is a certain level or more.
  • the narrowest part of the gap between the partition plate and the inner wall of the enzyme tower be 1 mm or more, and further 5 mm or more.
  • the upper limit of the gap is preferably equal to or less than the representative length of the cross section of one tube, from the viewpoint of making the flow of the reaction liquid uniform, and more preferably 7 Omm or less, particularly 5 Omm or less.
  • the length of the partition plate in the enzyme tower is not less than the packed thickness of the immobilized enzyme. This is preferable from the viewpoint of uniformizing the flow of the entire reaction solution in the tower, but the packed thickness is shorter than the packed thickness. The same effect can be obtained if it is in the range of 50% or more and 75% or more.
  • the partition plate does not need to be continuous over its entire length, but is divided into a plurality of stages in the vertical direction from the viewpoint of workability such as easy exchange of the immobilized immobilized enzyme. Preferably it is.
  • the number of stages depends on the total length of the enzyme column, but is preferably 2 to 30 parts, more preferably 2 to 10 parts.
  • the partition plates at each stage may be divided into a plurality of parts in the lateral direction from the viewpoint of easy loading into the enzyme tower, etc., and may be unitized for each section. .
  • the ratio of the tube diameter (mm) to the average particle diameter (mm) of the immobilized enzyme is 1 35 (mm / mm) or less.
  • the tube diameter of the enzyme tower is less than 35 mm 0, the enzyme activity hardly decreases and the reactivity is good, but as the diameter of the enzyme tower becomes larger than 35 mm 0, the enzyme expression activity decreases. May result in a decrease in reactivity.
  • the tube diameter / average particle diameter should be 5 to 1 35 (mm / mm), 15 to 1 30 (mm / mm), especially 30 to 1 25 (mm / mm). preferable.
  • the average particle size of the immobilized enzyme carrying the enzyme in the present invention is determined by the laser scattering diffraction method particle size distribution analyzer LS 1 3 320 (vector The value measured by Kuman-Coulter Co., Ltd.
  • the tube diameter of the enzyme tower should be 35 to 100 Omm0, more preferably 35 to 80 Omm0, particularly 4 O to 6 O Omm0, and especially 50 to 300 mm 0. This is preferable in terms of workability, reactivity, and productivity.
  • the reaction liquid may be separately supplied through a pipe directly connected to the enzyme tower, or may be supplied through a common pipe. From the viewpoint of avoiding emulsification of the phase and operability, it is preferable to use a pipe directly connected to the enzyme tower.
  • the linear velocity of the reaction solution is preferably 1 to 400 mm / min, and more preferably 5 to 200 mm / min.
  • the liquid passing linear velocity (mm / min), feed volume per minute (mm 3 / min) (or feed rate (1 0_ 3 m L / min) and is also referred to) fill the Sodan area (mm 2 The value expressed by the quotient divided by).
  • the pressure in the packed column increases by increasing the liquid flow rate, it becomes difficult to pass the solution, and an enzyme packed column with high pressure resistance is required.In addition, the immobilized enzyme is crushed by the increased pressure in the column.
  • the liquid flow rate is 40 Omm / min or less.
  • the flow rate of the liquid is 1 mm / min or more. Since the expression activity of the immobilized enzyme varies depending on the flow rate, the optimal flow rate is selected and the reaction conditions are determined, so that the reaction is performed according to the desired production capacity and production cost. be able to.
  • the residence time of the reaction liquid in the enzyme tower is 30 seconds to 120 minutes from the viewpoint of avoiding the equilibrium state of the hydrolysis reaction, extracting the activity of the immobilized enzyme more effectively, and improving the productivity. 1 minute to 80 minutes is preferable.
  • the residence time (minutes) is expressed as a value obtained by multiplying the thickness (mm) of the packed layer by the porosity and dividing this by the liquid linear velocity (mm / minute).
  • the reaction solution that has passed through the enzyme tower may be used as it is as a reaction-finished product from the viewpoint of reactivity, productivity, and the like, and the reaction solution is once separated into oil and water to separate the oil phase. Later, fresh water may be added and supplied again to the same enzyme tower in the same manner as described above, and may be passed repeatedly until the desired reaction rate is obtained. Also Alternatively, the reaction solution may be separated into oil and water, and after separating the oil phase, fresh water may be added and supplied again to another enzyme tower by the same method as described above to carry out a continuous reaction.
  • the oil phase is supplied to the next enzyme tower and the aqueous phase is supplied to the previous enzyme tower. It may be carried out by a pseudo counter-current method in which the reaction is carried out with an aqueous phase.
  • an oil-water separation method of the reaction liquid an oil-water separator such as a natural sedimentation type or a centrifugal separation type is generally used, but is not particularly limited.
  • Duolit eA-568 (Rohm and Hass, particle size distribution 100- "! 000 m) 1 part by weight was stirred for 1 hour in 10 parts by weight of N / 10 NaOH solution. After washing with 10 parts by mass of ion exchange water, 50 OmM acetate buffer (pH 7) was equilibrated with 10 parts by mass, and then 50 mM acetate buffer (pH 7). The pH was equilibrated twice for 2 hours at 10 parts by mass, and after filtration, the carrier was recovered, followed by ethanol replacement with 5 parts by mass of ethanol for 30 minutes.
  • D uolit eA-568 (Rohm and Hass, particle size distribution 100- "! OOO m) 1 part by mass was stirred for 1 hour in 10 parts by mass of N / 10 NaOH solution. After washing with 10 parts by mass of ion exchange water, 50 OmM acetate buffer (pH 7) was equilibrated with 10 parts by mass, and then 50 mM acetate buffer (pH 7). The pH was equilibrated twice for 2 hours at 10 parts by mass, and after filtration, the carrier was recovered, followed by ethanol replacement with 5 parts by mass of ethanol for 30 minutes.
  • immobilized enzyme A an immobilized enzyme
  • Duo Iite A-568 was pulverized.
  • An immobilized enzyme was prepared in the same manner as described above using the classified immobilized carrier and the immobilized carrier from which Duo Iite A-568 was classified to remove fine particles of 425 m or less (each immobilized enzyme).
  • B assumed to be immobilized enzyme
  • Hydrolysis activity of immobilized enzymes A to C (activity to be expressed), and quality Table 1 shows the average particle diameter based on the amount.
  • Partition plate with slits for combination (corresponding to Fig.4, plate thickness 2mm) so that the length of the non-closed portion is 1 mm with a rectangle of 4 Omm X 4 Omm (typical length 56 mm)
  • the immobilized lipase obtained in the preparation of the immobilized enzyme (1) was dried on a stainless steel column (inner diameter 200 mm, height 1 500 mm) loaded with a combination of 300 mm in height on a dry basis. Filled with kg (filling height 1 500 mm) and kept warm at 35 ° C with a jacket. From the top of the column, a mixture of rapeseed oil and distilled water in a weight ratio of 10: 6 was sent at 30 kg / hr to conduct a hydrolysis reaction. The results are shown in Table 2.
  • a stainless steel column is not loaded with a partition plate, and the immobilized enzyme is prepared (1
  • the hydrolysis reaction was performed in the same manner as in Example 2 except that the filling height was 1 500 mm. The results are shown in Table 2.
  • the inside of the fixed-bed reaction tower has a circular or polygonal shape having a representative length of 10 Omm or less, in which at least one part of the cross section of one tube is not closed.
  • a stainless steel column with a jacket (inner diameter: 55 mm, height: 1,600 mm) was packed with 865 g of immobilized enzyme A on a dry basis (packing height: 1,500 mm), and kept at 35 ° C. with the jacket. From the top of the column, a mixture of rapeseed oil and distilled water in a mass ratio of 10: 6 was sent at 2.7 kg / hr to conduct a hydrolysis reaction. The results are shown in Table 3.
  • the hydrolysis reaction was performed in the same manner as in Example 3 except that the immobilized enzyme A in Example 3 was replaced with the immobilized enzyme B. The results are shown in Table 3.
  • a stainless steel column with a jacket (inner diameter: 7 Omm, height: 1,600 mm) was packed with 1400 g of immobilized enzyme C on a dry basis (packing height: 1,500 mm), and kept at 35 ° C with the jacket. From the top of the column, a mixture of rapeseed oil and distilled water at a mass ratio of 10: 6 was fed at 4.3 kg / hr to conduct a hydrolysis reaction. The results are shown in Table 3.
  • the hydrolysis reaction was performed in the same manner as in Example 4 except that the immobilized enzyme A in Example 4 was changed to the immobilized enzyme B.
  • the results are shown in Table 3.
  • the hydrolysis reaction was performed in the same manner as in Example 6 except that the immobilized enzyme C in Example 6 was replaced with the immobilized enzyme B. The results are shown in Table 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

 本発明は、固定化酵素を充填した固定床型反応塔に2液相を形成する液体混合物を供給し、同一方向に並流させて反応を行う有用物質の製造方法において、一の管の横断面が少なくとも1部が閉じていない代表長さが100mm以下の円形状又は多角形状である複数の管状構造が形成されるよう固定床型反応塔の縦方向に仕切板を挿入した固定床型反応塔を用い、該管状構造内に固定化酵素を充填し、該管状構造内に前記液体混合物を供給する有用物質の製造方法に関する。管径が大きい反応塔を用いても、塔内の反応液全体の流れを均一化する事ができ、また酵素活性を有効に発現させることができる。その結果、反応性と生産性を向上する事ができる。特に、油脂類の加水分解においては、酵素活性を有効に発現させ、脂肪酸類を効率的に製造することができる。さらに、反応塔に充填した固定化酵素を除去する際の操作性が良好である。

Description

明 細 書
固定化酵素を用いた有用物質の製造方法
技術分野
[0001 ] 本発明は、 固定化酵素を充填した固定床型反応塔を用いた反応による有用 物質の製造方法に関する。
背景技術
[0002] 液体を固定床型反応塔に通液して行う反応として、 L—ァスパラギン酸生 成、 エステル交換油脂生成、 乳糖加水分解、 油脂類の加水分解等に利用され ている固定化酵素を用いた反応が知られている。 これらの反応は、 いずれも 発熱量が比較的小さい為、 通常、 最も単純なドラム型反応器が使用されてい る。
[0003] 固定化酵素を用いた反応のうち、 油脂類の加水分解のように 2種類以上の 液を反応器に流通させる場合には、 反応効率向上の観点から、 反応液を均一 に混合した状態で通液することが好ましい。 この場合、 加水分解に用いる油 相基質と水相基質は、 本来混合しても一相にならないものであるため、 エマ ルシヨンとするのが一般的である。 一方で、 エマルシヨン粒子は担体の細孔 内に吸着した酵素に到達し難いため、 通液速度を、 反応液が乳化しない範囲 とした技術もある (特許文献 1参照) 。
[0004] また、 固定床に油相基質と水相基質を流通させる方法としては、 向流で流 通させる方法 (特許文献 1、 2参照) 、 及び並流で流通させる方法 (特許文 献 3参照) があるが、 前者は特殊な仕組みと運転方法が必要となるため、 一 般的には並流で流通させる方法が採られている。
特許文献 1 :特開昭 6 1 - 8 5 1 9 5号公報
特許文献 2:特開平 1—9 8 4 9 4号公報
特許文献 3:特開 2 0 0 0 _ 1 6 0 1 8 8号公報
発明の開示
[0005] 本発明は、 固定化酵素を充填した固定床型反応塔に 2液相を形成する液体 混合物を供給し、 同一方向に並流させて反応を行う有用物質の製造方法にお いて、 一の管の横断面が少なくとも 1部が閉じていない代表長さが 1 0 0 m m以下の円形状又は多角形状である複数の管状構造が形成されるよう固定床 型反応塔の縦方向に仕切板を挿入した固定床型反応塔を用い、 該管状構造内 に固定化酵素を充填し、 該管状構造内に前記液体混合物を供給する有用物質 の製造方法を提供するものである。
また、 本発明は、 管径が 3 5 m m 0以上である固定化酵素を充填した固定 床型反応塔に 2液相を形成する液体混合物を供給し、 同一方向に並流させて 反応を行うことにより有用物質を製造する方法であって、 固定床型反応塔と して、 固定床型反応塔の管径 (m m ) の固定化酵素の平均粒子径 (m m ) に 対する比率 (管径 /平均粒子径) が 1 3 5 ( m m/m m ) 以下となるように 固定化酵素を充填した固定床型反応塔を用いる有用物質の製造方法を提供す るものである。
図面の簡単な説明
[0006] [図 1 ]凹凸型の仕切板が装填された酵素塔の横断面を示す図である。
[図 2]ジグザグ状の仕切板が装填された酵素塔の横断面を示す図である。
[図 3]凹型の仕切板を装填させてなる多角形状内を別の板状の仕切板で区切つ た酵素塔の横断面を示す図である。
[図 4]組合せ用スリット入り仕切板が組合せて装填された酵素塔の横断面を示 す図である。
[図 4- (a) ]組合せ用スリット入り仕切板を示す図である。
[図 5]酵素塔における反応液の流れを示す概念図である。
発明の詳細な説明
[0007] 前記固定化酵素を充填した固定床型反応塔に、 2液相を形成する液体混合 物を流通させて反応を行う方法においては、 特に当該液体混合物を乳化させ ずに流通させる場合、 反応塔の径が大きくなるに従って、 塔内における反応 液の流れが不均一となり、 効率的に反応が進まない部分が生じ、 また酵素の 発現活性が低下し、 結果として反応性が低下するという問題があることを見 出した。 この場合、 反応性を高めるために、 単に固定化酵素と反応液の接触 時間を長くしょうとすると、 生産性 (流量) が低下するという問題もある。
[0008] 従って、 本発明は、 固定化酵素を充填した固定床型反応塔に、 2液相を形 成する液体混合物を流通させて反応を行う有用物質の製造方法において、 流 量を低下させずに反応性を高め、 生産性を向上させることにより、 より効率 的に有用物質を製造する方法に関する。
[0009] そこで本発明者は、 固定化酵素を充填した固定床型反応塔における反応液 の流通の特徴を解析した結果、 流路の断面積が小さい程反応液の流れが均一 化し、 反応性が向上することを見出した。 そこで、 固定化酵素を充填した断 面積の大きい固定床型反応塔の内部に、 一の管の横断面が少なくとも 1部が 閉じていない代表長さが 1 0 O m m以下の円形状又は多角形状である複数の 管状構造が形成されるよう固定床型反応塔の縦方向に仕切板を挿入し、 その 断面積の小さいそれぞれの管状構造内で酵素反応を行わせることにより、 高 い反応性を維持したまま生産性を向上させることができることを見出した。
[0010] また、 本発明者は、 固定化酵素を充填した固定床型反応塔における酵素の 発現活性について種々検討したところ、 管径が大きな反応塔を用いる場合に おいて、 反応塔の管径と固定化酵素の粒子径との比率を規定することにより 、 酵素活性を有効に発現させることができ、 高い反応性を維持したまま生産 性を向上させることができることを見出した。
通常、 固定化酵素を用いる場合には、 酵素の発現活性を向上させようとす れば、 当業者は固定化担体の比表面積を大きくするために担体の粒子径を小 さくするものである。 本発明者は、 固定床型反応塔の管径が小さい場合には 本手法は有効であるが、 管径を大きくした場合には、 全く意外にも担体粒子 径については逆の手段を採らなければ効果が得られないことを見出した。
[001 1 ] 本発明によれば、 固定化酵素を充填した固定床型反応塔へ 2液相を形成す る液体混合物を供給して行う反応において、 管径が大きい反応塔を用いても 、 塔内の反応液全体の流れを均一化する事ができ、 また酵素活性を有効に発 現させることができる。 その結果、 反応性と生産性を向上する事ができる。 特に、 油脂類の加水分解においては、 酵素活性を有効に発現させ、 脂肪酸類 を効率的に製造することができる。 さらに、 反応塔に充填した固定化酵素を 除去する際の操作性が良好である。
[0012] 本発明においては、 固定化酵素を充填した固定床型反応塔に 2液相を形成 する液体混合物を供給する。 固定床型反応塔 (以下 「酵素塔」 ともいう) と は、 固定化酵素をカラム等に充填し、 固定化担体間の空隙及び固定化担体の 細孔に反応液を流通させ得るようにしたものをいう。 2液相とは、 2種類の 液体が混合後にも 1相にならない状態をいい、 分相しているものから、 均一 であっても乳化状態となっているものも含む。
[0013] 本発明の態様としては、 固定化酵素として油脂分解酵素を固定化担体に吸 着させたものを用い、 これを充填した反応塔に、 2液相として油相基質と水 相基質を流通させることによる油脂類の加水分解反応により、 有用物質とし て脂肪酸類を製造する方法であることが好ましい。
[0014] 本発明においては、 2液相を同一方向に並流させる。 この場合、 2液相を 予め混合して乳化状態として供給しても良く、 分相したまま供給しても良い 。 また、 2液相を一定時間毎に交互に供給しても良い。 酵素塔への各基質の 供給は、 塔頂から塔底へ下方流で行っても、 塔底から塔頂へ上方流で行って も良い。
[0015] 本発明で用いる固定化酵素は、 固定化担体に酵素を吸着等により担持させ たものである。 固定化担体としては、 セライ ト、 ケイソゥ土、 力オリナイ ト 、 シリカゲル、 モレキュラーシ一ブス、 多孔質ガラス、 活性炭、 炭酸カルシ ゥム、 セラミックス等の無機担体、 セラミックスパウダー、 ポリビニルアル コール、 ポリプロピレン、 キトサン、 イオン交換樹脂、 疎水吸着樹脂、 キレ ート樹脂、 合成吸着樹脂等の有機高分子等が挙げられるが、 特に保水力が高 い点からイオン交換樹脂が好ましい。 また、 イオン交換樹脂の中でも、 大き な表面積を有することにより酵素の吸着量を高くできるという点から、 多孔 質であることが好ましい。
[001 6] 固定化担体として用いる樹脂の粒子径は 0 . 1〜 1 O m mが好ましく、 更 に 0. 2〜6mm、 特に 0. 25〜4mm、 殊更 0. 3〜2mmが好ましい 。 細孔径は 1 0〜 1 50 n mが好ましく、 更に 1 0〜 1 00 n mが好ましい 。 材質としては、 フエノールホルムアルデヒド系、 ポリスチレン系、 ァクリ ルアミ ド系、 ジビニルベンゼン系等が挙げられ、 特にフヱノールホルムアル デヒド系樹脂 (例えば、 Ro hm a n d H a s s社製 D u o I i t e A-568) が酵素吸着性上の点から好ましい。
[0017] 本発明の固定化酵素に使用する酵素は特に限定はされないが、 生産性の向 上効果が大きい点から、 油脂類分解用酵素としてのリパーゼが好ましい。 リ パーゼは、 動物由来、 植物由来のものはもとより、 微生物由来の市販リパー ゼを使用することもできる。 微生物由来リパーゼとしては、 リゾブス (R i z o p u s ) 1禹、 ァスへゾレキリレス (A s p e r g i I I u s) ムコ一ゾレ (M u c o r ) 、 ンュ一トモナス (P s e u d omo n a s) I禹、 ンォト リケム (G e o t r i c h um; I禹、 へニンリゥム (P e n i c i I I i u m) 属、 キャンディダ (C a n d i d a) 属等の起源のものが挙げられる。
[0018] 酵素の固定化を行う温度は、 酵素の特性によって決定することができるが 、 酵素の失活が起きない 0〜60°C、 特に 5〜40°Cが好ましい。 また固定 化時に使用する酵素溶液の p Hは、 酵素の変性が起きない範囲であればよく 、 温度同様酵素の特性によって決定することができるが、 p H 3〜9が好ま しい。 この p Hを維持するためには緩衝液を使用するが、 緩衝液としては、 酢酸緩衝液、 リン酸緩衝液、 トリス塩酸緩衝液等が挙げられる。 上記酵素溶 液中の酵素濃度は、 固定化効率の点から酵素の飽和溶解度以下で、 かつ十分 な濃度であることが好ましい。 また酵素溶液は、 必要に応じて不溶部を遠心 分離で除去した上澄や、 限外濾過等によって精製したものを使用することも できる。 また用いる酵素質量はその酵素活性によっても異なるが、 担体質量 に対して 5〜 1 000質量%、 特に 1 0〜500質量%が好ましい。
[0019] 酵素を固定化する場合、 担体と酵素を直接吸着してもよいが、 高活性を発 現するような吸着状態にするため、 酵素吸着前に予め担体を脂溶性脂肪酸又 はその誘導体で処理することが好ましい。 脂溶性脂肪酸又はその誘導体と担 体の接触法としては、 水又は有機溶剤中にこれらを直接加えてもよいが、 分 散性を良くするため、 有機溶剤に脂溶性脂肪酸又はその誘導体を一旦分散、 溶解させた後、 水に分散させた担体に加えてもよい。 この有機溶剤としては 、 クロ口ホルム、 へキサン、 エタノール等が挙げられる。 脂溶性脂肪酸又は その誘導体の使用質量は、 担体質量に対して 1〜5 0 0質量%、 特に 1 0〜
2 0 0質量%が好ましい。 接触温度は 0〜 1 0 0 °C、 特に 2 0〜 6 0 °Cが好 ましく、 接触時間は 5分〜 5時間程度が好ましい。 この処理を終えた担体は 、 ろ過して回収するが、 乾燥してもよい。 乾燥温度は室温〜 1 0 0 °Cが好ま しく、 減圧乾燥を行ってもよい。
[0020] 予め担体を処理する脂溶性脂肪酸又はその誘導体のうち、 脂溶性脂肪酸と しては、 炭素数 4〜2 4、 好ましくは炭素数 8〜 1 8の飽和又は不飽和の、 直鎖又は分岐鎖の、 水酸基を有していてもよい脂肪酸が挙げられる。 具体的 には、 力プリン酸、 ラウリン酸、 ミリスチン酸、 ォレイン酸、 リノール酸、 ひ一リノレン酸、 リシノール酸、 イソステアリン酸等が挙げられる。 また前 記脂溶性脂肪酸の誘導体としては、 これらの脂溶性脂肪酸と一価若しくは多 価アルコール又は糖類とのエステル、 リン脂質、 及びこれらのエステルにェ チレンォキサイ ドを付加したもの等が挙げられる。 具体的には、 上記脂肪酸 のメチルエステル、 ェチルエステル、 モノグリセライ ド、 ジグリセライ ド、 それらのエチレンオキサイ ド付加体、 ポリグリセリンエステル、 ソルビタン エステル、 ショ糖エステル等が挙げられる。 これら脂溶性脂肪酸及びその誘 導体はいずれも常温で液状であることが酵素を担体に固定化する工程上好ま しい。 これら脂溶性脂肪酸又はその誘導体としては、 上記 2種以上を併用し てもよく、 菜種脂肪酸、 大豆脂肪酸等の天然由来の脂肪酸を用いることもで さる。
[0021 ] 固定化酵素の加水分解活性は 2 0 U / g以上、 更に 1 0 0〜 1 O O O O U Z g、 特に 5 0 0〜5 0 0 0 U / gの範囲であることが好ましい。 ここで酵 素の 1 Uは、 4 0 °Cにおいて、 油脂類:水 = 1 0 0 : 2 5 (質量比) の混合 液を攪拌混合しながら 3 0分間加水分解をさせたとき、 1分間に I の遊離脂肪酸を生成する酵素の分解能を示す。 油脂類の単位質量当りに付与 した固定化酵素の加水分解活性 (U / g— o i I ) と、 ある加水分解率に到 達するまでの所要時間は、 略反比例の関係にある。
[0022] 固定化酵素を充填した充填層 (酵素塔) を用いて加水分解を行う場合、 送 液条件 (通液速度、 温度等) により分解速度は異なるが、 酵素充填層出口に おける油脂の加水分解率、 加水分解所要時間 (充填層内の滞留時間) 、 充填 層内に存在する油脂類の質量 (g— o i I ) 及び固定化酵素の充填質量 (g ) から固定化酵素の見かけ活性 (発現活性) (U / g ) が求められる。 なお 、 充填層内に存在する油脂類の質量を求めるためには、 固定化酵素充填部の 容積に充填部の空隙率、 反応液中の油脂類の容量比及び油脂類の比重を乗ず ることにより求める。
[0023] 本発明における 2液相を形成する液体混合物のうちの好ましい一種は油相 基質である。 油相基質とは主に植物油、 動物油又はこれらを組み合わせた油 脂類をいうが、 油脂類とはトリアシルグリセロールの他、 ジァシルグリセ口 ール、 モノァシルグリセロール、 又は脂肪酸類を含んでいても良く、 加水分 解の結果得られる脂肪酸を含んでいても良い。 油相基質の具体例としては、 菜種油、 大豆油、 ヒマヮリ油、 パーム油及びアマ二油等の植物油、 牛脂、 豚 脂及び魚油等の動物油等、 又はこれらの組み合わせの油脂類が挙げられる。 これら油脂類は、 脱臭油の他、 予め脱臭されていない未脱臭油脂を用いるこ とができるが、 これら油脂類の一部又は全部に未脱臭油脂を使用することが 、 トランス不飽和脂肪酸、 共役不飽和脂肪酸を低減し、 原料油脂由来の植物 ステロール、 植物ステロール脂肪酸エステル、 トコフヱロールを残存させる ことができる点から好ましい。 油相基質中には、 前記油脂類の他に脂肪酸等 の油溶性成分が混合されていても良い。 脂肪酸類とは、 加水分解の結果得ら れる脂肪酸の他、 上記グリセリ ドの 1種以上を含むものも指す。
[0024] 本発明における 2液相を形成する液体混合物のうちの他の好ましい一種は 水相基質である。 水相基質は水であるが、 加水分解の結果得られるグリセリ ン等、 その他の水溶性成分が混合されていても良い。 [0025] 本発明において使用する固定床型反応塔 (酵素塔) は、 その形状は使用す るポンプの押し込み圧に耐えられるものであれば良い。 また、 酵素塔の周囲 にジャケットを設け、 酵素塔内に流通する反応液を酵素反応に適した温度に 調整できるものであることが好ましい。
酵素塔内の温度は、 固定化酵素の活性をより有効に引き出すために、 0〜 6 0 °C、 更に 2 0〜4 0 °Cとすることが好ましい。
酵素塔の長さは、 所望の分解率を得るのに必要な長さとすれば良いが、 反 応性、 塔内圧力損失等の点から 0 . 0 1〜 1 0 m、 好ましくは 0 . 1〜5 m の範囲とすることが好ましい。
[0026] 本発明においては、 酵素塔に、 一の管の横断面が少なくとも 1部が閉じて いない代表長さが 1 0 O m m以下の円形状又は多角形状である複数の管状構 造が形成されるよう酵素塔の縦方向に仕切板を挿入し、 該管状構造内に固定 化酵素を充填し、 該管状構造内に前記液体混合物を供給して反応を行う。 こ のような小さな断面積を有する複数の管状構造内で反応を行わせることによ り、 酵素塔内の流路の断面積が小さくなり、 2液相となっている反応液の流 れを均一にすることができる。 また、 一の管の横断面が少なくとも 1部が閉 じていない管状構造を形成させることにより、 固定化酵素充填部の容積率が 上がり、 反応性が高まり、 コスト低減も図ることができる。 さらに、 固定化 酵素の除去の操作性が良好である。 なお、 この際、 仕切板と酵素塔内壁との 間に間隙がある場合には、 この間隙にも固定化酵素を充填することが、 反応 液の流れを均一にする点から好ましい。 なお、 本発明において 「代表長さ」 とは、 横断面が矩形であればその対角線の長さ、 円形であればその直径、 そ の他楕円、 多角形等であれば、 これらの投影面積と同じ面積を有する円の直 径をいう。
[0027] 仕切板は、 酵素塔内に前記断面積を有する複数の管状構造を形成できるよ うに縦方向に挿入すればよい。 例えば、 酵素塔内部に凹凸型の仕切板 (平板 、 コルゲート板等) を装填する方法 (図 1 ) ; ジグザグ状の仕切板を装填す る方法 (図 2 ) ; 凹型の仕切板を装填させてなる多角形状内を別の仕切板で 区切る方法 (図 3) ;組合せ用スリット入り仕切板 (図 4 (a) ) を複数枚 組合せる方法 (図 4) 等が挙げられる。 また、 波形の仕切板を装填する方法 や、 波形の仕切板を装填させてなる円形状内を別の仕切板で区切る方法、 更 に湾曲形状や板状の複数の仕切板を組み合わせて円形状や多角形状になるよ う装填する方法等が挙げられる。 管の横断面の形状は、 仕切板の装填効率の 観点から、 多角形状の場合、 正三角形状、 正方形状、 正六角形状が好ましく 、 円形状の場合、 円形状、 楕円形状が好ましい。
[0028] 仕切板により形成される複数の管状構造の一の管 (一流路) の横断面の代 表長さは 1 00 mm以下であるが、 反応性向上の観点から、 好ましくは 75 mm以下、 更に 5 Omm以下、 特に 35 m m以下とすることが好ましい。
[0029] 前記円形状又は多角形状の横断面における閉じていない部分の長さは、 反 応性向上の観点から 0. 1〜 1 0mm、 更に 0. 5〜8mm、 特に 1〜6m mとすることが好ましい。 なお、 仕切板と仕切板との間隔を一定に維持する ため、 部分的にスぺーサーを挿入させてもよい。 また、 前記組合せ用スリツ ト入り仕切板の場合は、 スリットの幅を仕切板の厚さよりも 0. 2〜20m m、 更に 1〜 1 6mm、 特に 2〜 1 2 mm広めに設定しておくのが好ましい
[0030] 酵素塔への仕切板の装填により形成された管状構造物に、 固定化酵素が充 填され、 該管状構造物内に 2液相の液体混合物 (反応液) が供給される (図 5参照) 。
かくすることにより、 2液相の液体混合物 (反応液) の酵素塔内の流れが 均一になる。
[0031] 固定化酵素を充填する際、 前記仕切板と酵素塔内壁との間に間隙があり、 その間隙が極端に狭いと、 固定化酵素が充填し難くなる。 この間隙への充填 が不十分であると、 酵素塔全体として充填が不均一となり、 嵩密度の低下が 生じる場合がある。 この場合、 反応液の流れが不均一となり、 反応効率低下 を招く原因となり得る。 従って、 該仕切板と酵素塔内壁との間隙を一定以上 とすることが好ましい。 固定化酵素等の充填物の種類や粒径、 更に仕切板の 大きさにもよるが、 仕切板と酵素塔内壁との間隙の最も狭い部分を 1 mm以 上とすることが好ましく、 更に 5 mm以上とすること力 固定化酵素を隙間 なく均一に充填する点から好ましい。 当該間隙の上限は、 一の管の断面の代 表長さ以下とすること力 反応液の流れを均一にする点から好ましく、 更に 7 Omm以下、 特に 5 Omm以下とすることが好ましい。
[0032] 酵素塔内における仕切板の長さは、 固定化酵素の充填厚み以上であること 力 塔内の反応液全体の流れを均一化する点から好ましいが、 充填厚みより 短くても充填厚みの 50%以上、 更に 75%以上の範囲であれば同様の効果 が得られる。
[0033] また、 仕切板は、 その全長に渡って切れ目がなくても良いが、 充填した固 定化酵素の交換し易さ等の作業性の点から、 上下方向に複数段に分割されて いることが好ましい。 段数としては、 酵素塔の全長にもよるが、 2〜30分 割、 更に 2〜 1 0分割であることが好ましい。 また、 更に、 各段の仕切板は 、 酵素塔内への装填し易さ等の点から、 それぞれ横方向に複数部分に分割さ れていても良く、 区画毎にュニット化されていても良い。
[0034] また、 本発明においては、 管径が 35mm0以上である酵素塔を用いて反 応を行う場合、 前記管径 (mm) の固定化酵素の平均粒子径 (mm) に対す る比率 (管径 /平均粒子径) を、 1 35 (mm/mm) 以下とするのが好ま しい。 酵素塔の管径が 35 mm 0未満の場合は、 酵素活性の低下が起こりに くく、 反応性も良好であるが、 酵素塔の径が 35mm0より大きくなるに従 つて、 酵素の発現活性が低下する傾向があり、 その結果反応性が低下する場 合がある。 管径の大きい酵素塔を用いる場合も、 酵素塔の管径と固定化酵素 の平均粒子径との比率を規定することで、 スケールアップが可能になると共 に、 酵素の活性低下を防止できるので、 有用物質を効率的に製造できる。 管径/平均粒子径は、 5〜 1 35 (mm/mm) 、 更に 1 5〜 1 30 (m m/mm) 、 特に 30〜 1 25 (mm/mm) とすること力 反応性向上の 点から好ましい。 なお、 本発明における酵素を担持させた固定化酵素の平均 粒子径は、 レーザー散乱回折法粒度分布測定装置 L S 1 3 320 (べッ クマン - コ一ルター (株) 製) により測定した値をいう。
[0035] 酵素塔の管径は、 35〜 1 00 Omm0、 更に 35〜80 Omm0、 特に 4 O〜6 O Omm0、 殊更 50〜 300 m m 0とすること力 固定化酵素の 充填し易さ等の作業性、 反応性、 生産性の点から好ましい。
[0036] 酵素塔へ反応液を供給する方法としては、 それぞれ別々に酵素塔へ直結す る配管にて行ってもよく、 又は共有の配管にて供給を行っても良いが、 水相 と油相の乳化回避の点及び操作性の点から、 別々に酵素塔へ直結する配管に て行うことが好ましい。
[0037] 反応液の通液線速度は、 好ましくは 1〜 400 mm/分、 更に 5〜 200 mm/分であるのが好ましい。 この通液線速度 (mm/分) は、 1分間当り の送液量 (mm3/分) (又は送液速度 (1 0_3m L/分) ともいう) を充填 層断面積 (mm2) で除した商で表わされる値をいう。 通液線速度を上げるこ とによる充填塔内圧力の増大に伴い、 通液が困難となり、 耐圧性の高い酵素 充填塔が必要となる他に、 固定化酵素が塔内圧力増加により破砕される場合 が生じることもあるため、 通液線速度は 40 Omm/分以下とすることが好 ましい。 また、 生産性の点から通液線速度は 1 mm/分以上とすることが好 ましい。 固定化酵素の発現活性は、 通液線速度により変化するため、 最適な 通液線速度を選定して反応条件を決定することで、 所望の生産能力、 製造コ ス卜に見合った反応を行うことができる。
[0038] 酵素塔内の反応液の滞留時間は、 加水分解反応の平衡状態を回避し、 固定 化酵素の活性をより有効に引き出し、 生産性を向上させる点から 30秒〜 1 20分、 更に 1分〜 80分とすることが好ましい。 滞留時間 (分) とは、 充 填層の厚み (mm) に空隙率を乗じ、 これを通液線速度 (mm/分) で除し た値で表わされる。
[0039] 本発明においては、 反応性、 生産性等の兼ね合いから、 酵素塔を通過した 反応液をそのまま反応終了物としても良く、 また、 反応液を一旦油水分離し 、 油相を分取した後に新しい水を加えて上記と同様の方法で再度同一の酵素 塔へ供給し、 所望の反応率が得られるまで繰り返し通過させても良い。 また 、 反応液を一旦油水分離し、 油相を分取した後に新しい水を加えて上記と同 様の方法で再度、 別の酵素塔へ供給して連続反応を行っても良い。 また、 複 数の酵素塔を用いて反応液の油水分離を行いながら、 油相を次の酵素塔へ、 水相を前の酵素塔へ供給する事により、 より分解率の高い油相を新鮮な水相 と反応させる擬似向流法で行っても良い。 反応液の油水分離法としては、 自 然沈降型、 遠心分離型等の油水分離器が一般に使用されるが、 特に限定され ない。
実施例
〔固定化酵素の調製 ( 1 ) 〕
D u o l i t eA-568 (Ro hm a n d H a s s社製、 粒径分布 1 00〜"! 000 m) 1重量部を N / 1 0の N a O H溶液 1 0質量部中で 1時間攪拌した。 ろ過した後 1 0質量部のイオン交換水で洗浄し 50 OmM の酢酸緩衝液 (p H 7) 1 0質量部で p Hの平衡化を行なった。 その後 50 mMの酢酸緩衝液 ( p H 7 ) 1 0質量部で 2時間ずつ 2回 p Hの平衡化を行 なった。 この後ろ過を行ない担体を回収した後、 エタノール 5質量部でエタ ノール置換を 30分行なった。 ろ過した後、 リシノール酸を 1質量部含むェ タノール 5質量部を加え 30分間、 リシノール酸を担体に吸着させた。 ろ過 によって担体を回収した後、 5 OmMの酢酸緩衝液 (p H 7) 5質量部で 3 0分ずつ 4回洗浄し、 エタノールを除去し、 ろ過して担体を回収した。 その 後市販のリパーゼ (リパーゼ AY、 アマノ天野製薬 (株) ) 1質量部を 50 mMの酢酸緩衝液 (p H 7) 9質量部に溶解した酵素液と 5時間接触させ、 固定化を行なった。 ろ過し、 固定化酵素を回収して 5 OmMの酢酸緩衝液 ( p H 7) 1 0質量部で洗浄を行なうことにより、 固定化していない酵素ゃタ ンパクを除去した。 その後実際に分解を行なう菜種油を 4質量部加え 1 2時 間攪拌した。 以上の操作はいずれも 20°Cで行なった。 その後ろ過して油脂 と分離し、 固定化酵素とした。 その結果、 2700 U/g (乾燥重量) の加 水分解活性 (発現すべき活性) を示す固定化リパーゼが得られた。 固定化酵 素の質量基準の平均粒子径は 451 ; であった。 [0041] 〔固定化酵素の調製 (2) 〕
D u o l i t eA-568 (Ro hm a n d H a s s社製、 粒径分布 1 00〜"! O O O m) 1質量部を N / 1 0の N a O H溶液 1 0質量部中で 1時間攪拌した。 ろ過した後 1 0質量部のイオン交換水で洗浄し 50 OmM の酢酸緩衝液 (p H 7) 1 0質量部で p Hの平衡化を行なった。 その後 50 mMの酢酸緩衝液 ( p H 7 ) 1 0質量部で 2時間ずつ 2回 p Hの平衡化を行 なった。 この後ろ過を行ない担体を回収した後、 エタノール 5質量部でエタ ノール置換を 30分行なった。 ろ過した後、 リシノール酸を 1質量部含むェ タノール 5質量部を加え 30分間、 リシノール酸を担体に吸着させた。 ろ過 によって担体を回収した後、 5 OmMの酢酸緩衝液 (p H 7) 5質量部で 3 0分ずつ 4回洗浄し、 エタノールを除去し、 ろ過して担体を回収した。 その 後市販のリパーゼ (リパーゼ AY、 アマノ天野製薬 (株) ) 1質量部を 50 mMの酢酸緩衝液 (p H 7) 9質量部に溶解した酵素液と 5時間接触させ、 固定化を行なった。 ろ過し、 固定化酵素を回収して 5 OmMの酢酸緩衝液 ( p H 7) 1 0質量部で洗浄を行なうことにより、 固定化していない酵素ゃタ ンパクを除去した。 その後実際に分解を行なう大豆油を 4質量部加え 1 2時 間攪拌した。 以上の操作はいずれも 20°Cで行なった。 その後ろ過して油脂 と分離し、 固定化酵素とした (以下、 固定化酵素 Aと表記する) 。 更に、 D u o I i t e A— 568を粉砕して分級した固定化担体、 及び D u o I i t e A-568を分級して 425 m以下の微粒子を除去した固定化担体を用 いて、 上記と同様の方法で固定化酵素を調製した (それぞれ固定化酵素 B、 固定化酵素 Cとする) 。 固定化酵素 A〜Cの加水分解活性 (発現すべき活性 ) 、 及び質量基準の平均粒子径を表 1に示す。
[0042] [表 1] 加水分解活性 平均粒子径 (質量基準)
[U/g]
固定化酵素 A 2400 500
固定化酵素 B 3030 300
固定化酵素 C 2150 580 [0043] <実施例 1 >
横断面の形状が 1 1. 4mmX l 1. 4 mmの矩形 (代表長さ 1 6 mm) であるジグザグ状の仕切板 (図 2に相当、 肉厚 1 mrn、 高さ 1 300mm) を、 閉じていない部分の長さが 2 mmとなるように縦方向に装填したジャケ ット付きのステンレス製カラム (内径 7 Omm、 高さ 1 500mm) に、 前 記固定化酵素の調製 (1 ) で得た固定化リパーゼ 1. 3 k g (乾燥重量) を 充填し (充填高さ 1 300mm) 、 ジャケットにて 35 °Cに保温した。 カラ ム上部より菜種油と蒸留水を重量比 1 0 : 6で混合した液を 4. 3 k g/H rで送液し、 加水分解反応を行った。 その結果を表 2に示す。 なお、 表中の 分解率は、 分析により求めた酸価をケン化価で除することにより算出した。 お、 酉価は、 Am e r i c a n Ο ι I C h em i s t s. S o c i e t y O f f i c i a l M e t h o d C a 5 a - 40に記載の方法に より、 またケンィ匕而は A m e r i c a n O i I C h em i s t s. S o c i e t y O f f i c i a l M e t h o d C d 3 a - 94に言己載の 方法により測定した。
[0044] <実施例 2>
横断面の形状が 4 Omm X 4 Ommの矩形 (代表長さ 56 mm) で閉じて ない部分の長さが 1 mmとなるように、 組合せ用スリット入り仕切板 (図 4 に相当、 板厚 2mm、 高さ 300mm) を組合せて装填したジャケット付き のステンレス製カラム (内径 200mm、 高さ 1 500mm) に、 前記固定 化酵素の調製 (1 ) で得た固定化リパーゼを乾燥ベースで 1 1. 5 k g充填 (充填高さ 1 500mm) し、 ジャケットにて 35 °Cに保温した。 カラム上 部より菜種油と蒸留水を重量比 1 0 : 6で混合した液を 30 k g/H rで送 液し、 加水分解反応を行った。 その結果を表 2に示す。
[0045] <比較例 1 >
ステンレス製カラムに仕切板を装填せず、 また前記固定化酵素の調製 (1 ) で得た固定化リパーゼを乾燥ベースで 1. 4 k g充填 (内径 70mm、 充 填高さ 1 30 Omm) した以外は実施例 1 と同様の手順で加水分解反応を行 つた。 結果を表 2に示す。
[0046] <比較例 2>
ステンレス製カラムに仕切板を装填せず、 また前記固定化酵素の調製 (1
) で得た固定化リパーゼを乾燥ベースで 1 2. 7 k g充填 (内径 200mm
、 充填高さ 1 500 mm) した以外は実施例 2と同様の手順で加水分解反応 を行った。 結果を表 2に示す。
[0047] [表 2]
Figure imgf000016_0001
[0048] 表 2に示した結果から、 固定床型反応塔内部に、 一の管の横断面が少なく とも 1部が閉じていない代表長さが 1 0 Omm以下の円形状又は多角形状で ある複数の管状構造が形成されるよう固定床型反応塔の縦方向に仕切板を揷 入した状態で、 菜種油及び蒸留水を供給して加水分解する事により、 分解率 が向上し、 固定化酵素の (見掛け) 活性が有効に発現することが明らかとな つた。
[0049] <実施例 3>
ジャケット付きのステンレス製カラム (内径 35mm、 高さ 1 600mm ) に、 固定化酵素 A 350 g (乾燥質量) を充填し (充填高さ 1 500mm ) 、 ジャケットにて 35°Cに保温した。 カラム上部より菜種油と蒸留水を質 量比 1 0 : 6で混合した液を 1. 1 k g/H rで送液し、 加水分解反応を行 つた。 その結果を表 3に示す。 [0050] <実施例 4>
ジャケット付きのステンレス製カラム (内径 55mm、 高さ 1 600mm ) に、 固定化酵素 Aを乾燥ベースで 865 g充填し (充填高さ 1 500mm ) 、 ジャケットにて 35°Cに保温した。 カラム上部より菜種油と蒸留水を質 量比 1 0 : 6で混合した液を 2. 7 k g/H rで送液し、 加水分解反応を行 つた。 結果を表 3に示す。
[0051] <実施例 5>
実施例 3における固定化酵素 Aを固定化酵素 Bに替えた以外は実施例 3と 同一の方法で、 加水分解反応を行った。 結果を表 3に示す。
[0052] <実施例 6>
ジャケット付きのステンレス製カラム (内径 7 Omm、 高さ 1 600mm ) に、 固定化酵素 Cを乾燥ベースで 1 400 g充填し (充填高さ 1 500m m) 、 ジャケットにて 35°Cに保温した。 カラム上部より菜種油と蒸留水を 質量比 1 0 : 6で混合した液を 4. 3 k g/H rで送液し、 加水分解反応を 行った。 結果を表 3に示す。
[0053] <比較例 3>
実施例 6における固定化酵素 Cを固定化酵素 Aに替えた以外は実施例 6と 同一の方法で、 加水分解反応を行った。 結果を表 3に示す。
[0054] <比較例 4>
実施例 4における固定化酵素 Aを固定化酵素 Bに替えた以外は実施例 4と 同一の方法で、 加水分解反応を行った。 結果を表 3に示す。
[0055] <比較例 5>
実施例 6における固定化酵素 Cを固定化酵素 Bに替えた以外は実施例 6と 同一の方法で、 加水分解反応を行った。 結果を表 3に示す。
[0056] ほ 3]
Figure imgf000018_0001
表 3に示した結果から、 管径が 3 5 m m 0以上の固定床型反応塔を用いた 場合も、 反応塔内に、 該管径の固定化酵素の平均粒子径に対する比率 (管径 /平均粒子径) が 1 3 5以下となるように固定化酵素を充填することによつ て、 分解率が向上し、 固定化酵素の (見かけ) 活性が有効に発現することが 明らかとなった。

Claims

請求の範囲
[1 ] 固定化酵素を充填した固定床型反応塔に 2液相を形成する液体混合物を供 給し、 同一方向に並流させて反応を行う有用物質の製造方法において、 一の 管の横断面が少なくとも 1部が閉じていない代表長さが 1 0 O m m以下の円 形状又は多角形状である複数の管状構造が形成されるよう固定床型反応塔の 縦方向に仕切板を挿入した固定床型反応塔を用い、 該管状構造内に固定化酵 素を充填し、 該管状構造内に前記液体混合物を供給する有用物質の製造方法
[2] 前記円形状又は多角形状の横断面における閉じていない部分の長さが、 0
. 1〜 1 0 m mである請求項 1記載の有用物質の製造方法。
[3] 固定床型反応塔の縦方向に挿入した仕切板が、 上下方向に複数段に分割さ れているものである請求項 1又は 2記載の有用物質の製造方法。
[4] 固定床型反応塔の縦方向に挿入した仕切板が、 横方向に複数部分に分割さ れているものである請求項 1〜 3のいずれか 1項に記載の有用物質の製造方 法。
[5] 固定床型反応塔の縦方向に挿入した仕切板と固定床型反応塔内壁との間隙 の最も狭い部分が 1 m m以上である請求項 1〜 4のいずれか 1項に記載の有 用物質の製造方法。
[6] 管径が 3 5 m m 0以上である固定化酵素を充填した固定床型反応塔に 2液 相を形成する液体混合物を供給し、 同一方向に並流させて反応を行うことに より有用物質を製造する方法であって、 固定床型反応塔として、 固定床型反 応塔の管径 (m m ) の固定化酵素の平均粒子径 (m m ) に対する比率 (管径 /平均粒子径) が 1 3 5 ( m m/m m ) 以下となるように固定化酵素を充填 した固定床型反応塔を用いる有用物質の製造方法。
[7] 前記液体混合物のうち一種が油相基質である請求項 1〜 6の何れか 1項記 載の有用物質の製造方法。
[8] 前記液体混合物のうち一種が水相基質である請求項 1〜 7のいずれか 1項 記載の有用物質の製造方法。
[9] 前記反応が固定化リパーゼを用いた油脂類の加水分解反応である請求項 1
〜 8のいずれか 1項記載の有用物質の製造方法。
[10] 有用物質が脂肪酸類である請求項 1〜 9のいずれか 1項に記載の有用物質 の製造方法。
PCT/JP2007/001403 2006-12-15 2007-12-14 固定化酵素を用いた有用物質の製造方法 WO2008072382A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/518,285 US8252560B2 (en) 2006-12-15 2007-12-14 Process for producing useful substance with immobilized enzyme
CN200780046399.5A CN101558162B (zh) 2006-12-15 2007-12-14 使用固定化酶的有用物质的制造方法
EP07849833A EP2096175A4 (en) 2006-12-15 2007-12-14 METHOD FOR PRODUCING A USEFUL SUBSTANCE WITH IMMOBILIZED ENZYME

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-337889 2006-12-15
JP2006337889A JP5080797B2 (ja) 2006-12-15 2006-12-15 固定化酵素を用いた有用物質の製造方法
JP2007-057541 2007-03-07
JP2007057541A JP5080828B2 (ja) 2007-03-07 2007-03-07 固定化酵素を用いた有用物質の製造方法

Publications (1)

Publication Number Publication Date
WO2008072382A1 true WO2008072382A1 (ja) 2008-06-19

Family

ID=39511414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/001403 WO2008072382A1 (ja) 2006-12-15 2007-12-14 固定化酵素を用いた有用物質の製造方法

Country Status (4)

Country Link
US (1) US8252560B2 (ja)
EP (1) EP2096175A4 (ja)
KR (1) KR20090097870A (ja)
WO (1) WO2008072382A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10000731B2 (en) 2010-03-01 2018-06-19 Trans Bio-Diesel Ltd. Enzymatic transesterification/esterification processes employing lipases immobilized on hydrophobic resins in the presence of water solutions
CN107805647A (zh) * 2017-12-14 2018-03-16 广州白云山汉方现代药业有限公司 一种酶法合成中长链结构酯的方法
CN108642035B (zh) * 2018-05-08 2022-03-25 江苏理工学院 一种硅胶固定gdh催化制备nadph的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6185195A (ja) 1984-10-02 1986-04-30 Agency Of Ind Science & Technol 脂質の連続加水分解法
JPS62179388A (ja) * 1986-01-27 1987-08-06 アクゾ・ナ−ムロ−ゼ・フエンノ−トシヤツプ 固定化リパーゼを用いる脂肪の加水分解用の組成物
JPH0198494A (ja) 1987-10-09 1989-04-17 Agency Of Ind Science & Technol バイオリアクター
DE4125186A1 (de) * 1991-07-30 1993-02-04 Axel Dipl Ing Rathjen Biokatalysator sowie verfahren und vorrichtung zu seiner herstellung
JP2000160188A (ja) 1998-11-26 2000-06-13 Kao Corp 油脂の加水分解方法
WO2007043552A1 (en) * 2005-10-05 2007-04-19 Kao Corporation Method for producing a useful substance by use of an immobilized enzyme

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62115283A (ja) 1985-11-13 1987-05-26 Seitai Kinou Riyou Kagakuhin Shinseizou Gijutsu Kenkyu Kumiai 固定化リパ−ゼ及びその製造方法
US4678580A (en) * 1986-01-27 1987-07-07 Akzo America Inc. Hydrolysis of fats
US4833083A (en) * 1987-05-26 1989-05-23 Sepragen Corporation Packed bed bioreactor
JP3670284B2 (ja) 1994-02-21 2005-07-13 ノボザイムス アクティーゼルスカブ 固定化酵素調製品の製造方法および固定化酵素調製品の使用
US6190624B1 (en) * 1998-09-08 2001-02-20 Uop Llc Simplified plate channel reactor arrangement
US6258575B1 (en) * 1998-11-26 2001-07-10 Kao Corporation Hydrolyzing fats and oils using an immobilized enzyme column and substrate-feeding chamber that separates phases
JP3764855B2 (ja) * 2001-06-22 2006-04-12 花王株式会社 油脂類の加水分解方法
JP4849967B2 (ja) 2005-06-21 2012-01-11 花王株式会社 脂肪酸類の製造方法
JP5080771B2 (ja) 2005-10-05 2012-11-21 花王株式会社 固定化酵素を用いた有用物質の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6185195A (ja) 1984-10-02 1986-04-30 Agency Of Ind Science & Technol 脂質の連続加水分解法
JPS62179388A (ja) * 1986-01-27 1987-08-06 アクゾ・ナ−ムロ−ゼ・フエンノ−トシヤツプ 固定化リパーゼを用いる脂肪の加水分解用の組成物
JPH0198494A (ja) 1987-10-09 1989-04-17 Agency Of Ind Science & Technol バイオリアクター
DE4125186A1 (de) * 1991-07-30 1993-02-04 Axel Dipl Ing Rathjen Biokatalysator sowie verfahren und vorrichtung zu seiner herstellung
JP2000160188A (ja) 1998-11-26 2000-06-13 Kao Corp 油脂の加水分解方法
WO2007043552A1 (en) * 2005-10-05 2007-04-19 Kao Corporation Method for producing a useful substance by use of an immobilized enzyme

Also Published As

Publication number Publication date
EP2096175A4 (en) 2012-04-04
US20100041114A1 (en) 2010-02-18
KR20090097870A (ko) 2009-09-16
EP2096175A1 (en) 2009-09-02
US8252560B2 (en) 2012-08-28

Similar Documents

Publication Publication Date Title
KR101294474B1 (ko) 고정화 효소를 이용한 유용 물질의 제조 방법
US7517674B2 (en) Process of hydrolyzing oil or fat using a packed layer of immobilized enzyme
JP5080771B2 (ja) 固定化酵素を用いた有用物質の製造方法
WO2008072382A1 (ja) 固定化酵素を用いた有用物質の製造方法
JP5080828B2 (ja) 固定化酵素を用いた有用物質の製造方法
JP4849967B2 (ja) 脂肪酸類の製造方法
JP5080797B2 (ja) 固定化酵素を用いた有用物質の製造方法
WO2008072381A1 (ja) 固定化酵素を用いた有用物質の製造方法
JP5242236B2 (ja) 脂肪酸類の製造方法
JP4842770B2 (ja) 固定化酵素反応塔の製造方法
JP6990076B2 (ja) 脂肪酸類の製造方法
BRPI0710065B1 (pt) Processo para modificação de um substrato
JP2010075068A (ja) 有用物質の製造方法
JP5284663B2 (ja) 油脂のエステル交換反応方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780046399.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07849833

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12518285

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007849833

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020097012039

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE