WO2008071307A1 - Klebstoffe - Google Patents

Klebstoffe Download PDF

Info

Publication number
WO2008071307A1
WO2008071307A1 PCT/EP2007/010345 EP2007010345W WO2008071307A1 WO 2008071307 A1 WO2008071307 A1 WO 2008071307A1 EP 2007010345 W EP2007010345 W EP 2007010345W WO 2008071307 A1 WO2008071307 A1 WO 2008071307A1
Authority
WO
WIPO (PCT)
Prior art keywords
isocyanate
reactive
preparation
polymer
latent
Prior art date
Application number
PCT/EP2007/010345
Other languages
English (en)
French (fr)
Inventor
Jörg Büchner
Christoph Gürtler
Raul Pires
Wolfgang Henning
Wolfgang Arndt
Original Assignee
Bayer Materialscience Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Materialscience Ag filed Critical Bayer Materialscience Ag
Priority to KR1020097014454A priority Critical patent/KR101500768B1/ko
Priority to JP2009540625A priority patent/JP2010512436A/ja
Priority to CN2007800459345A priority patent/CN101652398B/zh
Priority to BRPI0720278-4A2A priority patent/BRPI0720278A2/pt
Priority to AT07856300T priority patent/ATE532807T1/de
Priority to EP20070856300 priority patent/EP2099840B1/de
Publication of WO2008071307A1 publication Critical patent/WO2008071307A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • C08G18/791Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups
    • C08G18/792Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups formed by oligomerisation of aliphatic and/or cycloaliphatic isocyanates or isothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/222Catalysts containing metal compounds metal compounds not provided for in groups C08G18/225 - C08G18/26
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4236Polycondensates having carboxylic or carbonic ester groups in the main chain containing only aliphatic groups
    • C08G18/4238Polycondensates having carboxylic or carbonic ester groups in the main chain containing only aliphatic groups derived from dicarboxylic acids and dialcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/50Polyethers having heteroatoms other than oxygen
    • C08G18/5021Polyethers having heteroatoms other than oxygen having nitrogen
    • C08G18/5024Polyethers having heteroatoms other than oxygen having nitrogen containing primary and/or secondary amino groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/721Two or more polyisocyanates not provided for in one single group C08G18/73 - C08G18/80
    • C08G18/722Combination of two or more aliphatic and/or cycloaliphatic polyisocyanates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2170/00Compositions for adhesives
    • C08G2170/80Compositions for aqueous adhesives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]

Definitions

  • the invention relates to adhesives based on aqueous dispersions and surface-deactivated isocyanate particles as well as latent-reactive coatings, films and powders produced from such dispersions.
  • Polyurethane dispersion polymers which have linear polymer chains which crystallize at temperatures below 100 ° C are described i.a. used for heat-activated bonding of temperature-sensitive substrates.
  • 1-component processing i. however, without the addition of a crosslinker, only low heat resistances correlated with the decalcification temperature or softening temperature of the polymer are achieved.
  • the hydrolysis resistance in 1-component processing is insufficient for many applications.
  • the aqueous dispersion polymers are usually processed with the concomitant use of liquid, hydrophilic modified polyisocyanates.
  • the gain in improved properties is paid for with a higher technical outlay for the two-component processing.
  • the preparation of the two-component mixture must be carried out immediately before the dispersion is processed.
  • the two-component processing is prone to error in addition of the proper amount of isocyanate component and homogeneous co-agitation of the isocyanate component.
  • the pot life of the two-component mixture is, depending on the type of polymer dispersion or isocyanate component 1 - 12 hours.
  • the dried adhesive layers must be processed within about 1-12 h, otherwise - due to the progressive crosslinking reaction by the isocyanate groups - Polymer can no longer be processed under the usual conditions of heat-induced bonding.
  • latent-reactive dispersion adhesives consist of at least one dispersion of isocyanate-reactive polymers and solid isocyanate particles.
  • Aqueous preparations of isocyanate-reactive polymer dispersions having finely dispersed, surface-deactivated, uretdione-containing oligomeric solid isocyanates and their use as latently reactive binders for coatings and for adhesives have been known for some years.
  • Surface-deactivated isocyanate particles are to be understood as meaning those solid isocyanates in which 0.1-25, preferably 0.5-8, equivalent percent of the total isocyanate groups present in the isocyanate particles are reacted with a deactivating agent.
  • the deactivation of the isocyanate particles can be effected inter alia by the deactivating agents described in EP-A 0 204 970, US Pat. No. 4,595,445 and DE 10140206.
  • the surface-deactivated isocyanate particles differ fundamentally from the blocked isocyanates. In the case of the surface-deactivated isocyanate particles, preference is given to 92-99.5 equivalent percent of the isocyanate groups being free. In the blocked isocyanates, however, all isocyanate groups are reacted with a blocking agent. For the crosslinking reaction, the isocyanate groups of the blocked isocyanate must be replaced by e.g. Cleavage of the blocking agent are released first. In the case of the surface-deactivated isocyanate particles, the deblocking reaction of the isocyanate groups is not necessary.
  • EP-A 0 204 970 describes a process for preparing stable dispersions of finely divided polyisocyanates by treating the polyisocyanates in a liquid with stabilizers and action of high shear forces or milling.
  • di- and polyisocyanates are suitable whose melting point is above 10 0 C, preferably above 40 0 C.
  • the dispersions described are used as crosslinkers.
  • EP-A 1 172 390 discloses storage-stable isocyanate dispersions consisting of deactivated isocyanates and isocyanate-reactive polymers which crosslink after removal of the water at temperatures between 5 ° C. and 40 ° C.
  • the aqueous dispersion preparations are characterized by good lab stability.
  • the disadvantage of the procedure described in this publication is that the largely dry coatings, films or powders are not stable in storage.
  • the crosslinking reaction begins with the drying of the layers.
  • the desired spatial and temporal separation of the processing steps application / drying of the dispersion layer and joining of the composites can with this
  • EP-A 1 134 245 describes storage-stable preparations of finely divided di- and polyisocyanate powders which can be incorporated directly into the aqueous isocyanate-reactive polymer dispersions without surface deactivation.
  • the crosslinking reaction in these formulations is initiated by heating the dried layer to a temperature of at least 65 ° C.
  • EP-A 0 922 720 discloses the use of aqueous dispersions which contain at least one surface-deactivated polyisocyanate and at least one isocyanate-reactive polymer for the preparation of storage-stable, latently reactive layers or powders which are stable at room temperature
  • Heating can be brought to crosslinking.
  • polyisocyanates all the aliphatic, cycloaliphatic, heterocyclic or aromatic isocyanates can be used, which have a melting point above 40 0 C.
  • the stability of the precoat, the films or the powders and their reaction rate in the heat-induced crosslinking can be influenced by the type of isocyanate, by the amount of surface stabilizer, by the solubility parameters of the dispersion polymer and by catalysts.
  • the catalysts mentioned are the typical polyurethane catalysts such as tin, iron, lead, cobalt, bismuth, antimony and zinc compounds or their mixtures, alkylmercaptide compounds of dibutyltin and tertiary amines.
  • aliphatic isocyanates or polyurethanes based on aliphatic isocyanates do not absorb the short-wave UV component of the sunlight, these polyurethanes are principally protected against yellowing.
  • latent-reactive films or latent-reactive powders therefore, the use of surface-deactivated aliphatic solid isocyanates is particularly advantageous.
  • aliphatic isocyanates a disadvantage of the aliphatic isocyanates is the known lower reactivity compared to the aromatically bound isocyanate groups. This is for example from Ullmann's Encyclopedia of Industrial Chemistry, Sixth Edition, Vol. 18, p. 609, Wiley-VCH Verlag, 2002, Isocyanantes, Organic, known. For this reason, no applications of latent-reactive coatings, films or powders based on deactivated aliphatic solid isocyanates have yet been established. Thus, the relative reactivity of the free isocyanate group of the isocyanurate from isophorone diisocyanate (IPDI) over OH groups is about a factor of about 50 lower than the reactivity of the free isocyanate groups of the aromatic 1
  • IPDI isophorone diisocyanate
  • Methyl 2,4-phenylene diisocyanate (TDI dimer) towards OH groups Methyl 2,4-phenylene diisocyanate (TDI dimer) towards OH groups.
  • Latent-reactive coatings, films or powders according to EP-A 0 922 720 which contain a deactivated aliphatic solid isocyanate as crosslinking component, require either a) a very long residence time at high temperatures in order to crosslink the isocyanate-reactive polymer so as to lead the crosslinking reaction to such an extent b) a catalyst which accelerates the reaction between the aliphatic isocyanate groups and the isocyanate-reactive polymer so that the crosslinking reaction proceeds even after a short heat exposure to the desired crosslinking density. Without a catalyst, the crosslinking reaction takes place in these storage-stable latent-reactive layers,
  • a latent-reactive film prepared using the aliphatic IPDI trimer as a solid isocyanate must be allowed to dry for at least 30 minutes. be kept at 120 0 C to achieve a sufficiently high crosslink density in the adhesive bond.
  • the catalysts listed in EP-A 0 922 720 are typical for isocyanate reactions used catalysts. In particular, however, these catalysts have disadvantages in their use in the preparation of latent-reactive coatings, latent-reactive films or latent-reactive powders, making their use impossible.
  • the organic Zn (IV) compounds such as DBTL are generally contaminated with dibutyltin and tributyltin, respectively, as described in "Assessment of the risk to health and environment of the use of organostannic compounds (excluding biocides in antifouling paints) and a Description of the Economic Profile of the Industry, Final Report 19 June 2002, European Commission Health & Consumer Protection Directorate-General ". From an ecological point of view, the use of Zn (IV) compounds is not desirable.
  • the organic Zn (IV) compounds also catalyze the hydrolysis of the polyester polyurethane polymer chain polyester segments as used for the isocyanate-reactive dispersion polymers in latent-reactive layers. For this reason, organi- see Zn (IV) compounds for the catalysis of the reaction of surface-deactivated aliphatic solid isocyanates with crystalline isoeyanatreepte polyurethane dispersion polymers based on polyester polyol can not be used.
  • prior art catalysts typically have only a finite lifetime in aqueous systems, i. the catalyst is hydrolyzed by the action of water more or less rapidly. This applies to the aqueous preparation of surface-deactivated aliphatic solid isocyanates and isocyanate-reactive dispersed polymers as well as for the substantially dry latent-reactive coatings, which usually still has a residual moisture content of about 0.6 to 1.0 wt.% Water based on have the weight of the coating.
  • tin (IV) compounds which are frequently used in conventional systems, such as the abovementioned DBTL or else bismuth carboxylates, such as, for example, Bismuth (IH) -2-ethylhexanoate (K-Kat, King Industries, Norwalk, Conn., USA), as also described in WO 00/047642.
  • bismuth carboxylates such as, for example, Bismuth (IH) -2-ethylhexanoate (K-Kat, King Industries, Norwalk, Conn., USA), as also described in WO 00/047642.
  • the lead and antimony compounds are also not advantageous due to their toxicology and their environmentally harmful effect and therefore should not be used in principle.
  • Another problem for catalyzing the reaction between surface-deactivated solid isocyanate and isocyanate-reactive dispersion polymer is the ionic groups required to hydrophilize the polymer chain of the dispersion polymer. Hydrophilization can be achieved by incorporating carboxyl groups into the polymer chain. These carboxyl groups may possibly lead to an inhibition of the catalytic activity of organotin compounds by a complex formation. This is true for all highly charged Lewis acids, e.g. Titanium (IV), zirconium (IV) compounds.
  • a catalyst which is said to be universally useful with a variety of surface-deactivated aliphatic solid isocyanates, polyisocyanates and hydrophilic binders must not show these interactions with the hydrophilizers.
  • EP-A 1 599 525 describes catalysts for the accelerated curing of polyisocyanates with polyols and polyurethane systems containing them.
  • the (poly) -isocyanate components which can be used according to this teaching are any organic polyisocyanates with aliphatic, cycloaliphatic, araliphatic and / or or aromatically bound, free isocyanate groups that are liquid at room temperature or are diluted with solvent for this purpose.
  • the (poly) -isocyanate component has a viscosity of 10 - 15,000 mPas at 23 ° C.
  • the invention relates to catalysts for accelerated curing of polyisocyanates with polyols in the presence of the solvent water (so-called aqueous two-component polyurethane coatings, 2K-PUR water-based paints).
  • the object of this invention was to find it catalysts which accelerate the reaction between the isocyanate and the alcohol or the polyol in the presence of water or to accelerate the curing of aqueous 2K-PUR systems, without having an effect on the pot life ,
  • This object is achieved by the use of various salts of elements of the 5th and 6th (sub) group of the periodic table, in which the respective element has an oxidation state of at least +4.
  • EP-A 0 992 720 also lists tertiary amines as effective catalysts.
  • the tertiary amines lose their activity by absorption of carbon dioxide from the air.
  • this fact is particularly undesirable because it is precisely the storage stability of the coatings, films or powders, also with regard to the crosslinking speed, which is essential for the use of the latent-reactive layers.
  • the catalysts should also be positively evaluated in terms of their toxicological properties.
  • the crosslinking reaction in the coatings, films or powders should be achieved in an application-technically acceptable time of heat activation.
  • compositions according to the invention are therefore mixtures of: a) an aqueous dispersion or dispersion mixture of at least one polymer having isocyanate-reactive groups b) a surface-deactivated, finely divided aliphatic solid polyisocyanate at least substantially suspended in water c) at least one compound of elements of groups 5 and 6 of the Periodic Table, in which the respective element has an oxidation state of at least +4 and d) optionally further additives and auxiliaries.
  • latent-reactive aqueous preparations according to the invention can be prepared in any desired manner, e.g. in the spray, doctor blade, brush, or roller application method on flat or three-dimensional
  • release paper eg silicone paper or polyolefin non-sticky paper or similar support materials
  • spray, knife, brush or roller application After drying, self-supporting latent-reactive films or nonwovens are obtained, which may be wound up after insertion of a release paper and stored until use as an adhesive film.
  • the solids can be obtained in the form of granuta or powder by suitable technical processes.
  • the formulations according to the invention can be freed from the water by spray-drying. This gives latent-reactive powders, which can be ground to small particle sizes, if necessary, by a subsequent grinding process.
  • Latent-reactive powders can also be obtained by coagulation of polymer dispersions with surface-deactivated solid isocyanate particles.
  • polyvalent cations eg Ca 2+ , Mg 2+ , Al 3+
  • Centrifugation etc. largely freed from water and then dried at temperatures below the reaction temperature of the deactivated aliphatic solid isocyanate. Possibly. can the coagulum can be ground to the required particle size after drying in a milling process, eg in ball, bead, sand or jet mills.
  • a further possibility for producing latent-reactive powders is to freezing of the mixture of polymer and devisfestdegentierem solid isocyanate from the aqueous prepara- obligations at temperatures below 0 0 C.
  • the precipitated polymer / isocyanate mixture is then from the water by filtration, centrifugation etc. extensively freed and finally dried.
  • the coarse-grained powder obtained can then be ground to the required particle sizes by suitable grinding - if necessary, the grinding process must take place at low temperatures - eg in ball, bead, sand or jet mills.
  • the drying of the latent-reactive coatings, films, nonwovens or powder must be carried out at temperatures below the softening temperature of the polymer or the melting or the softening temperature of the surface-deactivated aliphatic solid isocyanate.
  • the lowest of the softening or melting temperatures is to be used. If one of these temperatures is exceeded, then this inevitably leads to crosslinking of the polymer.
  • the largely dry latent-reactive coatings, films or powders still have a residual moisture content of 0.1-5%.
  • the aqueous dispersions for the preparations according to the invention preferably contain, as isocyanate-reactive dispersion polymer, polyurethane or polyurea dispersions with crystalline polyester soft segments. Particularly preferred are dispersions of isocyanate-reactive Polyu- rethanpolymere of crystalline polymer chains, which when measured by thermomechanical analysis at temperatures between 5O 0 C and 12O 0 C, at least partially dekristall ensue.
  • Solid-isocyanates are all aliphatic and cycloaliphatic di- and polyisocyanates having a softening temperature> 4O 0 C.
  • the aliphatic solid isocyanates according to the invention must be ground with customary grinding processes, for example in ball, bead, sand, disk or jet mills, to the particle sizes d50 ⁇ 100 ⁇ m, preferably d50 ⁇ 10 ⁇ m and particularly preferably d50 ⁇ 2 ⁇ m.
  • the suspended surface-deactivated isocyanates can be prepared by the methods known from EP-A 0 992 720 and EP-A 1 172 390.
  • catalysts it is generally possible to use chemical compounds of elements of groups 5 and 6 of the Periodic Table in which the respective element has an oxidation state of at least + 4.
  • salts of these elements are used in which they have the said oxidation states.
  • compounds of the elements vanadium, niobium, tantalum, molybdenum and tungsten have proven to be suitable, which are therefore preferably used.
  • Such compounds of the elements vanadium, tantalum, molybdenum and tungsten are, for example, salts of molybdic acid, such as the alkali metal salts of molybdenic acid, and the alkali metal salts of vanadic acid and tetraethylphosphonium molybdate,
  • the catalysts used according to the invention are also distinguished by a certain latency phase (delayed use of the catalytic effect) during heat activation.
  • This effect which is advantageous for latent-reactive (pre) coatings, films, nonwovens or powders, ensures that the catalyst can not influence the storage stability of the latently reactive layers, films, nonwovens or powders.
  • FIG. 1 shows an example of this phenomenon by the development of the memory module of two adhesive films (Dispercoll ® U 53 with Desmodur ® Z XP 2589 (mikonisier- tes IPDI trimer with 3 mol% amino groups deactivated) during the heat activation at
  • the storage modulus readily increases immediately upon the start of heat activation.
  • the lithium molybdate-catalyzed latent-reactive adhesive film prepared from dispersion 3, inventive example
  • the memory module then increases significantly faster than the latent-reactive adhesive film without catalyst.
  • the crosslinking reaction is initiated in the latent-reactive (pre) coatings, films, nonwovens or powders produced by the preparations according to the invention by supplying heat.
  • the pre-coat, film, web or powder must either be at a temperature above the polymer's decrystallization temperature or at a temperature above the softening temperature of the deactivated aliphatic solid isocyanate (melting temperature or temperature)
  • the (pre-) coating, the adhesive film, the adhesive non-woven or the adhesive powder can be applied to a surface of the substrates to be joined, placed or spread
  • the latent-reactive coating, the latent-reactive film, the latent-reactive non-woven or the latent-reactive powder are prepared by short term heat activation e.g. heated in a heating channel, by means of IR rays or by irradiation with microwave waves to a temperature above the decrystallization temperature of the polymer or the softening temperature of the solid isocyanate. Immediately afterwards, the joining of the substrate surfaces takes place under pressure. The crosslinking reaction is only started by the short-term heat activation. The final properties of the cross-linked adhesive layer become 1-5
  • the latent-reactive coating, the latent-reactive film, the latent-reactive non-woven or the latent-reactive powder are located between the substrates to be bonded.
  • the substrates are pressed at a temperature above the decrystallization temperature of the polymer or above the softening temperature of the aliphatic solid isocyanate over a relatively long period of time. In this way, the final properties of the adhesive bond can be achieved immediately after the joining process.
  • the advantage of this method of operation lies in the possibility of rapid further processing of the adhesive bond or in the possibility to carry out a quality test immediately after the joining process.
  • the advantage of this mode of operation lies in the possibility of interconnecting the substrates in a short joining process.
  • the final crosslinking then takes place in a second step, which can be separated from the first joining process, both spatially and temporally.
  • Tamol ® NN 4501 (45% in water) protective colloid; Manufacturer: BASF AG, 67056 Ludwigshafen Borchigel ® ALA; Thickener; Manufacturer: Borchers GmbH, D-40765 Monheim.
  • Emulsifier FD non-ionic emulsifier, manufacturer: Lanxess AG, Leverkusen
  • Deionized water, emulsifiers, deactivating amine, thickener and solid isocyanate are submitted and with a dissolver disc at 2000 rpm within 15 min. mixed to a homogeneous suspension.
  • the catalyst is first dissolved in deionized water. Then the emulsifiers, the deactivating amine, the thickener and the solid isocyanate are added and with a
  • Dissolver disc at 2000 rpm within 15 min. mixed to a homogeneous suspension. - -
  • Crosslinkers 1 and 3 contain 3 mol% of amino groups based on all available NCO groups of the IPDI trimer to deactivate the solid isocyanate.
  • the deactivation of the IPDI trimer of formulations 2, 4, 5 and 6 was carried out with 7 mol% of amino groups relative to the available NCO groups of the IPDI trimer.
  • the polymer dispersion are presented. With stirring, the formulations of the surface-deactivated solid isocyanates are added.
  • Dispersion 1 (Comparative Dispercoll U 53 ® 100 polymer dispersion
  • Dispersion 2 (Comparative Dispercoll U 53 ® 100 polymer dispersion
  • Dispersion 1 and 2 are comparative examples without catalyst.
  • Examples 3 to 6 are according to the invention.
  • the composites were suspended in a heated oven heated to 80 ° C. and left to stand for 3 min. tempered. Thereafter, 2.5 kg of weights were attached to a PVC film and over a period of 5 min. the adhesive bond in the peel test (180 ° angle) at 80 0 C charged.
  • the dispersions 2 (comparative) and 4 (invention) were stored in a freezer 24 hr. At -5 0 C.
  • the polymer precipitated in the form of coarse solid particles.
  • the formulation was warmed to room temperature and the precipitated polymer was filtered by filtration Serum separated. The polymer was then gently dried and ground in a jet mill with cooling to a particle size of d50 about 100 microns.
  • the textile adhesives were first hung without weight load in the tempered to 6O 0 C heating cabinet and 30 min. tempered. Subsequently, the adhesive bond (180 ° peel test) were loaded with a 50g weight and another 30 min. left at 6O 0 C. At the end of the 30 minute test, the peeled distance [mm] was determined. This was followed by a temperature increase of 10 ° C. every 30 minutes. After the end of each temperature step, the peeled-off section was determined.
  • the accelerated crosslinking of the latent-reactive powder with the lithium molybdate is here visible through the small Abtechnologylrange up to a temperature of 15O 0 C.
  • the adhesive bond with the powder without Lithiummolybat is already completely separated at 100 0 C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Adhesive Tapes (AREA)

Abstract

Die Erfindung betrifft Klebstoffe auf der Basis wässriger Dispersionen und oberflächendeaktivierter Isocyanat-Partikel sowie aus solchen Dispersionen hergestellte latent-reaktive Beschichtungen, Filme und Pulver.

Description

Klebstoffe
Die Erfindung betrifft Klebstoffe auf der Basis wässriger Dispersionen und oberflächendeaktivierter Isocyanat-Partikel sowie aus solchen Dispersionen hergestellte latent-reaktive Beschichtungen, Filme und Pulver. Polyurethan-Dispersionspolymere, welche lineare, bei Temperaturen unterhalb von 100°C kristallisierende Polymerketten besitzen, werden u.a. für wärmeaktivierte Verklebungen von temperaturempfindlichen Substraten eingesetzt. Bei 1 -komponentiger Verarbeitung, d.h. ohne den Zusatz eines Vernetzers, werden aber nur niedrige, mit der Dekristallisationstemperatur oder Erweichungstemperatur des Polymers korrelierende Wärmebeständigkeiten erreicht. Außerdem ist die Hydrolysebeständigkeit bei 1 -komponentiger Verarbeitung für viele Anwendungen unzureichend.
Aus diesem Grund werden die wässrigen Dispersionspolymere üblicherweise unter Mitverwendung von flüssigen, hydrophil modifizierten Polyisocyanaten verarbeitet. Der Gewinn an verbesserten Eigenschaften wird jedoch mit einem höheren technischen Aufwand für die zweikomponen- tige Verarbeitung erkauft. Die Herstellung der zweikomponentigen Mischung muss unmittelbar vor der Verarbeitung der Dispersion erfolgen. Außerdem ist die zweikomponentige Verarbeitung hinsichtlich des Zusatzes der richtigen Menge Isocyanatkomponente und des homogenen Einrüh- rens der Isocyanatkomponente fehleranfällig.
Die Topfzeit der zweikomponentigen Mischung beträgt, je nach Art der Polymerdispersion bzw. der Isocyanatkomponente 1 - 12 Std. Darüber hinaus müssen die getrockneten Klebstoffschichten innerhalb von ca. 1 - 12 h verarbeitet werden, da sonst - aufgrund der fortschreitenden Vernetzungsreaktion durch die Isocyanatgruppen - das Polymer nicht mehr unter den üblichen Bedingungen der wärmeinduzierten Verklebung verarbeitet werden kann.
Daraus resultiert ein weitere Nachteil dieser Arbeitsweise: Die Arbeitsschritte Applikation und Aushärtung, d.h. Auftrag der Klebstoff-Dispersion und wärmeinduzierte Vernetzung können zeit- lieh und räumlich nicht getrennt werden. Aus ökonomischer Sicht wäre diese Trennung jedoch für eine Vielzahl von Anwendungen zweckmäßig und wünschenswert.
Aus diesem Grund wurde in den letzten Jahren verstärkt an Dispersionsformulierungen mit festen feinteiligen Isocyanaten gearbeitet. Diese so genannten latent-reaktiven Dispersionsklebstoffe bestehen aus wenigstens einer Dispersion isoeyanatreaktiver Polymere und Feststoff-Ioscyanat Parti- kein. Wässrige Zubereitungen isoeyanatreaktiver Polymerdispersionen mit feinteilig dispergierten oberflächendesaktivierten, Uretdiongruppen enthaltenden oligomeren Feststoff-Isocyanaten sowie deren Verwendung als latentreaktive Bindemittel für Beschichtungen sowie für Klebstoffe sind seit einigen Jahren bekannt. Unter oberflächendeaktivierten Isocyanat-Partikeln sind solche Feststoff-Isocyanate zu verstehen, bei denen 0,1 - 25, bevorzugt 0,5 - 8 Equivalentprozent der gesamten in den Isocyanat-Partikeln vorhandenen Isocyanatgruppen mit einem Deaktivierungsmittel abreagiert sind. Die Deaktivierung der Isocyanat-Partikel kann u.a. durch die in EP-A 0 204 970, US 4,595,445 und DE 10140206 beschriebenen Deaktivierungsmittel erfolgen.
Die oberflächendeaktivierten Isocyanat-Partikel unterscheiden sich dabei grundsätzlich von den blockierten Isocyanaten. Bei den oberflächendeaktivierten Isocyanat-Partikeln liegen bevorzugt 92 - 99,5 Equivalentprozent der Isocyanatgruppen frei vor. Bei den blockierten Isocyanaten sind hingegen alle Isocyanatgruppen mit einem Blockierungsmittel abreagiert. Für die Vernetzungsreaktion müssen die Isocyanatgruppen des blockierten Isocyanats durch z.B. Rückspaltung des Blockierungsmittels erst freigesetzt werden. Bei den oberflächendeaktivierten Isocyanat-Partikeln ist die Deblockierungsreaktion der Isocyanatgruppen nicht notwendig.
In der EP-A 0 204 970 wird ein Verfahren zur Herstellung stabiler Dispersionen feinteiliger Polyi- socyanate durch Behandlung der Polyisocyanate in einer Flüssigkeit mit Stabilisatoren und Ein- Wirkung hoher Scherkräfte oder Mahlung beschrieben. Dazu sind solche Di- und Polyisocyanate geeignet, deren Schmelzpunkt oberhalb 100C, vorzugsweise oberhalb 400C liegt. Die beschriebenen Dispersionen werden als Vernetzer verwendet.
Die EP-A 1 172 390 offenbart lagerstabile Isocyanatdispersionen bestehend aus deaktivierten Isocyanaten und isocyanatreaktiven Polymeren, die nach dem Entfernen des Wassers bei Temperatu- ren zwischen 50C und 400C vernetzen. Die wässrigen Dispersionszubereitungen zeichnen sich durch eine gute Laberstabilität aus.
Der Nachteil der in dieser Publikation beschriebenen Arbeitsweise ist, dass die weitgehend trockenen Beschichtungen, Filme oder Pulver nicht lagerstabil sind. Die Vernetzungsreaktion beginnt mit dem Trocknen der Schichten. Die gewünschte räumliche und zeitliche Trennung der Verarbei- tungsschritte Auftrag /Trocknung der Dispersionsschicht und Fügen der Verbünde kann mit dieser
Arbeitsanweisung nicht erreicht werden.
Die EP-A 1 134 245 beschreibt lagerstabile Zubereitungen aus feinteiligen Di- und Polyisocyanat- Pulvern, die ohne Oberflächendeaktivierung direkt in die wässrigen isocyanatreaktiven Polymerdispersionen eingearbeitet werden können. Die Vernetzungsreaktion wird bei diesen Formulierun- gen durch Erwärmen der getrockneten Schicht auf eine Temperatur von wenigstens 65°C ausgelöst.
Der Nachteil der in dieser Dokumentation beschriebenen Arbeitsweise ist ebenfalls die Tatsache, dass auch aus diesen Formulierungen keine lagerstabilen latent-reaktiven Beschichtungen, Filme oder Pulver erhalten werden können. Die gewünschte räumliche und zeitliche Trennung der Verar- beitungsschritte Auftrag /Trocknung der Dispersionsschicht und das Fügen der Verbünde kann auch mit dieser Arbeitsanweisung nicht erreicht werden.
EP-A 0 922 720 offenbart die Verwendung wässriger Dispersionen, die wenigstens ein oberflächendeaktiviertes Polyisocyanat und wenigstens ein mit Isocyanat reaktives Polymer enthalten zur Herstellung bei Raumtemperatur lagerstabiler, latentreaktiver Schichten oder Pulver, die durch
Erwärmung zur Vernetzung gebracht werden können.
Als Polyisocyanate können alle die aliphatischen, cyloaliphatischen, heterocyclische oder aromatische Isocyanate zur Anwendung kommen, die einen Schmelzpunkt oberhalb von 400C aufweisen. Die Stabilität der Vorbeschichtungen, der Filme oder der Pulver sowie deren Reaktionsgeschwin- digkeit bei der wärmeinduzierten Vernetzung kann durch die Art des Isocyanats, durch die Menge des Oberflächenstabilisators, durch die Löslichkeitsparameter des Dispersionspolymers sowie durch Katalysatoren beeinflusst werden.
Als Katalysatoren werden die typischen Polyurethankatalysatoren wie Zinn-, Eisen-, Blei-, Kobalt-, Wismuth-, Antimon- und Zink-Verbindungen oder ihre Mischungen, Alkylmercaptid- Verbindungen des Dibutylzinns sowie tertiäre Amine genannt.
Nach EP-A 0 922 720 sind somit lagerstabile latent-reaktive Beschichtungen, Filme und Pulver möglich. Die gewünschte zeitliche und räumliche Trennung des Klebstoffauftrags und des Fügeprozesses sind somit prinzipiell möglich.
Werden jedoch aromatische Feststoff-Isocyanate als Feststoff-Isocyanat eingesetzt, dann kommt es, bedingt durch die Einwirkung des langwelligen UV-Anteils im Sonnenlicht, mit zunehmenden
Alter der Klebeverbindung zur Vergilbung der Klebstoffschicht (Kunststoff Handbuch 7, 605-608 (1993))
Diese Vergilbung ist bei Verbunden, bei denen die Klebstoffschicht sichtbar ist (z.B. Klebungen von Papier / Folien-Verbunde für Sicherheitsdokumente), oder bei denen die Klebstoffschicht nicht vollständig durch die Substrate abgedeckt ist (z.B. der Sohlenklebung bei der Sportschuhfertigung) unerwünscht.
Da aliphatische Isocyanate bzw. Polyurethane auf Basis aliphatischer Isocyanate den kurzwelligen UV-Anteil des Sonnenlichts nicht absorbieren, sind diese Polyurethane prinzipiell vor Vergilbung geschützt. Für Anwendungen, bei denen es auf eine nicht-verfärbende latent-reaktive Beschichtun- gen, latent-reaktive Filme oder latent-reaktive Pulver ankommt, ist daher der Einsatz oberflächendeaktivierter aliphatischer Feststoff-Isocyanate besonders vorteilhaft.
Ein Nachteil der aliphatischen Isocyanate ist aber die bekanntermaßen geringere Reaktivität im Vergleich zu den aromatisch gebundenen Isocyanatgruppen. Dies ist beispielsweise aus Ullmann's Encyclopedia of Industrial Chemistry, Sixth Edition, Vol. 18, S. 609, Wiley-VCH Verlag, 2002, Isocyanantes, Organic, bekannt. Aus diesem Grund haben sich bis heute auch noch keine Anwendungen von latent-reaktiven Beschichtungen, Filmen oder Pulvern auf Basis deaktivierter aliphati- scher Feststoff-Isocyanate etablieren können. So liegt die relative Reaktivität der freien Isocya- natgruppe des Isocyanurats aus dem Isophorondiisocyanat (IPDI) gegenüber OH-Gruppen um ei- nen Faktor von ca. 50 niedriger als die Reaktivität der freien Isocyanatgruppen des aromatischen 1-
Methyl-2,4-phenylen-diisocyanats (TDI-Dimer) gegenüber OH-Gruppen.
Latent-reaktive Beschichtungen, Filme oder Pulver nach EP-A 0 922 720, die ein deaktiviertes aliphatisches Feststoff-Isocyanat als Vernetzerkomponente enthalten, benötigen zur Vernetzung des isocyanatreaktiven Polymers entweder a) eine sehr lange Verweilzeit bei hohen Temperaturen, um die Vernetzungsreaktion soweit zu führen, bis eine ausreichende Vernetzungsdichte erreicht ist, oder b) einen Katalysator, der die Reaktion zwischen den aliphatischen Isocyanat-Gruppen und dem isocyanatreaktiven Polymer so beschleunigt, dass die Vernetzungsreaktion auch nach kurzer Wärmeeinwirkung bis zur gewünschten Vernetzungsdichte abläuft. Ohne Katalysator läuft die Vernetzungsreaktion in diesen lagerstabilen latent-reaktiven Schichten,
Filmen oder Pulvern so langsam ab, dass die wirtschaftliche Nutzung dieser Technologie nicht möglich ist. So muss eine unter Verwendung des aliphatischen IPDI-Trimers als Feststoff- Isocyanat hergestellte latent-reaktive Folie während wenigstens 30 min. bei 1200C gehalten werden, um eine hinreichend hohe Vernetzungsdichte im Klebverbund zu erreichen. Die in EP-A 0 922 720 aufgeführten Katalysatoren (Zinn-, Eisen-, Blei-, Kobalt-, Wismuth-, Antimon-, Zink-Verbindungen oder ihre Mischungen, Alkylmercaptid-Verbindungen des Dibutylzinns sowie tertiäre Amine) sind typische, für Isocyanatreaktionen verwendete Katalysatoren. Im einzelnen besitzen diese Katalysatoren hinsichtlich ihrer Verwendung bei der Herstellung latentreaktiver Beschichtungen, latent-reaktiver Filme oder latent-reaktiver Pulver jedoch Nachteile, die ihren Einsatz unmöglich machen.
So sind die organischen Zn(IV)-Verbindungen wie z.B. DBTL im allgemeinen mit Dibutylzinn bzw. Tributlyzinn kontaminiert, wie aus "Assessment of the risk to health and environment posed the use of organostannic Compounds (excluding use as biocide in antifouling paints) and a descrip- tion of the economic profile of the industry, Final report 19 JuIy 2002, European Commission Health & Consumer Protection Directorate-General" bekannt ist. Auch aus ökologischer Sicht ist der Einsatz von Zn(IV)-Verbindungen nicht wünschenswert. Außerdem katalysieren die organischen Zn(IV)-Verbindungen neben der Reaktion der Isocyanate auch die Hydrolyse der Polyestersegmente der Polyesterpolyurethan-Polymerkette, wie sie für die isocyanatreaktiven Dispersionspolymere in latent-reaktiven Schichten zur Anwendung kommen. Aus diesem Grund sind organi- sehe Zn(IV)-Verbindungen für die Katalyse der Reaktion oberflächendeaktivierter aliphatischer Feststoff-Isocyanate mit kristallinen isoeyanatreaktiven Polyurethan-Dispersionspolymeren auf Basis Polyesterpolyol nicht einsetzbar.
Weiterhin haben Katalysatoren des Stands der Technik in aller Regel nur eine endliche Lebens- dauer in wässrigen Systemen, d.h. der Katalysator wird durch die Wassereinwirkung mehr oder minder rasch hydrolysiert. Diese gilt für die wässrige Zubereitung aus oberflächendeaktivierten aliphatischen Feststoff-Isocyanaten und isoeyanatreaktiven dispergierten Polymeren wie auch für die weitgehend trockenen latent-reaktiven Beschichtungen, die in der Regel noch eine Restfeuchte von ca. 0,6 - 1,0 Gew. % Wasser bezogen auf das Gewicht der Beschichtung besitzen. Dies gilt in besonderem Masse für die in konventionellen Systemen gerne verwendeten Zinn(IV)-Verbindung- en wie das bereits genannte DBTL oder auch für Wismuthcarboxylate wie z.B. Wismuth(IH)-2- ethylhexanoat (K-Kat, King Industries, Norwalk, CT, USA), wie es auch in WO 00/047642 beschrieben ist.
Für die Anwendung in farblosen Klebstoffschichten können natürlich auch keine farbigen oder verfärbenden Katalysatoren zur Einsatz kommen. Deshalb können die die in EP-A 0 992 720 genannten Eisen-, Kobalt- oder Wismuth-Katalysatoren für nicht-verfärbende Klebstoffschichten nicht eingesetzt werden.
Die Blei- und Antimon-Verbindungen sind aufgrund ihrer Toxikologie und ihren umweltschädlichen Wirkung ebenfalls nicht vorteilhaft und sollten daher grundsätzlich nicht zur Anwendung kommen.
Ein weiteres Problem für die Katalyse der Reaktion zwischen oberflächendeaktivierten Feststoff- Isocyanat und isoeyanatreaktiven Dispersionspolymer stellen die zur Hydrophilierung der Polymerkette des Dispersionspolymer erforderlichen ionischen Gruppen dar. Die Hydrophilierung kann durch in die Polymerkette eingebaute Carboxylgruppen erreicht werden. Diese Carboxylgruppen können unter Umständen durch eine Komplexbildung zu einer Inhibierung der katalytischen Aktivität von zinnorganischen Verbindungen führen. Dies gilt für alle hoch geladenen Lewis-Säuren wie z.B. Titan(IV)-, Zirkon(IV)- Verbindungen. Ein Katalysator, der universell mit einer Vielzahl von oberflächendeaktivierten aliphatischen Feststoff-Isocyanaten, Polyisocyanaten und hydrophi- lierten Bindemitteln verwendbar sein soll, darf diese Wechselwirkungen mit den Hydrophilie- rungsmitteln nicht zeigen.
In der EP-A 1 599 525 werden Katalysatoren zur beschleunigten Aushärtung von Polyisocyanaten mit Polyolen und diese enthaltenden Polyurethansystemen beschrieben.
Die (Poly)-isocyanatkomponenten, die nach dieser Lehre zur Anwendung kommen können, sind beliebige organische Polyisocyanate mit aliphatischen, cycloaliphatischen, araliphatischen und/- oder aromatisch gebundenen, freien Isocyanatgruppen, die bei Raumtemperatur flüssig sind oder zu diesem Zweck mit Lösemittel verdünnt sind. Die (Poly)-isocyanatkomponente weist bei 23°C eine Viskosität von 10 - 15000 mPas auf.
Speziell bezieht sich die Erfindung auf Katalysatoren zur beschleunigten Aushärtung von Polyiso- cyanaten mit Polyolen in Gegenwart des Lösungsmittels Wasser (so genannte wässrige zweikom- ponentige Polyurethanlacke, 2K-PUR Wasserlacke). Aufgabe dieser Erfindung war, es Katalysatoren zu finden, die die Reaktion zwischen dem Isocyanat und dem Alkohol bzw. dem Polyol in Gegenwart von Wasser beschleunigen bzw. die Aushärtung von wässrigen 2K-PUR-Systemen beschleunigen, ohne dabei einen Einfluss auf die Topfzeit zu haben. Diese Aufgabe wird durch den Einsatz verschiedener Salze von Elementen der 5. und 6. (Neben)gruppe des Periodensystems, in denen das jeweilige Element eine Oxidationsstufe von mindestens + 4 hat, gelöst.
Neben den Metallkatalysatoren werden in EP-A 0 992 720 auch tert.-Amine als wirksame Katalysatoren aufgeführt. Wie aber bereits in EP-A 0 992 720 beschrieben, verlieren die tert.-Amine durch Absorption von Kohlendioxid aus der Luft ihre Wirksamkeit. Für die latent-reaktiven Be- Schichtungen, Filme oder Pulver ist diese Tatsache besonders unerwünscht, weil gerade die Lagerstabilität der Beschichtungen, Filme oder Pulver auch in Hinblick auf die Vernetzungsgeschwindigkeit unerlässlich für den Einsatz der latent-reaktiven Schichten ist.
Der vorliegenden Erfindung lag daher die Aufgabe zugrunde, Zubereitungen wässriger Dispersionen oder Dispersionsmischungen isocyanatreaktiver Polymere und oberflächendeaktivierter alipha- tischer Feststoff-Isocyanat-Partikel und Katalysator bereitzustellen, mit denen farblose und farbstabile, lagerstabile latent-reaktive Beschichtungen, latent-reaktive Filme und latent-reaktive Pulver erzeugt werden können. Die Katalysatoren sollen auch in Hinblick auf ihre toxikologischen Eigenschaften positiv bewertet sein. Die Vernetzungsreaktion in den Beschichtungen, Filmen oder Pulvern soll in anwendungstechnisch akzeptabler Zeit der Wärmeaktivierung erreicht werden.
Diese Aufgabe wird durch die Lehre der vorliegenden Anmeldung gelöst: Überraschend wurde gefunden, dass Verbindungen der Elemente der 5. und 6. Nebengruppe des Periodensystems, in denen das jeweilige Element eine Oxidationsstufe von mindestens + 4 besitzt, die Reaktion zwischen oberflächendeaktivierten Feststoff-Isocyanat und isocyanatreaktiven Polymer so katalysie- ren, dass die Vernetzungsreaktion bei Temperaturen < 1200C abläuft und innerhalb von max. 10
Minuten weitgehend abgeschlossen ist. Außerdem wird durch den Einsatz der erfindungsgemäßen Katalysatoren eine Lagerstabilität der latent-reaktiven Beschichtungen, Filme/Vliese oder Pulver von wenigstens 3 Monaten erreicht.
Erfindungsgemäße Zubereitungen sind daher Mischungen aus: a) einer wässrigen Dispersion oder Dispersionsmischung wenigstens eines Polymers mit gegenüber Isocyanaten reaktiven Gruppen b) eines wenigstens im wesentlichen in Wasser suspendierten oberflächendeaktivierten, fein- teiligen aliphatischen Feststoff-Polyisocyanats c) wenigstens einer Verbindung von Elementen der 5. und 6. Nebengruppe des Periodensystems, in der das jeweilige Element eine Oxidationsstufe von mindestens + 4 hat und d) gegebenenfalls weiteren Zusatzstoffen und Hilfsmitteln.
Die erfmdungsgemäßen latent-reaktiven wässrigen Zubereitungen können auf beliebige Weise, z.B. im Sprüh-, Rakel-, Pinsel-, oder Walzen-Auftragsverfahren auf flächige oder dreidimensionale
Oberflächen appliziert werden. Nach dem Trocknen erhält man latent-reaktive (Vor)beschich- tungen.
Sie können auch auf Trennpapier (z. B. Silikonpapier oder polyolefϊnisch antihaftend ausgerüsteten Papier oder ähnlichen Trägermaterialien) im Sprüh-, Rakel-, Pinsel-, oder Walzen-Auftragsver- fahren aufgetragen werden. Nach dem Trocknen erhält man selbsttragende latent-reaktive Filme oder Vliese, die ggf. nach Einlegen eines Trennpapiers, aufgewickelt und bis zum Einsatz als Klebstoff-Film gelagert werden können.
Aus den erfindungsgemäßen Zubereitungen können durch geeignete technische Verfahren die Feststoffe in Form von Granuta oder Pulver gewonnen werden. Zum Beispiel können die erfϊndungsgemäßen Formulierungen durch - Sprühtrocknung vom Wasser befreit werden. Man erhält so latent-reaktive Pulver, die ggf. durch einen sich anschließenden Mahlprozess auf kleine Partikelgrößen gemahlen werden können.
Latent-reaktive Pulver können auch durch Koagulation von Polymerdispersionen mit oberflächendeaktivierten Feststoff-Isocynaat-Partikeln erhalten werden. Dabei werden Mischungen aus z.B. anionisch stabilisierte Polymerdispersionen und oberflächendeaktivierten Feststoff-Isocyanat über einen Rotor/ Stator-Mischer (z.B. von Fa. Kotthoff) oder über einen Strahldispergator in eine Salzlösung mit mehrwertigen Kationen (z.B. Ca2+, Mg2+, Al3+) dispergiert. Beim Kontakt der anionischen Gruppen an der Oberfläche der Polymer-Partikel mit den mehrwertigen Kationen kommt es sofort zur Koagulation der Polymerpartikel, wobei die oberflächendeaktivierten Feststoff- Isocyanat-Partikel in das Koagulat eingeschlossen werden. Das Koagulat wird durch Filtration,
Zentrifugieren etc. weitgehend vom Wasser befreit und anschließend bei Temperaturen unterhalb der Reaktionstemperatur des deaktivierten aliphatischen Feststoff-Isocyanats getrocknet. Ggf. kann das Koagulat nach der Trocknungen in einem Mahlprozess - z.B. in Kugel-, Perl-, Sandmühlen oder Strahlmühlen auf die geforderten Partikelgrößen gemahlen werden kann.
Eine weitere Möglichkeit zur Herstellung latent-reaktiver Pulver besteht im Ausfrieren der Mischung aus Polymer und oberflächendeaktiviertem Feststoff-Isocyanat aus den wässrigen Zuberei- tungen bei Temperaturen unterhalb von 00C. Das ausgefallene Polymer/Isocyanat-Gemisch wird anschließend vom Wasser durch Filtration, Zentrifugieren etc. weitgehend befreit und abschließend getrocknet. Das erhaltene grobkörnige Pulver kann dann durch geeignete Mahlung - ggf. muss der Mahlprozess bei tiefen Temperaturen stattfinden - z.B. in Kugel-, Perl-, Sandmühlen oder Strahlmühlen auf die geforderten Partikelgrößen gemahlen werden kann. Die Trocknung der latent-reaktiven Beschichtungen, Filme, Vliese oder Pulver muss bei Temperaturen unterhalb der Erweichungstemperatur des Polymers bzw. der Schmelz- bzw. der Erweichungstemperatur des oberflächendeaktivierten aliphatischen Feststoff-Isocyanats erfolgen. Dabei ist die niedrigste der Erweichungs- bzw. Schmelztemperaturen anzusetzen. Wird eine der genannten Temperaturen überschritten, dann führt das unweigerlich zur Vernetzung des Polymers. Die weitgehend trockenen latent-reaktiven Beschichtungen, Filme oder Pulver haben noch eine Restfeuchte von 0,1 - 5%.
Die wässrigen Dispersionen für die erfindungsgemäßen Zubereitungen enthalten vorzugsweise als isocyanatreaktives Dispersionspolymer Polyurethan- bzw. Polyharnstoffdispersionen mit kristallinen Polyesterweichsegmenten. Besonders bevorzugt sind Dispersionen isocyanatreaktiver Polyu- rethanpolymere aus kristallinen Polymerketten, die bei Messung mittels thermomechanischer Analyse bei Temperaturen zwischen 5O0C und 12O0C zumindest partiell dekristallisieren.
Feststoff-Isocyanate sind alle aliphatischen und cycloaliphatischen Di- und Polyisocyanate, die eine Erweichungstemperatur > 4O0C besitzen. Insbesondere Dimerisierungs- und Trimerisie- rungsprodukte des Isophorondiisocyanat (Desmodur® I, Bayer MaterialScience AG, Leverkusen), Bis-(4-isocyanatocyclohexyl)-methan (Desmodur® W, Bayer MaterialScience AG, Leverkusen), ω,ω'-Diisocyanato-l,3-dimethylcyclohexan (H6XDI) sowie Mischungen dieser Dimerisise- runsgprodukte und Trimerisierungsprodukte sowie Mischtrimerisate aus Desmodur® I / Desmodur® W, Desmodur® I / Desmodur® H (Desmodur® H = Hexamethylendiisocyanat) Desmodur® W / Desmodur ®H, Desmodur W / H6XDI, Desmodur® I / H6XDI sind erfindungsgemäß einsetzbar. Die erfindungsgemäßen aliphatischen Feststoff-Isocyanate müssen vor der Verwendung mit geeigenen Mahlverfahren z.B. in Kugel-, Perl-, Sandmühlen, Scheibenmühlen oder Strahlmühlen auf die Partikelgrößen d50 < lOOμm bevorzugt d50 < lOμm und besonders bevorzugt d50 < 2μm gemahlen werden. Die suspendierten oberflächendeaktivierten Isocyanate können nach den aus EP-A 0 992 720 und EP-A 1 172 390 bekannten Verfahren hergestellt werden.
Als Katalysatoren können erfϊndungsgemäß allgemein chemische Verbindungen von Elementen der 5. und 6. Nebengruppe des Periodensystems, in denen das jeweilige Element eine Oxidations- stufe von mindestens + 4 hat, eingesetzt werden. Vorzugsweise werden Salze dieser Elemente eingesetzt, in denen diese die genannten Oxidationsstufen haben. Als geeignet haben sich insbesondere Verbindungen der Elemente Vanadin, Niob, Tantal, Molybdän und Wolfram erwiesen, die daher bevorzugt eingesetzt werden. Derartige Verbindungen der Elemente Vanadin, Tantal, Molybdän und Wolfram sind beispielsweise Salze der Molybdänsäure wie die Alkalimetallsalze der Molyb- dänsäure sowie die Alkalimetallsalze der Vanadiumsäure sowie Tetraethylphosphoniummolybdat,
Magnesiummolybdat, Calciummolydat, Zinkmolybdat, Lithiumwolframat, Kaliumwolframat, Wolframsäure, Ammoniumwolframat, Phosphorwolframsäure, Natriumniobat und Natriumtantalat. Besonders bevorzugt sind die Alkalisalze des Vanadiums und des Molybdäns.
Die verwendeten Katalysatormengen liegen, bezogen auf die getrocknete (Vor)beschichtung, den getrockneten Film bzw. das getrocknete Pulver bei 10 - 50000 ppm, wobei die Wirksamkeit des
Katalysators nicht von der Art der Zugabe abhängt. Das bedeutet, der Katyalsator kann
• der wässrigen Polymerdispersionen zugesetzt werden
• bei der Herstellung Oberflächendeaktivierung des aliphatischen Feststoff-Isocyanats zugegeben werden, oder • der Formulierung bestehend aus Polymerdispersion, oberflächendeaktivierten Feststoff-
Isocyanat sowie ggf. weiteren Additiven und Hilfsstoffen zugesetzt werden.
Neben der effektiven Katalyse zeichnen sich die erfindungsgemäß eingesetzten Katalysatoren auch durch eine gewisse Latenzphase (verzögertes Einsetzten der katalytischen Wirkung) bei der Wär- meaktivierung aus. Dieser für latent-reaktive (Vor)beschichtungen, Filme, Vliese oder Pulver vorteilhafte Effekt stellt sicher, dass der Katalysator keinen Einfluss auf die Lagerstabilität der latentreaktiven Schichten, Filme Vliese oder Pulver nehmen kann.
Das Diagramm in Fig. 1 zeigt exemplarisch dieses Phänomen anhand der Entwicklung des Speichermoduls von zwei Klebstoff-Filmen (Dispercoll® U 53 mit Desmodur® Z XP 2589 (mikonisier- tes IPDI-Trimer mit 3 mol % Aminogruppen deaktiviert) während der Wärmeaktivierung bei
1200C.
Bei dem latent-reaktiven Klebstoff-Film ohne Katalysator (hergestellt aus Dispersion 1, Vergleichsbeispiel) steigt der Speichermodul unmittelbar mit Beginn der Wärmeaktivierung leicht an. Der mit Lithiummolybdat katalysierte latent-reaktive Klebstoff-Film (hergestellt aus Dispersion 3, erfindergemäßes Beispiel) zeigt unter den gleichen Bedingungen zunächst keine Änderung des Speichermoduls. Erst nach ca. 50 sec. wird der katalytische Effekt des Lithiummolybdats sichtbar. Der Speichermodul steigt dann deutlich schneller als bei dem latent-reaktiven Klebstoff-Film ohne Katalysator.
Die Vernetzungsreaktion wird in den aus den erfindingsgemäßen Zubereitungen hergestellten latent-reaktiven (Vor)beschichtungen, Filme, Vliese oder Pulver durch Wärmezufuhr ausgelöst. Die Vorbeschichtung, der Film, das Vlies oder das Pulver muss entweder auf eine Temperatur oberhalb der Dekristallisationstemperatur des Polymers oder auf eine Temperatur oberhalb der Erwei- chungstemperatur des deaktivierten aliphatischen Feststoff-Isocyanats (Schmelztemperatur oder
Glasübergangstemperatur) erwärmt werden.
Klebstoff-Applikation / Fügeverfahren
Die (Vor)beschichtung, der Klebstoff-Film, das Klebstoff-Vlies oder das Klebstoff-Pulver können auf eine Oberfläche der zu fügenden Substrate aufgetragen, aufgelegt oder ausgestreut werden
(einseitiger Auftrag), oder auf beide zu fügenden Substratoberflächen aufgetragen, aufgelegt oder aufgestreut werden (zweiseitiger Auftrag). Die für den jeweiligen Anwendungsfall optimale Vorgehensweise (einseitiger oder beidseitiger Auftrag) ist dabei u.a. abhängig von dem Benetzungs- verhalten der Substratoberflächen bei der Wärmeaktivierung mit der thermoplastisch erweichten Klebstoffschicht und kann vom Fachmann auf diesem technischen Gebiet im Rahmen seiner Routinetätigkeit ohne weiteres ermittelt werden.
Prinzipiell stehen für die Herstellung der Klebeverbindung folgende Verfahren zur Verfügung: 1. Kurzzeitige Wärmeaktivierung der Klebstoffschicht und Auslösen der Vernetzungsreaktion:
Die latent-reaktive Beschichtung, der latent-reaktive Film, das latent-reaktive Vlies oder das latent-reaktive Pulver werden durch kurzzeitige Wärmeaktivierung z.B. in einem Heizkanal, mittels IR-Strahlen oder durch Bestrahlung mit Mirkowellen auf eine Temperatur oberhalb der Dekristallisationstemperatur des Polymers oder der Erweichungstemperatur des Feststoff- Isocyanats erwärmt. Unmittelbar danach erfolgt das Fügen der Substratoberflächen unter Druck. Die Vernetzungsreaktion wird hierbei durch die kurzzeitige Wärmeaktivierung nur gestartet. Die endgültigen Eigenschaften der vernetzten Klebstoffschicht werden nach 1 - 5
Tagen erreicht. Der Vorteil dieser Arbeitsweise liegt in dem kurzem Prozessschritt für den Fügevorgang und den rel. niedrigen Temperaturen bei der Wärmeaktivierung. Dies ist insbesondere dann von Interesse, wenn temperaturempfindliche Substrate verklebt werden sollen.
2. Länger andauernde Wärmeaktivierung bis zum Erreichen der Endeigenschaften der Klebeverbindung:
Die latent-reaktive Beschichrung, der latent-reaktive Film, das latent-reaktive Vlies oder das latent-reaktive Pulver befinden sich zwischen den zu verklebenden Substraten. Die Substrate werden bei einer Temperaturen oberhalb der der Dekristallisationstemperatur des Polymers bzw. oberhalb der Erweichungstemperatur des aliphatischen Feststoff-Isocyanats über einen längeren Zeitraum verpresst. Auf diese Weise können die Endeigenschaften der Klebeverbindung unmittelbar nach dem Fügeprozess erreicht werden.
Der Vorteil dieser Arbeitsweise liegt in der Möglichkeit der schnellen Weiterverarbeitung der Klebeverbindung bzw. in der Möglichkeit unmittelbar nach dem Fügeprozess eine Quali- tätsprüfung durchführen zu können.
3. Kombination aus kurzzeitiger Wärmeaktivierung z.B. zur Fixierung der Fügeteile und länger andauernder Wäremaktivierung zur endgültigen Vernetzung.
Der Vorteil dieser Arbeitsweise liegt in der Möglichkeit, die Substrate in einem kurzen Fügeprozess miteinander zu verbinden Die endgültige Vernetzung erfolgt dann in einem zweiten Schritt, welcher sowohl räumlich als auch zeitlich von ersten Fügeprozess getrennt sein kann.
.
Beispiele
Rohstoffe
• Isocyanatreaktive Polymerdispersion
Dispercoll® U 53, Polyurethandispersion der Bayer MaterialScience AG, 51368 Leverkusen; Feststoffgehalt ca. 40 Gew.-%.; Isocyanat-reaktives Polymer aus linearen Polyurethanketten auf Basis eines Adipinsäure / Butandiol-Polyesters mit HDI / EPDI als Isocyanatkomponente. Das Polymer kristallisiert nach dem Trocknen der Dispersion und Abkühlen des Films auf 23°C. Bei Messung mittels thermomechanischer Analyse ist der Film bei Temperaturen > + 65°C weitgehend dekristallisiert. • Aliphatisches Feststoff-Isocyanat
Desmodur® Z XP 2589; mikronisiertes EPDI-Trimer; Hersteller: Bayer MaterialScience AG, 51368 Leverkusen; NCO-Gehalt ca. 17%, Partikelgröße d50 ca. l,5μm, Tg ca. 650C.
• Desaktivierungsamin
Jeffamine® T 403; 3 -funktionelles Polyetheramin, MW = ca. 450, Hersteller: Huntsman Corp., Utah, USA.
• Hilfsstoffe:
Tamol® NN 4501 (45 %-ig in Wasser) Schutzkolloid; Hersteller: BASF AG, 67056 Ludwigshafen Borchigel® ALA; Verdickungsmittel; Hersteller: Borchers GmbH, D-40765 Monheim. Emulgator FD, nicht-ionischer Emulgator, Hersteller: Lanxess AG, Leverkusen
Formulierungen der oberflächendeaktivierten Feststoff-Isocyanate (Vernetzer): Vergleichsbeispiele (Vernetzer 1 und 2)
Entionisiertes Wasser, Emulgatoren, Deaktivierungsamin, Verdicker und Feststoff-Isocyanat wer- den vorgelegt und mit einer Dissolverscheibe bei 2000 rpm innnerhalb von 15 min. zu einer homogene Suspension vermischt.
Erfindungsgemäße Beispiele fVernetzer 3 -6^
Der Katalysator wird zunächst in entionisiertes Wasser gelöst. Anschließend werden die Emulga- toren, das Deaktivierungsamin, der Verdicker und das Feststoff-Isocyanat zugegeben und mit einer
Dissolverscheibe bei 2000 rpm innnerhalb von 15 min. zu einer homogene Suspension vermischt. - -
Figure imgf000015_0001
Vernetzer 1 und 3 enthalten zur Deaktivierung des Feststoff-Isocyanats 3 mol% Aminogruppen bezogen auf alle verfügbaren NCO-Gruppen des IPDI-Trimers. Die Deaktivierung des IPDI- Trimers der Formulierungen 2, 4,5 und 6 wurden mit 7 mol% Aminogruppen bezogen auf die verfügbaren NCO-Gruppen des IPDI-Trimers durchgeführt.
Polymerdispersionen mit oberflächendeaktivierten Feststoff-Isocyanat-Partikeln:
Die Polymerdispersion werden vorgelegt. Unter Rühren wird die Formulierungen der oberflächendeaktivierten Feststoff-Isocyanate zugegeben.
Rohstoff Funktion Gew. Teile
Dispersion 1 (Vergleich Dispercoll® U 53 Polymer-Dispersion 100
Vernetzer 1 Feststoff-Isocyanat-Suspension 20
Rohstoff Funktion Gew. Teile
Dispersion 2 (Vergleich Dispercoll®U 53 Polymer-Dispersion 100
Vernetzer 2 Feststoff-Isocyanat-Suspension 20
Figure imgf000016_0001
Dispersion 1 und 2 sind Vergleichsbeispiele ohne Katalysator. Die Beispiele 3 bis 6 sind erfindungsgemäß.
Prüfung der Wirkung der Katalysatoren auf die Reaktivität von latent-reaktiven Vorbe- schichtung Die Polymerdispersionen Beispiel 1 - 6 wurden mit einem 200μm Rakel auf Buchenholz-Prüfkörper (Abmessung der Prüfkörper: 50mm x 140mm; 4 mm dick) auf eine Fläche von 50mm x 110mm aufgetragen und 1 Std. bei 23°C getrocknet. Nach weiteren 3 Std. wurde eine PVC-Folie (Lieferant: Fa. Benecke ) bei 800C und 100°C (Pressentemperatur) und 4 bar Druck über 5 min. 10 min., 15 min., 30 min. und 60 min. auf die Klebstoffschicht aufkaschiert. Unmittelbar nach Ent- nähme der Buchenholz / PVC-Klebung aus der Presse wurden die Verbünde in einen auf 800C temperierten Wärmeschrank eingehängt und 3 min. temperiert. Danach wurden jeweils 2,5 kg Gewichte an eine PVC-Folien angehängt und über einen Zeitraum von 5 min. die Klebeverbindung im Schälversuch (180° Winkel) bei 800C belastet.
Als Nachweis der Vernetzungsreaktion kann die innerhalb des Prüfzeitraums von 5 min. abge- schälte Strecke herangezogen werden. Der abgeschälte Strecke wird in mm/min, umgerechnet. Je kleiner der Wert, desto schneller die Vernetzungsreaktion bzw. desto aktiver der Katalysator.
Figure imgf000017_0001
Bewertung: Die Katalysatoren Lithiummolybdat, Zinkmolybdat und Lithiumothovanadat führen in den latent-reaktiven Vorbeschichtungen zu einer beschleunigten Vernetzung. Die erfindungsgemäßen Dispersion 3 - 6 sind bei 800C Pressentemperatur bereits nach 30 min. (Vergleich Dispersion 1 und 2 = > 60 min.) und bei 1000C Pressentemperatur nach <10 min. (Vergleich Dispersion 1 und 2 = > 15 min) vernetzt.
(Hinweis: Bei einem Wert < 5 mm/min, gilt die Klebstoffschicht als vernetzt; - bedeutet: weitere Messungen sind nicht sinnvoll)
Wirkung der Katalysatoren in latent-reaktiven Klebstoff-Pulvern
Herstellung von latent-reaktiven Pulver:
Die Dispersionen 2 (Vergleich) und 4 (erfindungsgemäß) wurden 24 Std. bei -50C in einem Tiefkühlschrank gelagert. Dabei fiel das Polymer in Form von groben festen Partikeln aus. Die Formulierung wurde auf Raumtemperatur erwärmt und das ausgefällte Polymer durch Filtration vom Serum getrennt. Das Polymer wurde anschließend schonend getrocknet und in einer Strahlmühle unter Kühlung auf eine Partikelgröße von d50 ca. 100 μm gemahlen.
Prüfung
2,4g der Pulver wurden gleichmäßig auf eine Fläche von 14cm x 24cm Baumwoll / Polyester - Mischgewebe aufgestreut (entspricht ca. 70g/m2). Das Baumwoll / Polyester -Mischgewebe wurde danach in einer Membranpresse bei 800C Pressentemperatur und einem Druck von 1 bar über 2 min. gegen ein nicht beschichtetes Polyestergewebe verpresst. Die Klebeverbindung wurden 24 Std. im Normklima (23°C 50% r.h.) gelagert und anschließend im Zeitstandversuch geprüft.
Zeitstandversuch
Für den Zeitstandversuch wurden die Textilklebungen zunächst ohne Gewichtsbelastung in den auf 6O0C temperierten Wärmeschrank eingehängt und 30 min. temperiert. Anschließend wurden die Klebeverbindung (180° Schälversuch) mit einem 50g Gewicht belastet und weitere 30 min. bei 6O0C belassen. Nach Ablauf der 30 minütigen Prüfung wurde die abgeschälte Strecke [mm] bestimmt. Anschließend erfolgte jeweils alle 30 Minuten eine Temperaturerhöhung um 100C. Nach Ablauf jeder Temperaturstufe wurde die abgeschälte Strecke bestimmt.
Figure imgf000018_0001
Die beschleunigte Vernetzung des latent-reaktiven Pulvers mit dem Lithiummolybdat wird hier durch die geringe Abschälstrecke bis zu einer Temperatur von 15O0C sichtbar. Die Klebeverbindung mit dem Pulver ohne Lithiummolybat ist bereits bei 1000C vollständig getrennt.

Claims

Patentansprüche
1. Wässrige Zubereitungen enthaltend
a) dispergierte Polymere mit isocyanat-reaktiven Gruppen
b) wenigstens ein dispergiertes oberflächendesaktiviertes aliphatisches Feststoff- Polyisocyanate mit einer Erweichungstemperatur > 400C
c) eine oder mehrere Verbindungen von Elementen der 5. und 6. Nebengruppe des Periodensystems, in denen das jeweilige Element eine Oxidationsstufe von mindestens +4 hat,
d) gegebenenfalls weitere Zusatzstoffe und Hilfsmittel.
2. Zubereitung gemäß Anspruch 1, dadurch gekennzeichnet, dass das dispergierte isocyanat- reaktive Polymer Urethan- und Harnstoff-Gruppen enthält.
3. Zubereitung nach Anspruch 1, dadurch gekennzeichnet, dass das isocyanat-reaktive Polymer kristallisierende Polymereinheiten besitzt.
4. Zubereitung nach Anspruch 1, dadurch gekennzeichnet, dass das isocyanat-reaktive PoIy- mer kristallisierende Polyesterweichsegmente als kristallisierende Polymereinheiten besitzt.
5. Zubereitung nach Anspruch 1, dadurch gekennzeichnet, dass die aliphatischen Feststoff- Isocyanate eine Partikelgröße von d 50 < 100 μm aufweisen.
6. Zubereitung nach Anspruch 1, dadurch gekennzeichnet, dass die aliphatischen Feststoff- Isocyanate eine Partikelgröße von d 50 < 2 μm aufweisen.
7. Zubereitung nach Anspruch 1, dadurch gekennzeichnet, dass die aliphatischen Feststoff- Isocyanat IPDI-Trimer ist.
8. Zubereitung nach Anspruch 1, dadurch gekennzeichnet, dass als Komponente (c) mindestens eine Verbindung der Elemente Molybdän und Vanadin eingesetzt werden.
9. Zubereitung nach Anspruch 1, dadurch gekennzeichnet, dass als Komponente (c) mindestens eine Verbindung des Elements Molybdän eingesetzt wird.
10. Zubereitung nach Anspruch 1, dadurch gekennzeichnet, dass als Komponente (c) Li- thiummolybdat eingesetzt wird.
11. Verfahren zur Herstellung von Zubereitungen nach den Ansprüchen 1-10, dadurch gekennzeichnet, dass die Komponente (c) in der Wasserphase des dispergierten Polymers (a) befindlich eingebracht wird.
12. Verfahren zur Herstellung von Zubereitungen nach den Ansprüchen 1-10, dadurch gekenn- zeichnet, dass die Komponente (c) in der Formulierung des aliphatischen Feststoff-Iso- cyanats (b) befindlich eingebracht wird.
13. Verfahren zur Herstellung von Zubereitungen nach den Ansprüchen 1-10, dadurch gekennzeichnet, dass die Komponente (c) in weiteren Additiven und Hilfsstoffen (d) befindlich eingebracht wird.
14. Verfahren zur Herstellung von Zubereitungen nach den Ansprüchen 1-10, dadurch gekennzeichnet, dass die Komponente (c) in der wässrigen Phase der Formulierung bestehend aus dem dispergierten Polymer (a), dem oberflächendeaktivierten aliphatischen Feststoff-Iso- cyanat (b) und ggf. zugesetzten Additvien und Hilfstoffen befindlich eingebracht wird.
15. Verfahren zur Herstellung von latent-reaktiven Beschichtungen aus den Zubereitungen nach Ansprüchen 1-10, dadurch gekennzeichnet, dass die Zubereitungen auf Substratoberflächen aufgetragen und getrocknet werden.
16. Verfahren zur Herstellung von trägerfreien latent-reaktiven Filmen oder Vliesen aus den Zubereitungen nach Ansprüchen 1-10, dadurch gekennzeichnet, dass die Zubereitungen auf Trennpapier aufgetragen, getrocknet und vom Trennpapier abgelöst werden.
17. Verfahren zur Herstellung von latent-reaktiven Pulvern aus den Zubereitungen nach Ansprüchen 1-10, dadurch gekennzeichnet, dass die festen Bestandteile der Formulierungen auf an sich bekannte Weise ausgefällt und abgetrennt werden oder durch Trocknung der wässrigen Dispersion erhalten werden und erforderlichenfalls anschließend auf an sich bekannte Weise mikronisiert werden.
18. Verwendung von Zubereitungen nach Ansprüchen 1-10 als Klebstoff.
19. Verwendung von Zubereitungen nach Ansprüchen 1-10 zur Herstellung von trägerfreien Filmen und Vliesen.
20. Verwendung von Zubereitungen nach Ansprüchen 1-10 zur Herstellung von Klebstoffpulvern.
21. Mittels Zubereitungen nach Ansprüchen 1-10 verklebte Substrate.
PCT/EP2007/010345 2006-12-12 2007-11-29 Klebstoffe WO2008071307A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020097014454A KR101500768B1 (ko) 2006-12-12 2007-11-29 접착제
JP2009540625A JP2010512436A (ja) 2006-12-12 2007-11-29 接着剤
CN2007800459345A CN101652398B (zh) 2006-12-12 2007-11-29 粘合剂
BRPI0720278-4A2A BRPI0720278A2 (pt) 2006-12-12 2007-11-29 Adesivos
AT07856300T ATE532807T1 (de) 2006-12-12 2007-11-29 Klebstoffe
EP20070856300 EP2099840B1 (de) 2006-12-12 2007-11-29 Klebstoffe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006058527A DE102006058527A1 (de) 2006-12-12 2006-12-12 Klebstoffe
DE102006058527.5 2006-12-12

Publications (1)

Publication Number Publication Date
WO2008071307A1 true WO2008071307A1 (de) 2008-06-19

Family

ID=39226595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/010345 WO2008071307A1 (de) 2006-12-12 2007-11-29 Klebstoffe

Country Status (11)

Country Link
US (1) US20080171208A1 (de)
EP (1) EP2099840B1 (de)
JP (2) JP2010512436A (de)
KR (1) KR101500768B1 (de)
CN (1) CN101652398B (de)
AT (1) ATE532807T1 (de)
BR (1) BRPI0720278A2 (de)
DE (1) DE102006058527A1 (de)
RU (1) RU2466149C2 (de)
WO (1) WO2008071307A1 (de)
ZA (1) ZA200904058B (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2244489A1 (de) 2009-04-24 2010-10-27 Bayer MaterialScience AG Verfahren zur Herstellung eines elektromechanischen Wandlers
WO2011015303A1 (de) 2009-08-07 2011-02-10 Bayer Materialscience Ag Verfahren zur herstellung eines elektromechanischen wandlers
JP2012522094A (ja) * 2009-03-31 2012-09-20 シーカ・テクノロジー・アーゲー 表面不活性化ポリイソシアネートを含む熱硬化性組成物又は熱活性化可能な組成物
JP2013509468A (ja) * 2009-10-29 2013-03-14 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト 結晶質または半結晶質ポリウレタンポリマーに基づく水性処方物
EP3027668B1 (de) 2013-07-30 2019-09-04 H. B. Fuller Company Polyurethanhaftfolie
EP3730528A1 (de) 2019-04-24 2020-10-28 Covestro Deutschland AG Latent-reaktive klebstoffzubereitungen

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202009015262U1 (de) 2009-07-30 2010-03-11 Lohmann Gmbh & Co. Kg Latent reaktive, hitzeaktivierbare Klebmasse und damit hergestellte Klebemittel
EP2305727A1 (de) * 2009-10-05 2011-04-06 Bayer MaterialScience AG Neue 2K-PUR-Systeme
JP5697955B2 (ja) 2010-11-19 2015-04-08 住化バイエルウレタン株式会社 多層加飾フィルム
TWI560254B (en) * 2010-11-26 2016-12-01 Bayer Materialscience Ag Waterborne adhesive composition and method for bonding articles
US20130344289A1 (en) * 2011-01-05 2013-12-26 Bayer Intellectual Property Gmbh Aqueous 1K Coating System and Method for Improving the Appearance of Grained Wood Surfaces
DE102012203249A1 (de) * 2012-03-01 2013-09-05 Tesa Se Verwendung eines latentreaktiven Klebefilms zur Verklebung von eloxiertem Aluminium mit Kunststoff
CN103653548A (zh) * 2012-09-18 2014-03-26 阿尔特科拉工业化学有限公司 鞋类部件上胶过程中使用粉末粘合剂技术
EP2806001A1 (de) * 2013-05-21 2014-11-26 PPG Industries Ohio Inc. Beschichtungszusammensetzung
US10640702B2 (en) 2013-08-01 2020-05-05 Covestro Llc Coated particles and methods for their manufacture and use
EP3110898B2 (de) 2014-02-26 2022-06-15 H. B. Fuller Company Klebrige, hitzehärtbare und mehrschichtige klebefilme
US20160046775A1 (en) * 2014-08-12 2016-02-18 H.B. Fuller Company Heat curable adhesive film
WO2016100344A1 (en) * 2014-12-15 2016-06-23 H.B. Fuller Company Reactive film adhesives with enhanced adhesion to metallic surfaces
CN112135853A (zh) * 2018-05-18 2020-12-25 汉高股份有限及两合公司 稳定且固化温度低的1k多异氰酸酯
KR102074165B1 (ko) * 2019-06-14 2020-02-06 한우리산업주식회사 자동차용 내장소재 및 이를 제조하는 방법
EP3882317A1 (de) 2020-03-17 2021-09-22 Covestro Deutschland AG Polyurethandispersionen
WO2021233750A1 (en) 2020-05-19 2021-11-25 Covestro Deutschland Ag Method of manufacturing colorant-filled polyurethane particles
WO2021233749A1 (en) 2020-05-19 2021-11-25 Covestro Deutschland Ag Method of manufacturing filled polyurethane particles
WO2023247337A1 (en) 2022-06-23 2023-12-28 Covestro Deutschland Ag Method of manufacturing a particulate composition
EP4296296A1 (de) 2022-06-23 2023-12-27 Covestro Deutschland AG Verfahren zur herstellung einer teilchenförmigen zusammensetzung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0922720A1 (de) * 1997-12-11 1999-06-16 Abend, Thomas Verfahren zur Herstellung und Verwendung von lagerstabilen latentreaktiven Schichten oder Pulvern aus oberflächendesaktivierten festen Polyisocyanaten und Dispersionspolymeren mit funktionellen Gruppen
EP1172390A1 (de) * 2000-07-15 2002-01-16 Jowat Lobers & Frank Gmbh & Co. Kg Lagerstabile Isocyanatdispersionen
WO2003016374A1 (de) * 2001-08-16 2003-02-27 Bayer Materialscience Ag Einkomponentige isocyanatvernetzende zweiphasen-systeme
DE10308106A1 (de) * 2003-02-26 2004-09-09 Bayer Aktiengesellschaft Neue 2K-PUR-Systeme

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3403499A1 (de) * 1984-02-02 1985-08-08 Bayer Ag, 5090 Leverkusen Verwendung von hitzehaertbaren polyurethanharnstoff-reaktiv-klebstoffmassen
DE3517333A1 (de) * 1985-05-14 1986-11-20 Basf Ag, 6700 Ludwigshafen Verfahren zur herstellung stabiler dispersionen feinteiliger polyisocyanate und deren verwendung
US4788083A (en) * 1986-03-27 1988-11-29 Ashland Oil, Inc. Tin or bismuth complex catalysts and trigger cure of coatings therewith
DE10012826A1 (de) * 2000-03-16 2001-09-20 Bayer Ag Klebstoffzubereitungen
EP1285012B1 (de) * 2000-05-26 2007-01-10 Akzo Nobel Coatings International B.V. Photoaktivierbare beschichtungszusammensetzung
EP1164154A1 (de) * 2000-06-15 2001-12-19 Ag Bayer Haftklebstoffe mit verbesserter Scherfestigkeit bei erhöhten Temperaturen
EP1201695A1 (de) * 2000-10-23 2002-05-02 Huntsman International Llc Verwendung von Polyisocyanatzusammensetzungen als Bindemittel für Verbundstoffe aus Lignocellulosematerial
DE10248324A1 (de) * 2002-10-17 2004-05-06 Basf Coatings Ag Thermisch und mit aktinischer Strahlung härtbarer Beschichtungsstoff und Verfahren zum Beschichten miktoporöser Oberflächen
DE10308104A1 (de) * 2003-02-26 2004-09-09 Bayer Ag Polyurethan-Beschichtungssysteme
DE10308105A1 (de) * 2003-02-26 2004-09-09 Bayer Aktiengesellschaft Polyurethan-Beschichtungssysteme
DE102004026118A1 (de) * 2004-05-28 2005-12-15 Bayer Materialscience Ag Klebstoffe

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0922720A1 (de) * 1997-12-11 1999-06-16 Abend, Thomas Verfahren zur Herstellung und Verwendung von lagerstabilen latentreaktiven Schichten oder Pulvern aus oberflächendesaktivierten festen Polyisocyanaten und Dispersionspolymeren mit funktionellen Gruppen
EP1172390A1 (de) * 2000-07-15 2002-01-16 Jowat Lobers & Frank Gmbh & Co. Kg Lagerstabile Isocyanatdispersionen
WO2003016374A1 (de) * 2001-08-16 2003-02-27 Bayer Materialscience Ag Einkomponentige isocyanatvernetzende zweiphasen-systeme
DE10308106A1 (de) * 2003-02-26 2004-09-09 Bayer Aktiengesellschaft Neue 2K-PUR-Systeme

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012522094A (ja) * 2009-03-31 2012-09-20 シーカ・テクノロジー・アーゲー 表面不活性化ポリイソシアネートを含む熱硬化性組成物又は熱活性化可能な組成物
JP2016053166A (ja) * 2009-03-31 2016-04-14 ジーカ テクノロジー アクチェンゲゼルシャフト 表面不活性化ポリイソシアネートを含む熱硬化性組成物又は熱活性化可能
KR101753889B1 (ko) * 2009-03-31 2017-07-04 시카 테크놀러지 아게 표면-불활성화 폴리이소시아네이트를 함유하는 열 경화성 또는 열-활성화 조성물
EP2244489A1 (de) 2009-04-24 2010-10-27 Bayer MaterialScience AG Verfahren zur Herstellung eines elektromechanischen Wandlers
WO2010121720A1 (de) 2009-04-24 2010-10-28 Bayer Materialscience Ag Verfahren zur herstellung eines elektromechanischen wandlers
WO2011015303A1 (de) 2009-08-07 2011-02-10 Bayer Materialscience Ag Verfahren zur herstellung eines elektromechanischen wandlers
EP2284919A1 (de) 2009-08-07 2011-02-16 Bayer MaterialScience AG Verfahren zur Herstellung eines elektromechanischen Wandlers
JP2013509468A (ja) * 2009-10-29 2013-03-14 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト 結晶質または半結晶質ポリウレタンポリマーに基づく水性処方物
EP3027668B1 (de) 2013-07-30 2019-09-04 H. B. Fuller Company Polyurethanhaftfolie
EP3730528A1 (de) 2019-04-24 2020-10-28 Covestro Deutschland AG Latent-reaktive klebstoffzubereitungen
WO2020216680A1 (de) 2019-04-24 2020-10-29 Covestro Intellectual Property Gmbh & Co. Kg Latent-reaktive klebstoffzubereitungen

Also Published As

Publication number Publication date
JP2015004067A (ja) 2015-01-08
ZA200904058B (en) 2010-08-25
DE102006058527A1 (de) 2008-06-19
EP2099840B1 (de) 2011-11-09
KR101500768B1 (ko) 2015-03-09
JP5876548B2 (ja) 2016-03-02
KR20090088949A (ko) 2009-08-20
RU2466149C2 (ru) 2012-11-10
CN101652398A (zh) 2010-02-17
BRPI0720278A2 (pt) 2014-01-28
CN101652398B (zh) 2012-03-21
JP2010512436A (ja) 2010-04-22
US20080171208A1 (en) 2008-07-17
ATE532807T1 (de) 2011-11-15
EP2099840A1 (de) 2009-09-16
RU2009126425A (ru) 2011-01-20

Similar Documents

Publication Publication Date Title
EP2099840B1 (de) Klebstoffe
EP1600485B1 (de) Klebstoffe
EP0486881B1 (de) Nichtwässrige Polyisocyanatzubereitung
EP1599525B1 (de) 2k-pur-systeme
EP1029879B1 (de) Wässrige Dispersion enthaltend ein oberflächendesaktiviertes Polyisocyanat
DE2502934C2 (de)
EP2904028A1 (de) Lagerstabile hydrophile polyisocyanate
EP2316866A1 (de) Wässrige Zubereitung auf Basis kristalliner oder semikristalliner Polyurethanpolymere
EP3280775B1 (de) Verfahren zum verkleben von substraten mit klebstoffen
EP2262843B1 (de) Hotmelts
DE10047762A1 (de) Pulverförmige, wasserdispergierbare blockierte Polyisocyanataddukte, ein Verfahren zur Herstellung und ihre Verwendung
EP2712879B1 (de) Latent reaktive Schmelzklebstoffzusammensetzung
EP2691465B1 (de) Latent reaktive polyurethandispersion mit aktivierbarer vernetzung
EP1172390A1 (de) Lagerstabile Isocyanatdispersionen
DE10140206A1 (de) Einkomponentige isocyanatvernetzende Zweiphasen-Systeme
EP2305727A1 (de) Neue 2K-PUR-Systeme
EP1134245B1 (de) Klebstoffzubereitungen
EP4367153A1 (de) Zweikomponentige polyurethandispersionsklebstoffe
DE102004052756A1 (de) Lösemittelbasierte Reaktivklebstoffe mit hohem Festkörperanteil
DE10020160A1 (de) Klebstoffzubereitungen
DE102007018661A1 (de) Nanoharnstoffe zur Stabilisierung von CR-Latices sowie Verklebungen und Beschichtungen

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780045934.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07856300

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007856300

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2009540625

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020097014454

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2009126425

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: PI0720278

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20090612