WO2008065981A1 - Appareil d'élimitation statique - Google Patents

Appareil d'élimitation statique Download PDF

Info

Publication number
WO2008065981A1
WO2008065981A1 PCT/JP2007/072727 JP2007072727W WO2008065981A1 WO 2008065981 A1 WO2008065981 A1 WO 2008065981A1 JP 2007072727 W JP2007072727 W JP 2007072727W WO 2008065981 A1 WO2008065981 A1 WO 2008065981A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
positive
negative
high voltage
circuit
Prior art date
Application number
PCT/JP2007/072727
Other languages
English (en)
Japanese (ja)
Inventor
Yasunori Terasaki
Fumitaka Irie
Original Assignee
Hugle Electronics Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hugle Electronics Inc. filed Critical Hugle Electronics Inc.
Priority to KR1020087002912A priority Critical patent/KR101340392B1/ko
Priority to CN2007800015607A priority patent/CN101361407B/zh
Publication of WO2008065981A1 publication Critical patent/WO2008065981A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T23/00Apparatus for generating ions to be introduced into non-enclosed gases, e.g. into the atmosphere
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05FSTATIC ELECTRICITY; NATURALLY-OCCURRING ELECTRICITY
    • H05F3/00Carrying-off electrostatic charges
    • H05F3/04Carrying-off electrostatic charges by means of spark gaps or other discharge devices

Definitions

  • the present invention relates to a static eliminator that applies an AC voltage pulse (positive and negative high voltage pulse) to a discharge needle to generate positive and negative ions, and discharges an object to be discharged with these positive and negative ions.
  • AC voltage pulse positive and negative high voltage pulse
  • FIG. 4 is a circuit diagram showing the prior art described in Patent Document 1.
  • 101 is a DC power supply
  • 102a and 102b are switches
  • 103 is a control circuit
  • 104 is a positive high voltage generation circuit
  • 105 is a negative high voltage generation circuit
  • 104a and 105a are transformers
  • 104b and 105b are doubles
  • 106 is a discharge needle
  • 107a and 107b are resistors
  • 108 is a stray capacitance.
  • the control circuit 103 When the control circuit 103 alternately turns on the positive switch 102a and the negative switch 102b (the other switch is off), the positive high voltage panel output from the positive high voltage generation circuit 104 and the negative high switch The negative high voltage node output from the voltage generation circuit 105 is alternately applied to the discharge needle 106. As a result, positive and negative ions are alternately generated around the discharge needle 106, so that positive and negative ions are supplied to the target object by blowing air from the discharge needle 106 side toward the target object (not shown). can do.
  • each switch 102a, 102b and its duty ratio are changed, the magnitude and frequency of the positive and negative voltages applied to the discharge needle 106 can be controlled, and thereby the ion balance of positive and negative ions can be controlled. Control is possible.
  • FIG. 5 is a circuit diagram showing the prior art described in Patent Document 2.
  • 201 is a positive high voltage generation circuit
  • 202 is a negative high voltage generation circuit
  • 201a and 202a are self-oscillation circuits
  • 201b and 202bi transformers are self-oscillation circuits
  • 201c and 202ci voltage doubler rectifier circuits 203a and 203 b is zener diode
  • 204 is resistance
  • 205 discharge needle
  • 206 counter electrode (ground probe) Rate)
  • 207 to 209 are resistors
  • 210 is an ion current detection circuit
  • 211 is an abnormal discharge current detection circuit
  • 212 is a CPU
  • 213 is an indicator LED
  • 214 is a frame ground
  • 215 is a high-voltage side ground.
  • the abnormal discharge current detection circuit 211 detects an abnormal discharge between the discharge needle 205 and the ground plate 206 from the current flowing through the resistor 209 and performs an alarm display or the like.
  • Patent Document 1 JP 2000-58290 (paragraphs [0035] to [0049], FIGS. 1 to 3 etc.)
  • Patent Document 2 JP 2002-216995 (paragraphs [0020] to [0024] ], Fig. 5 etc.) Disclosure of Invention
  • Patent Document 2 it is impossible to detect the ion current flowing from the discharge needle 205 to the secondary side of the transformers 201b and 202b via the high-voltage side ground 215. Therefore, there is a problem that the ion balance cannot be controlled with high accuracy.
  • an object of the present invention is to provide a static eliminator capable of controlling ion balance appropriately and with high accuracy by a control circuit having a simple configuration.
  • the invention described in claim 1 includes a first high-voltage generation circuit that generates a voltage pulse having one of positive and negative polarities, and a polarity of the voltage pulse.
  • a second high voltage generation circuit that generates a DC bias voltage of reverse polarity, and an AC voltage noise obtained by superimposing the DC bias voltage on the voltage noise is applied via a resistor, and
  • An ion current detection resistor for detecting the ion current flowing through the grounding point with the high voltage generation circuit, and a detection signal by the discharge current detection resistor and the ion current detection resistor are synthesized and synthesized.
  • the invention described in claim 2 is the static eliminator according to claim 1, further comprising means for varying the frequency of the voltage noise output from the first high voltage generation circuit.
  • the invention described in claim 3 is the static eliminator described in claim 1 or 2, wherein the voltage noise output from the first high voltage generation circuit is positive, and the second high voltage generation The DC bias voltage output from the circuit is negative.
  • the positive / negative ion balance can be controlled appropriately and with high accuracy without using a complicated method such as changing the duty ratio of the positive voltage pulse or the negative voltage pulse as in the prior art. Therefore, the circuit configuration can be simplified and the cost can be reduced.
  • FIG. 1 is a circuit configuration diagram showing an embodiment of the present invention.
  • 1 is a DC power supply, and its positive electrode is connected to the power supply terminal of the control circuit 2.
  • One end of a discharge current detection resistor 11, an ion current detection resistor 12, and resistors 13, 14 described later is connected to the input terminal 2C of the control circuit 2, and the first output terminal 2A of the control circuit 2 is a switch.
  • 3 is connected to the input side of the positive oscillation circuit 4P, and the second output terminal 2B of the control circuit 2 is connected to the input side of the negative oscillation circuit 4N.
  • the primary winding of the transformer 5P is connected to the output side of the positive oscillation circuit 4P, and a voltage doubler rectifier circuit 6P comprising a plurality of capacitors 61, a Zener diode 62 and a diode 63 is connected to the secondary winding.
  • the voltage doubler rectifier circuit 6P operates to boost and rectify the high-frequency AC voltage generated in the secondary winding of the transformer 5P and output a positive voltage pulse.
  • the transformer 5P and the voltage doubler rectifier circuit 6P are
  • the positive high-voltage generation circuit 50P is configured as the first high-voltage generation circuit.
  • a primary winding of a transformer 5N is connected to the output side of the negative oscillation circuit 4N, and a voltage doubler rectifier circuit 6N including a plurality of capacitors 64 and diodes 65 is connected to the secondary winding. Yes.
  • This voltage doubler rectifier circuit 6N operates to boost and rectify the high-frequency AC voltage generated in the secondary winding of the transformer 5N and output a negative DC bias voltage.
  • the transformer 5N and the voltage doubler rectifier circuit 6N constitute a negative high voltage generating circuit 50N as a second high voltage generating circuit.
  • the output terminal of the positive side high voltage generation circuit 50P is directly connected to the connection point 15, and the output terminal of the negative side high voltage generation circuit 50N is connected to the connection point 15 via the current blocking resistor 7. It is connected to the. Further, the discharge needle 9 is connected to the connection point 15 via the resistor 8.
  • [0017] 10 is a counter electrode arranged in the vicinity of the discharge needle 9, and this counter electrode 10 is connected to the input terminal 2C of the control circuit 2 via the discharge current detection resistor 11 and the connection point 16. It is.
  • one end of the secondary winding of the transformer 5P, 5N is connected to the resistors 13, 14 and the connection, respectively. It is connected to the input terminal 2C of control circuit 2 via point 16.
  • the connection point 16 is grounded (connected to the ground of the static eliminator itself) via the ion current detection resistor 12! /. That is, one end of each of the discharge current detection resistor 11, the ion current detection resistor 12, and the resistors 13 and 14 is connected to the input terminal 2 C of the control circuit 2 by the connection point 16.
  • FIG. 2 is a circuit diagram showing the configuration of the control unit 20B for generating a signal to be given from the output terminal 2B to the negative oscillation circuit 4N and the connection relationship between the resistors 11 to 14.
  • the control unit 20B constitutes a part of the control circuit 2.
  • each resistor 11 ⁇ ; 14 is connected together! /
  • One end of capacitor 21 is connected to input terminal 2C (connection point 16), and the other end is grounded. Yes.
  • one end of the capacitor 21 is connected to an inverting input terminal of an operational amplifier 23 as an inverting amplifier via a resistor 22, and a non-inverting input terminal of the operational amplifier 23 is connected to a volume resistor 25.
  • Reference numeral 24 denotes a feedback resistor of the operational amplifier 23.
  • the output terminal of the operational amplifier 23 is connected as the output terminal 2B of the control circuit 2 to the negative oscillation circuit 4N. It should be noted that in practice, the force S is such that a current amplification circuit or the like is further connected between the output side of the operational amplifier 23 and the output terminal 2 B, and these illustrations are omitted here for convenience.
  • a control signal is sent from the output terminal 2A of the control circuit 2 to the positive oscillation circuit 4P.
  • a high-frequency AC voltage is output from the oscillation circuit 4P, and this AC voltage is boosted and rectified by the voltage doubler rectifier circuit 6P in the positive high-voltage generating circuit 50P to be connected to the connection point 15 as a positive voltage noise.
  • Fig. 3 (a) shows this positive voltage noise. For example, assume that the magnitude is + P [V] and the duty ratio is 50%.
  • a positive voltage and a negative voltage with the same value and pulse width are applied alternately.
  • the ion current that contributes to the charge removal of the object to be discharged due to the positive and negative ions generated from the discharge needle 9 flows between the discharge needle 9 and the secondary winding of the transformer 5P, 5N via the grounding point of the charge removal device.
  • a voltage corresponding to the positive / negative ion current detection value is generated at the connection point 16, and this voltage also appears at the input terminal 2C. become.
  • the resistors 13 and 14 contribute to both the detection of the discharge current and the detection of the ion current.
  • the voltage at the input terminal 2C is a signal obtained by synthesizing the detection value of the discharge current flowing between the discharge needle 9 and the counter electrode 10 and the detection value of the ionic current that actually contributes to the charge removal.
  • the value reflects the balance of the positive and negative ion amounts considering both the discharge current and the ion current.
  • the polarity of the input / output voltage is inverted by the operation of the operational amplifier 23.For example, if the voltage at the input terminal 2C changes in the positive direction, the voltage at the output terminal 2B changes in the negative direction. . Therefore, if the voltage at the input terminal 2C changes in either positive or negative direction due to the unbalance of positive and negative ions, the voltage at the output terminal 2B cancels the change. Will change direction.
  • the amount of positive and negative ions generated from the discharge needle 9 can be balanced.
  • the initial value of the negative DC bias voltage can be changed, and the optimum DC bias voltage corresponding to the charge polarity of the object to be discharged can be changed. Can be set.
  • the frequency of the positive voltage pulse output from the positive high voltage generation circuit 50P can be changed, and By adjusting the amplitude of the output voltage of the oscillation circuit 4P, the amplitude of the positive voltage noise can be changed to an arbitrary value.
  • a positive voltage pulse is generated from the positive high voltage generation circuit 50P, and a negative DC bias voltage is generated from the negative high voltage generation circuit 50N to superimpose them.
  • the positive high voltage generator circuit 50P A bias voltage may be generated to generate a negative voltage node from the negative side high voltage generation circuit 50N, and these may be superimposed and applied to the discharge needle 9.
  • FIG. 1 is a circuit configuration diagram showing an embodiment of the present invention.
  • FIG. 2 is a circuit diagram showing a connection relationship between a control unit and each resistor in the embodiment.
  • FIG. 3 is a waveform diagram showing the operation of the embodiment.
  • FIG. 4 is a circuit configuration diagram of a conventional technique described in Patent Document 1.
  • FIG. 5 is a circuit configuration diagram of a conventional technique described in Patent Document 2.

Abstract

[PROBLÈMES À RÉSOUDRE] Un appareil d'élimination statique est proposé pour rendre possible de commander d'une manière correcte un équilibre d'ion par un circuit de commande configuré simplement. [MOYENS POUR RÉSOUDRE LES PROBLÈMES] Un appareil d'élimination statique comporte un circuit (50P) de génération de haute tension de côté positif qui génère une impulsion de haute tension de polarité positive, un circuit (50N) de génération de haute tension de côté négatif qui génère une tension de polarisation en courant continu de polarité négative, un stylet (9) de décharge auquel une impulsion de tension alternative obtenue par chevauchement de l'impulsion de haute tension avec la tension de polarisation en courant continu est appliquée avec une résistance (8) pour générer des ions positifs et négatifs, une résistance (11) de détection de courant de décharge qui détecte un courant de décharge circulant à partir du stylet (9) de décharge vers une électrode opposée (10), une résistance (12) de détection de courant d'ion qui détecte un courant d'ion circulant à partir du stylet (9) de décharge vers chaque circuit de génération de haute tension (50P, 50N) par l'intermédiaire du point de masse, de points de connexion (13, 14), et un circuit de commande (2) qui ajuste une amplitude de la tension de polarisation en courant continu conformément à un signal résultant de valeurs détectées de courant par chaque résistance de détection (11, 12) et de résistances (13, 14) de façon à commander un équilibre des ions positifs et négatifs générés à partir du stylet (9) de décharge.
PCT/JP2007/072727 2006-11-29 2007-11-26 Appareil d'élimitation statique WO2008065981A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020087002912A KR101340392B1 (ko) 2006-11-29 2007-11-26 제전 장치
CN2007800015607A CN101361407B (zh) 2006-11-29 2007-11-26 除电装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006321710A JP4111348B2 (ja) 2006-11-29 2006-11-29 除電装置
JP2006-321710 2006-11-29

Publications (1)

Publication Number Publication Date
WO2008065981A1 true WO2008065981A1 (fr) 2008-06-05

Family

ID=39467772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/072727 WO2008065981A1 (fr) 2006-11-29 2007-11-26 Appareil d'élimitation statique

Country Status (5)

Country Link
JP (1) JP4111348B2 (fr)
KR (1) KR101340392B1 (fr)
CN (1) CN101361407B (fr)
TW (1) TW200836593A (fr)
WO (1) WO2008065981A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110231519A (zh) * 2019-06-18 2019-09-13 国网河南省电力公司辉县市供电公司 一种静电检测消除装置
CN112756111A (zh) * 2020-12-14 2021-05-07 苏州天华超净科技股份有限公司 具备静电消除功能的空气过滤装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4919794B2 (ja) 2006-12-20 2012-04-18 株式会社キーエンス 除電装置
JP2010078392A (ja) * 2008-09-25 2010-04-08 Hugle Electronics Inc イオン濃度測定回路及びイオン電流センサ
JP5351598B2 (ja) * 2009-04-24 2013-11-27 ミドリ安全株式会社 除電装置
JP5460546B2 (ja) * 2010-09-30 2014-04-02 パナソニック デバイスSunx株式会社 除電装置
CN101969736A (zh) * 2010-11-03 2011-02-09 北京聚星创源科技有限公司 离子发生系统及控制离子平衡度的方法
JP4695230B1 (ja) 2010-11-25 2011-06-08 春日電機株式会社 除電装置
KR101238035B1 (ko) * 2010-12-13 2013-03-04 박광옥 코로나방전용 가변식 고압모듈
JP5508302B2 (ja) * 2011-01-21 2014-05-28 株式会社キーエンス 除電器
JP5731879B2 (ja) 2011-04-08 2015-06-10 株式会社キーエンス 除電装置及び除電制御方法
CN102291919A (zh) * 2011-07-27 2011-12-21 江苏安阳文化创意产业园股份有限公司 一种静电消除装置
JP5504541B2 (ja) * 2012-09-10 2014-05-28 Smc株式会社 イオナイザ
KR101357539B1 (ko) * 2012-10-24 2014-01-29 (주)이림전자 대용량 이오나이저 회로
JP5945972B2 (ja) * 2013-11-01 2016-07-05 Smc株式会社 イオナイザ及びその制御方法
CN112039320A (zh) * 2020-09-16 2020-12-04 深圳市凯仕德科技有限公司 一种层流型静电消除器电路

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0417688U (fr) * 1990-06-01 1992-02-13
JP2004063427A (ja) * 2002-07-31 2004-02-26 Sunx Ltd 除電装置
JP2006040860A (ja) * 2003-12-02 2006-02-09 Keyence Corp イオン化装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0417688U (fr) * 1990-06-01 1992-02-13
JP2004063427A (ja) * 2002-07-31 2004-02-26 Sunx Ltd 除電装置
JP2006040860A (ja) * 2003-12-02 2006-02-09 Keyence Corp イオン化装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110231519A (zh) * 2019-06-18 2019-09-13 国网河南省电力公司辉县市供电公司 一种静电检测消除装置
CN112756111A (zh) * 2020-12-14 2021-05-07 苏州天华超净科技股份有限公司 具备静电消除功能的空气过滤装置

Also Published As

Publication number Publication date
TWI369925B (fr) 2012-08-01
CN101361407A (zh) 2009-02-04
KR20090106980A (ko) 2009-10-12
TW200836593A (en) 2008-09-01
CN101361407B (zh) 2012-01-11
JP4111348B2 (ja) 2008-07-02
JP2008135329A (ja) 2008-06-12
KR101340392B1 (ko) 2013-12-11

Similar Documents

Publication Publication Date Title
WO2008065981A1 (fr) Appareil d'élimitation statique
JP5508302B2 (ja) 除電器
JP4818093B2 (ja) 除電装置
US6259591B1 (en) Apparatus and method for monitoring of air ionization
JP5046390B2 (ja) 除電装置
WO2008016179A1 (fr) Système de détermination de résistance d'isolement, appareil de détermination de résistance d'isolement et procédé de détermination de résistance d'isolement
WO2007029327A1 (fr) Alimentation d'énergie haute tension et spectromètre de masse l'utilisant
KR100909226B1 (ko) 아크결함차단기 테스트용 아크 파형 발생장치
JP4367580B2 (ja) 除電装置
US7224129B2 (en) Discharge lamp drive apparatus and liquid crystal display apparatus
US8611065B2 (en) Method and device for automatic positive and negative ion balance control in a bipolar ion generator
JP2002216995A (ja) 除電装置及びこれに組み込まれる高電圧発生回路
JPH1076182A (ja) 電気集塵機用パルス電源装置
JP7103085B2 (ja) 状態検出装置
JP2001025249A (ja) 高電圧発生装置
JPH04115168A (ja) 電流検出回路
JPH11150959A (ja) 圧電振動子の駆動方法及びその装置
JP2005033856A (ja) 充電装置およびその充電電流検出回路
JPH0731296Y2 (ja) 安定化電源装置
JP2006072817A (ja) ピーク検出回路及び放電灯点灯装置
JP2000134924A (ja) 電源回路
JPH0649115Y2 (ja) 直流高電圧電源装置
JP4820600B2 (ja) 電源装置
JPH0213095Y2 (fr)
US8054659B2 (en) Power supply with reduced switching losses by blocking a feedback comparator's control signal

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780001560.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020087002912

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07832452

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07832452

Country of ref document: EP

Kind code of ref document: A1