WO2008065981A1 - Static elimination apparatus - Google Patents

Static elimination apparatus Download PDF

Info

Publication number
WO2008065981A1
WO2008065981A1 PCT/JP2007/072727 JP2007072727W WO2008065981A1 WO 2008065981 A1 WO2008065981 A1 WO 2008065981A1 JP 2007072727 W JP2007072727 W JP 2007072727W WO 2008065981 A1 WO2008065981 A1 WO 2008065981A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
positive
negative
high voltage
circuit
Prior art date
Application number
PCT/JP2007/072727
Other languages
French (fr)
Japanese (ja)
Inventor
Yasunori Terasaki
Fumitaka Irie
Original Assignee
Hugle Electronics Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hugle Electronics Inc. filed Critical Hugle Electronics Inc.
Priority to CN2007800015607A priority Critical patent/CN101361407B/en
Priority to KR1020087002912A priority patent/KR101340392B1/en
Publication of WO2008065981A1 publication Critical patent/WO2008065981A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T23/00Apparatus for generating ions to be introduced into non-enclosed gases, e.g. into the atmosphere
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05FSTATIC ELECTRICITY; NATURALLY-OCCURRING ELECTRICITY
    • H05F3/00Carrying-off electrostatic charges
    • H05F3/04Carrying-off electrostatic charges by means of spark gaps or other discharge devices

Definitions

  • the present invention relates to a static eliminator that applies an AC voltage pulse (positive and negative high voltage pulse) to a discharge needle to generate positive and negative ions, and discharges an object to be discharged with these positive and negative ions.
  • AC voltage pulse positive and negative high voltage pulse
  • FIG. 4 is a circuit diagram showing the prior art described in Patent Document 1.
  • 101 is a DC power supply
  • 102a and 102b are switches
  • 103 is a control circuit
  • 104 is a positive high voltage generation circuit
  • 105 is a negative high voltage generation circuit
  • 104a and 105a are transformers
  • 104b and 105b are doubles
  • 106 is a discharge needle
  • 107a and 107b are resistors
  • 108 is a stray capacitance.
  • the control circuit 103 When the control circuit 103 alternately turns on the positive switch 102a and the negative switch 102b (the other switch is off), the positive high voltage panel output from the positive high voltage generation circuit 104 and the negative high switch The negative high voltage node output from the voltage generation circuit 105 is alternately applied to the discharge needle 106. As a result, positive and negative ions are alternately generated around the discharge needle 106, so that positive and negative ions are supplied to the target object by blowing air from the discharge needle 106 side toward the target object (not shown). can do.
  • each switch 102a, 102b and its duty ratio are changed, the magnitude and frequency of the positive and negative voltages applied to the discharge needle 106 can be controlled, and thereby the ion balance of positive and negative ions can be controlled. Control is possible.
  • FIG. 5 is a circuit diagram showing the prior art described in Patent Document 2.
  • 201 is a positive high voltage generation circuit
  • 202 is a negative high voltage generation circuit
  • 201a and 202a are self-oscillation circuits
  • 201b and 202bi transformers are self-oscillation circuits
  • 201c and 202ci voltage doubler rectifier circuits 203a and 203 b is zener diode
  • 204 is resistance
  • 205 discharge needle
  • 206 counter electrode (ground probe) Rate)
  • 207 to 209 are resistors
  • 210 is an ion current detection circuit
  • 211 is an abnormal discharge current detection circuit
  • 212 is a CPU
  • 213 is an indicator LED
  • 214 is a frame ground
  • 215 is a high-voltage side ground.
  • the abnormal discharge current detection circuit 211 detects an abnormal discharge between the discharge needle 205 and the ground plate 206 from the current flowing through the resistor 209 and performs an alarm display or the like.
  • Patent Document 1 JP 2000-58290 (paragraphs [0035] to [0049], FIGS. 1 to 3 etc.)
  • Patent Document 2 JP 2002-216995 (paragraphs [0020] to [0024] ], Fig. 5 etc.) Disclosure of Invention
  • Patent Document 2 it is impossible to detect the ion current flowing from the discharge needle 205 to the secondary side of the transformers 201b and 202b via the high-voltage side ground 215. Therefore, there is a problem that the ion balance cannot be controlled with high accuracy.
  • an object of the present invention is to provide a static eliminator capable of controlling ion balance appropriately and with high accuracy by a control circuit having a simple configuration.
  • the invention described in claim 1 includes a first high-voltage generation circuit that generates a voltage pulse having one of positive and negative polarities, and a polarity of the voltage pulse.
  • a second high voltage generation circuit that generates a DC bias voltage of reverse polarity, and an AC voltage noise obtained by superimposing the DC bias voltage on the voltage noise is applied via a resistor, and
  • An ion current detection resistor for detecting the ion current flowing through the grounding point with the high voltage generation circuit, and a detection signal by the discharge current detection resistor and the ion current detection resistor are synthesized and synthesized.
  • the invention described in claim 2 is the static eliminator according to claim 1, further comprising means for varying the frequency of the voltage noise output from the first high voltage generation circuit.
  • the invention described in claim 3 is the static eliminator described in claim 1 or 2, wherein the voltage noise output from the first high voltage generation circuit is positive, and the second high voltage generation The DC bias voltage output from the circuit is negative.
  • the positive / negative ion balance can be controlled appropriately and with high accuracy without using a complicated method such as changing the duty ratio of the positive voltage pulse or the negative voltage pulse as in the prior art. Therefore, the circuit configuration can be simplified and the cost can be reduced.
  • FIG. 1 is a circuit configuration diagram showing an embodiment of the present invention.
  • 1 is a DC power supply, and its positive electrode is connected to the power supply terminal of the control circuit 2.
  • One end of a discharge current detection resistor 11, an ion current detection resistor 12, and resistors 13, 14 described later is connected to the input terminal 2C of the control circuit 2, and the first output terminal 2A of the control circuit 2 is a switch.
  • 3 is connected to the input side of the positive oscillation circuit 4P, and the second output terminal 2B of the control circuit 2 is connected to the input side of the negative oscillation circuit 4N.
  • the primary winding of the transformer 5P is connected to the output side of the positive oscillation circuit 4P, and a voltage doubler rectifier circuit 6P comprising a plurality of capacitors 61, a Zener diode 62 and a diode 63 is connected to the secondary winding.
  • the voltage doubler rectifier circuit 6P operates to boost and rectify the high-frequency AC voltage generated in the secondary winding of the transformer 5P and output a positive voltage pulse.
  • the transformer 5P and the voltage doubler rectifier circuit 6P are
  • the positive high-voltage generation circuit 50P is configured as the first high-voltage generation circuit.
  • a primary winding of a transformer 5N is connected to the output side of the negative oscillation circuit 4N, and a voltage doubler rectifier circuit 6N including a plurality of capacitors 64 and diodes 65 is connected to the secondary winding. Yes.
  • This voltage doubler rectifier circuit 6N operates to boost and rectify the high-frequency AC voltage generated in the secondary winding of the transformer 5N and output a negative DC bias voltage.
  • the transformer 5N and the voltage doubler rectifier circuit 6N constitute a negative high voltage generating circuit 50N as a second high voltage generating circuit.
  • the output terminal of the positive side high voltage generation circuit 50P is directly connected to the connection point 15, and the output terminal of the negative side high voltage generation circuit 50N is connected to the connection point 15 via the current blocking resistor 7. It is connected to the. Further, the discharge needle 9 is connected to the connection point 15 via the resistor 8.
  • [0017] 10 is a counter electrode arranged in the vicinity of the discharge needle 9, and this counter electrode 10 is connected to the input terminal 2C of the control circuit 2 via the discharge current detection resistor 11 and the connection point 16. It is.
  • one end of the secondary winding of the transformer 5P, 5N is connected to the resistors 13, 14 and the connection, respectively. It is connected to the input terminal 2C of control circuit 2 via point 16.
  • the connection point 16 is grounded (connected to the ground of the static eliminator itself) via the ion current detection resistor 12! /. That is, one end of each of the discharge current detection resistor 11, the ion current detection resistor 12, and the resistors 13 and 14 is connected to the input terminal 2 C of the control circuit 2 by the connection point 16.
  • FIG. 2 is a circuit diagram showing the configuration of the control unit 20B for generating a signal to be given from the output terminal 2B to the negative oscillation circuit 4N and the connection relationship between the resistors 11 to 14.
  • the control unit 20B constitutes a part of the control circuit 2.
  • each resistor 11 ⁇ ; 14 is connected together! /
  • One end of capacitor 21 is connected to input terminal 2C (connection point 16), and the other end is grounded. Yes.
  • one end of the capacitor 21 is connected to an inverting input terminal of an operational amplifier 23 as an inverting amplifier via a resistor 22, and a non-inverting input terminal of the operational amplifier 23 is connected to a volume resistor 25.
  • Reference numeral 24 denotes a feedback resistor of the operational amplifier 23.
  • the output terminal of the operational amplifier 23 is connected as the output terminal 2B of the control circuit 2 to the negative oscillation circuit 4N. It should be noted that in practice, the force S is such that a current amplification circuit or the like is further connected between the output side of the operational amplifier 23 and the output terminal 2 B, and these illustrations are omitted here for convenience.
  • a control signal is sent from the output terminal 2A of the control circuit 2 to the positive oscillation circuit 4P.
  • a high-frequency AC voltage is output from the oscillation circuit 4P, and this AC voltage is boosted and rectified by the voltage doubler rectifier circuit 6P in the positive high-voltage generating circuit 50P to be connected to the connection point 15 as a positive voltage noise.
  • Fig. 3 (a) shows this positive voltage noise. For example, assume that the magnitude is + P [V] and the duty ratio is 50%.
  • a positive voltage and a negative voltage with the same value and pulse width are applied alternately.
  • the ion current that contributes to the charge removal of the object to be discharged due to the positive and negative ions generated from the discharge needle 9 flows between the discharge needle 9 and the secondary winding of the transformer 5P, 5N via the grounding point of the charge removal device.
  • a voltage corresponding to the positive / negative ion current detection value is generated at the connection point 16, and this voltage also appears at the input terminal 2C. become.
  • the resistors 13 and 14 contribute to both the detection of the discharge current and the detection of the ion current.
  • the voltage at the input terminal 2C is a signal obtained by synthesizing the detection value of the discharge current flowing between the discharge needle 9 and the counter electrode 10 and the detection value of the ionic current that actually contributes to the charge removal.
  • the value reflects the balance of the positive and negative ion amounts considering both the discharge current and the ion current.
  • the polarity of the input / output voltage is inverted by the operation of the operational amplifier 23.For example, if the voltage at the input terminal 2C changes in the positive direction, the voltage at the output terminal 2B changes in the negative direction. . Therefore, if the voltage at the input terminal 2C changes in either positive or negative direction due to the unbalance of positive and negative ions, the voltage at the output terminal 2B cancels the change. Will change direction.
  • the amount of positive and negative ions generated from the discharge needle 9 can be balanced.
  • the initial value of the negative DC bias voltage can be changed, and the optimum DC bias voltage corresponding to the charge polarity of the object to be discharged can be changed. Can be set.
  • the frequency of the positive voltage pulse output from the positive high voltage generation circuit 50P can be changed, and By adjusting the amplitude of the output voltage of the oscillation circuit 4P, the amplitude of the positive voltage noise can be changed to an arbitrary value.
  • a positive voltage pulse is generated from the positive high voltage generation circuit 50P, and a negative DC bias voltage is generated from the negative high voltage generation circuit 50N to superimpose them.
  • the positive high voltage generator circuit 50P A bias voltage may be generated to generate a negative voltage node from the negative side high voltage generation circuit 50N, and these may be superimposed and applied to the discharge needle 9.
  • FIG. 1 is a circuit configuration diagram showing an embodiment of the present invention.
  • FIG. 2 is a circuit diagram showing a connection relationship between a control unit and each resistor in the embodiment.
  • FIG. 3 is a waveform diagram showing the operation of the embodiment.
  • FIG. 4 is a circuit configuration diagram of a conventional technique described in Patent Document 1.
  • FIG. 5 is a circuit configuration diagram of a conventional technique described in Patent Document 2.

Landscapes

  • Elimination Of Static Electricity (AREA)
  • Electrostatic Spraying Apparatus (AREA)

Abstract

[PROBLEMS TO BE SOLVED] A static elimination apparatus is provided for making it possible to properly control an ion balance by a simply configured control circuit. [MEANS FOR SOLVING THE PROBLEMS] A static elimination apparatus is provided with a positive side high voltage generating circuit (50P) that generates a positive polarity high voltage pulse, a negative side high voltage generating circuit (50N) that generates a negative polarity direct current bias voltage, a discharging stylus (9) to which an alternative voltage pulse obtained by overlapping the high voltage pulse with the direct current bias voltage is applied through a resistor (8) to generate plus and minus ions, a discharge current detecting resistor (11) that detects a discharge current flowing from the discharging stylus (9) to an opposite electrode (10), an ion current detecting resistor (12) that detects an ion current flowing from the discharging stylus (9) to each high voltage generating circuit (50P, 50N) through the ground point, connecting points (13, 14) and a control circuit (2) that adjusts a magnitude of the direct current bias voltage in accordance with a resultant signal of current detected values by each detecting resistor (11, 12) and resistors (13, 14) so as to control a balance of the pulse and minus ions generated from the discharging stylus (9).

Description

明 細 書  Specification
除電装置  Static eliminator
技術分野  Technical field
[0001] 本発明は、放電針に交流電圧ノ ルス(正負の高電圧ノ ルス)を印加して正負イオン を発生させ、これらの正負イオンにより被除電物を除電する除電装置に関するもので ある。  TECHNICAL FIELD [0001] The present invention relates to a static eliminator that applies an AC voltage pulse (positive and negative high voltage pulse) to a discharge needle to generate positive and negative ions, and discharges an object to be discharged with these positive and negative ions.
背景技術  Background art
[0002] 従来、この種の除電装置として、例えば特許文献 1、特許文献 2に記載されたもの が公知となっている。  Conventionally, as this type of static eliminator, for example, those described in Patent Document 1 and Patent Document 2 are known.
図 4は、特許文献 1に記載された従来技術を示す回路図である。図 4において、 10 1は直流電源、 102a, 102bはスィッチ、 103は制御回路、 104は正側高電圧発生 回路、 105は負側高電圧発生回路、 104a, 105aはトランス、 104b, 105bは倍電圧 整流回路、 106は放電針、 107a, 107bは抵抗、 108は浮遊容量を示している。  FIG. 4 is a circuit diagram showing the prior art described in Patent Document 1. In FIG. In FIG. 4, 101 is a DC power supply, 102a and 102b are switches, 103 is a control circuit, 104 is a positive high voltage generation circuit, 105 is a negative high voltage generation circuit, 104a and 105a are transformers, and 104b and 105b are doubles The voltage rectifier circuit, 106 is a discharge needle, 107a and 107b are resistors, and 108 is a stray capacitance.
[0003] 次に、この従来技術の動作を略述する。 [0003] Next, the operation of this prior art will be outlined.
制御回路 103により正側のスィッチ 102a、負側のスィッチ 102bを交互にオン(他 方のスィッチはオフ)すると、正側高電圧発生回路 104から出力される正の高電圧パ ノレスと負側高電圧発生回路 105から出力される負の高電圧ノ レスが放電針 106に 交互に印加される。これにより、放電針 106の周囲には正負イオンが交互に発生する ので、放電針 106側から被除電物(図示せず)方向へ送風することにより、被除電物 に対して正負のイオンを供給することができる。また、各スィッチ 102a, 102bのオン オフ時間やそのデューティ比を変更すれば、放電針 106に印加される正負の電圧の 大きさや周波数を制御することができ、これによつて正負イオンのイオンバランス制御 を可能にしている。  When the control circuit 103 alternately turns on the positive switch 102a and the negative switch 102b (the other switch is off), the positive high voltage panel output from the positive high voltage generation circuit 104 and the negative high switch The negative high voltage node output from the voltage generation circuit 105 is alternately applied to the discharge needle 106. As a result, positive and negative ions are alternately generated around the discharge needle 106, so that positive and negative ions are supplied to the target object by blowing air from the discharge needle 106 side toward the target object (not shown). can do. In addition, if the on / off time of each switch 102a, 102b and its duty ratio are changed, the magnitude and frequency of the positive and negative voltages applied to the discharge needle 106 can be controlled, and thereby the ion balance of positive and negative ions can be controlled. Control is possible.
[0004] また、図 5は、特許文献 2に記載された従来技術を示す回路図である。図 5におい て、 201は正側高電圧発生回路、 202は負側高電圧発生回路、 201a, 202aは自 励発振回路、 201b, 202biまトランス、 201c, 202ciま倍電圧整流回路、 203a, 203 bはツエナーダイオード、 204は抵抗、 205は放電針、 206は対向電極(グラウンドプ レート)、 207〜209は抵抗、 210はイオン電流検知回路、 211は異常放電電流検知 回路、 212は CPU、 213は表示 LED、 214はフレームグラウンド、 215は高圧側グラ ゥンドである。 FIG. 5 is a circuit diagram showing the prior art described in Patent Document 2. In FIG. 5, 201 is a positive high voltage generation circuit, 202 is a negative high voltage generation circuit, 201a and 202a are self-oscillation circuits, 201b and 202bi transformers, 201c and 202ci voltage doubler rectifier circuits, 203a and 203 b is zener diode, 204 is resistance, 205 is discharge needle, 206 is counter electrode (ground probe) Rate), 207 to 209 are resistors, 210 is an ion current detection circuit, 211 is an abnormal discharge current detection circuit, 212 is a CPU, 213 is an indicator LED, 214 is a frame ground, and 215 is a high-voltage side ground.
[0005] この従来技術においても、正側高電圧発生回路 201及び負側高電圧発生回路 20 2から放電針 205に正負の高電圧ノ ルスが印加され、放電針 205から正負イオンが 交互に発生する。そして、抵抗 207を流れる電流の変化をイオン電流検知回路 210 により検知して放電針 205の汚れを検出し、これを表示 LED213により表示する。ま た、抵抗 207を流れる正負の電流のバランスからイオン発生量のイオンバランスを検 出すると共に、抵抗 208を流れる電流力も被除電物近傍におけるイオンバランスを検 出すること力 Sでき、これらの検出結果に応じて CPU212から各発振回路 201a, 202 aに送られる制御信号のデューティ比を制御することにより、イオンバランスの制御が 可能である。  [0005] Also in this prior art, positive and negative high voltage pulses are applied to the discharge needle 205 from the positive high voltage generation circuit 201 and the negative high voltage generation circuit 202, and positive and negative ions are alternately generated from the discharge needle 205. To do. Then, a change in the current flowing through the resistor 207 is detected by the ion current detection circuit 210 to detect the contamination of the discharge needle 205, and this is displayed by the display LED 213. In addition, the ion balance of the amount of ions generated is detected from the balance between the positive and negative currents flowing through the resistor 207, and the current force flowing through the resistor 208 can detect the ion balance in the vicinity of the object to be discharged. The ion balance can be controlled by controlling the duty ratio of the control signal sent from the CPU 212 to each of the oscillation circuits 201a and 202a according to the result.
なお、異常放電電流検知回路 211は、抵抗 209を流れる電流から放電針 205とグ ラウンドプレート 206との間の異常放電を検出してアラーム表示等を行うためのもので ある。  The abnormal discharge current detection circuit 211 detects an abnormal discharge between the discharge needle 205 and the ground plate 206 from the current flowing through the resistor 209 and performs an alarm display or the like.
[0006] 特許文献 1 :特開 2000— 58290号公報(段落 [0035]〜[0049]、図 1〜図 3等) 特許文献 2 :特開 2002— 216995号公報(段落 [0020]〜[0024]、図 5等) 発明の開示  Patent Document 1: JP 2000-58290 (paragraphs [0035] to [0049], FIGS. 1 to 3 etc.) Patent Document 2: JP 2002-216995 (paragraphs [0020] to [0024] ], Fig. 5 etc.) Disclosure of Invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] 特許文献 1に記載された従来技術では、イオンバランスを最適に制御するために、 制御回路 103によってスィッチ 102a, 102bのオンオフ時間やそのデューティ比を調 整する必要があり、制御回路 103の構成が複雑になるという問題がある。 [0007] In the prior art described in Patent Document 1, in order to optimally control the ion balance, it is necessary to adjust the on / off time of the switches 102a and 102b and the duty ratio thereof by the control circuit 103. There is a problem that the configuration of the system becomes complicated.
また、特許文献 2に記載された従来技術では、抵抗 207, 208によって放電針 205 の近傍の発生イオンや被除電物近傍における正負イオンのイオンバランスを検出可 能である力 S、イオンバランスを制御する方法は基本的に特許文献 1と同様であるため 、 CPU212による制御プログラム等が複雑化するおそれがあった。  In the prior art described in Patent Document 2, the force S and the ion balance that can detect the ion balance of the generated ions near the discharge needle 205 and the positive and negative ions near the object to be discharged are controlled by the resistors 207 and 208. Since this method is basically the same as that of Patent Document 1, the control program by the CPU 212 may be complicated.
更に、特許文献 2に係る従来技術では、放電針 205から高圧側グラウンド 215を介 してトランス 201b, 202bの二次側に流れるイオン電流を検出することができず、これ によってイオンバランスを高精度に制御できないという問題があった。 Furthermore, in the prior art according to Patent Document 2, it is impossible to detect the ion current flowing from the discharge needle 205 to the secondary side of the transformers 201b and 202b via the high-voltage side ground 215. Therefore, there is a problem that the ion balance cannot be controlled with high accuracy.
[0008] そこで本発明の解決課題は、簡単な構成の制御回路によりイオンバランスを適切か つ高精度に制御可能とした除電装置を提供しょうとするものである。  Accordingly, an object of the present invention is to provide a static eliminator capable of controlling ion balance appropriately and with high accuracy by a control circuit having a simple configuration.
課題を解決するための手段  Means for solving the problem
[0009] 上記課題を解決するため、請求項 1に記載した発明は、正負の極性のうち何れか 一方の極性の電圧パルスを発生する第 1の高電圧発生回路と、前記電圧パルスの 極性とは逆極性の直流バイアス電圧を発生する第 2の高電圧発生回路と、前記電圧 ノ ルスに前記直流バイアス電圧を重畳して得た交流電圧ノ ルスが抵抗を介して印加 され、対向電極との間のコロナ放電により正負イオンを発生する放電針と、前記放電 針と前記対向電極との間に流れる放電電流を検出するための放電電流検出用抵抗 と、前記放電針と第 1 ,第 2の高電圧発生回路との間に接地点を介して流れるイオン 電流を検出するためのイオン電流検出用抵抗と、前記放電電流検出用抵抗及びィ オン電流検出用抵抗による検出信号を合成し、その合成信号に応じて前記直流バイ ァス電圧の大きさを調整して前記放電針から発生する正負イオンのイオンバランスを 制御する制御回路と、を備えたものである。  [0009] In order to solve the above problem, the invention described in claim 1 includes a first high-voltage generation circuit that generates a voltage pulse having one of positive and negative polarities, and a polarity of the voltage pulse. Is a second high voltage generation circuit that generates a DC bias voltage of reverse polarity, and an AC voltage noise obtained by superimposing the DC bias voltage on the voltage noise is applied via a resistor, and A discharge needle for generating positive and negative ions by corona discharge between the discharge needle, a discharge current detection resistor for detecting a discharge current flowing between the discharge needle and the counter electrode, and the discharge needle and the first and second An ion current detection resistor for detecting the ion current flowing through the grounding point with the high voltage generation circuit, and a detection signal by the discharge current detection resistor and the ion current detection resistor are synthesized and synthesized. Depending on the signal A control circuit for controlling the ion balance of positive and negative ions generated from the discharge needles by adjusting the magnitude of y § scan voltage are those having a.
[0010] 請求項 2に記載した発明は、請求項 1に記載した除電装置において、第 1の高電圧 発生回路から出力される電圧ノ ルスの周波数を可変する手段を備えたものである。  [0010] The invention described in claim 2 is the static eliminator according to claim 1, further comprising means for varying the frequency of the voltage noise output from the first high voltage generation circuit.
[0011] 請求項 3に記載した発明は、請求項 1または 2に記載した除電装置において、第 1 の高電圧発生回路から出力される電圧ノ ルスが正極性であり、第 2の高電圧発生回 路から出力される直流バイアス電圧が負極性であることを特徴とする。  [0011] The invention described in claim 3 is the static eliminator described in claim 1 or 2, wherein the voltage noise output from the first high voltage generation circuit is positive, and the second high voltage generation The DC bias voltage output from the circuit is negative.
発明の効果  The invention's effect
[0012] 本発明によれば、従来技術のように、正電圧パルスや負電圧パルスのデューティ比 を変化させる等の複雑な方法によらず、正負のイオンバランスを適切かつ高精度に 制御すること力 Sでき、回路構成の簡略化やコストの低減を図ることができる。  [0012] According to the present invention, the positive / negative ion balance can be controlled appropriately and with high accuracy without using a complicated method such as changing the duty ratio of the positive voltage pulse or the negative voltage pulse as in the prior art. Therefore, the circuit configuration can be simplified and the cost can be reduced.
また、放電電流検出用抵抗及び第 1 ,第 2のイオン電流検出用抵抗による電流検 出値に基づいて直流バイアス電圧を調整することにより、高精度なイオンバランス制 御が可能になる。  Further, by adjusting the DC bias voltage based on the current detection values of the discharge current detection resistor and the first and second ion current detection resistors, highly accurate ion balance control can be performed.
発明を実施するための最良の形態 [0013] 以下、図に沿って本発明の実施形態を説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings.
まず、図 1は本発明の実施形態を示す回路構成図である。同図において、 1は直流 電源であり、その正極は制御回路 2の電源端子に接続されている。制御回路 2の入 力端子 2Cには、後述する放電電流検出用抵抗 11、イオン電流検出用抵抗 12及び 抵抗 13, 14の各一端が接続され、制御回路 2の第 1の出力端子 2Aはスィッチ 3を介 して正側発振回路 4Pの入力側に接続されていると共に、制御回路 2の第 2の出力端 子 2Bは負側発振回路 4Nの入力側に接続されている。  First, FIG. 1 is a circuit configuration diagram showing an embodiment of the present invention. In the figure, 1 is a DC power supply, and its positive electrode is connected to the power supply terminal of the control circuit 2. One end of a discharge current detection resistor 11, an ion current detection resistor 12, and resistors 13, 14 described later is connected to the input terminal 2C of the control circuit 2, and the first output terminal 2A of the control circuit 2 is a switch. 3 is connected to the input side of the positive oscillation circuit 4P, and the second output terminal 2B of the control circuit 2 is connected to the input side of the negative oscillation circuit 4N.
[0014] 正側発振回路 4Pの出力側にはトランス 5Pの一次巻線が接続され、その二次巻線 には複数のコンデンサ 61、ツエナーダイオード 62及びダイオード 63からなる倍電圧 整流回路 6Pが接続されている。この倍電圧整流回路 6Pは、トランス 5Pの二次巻線 に発生する高周波交流電圧を昇圧、整流し、正電圧パルスを出力するように動作す ここで、トランス 5P及び倍電圧整流回路 6Pは、第 1の高電圧発生回路としての正側 高電圧発生回路 50Pを構成して!/、る。  [0014] The primary winding of the transformer 5P is connected to the output side of the positive oscillation circuit 4P, and a voltage doubler rectifier circuit 6P comprising a plurality of capacitors 61, a Zener diode 62 and a diode 63 is connected to the secondary winding. Has been. The voltage doubler rectifier circuit 6P operates to boost and rectify the high-frequency AC voltage generated in the secondary winding of the transformer 5P and output a positive voltage pulse. Here, the transformer 5P and the voltage doubler rectifier circuit 6P are The positive high-voltage generation circuit 50P is configured as the first high-voltage generation circuit.
[0015] また、負側発振回路 4Nの出力側にはトランス 5Nの一次巻線が接続され、その二 次巻線には複数のコンデンサ 64及びダイオード 65からなる倍電圧整流回路 6Nが 接続されている。この倍電圧整流回路 6Nは、トランス 5Nの二次巻線に発生する高 周波交流電圧を昇圧、整流し、負の直流バイアス電圧を出力するように動作する。 ここで、トランス 5N及び倍電圧整流回路 6Nは、第 2の高電圧発生回路としての負 側高電圧発生回路 50Nを構成して!/、る。  [0015] Further, a primary winding of a transformer 5N is connected to the output side of the negative oscillation circuit 4N, and a voltage doubler rectifier circuit 6N including a plurality of capacitors 64 and diodes 65 is connected to the secondary winding. Yes. This voltage doubler rectifier circuit 6N operates to boost and rectify the high-frequency AC voltage generated in the secondary winding of the transformer 5N and output a negative DC bias voltage. Here, the transformer 5N and the voltage doubler rectifier circuit 6N constitute a negative high voltage generating circuit 50N as a second high voltage generating circuit.
[0016] 正側高電圧発生回路 50Pの出力端子は接続点 15に直接接続されていると共に、 負側高電圧発生回路 50Nの出力端子は電流阻止用の抵抗 7を介して前記接続点 1 5に接続されている。更に、接続点 15には、抵抗 8を介して放電針 9が接続されてい  [0016] The output terminal of the positive side high voltage generation circuit 50P is directly connected to the connection point 15, and the output terminal of the negative side high voltage generation circuit 50N is connected to the connection point 15 via the current blocking resistor 7. It is connected to the. Further, the discharge needle 9 is connected to the connection point 15 via the resistor 8.
[0017] 10は前記放電針 9に近接して配置された対向電極であり、この対向電極 10は放電 電流検出用抵抗 11及び接続点 16を介して前記制御回路 2の入力端子 2Cに接続さ れている。 [0017] 10 is a counter electrode arranged in the vicinity of the discharge needle 9, and this counter electrode 10 is connected to the input terminal 2C of the control circuit 2 via the discharge current detection resistor 11 and the connection point 16. It is.
また、トランス 5P, 5Nの二次巻線の一端は、それぞれ抵抗 13, 14及び前記接続 点 16を介して制御回路 2の入力端子 2Cに接続されている。そして、接続点 16は、ィ オン電流検出用抵抗 12を介して接地(除電装置自体のアースに接続)されて!/、る。 すなわち、制御回路 2の入力端子 2Cには、放電電流検出用抵抗 11、イオン電流 検出用抵抗 12及び抵抗 13, 14の各一端が、接続点 16により一括して接続されてい ることになる。 Also, one end of the secondary winding of the transformer 5P, 5N is connected to the resistors 13, 14 and the connection, respectively. It is connected to the input terminal 2C of control circuit 2 via point 16. The connection point 16 is grounded (connected to the ground of the static eliminator itself) via the ion current detection resistor 12! /. That is, one end of each of the discharge current detection resistor 11, the ion current detection resistor 12, and the resistors 13 and 14 is connected to the input terminal 2 C of the control circuit 2 by the connection point 16.
[0018] なお、図 2は、前記出力端子 2Bから負側の発振回路 4Nに与える信号を生成する ための制御部 20Bの構成と、各抵抗 11〜; 14の接続関係を示す回路図であり、制御 部 20Bは前記制御回路 2の一部を構成している。  FIG. 2 is a circuit diagram showing the configuration of the control unit 20B for generating a signal to be given from the output terminal 2B to the negative oscillation circuit 4N and the connection relationship between the resistors 11 to 14. The control unit 20B constitutes a part of the control circuit 2.
図 2にお!/、て、各抵抗 11〜; 14の一端が一括接続されて!/、る入力端子 2C (接続点 16)にはコンデンサ 21の一端が接続され、その他端は接地されている。また、コンデ ンサ 21の一端は、抵抗 22を介して反転増幅器としてのオペアンプ 23の反転入力端 子に接続され、オペアンプ 23の非反転入力端子はボリューム抵抗 25に接続されて いる。 24はオペアンプ 23の帰還抵抗である。  In Fig. 2, one end of each resistor 11 ~; 14 is connected together! /, One end of capacitor 21 is connected to input terminal 2C (connection point 16), and the other end is grounded. Yes. In addition, one end of the capacitor 21 is connected to an inverting input terminal of an operational amplifier 23 as an inverting amplifier via a resistor 22, and a non-inverting input terminal of the operational amplifier 23 is connected to a volume resistor 25. Reference numeral 24 denotes a feedback resistor of the operational amplifier 23.
[0019] そして、オペアンプ 23の出力端子が前記制御回路 2の出力端子 2Bとして負側の発 振回路 4Nに接続されている。なお、実際には、オペアンプ 23の出力側と出力端子 2 Bとの間に更に電流増幅回路等が接続されている力 S、ここでは便宜的にこれらの図 示を省略してある。  The output terminal of the operational amplifier 23 is connected as the output terminal 2B of the control circuit 2 to the negative oscillation circuit 4N. It should be noted that in practice, the force S is such that a current amplification circuit or the like is further connected between the output side of the operational amplifier 23 and the output terminal 2 B, and these illustrations are omitted here for convenience.
[0020] 次に、この実施形態の動作を図 3を参照しつつ説明する。  Next, the operation of this embodiment will be described with reference to FIG.
主電源をオンすることにより前記スィッチ 3がオンし、制御回路 2の出力端子 2Aから 正側の発振回路 4Pに制御信号が送られる。これにより、発振回路 4Pからは、高周波 の交流電圧が出力され、この交流電圧は正側高電圧発生回路 50P内の倍電圧整流 回路 6Pにより昇圧、整流されて正電圧ノ ルスとして接続点 15に供給される。図 3 (a) は、この正電圧ノ ルスを示しており、例えば大きさを + P 〔V〕、デューティ比を 50%と してめ ·ο。  When the main power is turned on, the switch 3 is turned on, and a control signal is sent from the output terminal 2A of the control circuit 2 to the positive oscillation circuit 4P. As a result, a high-frequency AC voltage is output from the oscillation circuit 4P, and this AC voltage is boosted and rectified by the voltage doubler rectifier circuit 6P in the positive high-voltage generating circuit 50P to be connected to the connection point 15 as a positive voltage noise. Supplied. Fig. 3 (a) shows this positive voltage noise. For example, assume that the magnitude is + P [V] and the duty ratio is 50%.
[0021] 一方、制御回路 2内の前記制御部 20Βの動作により、出力端子 2Βからは、ボリユー ム抵抗 25の値に応じて初期設定された制御信号が出力され、この制御信号が負側 の発振回路 4Νに送られる。これにより、発振回路 4Νからは高周波の交流電圧が出 力され、この交流電圧は負側高電圧発生回路 50Ν内の倍電圧整流回路 6Νにより昇 圧、整流され、抵抗 7を介して負の直流バイアス電圧として図 1の接続点 15に供給さ れる。図 3 (b)は、この直流バイアス電圧を示しており、その大きさを— N〔V〕とする。 On the other hand, by the operation of the control unit 20 部 in the control circuit 2, a control signal that is initially set according to the value of the volume resistance 25 is output from the output terminal 2 が, and this control signal is a negative-side signal. Sent to oscillation circuit 4 回路. As a result, a high-frequency AC voltage is output from the oscillation circuit 4Ν, and this AC voltage is increased by the voltage doubler rectifier circuit 6Ν in the negative high-voltage generation circuit 50Ν. The voltage is rectified and supplied to the connection point 15 in FIG. 1 through the resistor 7 as a negative DC bias voltage. Figure 3 (b) shows this DC bias voltage, and its magnitude is -N [V].
[0022] このため、図 3 (c)に示すように、接続点 15の電圧は図 3 (a)の正電圧パルスに図 3 For this reason, as shown in FIG. 3 (c), the voltage at the node 15 is changed to the positive voltage pulse in FIG. 3 (a).
(b)の負の直流バイアス電圧を重畳したものとなり、正側の振幅が + P [V] (P =P  The negative DC bias voltage in (b) is superimposed, and the positive amplitude is + P [V] (P = P
2 2 1 2 2 1
-N)、負側の振幅が N〔V〕の交流ノ ルスとなる。 -N), and the negative amplitude is AC [N].
この交流パルスは抵抗 8を介して放電針 9に印加されるので、対向電極 10との間に 生じるコロナ放電により放電針 9の周囲の空気をイオン化し、正負イオンを発生させる ことになる。なお、図 3 (c)における振幅を P =Nとすることにより、放電針 9には絶対  Since this AC pulse is applied to the discharge needle 9 via the resistor 8, the air around the discharge needle 9 is ionized by corona discharge generated between the counter electrode 10 and positive and negative ions are generated. By setting the amplitude in Fig. 3 (c) to P = N, the discharge needle 9 is
2  2
値及びパルス幅の等しい正電圧ノ ルス、負電圧ノ ルスが交互に印加されることにな  A positive voltage and a negative voltage with the same value and pulse width are applied alternately.
[0023] ここで、放電針 9と対向電極 10との間に流れる放電電流は放電電流検出用抵抗 11 と抵抗 13, 14との直列回路を流れるため、放電電流検出値に応じた電圧が接続点 1 6に発生し、この電圧は図 2の入力端子 2Cに現れる。 [0023] Here, since the discharge current flowing between the discharge needle 9 and the counter electrode 10 flows through a series circuit of the discharge current detection resistor 11 and the resistors 13, 14, a voltage corresponding to the discharge current detection value is connected. This voltage appears at point 16 and appears at input terminal 2C in Figure 2.
また、放電針 9から発生した正負イオンにより被除電物の除電に寄与するイオン電 流は、放電針 9とトランス 5P, 5Nの二次巻線との間で除電装置の接地点を介して流 れ、言い換えれば、イオン電流検出用抵抗 12及び抵抗 13, 14を介して流れるため、 正負のイオン電流検出値に応じた電圧が接続点 16に発生し、この電圧も入力端子 2 Cに現れることになる。  In addition, the ion current that contributes to the charge removal of the object to be discharged due to the positive and negative ions generated from the discharge needle 9 flows between the discharge needle 9 and the secondary winding of the transformer 5P, 5N via the grounding point of the charge removal device. In other words, since it flows through the ion current detection resistor 12 and the resistors 13 and 14, a voltage corresponding to the positive / negative ion current detection value is generated at the connection point 16, and this voltage also appears at the input terminal 2C. become.
なお、上記の説明から明らかなように、抵抗 13, 14は、放電電流の検出、イオン電 流の検出の双方に寄与してレ、る。  As is clear from the above description, the resistors 13 and 14 contribute to both the detection of the discharge current and the detection of the ion current.
[0024] 従って、入力端子 2Cの電圧は、放電針 9と対向電極 10との間を流れる放電電流検 出値と、実際に被除電物の除電に寄与するイオン電流検出値とを合成した信号とな り、放電電流及びイオン電流の両方を考慮した正負イオン量のバランスを反映した値 になる。  [0024] Therefore, the voltage at the input terminal 2C is a signal obtained by synthesizing the detection value of the discharge current flowing between the discharge needle 9 and the counter electrode 10 and the detection value of the ionic current that actually contributes to the charge removal. Thus, the value reflects the balance of the positive and negative ion amounts considering both the discharge current and the ion current.
図 2に示した制御部 20Bでは、オペアンプ 23の動作によって入出力電圧の極性が 反転するので、例えば入力端子 2Cの電圧が正方向に変化すれば出力端子 2Bの電 圧は負方向に変化する。従って、正負イオンのアンバランスによって入力端子 2Cの 電圧が正負何れかの方向に変化すると、出力端子 2Bの電圧はその変化を打ち消す 方向に変化することになる。 In the control unit 20B shown in FIG. 2, the polarity of the input / output voltage is inverted by the operation of the operational amplifier 23.For example, if the voltage at the input terminal 2C changes in the positive direction, the voltage at the output terminal 2B changes in the negative direction. . Therefore, if the voltage at the input terminal 2C changes in either positive or negative direction due to the unbalance of positive and negative ions, the voltage at the output terminal 2B cancels the change. Will change direction.
[0025] 具体的には、入力端子 2Cの電圧として正イオン量が過剰であることを検出すると、 出力端子 2Bからは図 3 (b)における直流バイアス電圧を負方向に増加させるような 制御信号が出力され、この制御信号に基づいて発振回路 4N及び負側高電圧発生 回路 50Nにより負方向に増加した直流バイアス電圧が生成される。  [0025] Specifically, when it is detected that the amount of positive ions is excessive as the voltage at the input terminal 2C, a control signal that increases the DC bias voltage in FIG. 3 (b) in the negative direction from the output terminal 2B. Based on this control signal, a DC bias voltage increased in the negative direction is generated by the oscillation circuit 4N and the negative high voltage generation circuit 50N.
このため、図 3 (c)の交流パルスにおける負電圧パルスの面積が増加するので、負 イオン量が増加し、正負のイオンバランスを保つように制御が行われる。  For this reason, since the area of the negative voltage pulse in the AC pulse of FIG. 3 (c) increases, the amount of negative ions increases and control is performed so as to maintain positive and negative ion balance.
[0026] 負イオン量が過剰である場合の動作は上記と逆になり、図 3 (b)における直流バイ ァス電圧を減少させる(0方向に近付ける)ような制御信号によって負の直流バイアス 電圧を減少させるので、負イオン量が減少し、正負のイオンバランスを保つように制 御が行われる。  [0026] The operation when the amount of negative ions is excessive is the reverse of the above, and a negative DC bias voltage is generated by a control signal that decreases the DC bias voltage (approaches the 0 direction) in Fig. 3 (b). Therefore, the amount of negative ions is reduced, and control is performed so as to maintain positive and negative ion balance.
上記のような動作により、放電針 9から発生する正負のイオン量をバランスさせること ができる。  With the above operation, the amount of positive and negative ions generated from the discharge needle 9 can be balanced.
[0027] また、制御部 20Bにおけるボリューム抵抗 25の値を調整すれば、負の直流バイアス 電圧の初期値を変更することができ、被除電物の帯電極性に応じた最適な直流バイ ァス電圧を設定することが可能である。  [0027] Further, by adjusting the value of the volume resistance 25 in the control unit 20B, the initial value of the negative DC bias voltage can be changed, and the optimum DC bias voltage corresponding to the charge polarity of the object to be discharged can be changed. Can be set.
[0028] なお、前記スィッチ 3のオンオフ周波数や発振回路 4Pの発振周波数を制御するこ とにより、正側高電圧発生回路 50Pから出力される正電圧パルスの周波数を変化さ せることができると共に、発振回路 4Pの出力電圧の振幅を調整することによって正電 圧ノ ルスの振幅を任意の値に変化させることができる。  [0028] By controlling the on / off frequency of the switch 3 and the oscillation frequency of the oscillation circuit 4P, the frequency of the positive voltage pulse output from the positive high voltage generation circuit 50P can be changed, and By adjusting the amplitude of the output voltage of the oscillation circuit 4P, the amplitude of the positive voltage noise can be changed to an arbitrary value.
このように正電圧パルスの周波数や振幅、負の直流バイアス電圧の大きさを適宜調 整することにより、図 3 (c)に示した交流ノ ルスの周波数や正負ノ ルスの面積の比率 を変化させること力 Sできる力 、正負のイオンバランスを保つば力、りでなぐ被除電物 の帯電極性に応じて正または負のイオンを余分に供給するといつた制御を行うことも 可能である。  By appropriately adjusting the frequency and amplitude of the positive voltage pulse and the magnitude of the negative DC bias voltage in this way, the ratio of the AC noise frequency and the positive and negative noise area shown in Fig. 3 (c) is changed. It is possible to control when extra positive or negative ions are supplied according to the charge power, the force that can maintain the positive / negative ion balance, and the charge polarity of the object to be removed.
[0029] また、上記の実施形態では、正側高電圧発生回路 50Pから正電圧パルスを発生さ せ、負側高電圧発生回路 50Nから負の直流バイアス電圧を発生させてこれらを重畳 しているが、回路構成を変更することにより、正側高電圧発生回路 50Pから正の直流 バイアス電圧を発生させ、負側高電圧発生回路 50Nから負電圧ノ^レスを発生させて これらを重畳し、放電針 9に印加しても良い。 [0029] In the above embodiment, a positive voltage pulse is generated from the positive high voltage generation circuit 50P, and a negative DC bias voltage is generated from the negative high voltage generation circuit 50N to superimpose them. However, by changing the circuit configuration, the positive high voltage generator circuit 50P A bias voltage may be generated to generate a negative voltage node from the negative side high voltage generation circuit 50N, and these may be superimposed and applied to the discharge needle 9.
図面の簡単な説明  Brief Description of Drawings
[0030] [図 1]本発明の実施形態を示す回路構成図である。  FIG. 1 is a circuit configuration diagram showing an embodiment of the present invention.
[図 2]実施形態における制御部及び各抵抗の接続関係を示す回路図である。  FIG. 2 is a circuit diagram showing a connection relationship between a control unit and each resistor in the embodiment.
[図 3]実施形態の動作を示す波形図である。  FIG. 3 is a waveform diagram showing the operation of the embodiment.
[図 4]特許文献 1に記載された従来技術の回路構成図である。  FIG. 4 is a circuit configuration diagram of a conventional technique described in Patent Document 1.
[図 5]特許文献 2に記載された従来技術の回路構成図である。  FIG. 5 is a circuit configuration diagram of a conventional technique described in Patent Document 2.
符号の説明  Explanation of symbols
[0031] 1:直流電源 [0031] 1: DC power supply
2:制御回路  2: Control circuit
2A, 2B:出力端子  2A, 2B: Output terminal
2C:入力端子  2C: Input terminal
3:スィッチ  3: switch
4P:正側発振回路  4P: Positive oscillation circuit
4N:負側発振回路  4N: Negative oscillation circuit
5P, 5N:トランス  5P, 5N: Transformer
6P, 6N:倍電圧整流回路  6P, 6N: Voltage doubler rectifier circuit
61, 64:コンデンサ  61, 64: Capacitor
62:ツエナーダイオード  62: Zener diode
63, 65:ダイオード  63, 65: Diode
7, 8, 12:抵抗  7, 8, 12: Resistance
9:放電針  9: Discharge needle
10:対向電極  10: Counter electrode
11:放電電流検出用抵抗  11: Resistance for detecting discharge current
12:イオン電流検出用抵抗  12: Resistance for ion current detection
13, 14:抵抗  13, 14: Resistance
15, 16:接続点 B:制御部15, 16: Connection point B: Control unit
:コンデンサ: Capacitor
:抵抗:resistance
:オペアンプ: Operational amplifier
:帰還抵抗: Feedback resistance
:ボリューム抵抗: Volume resistance
P:正側高電圧発生回路N:負側高電圧発生回路 P: Positive high voltage generator N: Negative high voltage generator

Claims

請求の範囲 The scope of the claims
[1] 正負の極性のうち何れか一方の極性の電圧ノ ルスを発生する第 1の高電圧発生回 路と、  [1] a first high-voltage generating circuit that generates a voltage noise of one of positive and negative polarities;
前記電圧パルスの極性とは逆極性の直流バイアス電圧を発生する第 2の高電圧発 生回路と、  A second high voltage generation circuit for generating a DC bias voltage having a polarity opposite to the polarity of the voltage pulse;
前記電圧ノ^レスに前記直流バイアス電圧を重畳して得た交流電圧ノ ルスが抵抗を 介して印加され、対向電極との間のコロナ放電により正負イオンを発生する放電針と 前記放電針と前記対向電極との間に流れる放電電流を検出するための放電電流 検出用抵抗と、  An AC voltage pulse obtained by superimposing the DC bias voltage on the voltage node is applied via a resistor, and a discharge needle that generates positive and negative ions by corona discharge between the counter electrode, the discharge needle, and the discharge needle A discharge current detection resistor for detecting the discharge current flowing between the counter electrode and
前記放電針と第 1 ,第 2の高電圧発生回路との間に接地点を介して流れるイオン電 流を検出するためのイオン電流検出用抵抗と、  An ion current detection resistor for detecting an ion current flowing through a ground point between the discharge needle and the first and second high voltage generation circuits;
前記放電電流検出用抵抗及びイオン電流検出用抵抗による検出信号を合成し、 その合成信号に応じて前記直流バイアス電圧の大きさを調整して前記放電針力 発 生する正負イオンのイオンバランスを制御する制御回路と、  The detection signal by the discharge current detection resistor and the ion current detection resistor is synthesized, and the magnitude of the DC bias voltage is adjusted according to the synthesized signal to control the ion balance of the positive and negative ions generated by the discharge needle force. A control circuit to
を備えたことを特徴とする除電装置。  A static eliminator characterized by comprising:
[2] 請求項 1に記載した除電装置において、 [2] In the static eliminator according to claim 1,
第 1の高電圧発生回路から出力される電圧パルスの周波数を可変とする手段を備 えたことを特徴とする除電装置。  A static eliminator comprising means for varying the frequency of a voltage pulse output from the first high voltage generation circuit.
[3] 請求項 1または 2に記載した除電装置において、 [3] In the static eliminator according to claim 1 or 2,
第 1の高電圧発生回路から出力される電圧ノ ルスが正極性であり、第 2の高電圧発 生回路から出力される直流バイアス電圧が負極性であることを特徴とする除電装置。  A static eliminator characterized in that the voltage noise output from the first high voltage generation circuit is positive and the DC bias voltage output from the second high voltage generation circuit is negative.
PCT/JP2007/072727 2006-11-29 2007-11-26 Static elimination apparatus WO2008065981A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2007800015607A CN101361407B (en) 2006-11-29 2007-11-26 Static elimination apparatus
KR1020087002912A KR101340392B1 (en) 2006-11-29 2007-11-26 Static elimination apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-321710 2006-11-29
JP2006321710A JP4111348B2 (en) 2006-11-29 2006-11-29 Static eliminator

Publications (1)

Publication Number Publication Date
WO2008065981A1 true WO2008065981A1 (en) 2008-06-05

Family

ID=39467772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/072727 WO2008065981A1 (en) 2006-11-29 2007-11-26 Static elimination apparatus

Country Status (5)

Country Link
JP (1) JP4111348B2 (en)
KR (1) KR101340392B1 (en)
CN (1) CN101361407B (en)
TW (1) TW200836593A (en)
WO (1) WO2008065981A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110231519A (en) * 2019-06-18 2019-09-13 国网河南省电力公司辉县市供电公司 A kind of electrostatic detection cancellation element
CN112756111A (en) * 2020-12-14 2021-05-07 苏州天华超净科技股份有限公司 Air filter device with static elimination function

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4919794B2 (en) 2006-12-20 2012-04-18 株式会社キーエンス Static eliminator
JP2010078392A (en) * 2008-09-25 2010-04-08 Hugle Electronics Inc Ion concentration measuring circuit and ion current sensor
JP5351598B2 (en) * 2009-04-24 2013-11-27 ミドリ安全株式会社 Static eliminator
JP5460546B2 (en) * 2010-09-30 2014-04-02 パナソニック デバイスSunx株式会社 Static eliminator
CN101969736A (en) * 2010-11-03 2011-02-09 北京聚星创源科技有限公司 Ion generating system and method for controlling ion balance
JP4695230B1 (en) 2010-11-25 2011-06-08 春日電機株式会社 Static eliminator
KR101238035B1 (en) * 2010-12-13 2013-03-04 박광옥 Variable high voltage module for corona discharge
JP5508302B2 (en) * 2011-01-21 2014-05-28 株式会社キーエンス Static eliminator
JP5731879B2 (en) * 2011-04-08 2015-06-10 株式会社キーエンス Static elimination device and static elimination control method
CN102291919A (en) * 2011-07-27 2011-12-21 江苏安阳文化创意产业园股份有限公司 Static elimination device
JP5504541B2 (en) * 2012-09-10 2014-05-28 Smc株式会社 Ionizer
KR101357539B1 (en) * 2012-10-24 2014-01-29 (주)이림전자 An inonizer circuit for discharging large capacity
JP5945972B2 (en) * 2013-11-01 2016-07-05 Smc株式会社 Ionizer and control method thereof
CN112039320A (en) * 2020-09-16 2020-12-04 深圳市凯仕德科技有限公司 Laminar flow type electrostatic eliminator circuit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0417688U (en) * 1990-06-01 1992-02-13
JP2004063427A (en) * 2002-07-31 2004-02-26 Sunx Ltd Static eliminator
JP2006040860A (en) * 2003-12-02 2006-02-09 Keyence Corp Ionization device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0417688U (en) * 1990-06-01 1992-02-13
JP2004063427A (en) * 2002-07-31 2004-02-26 Sunx Ltd Static eliminator
JP2006040860A (en) * 2003-12-02 2006-02-09 Keyence Corp Ionization device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110231519A (en) * 2019-06-18 2019-09-13 国网河南省电力公司辉县市供电公司 A kind of electrostatic detection cancellation element
CN112756111A (en) * 2020-12-14 2021-05-07 苏州天华超净科技股份有限公司 Air filter device with static elimination function

Also Published As

Publication number Publication date
CN101361407B (en) 2012-01-11
KR101340392B1 (en) 2013-12-11
KR20090106980A (en) 2009-10-12
CN101361407A (en) 2009-02-04
JP4111348B2 (en) 2008-07-02
TW200836593A (en) 2008-09-01
TWI369925B (en) 2012-08-01
JP2008135329A (en) 2008-06-12

Similar Documents

Publication Publication Date Title
WO2008065981A1 (en) Static elimination apparatus
JP5508302B2 (en) Static eliminator
JP4818093B2 (en) Static eliminator
US6259591B1 (en) Apparatus and method for monitoring of air ionization
JP5046390B2 (en) Static eliminator
WO2008016179A1 (en) Insulation resistance determining system, insulation resistance determining apparatus and insulation resistance determining method
WO2007029327A1 (en) High-voltage power supply and mass spectrometer using the same
KR100909226B1 (en) Arc waveform generator for testing arc fault breaker
JP4367580B2 (en) Static eliminator
US8611065B2 (en) Method and device for automatic positive and negative ion balance control in a bipolar ion generator
JP2002216995A (en) Static eliminator and high-voltage generating circuit assembled in this
JPH1076182A (en) Pulse power source device for electric dust collector
JP7103085B2 (en) State detector
JP2001025249A (en) High-voltage generator
JP2014062800A (en) Ac voltage generation apparatus and voltage detection apparatus
JPH04115168A (en) Current detection circuit
JP2007089277A (en) Leak detector for electric car
JPH11150959A (en) Method and apparatus for driving piezoelectric vibrator
JP2005033856A (en) Charging equipment and its charging current detecting circuit
JP2006072817A (en) Peak detection circuit and discharge lamp lighting device
JP2000134924A (en) Power circuit
JPH0649115Y2 (en) DC high voltage power supply
JP4820600B2 (en) Power supply
JPH0213095Y2 (en)
US8054659B2 (en) Power supply with reduced switching losses by blocking a feedback comparator's control signal

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780001560.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020087002912

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07832452

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07832452

Country of ref document: EP

Kind code of ref document: A1