TW200836593A - Static elimination apparatus - Google Patents

Static elimination apparatus Download PDF

Info

Publication number
TW200836593A
TW200836593A TW096144093A TW96144093A TW200836593A TW 200836593 A TW200836593 A TW 200836593A TW 096144093 A TW096144093 A TW 096144093A TW 96144093 A TW96144093 A TW 96144093A TW 200836593 A TW200836593 A TW 200836593A
Authority
TW
Taiwan
Prior art keywords
voltage
positive
high voltage
negative
discharge
Prior art date
Application number
TW096144093A
Other languages
Chinese (zh)
Other versions
TWI369925B (en
Inventor
Yasunori Terasaki
Humitaka Irie
Original Assignee
Hugle Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hugle Electronics Inc filed Critical Hugle Electronics Inc
Publication of TW200836593A publication Critical patent/TW200836593A/en
Application granted granted Critical
Publication of TWI369925B publication Critical patent/TWI369925B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T23/00Apparatus for generating ions to be introduced into non-enclosed gases, e.g. into the atmosphere
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05FSTATIC ELECTRICITY; NATURALLY-OCCURRING ELECTRICITY
    • H05F3/00Carrying-off electrostatic charges
    • H05F3/04Carrying-off electrostatic charges by means of spark gaps or other discharge devices

Landscapes

  • Elimination Of Static Electricity (AREA)
  • Electrostatic Spraying Apparatus (AREA)

Abstract

A static elimination apparatus is provided for making it possible to properly control an ion balance by a simply configured control circuit. A static elimination apparatus is provided with a positive side high voltage generating circuit (50P) that generates a positive polarity high voltage pulse, a negative side high voltage generating circuit (50N) that generates a negative polarity direct current bias voltage, a discharging stylus (9) to which an alternative voltage pulse obtained by overlapping the high voltage pulse with the direct current bias voltage is applied through a resistor (8) to generate plus and minus ions, a discharge current detecting resistor (11) that detects a discharge current flowing from the discharging stylus (9) to an opposite electrode (10), an ion current detecting resistor (12) that detects an ion current flowing from the discharging stylus (9) to each high voltage generating circuit (50P, 50N) through the ground point, connecting points (13, 14) and a control circuit (2) that adjusts a magnitude of the direct current bias voltage in accordance with a resultant signal of current detected values by each detecting resistor (11, 12) and resistors (13, 14) so as to control a balance of the plus and minus ions generated from the discharging stylus (9).

Description

200836593 . 九、發明說明: 【發明所屬之技術領域】 本發明為關於一種將交流電壓脈衝(正負高壓脈衝)施 加於放電針而產生正負離子,並以此正負離子對被除電電 物除電之除電裝置。 【先前技術】 以往所習知的此種除電裝置如專利文獻1,專利文獻2 彎所記載。 第4圖為專利文獻1中所記載,顯示先前技術之電路 圖。於第4圖所示,(1〇1)為直流電源,(1〇2a),(1〇2b) 為開關,(1 0 3 )為控制電路,(1 〇 4 )為正側高壓產生電路, 、(105)為負侧高壓產生電路,(104a),(l〇5a)為變壓器, (104b) ’ (105b)為倍壓整流電路,(106)為放電針,(i〇7a), (l〇7b)為電阻,(1〇8)為浮游電容。 • 其次略述先前技術之動作。 藉控制電路(1 03)交互開啟正側開關(丨〇2a)及負侧開 關(102b)(另一方則關閉),將正側高壓產生電路(1〇4)所輸 出之正高壓脈衝及負侧高壓產生電路(1〇5)所輸出之負高 壓脈衝交互施加於放電針(106)。藉此,在放電針(1〇6)周 圍父互產生正負離子,藉著由放電針(1〇6)側向被除電物方 向送風(圖中未示),可以對被除電物供給正負離子。又, 若更改各開關(102a),(l〇2b)之開關時間等工作比,可以 控制施加於放電針(106)之正負電壓大小及頻率,藉此可以 2146-9267-PF;Ahddub 5 200836593 控制正負離子之離子平衡。 又,第5圖為專利文獻2中所記載,顯示先前技術之 電路圖。於第5圖,(201)為正侧高壓產生電路,(2〇2)為 負側高壓產生電路,(201a),(2〇lb)為自發振盪電路, (201b) ’ (202b)為變壓器,(2〇ic),(2〇2c)為倍壓整流電 路,(203a),(203b)為齊納二極體,(2〇4)為電阻,(2〇5) 為放電針,(206)為對向電極(接地面),(2〇7)〜(2〇9)為電 阻,(210)為離子電流檢測電路,(211)為異常放電電流檢 鲁測電路,(212)為CPU,(213)為顯示lED,(214)為框架地 線’(21 5 )為南壓侧地線。 於先前技術中,從正側高壓產生電路(2〇丨)及負側高壓 產生電路(202)對放電針(2〇5)施以正負高壓脈衝,由放電 針(2 0 5 )父互產生正負離子。同時,藉由離子電流偵測電路 (210 ) ’則知;^經電阻(2 0 7)電流之變化,而測出放電針(2 〇 5 ) 之辦污並以顯示L E D (213)顯示。又,從流經電阻(2〇7) 籲的正負電流之平衡,可以測得離子生成量之離子平衡,以 及從流經電阻(208)之電流,可以測得被除電物附近的離子 平衡,對應於此偵測結果,控制從cpu(212)送至各振盪電 路(201a) ’(202a)之控制訊號的工作比,藉此,可以控制 離子平衡。 再者,異常放電電流偵測電路(211),乃用以偵測出流 經電阻(2 0 9 )之電流在放電針(2 〇 5 )及接地面(2 〇 6 )間之異 常放電,而發出警示。 【專利文獻1】特開2 0 0 0 - 5 8 2 9 0號公報(段落[〇 〇 3 5 ] 2146-9267-PF;Ahddub 6 200836593 • 〜[0049 ],第1圖〜第3圖等) 【專利文獻2】特開20()2 —216995號公報(段落[〇 〜[0024],第5圖) 【發明内容】 【發明所欲解決的課題】 專利文獻1所記載之先前技術中,為了對離子平衡作 最仫扰制,必須利用控制電路(1〇3)調整開關(i〇h),(1〇2匕) 修的開關日守間等工作比,而造成控制電路(1 03)之結構複雜的 問題。 又專利文獻2所記載之先前技術中,藉電阻(2 〇 7 ), (208)可以偵測出放電針(2〇5)附近生成離子及被除電物附 近正負離子之離子平衡,因為控制離子平衡的方法基本上 與專利文獻1相同,所以CPU(212)上執行的控制程式等也 可能會複雜化。 φ 更進一步’於專利文獻2相關之先前技術,無法偵測 出來自放電針(205),經由高壓侧地線(215)流至變壓器 (201b) (202b) ^;—次側的電流’因此無法南精度地控制 離子平衡之問題。 此處本發明所要解決的課題為提供一種除電裝置,可 以利用簡單結構的控制電路來對離子平衡做適當且高精度 的控制。 【用以解決課題的手段】 為了解決上述課題,申請專利範圍第1項所述之發 2146-9267-PF;Ahddub 7 200836593 明,包括··第1高壓裝置,產生正負極性中任一極性之電 壓脈衝;第2高壓裝置,產生與上述電壓脈衝相反極性之 直流偏壓電壓;放電針,經由電阻施加以將上述電壓脈衝 與上述直流與上述直流偏壓電壓重疊所得之交流電壓脈 衝’藉由與對向電極間之電暈放電而產生正負離子;放電 電流偵測用電阻,用以偵測流至上述放電針及上述對向電 極間之放電電流;離子電流偵測用電阻,用以偵測經由接 地點流經上述放電針及第丨,第2高壓產生裝置間之離子 電流,以及控制電路,將上述放電電流偵測用電阻及離子 電流偵測用電阻所得之偵測訊號合成,對應於此合成訊 號,凋整上述直流偏壓電流大小,以控制上述放電針所產 生之正負離子之離子平衡。 申明專利範圍第2項所述之發明,於申請專利範圍第 1項所述之除電裝置中,包括可以調整自第i高壓產生電 路所輸出電壓脈衝之頻率的裝置。 申明專利範圍第3項所述之發明,於申請專利範圍第 1項及申睛專利範圍第2項所述之除電裝置中,具有第上 鬲壓產生電路所輸出的電壓脈衝為正極性,第2高壓產生 電路所輸出的直流偏壓電壓為負極性之特徵。 【發明效果】 若藉本發明,不需要像以往之技術使用改變正電壓脈 衝及負電壓脈衝之工作比等複雜方法,就可以適當並高準 度地控制正貞離子平衡,並可達到簡化電路結構及降低成 本的目的。 2146-9267-PF;Ahddub 8 200836593 , 又’藉由調整直流偏壓電壓,此直流偏壓電壓乃基於 由放電電流偵測用電阻及第丨,第2離子電流偵測用電阻 所得的電流偵測值,可以達成高精度的離子平衡控制。 【實施方式】 以下依圖說明本發明之最佳實施型態。 首先’第1圖為顯示本發明之實施型態的電路結構 圖。在本圖中,(υ為直流電源,其正極連接於控制電路(2) ® 的電源端子。控制電路(2)的輸入端子(2c)連接於後述之放 電電μ彳貞測電路(11 ),離子電流摘測用電阻(12 ),及電阻 (13),(14)之各一端,控制電路(2)的第j輸出端子(2Α) 經由開關(3)連接於正側振盪電路(4ρ)之輸入側,同時,控 ~ 制電路(2)的弟2輸出端子(2Β)連接於負側振盪電路(4Ν) 之輸入側。 正側振盪電路(4Ρ)之輸出側連接於變壓器(5ρ)之一次 φ 線圈,其二次線圈連接於由複數個電容(61 ),齊納二極體 (62),以及二極體(63)所組成之倍壓整流電路(6ρ)。此倍 壓整流電路(6Ρ)將變壓器(5Ρ)之二次線圈所產生的高頻率 交流電壓升壓,整流,而輸出正電壓脈衝,以此方式運作。 於此’變壓器(5Ρ)及倍壓整流電路(6Ρ)構成作為第1 高壓產生電路之正側高壓產生電路(50Ρ)。 又’負側振盈電路(4 Ν)之輸出側連接於變壓器(5们之 一次線圈,其二次線圈連接於由複數個電容(64),及二極 體(65)所組成之倍壓整流電路(6Ν)。此倍壓整流電路(6Ν) 2146-9267-PF;Ahddub 9 200836593 ‘ 將變壓為(5N )之二次線圈所產生之高頻交流電壓升壓,整 /;,L而輪出負直流偏壓電壓,以此方式運作。 正侧高壓產生電路(50P)之輸出端子直接連接於連接 點(15),同時,負侧高壓產生電路(50N)之輸出端子經由阻 止電流用電阻(7)連接於上述連接點(15)。更進一步,連接 點(15)經由電阻(8)連接於放電針(9)。 U0)為對向電極,配置於上述放電針(9)附近,此對向 電極(10)經由放電電流偵測用電阻(11)及連接點(16)連接 鲁於上述控制電路⑵之輸入端子(2C)。 又,變壓器(5P),(5N)之二次線圈的一端,分別經由 %阻(13) ’( 14)及上述連接點(16)連接於控制電路(2 )之輸 入端子(2C)。再者,連接點(16)經由離子電流偵測電阻(12) > 接地(連接於除電裝置本身的地)。 亦即,控制電路(2)的輸入端子(2C)藉連接點(16)同時 連接放電電流偵測用電阻(11 ),離子電流偵測用電阻 鲁 (12),及電阻(13),(14)之各一端。 又,第2圖為顯示控制部分(20B)的結構,此控制部分 為用以產生訊號,自上述輸出端子(2B)施加至負側之振盪 電路(4N),以及各電阻(11)〜(14)連接關係之電路圖,控 制部分(20B)為構成上述控制電路(2)的一部分。 於第2圖,電容器(21)之一端連接於輸入端子(2C)(連 接點(16)),此輸入端子(2C)同時連接各電阻(11)〜(14) 之一端,另一端則接地。又,電容器(21)之一端經由電阻 (22)連接於作為反向放大器的操作放大器(23)之反向輸入 2146-9267-PF;Ahddub 10 200836593 - 鳊子,操作放大器(23)之非反向輸入端子連接於體積電阻 (25)。(24)為操作放大器(23)之回饋電阻。 同時’操作放大器(23)的輸出端子連接於作為上述控 制電路(2)之輸出端子(2B)的負侧振盪電路(4N)。實際上, 操作放大器(23)之輸出側與輸出端子(2b)間尚連接電流放 大電路等,此處為了方便起見,圖中將其省略。 其次參照第3圖說明此實施型態之動作。 藉開啟主電源而隨之開啟上述開關(3),控制訊號自控 _ 制電路(2)之輸出端子(2A)送至正側振盪電路(4P)。藉此由 振盪電路(4P)輸出高頻交流電壓,並藉正側高壓產生電路 (50P)内之倍壓整流電路(6p)升壓,整流,作為正電壓脈衝 供給至連接點(15),第3圖(a)即顯示此正電壓脈衝,例如 ^ 大小為+P!,(V)工作比為50%等。 另一方面,藉控制電路(2)内之上述控制部分(2〇B)的 動作,自輸出端子(2B)輸出控制訊號,此控制訊號乃對應 鲁於體積電阻(25)之值作初始言免定。此控制訊號被送至負側 之振盪電路(4N)。而從振盪電路(4N)輸出高頻交流電壓, 此交流電壓藉負側高壓產生電路(5〇N)内之倍壓整流電路 (6N)升壓,整流,並經由電阻(7)產生負直流偏壓電壓,而 供應至第!圖之連接點(15)。第3圖⑻中顯示此直流偏壓 電壓,其大小為N[V]。 因此,如第3圖(c)所示,連接點(15)之電壓為第3圖 (a)之正電壓脈衝與第3圖(b)之負直流偏壓電壓相重疊所 得,成為正側之振幅為+P2[v](P2=Pi_N),負側之振幅 2146-9267-PF;Ahddub 11 200836593 ^ N [ V ]之交流脈衝。 此交流脈衝經電阻(8)施加於放電針(9),藉由因此而 在對向電極(10)間所產生的電暈放電使放電針(9)周圍之 空氣離子化,而產生正負離子。同時,於第3圖(c),藉由 將振幅設為ΡπΝ,對放電針(9 )交互施加以相同之絕對值及 脈衝览度之正電壓脈衝及負電壓脈衝。 此處,因為流經放電針(9 )與對向電極(1 〇 )間的放電電 流流至放電電流偵測用電阻(丨丨)與電阻(丨3 ),(丨4)之串聯 _ 電路,所以在連接點(16)產生對應於放電電流偵測值之電 壓。此電壓在第2圖出現於輸入端子(2C)。 又,用來使放電針(9)產生正負離子,來對被除電物除 電之除電電流,於放電針(9)與變壓器(5p),(5N)之二次線 — 圈間,流經除電裝置之接地點,換言之,流經離子電流偵 测用電阻(12)及電阻(13),(14),所以在連接點(16)產生 對應於正負離子電流偵測值之電壓。此電壓出現於輸入端 子(2 C )。 再者,由以上說明可以明瞭,電阻(13),(14)對放電 電流偵測,及離子電流偵測二者,均有貢獻。 從而,輸入端子(2C)之電壓,為流經放電針(9)與對向 電極(10)間的放電電流檢測值,及實際上貢獻於被除電物 之除電的離子電流檢測值所合成之訊號,反映了對於放電 電流及離子電流二者之正負離子量的平衡之考量。 第2圖所示之控制部分(2〇β),藉操作放大器(23)的動 作將輸入出電壓之極性反轉,例如’若輸入端子(2c)之電 2l46-9267-PF;Ahddub 12 200836593 *壓為正,則輸出端子(2B)之電壓即變為負,從而,因正負 離子之不平衡使輸人端子(2C)之電壓變至正負兩者复中之 —時,輸出=子(2B)之電壓即變至抵銷此一變化之方'向。 具體而a,當偵測出作為輸入端子(2C)之電壓之正離 子量過剩’用以使第3圖⑻中的直流偏壓電壓往負向增加 之控制訊號即從輸出端子⑽輸出,基於此控制訊號,藉 振盪電路(4N)及負側高壓產生電路(5〇N),產生向負向增加 之直流偏壓電壓。 少-八目的乃藉由增加第3圖(C )之交流脈衝中負電壓脈 衝的面積,而增加負離子數量,以進行控制保持正負離子 平衡。 負離子過乘J 8守,其動作則與上述相反。利用可使第3 圖(b)中直流偏壓電壓減少(向〇接近)之控制訊號來減少 ,貞直流偏壓電壓’可使負離子數量減少,而進行控制保持 正負離子之離子平衡。 • 猎上述之動作,可以使放電針(9)所產生正負離子數保 持平衡。 又,若調整控制部分(20B)中的體積電阻(25)之值,可 改變負4流偏壓電壓之初始i,而可以對應於被除電物之 帶電極性來設定最佳化之直流偏壓電壓。 再者,藉控制上述開關(3 )之開關頻率,振盪電路(4p) 之振盪頻率,可以改變正側高壓產生電路(5叩)所輸出之正 電壓脈衝之頻率,同時利用調整振盪電路(4P)之輸出電壓 的振幅,可以將正電壓脈衝之振幅改變至任意值。 13 2146-9267-PF/Ahddub 200836593 ^ 藉以上方式適當調整正電壓脈衝的頻率,振幅及負直 流偏壓電壓之大小,可以改變第3圖(c)所示交流脈衝之頻 率及正負脈衝面積之比率,不只可以保持正負離子平衡,' 還可以對應於被除電物之帶電極性進行控制以給予多餘的 正或負離子。 又,於上述之實施型態,正側高壓產生電路(5〇p)產生 正電壓脈衝,負侧高壓產生電路(50N)產生負直流偏壓電壓 並重疊之,若變更電路設計,使正侧高壓產生電路(50P) 產生正直流脈衝電壓,負側高壓產生電路(5)產生負電壓 脈衝並重疊之,而施加於放電針(9)亦可。 【圖式簡單說明】 - 【第1圖】顯示本發明之實施型態之電路圖。 ' /【第2圖】顯示實施型態中控制部分及各電阻連接關 係之電路圖。 【第 【第 【第 3圖】顯示實施型態動作之波形圖。 I圖】專利文獻1所記載先前技術之電路結構圖。 )圖】專利文獻2所記載先前技術之電路結構圖。 【主要元件符號說明】 1〜直流電源; 2A,2B〜輪出端子; 3〜開關; 4N〜負側振盪電路; 2〜控制電路; 2 C〜輪入端子; 4P〜正侧振盪電路; 5P,5N〜變壓器; 2146-9267-PF;Ahddub 14 200836593 & 6P,6N〜倍壓整流電路; 6 2〜背納二極體; 7,8,12〜電阻; 11〜放電電流偵測用電阻; 12〜離子電流偵測用電阻; 15,16〜連接點; 21〜電容; 23〜操作型放大器; _ 25〜體積電阻; 50N〜負侧高壓產生電路。 61,64〜電容; 63,65〜二極體; 9〜放電針; 10〜對向電極; 13,14〜電阻; 20B〜控制部分; 2 2〜電阻; 24〜回饋電阻; 50P〜正側高壓產生電路; 2146-9267-PF;Ahddub 15200836593. Nine, the invention relates to: [Technical field of the invention] The present invention relates to an alternating voltage pulse (positive and negative high voltage pulse) applied to a discharge needle to generate positive and negative ions, and the positive and negative ions are used to remove electricity from the removed electricity. Device. [Prior Art] Such a static eliminating device which has been conventionally known is described in Patent Document 1, Patent Document 2, Bend. Fig. 4 is a circuit diagram showing the prior art as described in Patent Document 1. As shown in Fig. 4, (1〇1) is a DC power supply, (1〇2a), (1〇2b) is a switch, (1 0 3 ) is a control circuit, and (1 〇4) is a positive side high voltage generating circuit. , (105) is the negative side high voltage generating circuit, (104a), (l〇5a) is the transformer, (104b) ' (105b) is the voltage doubler rectifier circuit, (106) is the discharge needle, (i〇7a), (l〇7b) is a resistor, and (1〇8) is a floating capacitor. • Next, outline the actions of the prior art. The positive side switch (102a) and the negative side switch (102b) are alternately turned on by the control circuit (103), and the positive high voltage pulse and negative output from the positive side high voltage generating circuit (1〇4) are turned on. The negative high voltage pulses output by the side high voltage generating circuit (1〇5) are alternately applied to the discharge needle (106). Thereby, the positive and negative ions are generated by the father around the discharge needle (1〇6), and the positive and negative ions can be supplied to the neutralized material by the side of the discharge needle (1〇6) being blown in the direction of the neutralized object (not shown). . Moreover, if the duty ratio of each switch (102a), (l〇2b) is changed, the magnitude and frequency of the positive and negative voltages applied to the discharge needle (106) can be controlled, thereby being 2146-9267-PF; Ahddub 5 200836593 Control the ion balance of positive and negative ions. Further, Fig. 5 is a circuit diagram showing the prior art as described in Patent Document 2. In Fig. 5, (201) is a positive side high voltage generating circuit, (2〇2) is a negative side high voltage generating circuit, (201a), (2〇lb) is a spontaneous oscillation circuit, (201b) '(202b) is a transformer (2〇ic), (2〇2c) is a voltage doubler rectifier circuit, (203a), (203b) is a Zener diode, (2〇4) is a resistor, and (2〇5) is a discharge needle, ( 206) is the counter electrode (grounding surface), (2〇7)~(2〇9) is the resistance, (210) is the ion current detecting circuit, (211) is the abnormal discharge current detecting circuit, (212) is The CPU, (213) is the display lED, and (214) is the frame ground line '(21 5 ) is the south pressure side ground line. In the prior art, positive and negative high voltage pulses are applied to the discharge needle (2〇5) from the positive side high voltage generating circuit (2〇丨) and the negative side high voltage generating circuit (202), and are generated by the discharge needle (2 0 5 ) Positive and negative ions. At the same time, by the ion current detecting circuit (210)', it is known that the current of the resistor (2 0 7) changes, and the discharge needle (2 〇 5) is detected and displayed by the display L E D (213). Moreover, from the balance of positive and negative currents flowing through the resistor (2〇7), the ion balance of the ion generation amount can be measured, and the current flowing through the resistor (208) can measure the ion balance in the vicinity of the neutralized object. Corresponding to the detection result, the duty ratio of the control signal sent from the cpu (212) to each of the oscillation circuits (201a) '(202a) is controlled, whereby the ion balance can be controlled. Furthermore, the abnormal discharge current detecting circuit (211) is for detecting an abnormal discharge between the discharge needle (2 〇 5 ) and the ground plane (2 〇 6 ) by the current flowing through the resistor (2 0 9 ). And issued a warning. [Patent Document 1] JP-A-2000- 5 8 2 9 0 (paragraph [〇〇3 5] 2146-9267-PF; Ahddub 6 200836593 • ~[0049], 1st to 3rd, etc. [Patent Document 2] Japanese Laid-Open Patent Publication No. Hei. No. Hei. No. Hei. In order to maximize the ion balance, the control circuit (1〇3) must be used to adjust the switch (i〇h), (1〇2匕) to repair the switch day and other work ratios, resulting in the control circuit (1) 03) The problem of complicated structure. Further, in the prior art described in Patent Document 2, by means of the electric resistance (2 〇 7 ), (208), it is possible to detect the ion balance generated between the discharge needle (2〇5) and the positive and negative ions near the neutralized substance because the ion is controlled. The method of balancing is basically the same as that of Patent Document 1, and thus the control program and the like executed on the CPU (212) may be complicated. φ Further 'in the prior art related to Patent Document 2, it is impossible to detect the current from the discharge needle (205) flowing through the high-voltage side ground line (215) to the transformer (201b) (202b) ^; The problem of ion balance cannot be controlled with precision in the south. The problem to be solved by the present invention is to provide a static elimination device which can perform appropriate and high-precision control of ion balance using a control circuit of a simple structure. [Means for Solving the Problem] In order to solve the above problems, the invention claims 2146-9267-PF according to the first item; Ahddub 7 200836593, including the first high-voltage device, which produces any polarity in the positive and negative polarity. a voltage pulse; a second high voltage device that generates a DC bias voltage having a polarity opposite to the voltage pulse; and a discharge pin that is applied via a resistor to alternate the voltage pulse from the DC voltage and the DC bias voltage. a positive and negative ion generated by corona discharge between the counter electrode; a discharge current detecting resistor for detecting a discharge current flowing between the discharge needle and the counter electrode; and an ion current detecting resistor for detecting Measuring the ion current flowing through the discharge needle and the second electrode through the grounding point, the second high voltage generating device, and the control circuit, synthesizing the detection signal obtained by the discharge current detecting resistor and the ion current detecting resistor, corresponding to In this synthesis signal, the above DC bias current is sized to control the ion balance of the positive and negative ions generated by the discharge needle. The invention of claim 2, wherein the static elimination device according to claim 1 includes means for adjusting the frequency of the voltage pulse outputted from the i-th high voltage generating circuit. The invention according to claim 3, wherein in the static elimination device according to claim 1 and the second embodiment of the invention, the voltage pulse outputted by the first pressure generating circuit is positive, 2 The DC bias voltage output by the high voltage generating circuit is characterized by a negative polarity. [Effect of the Invention] According to the present invention, it is not necessary to use a complicated method such as changing the working ratio of a positive voltage pulse and a negative voltage pulse as in the prior art, and it is possible to appropriately and accurately control the positive ion balance and achieve a simplified circuit. Structure and cost reduction purposes. 2146-9267-PF; Ahddub 8 200836593 , 'By adjusting the DC bias voltage, this DC bias voltage is based on the current sensed by the discharge current detecting resistor and the second, second ion current detecting resistor. The measured value can achieve high-precision ion balance control. [Embodiment] Hereinafter, the best mode for carrying out the invention will be described with reference to the drawings. First, Fig. 1 is a circuit diagram showing an embodiment of the present invention. In this figure, (υ is a DC power supply, the anode of which is connected to the power supply terminal of the control circuit (2) ® . The input terminal ( 2c ) of the control circuit ( 2 ) is connected to a discharge electric μ circuit (11 ) to be described later. , the ion current pick-up resistor (12), and each of the resistors (13) and (14), and the jth output terminal (2Α) of the control circuit (2) is connected to the positive side oscillation circuit via the switch (3) (4ρ) On the input side, at the same time, the output terminal (2Β) of the control circuit 2 is connected to the input side of the negative side oscillation circuit (4Ν). The output side of the positive side oscillation circuit (4Ρ) is connected to the transformer (5ρ) The primary coil of φ is connected to a voltage doubler rectifier circuit (6ρ) composed of a plurality of capacitors (61), Zener diodes (62), and diodes (63). The rectifier circuit (6Ρ) boosts and rectifies the high-frequency AC voltage generated by the secondary coil of the transformer (5Ρ), and outputs a positive voltage pulse to operate in this way. Here, the 'transformer (5Ρ) and the voltage doubler rectifier circuit ( 6Ρ) constitutes the positive side high voltage generating circuit (50Ρ) as the first high voltage generating circuit. The output side of the oscillating circuit (4 Ν) is connected to the transformer (the primary coil of the 5th, and the secondary coil is connected to the voltage doubler rectifier circuit composed of a plurality of capacitors (64) and a diode (65) (6Ν) This voltage doubler rectifier circuit (6Ν) 2146-9267-PF; Ahddub 9 200836593 'The high frequency AC voltage generated by the secondary coil transformed into (5N) is boosted, and the L is turned negative. The DC bias voltage operates in this manner. The output terminal of the positive side high voltage generating circuit (50P) is directly connected to the connection point (15), and the output terminal of the negative side high voltage generating circuit (50N) is blocked by the current resistor (7). ) is connected to the connection point (15). Further, the connection point (15) is connected to the discharge needle (9) via a resistor (8). U0) is a counter electrode disposed near the discharge needle (9), and the pair The electrode (10) is connected to the input terminal (2C) of the control circuit (2) via the discharge current detecting resistor (11) and the connection point (16). Further, the secondary coil of the transformer (5P), (5N) One end is connected to the control power via the % resistance (13) '(14) and the above connection point (16) (2) Input terminal (2C). Further, the connection point (16) is grounded (connected to the ground of the static elimination device itself) via the ion current detecting resistor (12) > that is, the input of the control circuit (2) The terminal (2C) is connected to the discharge current detecting resistor (11), the ion current detecting resistor Lu (12), and the resistors (13), (14) by the connection point (16). The figure shows the structure of the display control portion (20B). The control portion is an oscillation circuit (4N) for applying a signal from the output terminal (2B) to the negative side, and a connection relationship between the resistors (11) to (14). In the circuit diagram, the control portion (20B) is a part of the above-described control circuit (2). In Fig. 2, one end of the capacitor (21) is connected to the input terminal (2C) (connection point (16)), and the input terminal (2C) is simultaneously connected to one end of each of the resistors (11) to (14), and the other end is grounded. . Further, one end of the capacitor (21) is connected to the inverting input 2146-9267-PF of the operational amplifier (23) as an inverting amplifier via a resistor (22); Ahddub 10 200836593 - dice, non-inverting of the operational amplifier (23) Connect to the input terminal to the volume resistor (25). (24) is the feedback resistor for operating the amplifier (23). At the same time, the output terminal of the operational amplifier (23) is connected to the negative side oscillation circuit (4N) which is the output terminal (2B) of the above control circuit (2). Actually, a current amplification circuit or the like is connected between the output side of the operational amplifier (23) and the output terminal (2b), and is omitted here for the sake of convenience. Next, the action of this embodiment will be described with reference to Fig. 3. By turning on the main power supply and then turning on the above switch (3), the output terminal (2A) of the control signal automatic control circuit (2) is sent to the positive side oscillation circuit (4P). Thereby, the high-frequency AC voltage is output from the oscillation circuit (4P), and is boosted and rectified by the voltage doubler rectifier circuit (6p) in the positive-side high-voltage generating circuit (50P), and supplied as a positive voltage pulse to the connection point (15). Figure 3 (a) shows this positive voltage pulse, for example, ^ is +P!, (V) is 50%, etc. On the other hand, the control signal (2B) is outputted from the output terminal (2B) by the action of the control portion (2〇B) in the control circuit (2), and the control signal corresponds to the value of the volume resistance (25). Free. This control signal is sent to the oscillating circuit (4N) on the negative side. The high-frequency AC voltage is output from the oscillating circuit (4N), and the AC voltage is boosted, rectified, and negatively DC generated by the voltage doubler rectifier circuit (6N) in the negative side high voltage generating circuit (5〇N). Bias voltage, and supply to the first! Figure connection point (15). This DC bias voltage is shown in Figure 3 (8) and has a size of N [V]. Therefore, as shown in Fig. 3(c), the voltage at the connection point (15) is obtained by superposing the positive voltage pulse of Fig. 3(a) and the negative DC bias voltage of Fig. 3(b), and becomes the positive side. The amplitude is +P2[v] (P2=Pi_N), the amplitude of the negative side is 2146-9267-PF, and the alternating pulse of Ahddub 11 200836593 ^ N [V]. The AC pulse is applied to the discharge needle (9) via the resistor (8), whereby the corona discharge generated between the counter electrode (10) ionizes the air around the discharge needle (9) to generate positive and negative ions. . At the same time, in Fig. 3(c), by setting the amplitude to ΡπΝ, the discharge needle (9) is alternately applied with a positive voltage pulse and a negative voltage pulse having the same absolute value and pulse visibility. Here, since the discharge current flowing between the discharge needle (9) and the counter electrode (1 〇) flows to the discharge current detecting resistor (丨丨) and the resistor (丨3), (丨4) in series_circuit Therefore, a voltage corresponding to the discharge current detection value is generated at the connection point (16). This voltage appears in the input terminal (2C) in Figure 2. Further, a discharge current for causing the discharge needle (9) to generate positive and negative ions to remove electricity from the neutralized material flows between the discharge needle (9) and the secondary line of the transformer (5p) and (5N). The grounding point of the device, in other words, the ion current detecting resistor (12) and the resistors (13), (14), generate a voltage corresponding to the positive and negative ion current detection values at the connection point (16). This voltage appears at the input terminal (2 C ). Furthermore, it can be understood from the above description that the resistors (13) and (14) contribute to both the discharge current detection and the ion current detection. Therefore, the voltage at the input terminal (2C) is a detected value of the discharge current flowing between the discharge needle (9) and the counter electrode (10), and an ion current detection value actually contributing to the removal of the neutralized material. The signal reflects the balance between the positive and negative ions of both the discharge current and the ion current. The control part (2〇β) shown in Fig. 2 reverses the polarity of the input and output voltage by the operation of the operational amplifier (23), for example, 'If the input terminal (2c) is 2l46-9267-PF; Ahddub 12 200836593 *When the pressure is positive, the voltage at the output terminal (2B) becomes negative, so that the voltage of the input terminal (2C) becomes positive and negative due to the imbalance of positive and negative ions, and the output = sub ( The voltage of 2B) is changed to offset the direction of this change. Specifically, a, when the positive ion amount excess as the voltage of the input terminal (2C) is detected, the control signal for increasing the DC bias voltage in the negative direction of FIG. 3 (8) is output from the output terminal (10), based on The control signal generates a DC bias voltage that increases in a negative direction by an oscillating circuit (4N) and a negative side high voltage generating circuit (5〇N). The less-eight purpose is to increase the number of negative ions by increasing the area of the negative voltage pulse in the AC pulse of Figure 3 (C) to control the positive and negative ion balance. The negative ion is multiplied by J 8 and its action is opposite to the above. By reducing the DC bias voltage in Figure 3(b) by reducing the control signal (toward the 〇), the 贞DC bias voltage' reduces the number of negative ions and controls the ion balance of the positive and negative ions. • The above actions can be used to balance the number of positive and negative ions generated by the discharge needle (9). Further, if the value of the volume resistance (25) in the control portion (20B) is adjusted, the initial i of the negative 4-stream bias voltage can be changed, and the optimized DC offset can be set corresponding to the charged polarity of the neutralized material. Voltage. Furthermore, by controlling the switching frequency of the switch (3) and the oscillation frequency of the oscillating circuit (4p), the frequency of the positive voltage pulse outputted by the positive side high voltage generating circuit (5 叩) can be changed, and the oscillating circuit can be adjusted (4P). The amplitude of the output voltage can change the amplitude of the positive voltage pulse to an arbitrary value. 13 2146-9267-PF/Ahddub 200836593 ^ By adjusting the frequency, amplitude and negative DC bias voltage of the positive voltage pulse in the above manner, the frequency of the AC pulse and the positive and negative pulse area shown in Figure 3 (c) can be changed. The ratio can not only maintain positive and negative ion balance, but can also be controlled to give excess positive or negative ions corresponding to the charged polarity of the neutralized material. Further, in the above embodiment, the positive side high voltage generating circuit (5〇p) generates a positive voltage pulse, and the negative side high voltage generating circuit (50N) generates a negative DC bias voltage and overlaps, if the circuit design is changed, the positive side is changed. The high voltage generating circuit (50P) generates a positive DC pulse voltage, and the negative side high voltage generating circuit (5) generates a negative voltage pulse and overlaps, and is applied to the discharge needle (9). BRIEF DESCRIPTION OF THE DRAWINGS - [Fig. 1] A circuit diagram showing an embodiment of the present invention. ' / [Fig. 2] shows the circuit diagram of the control section and the connection relationship of each resistor in the implementation type. [Picture [Fig. 3] shows the waveform diagram of the implementation type operation. I is a circuit configuration diagram of the prior art described in Patent Document 1. Fig. 2 is a circuit configuration diagram of the prior art described in Patent Document 2. [Main component symbol description] 1~DC power supply; 2A, 2B~ wheel output terminal; 3~ switch; 4N~ negative side oscillation circuit; 2~ control circuit; 2 C~ wheel input terminal; 4P~ positive side oscillation circuit; 5P , 5N~transformer; 2146-9267-PF; Ahddub 14 200836593 & 6P, 6N~ voltage doubler rectifier circuit; 6 2~ back nano diode; 7,8,12~ resistor; 11~ discharge current detecting resistor ; 12 ~ ion current detection resistor; 15, 16 ~ connection point; 21 ~ capacitor; 23 ~ operational amplifier; _ 25 ~ volume resistance; 50N ~ negative side high voltage generation circuit. 61, 64~ capacitor; 63, 65~ diode; 9~ discharge needle; 10~ counter electrode; 13, 14~ resistance; 20B~ control part; 2 2~ resistance; 24~ feedback resistance; 50P~ positive side High voltage generating circuit; 2146-9267-PF; Ahddub 15

Claims (1)

200836593 參 ^ 十、申請專利範圍: 1· 一種除電裝置,其特徵在於包括: 第1高壓產生電路,用以產生正負任一極性之高壓脈 衝; 第2回壓產生電路,用以產生與上述電壓脈衝相反極 性之直流脈衝電壓; 放電針,經由電阻,施加以將上述電壓脈衝重疊至上 述直流脈衝電壓所得之交流電壓脈衝,藉與對向電極間之 _ 電暈放電而產生正負離子, 放%電流偵測用電阻,用以债測流經上述放電針及上 述上述對向電極間之放電電流; 離子電流偵測用電阻,用以偵測經由接地點流經上述 - 放電針及第1,第2高壓產生電路間之離子電流;以及 控制電路,將藉由上述放電電流偵測用電阻及離子電 流债測用電阻所得之偵測訊號合成,對應於此合成訊號, φ 调整上述直流偏壓電壓之大小,以控制上述自上述放電針 所產生之正負離子之平衡。 2. 如申凊專利範圍第1項所述之除電裝置,其中並包 括可以調整第1高壓產生電路所產生之電壓脈衝之頻率的 裝置。 3. 如申請專利範圍第1或2項所述之除電裝置,其中 第1高壓產生電路所產生之電壓脈衝為正極性,第2高壓 產生電路所產生之直流偏壓電壓為負極性。 2146-9267-PF;Ahddub 16200836593 参^10, the scope of application for patents: 1. A static elimination device, comprising: a first high voltage generating circuit for generating positive and negative high voltage pulses of any polarity; a second back pressure generating circuit for generating the same voltage a DC pulse voltage of a pulse of opposite polarity; a discharge pin is applied via an electric resistance to an alternating voltage pulse obtained by superimposing the voltage pulse on the DC pulse voltage, and a positive and negative ion is generated by a corona discharge between the counter electrodes, and the discharge is performed. a current detecting resistor for measuring a discharge current flowing between the discharge needle and the counter electrode; and an ion current detecting resistor for detecting the flow of the discharge needle and the first through the grounding point, An ion current between the second high voltage generating circuits; and a control circuit synthesizing the detection signals obtained by the discharge current detecting resistor and the ion current debt measuring resistor, corresponding to the synthesized signal, φ adjusting the DC bias The magnitude of the voltage is used to control the balance of positive and negative ions generated by the above discharge needle. 2. The static elimination device of claim 1, wherein the device further comprises means for adjusting the frequency of the voltage pulse generated by the first high voltage generating circuit. 3. The static elimination device according to claim 1 or 2, wherein the voltage pulse generated by the first high voltage generating circuit is positive, and the DC bias voltage generated by the second high voltage generating circuit is negative. 2146-9267-PF; Ahddub 16
TW096144093A 2006-11-29 2007-11-21 Static elimination apparatus TW200836593A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006321710A JP4111348B2 (en) 2006-11-29 2006-11-29 Static eliminator

Publications (2)

Publication Number Publication Date
TW200836593A true TW200836593A (en) 2008-09-01
TWI369925B TWI369925B (en) 2012-08-01

Family

ID=39467772

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096144093A TW200836593A (en) 2006-11-29 2007-11-21 Static elimination apparatus

Country Status (5)

Country Link
JP (1) JP4111348B2 (en)
KR (1) KR101340392B1 (en)
CN (1) CN101361407B (en)
TW (1) TW200836593A (en)
WO (1) WO2008065981A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI580312B (en) * 2011-04-08 2017-04-21 其恩斯股份有限公司 Static eliminator and static elimination control method
TWI601450B (en) * 2012-09-10 2017-10-01 Smc股份有限公司 Ionizer

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4919794B2 (en) 2006-12-20 2012-04-18 株式会社キーエンス Static eliminator
JP2010078392A (en) * 2008-09-25 2010-04-08 Hugle Electronics Inc Ion concentration measuring circuit and ion current sensor
JP5351598B2 (en) * 2009-04-24 2013-11-27 ミドリ安全株式会社 Static eliminator
JP5460546B2 (en) * 2010-09-30 2014-04-02 パナソニック デバイスSunx株式会社 Static eliminator
CN101969736A (en) * 2010-11-03 2011-02-09 北京聚星创源科技有限公司 Ion generating system and method for controlling ion balance
JP4695230B1 (en) 2010-11-25 2011-06-08 春日電機株式会社 Static eliminator
KR101238035B1 (en) * 2010-12-13 2013-03-04 박광옥 Variable high voltage module for corona discharge
JP5508302B2 (en) * 2011-01-21 2014-05-28 株式会社キーエンス Static eliminator
CN102291919A (en) * 2011-07-27 2011-12-21 江苏安阳文化创意产业园股份有限公司 Static elimination device
KR101357539B1 (en) * 2012-10-24 2014-01-29 (주)이림전자 An inonizer circuit for discharging large capacity
JP5945972B2 (en) * 2013-11-01 2016-07-05 Smc株式会社 Ionizer and control method thereof
CN110231519A (en) * 2019-06-18 2019-09-13 国网河南省电力公司辉县市供电公司 A kind of electrostatic detection cancellation element
CN112039320A (en) * 2020-09-16 2020-12-04 深圳市凯仕德科技有限公司 Laminar flow type electrostatic eliminator circuit
CN112756111A (en) * 2020-12-14 2021-05-07 苏州天华超净科技股份有限公司 Air filter device with static elimination function

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0417688U (en) * 1990-06-01 1992-02-13
JP2004063427A (en) * 2002-07-31 2004-02-26 Sunx Ltd Static eliminator
JP4573631B2 (en) * 2003-12-02 2010-11-04 株式会社キーエンス Ionizer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI580312B (en) * 2011-04-08 2017-04-21 其恩斯股份有限公司 Static eliminator and static elimination control method
TWI601450B (en) * 2012-09-10 2017-10-01 Smc股份有限公司 Ionizer

Also Published As

Publication number Publication date
JP4111348B2 (en) 2008-07-02
WO2008065981A1 (en) 2008-06-05
JP2008135329A (en) 2008-06-12
CN101361407A (en) 2009-02-04
KR20090106980A (en) 2009-10-12
KR101340392B1 (en) 2013-12-11
CN101361407B (en) 2012-01-11
TWI369925B (en) 2012-08-01

Similar Documents

Publication Publication Date Title
TW200836593A (en) Static elimination apparatus
JP5508302B2 (en) Static eliminator
US7180722B2 (en) Alternating current monitor for an ionizer power supply
TWI297165B (en)
JP2002535824A (en) Apparatus and method for monitoring air ionization
JP2004101518A (en) Power consumption measurement apparatus, power consumption calculation method, power consumption calculation apparatus, switching mode power supply
JP2008124035A (en) Static eliminator
JP2007309859A (en) Measuring circuit and testing device
US20060108947A1 (en) Discharge lamp drive apparatus and liquid crystal display apparatus
JPH10289796A (en) Static eliminator
JP2011054579A (en) Static eliminator
JP5350098B2 (en) Pulse control power supply for static eliminator
JP2011163785A (en) Load abnormality detector
JP2002216995A (en) Static eliminator and high-voltage generating circuit assembled in this
US20070290626A1 (en) Discharge lamp lighting apparatus
JP2001025249A (en) High-voltage generator
US7382108B2 (en) Charging apparatus and charging current detecting circuit thereof
JP2007199371A (en) High voltage generating circuit
TWI746151B (en) Tunable frequency ionizer controller
US20030173908A1 (en) Lamp power measurement circuit
JPH08266945A (en) Apparatus for electrostatic spray coating
JP2000003103A (en) High voltage generating device
JP4338105B1 (en) High voltage generation circuit
JP2013062178A (en) Static eliminating device
JP2004147454A (en) High-voltage generator equipped with piezoelectric transformer and method for adjusting drive frequency thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees