WO2008061436A1 - Phosphores d'accumulation de lumière à longue émission rémanente coactivés à multiples éléments résistants à l'eau - Google Patents

Phosphores d'accumulation de lumière à longue émission rémanente coactivés à multiples éléments résistants à l'eau Download PDF

Info

Publication number
WO2008061436A1
WO2008061436A1 PCT/CN2007/003224 CN2007003224W WO2008061436A1 WO 2008061436 A1 WO2008061436 A1 WO 2008061436A1 CN 2007003224 W CN2007003224 W CN 2007003224W WO 2008061436 A1 WO2008061436 A1 WO 2008061436A1
Authority
WO
WIPO (PCT)
Prior art keywords
long afterglow
water
luminescent material
material according
afterglow light
Prior art date
Application number
PCT/CN2007/003224
Other languages
English (en)
French (fr)
Inventor
Ming Zhang
Kun Zhao
Original Assignee
Sichuan Sunfor Light Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan Sunfor Light Co., Ltd. filed Critical Sichuan Sunfor Light Co., Ltd.
Priority to AT07845655T priority Critical patent/ATE515552T1/de
Priority to EP07845655A priority patent/EP2093273B1/en
Priority to US12/515,504 priority patent/US8329062B2/en
Publication of WO2008061436A1 publication Critical patent/WO2008061436A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7784Chalcogenides
    • C09K11/7787Oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/77924Aluminosilicates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7797Borates

Definitions

  • the present invention relates to a long afterglow light-storing luminescent material, in particular to a multi-co-activated long afterglow light-storing luminescent material having excellent luminescent properties and water resistance.
  • the phenomenon of long afterglow is commonly known as the luminous phenomenon, which has been discovered in ancient times.
  • the rumored "Night Pearl” and “Night Wall” are the natural minerals of fluorite. They can store the energy of daylight and release them slowly in the form of light at night, that is, night light.
  • the long afterglow material is capable of storing external light irradiation such as ultraviolet light and visible light, and then slowly releasing these stored energy materials in the form of visible light at room temperature.
  • the generation of the long afterglow phenomenon is generally considered to be due to the impurity level (defect level) caused by doping. During the excitation phase, the impurity level captures holes or electrons.
  • the realization of the long afterglow properties of long afterglow materials is based on three processes: 1.
  • the external light energy is stored by traps in the material; 2.
  • the stored energy can be efficiently transferred to the luminescent ions; 3.
  • These energies must be illuminated The way the ionizing radiation transition is released, rather than being quenched. Therefore, in addition to luminescent ions, other auxiliary activating elements play a key role in the afterglow properties and characteristics of long afterglow materials.
  • ZnS Cu represents a sulfide and Eu 2+ activated alkaline earth metal aluminate Mal 2 0 4 (M represents an alkaline earth metal) rare earth long afterglow luminescent material.
  • ZnS Qi sulfide long afterglow luminescent materials have been used for decades. Their disadvantages are that the afterglow time is relatively short. In order to prolong the illuminating time, radioactive elements such as Pm 147 , radium, etc. are often incorporated, which are harmful to the human body and the environment. In addition, the combination of ultraviolet rays contained in sunlight and moisture in the air causes decomposition of ZnS + H 2 0 ⁇ Zn + H 2 S.
  • boric acid is used as a co-solvent, and it may be replaced by other co-solvents P 2 0 5 or the like.
  • the inventors have found through extensive experimental research that in the alkaline earth metal aluminate long afterglow luminescent material of the present invention, the addition of boron element actually adjusts the trap energy depth of the alkaline earth metal aluminate crystal structure, which is beneficial to the improvement of the material.
  • the afterglow properties also contribute to the water resistance of the material.
  • An object of the present invention is to provide a multi-component co-active long afterglow light-storing luminescent material which has both excellent luminescent properties and water resistance.
  • the chemical composition of the water-resistant multi-co-activated long afterglow light-storing luminescent material provided by the invention is - aMO'bAl 2 0 3 'cSi0 2 'dGa 2 0 3 : xEu «yB «zN, a, b, c, d, x, y and Q z are coefficients (molar ratio), 0.5 ⁇ a ⁇ 2, 0.5 b 3, 0. OOl ⁇ c ⁇ l, 0. OOOl ⁇ d ⁇ l, 0.0001 ⁇ ⁇ 1, 0. OOOl ⁇ y ⁇ l, O.OOOl ⁇ z ⁇ l; M is Ca or Sr, and N is Dy or Nd. Among them, Sr (or Ca), Al, Si, Ga are matrix elements, Eu, B and Dy (or Nd) are activators.
  • a l, l b 2, 0.02 ⁇ c ⁇ 0.06, 0.005 ⁇ d ⁇ 0.01, 0.01 ⁇ x ⁇ 0.02, 0.05 y 0.3, 0.01 z 0.04.
  • a l, lb 2, 0.03 ⁇ c ⁇ 0.06, 0.005 d 0.01, 0.01 ⁇ 0.02, 0.05 ⁇ y 0.2, 0.
  • the strontium or calcium is derived from the carbonate or oxide of strontium or calcium;
  • the aluminum is derived from the oxide or hydroxide of aluminum;
  • the source of silicon and gallium An oxide of silicon or gallium; an oxide or oxalate of lanthanum, cerium or lanthanum derived from lanthanum, cerium or lanthanum; boron derived from an oxide of boron or boric acid.
  • the invention also provides a preparation method of the above water-resistant multi-co-activated long afterglow light-storing luminescent material, comprising the following steps: after the raw materials are uniformly mixed according to a ratio, and sintered under a reducing atmosphere, such as a carbon monoxide or hydrogen atmosphere, at 1200 ⁇ 150CTC; 2-6 hours.
  • a reducing atmosphere such as a carbon monoxide or hydrogen atmosphere
  • the water-resistant multi-co-activated long afterglow light-storing luminescent material provided by the invention is prepared under a reducing atmosphere, wherein
  • the Eu element exists as a divalent ion whose luminescence is derived from the transition of 4f5d-4f. Since the 5d electrons of the divalent europium ions are easily affected by the matrix environment, the luminescence of the divalent europium ions changes with the change of the matrix, and the visible light in the blue to red range can be emitted.
  • the multi-co-activated long afterglow phosphor of the present invention has Green, blue-green or purple long afterglow glow.
  • the long afterglow light-emitting luminescent material matrix of the invention contains silicon and gallium elements, and the water resistance is greatly improved.
  • the present invention overcomes the technical bias, and proposes that boric acid is not only a co-solvent, but more importantly, a suitable amount of boron can adjust the depth of the material trap level, and contributes a lot to the afterglow performance.
  • the use of boric acid is due to its Sintering significantly reduces the specific surface area, thereby enhancing the water resistance of the material. Therefore, the amount of suitable boron in the material is activated together with Eu, Dy (or Nd), which not only maintains the luminescence properties of the material but also has good water resistance. Conventional cosolvents are not a substitute.
  • the invention also provides the use of the long afterglow luminescent material.
  • the luminescent material of the invention can be applied to (1) subway pedestrian guiding signs, road signs, truss signs, shields, dividing lines, walking tracks, lamp posts, tunnel signs, etc.; Fire and emergency escape signs; (3) Ship decks, dock signs, oil well signs, etc.; (4) Specialized clothing; (5) Water-based interior and exterior wall paints, paints, inks, etc. for various buildings. with broadly application foreground.
  • the invention patent can not only make the long afterglow material have a suitable trap by selecting the activator, but also optimize the energy transfer process in the material, improve the transfer efficiency, and greatly maximize the long afterglow luminescence property of the material. Improvement.
  • the long afterglow luminescent material provided by the invention has good water resistance, the luminescence time is longer than 60 hours, and the long afterglow characteristic can still be maintained after immersion for 60 hours, and is a long afterglow luminescent material with excellent performance and wide application. .
  • Figure 2 shows the long after glow luminescence spectrum of sample 9.
  • Figure 3 shows the long after glow luminescence spectrum of sample 15.
  • Figure 4 shows the long afterglow luminescence spectrum of sample D7.
  • Figure 5 shows the pyroluminescence spectra of sample 3 and sample D7, where A is the pyroluminescence spectrum of sample 3 and B is the pyrolysis spectrum of sample D7.
  • the preparation method is as follows: cesium carbonate, aluminum oxide, silicon oxide, gallium oxide, cerium oxide, cerium oxide and boric acid according to the ratio of Table 1. The mixture was mixed, and then thoroughly mixed by a ball mill, and reacted at about 140 CTC for 4 hours in a mixed atmosphere of nitrogen and hydrogen.
  • the preparation method is as follows: Mix cesium carbonate, alumina, silica, gallium oxide, cerium oxide, cerium oxide and boric acid according to the ratio of Table 2, and then fully grind and mix with a ball mill, in nitrogen, The mixture was reacted at 1400 ° C for 6 hours under a hydrogen mixed atmosphere.
  • Calcium carbonate aluminum oxide, silicon oxide, gallium oxide, hafnium oxide, hafnium oxide, boric acid
  • the preparation method is as follows: Mix calcium carbonate, alumina, silica, gallium oxide, cerium oxide, cerium oxide and boric acid according to the ratio of Table 3, and then fully grind and mix with a ball mill, in nitrogen, The mixture was reacted at 1400 ° C for 2 hours under a hydrogen mixed atmosphere.
  • D7 1 1 0. 05 0. 005 0. 01 0. 02 1 1 The preparation method is as follows: Dl-D7 according to the ratio of Table 4, strontium carbonate, alumina, silica, gallium oxide, cerium oxide, cerium oxide and boric acid The mixture was mixed, and then thoroughly mixed by a ball mill, and reacted at about 140 CTC for 4 hours under a nitrogen-hydrogen mixed atmosphere. D8 raw material ratio, preparation method is the same as D7, except that the reaction temperature in the preparation method is 1500 °C. Test Example 1 Long afterglow characteristics of the multi-co-activated long afterglow light-storing luminescent material of the present invention
  • Table 1 and Table 3 Each sample in Table 1 and Table 3 was excited by a D65 standard light source for 10 minutes, and the afterglow after the measurement was measured by a measuring glow device equipped with a photomultiplier tube. The results are shown in Table 5, Table 6 and Table 7.
  • the brightness values in Table 5 are based on sample 1.
  • the brightness values in Table 6 are based on sample 7.
  • the brightness values in Table 7 are based on sample 13.
  • the brightness value in Table 8 is taken as the reference value with sample 3 as 100.
  • the afterglow luminescence spectrum of sample 3 is shown in Fig. 1.
  • the afterglow spectrum of sample 9 is shown in Figure 2.
  • the afterglow spectrum of sample 15 is shown in Figure 3.
  • the afterglow spectrum of sample D7 is shown in Figure 4.
  • Figures 1 and 4 show the same chemical composition, and the afterglow of the boron-containing sample is stronger than that of the boron-free afterglow.
  • Table 8 shows that compared with D1-D7, the residual afterglow performance of the boron-containing sample is much stronger than that of D1-D7. Even if ammonium dihydrogen phosphate is used as a co-solvent to replace boric acid, the remaining glow performance is still better than that. Sample 3 is much worse. It can be seen that the addition of B makes the improvement of afterglow performance not attributed to boric acid as a co-solvent to reduce the synthesis temperature of the sample. It can be seen from the XRD pattern comparison of samples 3, D7 and D8 that the peak intensity of sample 3 is stronger than that of sample D7 and smaller than the peak intensity of sample D8, but the afterglow brightness and decay time are greater than D7 and D8. The use of boric acid as a fluxing agent cannot be explained.
  • the most common method for studying the trap energy level of long afterglow materials is pyrolysis spectroscopy, which is the relationship between temperature and material luminescence intensity.
  • the trapping level of the long afterglow material can be understood by the spectral peak position of the pyroluminescence spectrum: the high peak position corresponds to the deep trap level, and the low temperature peak corresponds to the shallow trap level.
  • the luminescent powder prepared above is placed in water, the immersion time is recorded, and then the luminescent powders having different immersion times are dried, and each sample is excited by a D65 standard light source for 10 minutes, and then measured by a measuring glow device equipped with a photomultiplier tube. Subsequent afterglow tests the afterglow characteristics for 10 minutes.
  • the water resistance results of the samples in Table 1 and Table 4 are shown in Table 9, Table 10, Table 1 1 and Table 12, respectively.
  • the brightness values in Table 9 are based on sample 1.
  • the luminance values in Table 10 are based on sample 7.
  • the luminance values in Table 11 are based on the sample 13 as a reference value.
  • the luminance values in Table 12 take sample 3 as a reference value.
  • the boron-containing sample is denser than the boron-free sample.
  • the long afterglow materials of the present invention are not element replacements in a simple sense, but are obtained through extensive experiments in which silicon, gallium and boron are coordinated in the matrix. , achieves high afterglow performance and has high water resistance. Because the matrix contains silicon and gallium, the water resistance is greatly improved.
  • B is not only used as a co-solvent, but the necessary component to adjust the depth of the trap level.
  • boric acid will bring about a certain degree of sintering. After the crushing, the structure of the material will also be destroyed, which will affect the luminescence performance. This sintering phenomenon can reduce the specific surface area of the material and thereby enhance its water resistance. Therefore, the amount of boric acid used is critical, and a suitable amount can be selected to maintain excellent luminescence properties while having excellent water resistance.
  • the water-resistant multi-co-activated long afterglow light-storing luminescent material of the invention has excellent long afterglow performance, long illuminating time, and can maintain high long afterglow performance after being immersed for 60 hours, and is widely used, especially in operation and use. In the harsh environment such as water or moisture, it shows its superiority.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Description

耐水性多元共激活长余辉蓄光发光材料 所属技术领域
本发明涉及一种长余辉蓄光发光材料,具体地说是一种具有优良发光性能和耐水性 能的多元共激活的长余辉蓄光发光材料。
背景技术
长余辉现象俗称夜光现象, 在古代就已被人们发现。 盛传的 "夜明珠"、 "夜光壁" 就是萤石类的天然矿物, 它们能够存储日光的能量, 在夜晚以发光的形式缓慢释放这些 能量, 亦即夜光。 长余辉材料, 就是能够存储外界光辐照如紫外光和可见光等的能量, 然后在室温下缓慢地以发可见光的形式释放这些存储能量的材料。长余辉现象的产生一 般认为由于掺杂引起杂质能级 (缺陷能级) 的产生。 在激发阶段, 杂质能 级捕获空穴或电子, 当激发完成后, 这些电子或空穴由于热运动而释放, 将能量传递给激活离子而导致其发光。 由于能量的热运动释放是一个缓慢 的过程, 从而激活离子的发光呈现出长余辉发光的特点。 当陷阱深度太深时, 被俘获的电子或空穴不能顺利地从陷阱中释放出来, 这样使材料的余辉发光太弱; 而当 陷阱太浅时, 电子或空穴被释放的速度会太快, 使材料余辉时间变短。 除了要求合适的 陷阱深度, 掺杂的离子对陷阱中电子或空穴具有合适的亲和力也很重要, 太强或太弱的 亲和力对余辉均起不到延长作用。
长余辉材料的长余辉性质的实现基于这样三个过程: 1.外界的光能被材料中的陷阱 所存储; 2.被存储的能量能够有效的传递给发光离子; 3. 这些能量必须以发光离子辐 射跃迁的方式被释放, 而不是被淬灭。 因此, 除了发光离子外, 其他辅助激活元 素对长余辉材料的余辉性质和特点起到关键的作用。
作为长余辉材料, 现有技术有两种类型, 即由 ZnS : Cu表示硫化物和 Eu2+激活的 碱土金属铝酸盐 Mal204(M代表碱土金属)稀土长余辉发光材料。 ZnS: Qi硫化物长余辉 发光材料已经使用几十年了, 它们的缺点是余辉时间相对较短, 为了延长发光时间往往 掺入放射性元素如 Pm147, 镭等, 从而对人体和环境都有害。 此外, 在日光中所含的紫 外线和空气中水分的共同作用使得这种材料发生 ZnS+H20→Zn+H2S的分解反应。
近年来研制的 Eu2+激活的碱土金属铝酸盐长余辉发光材料, (中国专利申请号:
确认本 91107337.X, 美国专利号 5376303 和 5424006, 日本专利申请公开特许号 8-73845.、 8-127772、 8-151573和 8-151574)与 ZnS: Cu发光材料相比显示出更髙的发光亮度、 更 长的余辉寿命以及更好的稳定性。 随着科技的发展, 对发光材料的功能也提出了更高的 要求, 比如耐水性。 现有的长余辉材料的耐水性较差。 为了克服这种缺点, 该材料在使 用中往往采用包膜处理的办法, 但这样即增加了材料成本费用, 同时, 包膜层也不可避 免的影响了长余辉材料对外界光的吸收和存储。 另外, 近年来研制的硅酸盐基质的稀土 长余辉发光材料虽然耐水性较为优良, 但发光亮度和余辉性能欠佳。
长期以来本领域技术人员一直有一种偏见, 认为添加硼酸是作为助溶剂使用, 也可 以釆用其他助溶剂 P205等替代。 但是本发明人经过大量实验研究发现, 在本发明碱土 金属铝酸盐长余辉发光材料中,添加硼元素事实上是调整了碱土金属铝酸盐晶体结构的 陷阱能体深度, 有利于提高材料的余辉性能, 也有利于材料的耐水性。
发明内容
本发明的目的在于提供一种同时具有优良发光性能和耐水性能的多元共激活长余 辉蓄光发光材料。
本发明提供的耐水性多元共激活长余辉蓄光发光材料的化学组成为- aMO'bAl203'cSi02'dGa203: xEu«yB«zN, a、 b、 c、 d、 x、 y禾 Q z为系数(摩尔比), 0.5^a^2, 0.5 b 3, 0. OOl^c^l, 0. OOOl^d^l, 0.0001^ ^1, 0. OOOl^y^l, O.OOOl^z^l; M为 Ca或 Sr, N为 Dy或 Nd。 其中, Sr (或 Ca)、 Al、 Si、 Ga为基质 元素, Eu、 B禾口 Dy (或 Nd) 为激活剂。
上述方案优选的是:
0.8^a^l.2, 0.8^b^2, 0.002^c^0.061, 0.005^d^0.5, 0.005^x^0.1, 0.02^y^0.5, 0.005 z 0.05。
更优方案是:
a=l, l b 2, 0.02^c^0.06, 0.005^d^0.01, 0.01^x^0.02, 0.05 y 0.3, 0.01 z 0.04。
最优方案是:
a=l, l b 2, 0.03^c^0.06, 0.005 d 0.01, 0.01^ ^0.02, 0.05^y 0.2, 0.
Figure imgf000004_0001
例如: SrO'Al2O3'0.05SiO2'0.005Ga2O3: 0.01Eu»0.1B«0.02Dy或
SrO« 1.8Al2O3-0.06SiO2*0.01 Ga203: 0.01EuO.2B-0.03Dy或
CaO'Al2O3*0.05SiO2O.005Ga2O3: 0.01Eu-0.1B-0.03Nd
本发明提供的耐水性多元共激活长余辉蓄光发光材料所用原料中,锶或钙来源于锶 或钙的碳酸盐、 氧化物; 铝来源于铝的氧化物或氢氧化物; 硅、 镓来源于硅或镓的氧化 物; 铕、 镝、 钕来源于铕、 镝或钕的氧化物或草酸盐; 硼来源于硼的氧化物或硼酸。
本发明还提供了上述耐水性多元共激活长余辉蓄光发光材料的制备方法,包括以下 歩骤: 将原料按配比混合均匀后, 于还原气氛下, 如一氧化碳或氢气气氛, 在 1200〜 150CTC下烧结 2— 6小时。
本发明提供的耐水性多元共激活长余辉蓄光发光材料是在还原气氛下制得,其中,
Eu元素以二价离子存在, 其发光来自于 4f5d-4f的跃迁。 由于二价铕离子的 5d电子容 易被基质环境所影响, 导致二价铕离子的发光随基质的变化而变化, 可发蓝色到红色范 围内的可见光,本发明多元共激活长余辉发光材料具有绿色、蓝绿色或紫色长余辉发光。
本发明长余辉蓄光发光材料基质中含有硅和镓元素, 耐水性得到极大提高。 且本 发明克服了技术偏见, 提出硼酸不仅仅是助溶剂, 更重要的是用量合适的硼, 能够调节 材料陷阱能级深度, 对余辉性能做了较大贡献, 同时, 硼酸的使用, 由于其烧结显著降 低了比表面积,从而增强了材料的耐水性, 因此材料中合适的硼的量与 Eu、 Dy (或 Nd) 共同激活, 既保持材料的发光性能又有良好的耐水性, 是 P等常规助溶剂无法替代的。
本发明还提供了该长余辉发光材料的用途。 鉴于本发明发光材料所具有的优异性 能, 其可应用于 (1) 地铁行人导向标识、 道路标志牌、 挢梁标志牌、 盾牌、 分界线、 步 行道、 灯柱、 隧道标志等; (2)消防及应急逃生标志; (3)轮船甲板、 码头标志、 油井标 志等; (4)专门服装; (5)做成各种建筑物用的水性内外墙涂料、 油漆、 油墨等。 具有广 阔的应用前景。
总之, 本发明专利通过对激活剂的选择, 不但可以使长余辉材料具有合适的陷阱, 也可对材料中的能量传递过程进行优化, 提高传递效率, 使材料的长余辉发光的性质得 到极大的提高。 同时, 本发明提供的长余辉发光材料具有良好的耐水性, 发光时间长达 60小时以上, 浸水 60小时仍然可以保持较好的长余辉特性, 是一种性能优良、 应用广 泛的长余辉发光材料。
附图说明 试图 1为试样 3的长余辉发光光谱
图 2为试样 9的长余辉发光光谱
图 3为试样 15的长余辉发光光谱
图 4为试样 D7的长余辉发光光谱
图 5 为试样 3和试样 D7的热释光谱,其中 A是试样 3的热释光谱, B是试样 D7的 热释光谱
以下通过实施例形式的具体实施方式, 对本发明的上述内容再作进一步的详细说 明。 但不应将此理解为本发明上述主题的范围仅限于以下的实例, 凡基于本发明上述内 容所实现的技术均属于本发明的范围。
具体实施方式
实施例 1一 6 本发明黄绿色长余辉发光材料的制备
实施例 1-6的原料配比见表 1 。 表 1
试样原料配比 (raol )
氧化铝 氧化硅 氧化镓 氧化铕 氧化镝
1 1 1 0 0 0. 01 0. 02 0
2 1 1 0 0 0. 01 0. 02 0. 1
3 1 1 0. 05 0. 005 0. 01 0. 02 0. 1
4 0. 5 0. 6 0. 6 0. 03 0. 006 0. 012 0. 6
5 0. 8 1. 3 0. 001 0. 005 0. 2 0. 3 1
6 0. 5 0. 5 0.005 0. 0001 0. 0001 0. 0001 0. 0001 制备方法如下: 按表 1的配比将碳酸锶、 氧化铝、 氧化硅、 氧化镓、 氧化铕、 氧化 镝和硼酸混合, 然后用球磨机充分研磨混合, 在氮、 氢混合气氛下于 140CTC左右反应 4 小时。
对表 1中的原料, 当碳酸锶用氧化锶、 氧化铝用氢氧化铝、 氧化铕用草酸铕、 氧化 镝用草酸镝、 硼酸用氧化硼来替换时, 得到性能类似的绿色稀土长余辉发光材料。 实施例 7— 12 本发明蓝绿色长余辉发光材料的制备
实施例 7-12的原料配比见表 2。 表 2
试样原料配比 (mol)
试样 - 碳酸锶 氧化铝 氧化硅 氧化镓 氧化铕 氧化镝 硼酸
7 1 1.8 0 0 0.012 0.03 0
8 1 1.8 0 0 0.012 0.03 0.2
9 1 1.8 0.06 0.01 0.01 0.03 0.2
10 0.6 1.1 0.6 0.03 0.006 0.012 0.6
11 1.6 3 0.001 0.005 0.1 0.3 1
12 2 3 1 1 1 1 1 制备方法如下: 按表 2的配比将碳酸锶、 氧化铝、 氧化硅、 氧化镓、 氧化铕、 氧化 镝和硼酸混合, 然后用球磨机充分研磨混合, 在氮、 氢混合气氛下于 1400°C左右反应 6 小时。
对表 2中的原料, 当碳酸锶用氧化锶、 氧化铝用氢氧化铝、 氧化铕用草酸铕、 氧化 镝用草酸镝、 硼酸用氧化硼来替换时, 得到性能类似的蓝绿色长佘辉发光材料。 实施例 13— 17 本发明蓝紫色长余辉发光材料的制备
实施例 13-17的原料配比见表 3。 表 3
试样原料配比 (mol)
试样
碳酸钙 氧化铝 氧化硅 氧化镓 氧化铕 氧化钕 硼酸
13 1 1 0 0 0.01 0.02 0
14 1 1 0 0 0.01 0.02 0.1
15 1 1 0.05 0.005 0.01 0.02 0.1
16 0.6 0.6 0.6 0.03 0.006 0.012 0.6
17 0.7 1.3 0.001 0.005 0.2 0.3 1 制备方法如下: 按表 3的配比将碳酸钙、 氧化铝、 氧化硅、 氧化镓、 氧化铕、 氧化 钕和硼酸混合, 然后用球磨机充分研磨混合, 在氮、 氢混合气氛下于 1400°C左右反应 2 小时。
对表 3中的原料, 当碳酸钙用氧化钙、 氧化铝用氢氧化铝、 氧化铕用草酸铕、 氧化 钕用草酸铁、 硼酸用氧化硼来替换时, 得到性能类似的蓝紫色长余辉发光材料。 对比实施例 Dl- D8 ¾J
试样原料配比 (mol ) ―
碳酸锶氧化铝 氧化硅 氧化镓 氧化铕 氧化镝 硼酸 磷酸二
D1 1 1 0. 05 0. 005 0. 01 0. 02 0. 2 1
D2 1 1 0. 05 0. 005 0. 01 0. 02 0. 3 1
D3 1 1 0. 05 0. 005 0. 01 0. 02 1 0. 05
D4 1 1 0. 05 0. 005 0. 01 0. 02 1 0. 2
D5 1 1 0. 05 0. 005 0. 01 0. 02 1 0. 3
D6 1 1 0. 05 0. 005 0. 01 0. 02 1 0. 1
D7 1 1 0. 05 0. 005 0. 01 0. 02 1 1 制备方法如下: Dl- D7按表 4的配比将碳酸锶、 氧化铝、 氧化硅、 氧化镓、氧化铕、 氧化镝和硼酸混合, 然后用球磨机充分研磨混合, 在氮、氢混合气氛下于 140CTC左右反 应 4小时。 D8 原料配比、 制备方法同 D7, 唯不同的是制备方法中反应温度为 1500°C。 试验例 1 本发明多元共激活长余辉蓄光发光材料的长余辉特性
表 1一表 3中的各试样用 D65标准光源激发 10分钟, 再用装有光电倍增管的测定 辉光装置测定其后的余辉, 结果见表 5、 表 6和表 7。 表 5中的亮度值以试样 1为参照 值。 表 6中的亮度值以试样 7为参照值。 表 7中的亮度值以试样 13为参照值。 表 8中 亮度值以试样 3为 100作为参照值。试样 3的余辉发光光谱见图 1。试样 9的余辉光谱 见图 2。试样 15的余辉光谱见图 3。试样 D7的余辉光谱见图 4。 图 1和图 4表明相同的 化学组成, 含硼样品的余辉要比不含硼的余辉强。
表 5
试样 10分钟后的辉度 30分钟后的辉度 100分钟后的辉度
1 1. 00 1. 00 1. 00
2 14 20 22
3 13. 8 21 23. 5
4 6 12. 5 13
5 2 3. 4 2. 5
6 1. 8 3 3. 2 表 6
试样 10分钟后的辉度 30分钟后的辉度 100分钟后的辉度
7 1.00 1.00 1.00
8 11 15 20
9 11.2 16 21.3
10 4 10 11.8
11 3 4.5 6
12 2 4.3 5.4
试样 10分钟后的辉度 30分钟后的辉度 100分钟后的辉度
13 1.00 1.00 1.00
14 10 12 13.4
15 10.2 12.3 14
16 4 8 9.4
17 3 5 6.3
试样 10分钟后的辉度 30分钟后的辉度 100分钟后的辉度
3 100 100 100
D1 81 ' 78 75
D2 79 75 71
D3 23 19 16.5
D4 18 16 15
D5 16 15 11.5
D6 21 18 16
D7 16 16 14
D8 18 17 15 表 8中的亮度值以试样 3为 100计。
表 8表明, 试样 3与 D1-D7相比, 在原料配比相同的情况下, 含硼样品的余辉性能 要强很多, 即使采用磷酸二氢铵为助溶剂,替换硼酸,其余辉性能仍然比试样 3差很多。 可见, 加入 B使得余辉性能的提高并不能归属于硼酸作为助溶剂降低样品的合成温度。 通过试样 3、 D7、 D8的 XRD图比较可以看出试样 3的峰强度强于试样 D7, 而小于试样 D8 的峰强, 但余辉亮度和衰减时间要大于 D7、 D8, 这个现象用硼酸起到助熔剂作用是 解释不了的。
尽管对于长余辉发光材料的的机理现在还不能完全解释,但公认的是材料中的陷阱 能级起到了关键作用。 当陷阱能级过浅, 材料不能存储太多的能量导致余辉发光的性能 下降, 而当陷阱能级过深时被缺陷俘获的电子不能够在室温下被有效释放, 同样会影响 材料的余辉亮度和衰减时间。
目前研究长余辉材料陷阱能级的最常用方法是热释光谱,亦即温度对材料发光强度 的关系曲线。 通过热释光谱的光谱峰位可以了解长余辉材料的陷阱能级的情况: 高的峰 位对应着深的陷阱能级, 低温的峰位对应着较浅的陷阱能级。 通过对试样 3和试样 D7 样品的热释光谱测量 (见图 5 ) 进行分析, 发现对于同一温度合成的样品, 含硼的样品 的热释光谱峰位要高于不含硼的热释光谱的峰位,这意味着含硼样品内的陷阱能级要深 于不含硼的样品, 也就是说硼的引入改变了发光材料的内部缺陷, 并导致了材料的长余 辉发光亮度和发光寿命大幅度提高(见表 8)。这是硼酸引入材料的制备配方能够在较低 的合成温度下大幅度提高材料的余辉性能的主要因素。因此,硼酸不仅仅是作为助溶剂, 而是对陷阱能级深度起调整作用的关键成分之一。如果没有硼元素, 或釆用 P等助溶剂 替换 B, 材料的余辉性能很差。 试验例 2 本发明多元共激活长余辉蓄光发光材料的耐水性
将上述制得的发光粉放入水中,记录浸泡时间,然后将浸泡时间不同的发光粉烘干, 各试样用 D65标准光源激发 10分钟, 再用装有光电倍增管的测定辉光装置测定其后的 余辉测试 10分钟的余辉特性, 表 1一表 4中的试样的耐水性结果分别见表 9、 表 10、 表 1 1和表 12。表 9中的亮度值以试样 1为参照值。表 10中的亮度值以试样 7为参照值。 表 11中的亮度值以试样 13为参照值。 表 12中的亮度值以试样 3为 100作为参照值。
表 9
浸水不同时间后的辉度
试样 浸水前的辉度
时 20小时 60小时
1 1. 00 1. 00 1. 00 1. 00
2 14 4 2 1. 4
3 13. 8 15 25. 7 33. 2
4 6 7 15 18. 6
5 2 8. 76 16. 3 19. 4
6 1. 8 8 13. 3 18 浸水不同时间后的辉度
试样 浸水前的辉度
时 20小时 60小时
7 1.00 1.00 1.00 1.00
8 11 3 2 1.1
9 11.2 13 20.3 31
10 4 6.4 12 15.8
11 3 7.6 13.5 18
12 2 7.2 12.8 17.5 表 11
浸水不同时间后的辉度
试样 浸水前的辉度
时 20小时 60小时
13 1.00 1.00 1.00 1.00 14 10 3 1.3 1.1 15 10.2 14 21 30 16 4 7 12 17.6 17 3 8.2 15.8 20 表 12
浸水不同时间后的辉度
试样 浸水前的辉度
10小时 20小时 60小时
3 100 100 100 100
D1 81 85 88 86
D2 79 81 83 83
D3 23 11 8 3
D4 18 7 5 1
D5 16 6 3 1
D6 21 9 6 2
D7 16 9 8 6
D8 18 10 8 5 通过对所合成样品的观察, 含硼样品的致密度要大于不含硼的样品。
从表 12可以看出, 不含 B的样品, 不论其是否添加 P为助溶剂, 其耐水性能都很 差, 经过水浸泡后, 其余辉辉度可以降至浸水前的一半以下, 且其亮度根本不足以在湿 度较大的环境下作业, 不能作为耐水性长余辉材料。
事实上, 本发明长余辉材料 aMObAl203,cSi02*dGa203: xEu-yB-z 不是简单意义 上的元素替换, 而是经过大量实验得到, 基质中硅、 镓与硼共同协调, 达到了高余辉性 能并具有高耐水性的目的。 因为基质中含有硅和镓元素, 耐水性得到极大提高, 另外, B不仅仅是作为助溶剂, 而是调节陷阱能级深度的必要组分, 同时硼酸的使用会带来一 定程度的烧结现象, 破碎后对材料的结构也会破坏, 影响发光性能, 但正是这种烧结现 象, 可以降低材料的比表面积, 从而增强其耐水性。 因此, 硼酸的使用量是关键, 选择 合适的用量可以在很大程度上保持优良发光性能的同时具有很好的耐水性。
综上所述, 本发明耐水性多元共激活长余辉蓄光发光材料具有优异的长余辉性能, 发光时间长, 且浸水 60小时仍然可以保持较高的长余辉性能, 应用广泛, 尤其在作业 和使用中存在浸水或潮湿的等恶劣环境, 更显示其优越性。

Claims

权 利 要 求
1、 一种耐水性多元共激活长余辉蓄光发光材料, 其化学组成为:
aM0'bAl2O3'cSi02'dGa203: xEu'yB'zN, a、 b、 c、 d、 x、 y和 z为系数, 0.5≤a≤2, 0.5<b<3, 0.001≤c≤l, 0.0001<d<l , 0.0001<x<l , 0.0001<y<l , 0.0001<z<l; M为 Ca、 Sr中的至少一种, N为 Dy、 Nd中的至少一种。
2、 根据权利要求 1 所述的耐水性多元共激活长余辉蓄光发光材料, 其特征在于- 所述化学组成中,
0.8^a^l.2, 0.8^b^2, 0.002^c^0.061, 0.005 d 0.5, 0.005^ ^0.1, 0.02^y^0.5, 0.005^z^0.05.
3、 根据权利要求 2所述的耐水性多元共激活长余辉蓄光发光材料, 其特征在于- 所述化学组成中,
a=l, l b 2, 0·02«0·06, 0.005^d^0.01, 0.01^x^0.02, 0.05^y^0.3, 0.01 z 0.04。
4、 根据权利要求 3所述的耐水性多元共激活长余辉蓄光发光材料, 其特征在于- 所述化学组成中, a=l, l b 2, 0.03 c 0.06, 0.005^d^0.01, 0.01^x^0.02, 0.05 y 0.2, 0.01 ζ 0·04。
5、 根据权利要求 4所述的耐水性长余辉发光材料, 其特征在于: 其化学组成为 SrO'Al2O3-0.05SiO2O.005Ga2O3: 0.01Eu»0.1B«0.02Dy或
SrO-1.8Al2O3O.06SiO2-0.01Ga2O3: 0.01Eu'0.2B'0.03Dy或
CaO'Al2O3'0.05SiO2'0.005Ga2O3: 0.01Eu»0.1B«0.03Nd 。
6、 根据权利要求 1一 4任一项所述的耐水性多元共激活长余辉蓄光发光材料, 其特 征在于:锶或钙来源于锶或钙的碳酸盐或氧化物;铝来源于铝的氧化物或氢氧化物;硅、 镓来源于硅或镓的氧化物; 铕、 镝、 钕来源于铕、 镝或钕的氧化物或草酸盐; 硼来源于 硼的氧化物或硼酸。
7、 制备权利要求 5所述的耐水性多元共激活长余辉蓄光发光材料的方法, 包括以 下步骤: 将所述原料按设定摩尔比混合均勾后, 于还原气氛下在 1200〜1500°C下烧结 2 一 6小时即得。
8、 根据权利要求 7所述的耐水性多元共激活长余辉蓄光发光材料的制备方法, 其 特征在于: 所述还原气氛是一氧化碳或氢气气氛。
9、权利要求 1一 4任一项所述耐水性多元共激活长余辉蓄光发光材料在地铁行人导 向标识、 道路标志牌、 桥梁标志牌、 盾牌、 分界线、 步行道、 灯柱、 隧道标志、 消防及 应急逃生标志、 轮船甲板、 码头标志、 油井标志中的应用。
10、 权利要求 1 - 任一项所述耐水性多元共激活长余辉蓄光发光材料在服装、 水 性内外墙涂料、 油漆、 油墨中的应用。
PCT/CN2007/003224 2006-11-20 2007-11-15 Phosphores d'accumulation de lumière à longue émission rémanente coactivés à multiples éléments résistants à l'eau WO2008061436A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AT07845655T ATE515552T1 (de) 2006-11-20 2007-11-15 Durch mehrere seletenen erdmetalle koaktiviertes, wasserfestes material mit langem nachglühen
EP07845655A EP2093273B1 (en) 2006-11-20 2007-11-15 Waterproof multiple rare-earth co-activated long-afterglow luminescent material
US12/515,504 US8329062B2 (en) 2006-11-20 2007-11-15 Waterproof multiple rare-earth co-activated long-afterglow luminescent material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN200610022283.5 2006-11-20
CN200610022283 2006-11-20
CNB2006101721879A CN100473710C (zh) 2006-11-20 2006-12-31 稀土多元共激活长余辉发光材料及其制备方法
CN200610172187.9 2006-12-31

Publications (1)

Publication Number Publication Date
WO2008061436A1 true WO2008061436A1 (fr) 2008-05-29

Family

ID=38725678

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2006/003826 WO2008061403A1 (fr) 2006-11-20 2006-12-31 Matière photoluminescente à longue émission rémanente coactivée contenant plusieurs métaux du groupe des terres rares
PCT/CN2007/003224 WO2008061436A1 (fr) 2006-11-20 2007-11-15 Phosphores d'accumulation de lumière à longue émission rémanente coactivés à multiples éléments résistants à l'eau

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2006/003826 WO2008061403A1 (fr) 2006-11-20 2006-12-31 Matière photoluminescente à longue émission rémanente coactivée contenant plusieurs métaux du groupe des terres rares

Country Status (6)

Country Link
US (2) US20080116420A1 (zh)
EP (1) EP2093273B1 (zh)
CN (1) CN100473710C (zh)
AT (1) ATE515552T1 (zh)
PT (1) PT2093273E (zh)
WO (2) WO2008061403A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100485013C (zh) * 2005-07-01 2009-05-06 四川新力光源有限公司 一种复合基质长余辉荧光材料及其制备方法
CN100473710C (zh) * 2006-11-20 2009-04-01 四川新力光源有限公司 稀土多元共激活长余辉发光材料及其制备方法
KR101483667B1 (ko) * 2008-10-06 2015-01-16 삼성디스플레이 주식회사 표시 장치
CN101705095B (zh) * 2009-09-21 2011-08-10 四川新力光源有限公司 黄光余辉材料及其制备方法和使用它的led照明装置
CN108374286A (zh) * 2017-12-28 2018-08-07 龙南县中利再生资源开发有限公司 一种稀土发光纤维的制备方法
CN108949165A (zh) * 2017-12-29 2018-12-07 张世远 低成本高品位规模化生产传承古建结构的方法
CN112555692B (zh) * 2020-11-23 2022-05-17 新沂市锡沂高新材料产业技术研究院有限公司 一种基于特定的长余辉发光材料的应急照明指示装置
CN112679774A (zh) * 2020-12-15 2021-04-20 福建鸣友新材料科技有限公司 一种稀土发光碳带及其制备方法
CN114958353B (zh) * 2022-03-23 2024-05-24 佛山科学技术学院 铕、镱共掺杂硅酸盐绿光长余辉材料及其制备方法和应用
CN116875302A (zh) * 2023-07-18 2023-10-13 西北师范大学 一种氯硅酸盐青色长余辉发光材料及其制备方法
CN117304922B (zh) * 2023-11-29 2024-03-08 西安建筑科技大学 一种可调控陷阱的超长余辉材料及其制备方法和应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5376303A (en) 1994-06-10 1994-12-27 Nichia Chemical Industries, Ltd. Long Decay phoaphors
US5424006A (en) 1993-04-28 1995-06-13 Nemoto & Co., Ltd. Phosphorescent phosphor
JPH08127772A (ja) 1994-11-01 1996-05-21 Nemoto Tokushu Kagaku Kk 蓄光性蛍光体
JPH08151574A (ja) 1994-09-29 1996-06-11 Nichia Chem Ind Ltd 残光性蛍光体
JPH08151573A (ja) 1994-11-29 1996-06-11 Nichia Chem Ind Ltd 残光性蛍光体
CN1199078A (zh) * 1997-05-09 1998-11-18 株式会社小原 长余辉荧光物质
US6261477B1 (en) * 1998-05-13 2001-07-17 Kabushiki Kaisha Ohara Long-lasting phosphor
CN1313376A (zh) * 2000-03-09 2001-09-19 北京浩志科技发展有限公司 超长余辉荧光体材料以及制备方法和应用
CN1334311A (zh) * 2001-08-17 2002-02-06 清华大学 一种球状超长余辉光致发光多孔陶瓷材料及其合成方法
US20060081815A1 (en) * 2004-10-15 2006-04-20 Terralium Industries Inc. Light accumulating and luminous materials and a process to produce same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6287993B1 (en) * 1998-09-22 2001-09-11 Kabushiki Kaisha Ohara Long-lasting phosphorescent glasses and glass-ceramics
US6190577B1 (en) * 1999-07-20 2001-02-20 Usr Optonix Inc. Indium-substituted aluminate phosphor and method for making the same
CA2290340C (en) * 1999-10-07 2003-09-09 Matsui Shikiso Chemical Co., Ltd. Process for preparing water resistant luminous pigments
JP2002294230A (ja) * 2001-03-30 2002-10-09 Kasei Optonix Co Ltd 真空紫外線励起用アルミノ珪酸塩蛍光体及びその蛍光体を用いた真空紫外線励起発光素子
GB2374602B (en) * 2001-04-18 2003-04-23 Shandong Lunbo Ind & Comm Grou Alkali earth aluminate-silicate photoluminescent pigment which is activated by rare-earth elements
CN1401731A (zh) * 2001-08-20 2003-03-12 深圳市清华彩虹纳米材料高科技有限公司 一种纳米级超长余辉硅铝复合盐类发光材料及其制备方法
CN100556687C (zh) * 2002-09-12 2009-11-04 日本板硝子株式会社 覆发光膜产品
FR2855169B1 (fr) * 2003-05-23 2006-06-16 Rhodia Elect & Catalysis Composes precurseurs d'aluminates d'alcalino-terreux ou de terre rare, leur procede de preparation et leur utilisation comme precurseur de luminophore notamment
US7488432B2 (en) * 2003-10-28 2009-02-10 Nichia Corporation Fluorescent material and light-emitting device
WO2005103197A1 (ja) * 2004-04-20 2005-11-03 Ishihara Sangyo Kaisha, Ltd アルミン酸ストロンチウム系蓄光材料及びその製造方法
CN100485013C (zh) 2005-07-01 2009-05-06 四川新力光源有限公司 一种复合基质长余辉荧光材料及其制备方法
CN100473710C (zh) * 2006-11-20 2009-04-01 四川新力光源有限公司 稀土多元共激活长余辉发光材料及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5424006A (en) 1993-04-28 1995-06-13 Nemoto & Co., Ltd. Phosphorescent phosphor
US5376303A (en) 1994-06-10 1994-12-27 Nichia Chemical Industries, Ltd. Long Decay phoaphors
JPH08151574A (ja) 1994-09-29 1996-06-11 Nichia Chem Ind Ltd 残光性蛍光体
JPH08127772A (ja) 1994-11-01 1996-05-21 Nemoto Tokushu Kagaku Kk 蓄光性蛍光体
JPH08151573A (ja) 1994-11-29 1996-06-11 Nichia Chem Ind Ltd 残光性蛍光体
CN1199078A (zh) * 1997-05-09 1998-11-18 株式会社小原 长余辉荧光物质
US6261477B1 (en) * 1998-05-13 2001-07-17 Kabushiki Kaisha Ohara Long-lasting phosphor
CN1313376A (zh) * 2000-03-09 2001-09-19 北京浩志科技发展有限公司 超长余辉荧光体材料以及制备方法和应用
CN1334311A (zh) * 2001-08-17 2002-02-06 清华大学 一种球状超长余辉光致发光多孔陶瓷材料及其合成方法
US20060081815A1 (en) * 2004-10-15 2006-04-20 Terralium Industries Inc. Light accumulating and luminous materials and a process to produce same

Also Published As

Publication number Publication date
US20080116420A1 (en) 2008-05-22
US20100044633A1 (en) 2010-02-25
US8329062B2 (en) 2012-12-11
CN100473710C (zh) 2009-04-01
WO2008061403A1 (fr) 2008-05-29
EP2093273B1 (en) 2011-07-06
PT2093273E (pt) 2011-08-03
EP2093273A4 (en) 2009-12-16
CN101016456A (zh) 2007-08-15
ATE515552T1 (de) 2011-07-15
EP2093273A1 (en) 2009-08-26

Similar Documents

Publication Publication Date Title
WO2008061436A1 (fr) Phosphores d&#39;accumulation de lumière à longue émission rémanente coactivés à multiples éléments résistants à l&#39;eau
US5885483A (en) Long afterglow phosphor and a process for the preparing thereof
JP5362288B2 (ja) 非化学量論的正方晶系銅アルカリ土類シリケート蛍光体及びその製造方法
JP5410966B2 (ja) ケイ酸塩蛍光体、及びケイ酸塩蛍光体を用いた発光デバイス
US5853614A (en) Long decay luminescent material
EP3640206A1 (en) Garnet silicate, garnet silicate phosphor, wavelength transformer using garnet silicate phosphor and light-emitting device
Jansen et al. Eu‐doped barium aluminum oxynitride with the β‐alumina‐type structure as new blue‐emitting phosphor
JP3488602B2 (ja) 青色ないし青緑色発光性アルミニウムケイ酸塩蓄光体及びその製造方法
CN100560688C (zh) 长余辉发光材料及其制造方法
US3577350A (en) Europium and manganese activated sodium or potassium aluminate phosphors
CN106905962B (zh) 以Zn位及O位缺陷为发光中心的绿色长余辉发光材料
CN107722972B (zh) 一种绿色长余辉发光材料及其制备方法
CN111100634A (zh) 一种长余辉荧光材料及其制备方法
CN108949173B (zh) 一种青色硅酸盐超长余辉发光材料及其制备方法
CN114058371B (zh) 一种黄光长余辉发光材料及其制备方法和应用
CN107474838B (zh) 一种蓝绿色长余辉发光材料及其制备方法
CN104629759A (zh) 一种提高铝酸锶荧光粉的发射强度的方法
CN107129801A (zh) 一种Li+共掺提高硅酸盐荧光粉长余辉特性的方法
CN106634976A (zh) 一种橙红光长余辉荧光粉及其制备方法
TWI712672B (zh) 長餘輝材料及其製備方法
TWI743662B (zh) 長餘輝材料及其製備方法
CN104321407B (zh) 荧光体和发光装置
Karacaoglu et al. The Investigations on Luminescence Characteristics and Influence of Doping and Co-doping Different Rare Earth Ions in White Phosphorescence Materials Having Different Luminescent Centers
CN108892504B (zh) 一种蓝绿色多组分蓄光陶瓷材料及其制备方法
CN114032101A (zh) 一种长余辉发光材料和制备方法及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07845655

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12515504

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007845655

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE