WO2008059598A1 - Dispositif d'analyse de réaction, support d'enregistrement et système de mesure - Google Patents
Dispositif d'analyse de réaction, support d'enregistrement et système de mesure Download PDFInfo
- Publication number
- WO2008059598A1 WO2008059598A1 PCT/JP2006/323030 JP2006323030W WO2008059598A1 WO 2008059598 A1 WO2008059598 A1 WO 2008059598A1 JP 2006323030 W JP2006323030 W JP 2006323030W WO 2008059598 A1 WO2008059598 A1 WO 2008059598A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- reaction
- wavelength
- region
- determination
- measurement
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/71—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D45/00—Electrical control not provided for in groups F02D41/00 - F02D43/00
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
Definitions
- Reaction analysis device recording medium, and measurement system
- the present invention relates to a reaction analysis apparatus and a measurement system that measure and analyze the state of a reaction such as a combustion reaction or a plasma reaction (hereinafter simply referred to as “reaction”).
- reaction such as a combustion reaction or a plasma reaction
- the present invention relates to a reaction analysis apparatus and a measurement system for detecting and notifying the occurrence of mixing failure, obtaining information from the reaction area by an optical measurement method, and analyzing the characteristics of the reaction based on the information.
- the present invention also relates to a recording medium on which a program for configuring the reaction analysis apparatus is recorded.
- reaction area In an area where a reaction takes place! /, (Hereinafter simply referred to as “reaction area”), an abnormal reaction occurs, and unreacted particles are mixed in or the reaction is incomplete. Then, it has a great influence on the operation of the engine that operates using the reaction. For example, when the premixing of hydrocarbon fuel and air is not performed, incomplete combustion occurs in a region where the fuel is rich, soot is formed, and a bright flame is generated. Also, when unexpected combustion occurs in the combustion chamber in an internal combustion engine, so-called knocking occurs. Detecting the occurrence of such an abnormal reaction and measuring the characteristics of the reaction 'knowing through analysis can improve the efficiency and low environmental impact of an engine that operates using the reaction. It is indispensable for the transformation.
- the occurrence of a reaction abnormality is detected by directly optically measuring the reaction region, or the reaction is performed by analyzing the light in the region where the reaction is performed.
- Various techniques for obtaining information have been proposed.
- an optical sensor is installed in the combustion chamber corresponding to each self-emission of flame, the air-fuel ratio is calculated from the ratio of the emission intensity detected by the optical sensor, and based on this air-fuel ratio.
- a method for performing combustion diagnosis is disclosed.
- an optical fiber is inserted into the combustion chamber, the light in the combustion chamber is detected via the optical fiber, and combustion abnormalities such as knocking are detected by the intensity of the light. Some are detected.
- Patent Document 1 Japanese Unexamined Patent Application Publication No. 2005-226893
- Patent Document 2 Japanese Patent Laid-Open No. 2006-292524
- Non-Patent Document 1 AVL Vision Reusion Catalog (Aviel Japan KK) Invention Disclosure
- Patent Document 1 calculates the specific air-fuel ratio of the emission intensity, and performs combustion diagnosis based on the air-fuel ratio.
- soot is formed in the reaction region due to incomplete combustion.
- the technique described in Patent Document 1 cannot detect such an abnormal reaction.
- Non-Patent Document 1 In the technique described in Non-Patent Document 1, a combustion abnormality is detected based on the intensity of light in the combustion chamber. However, due to the influence of heat, pressure, chemical substances in the atmosphere, or the like in the reaction region, If the light collection performance of the optical fiber deteriorates due to adhesion of wrinkles on the optical fiber, the intensity of light cannot be measured accurately. In addition, it is impossible to properly detect combustion abnormalities from inaccurate measurement values. Therefore, the technology described in Non-Patent Document 1 cannot secure the reproducibility of detecting an abnormal reaction using force if the air-fuel ratio cannot be calculated appropriately. Such a problem of reproducibility of detection caused by the situation of light reception can occur in the techniques described in the above documents.
- Patent Document 1 and Non-Patent Document 1 are configured to detect light from all directions facing the optical sensor or the optical fiber. Even if an abnormal reaction is detected, it is extremely difficult to identify the force at which the reaction occurred or the spatial distribution of the abnormal reaction. .
- the present invention has been proposed in view of the above-described circumstances, and is a reaction analysis apparatus, a measurement system, and a measurement system that can accurately and highly accurately detect a key in which a reaction region is in an abnormal reaction state. And a recording medium on which a program for configuring the reaction analyzer is recorded.
- the present invention is a program for configuring a reaction analysis device, a measurement system, and a reaction analysis device that can execute appropriate analysis processing according to the state of the reaction region and efficiently analyze the characteristics of the fuel region. It is intended to provide a recording medium on which is recorded.
- the present invention provides a reaction analysis apparatus, a measurement system, and a recording that records a program for configuring the reaction analysis apparatus that can detect a force in which the reaction region is in an abnormal state with high spatial resolution. It is intended to provide a medium.
- the reaction analysis apparatus is an acquisition means for acquiring the intensity value of the first wavelength component and the intensity value of the second wavelength component from the measurement results of the light emitted from the reaction region by the spectrometer.
- Relative intensity calculation means for calculating the relative intensity of the first wavelength component with respect to the second wavelength component from the intensity value of the first wavelength component and the intensity value of the second wavelength component acquired by the acquisition means; In response to determining means for determining whether or not the relative intensity calculated by the intensity calculating means is a value within a predetermined range, and in response to determining that the relative intensity is a value within a predetermined range by the determining means.
- a notifying means for notifying that the state of the reaction region is in a predetermined state.
- the relative intensity of the first wavelength component with respect to the second wavelength component is a value within a predetermined range among the measurement results of the light generated by the reaction region force by the predetermined spectrometer. At some point, it is notified that the reaction area is in a predetermined state.
- This relative intensity is the light emitted from the reaction region compared to the intensity value of the first wavelength component or the second wavelength component.
- the acquisition means obtains the intensity value of the wavelength component substantially coincident with the wavelength of the light emitted from C * based on the measurement result of the light emitted from the hydrocarbon reaction region by a predetermined spectroscopic measurement device.
- the intensity value of the wavelength component of 1 the intensity value of the component having a wavelength substantially equal to the wavelength of the light generated by at least one radical force selected from the group consisting of CH *, CN *, and OH * is the second value. It is preferable to acquire each as the intensity value of the wavelength component.
- the notifying means notifies that a flaw has occurred in the reaction region in response to the determination that the relative intensity is determined to be a value within a predetermined range.
- the obtaining means obtains the intensity value of the third wavelength component and the intensity value of the fourth wavelength component from the measurement result of the light emitted from the reaction region by the spectrometer.
- the relative intensity calculation means obtains the relative intensity of the third wavelength component with respect to the fourth wavelength component from the intensity value of the third wavelength component and the intensity value of the fourth wavelength component acquired by the acquisition means.
- the calculating means outputs the third wavelength. It is preferable to calculate the temperature of the soot generated in the reaction region based on the intensity value of the component and the intensity value of the fourth wavelength component.
- the temperature of the soot is calculated from the measurement result when it is notified that soot has occurred in the reaction region. Since the temperature of the soot can be calculated from the measurement results that can calculate the temperature of the soot, it becomes possible to efficiently generate information about the temperature of the soot [0021]
- the reaction analysis apparatus provides the third wavelength component intensity value, the fourth wavelength component intensity value, and the soot temperature when the notifying means notifies that soot has occurred in the reaction region. Based on the above, a concentration calculating means for calculating the concentration of soot generated in the reaction region may be provided.
- the concentration of soot is calculated from the measurement result when it is notified that soot has occurred in the reaction region. Since the soot concentration can be calculated from the measurement result capable of calculating the soot concentration, information on the soot concentration can be generated efficiently.
- the notifying means responds to the fact that the relative intensity is determined to be a value within a predetermined range by the determining means, and emits a light having a continuous spectral pattern in the reaction region. I prefer to be informed that I am in a good condition.
- the notification means In response to the determination that the relative intensity is a value within a predetermined range by the determination means, the notification means notifies the reaction region that a luminous flame has occurred. Oh ,.
- the notification means In response to the determination that the relative intensity is a value within a predetermined range by the determination means, the notification means notifies the occurrence of incomplete combustion in the reaction region. It's good.
- the notifying means notifies that the premixing failure of the fuel and the oxidant has occurred in the reaction region in response to the determination that the relative intensity is determined to be a value within the predetermined range. Please do it.
- the notifying means notifies that the reaction region is in a predetermined state of the plasma reaction in response to the determination that the relative intensity is determined to be a value within the predetermined range. .
- the notification means notifies that the reaction region is in the initial state of the laser-induced breakdown reaction in response to the determination that the relative intensity is determined to be a value within a predetermined range.
- the reaction analysis apparatus calculates the excess air ratio in the reaction region based on the measurement result of the spectroscopic measurement apparatus. You may have a calculation means to calculate.
- a selection unit that selects a wavelength range from the first wavelength range and the second wavelength range according to a determination result by the determination unit, and a determination by the determination unit are executed. It is preferable to have a peak analysis unit that generates predetermined information on the characteristics of the reaction region based on the feature amount of the peak that appears within the wavelength range selected by the selection means among the measurement results.
- the peak analysis unit generates predetermined information on the feature of the reaction region based on the feature amount of the peak within the wavelength range selected according to the determination result by the determination unit. . That is, the peak analysis means generates predetermined information related to the characteristics of the reaction region based on information obtained from the wavelength range selected according to the state of the reaction region. Therefore, it provides information on the characteristics of the reaction region efficiently according to the state of the reaction region. It can be done.
- the peak analysis means calculates the appearance times of peaks appearing at the fifth wavelength and the sixth wavelength within the wavelength range selected by the selection means, among the measurement results determined by the determination means. Based on this, it is preferable to determine whether knocking has occurred or not, and generate information indicating the result of the determination.
- the peak analysis means is the time of the intensity at the peaks that respectively appear at the fifth wavelength and the sixth wavelength within the wavelength range selected by the selection means among the measurement results determined by the determination means. It is preferable to determine whether knocking has occurred based on the change and generate information indicating the result of the determination.
- the peak analysis means calculates the propagation speed of the reaction in the reaction region based on the characteristic amount of the peak appearing in the wavelength range selected by the selection means among the measurement results determined by the determination means. It is preferable to calculate.
- the reaction in the reaction region can be efficiently performed according to the state of the reaction region.
- Information about propagation speed can be provided.
- the peak analysis means is the thickness of the reaction zone in the reaction region based on the feature amount of the peak appearing in the wavelength range selected by the selection means among the measurement results determined by the determination means. Is preferably calculated.
- the peak analysis means calculates the temperature analysis of the reaction region based on the feature amount of the peak that appears in the wavelength range selected by the selection means among the measurement results determined by the determination means. It is preferable.
- the peak analysis means analyzes the components of the reaction region based on the feature amount of the peak appearing in the wavelength range selected by the selection means among the measurement results determined by the determination means. Is preferred.
- the recording medium according to the present invention records a program that is executed by a computer and causes the computer to operate as the above-described reaction analysis apparatus.
- the computer When the computer reads and executes the program recorded on the recording medium, the computer can realize the operation and effect of the above-described reaction analysis apparatus.
- a measurement system includes a reaction analysis device according to the present invention, an optical element that collects light at an image point when light is incident from an object point, and an optical A spectroscopic measurement means for spectroscopically measuring the light collected at the image point by the element and outputting the result of the spectroscopic measurement as a signal, and the reaction analyzer receives a signal output from the spectroscopic measurement means It is.
- the optical element condenses the light generated at the object point at the image point
- the spectroscopic measurement unit performs spectroscopic measurement of the collected light
- the result is received by the reaction analysis apparatus described above.
- the optical element is formed integrally with a first surface and a second surface in order from the object point side, and the first surface and the second surface have a first region and a second region, respectively.
- the first region of the first surface is a concave transmission surface
- the first region of the second surface is a concave reflection surface
- the second region of the first surface is a reflection surface
- the surface that contributes to the image formation is the reflection surface, so that no chromatic aberration occurs and the image formation characteristics are good. Therefore, based on the light generated by the reaction occurring locally including the object point, the local state is in a predetermined state with high reproducibility and high spatial resolution without greatly affecting the situational power of the optical element. Can be notified.
- the reaction region is in a predetermined state when the relative intensity of the first wavelength component with respect to the second wavelength component is a value within a predetermined range. Therefore, based on the measurement result of the spectroscopic measurement device related to the reaction region, it is possible to appropriately detect and notify with high reproducibility that the reaction region that is not greatly affected by the measurement situation is in a predetermined state. It became possible.
- the peak analysis means since the peak analysis means generates predetermined information regarding the characteristics of the reaction region based on the information obtained from the wavelength range force selected according to the state of the reaction region, It has become possible to provide information on the characteristics of the reaction region efficiently.
- the optical element condenses the light generated at the object point at the image point
- the spectroscopic measurement means performs spectroscopic measurement on the collected light
- the result is the above-described reaction analysis apparatus. Will be notified that the reaction area is in a predetermined state, and based on the light generated by the local reaction! /, It is appropriate with high reproducibility without greatly affecting the situational power of the optical element. It is now possible to detect and notify that the local area is in a predetermined state.
- the reflective optical element has a good imaging characteristic without the occurrence of chromatic aberration because the surface that contributes to imaging is a reflective surface
- the reflection optical element is based on light generated by a reaction occurring locally.
- Situational power of optical elements It has become possible to detect and notify that a local state is in a predetermined state appropriately with high reproducibility without being greatly affected, and with high spatial resolution.
- FIG. 1 is a diagram showing two types of spectral spectra for explaining the concept of one embodiment of the present invention.
- FIG. 2 is a block diagram showing an overall configuration of a measurement system according to an embodiment of the present invention.
- FIG. 3 is a cross-sectional view showing a configuration of an optical element in the measurement system.
- FIG. 4 is a side view showing a configuration of a spectroscopic measurement apparatus in the measurement system.
- FIG. 5 is a computer system that operates as a reaction analyzer in the measurement system. It is a block diagram which shows the internal structure.
- FIG. 6 is a block diagram showing a functional configuration of a reaction analyzer in the measurement system.
- FIG. 7 is a flowchart showing a control structure of the entire processing of the reaction analyzer in the measurement system.
- FIG. 8 is a flowchart showing a control structure of spectrum pattern determination processing in the measurement system.
- FIG. 9 is a flowchart showing a control structure of particle state analysis in the measurement system.
- FIG. 10 is a flowchart showing a control structure of peak analysis processing in the measurement system.
- FIG. 11 is a flowchart showing a control structure of knocking determination processing in the measurement system.
- FIG. 12 is a side view showing a configuration of a spectroscopic measurement apparatus configured to extract only a specific wavelength component in the measurement system.
- Fig. 1 shows a comparison of spectral spectra in the wavelength region of 300 nm to 550 nm of the light emitted from these flames when methane gas is completely burned in air.
- a radical emits light having a specific wavelength component depending on the type of radical. Therefore, a spectral pattern with some steep peaks is observed in the light vector emitted from the flame of complete combustion.
- the luminous flame in addition to the light component emitted by radical force, the light component emitted by black body radiation is detected. Blackbody radiation emits light over a wide wavelength band component, unlike light emitted by radical forces. Therefore, a continuous spectrum pattern is observed in the spectrum of light emitted from the luminous flame, especially in the long wavelength band.
- the wavelength corresponding to the light emitted from C * is about 473nm, or about 516 ⁇
- None of the excess air ratio, equivalent ratio, or air-fuel ratio can be calculated from the ratio of the intensity of the m component to the intensity of the component at a wavelength of about 431 nm corresponding to the light emitted from CH *.
- the ratio between the intensity of the component with a wavelength of about 473 nm or about 516 nm and the intensity of the component with a wavelength of about 431 nm is the spectrum of the light emitted by the complete combustion and the spectrum of the emitted light. And the values are very different. Even in such a spectral pattern, a peak can be recognized at a wavelength corresponding to light that also emits radical force in a wavelength band of about 431 nm or less corresponding to light emitted from CH *.
- the present embodiment from the spectral information of the flame, first, such a difference in the spectral pattern is compared with the other one of the intensities of the two wavelength components measured simultaneously.
- relative intensity the relative value
- the detection of the occurrence of bright flame or soot or poor fuel premixing is performed.
- the characteristics such as the peak timing, wavelength, intensity, spectrum line width, and line shape are used. Based on this, analysis processing such as detection of occurrence of knocking is performed.
- FIG. 2 shows a schematic configuration of the measurement system according to the present embodiment.
- this measurement system 100 includes an optical element 104 for condensing light emitted from the measurement area 102 in or near the reaction area, and an optical element for light emitted from the measurement area 102.
- Spectra measurement device 110A, ..., 110N and measurement signal 112A, ..., 1 12N are received, and signal processing is performed on this measurement signal 112A, ... In 102, the occurrence of bright flame was detected and Output analysis and measurement signal 112A, ...
- a reaction analyzer 114 that performs analysis on the measurement target and its physical state in the measurement area 102 based on 112N and outputs the analysis result 108 .
- FIG. 3 shows a cross-sectional view of the optical element 104 according to this embodiment.
- the optical element 104 is an integral optical element having a first surface 140 and a second surface 142.
- a space between the first surface 140 and the second surface 142 is a transparent medium.
- the medium is so-called optical glass or synthetic quartz.
- Each of the first surface 140 and the second surface 142 includes first regions 140A and 142A on the outer peripheral side, and second regions 140B and 142B in the center.
- the first region 140A of the first surface 140 is a spherical transmission surface having a predetermined point O as the center of curvature.
- the second area 140B of the first surface 140 has gold
- a first reflective film 144 having a reflective material (for example, aluminum) force such as a metal material is deposited. Therefore, the second region 140B of the first surface 140 is a reflection surface for incident light with medium side force.
- a protective film 148 for protecting the reflective film 134 from the measurement target is formed on the measurement film 102 side of the reflective film 144.
- a second reflective film 146 having the same reflective material force as that of the first reflective film 144 is deposited. That is, the first region 142A of the second surface 142 serves as a concave reflection surface for light from the medium side.
- the second region 142B of the second surface 142 is a spherical transmission surface having the point I as the center of curvature. Below, point O is called the “object point” and point I is called the “image point”.
- the light from the object point O enters the first region 140A of the first surface 140, travels in the medium between the first surface 140 and the second surface 144, and the first surface 140 Reflected in region 142A.
- the light reflected by the first region 142A of the second surface 142 is reflected by the second region 140B of the first surface 140, is emitted through the second region 142B of the second surface 142, and passes through the stray light stop 150. And focused on image point I.
- Point O on the object point O side
- the light ⁇ from ⁇ is also condensed on the image plane on the image point I side by the optical element 104. Therefore, in this optical element 104, the object points ⁇ , ⁇ , ⁇ , ⁇ , ⁇ , ...
- the end face on the incident side of the optical fiber cable 106 is such that each of the incident end faces of the optical fibers 108,..., 108N is on the image plane of the optical element 114 including the image point I. 2 It is arranged so that it is arranged toward 140 ⁇ . Therefore, object point ⁇ , 0, 0, 0, 0, ...
- the light generated at 1 2 3 4 5 ⁇ is collected by the optical element 104 by the fibers 108N,..., 108N arranged at the position on the image plane corresponding to the object point.
- the collected light is incident on the fiber 108 ⁇ , ..., 108N, and exits from the end face on the 1 ION side through the optical fiber 108 ⁇ , ..., 108N, the spectroscopic measurement device 110 ⁇ , ... Will be.
- FIG. 4 shows a side view of the spectroscopic measurement apparatus 110A.
- the spectroscopic measurement device 110A is disposed on the optical axis of the light emitted from the optical fiber 108A, and collimates the light emitted from the optical fiber 108A.
- the second mirror 174 arranged on the optical axis of the reflected light by the second mirror 174 and the second mirror 174 arranged on the optical axis of the reflected light by the second mirror 174 of the parallel light emitted through the collimator 170
- Spectroscopic element 176 that diverges and emits the above-mentioned light reflected by 174
- a third mirror 178 arranged on the optical path of the spectral light dispersed by spectral element 176, and a third mirror 178
- a photodetector 180 that is arranged on the optical path of the spectrum light and sequentially photoelectrically converts the incident spectrum light and outputs a time-series electric signal obtained as a result as the measurement signal 112A.
- the spectroscopic element 176 is specifically a diffraction grating, a prism, or the like.
- the photodetector 180 is a CCD image sensor or the like in which a large number of charge coupled devices (CCDs) and the like are arranged in a matrix.
- Mirrors 172, 174, and 178 are provided for the incident light so that the light is not converged in the process from when the light generated by the plasma beam is incident until it is separated by the spectroscopic element 176 and received by the photodetector 180. It arrange
- the light that has reached the spectroscopic element 176 is split into spectral light by the spectroscopic element 176 and reaches the photodetector 180 via the mirror 178. Therefore, the light receiving position of each component of the spectrum light on the photodetector 180 differs depending on the wavelength.
- the photodetector 180 sequentially photoelectrically converts the light received at each light receiving position, and outputs a measurement signal 112A including information indicating the light receiving position at that time and the light intensity at the light receiving position. . Therefore, the measurement signal 112A output from the light detector 180 includes information indicating the intensity at each time of each wavelength component included in the light from which the object point O force is also emitted.
- the function of the reaction analysis apparatus 114 of the present embodiment can be realized by computer hardware, a program executed by the computer hardware, and data stored in the computer hardware.
- FIG. 5 shows the configuration of a computer system 200 for realizing the functions of the reaction analyzer 114.
- this computer system 200 includes a computer 2 having an interface 202 that receives measurement signals 112A,..., 112N and outputs analysis results 116. 04, and an input device 218 such as a keyboard and an output device 220 such as a display device connected to the computer 204, respectively.
- the computer 204 includes a node 206 connected to the interface 202 and a central processing unit (CPU) 208 in addition to the interface 202.
- the computer 204 further includes a read only memory (ROM) 210 that stores a boot-up program, a random access memory (RAM) 212 that stores program instructions, a system program, work data, and the like, a hard disk 214, and a removable medium.
- ROM read only memory
- RAM random access memory
- Drive 216 drives a hard disk 214.
- CPU 208, ROM 210, RAM 212, hard disk 214, and removable media drive 216 are all connected to bus 186.
- the computer 204 may further include a network adapter board that provides connection to a low-power area network (LAN).
- LAN low-power area network
- a program for causing the computer system 200 to operate as the reaction analysis device 114 is stored in a removable medium inserted into the removable medium drive 216, and the stored content is transferred to the hard disk 214.
- the program may be transmitted to the computer 204 through a network (not shown) and stored in the node disk 214.
- the program is loaded into the RAM 212 when executed. Note that the program may be loaded directly into the RAM 212 from the above-described removable medium or network without going through the hard disk 214.
- This program includes a plurality of instructions for causing the computer 204 to execute the operation as the reaction analysis device 114. Some of the basic functions required to execute these operations are performed by operating system (OS), third-party programs, or modules in various toolkits that are installed on and run on computer 204. Provided. Therefore, this program does not necessarily include all functions necessary for realizing the operation of the reaction analyzer 114. This program only needs to include instructions that implement each function of the reaction analysis device 114 by calling appropriate functions, tools, and the like in a controlled manner so that a desired result can be obtained. . Since the operation of the computer system 204 itself is well known, the description is not repeated here! /.
- FIG. 6 shows a functional configuration of the reaction analyzer 114 in a block diagram form.
- reaction analysis device 114 receives measurement signals 112A,..., 112N, and displays time-series data indicating the intensity of each wavelength component at each time of the emitted light at each position in measurement region 102. (Hereinafter referred to as “spectral data”) and a spectral conversion data storage unit 302 that stores spectral data generated by the signal conversion unit 300.
- the reaction analysis device 114 is further a spectrum pattern having a force-continuous portion, which is a spectrum pattern in which the spectral vectors at each time and each position have a peak over the entire region based on the spectral data.
- a spectral pattern determination unit 304 that determines whether or not, a processing selection unit 306 that selects an analysis process to be executed based on a determination result by the vector pattern determination unit 304, and outputs an instruction corresponding to the selection result;
- Processing selection unit 306 Analyzes spectral data of a spectrum having a continuous pattern according to the command of the power, and outputs a result of the spectral data analysis of the continuous pattern analysis unit 308 and spectral data according to the command from the processing selection unit 306
- a peak analysis unit 310 that executes knocking determination and reaction region analysis based on the peak on the spectrum, and outputs the result.
- the process selection by the process selection unit 306 is specifically as follows. That is, for the spectral data at the time determined to be a continuous spectral pattern among the time on the spectral data, analysis by both the continuous pattern analysis unit 308 and the peak analysis unit 310 is selected. Sarasako, as the wavelength range of the peak to be analyzed by the peak analysis unit 310, select the first wavelength range where the influence of the continuous outer pattern is slight, and analyze the first wavelength range. Specify the wavelength range of the target peak. For other times, only the analysis by the peak analysis unit 310 is selected, and the wavelength range of the peak to be analyzed by the peak analysis unit 310 is the second wavelength that is the entire wavelength range on the spectral data. Specifies the wavelength range of.
- the wavelength range in which the influence of the continuous spectrum pattern is slight can be predicted in advance according to the cause if the cause of the occurrence of the continuous spectrum pattern is known.
- the influence of the luminous flame due to soot is negligible in the wavelength band of about 43 lnm or less corresponding to the light emitted from CH *. Therefore, in this embodiment, information indicating the wavelength range in the case of limitation is prepared in advance, and processing selection is performed. It is assumed that unit 306 holds this and uses this information in the selection.
- the reaction analysis device 114 further includes an analysis result storage unit 312 that holds the analysis results output by the continuous pattern analysis unit 308 and the peak analysis unit 310, and a user that receives an operation for commanding the output of the analysis results from the user.
- the result of determination by the interface 316 and the spectrum pattern determination unit 304 and the result of knocking determination by the peak analysis unit 310 are converted into information on the state of the measurement region 102 and output, and based on the operation received by the user interface 316 And an output unit 314 for reading out and outputting the measurement target information held in the analysis result storage unit 312.
- the information output from the output unit 314 based on the determination result by the spectrum pattern determination unit 304 is, specifically, notification of soot generation, notification of poor fuel premixing, generation of bright flame, and the like.
- the spectrum pattern determination unit 304 obtains the intensity value of the first wavelength component (hereinafter referred to as “first intensity value”) used for determination of the spectrum pattern from the stored spectral data.
- the first wavelength component it is desirable to select a wavelength component having a large intensity due to the difference in the continuous spectrum pattern.
- the intensity due to the difference in the continuous spectrum pattern is desired.
- the difference is relatively small and it is desirable to select the wavelength component. For example, when the combustion reaction of hydrocarbon fuel is performed in the measurement region 102 (see Fig. 2), it is about 473nm or about 516nm corresponding to the light emitted from C *.
- the second wavelength component for example, when a hydrocarbon fuel combustion reaction is performed in the measurement region 102 (see FIG. 2), light emitted from CH *, CN *, or OH * is used. Corresponding wavelength components may be selected.
- the continuous pattern analysis unit 308 follows the command corresponding to the analysis processing of the continuous spectrum pattern from the processing selection unit 306! ⁇ Necessary for analysis from continuous spectral patterns Data reading unit 350 for reading the intensity values of the third wavelength component and the fourth wavelength component from the spectral data storage unit 302, and the intensity values of the third and fourth wavelength components read by the data reading unit 350
- the temperature calculation unit 352 calculates the temperature of the particles emitting blackbody radiation, and calculates the particle concentration based on the temperature calculated by the temperature calculation unit 352 and the intensity value of the fourth wavelength component.
- a density calculation unit 354 that performs the calculation. It is desirable that both the third wavelength component and the fourth wavelength component are wavelength components outside the second wavelength range described above. For example, a wavelength component of about 680 nm may be selected as the third wavelength component, and a wavelength component of about 800 nm may be selected as the fourth wavelength component.
- the peak analysis unit 310 scans the spectral data stored in the spectral data storage unit 302 to detect a peak of light emitted from the measurement region 102, and also includes spectral data. And a peak feature amount extraction unit 372 that extracts a feature amount of a peak detected by the peak detection unit 370.
- the peak feature value includes the peak appearance time, wavelength, peak height, that is, the intensity of the wavelength component at the peak apex (hereinafter referred to as “peak intensity”), spectral line width, and shift amount. , And line shapes.
- the peak analysis unit 310 further has a component force that causes a temporal change in the light generated by the secondary product force generated by the influence of the pressure wave when knocking occurs, or the light generated by the reaction. Determines whether knocking has occurred based on the feature value of the peak that appears in the fifth wavelength component corresponding to the emitted light, and outputs a signal to that effect when knocking has occurred
- a knocking detection unit 373 is provided.
- the fifth wavelength component is a wavelength component corresponding to, for example, light emitted from OH *.
- the intensity of light emitted from OH * may change stepwise as time elapses.
- the knocking detection unit 373 is based on such a temporal change of light that occurs when knocking occurs. Determine if knocking has occurred.
- the peak analysis unit 310 further performs statistical processing on the feature amount of each peak extracted by the peak feature amount extraction unit 372, and as a result, the feature of the light generated by the measurement position force is obtained. It has a statistical processing unit 374 that generates information to be expressed (hereinafter referred to as “measurement light characteristic information”).
- the measurement light feature information specifically includes peak feature amounts, peak feature amount ratios between peaks, and their average, root mean square, variance, and time variation characteristics.
- the peak analysis unit 310 further includes a calibration information storage unit 376 that holds calibration information representing the relationship between the characteristics of light emitted from the reaction region and the state-features of the reaction region, and a measurement based on the calibration information.
- the optical characteristic information is analyzed and converted into information related to the characteristic of the measurement object, and the information is stored in the analysis result storage unit 312 as an analysis result based on the peak.
- the characteristics of the measurement object include, for example, the mass, flow rate, concentration, pressure, temperature, plasma characteristic evaluation value, etc. of the measurement object, their temporal fluctuations, reaction zone thickness, reaction arrival speed, and the like.
- the calibration information is a function, a correlation curve, a correspondence table, or the like that represents the relationship between the above-described characteristics of the light generated by the plasma force and the characteristics of the measurement target described above.
- FIG. 7 is a flowchart showing the control structure of the entire process executed by the reaction analyzer 114.
- this process 400 is performed for each of the measurement signals 112A,.
- the process target time is initialized to zero.
- the measurement signal at time t is converted into spectral data by amplifying and digitalizing.
- the spectral data converted in step 404 is stored.
- the spectral data accumulated in step 406 is used to determine the spectral pattern. This process will be described later with reference to FIG.
- step 410 it is determined whether or not the force determined in step 408 is that the spectrum is a continuous spectrum pattern. If it is the former, the process proceeds to step 412. Otherwise, go to step 416.
- step 412 time t is set as the target time for particle state analysis based on a continuous spectrum pattern.
- step 414 the wavelength band under the influence of blackbody radiation Is excluded from the processing target in step 418 described later, the first wavelength range is selected to limit the peak detection range, and the process proceeds to step 418.
- the second wavelength range is selected in step 416, the entire wavelength band is set as the peak detection range, and the process proceeds to step 418.
- step 418 it is determined whether or not the force is given the measurement signal corresponding to the time after time t. If the measurement signal is given, the process proceeds to step 420, 1 is added to the time t, and the process returns to step 404. Otherwise, go to step 422.
- step 422 the state of the particles emitting black body radiation is analyzed using the spectroscopic data. This process will be described later with reference to FIG.
- step 424 the peak data is analyzed on the spectroscopic data.
- step 426 information obtained as a result of the processing in steps 422 and 424 is output as an analysis result, and this processing is completed.
- FIG. 8 is a flowchart showing the control structure of the spectrum pattern analysis process executed in step 408 (see FIG. 7).
- step 440 reads the intensity values of the first and second selected wavelengths from the spectral data accumulated in step 406 (see FIG. 7).
- step 442 the first intensity value is divided by the second intensity value to calculate a relative intensity.
- Step 444 it is determined whether the relative intensity calculated in Step 442 is a value within a predetermined reference range or a value outside the reference range. If the value is within the reference range, the spectrum pattern determination processing 408 is terminated. If the value is outside the reference range, the process proceeds to step 446. In step 446, a value corresponding to the detection of a continuous spectrum pattern in the spectrum to be determined is output. In the following step 448, a notification corresponding to the continuous spectrum pattern is issued, and the spectrum pattern determination processing 408 is terminated.
- FIG. 9 is a flowchart showing the control structure of the particle state analysis process executed in step 422 (see FIG. 7).
- step 460 the processing target time t is initialized to zero.
- step 462 it is determined whether or not the time t is set as the analysis target time in step 412 of the process shown in FIG. If yes, go to step 466. Otherwise, go to step 464, add 1 to time t at step 478, and go back to step 462.
- step 466 the intensity values of the third and fourth wavelength components at time t are read from the spectral data accumulated in step 404 (see FIG. 7).
- step 468 using the two-color method, the true temperature of the particle is calculated by emitting blackbody radiation from the intensity values of the third and fourth wavelength components read in step 466.
- step 470 based on Planck's radiation law, the luminance temperature corresponding to the wavelength component is calculated from the true temperature calculated in step 468 and the intensity value of the third wavelength component.
- the product of the so-called KL value that is, the emissivity and the thickness of the reaction field is calculated from the true temperature calculated in step 468 and the luminance temperature calculated in step 470.
- the KL value calculated in step 472 is converted to the particle concentration.
- step 476 it is determined whether or not the spectral data at the time after the time t is accumulated and whether or not the power is high. If so, the process moves to step 464. Otherwise go to step 480.
- step 480 statistical processing in the time direction is performed on the true temperature and particle concentration calculated in the series of processing in steps 460 to 476 described above, and the average, standard deviation, and Find time fluctuations.
- step 482 the true temperature and particle concentration calculated in the series of steps 460 to 476 described above and the statistics obtained in step 480 are output and stored as analysis results, and the particle state analysis process is performed. Exit 422.
- FIG. 10 is a flowchart showing the control structure of the peak analysis process executed in step 424 (see FIG. 7).
- process target time t is initialized to zero.
- step 502 it is determined whether or not the time t is within the wavelength range 1S limited range set in step 414 or step 416 (both refer to FIG. 7). If so, the process proceeds to step 504. Otherwise go to step 506.
- step 504 the spectroscopic data is scanned in the limited wavelength band to detect all peaks in the range, and the process proceeds to step 508.
- the spectral data is scanned for all wavelength bands in the spectral data to detect all peaks in the range, and the process proceeds to step 508.
- step 508 for each of the peaks detected in step 504 or 506 based on the spectroscopic data, the peak appearance time, wavelength, peak intensity, spectral line width, shift amount, and line shape are obtained. Are stored as peak feature values.
- step 510 in step 474, the KL value calculated in step 472 is converted into the concentration of particles.
- step 476 it is determined whether or not spectral data at times after time t is accumulated. If accumulated, the process proceeds to step 464, 1 is added to the processing target time t, and the process returns to step 502. Otherwise, go to step 513.
- step 513 a knock determination process for determining whether or not knocking has occurred is performed based on the peak feature value. This process will be described later with reference to FIG.
- step 514 statistical processing relating to the peak feature amount is executed based on the feature amount of each peak identified by the series of processing in steps 500 to 512, and the measurement light feature information is generated. Then, the generated measurement light feature information is stored.
- step 516 as in step 502, it is determined whether or not there is a restriction on the wavelength range. If no limit is set, the process proceeds to step 518, where the ratio of peak intensity in the measured light characteristic information and its statistical value are compared with the calibration curve prepared in advance to analyze the excess air ratio. Is executed and the result is output. At this time, output the analysis result of the excess air ratio after converting it to local equivalent ratio or local air-fuel ratio information.
- step 516 or step 518 When the processing of step 516 or step 518 is completed, the following steps 520 and 522, step 524, step 526, step 528 and 530, and step 532 are executed in parallel. .
- step 520 information on the position of the reaction start point and the reaction start time in the reaction region prepared in advance, the information on the measurement position, and the appearance time of the peak in the measurement light characteristic information are included. And the analysis of the reaction propagation speed and its statistics in the reaction region. The analysis result is output and stored.
- step 522 the propagation velocity analyzed in step 520 is multiplied by the width of the peak in the time axis direction to calculate the thickness of the reaction zone. Furthermore, based on the statistics of the propagation velocity and the statistics of the peak width in the time axis direction, the analysis on the statistics of the reaction zone thickness is performed. Then, the reaction zone thickness and its statistics are output and stored as an analysis result.
- step 524 regarding a peak corresponding to a plurality of wavelength components contained in a single radical or light also having plasma power, the radical is calculated based on the peak intensity ratio and the statistics of the peaks.
- the analysis on the rotation temperature of the plasma is executed, and the rotation temperature and its statistics are output and stored as an analysis result.
- step 526 the spectral line width of each peak is converted to the pressure at the measurement position, and the pressure analysis is performed based on the statistics of the spectral line width. Based on the pressure and statistics at the measurement position, Output pressure analysis result as analysis result * Store
- step 528 the wavelength of each peak and the radical or plasma characteristic existing at the measurement position of the shift amount force are identified, and the radical having the characteristic determined from the peak intensity and its statistic, or The mass, flow rate, and quantity of plasma and their statistics are calculated, and the above-mentioned radical or plasma characteristic evaluation value, mass, flow rate, quantity, and their statistics are stored as analysis results.
- component analysis such as molecular analysis and elemental analysis is executed based on the analysis result in step 528, and the result is output and stored as an analysis result.
- FIG. 11 is a flowchart showing the control structure of the knocking determination process executed in step 513 (see FIG. 10) described above.
- step 552 when knocking determination processing 513 is started, in step 552, it is determined whether or not the strength of the fifth wavelength component is rapidly increasing compared to the sixth wavelength component. Specifically, it is determined whether or not the force at which the peak appears at the sixth wavelength component in the time zone when the peak appears at the fifth wavelength component. If not, it is determined that the intensity of the fifth wavelength component has increased rapidly, and the process proceeds to Step 560. If it exists, it rapidly increases and it is determined that it is not, and the process proceeds to Step 554.
- step 554 it is determined whether or not there is a difference between the appearance time of the peak of the fifth wavelength component and the appearance time of the peak of the sixth wavelength component. If there is a deviation, go to Step 560. Otherwise go to step 558.
- step 558 it is determined whether or not the intensity of the wavelength component fluctuates stepwise in a time zone in which a certain peak of the fifth wavelength component appears. If yes, go to step 560. Otherwise, this process is terminated.
- step 560 a notification indicating that knocking has occurred is issued, and this process ends.
- optical element 104 of measurement system 100 is arranged such that light having a desired measurement position force is incident on optical element 104, and measurement is started in this state.
- FIG. 3 when light emitted from an object point O, O, O, O, O,... O in the reaction region is incident on the optical element 104,
- the light passes through the first region 140A of the first surface 140 of the optical element 104, travels in the medium between the first surface 140 and the second surface 142, and is reflected by the first region 142A of the second surface 142. Is done.
- the light reflected by the first region 142A of the second surface 142 is reflected by the second region 140B of the first surface 140 and is emitted through the second region 142B of the second surface 142.
- the light is condensed at the incident end face of each of the optical fibers 108A,.
- the collected light is incident on the fiber 108 ⁇ , ..., 108N, and the spectroscopic measurement device 110A, ..., 1 ION (see Fig. 2) side through the optical fiber 108A, ..., 108N.
- the light is emitted from the end face.
- the light incident on spectroscopic measurement apparatus 110 A is converted into parallel light by collimator 170, reflected by first mirror 172 and second mirror 174, and spectral element 176.
- the light that reaches the spectroscopic element 176 is split into spectroscopic light by the spectroscopic element 176 and reaches the photodetector 180 via the third mirror 178.
- the light detector 180 sequentially photoelectrically converts the light that has reached each light receiving position, and outputs a measurement signal 112A that represents the light arrival position at that time and the light intensity at that position.
- Spectrometers shown in Fig. 2 1 10A, ..., 1 ION all perform the same operations as described above,
- the corresponding measurement signal 112A, ..., 112N is output.
- the output measurement signals 112A,..., 112N are given to the reaction analyzer 114.
- reaction analyzer 114 When reaction analyzer 114 receives measurement signals 112A,..., 112N, reaction analyzer 114 performs the following operation for each of measurement signals 112A,.
- the measurement signal input to reaction analyzer 114 is supplied to 300 signal converters.
- the signal conversion unit 300 sequentially amplifies and digitizes the measurement signal to convert it into spectral data, and stores the spectral data in the spectral data storage unit 302.
- the first intensity value acquisition unit 330 and the second intensity value acquisition unit 332 of the spectral pattern determination unit 304 are sequentially read out and given to the relative intensity calculator 334.
- the relative intensity calculation unit 334 divides the given first intensity value by the second intensity value and sequentially calculates the relative intensity.
- the calculated relative intensity is sequentially given to the determination unit 338.
- the determination unit 338 compares the given relative intensity with the reference value held in the reference value storage unit 336, and determines whether or not the relative intensity is within a predetermined reference range.
- the determination unit 338 determines that the spectral spectrum at the determination target time is a continuous spectrum pattern, and the determination target time and the corresponding time are continuous.
- a signal indicating that the spectrum pattern is correct is output to the output unit 316 and the processing selection unit 306.
- the output unit 316 issues a notice of soot generation, a notice of fuel premixing failure, a notice of the occurrence of a bright flame, etc., and outputs it as an analysis result 116.
- the process selection unit 306 selects an analysis process for the spectral data at that time. That is, for the time determined to be a continuous spectrum pattern, analysis by both the continuous pattern analysis unit 308 and the peak analysis unit 310 is selected, and the analysis target by the peak analysis unit 310 is further selected.
- the wavelength range of the peak is limited to a range where the influence of the continuous spectral pattern is slight. For other times, only the analysis by the peak analysis unit 310 is selected, and the entire wavelength range on the spectroscopic data is designated as the wavelength range of the peak to be analyzed by the peak analysis unit 310.
- the process selection unit 306 and the continuous pattern analysis unit 308 A command for analysis performed by the peak analysis unit 310 is generated and given to the continuous pattern analysis unit 308 and the peak analysis unit 310.
- the data reading unit 350 follows the command and the third wavelength component at the time when the processing by the continuous pattern analysis unit 308 is selected. And the intensity of the fourth wavelength component are read from the spectral data storage unit 302 and sequentially given to the temperature calculation unit 352 and the concentration calculation unit 354.
- the temperature calculation unit 352 calculates the true temperature of the particles emitting black body radiation from the intensity values of the third and fourth wavelength components using the two-color method.
- the temperature calculation unit 352 stores the calculated true temperature value in the analysis result storage unit 312, and further supplies this value to the concentration calculation unit 354. Then, statistical processing regarding the true temperature is executed in the time direction, and the result is stored in the analysis result storage unit 312.
- the concentration calculation unit 354 calculates the luminance temperature corresponding to the wavelength component from the intensity value of the third wavelength component. Then, the KL value is calculated from the luminance temperature and the true temperature given from the temperature calculation unit 352. Furthermore, the KL value is converted into the concentration of particles. The concentration calculation unit 354 stores the calculated particle concentration value in the analysis result storage unit 312. Then, statistical processing regarding the concentration is executed in the time direction, and the result is stored in the analysis result storage unit 312.
- the peak detection unit 370 scans the spectral data stored in the spectral data storage unit 302 in the wavelength direction and the time direction. In each time, it is determined whether or not the force has a peak at that time. However, when the wavelength range to be processed is limited by a command from the processing selection unit 306, scanning is performed only within the limited wavelength range. The peak detection unit 370 gives the result of this determination to the spectroscopic data and gives it to the peak feature amount extraction unit 372.
- the peak feature quantity extraction unit 372 Upon receiving spectral data with peak detection results from the peak detection unit 370, the peak feature quantity extraction unit 372, based on this data, the appearance time, wavelength, and peak of each detected peak. Identify strength. The peak feature amount extraction unit 372 further scans the data around the peak of each peak, and identifies the spectral line width, shift amount, and line shape of the peak for each peak. Then, the identified information is given to the knocking detection unit 373 and the statistical processing unit 374 as the feature amount of each peak. [0133] The knocking detection unit 373 focuses on the fifth wavelength component of the given peak feature quantity and determines whether knocking has occurred or not as follows.
- knocking detection unit 373 outputs a signal indicating the occurrence of knocking to output unit 316. Upon receiving this signal, the output unit 316 issues a knocking notification and outputs it as an analysis result 116.
- the statistical processing unit 374 calculates a feature amount force peak of each peak, a ratio of each feature amount of the peak between the peaks, and the like. The statistical processing unit 374 further performs statistical processing on each feature amount and its ratio, and calculates the average, root mean square, variance, and time variation characteristics. Then, the statistical processing unit 374 gives the feature amount of each peak, the ratio of each feature amount, and the result of the statistical processing for them to the feature amount analysis unit 378 as measurement light feature information.
- the feature amount analysis unit 378 uses the information based on the calibration information held in the calibration information storage unit 376 as follows. Perform analysis and convert to measurement target information. However, the analysis process that uses the peak features that may occur outside the peak detection range must not be executed!
- the feature quantity analysis unit 378 performs analysis on the excess air ratio by comparing the ratio of the peak intensity in the measurement light feature information and its statistical value with the configuration information, and the result Is stored in the analysis result storage unit 312. At this time, the analysis result of the excess air ratio may be stored in the analysis result storage unit 312 after being converted into information on the local equivalent ratio or the local air-fuel ratio.
- the reaction in the reaction region is combustion of hydrocarbon fuel as shown in Fig. 1, the wavelength component of light emitted from C * and the wavelength component of luminous flame overlap.
- the feature amount analysis unit 378 does not perform the analysis of the excess air ratio at the time when the bright flame occurs.
- the feature quantity analysis unit 378 includes the position of the reaction start point in the reaction region and the reaction Based on the start time, measurement position, and peak appearance time, the propagation speed of the reaction in the reaction region and its statistics are analyzed, and the analysis result is stored in the analysis result storage unit 312.
- the feature amount analysis unit 378 calculates the thickness of the reaction zone by multiplying the propagation velocity and the width of the peak in the time axis direction. In addition, based on statistics of propagation velocity and statistics of peak width in the time axis direction, analysis on the statistics of reaction zone thickness is performed. Then, the thickness of the reaction zone and its statistics are stored in the analysis result storage unit 312.
- the feature quantity analysis unit 378 for peaks corresponding to a plurality of wavelength components contained in a single radical or light that also emits a plasma force, calculates the peak intensity ratio and the statistics of the peaks.
- the analysis on the rotation temperature of the radical or plasma is executed, and the temperature and its statistics are stored in the analysis result storage unit 312.
- the feature amount analysis unit 378 converts the spectral line width of each peak into a pressure at the measurement position, performs an analysis on the pressure based on the statistical amount of the spectral line width, and calculates the pressure at the measurement position.
- the result of pressure analysis based on the statistics is stored in the analysis result storage unit 312.
- the feature quantity analysis unit 378 identifies the characteristics of the radicals or plasma in which the wavelength of each peak and the shift amount force are also present at the measurement position, and the peak intensity and its statistics. Calculate the radical, plasma mass, flow rate and quantity, and their statistics, and determine the characteristics, mass, flow rate, and quantity of the radical or plasma, and their statistics. Is stored in the analysis result storage unit 312 as an analysis result. Further, based on the analysis result, component analysis such as molecular analysis and elemental analysis is executed, and the result is stored in the analysis result storage unit 312.
- the feature amount analysis unit 378 executes processing for inspecting whether or not there is a reaction abnormality such as knocking at the measurement position.
- the inspection result is stored in the analysis result storage unit 312.
- the analysis results by the continuous pattern analysis unit 308 and the peak analysis unit 310 are stored in the analysis result storage unit 312.
- the user interface 314 receives an operation requesting output of desired measurement target information from the user, the user interface 314 A command corresponding to the operation is given to the output unit 316.
- the output unit 314 reads information corresponding to the user's request from the analysis result storage unit 312 and outputs it as the analysis result 116 in accordance with the given command.
- the optical element 104 collects the light emitted from the measurement region 102.
- this optical element 104 since only the reflecting surface is involved in the condensing, spectroscopic measurement with high spatial resolution without occurrence of chromatic aberration, detection of occurrence of bright flames and soot, detection of knocking,
- various analyzes on the reaction region can be performed.
- a time-series signal is generated as a measurement signal, and signal processing is executed in time series using the time-series signal. Therefore, it is possible to obtain information on the time series change of the reaction in the measurement region 102.
- the light of the continuous spectral pattern is based on the relative intensity with respect to the intensity of the second wavelength component obtained at the same time as the intensity of the first wavelength component obtained by spectroscopic measurement. Determine that has occurred. Based on the determination result, the occurrence of soot, bright flame, or poor fuel premixing is detected. Therefore, it is possible to detect a soot that is not affected by the deterioration of the performance of the optical element that receives light due to soot adhesion, the occurrence of a luminous flame, or a fuel premixing failure.
- the relative relationship between the light emitted from OH * due to the influence of the pressure wave accompanying knocking and the light emitted from other radical force generated by the reaction, and the time of the light emitted from OH * The occurrence of knocking is detected based on the change. Therefore, knocking can be detected directly rather than detecting force knocking such as pressure and vibration, and the reproducibility of detection of occurrence of knocking is improved. In addition, it is possible to detect the occurrence of knocking without being affected by the deterioration of the performance of the optical element that receives light due to adhesion of soot and the like.
- the optical element 104 is an optical system that condenses light by reflection.
- An optical system such as a convex lens may be used instead of the optical element 114.
- the end surface of the optical fiber 108 ⁇ , ..., 108N on the optical element 104 side is disposed on the image plane of the optical element 104, but the present invention is not limited to this.
- the form is not limited.
- the incident end faces of the optical fibers 108A,..., 108N may be three-dimensionally arranged. This makes it possible to measure and analyze the light emitted from the reaction region in a three-dimensional manner.
- the spectroscopic measurement devices 112A, ..., 112N spectrally split the incident light and convert the resulting spectral light into an electrical signal by the photodetector 180. It was something to output.
- the present invention is not limited to such an embodiment. Spectroscopic measurement if the reaction being performed in the measurement position response region is known, or if the goal of the measurement is to obtain information only for the response of an object having a predetermined plasma characteristic The device may extract only a specific wavelength component from the light emitted from the reaction region and convert it into an electrical signal.
- the photodetector 180 may be arranged at a position where only a specific wavelength component of the spectral light that has been split passes. If there are a plurality of desired wavelength components, a plurality of photodetectors may be arranged at positions corresponding to the desired wavelength components, respectively.
- FIG. 12 shows an example of a spectroscopic measurement apparatus having such a function.
- an optical fiber 108 A is connected to the spectrometer 600.
- This spectroscopic measurement apparatus 600 is a multi-system spectroscopic measurement unit 610A, 610B, 610C for measuring the intensity of light of a wavelength (hereinafter simply referred to as “selected wavelength”) selected in advance according to the object to be measured. , ... have 610N.
- the selected wavelengths include light from OH *, light from CH *, light from CN *, and C * Arising from
- the spectroscopic measurement unit 610A is arranged on the optical axis of the light emitted from the optical fiber 108A so as to form a predetermined angle with respect to this optical axis, and includes an optical component in a predetermined band including the selected wavelength of the spectroscopic measurement unit 610A.
- the dichroic mirror 612A and the dichroic mirror 612A have reflection characteristics with respect to the wavelength of the laser beam and transmission characteristics with respect to light components in other wavelength bands including the selected wavelength other than the spectral measurement unit 610A.
- a filter 614A that is arranged on the optical axis of the reflected light and has transmission characteristics for the light component of the selected wavelength of the spectroscopic measurement unit 610A, and a filter 614A on the optical axis of the light reflected by the dichroic mirror 612A And a photodetector 6 16 A disposed on the opposite side of the dichroic mirror 612A.
- the configuration of the spectroscopic measurement units 610B, 610C,..., 610N is also the same as that of the spectroscopic measurement unit 610A. However, the wavelength characteristics of the dichroic mirror and the filter are selected according to the selected wavelength.
- the spectroscopic measurement apparatus 600 operates as follows. That is, when light is incident from the optical fiber 108A, the light is split by the dichroic mirrors 612A, 612B, 612C,. Of the dispersed light components, the components in the wavelength band near the selected wavelength pass through the filters 614A, 614B, 614C, ..., 614N, respectively, and the photodetectors 616A, 616B, 616C, ..., 616N To reach. Each of the photodetectors 616A, 616B, 616C,..., 616N sequentially converts the reached light component into a measurement signal 112A and outputs it.
- the signal processing device 114 When the signal processing device 114 performs determination and analysis based on the measurement signal 112A output in this manner, it is not necessary to perform peak detection and other processing for wavelength bands other than the vicinity of the selected wavelength. . Since the amount of information to be processed decreases, signal processing becomes efficient and high-speed processing becomes possible.
- the output of the photodetectors 616A, 616B, 616C, ..., 6 16N The signal does not necessarily include information on the light receiving position.
- a photomultiplier tube or the like is applied as the photodetector 616A, 616B, 616C, 616N. May be. Photomultiplier tubes have higher time response than image sensors such as CCDs, so measurement with high time resolution is possible.
- the output signals of the photodetectors 616A, 616B, 616C, ..., 616N are amplified separately, and the amplified signals are output as measurement signals 112A. You may make it do. However, in that case, it is necessary to set the reference value stored in the reference value storage unit 336 shown in FIG. 6 to a value according to the amplification factor of the signal.
- the temperature and concentration analysis processing based on the continuous spectrum pattern and the analysis processing based on the peak are performed after the entire spectral data is stored in the spectral data storage unit 302 shown in FIG. It was configured to run on.
- every time spectral data corresponding to a certain time is generated, an analysis based on the spectral data at that time is executed. Also good.
- the analysis process may be executed in real time.
- the analysis result obtained by such real-time processing may be output in real time.
- the power for explaining the processing for the continuous spectral pattern mainly caused by the bright flame in the combustion reaction also shows the continuous spectral pattern in various other reactions. Judgment and analysis processing can be selected based on the judgment. For example, in a reaction in which a reaction region is irradiated with laser light, etc., and a substance in the region is turned into plasma, light having a continuous spatter pattern is generated at the earliest stage of the reaction, particularly in the short wavelength region There are things to do. Even in such a case, it is possible to appropriately detect the initial stage of the reaction by appropriately selecting the first wavelength component and the second wavelength component and the reference value for determination. Also, in the early stages detected in this way! / Don't run the peak analysis process! You can do it!
- the output unit 316 converts the determination result by the spectrum pattern determination unit 304 and the knock determination result by the peak analysis unit 310 into information on the state of the measurement region 102.
- the measurement target information held in the analysis result storage unit 312 was read out and output.
- the signal processing unit 114 may further generate and output new information by combining the information to be output by the output unit 316.
- the reaction area is an area where repeated reactions occur in a certain cycle, such as a combustion chamber of an automobile engine
- the analysis results are combined based on the information stored in the measurement target information storage unit 312. Then, information representing the relationship between the analysis results and the reaction cycle may be generated and output.
- the analysis results may be compared with each other or the correlation may be analyzed to generate and output information representing the relationship between the analysis results.
- the present invention can be used for measurement, analysis, error detection, reaction analysis, diagnosis, and the like of the reaction in general technology using combustion or plasma reaction.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Immunology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Description
明 細 書
反応解析装置、記録媒体及び計測システム
技術分野
[0001] 本発明は、燃焼反応、プラズマ反応等の反応 (以下、単に「反応」と呼ぶ。)の状態 を計測'解析する反応解析装置及び計測システムに関し、特に、煤、輝炎及び燃料 予混合不良等の発生を検知して通知し、また、光学的な測定手法によって反応の領 域から情報を得て、その情報をもとに反応の特徴を解析する反応解析装置及び計測 システムに関する。また、本発明は、反応解析装置を構成するためのプログラムが記 録された記録媒体に関する。
背景技術
[0002] 反応が起きて!/、る領域 (以下、単に「反応領域」と呼ぶ。)にお 、て異常な反応が起 こり、未反応の粒子が混入したり反応が不完全になったりすると、その反応を利用し て動作する機関の動作に大きな影響を及ぼす。例えば、炭化水素系燃料と空気との 予混合が行なわれていな力つた場合などには、燃料が濃い領域で不完全燃焼し、煤 が形成され、輝炎が発生する。また、内燃機関において燃焼室内で予期しない燃焼 が生じると、いわゆるノッキングが発生する。このような異常反応の発生を検知したり、 反応がどのような特徴を有するものであるか測定 '解析によって知ったりすることは、 反応を利用して動作する機関の高効率化、低環境負荷化にとって必要不可欠なもの である。
[0003] 従来、反応異常を検知したり反応の特徴を知るための手法として、人間の知覚によ る経験的な手法、反応領域の圧力測定及び圧力解析による手法、反応室の音、また は、振動の測定及び解析による方法、反応領域からの排気等を測定しその成分等を 分析する手法などが行なわれてきた。し力 これらの手法は感覚的、または、間接的 な手法であるため、検知の再現性に欠け、また反応について詳細な情報を得ること ができるものではなかった。
[0004] そこで、反応領域を直接的に光学計測することにより反応異常の発生を検知したり 、反応が行なわれて 、る領域の光を解析することによって反応の状態等にっ 、ての
情報を得たりする様々な技術が提案されている。例えば、特許文献 1には、火炎の各 自発光に対応させて燃焼室に光センサを設置し、光センサにより検出された発光強 度の比から空燃比を算出し、この空燃比に基づいて燃焼診断を行なう方法が開示さ れている。また、非特許文献 2に記載の燃焼診断手法のように、燃焼室に光ファイバ を挿入し、光ファイバを介して燃焼室内の光を検出し、その光の強度によってノッキン グ等の燃焼異常を検出するものもある。
[0005] また、本件発明者らは、特許文献 2に記載の光計測装置を提案している。この光計 測装置は、この光計測装置は、反射光学系を形成する光学素子を有するプラグを用 いて燃焼室内の局所の物理'ィ匕学反応によって発生する光を計測し、物理'化学反 応領域、局所的な物理'化学反応特性の検出'解析を行なうものである。
[0006] 特許文献 1 :特開 2005— 226893公報
特許文献 2:特開 2006 - 292524公報
非特許文献 1: AVLビジオリユーシヨンカタログ (エイヴィエルジャパン株式会社) 発明の開示
発明が解決しょうとする課題
[0007] 特許文献 1に記載の技術は、発光強度の比力 空燃比を算出し、当該空燃比によ つて燃焼診断を行なっているが、不完全燃焼により反応領域において煤が形成され 輝炎が発生した場合などには、そもそも自発光の強度を正確に測定することができな い。そのため、空燃比を算出することは不可能となる。したがって、特許文献 1に記載 の技術では、このような異常反応を検知できない。
[0008] 非特許文献 1に記載の技術では、燃焼室内の光の強度によって燃焼異常を検出し ているが、反応領域の熱、圧力、若しくは雰囲気中の化学物質等の影響により、また は、光ファイバに煤などが付着することにより、光ファイバの集光性能が劣化した場合 には、光の強度を正確に測定することができなくなる。また不正確な測定値からは適 切に燃焼異常を検出することは不可能である。したがって、非特許文献 1に記載の技 術では、空燃比を適切に算出することができないば力りでなぐ異常反応の検知の再 現性が確保できない。このような受光の状況によって生じる検知の再現性の問題は、 上記各文献に記載の技術において起こりうる。
[0009] また、特許文献 1及び非特許文献 1に記載の技術では、光センサ、または、光フアイ バに向力うすべての方向からの光が検出される構成となっているため、空間分解能 が悪ぐ異常反応が検出されても、それが反応領域のどの位置で発生したの力、また は、異常反応がどのような空間的分布になっているのかを同定することが極めて困難 である。
[0010] 本発明は、上述の事情に鑑みて提案されるものであって、反応領域が異常な反応 状態にあるカゝを的確にかつ高 ヽ再現性で検知できる反応解析装置、計測システム及 び反応解析装置を構成するためのプログラムを記録した記録媒体を提供しょうとする ものである。
[0011] また、本発明は、反応領域の状態に応じて適切な解析処理を実行し、燃料領域の 特徴を効率よく解析できる反応解析装置、計測システム及び反応解析装置を構成す るためのプログラムを記録した記録媒体を提供しょうとするものである。
[0012] また、本発明は、反応領域が異常な状態にある力を高い空間分解能で検知するこ とができる反応解析装置、計測システム及び反応解析装置を構成するためのプログ ラムを記録した記録媒体を提供しょうとするものである。
課題を解決するための手段
[0013] 本発明に係る反応解析装置は、反応領域から発せられた光の分光測定装置による 測定結果から第 1の波長成分の強度値及び第 2の波長成分の強度値を取得する取 得手段と、取得手段により取得された第 1の波長成分の強度値及び第 2の波長成分 の強度値から第 2の波長成分に対する第 1の波長成分の相対強度を算出する相対 強度算出手段と、相対強度算出手段により算出された相対強度が所定の範囲内の 値であるか否かを判定する判定手段と、判定手段により相対強度が所定の範囲内の 値であると判定されたことに応答して反応領域の状態が所定の状態にあることを通知 する通知手段とを有することを特徴とする。
[0014] 上記構成によれば、反応領域力 発せられた光の所定の分光測定装置による測定 結果のうち、第 2の波長成分に対する第 1の波長成分の相対強度が所定の範囲内の 値であるときに反応領域が所定の状態にあることを通知する。この相対強度は、第 1 の波長成分、または、第 2の波長成分の強度値に比べ、反応領域から発せられた光
を受光し分光測定する際に光学系の状態に依存して発生する誤差の影響によって 変動することが少ない。したがって、反応領域に関する分光測定装置による測定結 果に基づき、測定の状況から大きく影響を受けることなぐ反応領域が所定の状態に あることを高 、再現性で適切に検知し通知することができる。
[0015] 取得手段は、炭化水素の反応領域から発せられた光の所定の分光測定装置によ る測定結果から、 C *から発せられる光の波長と略一致する波長成分の強度値を第
2
1の波長成分の強度値として、 CH*、 CN*、及び OH*からなる群より選ばれた少なく とも一のラジカル力 発せられる光の波長と略一致する波長の成分の強度値を第 2の 波長成分の強度値として、それぞれ取得することが好ま 、。
[0016] 上記構成によれば、炭化水素の反応領域に関する分光測定装置による測定結果 に基づき、当該炭化水素の反応領域が所定の状態にあることを高い再現性で適切 に検知し通知することができる。
[0017] 通知手段は、判定手段により相対強度が所定の範囲内の値であると判定されたこと に応答して、反応領域にぉ 、て煤が発生したことを通知することが好ま 、。
[0018] 上記構成によれば、反応領域の分光測定装置による測定結果に基づき、反応領域 にお 、て煤が発生したことを高 、再現性で適切に検知し通知することができる。
[0019] また、本発明に係る反応解析装置は、取得手段は、反応領域から発せられた光の 分光測定装置による測定結果から第 3の波長成分の強度値及び第 4の波長成分の 強度値を取得し、相対強度算出手段は、取得手段により取得された第 3の波長成分 の強度値及び第 4の波長成分の強度値から第 4の波長成分に対する第 3の波長成 分の相対強度を算出し、判定手段が相対強度が所定の範囲内の値であると判定し たことに応答して通知手段が反応領域において煤が発生したことを通知したときに、 算出手段により第 3の波長成分の強度値及び第 4の波長成分の強度値をもとに、反 応領域にお 、て発生した煤の温度を算出することが好ま 、。
[0020] 上記構成によれば、反応領域において煤が発生したことが通知されたときの測定 結果から煤の温度の算出が実行される。煤の温度を算出可能な測定結果から煤の 温度を算出できるため、効率よく煤の温度に関する情報を生成することが可能になる
[0021] 本発明に係る反応解析装置は、通知手段が反応領域において煤が発生したことを 通知したときに、第 3の波長成分の強度値、第 4の波長成分の強度値及び煤の温度 をもとに、反応領域において発生した煤の濃度を算出する濃度算出手段を備えても よい。
[0022] 上記構成によれば、反応領域において煤が発生したことが通知されたときの測定 結果から煤の濃度の算出が実行される。煤の濃度を算出可能な測定結果から煤の 濃度を算出できるため、効率よく煤の濃度に関する情報を生成することができる。
[0023] さらに、通知手段は、判定手段により相対強度が所定の範囲内の値であると判定さ れたことに応答して、反応領域にぉ 、て連続的なスペクトルパターンの光を発する反 応がおきて 、る状態にあることを通知することが好ま 、。
[0024] 上記構成によれば、反応領域に関する分光測定装置による測定結果に基づき、反 応領域において連続的なスペクトルパターンの光を発する反応がおきている状態に あることを高 、再現性で適切に検知し通知することができる。
[0025] 通知手段は、判定手段により相対強度が所定の範囲内の値であると判定されたこと に応答して、反応領域にぉ 、て輝炎が発生したことを通知するようにしてもょ 、。
[0026] 上記構成によれば、反応領域に関する分光測定装置による測定結果に基づき、反 応領域で輝炎が発生する状態であることを高い再現性で適切に検知し通知すること ができる。
[0027] 通知手段は、判定手段により相対強度が所定の範囲内の値であると判定されたこと に応答して、反応領域にぉ 、て不完全燃焼が発生したことを通知するようにしてもよ い。
[0028] 上記構成によれば、反応領域に関する分光測定装置による測定結果に基づき、反 応領域が不完全燃焼の状態にあることを高い再現性で適切に検知し通知することが できる。
[0029] 通知手段は、判定手段により相対強度が所定の範囲内の値であると判定されたこと に応答して、反応領域において燃料と酸化剤との予混合不良が発生したことを通知 するようにしてちょい。
[0030] 上記構成によれば、反応領域に関する分光測定装置による測定結果に基づき、反
応領域の状態が所定の状態にあることを通知する燃料と酸化剤との予混合が不十分 な状態にあることを高い再現性で適切に検知し通知することができる。
[0031] 通知手段は、判定手段により相対強度が所定の範囲内の値であると判定されたこと に応答して、反応領域がプラズマ反応の所定の状態にあることを通知するようにして ちょい。
[0032] 通知手段は、判定手段により相対強度が所定の範囲内の値であると判定されたこと に応答して、反応領域がレーザ誘起ブレイクダウン反応の初期状態にあることを通知 するようにしてちょい。
[0033] 上記構成によれば、所定のレーザ誘起ブレイクダウン反応領域に関する分光測定 装置による測定結果に基づき、反応領域がレーザ誘起ブレイクダウン反応の初期の 状態にあることを高い再現性で適切に検知し通知することができる。
[0034] また、この反応解析装置は、判定手段により相対強度が所定の範囲内の値ではな いと判定されたときに、分光測定装置による測定結果をもとに、反応領域の空気過剰 率を算出する算出手段を有してもよい。
[0035] 上記構成によれば、連続的なスペクトルパターンの光を発する反応が起きて 、な!/、 ときに、測定結果力 空燃比の算出が実行される。したがって、ピークが適切に検出 できな 、連続的なスペクトルパターンの光にっ 、ての測定結果力 空気過剰率の算 出が実行されることを回避でき、効率よく空気過剰率の算出を行なうことができる。
[0036] この反応解析装置はさらに、判定手段による判定の結果に応じて、第 1の波長範囲 及び第 2の波長範囲から、波長範囲を選択する選択手段と、判定手段による判定が 実行された測定結果のうち、選択手段により選択された波長範囲内に出現するピー クの特徴量をもとに、反応領域の特徴に関する所定の情報を生成するピーク解析手 段とを有することが好ましい。
[0037] 上記構成によれば、ピーク解析手段は、判定手段による判定の結果に応じて選択 された波長範囲内のピークの特徴量をもとに、反応領域の特徴に関する所定の情報 を生成する。すなわち、ピーク解析手段は反応領域の状態に応じて選ばれた波長範 囲から得られる情報をもとに反応領域の特徴に関する所定の情報を生成する。した がって、反応領域の状態に応じて効率的に反応領域の特徴に関する情報を提供す
ることがでさる。
[0038] ピーク解析手段は、判定手段による判定が実行された測定結果のうち、選択手段 により選択された波長範囲内の第 5の波長及び第 6の波長にそれぞれ出現するピー クの出現時期をもとに、ノッキングの発生の有無を判定し、当該判定の結果を示す情 報を生成することが好まし 、。
[0039] 上記構成によれば、反応領域の状態に応じた効率的な処理でノッキングの発生の 有無を判定することができる。また反応領域力 発せられた光によってノッキングの発 生の有無を判定するため、振動や圧力によるノッキングの判定より、ノッキングの発生 位置に関する情報を得ることが容易である。またピークの出現時期の情報は、反応領 域で発せられた光の強さやピークの強度値より光の測定系の状態に依存して発生す る誤差の影響によって変動することが少ない。したがって分光測定装置による測定結 果に基づき、測定の状況力も大きく影響を受けることなぐ高い再現性で適切にノツキ ングの発生の判定を行なうことができる。
[0040] ピーク解析手段は、判定手段による判定が実行された測定結果のうち、選択手段 により選択された波長範囲内の第 5の波長及び第 6の波長にそれぞれ出現するピー クにおける強度の時間変化をもとに、ノッキングの発生の有無を判定し、当該判定の 結果を示す情報を生成することが好ま ヽ。
[0041] 上記構成によれば、反応領域の状態に応じた効率的な処理でノッキングの発生の 有無を判定することができる。また反応領域力 発せられた光によってノッキングの発 生の有無を判定するため、振動や圧力によるノッキングの判定より、ノッキングの発生 位置に関する情報を得ることが容易である。また、ピークの出現している時間は短時 間であるため、光の測定系の状態に依存して発生する誤差の影響が少ない。したが つて分光測定装置による測定結果に基づき、測定の状況力 大きく影響を受けること なぐ高 、再現性で適切にノッキングの発生の判定を行なうことができる。
[0042] ピーク解析手段は、判定手段による判定が実行された測定結果のうち、選択手段 により選択された波長範囲内に出現するピークの特徴量をもとに、反応領域における 反応の伝播速度を算出することが好ましい。
[0043] 上記構成によれば、反応領域の状態に応じて効率的に反応領域における反応の
伝播速度に関する情報を提供することができる。
[0044] ピーク解析手段は、判定手段による判定が実行された測定結果のうち、選択手段 により選択された波長範囲内に出現するピークの特徴量をもとに、反応領域における 反応帯の厚さを算出することが好ましい。
[0045] 上記構成によれば、反応領域の状態に応じて効率的に反応領域における反応帯 の厚さに関する情報を提供することができる。
[0046] ピーク解析手段は、判定手段による判定が実行された測定結果のうち、選択手段 により選択された波長範囲内に出現するピークの特徴量をもとに、反応領域の温度 解析を算出することが好ましい。
[0047] 上記構成によれば、反応領域の状態に応じて効率的に反応領域の温度に関する 情報を提供することができる。
[0048] ピーク解析手段は、判定手段による判定が実行された測定結果のうち、選択手段 により選択された波長範囲内に出現するピークの特徴量をもとに、反応領域の成分 を分析することが好ましい。
[0049] 上記構成によれば、反応領域の状態に応じて効率的に反応領域の成分に関する 情報を提供することができる。
[0050] 本発明に係る記録媒体は、コンピュータにより実行され、このコンピュータを前述の 反応解析装置として動作させるプログラムが記録されているものである。
[0051] この記録媒体に記録されたプログラムをコンピュータが読取り実行することにより、 当該コンピュータによって、上述の反応解析装置の奏する作用効果をコンピュータで 実現できる。
[0052] 本発明に係る計測システムは、本発明に係る!/ヽずれかの反応解析装置と、物点か ら光が入射されるとこの光を像点で集光させる光学素子と、光学素子により像点に集 光された光を分光測定し、当該分光測定の結果を信号として出力する分光測定手段 とを有し、反応解析装置は、分光測定手段により出力される信号を受信するものであ る。
[0053] 上記構成によれば、物点で発生した光を光学素子が像点で集光させ、集光された 光を分光測定手段が分光測定し、その結果を上述の反応解析装置が受ける。したが
つて、物点を含む局所で起きている反応により生じた光に基づき、光学素子の状況 力 大きく影響を受けることなぐ高い再現性で適切に局所が所定の状態にあること を通知することができる。
[0054] 光学素子は、物点側より順に第 1面及び第 2面を有して一体的に形成され、第 1面 及び第 2面がそれぞれ第 1領域と第 2領域とを有し、第 1面の第 1領域が凹面の透過 面となされ、第 2面の第 1領域が凹面反射面となされ、第 1面の第 2領域が反射面とな され、物点力 入射された光を第 2面の第 1領域及び第 1面の第 2領域において反射 し、像点で集光させるものであることが好ましい。
[0055] 反射光学素子においては、結像に寄与する面が反射面であるため、色収差の発生 がなく、良好な結像特性を有する。したがって、物点を含む局所で起きている反応に より生じた光に基づき、光学素子の状況力も大きく影響を受けることなぐ高い再現性 で適切に、かつ高い空間分解能で局所が所定の状態にあることを通知することがで きる。
発明の効果
[0056] 以上のように、本発明に係る反応解析装置は、第 2の波長成分に対する第 1の波長 成分の相対強度が所定の範囲内の値であるときに反応領域が所定の状態にあること を通知するので、反応領域に関する分光測定装置による測定結果に基づき、測定の 状況から大きく影響を受けることなぐ反応領域が所定の状態にあることを高い再現 性で適切に検知し通知することが可能になった。
[0057] また、反応領域の分光測定装置による測定結果に基づき、反応領域において煤が 発生したことを高い再現性で適切に通知することが可能になり、効率よく煤の温度、 または、濃度に関する情報を提供することが可能になった。
[0058] また、反応領域に関する分光測定装置による測定結果に基づき、反応領域におい て連続的なスペクトルパターンの光を発する反応がおきて 、る状態にあることを高 ヽ 再現性で適切に検知し通知することが可能になり、効率よく空気過剰率の算出を行 なうことも可能になった。
[0059] また、反応領域における輝炎の発生、不完全燃焼、若しくは燃料と酸化剤との予混 合が不十分な状態、または、プラズマ反応における所定の状態、または、レーザ誘起
ブレイクダウン反応の初期の状態を高い再現性で適切に検知し通知することが可能 になった。
[0060] また、ピーク解析手段が反応領域の状態に応じて選ばれた波長範囲力 得られる 情報をもとに反応領域の特徴に関する所定の情報を生成するので、反応領域の状 態に応じて効率的に反応領域の特徴に関する情報を提供することが可能になった。
[0061] また、反応領域の状態に応じた効率的な処理でノッキングの発生の有無を判定す ることが可能になり、さらに分光測定装置による測定結果に基づき、測定の状況から 大きく影響を受けることなぐ高い再現性で適切にノッキングの発生を検知することが 可會 になった。
[0062] また、反応領域の状態に応じて効率的に反応領域における反応の伝播速度、反応 帯の厚さ、反応領域の温度、反応領域の成分に関する情報を提供することが可能に なった。
[0063] 本発明に係る計測システムは、物点で発生した光を光学素子が像点で集光させ、 集光された光を分光測定手段が分光測定し、その結果を上述の反応解析装置が受 けて反応領域が所定の状態にあることを通知するので、局所で起きて!/、る反応により 生じた光に基づき、光学素子の状況力も大きく影響を受けることなぐ高い再現性で 適切に局所が所定の状態にあることを検知し通知することが可能になった。
[0064] また、反射光学素子は、結像に寄与する面が反射面であるため、色収差の発生が なぐ良好な結像特性を有するので、局所で起きている反応により生じた光に基づき 、光学素子の状況力 大きく影響を受けることなぐ高い再現性で適切に、かつ高い 空間分解能で局所が所定の状態にあることを検知し通知することが可能になった。 図面の簡単な説明
[0065] [図 1]本発明の一実施形態の概念を説明するための 2種の分光スペクトルを示す図 である。
[図 2]本発明の一実施形態に係る計測システムの全体構成を示すブロック図である。
[図 3]前記計測システムにおける光学素子の構成を示す断面図である。
[図 4]前記計測システムにおける分光測定装置の構成を示す側面図である。
[図 5]前記計測システムにおける反応解析装置として動作するコンピュータシステム
の内部構成を示すブロック図である。
[図 6]前記計測システムにおける反応解析装置の機能的構成を示すブロック図である
[図 7]前記計測システムにおける反応解析装置の処理全体の制御構造を示すフロー チャートである。
[図 8]前記計測システムにおけるスペクトルパターン判定処理の制御構造を示すフロ 一チャートである。
[図 9]前記計測システムにおける粒子の状態解析の制御構造を示すフローチャート である。
[図 10]前記計測システムにおけるピーク解析処理の制御構造を示すフローチャート である。
[図 11]前記計測システムにおけるノッキング判定処理の制御構造を示すフローチヤ ートである。
[図 12]前記計測システムにおける特定の波長成分のみを抽出する構成の分光測定 装置の構成を示す側面図である。
符号の説明
104 光学素子
106 光ファイバケープノレ
108A、 · · ·、 108N 光ファイバ
110A、 · · ·、 HON 分光測定装置
114 反応解析装置
140 第 1面
140A、 142A 第 1領域
140B、 142B 第 2領域
142 第 2面
144、 146 反射膜
148 保護膜
150 迷光絞り
200 コンピュータシステム
300 信号変換部
302 分光データ記憶部
304 スペクトルパターン判定部
306 処理選択部
308 連続パターン解析部
310 ピーク解析部
312 解析結果記憶部
314 ユーザインタフェース
316 出力部
330 第 1強度値取得部
332 第 2強度値取得部
334 相対強度算出部
336 基準値記憶部
338 判定部
350 データ読出部
352 温度算出部
354 濃度算出部
370 ピーク検出部
372 ピーク特徴量抽出部
374 統計処理部
376 較正情報記憶部
378 特徴量解析部
発明を実施するための最良の形態
[0067] 以下、図面を参照しながら、本発明の実施形態について説明する。なお、以下の 説明に用いる図面では、同一の部品に同一の符号を付してある。それらの名称及び 機能も同一である。
[0068] 〔本発明の概念〕
以下に先ず、火炎を例に本発明の概念を説明する。燃料と酸化剤とが適正に混合 されていると、燃料は完全燃焼する。この状態においては、燃料は残らず電離して励 起されてラジカルとなり、その際に火炎中のラジカル力 光が発せられる。これに対し 燃料と酸化剤との混合が不適正であると、燃料の濃!、部分で不完全燃焼が発生する 。この状態においては燃料が完全にはプラズマ化せず、一部が微粒子となり拡散す る。この微粒子が煤煙である。煤煙は火炎により加熱され、黒体輻射により強い光を 発する。この光のためにいわゆる輝炎が形成される。
[0069] 図 1に、メタンガスを空気中で完全燃焼させた場合の炎と輝炎とについて、それらの 炎から発せられる光の 300nm乃至 550nm付近の波長域における分光スペクトルを 対比して示す。図 1を参照して、ラジカルからは、そのラジカルの種類に応じて特定の 波長成分を有する光が発せられる。そのため、完全燃焼の炎から発せられる光のス ベクトルでは、いくつかの急峻なピークの存在するスペクトルパターンが認められる。 これに対して、輝炎においては、ラジカル力 発せられる光の成分に加えて黒体輻射 によって発せられる光の成分が検出される。黒体輻射では、ラジカル力 発せられる 光と異なり広 ヽ波長帯域成分に亘る光が発せられる。そのため輝炎カゝら発せられる 光のスペクトルでは、特に長波長帯域において、連続的なスペクトルパターンが認め られる。
[0070] このようなスペクトルパターンでは、 C *から発せられる光の強度を求めることができ
2
ない。そのため、 C *から発せられる光に対応する波長約 473nm、または、約 516η
2
mの成分の強度と CH*から発せられる光に対応する波長約 431nmの成分の強度と の比からは空気過剰率、当量比、及び空燃比のいずれを算出できない。しかし、波 長約 473nm、または、約 516nmの成分の強度と波長約 431nmの成分の強度との 比は、完全燃焼の炎力 発せられる光のスペクトルと輝炎力 発せられる光のスぺク トルとでは大きく異なる値となる。このようなスペクトルパターンであっても、 CH*から 発せられる光に対応する波長約 431nm程度以下の波長帯域においては、ラジカル 力も発せられる光に対応する波長において、ピークを認めることができる。
[0071] そこで本実施形態では、火炎の分光スペクトルの情報から、まずこのようなスぺタト ルパターンの違いを、同時に計測された 2つの波長成分の強度の一方の他方に対
する相対値 (以下、「相対強度」と呼ぶ。)基づいて判定することによって、輝炎若しく は煤の発生、または、燃料予混合不良等の状態の検知を行なう。また、本実施形態 では、ラジカル力 発せられる光に起因するスペクトル上での強度のピークが検出可 能な波長帯域において、ピークのタイミング、波長、強度、スペクトル線幅、及びライ ンシエイプ等の特徴に基づきノッキング発生の検知をはじめとする解析処理を実行し
、反応領域についての情報を得る。
[0072] 〔全体構成〕
図 2に、本実施形態に係る計測システムの概略構成を示す。図 2を参照して、この 計測システム 100は、反応領域内、または、近傍の測定領域 102より発せられる光を 集光させるための光学素子 104と、測定領域 102より発せられた光の光学素子 114 による集光位置に一端がそれぞれ配置された複数の光ファイバ 108A、 · · ·、 108N を有し当該一端に入射した光を各々の他端より出射させる光ファイバケーブル 106と 、光ファイバ 108A、 · · ·、 108Nの他端にそれぞれ接続され、当該他端から出射され た光を分光し、分光された各成分の強度に応じた電気信号である測定信号 112A、 · · ·、 112Nを出力する分光測定装置 110A、 · · ·、 110Nと、測定信号 112A、 · · ·、 1 12Nを受け、この測定信号 112A、 · · ·、 112Nに対して信号処理を実行することによ り測定領域 102において輝炎の発生を検出するとともに、その検出結果及び測定信 号 112A、 · · ·、 112Nに基づき測定領域 102に存在する計測対象及びその物理'化 学状態等に関する解析を行ない、その解析結果 108を出力する反応解析装置 114 とを有する。
[0073] 〔光学素子〕
図 3に、本実施形態に係る光学素子 104の断面図を示す。図 3を参照して、光学素 子 104は、第 1面 140及び第 2面 142を有する一体的な光学素子である。これら第 1 面 140及び第 2面 142間は、透光性のある一様な媒質となっている。媒質は、具体的 にはいわゆる光学ガラス、または、合成石英等である。
[0074] 第 1面 140及び第 2面 142は、それぞれ外周側の第 1領域 140A、 142Aと、中央 部の第 2領域 140B、 142Bとを有する。第 1面 140の第 1領域 140Aは、所定の点 O を曲率中心とする球面の透過面となっている。第 1面 140の第 2領域 140Bには、金
属材料等の反射材料 (例えば、アルミニウム)力もなる第 1の反射膜 144が被着形成 されている。そのため第 1面 140の第 2領域 140Bは媒質側力もの入射光の反射面と なっている。さらに、反射膜 144の計測位置 102側には、計測対象から反射膜 134を 保護するための保護膜 148が形成されている。第 2面 142の第 1領域 142Aには、第 1の反射膜 144のものと同様の反射材料力もなる第 2の反射膜 146が被着形成され ている。すなわち第 2面 142の第 1領域 142Aは、媒質側からの光の凹面反射面とな つている。第 2面 142の第 2領域 142Bは、点 Iを曲率中心とする球面の透過面となつ ている。以下、点 Oを「物点」と呼び、点 Iを「像点」と呼ぶ。
[0075] 物点 Oからの光は、第 1面 140の第 1領域 140Aに入射し、第 1面 140及び第 2面 1 42間の媒質中を進行して、第 2面 142の第 1領域 142Aにおいて反射される。そして 、第 2面 142の第 1領域 142Aにおいて反射された光は、第 1面 140の第 2領域 140 Bにおいて反射され、第 2面 142の第 2領域 142Bを通して出射され、迷光絞り 150を 介して像点 Iに集光される。物点 O側にある点 O、
1 ο、
2 ο、
3 ο、
4 ο、
5 · · ·、οからの光 η もまた同様に、光学素子 104によって、像点 I側の結像面上にそれぞれ集光される。 したがって、この光学素子 104においては、物点 Ο、 Ο、 Ο、 Ο、 Ο、 · · ·、 Ο力
1 2 3 4 5 η の光の光路に寄与する面が反射面のみであるため、色収差の発生がな 、。
[0076] 光ファイバケーブル 106の入射側の端面は、光ファイバ 108Α、 · · ·、 108Nの各々 の入射端面が、像点 Iを含む光学素子 114の結像面上に第 1面 140の第 2領域 140 Βに向けて配置されるよう、配設される。そのため物点 Ο、0、0、0、0、 · · ·、0
1 2 3 4 5 η で生じた光が、光学素子 104により、その物点に対応する結像面上の位置に配置さ れたファイバ 108Α、 · · · 108Nにより集光される。集光された光はそれぞれ、ファイバ 108Α、 · · ·、 108Nに入射され、光ファイバ 108Α、 · · ·、 108Nを介して分光測定装 置 110Α、 · · ·、 1 ION側の端面よりそれぞれ出射されることになる。
[0077] 〔分光測定装置〕
図 1に示す分光測定装置 110A、 · · ·、 110Nは、接続される光ファイバが異なるこ とを除けば、いずれも同一の構成を有する。これらを代表して、図 4に、分光測定装 置 110Aの側面図を示す。図 4を参照して、分光測定装置 110Aは、光ファイバ 108 Aから出射される光の光軸上に配置され、光ファイバ 108Aから出射される光を平行
光に変換するコリメータ 170と、コリメータ 170により平行光に変換された光の光軸上 に配置された第 1のミラー 172と、コリメータ 170を介して出射される平行光の第 1のミ ラー 172による反射光の光軸上に配置された第 2のミラー 174と、コリメータ 170を介 して出射される平行光の第 2のミラー 174による反射光の光軸上に配置され、第 2の ミラー 174により反射された上述の光を分光して出射する分光素子 176と、分光素子 176により分光されたスペクトル光の光路上に配置された第 3のミラー 178と、第 3のミ ラー 178により反射されたスペクトル光の光路上に配置され、入射されたスペクトル光 を逐次的に光電変換し、その結果得られる時系列電気信号を上述の測定信号 112 Aとして出力する光検出器 180とを有する。
[0078] 分光素子 176は、具体的には回折格子、プリズム等である。光検出器 180は、具体 的には電荷結合素子 (CCD)等がマトリクス状に多数配置されてなる CCDイメージセ ンサ等である。ミラー 172、 174、及び 178は、プラズマカゝら生じた光が入射されてか ら分光素子 176により分光され光検出器 180により受光されるまでの過程において 光が輻輳しないよう、それぞれ入射光に対し所定の角度をなすよう配置される。
[0079] 分光素子 176に到達した光は分光素子 176によりスペクトル光に分光されてミラー 178を介して光検出器 180に到達する。そのため、スペクトル光の各成分の光検出 器 180上での受光位置はその波長により異なる。これに対し光検出器 180は、各受 光位置において受光した光を順次光電変換し、その時刻における受光位置と当該 受光位置での光の強度とを表す情報を含んだ測定信号 112Aを出力する。したがつ て、光検出器 180の出力する測定信号 112Aは、物点 O力も発せられた光に含まれ る各波長成分の各時刻における強度を表す情報を含むものとなる。
[0080] 〔信号処理部のコンピュータによる実現と動作〕
本実施形態の反応解析装置 114の機能は、コンピュータハードウェアと、そのコン ピュータハードウェアにより実行されるプログラムと、コンピュータハードウェアに格納 されるデータとにより実現可能である。図 5に、この反応解析装置 114の機能を実現 するためのコンピュータシステム 200の構成を示す。
[0081] 図 5を参照して、このコンピュータシステム 200は、測定信号 112A、 · · ·、 112Nの 入力及び解析結果 116の出力を受け持つインタフェース 202を有するコンピュータ 2
04と、コンピュータ 204にそれぞれ接続されたキーボード等の入力装置 218及びデ イスプレイ装置等の出力装置 220とを有する。
[0082] コンピュータ 204は、インタフェース 202に加えて、インタフェース 202に接続された ノ ス 206と、中央処理装置(CPU) 208とを有する。コンピュータ 204はさらに、ブート アッププログラム等を記憶する読出専用メモリ(ROM) 210と、プログラム命令、シス テムプログラム、及び作業データ等を記憶するランダムアクセスメモリ (RAM) 212と、 ハードディスク 214と、リムーバブルメディアドライブ 216とを有する。 CPU208、 RO M210、 RAM212、ハードディスク 214、及びリムーバブルメディアドライブ 216はい ずれもバス 186に接続される。ここでは示さないが、コンピュータ 204はさらに、ロー力 ルエリアネットワーク (LAN)への接続を提供するネットワークアダプタボードを備えて ちょい。
[0083] コンピュータシステム 200を反応解析装置 114として動作させるためのプログラムは 、リムーバブルメディアドライブ 216に挿入されるリムーバブルメディアに記憶されて おり、その記憶内容はハードディスク 214に転送される。プログラムは図示しないネッ トワークを通じてコンピュータ 204に送信されノヽードディスク 214に記憶されてもよい。 プログラムは実行の際に RAM212にロードされる。なお、プログラムはハードディスク 214を経由することなく上述のリムーバブルメディア、または、ネットワークから、直接 に RAM212にロードされてもよい。
[0084] このプログラムは、コンピュータ 204に反応解析装置 114としての動作を実行させる 複数の命令を含む。これら動作の実行命令に必要な基本的機能のいくつかは、コン ピュータ 204にインストールされコンピュータ 204上で動作するオペレーティングシス テム(OS)、サードパーティのプログラム、または、各種ツールキットのモジュールによ り提供される。したがつてこのプログラムは、必ずしも反応解析装置 114の動作を実 現するのに必要な機能全てを含んでいなくてもよい。このプログラムは、命令のうち、 所望の結果が得られるように制御された手法で適切な機能、ツール等を呼出すこと により、反応解析装置 114の各機能を実現する命令のみを含んでいればよい。コン ピュータシステム 204自体の動作は周知であるので、ここでは説明を繰返さな!/、。
[0085] 〔機能的構成〕
図 6に、反応解析装置 114の機能的構成をブロック図形式で示す。図 6を参照して 、反応解析装置 114は、測定信号 112A、 · · ·、 112Nを受けて測定領域 102の各位 置力 発せられた光の各時刻における各波長成分の強度を表す時系列データ(以 下、「分光データ」と呼ぶ。 )に変換する信号変換部 300と、信号変換部 300により生 成された分光データを保持する分光データ記憶部 302とを有する。
[0086] 反応解析装置 114はさらに、分光データをもとに、各時刻、各位置における分光ス ベクトルが全体域に亘つてピークを有するスペクトルパターンである力連続的な部分 を有するスペクトルパターンであるかを判定するスペクトルパターン判定部 304と、ス ベクトルパターン判定部 304による判定の結果に基づいて、実行すべき解析処理を 選択し、選択の結果に対応する命令を出力する処理選択部 306と、処理選択部 306 力 の命令に従 、、連続的なパターンを有するスペクトルの分光データの解析を実 行し、その結果を出力する連続パターン解析部 308と、処理選択部 306からの命令 に従い分光データに基づき、スペクトル上のピークに基づきノッキングの判定及び反 応領域の解析を実行し、その結果を出力するピーク解析部 310とを有する。
[0087] 処理選択部 306による処理の選択は、具体的には次のようなものである。すなわち 、分光データ上での時刻のうち連続的なスペクトルパターンであることと判定された時 刻の分光データについては、連続パターン解析部 308及びピーク解析部 310の両 方による解析を選択する。さら〖こ、ピーク解析部 310による解析対象となるピークの波 長範囲として、連続的なスぺ外ルパターンの影響が軽微な第 1の波長範囲を選択し 、当該第 1の波長範囲を解析対象となるピークの波長範囲として指定する。それ以外 の時刻については、ピーク解析部 310による解析のみを選択し、さら〖こ、ピーク解析 部 310による解析対象となるピークの波長範囲として、分光データ上での全波長範 囲である第 2の波長範囲を指定する。
[0088] 連続的なスペクトルパターンの影響が軽微な波長範囲は、連続的なスペクトルパタ ーンが発生する原因が既知であれば、その原因に応じて予め予測可能である。例え ば、図 1に示すような輝炎であれば、 CH*から発せられる光に対応する 43 lnm程度 以下の波長帯域においては、煤に起因する輝炎の影響は軽微である。したがって、 本実施形態では、限定した場合の波長範囲を表す情報が予め準備され、処理選択
部 306がこれを保持し、選択の際にこの情報を使用するものとする。
[0089] 反応解析装置 114はさらに、連続パターン解析部 308及びピーク解析部 310により 出力される解析結果を保持する解析結果記憶部 312と、解析結果の出力を命じる操 作等をユーザより受付けるユーザインタフェース 316と、スペクトルパターン判定部 30 4による判定の結果及びピーク解析部 310によるノッキングの判定の結果を測定領域 102の状態に関する情報に変換して出力するとともに、ユーザインタフェース 316が 受付けた操作に基づき、解析結果記憶部 312に保持された計測対象情報を読出し 出力するための出力部 314とを有する。スペクトルパターン判定部 304による判定結 果をもとに出力部 314が出力する情報は、具体的には、煤発生の通知、燃料予混合 不良の通知、輝炎の発生等である。
[0090] スペクトルパターン判定部 304は、保持されている分光データからスペクトルパター ンの判定に用いる第 1の波長成分の強度値 (以下、「第 1強度値」と呼ぶ。)を取得す るための第 1強度値取得部 330と、第 2の波長成分の強度値 (以下、「第 2強度値」と 呼ぶ。)を取得するための第 2強度値取得部 332と、第 1強度値の第 2強度値に対す る相対強度を算出する相対強度算出部 334と、相対強度とスペクトルパターンの別と の関係を表す基準値情報を保持する基準値記憶部 336と、相対強度と基準値情報 との比較により、スペクトルパターンが連続的なものである力否かを判定する判定部 3 38とを有する。
[0091] 第 1の波長成分としては、連続的なスペクトルパターンの違いによって強度が大きな 異なる波長成分を選ぶことが望ましぐ第 2の波長成分としては、連続的なスペクトル ノターンの違いによる強度の差異が比較的小さ 、波長成分を選ぶことが望まし 、。 例えば測定領域 102 (図 2参照)において炭化水素系燃料の燃焼反応が行なわれて いる場合には、 C *から発せられる光に対応する約 473nm、または、約 516nm付近
2
の波長成分を選んでもよい。第 2の波長成分としては、例えば測定領域 102 (図 2参 照)において炭化水素系燃料の燃焼反応が行なわれている場合には、 CH*、 CN* 、または、 OH*から発せられる光に対応する波長成分を選んでもよい。
[0092] 連続パターン解析部 308は、処理選択部 306から連続的なスペクトルパターンの 解析処理に対応する命令に従!ヽ、連続的なスペクトルパターンからの解析に必要な
第 3の波長成分及び第 4の波長成分の強度値を分光データ記憶部 302から読出す ためのデータ読出部 350と、データ読出部 350により読出された第 3及び第 4の波長 成分の強度値をもとに、黒体輻射を発した粒子の温度を算出する温度算出部 352と 、温度算出部 352により算出された温度及び第 4の波長成分の強度値をもとに粒子 の濃度を算出する濃度算出部 354とを有する。第 3の波長成分及び第 4の波長成分 はいずれも上述の第 2の波長範囲外の波長成分であることが望ましい。例えば第 3波 長成分として約 680nmの波長成分を、第 4の波長成分として約 800nmの波長成分 を選んでもよい。
[0093] ピーク解析部 310は、分光データ記憶部 302に保持された分光データをスキャンし て、測定領域 102から発せられた光のピークを検出するピーク検出部 370と、分光デ ータをもとに、ピーク検出部 370により検出されたピークの特徴量を抽出するピーク特 徴量抽出部 372とを有する。ピークの特徴量は、具体的にはピークの出現時刻、波 長、ピークの高さすなわちピークの頂点の波長成分の強度 (以下、「ピーク強度」と呼 ぶ。 )、スペクトル線幅、シフト量、及びラインシエイプである。
[0094] ピーク解析部 310はさらに、ノッキングが発生した際に圧力波の影響により生じる副 次的な生成物力 発せられる光、または、反応による生成物力 発せられる光に時間 的な変化が生じる成分力 発せられる光に対応する第 5の波長成分において出現す るピークの特徴量をもとにノッキングが発生したか否かを判定し、ノッキングが発生し た場合にその旨を通知する信号を出力するノッキング検出部 373を有する。第 5の波 長成分は、例えば OH*から発せられる光に対応する波長成分である。ノッキングによ り圧力波が生じると、その影響により高温高圧になった領域において、 OH*が発生し 、燃焼反応が起きて 、な 、領域にぉ 、て OH*から発せられる光が検出されることが ある。このような場合、燃焼反応によって生じる例えば C *、 CN*、 CH*から光が発
2
せられる光に対応する波長成分 (以下、「第 6の波長成分」と呼ぶ。)におけるピーク の出現時刻と OH*から発せられる光に対応する波長成分におけるピークの出現時 刻との間に差異が生じる。また、圧力波の影響により、 OH*から発せられる光の強度 が時間の経過にしたがって波打つように段階的に変化することがある。ノッキング検 出部 373は、ノッキングが発生した際に生じるこのような光の時間的な変化をもとに、
ノッキングの発生の有無を判定する。
[0095] ピーク解析部 310はさらに、ピーク特徴量抽出部 372により抽出された各ピークの 特徴量につ 、て統計処理を行な 、、その結果として測定位置力 発せられた光の特 徴を表す情報 (以下、「測定光特徴情報」と呼ぶ。)を生成する統計処理部 374を有 する。測定光特徴情報は、具体的にはピークの特徴量及びピーク同士でのピークの 特徴量の比、並びにそれらの平均、 2乗平均、分散、及び時間変動特性等である。
[0096] ピーク解析部 310はさらに、反応領域から発せられる光の特徴と反応領域の状態- 特徴との関係を表す較正情報を保持する較正情報記憶部 376と、較正情報に基づ き、測定光特徴情報を解析して計測対象の特徴に関する情報に変換し、その情報を ピークに基づく解析の結果として解析結果記憶部 312に格納する特徴量解析部 23 2とを有する。計測対象の特徴は、例えば計測対象の質量、流量、濃度、圧力、温度 、及びプラズマ特性評価値等、並びにそれらの時間変動、並びに反応帯の厚さ及び 反応の到達速度等である。較正情報は、プラズマ力 生じた光の上述した特徴と、上 述した計測対象の特徴との関係を表す関数、相関曲線、または、対応表等である。
[0097] 〔処理全体の流れ〕
図 7に、反応解析装置 114により実行される処理全体の制御構造をフローチャート で示す。図 7を参照して、この処理 400は、測定信号 112A、 · · ·、 112Nの各々につ いて実行される。処理 400が開始されると、ステップ 402では、処理対象の時刻を 0で 初期化する。ステップ 404では、時刻 tにおける測定信号を増幅及びデジタルィ匕する ことにより、分光データに変換する。ステップ 406では、ステップ 404で変換された分 光データを蓄積する。ステップ 408では、ステップ 406で蓄積された分光データを用 V、てスペクトルパターンを判定する処理を実行する。この処理にっ 、ては図 8を参照 しつつ後述する。
[0098] 続くステップ 410では、ステップ 408においてスペクトルが連続的なスペクトルパタ ーンであると判定された力否かを判定する。前者であれば処理はステップ 412に移 行する。さもなければステップ 416に移行する。
[0099] ステップ 412では、時刻 tを、連続的なスペクトルパターンに基づく粒子の状態解析 の対象時刻に設定する。続くステップ 414では、黒体輻射の影響下にある波長帯域
を後述のステップ 418での処理対象から除外するために、第 1の波長範囲を選択し てピークの検出範囲に制限を設けて、ステップ 418に進む。処理がステップ 416に移 行した場合、当該ステップ 416で、第 2の波長範囲を選択して全波長帯域をピークの 検出範囲に設定し、ステップ 418に進む。
[0100] ステップ 418では、時刻 t以降の時刻に対応する測定信号が与えられている力否か を判定する。測定信号が与えられていればステップ 420に進み、時刻 tに 1を加算し、 ステップ 404に戻る。さもなければステップ 422に進む。
[0101] ステップ 422では、分光データを用いて、黒体輻射を発した粒子の状態を解析する 。この処理については図 9を参照しつつ後述する。ステップ 424では、分光データ上 でピークに関する解析を行なう。この処理については、図 10を参照しつつ後述する。 ステップ 426では、ステップ 422、及びステップ 424での処理の結果得られた情報を 解析結果として出力し、この処理を完了する。
[0102] 〔スペクトルパターン解析処理〕
図 8に、上述のステップ 408 (図 7参照)で実行されるスペクトルパターン解析処理の 制御構造をフローチャートで示す。図 8を参照して、この処理 408が開始されると、ス テツプ 440では、ステップ 406 (図 7参照)で蓄積された分光データから第 1及び第 2 の選択波長の強度値を読出す。ステップ 442では、第 1強度値を第 2強度値で除算 して、相対強度を算出する。
[0103] ステップ 444では、ステップ 442で算出した相対強度が所定の基準範囲内の値で あるか、基準範囲外の範囲の値であるかを判定する。基準範囲内の値であればスぺ タトルパターン判定処理 408を終了する。基準範囲外の範囲の値であれば、処理は ステップ 446に移行する。ステップ 446では、判定対象となっているスペクトルにおい て連続的なスペクトルパターンが検出されたことに対応する値を出力する。続くステツ プ 448では、連続的なスペクトルパターンに対応する通知を発行し、スペクトルパタ ーン判定処理 408を終了する。
[0104] 〔粒子の状態解析処理〕
図 9に、上述のステップ 422 (図 7参照)で実行される粒子の状態解析処理の制御 構造をフローチャートで示す。図 9を参照して、この処理 412が開始されると、ステツ
プ 460では、処理の対象時刻 tを 0で初期化する。ステップ 462では、時刻 tが図 7に 示す処理のステップ 412によって解析の対象時刻として設定されたカゝ否かを判定す る。設定されていればステップ 466に進む。さもなければステップ 464に進み、当該ス テツプ 478で時刻 tに 1を加算し、ステップ 462に戻る。
[0105] ステップ 466では、ステップ 404 (図 7参照)で蓄積された分光データから時刻 tにお ける第 3及び第 4の波長成分の強度値を読出す。ステップ 468では、 2色法を用いて 、ステップ 466で読出した第 3及び第 4の波長成分の強度値から、黒体輻射の光を発 して 、る粒子の真温度を算出する。
[0106] ステップ 470では、プランクの放射則に基づき、ステップ 468で算出した真温度と第 3の波長成分の強度値とから当該波長成分に対応する輝度温度を算出する。続くス テツプ 472では、ステップ 468で算出した真温度とステップ 470で算出した輝度温度 とから、いわゆる KL値すなわち放射率と反応場の厚さとの積を算出する。ステップ 47 4では、ステップ 472で算出した KL値を粒子の濃度に換算する。ステップ 476では、 時刻 t以降の時刻の分光データが蓄積されて 、る力否かを判定する。蓄積されて!ヽ れば、処理はステップ 464に移行する。さもなければステップ 480に進む。
[0107] ステップ 480では、上述のステップ 460〜ステップ 476の一連の処理で算出された 真温度及び粒子の濃度について、時間方向での統計処理を実行し、これらの値の 平均、標準偏差、及び時間変動等を求める。ステップ 482では、上述のステップ 460 〜ステップ 476の一連の処理で算出された真温度及び粒子の濃度、並びにステップ 480で求めたそれらの統計量を解析結果として出力 '記憶し、粒子の状態解析処理 422を終了する。
[0108] 〔ピーク解析処理〕
図 10に、上述のステップ 424 (図 7参照)で実行されるピーク解析処理の制御構造 をフローチャートで示す。図 10を参照して、このピーク解析処理 424が開始されると、 ステップ 500では、処理対象時刻 tを 0で初期化する。ステップ 502では、時刻 tに関 しステップ 414、または、ステップ 416 (ともに図 7参照)において設定された波長範囲 1S 制限された範囲であるカゝ否かを判定する。制限されたものであれば、処理はステ ップ 504に進む。さもなければステップ 506に進む。
[0109] ステップ 504では、制限された波長帯域内で分光データをスキャンして、当該範囲 内にある全ピークを検出し、ステップ 508に進む。ステップ 506では、分光データにお ける全波長帯域を対象に分光データをスキャンして、当該範囲内にある全ピークを検 出し、ステップ 508に進む。
[0110] ステップ 508では、分光データをもとに、ステップ 504、または、ステップ 506で検出 したピークの各々について、ピークの出現時刻、波長、ピーク強度、スペクトル線幅、 シフト量、及びラインシエイプを同定し、これらをピークの特徴量として記憶する。
[0111] ステップ 510では、ステップ 474では、ステップ 472で算出した KL値を粒子の濃度 に換算する。ステップ 476では、時刻 t以降の時刻の分光データが蓄積されているか 否かを判定する。蓄積されていれば、処理はステップ 464に進み、処理対象時刻 tに 1を加算して、ステップ 502に戻る。さもなければステップ 513に進む。
[0112] ステップ 513では、ピークの特徴量をもとにノッキングの発生の有無を判定するノッ キング判定処理を実行する。この処理については、図 11を参照しつつ後述する。続 くステップ 514では、ステップ 500〜ステップ 512の一連の処理によって同定された 各ピークの特徴量をもとに、ピークの特徴量に関する統計処理を実行し、測定光特 徴情報を生成する。そして生成した測定光特徴情報を記憶する。
[0113] ステップ 516では、ステップ 502と同様に波長範囲に制限が設けられているか否か を判定する。制限が設けられていなければ、処理はステップ 518に進み、測定光特 徴情報のうちのピーク強度の比及びその統計値と予め準備された較正曲線とを照合 することにより、空気過剰率に関する解析を実行し、その結果を出力する。この際、空 気過剰率の解析結果を局所当量比、または、局所空燃比の情報に換算した上で出 力してちょい。
[0114] ステップ 516、または、ステップ 518の処理が終了すると、以下に示すステップ 520 及び 522、並びにステップ 524、並びにステップ 526、並びにステップ 528及び 530 、並びにステップ 532の解析処理を並行して実行する。
[0115] ステップ 520では、予め準備された反応領域における反応の開始点の位置及び反 応の開始時刻の情報と、測定位置の情報と、測定光特徴情報のうちのピークの出現 時刻とをもとに、反応領域における反応の伝播速度及びその統計量の解析を実行し
、その解析結果を出力,記憶する。
[0116] ステップ 522では、ステップ 520で解析された伝播速度と時間軸方向でのピークの 幅とを乗算して、反応帯の厚さを算出する。さらに伝播速度の統計量及び時間軸方 向のピーク幅の統計量をもとに、及び反応帯の厚さの統計量に関する解析を実行す る。そして、反応帯の厚さ及びその統計量を解析結果として出力 *記憶する。
[0117] ステップ 524では、単一のラジカル、または、プラズマ力も発せられた光に含まれる 複数の波長成分に対応するピークに関し、それらピークのピーク強度比及びその統 計量をもとに、当該ラジカル、または、プラズマの回転温度に関する解析を実行し、 回転温度及びその統計量を解析結果として出力'記憶する。
[0118] ステップ 526では、各ピークのスペクトル線幅を測定位置における圧力に換算する とともに、スペクトル線幅の統計量をもとに圧力に関する解析を実行し、測定位置に おける圧力及び統計量に基づく圧力の解析の結果を解析結果として出力 *記憶する
[0119] ステップ 528では、各ピークの波長、及びシフト量力 測定位置に存在するラジカ ル、または、プラズマの特性を同定するとともに、ピーク強度及びその統計量から同 定された特性のラジカル、または、プラズマの質量、流量、及び数量、並びにそれら の統計量を算出し、上記ラジカル、または、プラズマの特性評価値と質量、流量、及 び数量、並びにそれらの統計量とを解析結果として記憶する。続くステップ 530では 、ステップ 528での解析結果をもとに、分子分析、元素分析等の成分分析を実行しそ の結果を解析結果として出力'記憶する。
[0120] 〔ノッキング判定処理〕
図 11に、上述のステップ 513 (図 10参照)で実行されるノッキング判定処理の制御 構造をフローチャートで示す。図 11を参照して、ノッキング判定処理 513が開始され ると、ステップ 552で、第 5の波長成分の強度が第 6の波長成分と比べて急増してい る力否かを判定する。具体的には、第 5の波長成分においてピークが出現している時 間帯に第 6の波長成分においてピークが出現している力否かを判定する。存在して いなければ第 5の波長成分の強度が急増していると判定し、ステップ 560に進む。存 在して 、れば急増して 、な 、と判定し、ステップ 554に進む。
[0121] ステップ 554では、第 5の波長成分のピークの出現時刻と第 6の波長成分のピーク の出現時刻にずれがある力否かを判定する。ずれがあればステップ 560に進む。さも なければステップ 558に進む。
[0122] ステップ 558では、第 5の波長成分のあるピークが出現している時間帯において当 該波長成分の強度が段階的に変動している力否かを判定する。変動していればステ ップ 560に進む。さもなければこの処理を終了する。
[0123] ステップ 560では、ノッキングが発生したことを示す通知を発行し、この処理を終了 する。
[0124] 〔動作〕
以下、本実施形態に係る計測システムの動作を例示する。図 2を参照して、計測シ ステム 100の光学素子 104は、所望の測定位置力もの光が光学素子 104に入射さ れるよう配置され、その状態で計測が開始される。図 3を参照して、反応領域内の物 点 O、 O、 O、 O、 O、 · · ·、 Oから発せられた光が光学素子 104に入射されると、
1 2 3 4 5 n
それらの光は光学素子 104の第 1面 140の第 1領域 140Aを通過し、第 1面 140及び 第 2面 142間の媒質中を進行して、第 2面 142の第 1領域 142Aにおいて反射される 。そして、第 2面 142の第 1領域 142Aにおいて反射された光は、第 1面 140の第 2領 域 140Bにおいて反射され、第 2面 142の第 2領域 142Bを通して出射され、迷光絞 り 150を介して、光ファイバ 108A、 · · ·、 108Nの入射端面においてそれぞれ集光さ れる。集光された光は、ファイバ 108Α、 · · ·、 108Nにそれぞれ入射され、光ファイバ 108A、 · · ·、 108Nを介して分光測定装置 110A、 · · ·、 1 ION (図 2参照)側の端面 よりそれぞれ出射される。
[0125] 図 4を参照して、分光測定装置 110Aに入射された光は、コリメータ 170により平行 光に変換された後、第 1のミラー 172及び第 2のミラー 174により反射され、分光素子 176に到達する。分光素子 176に到達した光は、分光素子 176によりスペクトル光に 分光され、第 3のミラー 178を介して光検出器 180に到達する。光検出器 180は、各 受光位置に到達した光を順次光電変換し、その時刻における光の到達位置とその 位置での光の強度とを表す測定信号 112Aを出力する。図 2に示す分光測定装置 1 10A、 · · ·、 1 IONはいずれも上述の動作と同様の動作を実行し、入射された光に対
応する測定信号測定信号 112A、 · · ·、 112Nをそれぞれ出力する。出力された測定 信号 112A、 · · ·、 112Nは、反応解析装置 114に与えられる。
[0126] 反応解析装置 114が測定信号 112A、 · · ·、 112Nを受けると、反応解析装置 114 は、測定信号 112A、 · · ·、 112Nの各々について、以下に示す動作を実行する。
[0127] 図 6を参照して、反応解析装置 114に入力された測定信号は、信号変換部 300〖こ 与えられる。信号変換部 300は測定信号が与えられたことに応答して、測定信号を 順次増幅及びデジタル化することにより、分光データに変換し、当該分光データを分 光データ記憶部 302に格納する。
[0128] 分光データ記憶部 302に分光データが格納されると、スペクトルパターン判定部 30 4の第 1強度値取得部 330及び第 2強度値取得部 332がそれぞれ、分光データから 第 1及び第 2の選択波長の強度値を順次読出し、相対強度算出部 334に与える。相 対強度算出部 334は、与えられた第 1強度値を第 2強度値で除算して、相対強度を 順次算出する。算出した相対強度は、判定部 338に順次与えられる。判定部 338は 、与えられた相対強度と基準値記憶部 336に保持されている基準値とを比較し、相 対強度が所定の基準範囲内にある力否かを判定する。相対強度が基準範囲内にな ければ、判定部 338は、判定対象となっている時刻の分光スペクトルが連続的なスぺ タトルパターンであると判定し、判定対象の時刻と当該時刻が連続的なスペクトルパ ターンであることを示す信号を出力部 316及び処理選択部 306に対し出力する。出 力部 316は、この信号の入力を受けると、煤発生の通知、燃料予混合不良の通知、 輝炎の発生等の通知を発行し、解析結果 116として出力する。
[0129] 処理選択部 306は、判定部 338からの信号に基づいて、当該時刻の分光データに 対する解析処理を選択する。すなわち、連続的なスペクトルパターンであることと判定 された時刻に対しては、連続パターン解析部 308及びピーク解析部 310の両方によ る解析を選択し、さらに、ピーク解析部 310による解析対象となるピークの波長範囲 を、連続的なスペクトルパターンの影響が軽微な範囲に限定する。それ以外の時刻 については、ピーク解析部 310による解析のみを選択し、さらに、ピーク解析部 310 による解析対象となるピークの波長範囲として、分光データ上での全波長範囲を指 定する。処理選択部 306は、この選択結果をもとに、連続パターン解析部 308及びピ
ーク解析部 310が行なう解析の命令を生成し、連続パターン解析部 308及びピーク 解析部 310に与える。
[0130] 処理選択部 306からの命令が連続パターン解析部 308に与えられると、データ読 出部 350は命令に従い、連続パターン解析部 308による処理が選択された時刻にお ける第 3の波長成分の強度及び第 4の波長成分の強度を分光データ記憶部 302から 読出し、温度算出部 352及び濃度算出部 354に順次与える。温度算出部 352は、 2 色法を用いて、第 3及び第 4の波長成分の強度値から、黒体輻射の光を発している 粒子の真温度を算出する。温度算出部 352は、算出した真温度の値を解析結果記 憶部 312に格納し、この値をさらに濃度算出部 354に与える。そして時間方向に真 温度に関する統計処理を実行し、その結果を解析結果記憶部 312に格納する。濃 度算出部 354は、第 3の波長成分の強度値とから当該波長成分に対応する輝度温 度を算出する。そして、輝度温度と温度算出部 352から与えられた真温度とから、 KL 値を算出する。さらに KL値を粒子の濃度に換算する。濃度算出部 354は、算出した 粒子の濃度値を解析結果記憶部 312に格納する。そして時間方向に濃度に関する 統計処理を実行し、その結果を解析結果記憶部 312に格納する。
[0131] 処理選択部 306からの命令がピーク解析部 310に与えられると、ピーク検出部 37 0は、分光データ記憶部 302に格納されている分光データを、波長方向及び時間方 向にスキャンし、各時刻においてその時刻にピークが存在する力否かを判定する。た だし、処理選択部 306からの命令により、処理対象の波長範囲が限定されている時 刻については、限定された波長範囲内についてのみスキャンを実行する。ピーク検 出部 370は、分光データにこの判定の結果を付与して、ピーク特徴量抽出部 372に 与える。
[0132] ピーク特徴量抽出部 372は、ピーク検出部 370から、ピークの検出結果付の分光 データが与えられると、このデータをもとに、検出された各ピークの出現時刻、波長、 及びピーク強度を同定する。ピーク特徴量抽出部 372はさらに、各ピークの頂点周 辺のデータをスキャンして、当該ピークのスペクトル線幅、シフト量、及びラインシエイ プをピークごとに同定する。そして、これら同定した情報を各ピークの特徴量としてノ ッキング検出部 373及び統計処理部 374に与える。
[0133] ノッキング検出部 373は、 与えられたピークの特徴量のうち、第 5の波長成分に注 目し、次のようにしてノッキングの発生の有無を判定する。すなわち、第 5の波長成分 においてピークが出現している時間帯に第 6の波長成分にピークが出現してしない 場合、または、当該時間帯に第 6の波長成分にピークが出現しているが、そのピーク の出現時刻にずれがある場合、または、当該時間帯において、第 5の波長成分の強 度が段階的に変動している場合、ノッキングが発生したと判定する。ノッキングが発生 したと判定した場合、ノッキング検出部 373は、ノッキングの発生を示す信号を出力 部 316に対し出力する。出力部 316は、この信号の入力を受けると、ノッキング発生 の通知を発行し、解析結果 116として出力する。
[0134] 統計処理部 374は、各ピークの特徴量力 ピーク同士でのピークの各特徴量の比 等を算出する。統計処理部 374はさらに、各特徴量及びその比について統計処理を 行ない、それらの平均、 2乗平均、分散、及び時間変動特性を算出する。そして統計 処理部 374は、各ピークの特徴量、各特徴量の比、及びそれらについての統計処理 の結果を、測定光特徴情報として、特徴量解析部 378に与える。
[0135] 特徴量解析部 378は、統計処理部 374から測定光特徴情報が与えられたことに応 答して、この情報を較正情報記憶部 376に保持されている較正情報に基づいて以下 の解析を実行して計測対象情報に変換する。ただし、ピーク検出の対象範囲外に発 生しうるピークの特徴量を用いて行なう解析処理は、実行しな!、。
[0136] すなわち、特徴量解析部 378は、測定光特徴情報のうちのピーク強度の比及びそ の統計値と構成情報とを照合することにより、空気過剰率に関する解析を実行し、そ の結果を解析結果記憶部 312に格納する。この際、空気過剰率の解析結果を局所 当量比、または、局所空燃比の情報に換算した上で解析結果記憶部 312に格納す るようにしてもよい。ただし、反応領域における反応が図 1に示すような炭化水素系燃 料の燃焼である場合、 C *から発せられる光の波長成分と輝炎の波長成分とは重複
2
するため、輝炎が発生すると C *から発せられる光に対応するピークについて情報を
2
得ることが困難となる。すなわち、特徴量解析部 378は、輝炎が発生した時刻につい ては、空気過剰率の解析を実行しない。
[0137] また、特徴量解析部 378は、反応領域における反応の開始点の位置及び反応の
開始時刻、測定位置、並びにピークの出現時刻をもとに、反応領域における反応の 伝播速度及びその統計量の解析を実行し、その解析結果を解析結果記憶部 312〖こ 格納する。
[0138] また、特徴量解析部 378は、伝播速度と時間軸方向でのピークの幅とを乗算して、 反応帯の厚さを算出する。さらに伝播速度の統計量及び時間軸方向のピーク幅の統 計量をもとに、及び反応帯の厚さの統計量に関する解析を実行する。そして、反応帯 の厚さ及びその統計量を解析結果記憶部 312に格納する。
[0139] また、特徴量解析部 378は、単一のラジカル、または、プラズマ力も発せられた光に 含まれる複数の波長成分に対応するピークに関し、それらピークのピーク強度比及 びその統計量をもとに、当該ラジカル、または、プラズマの回転温度に関する解析を 実行し、当該温度及びその統計量を解析結果記憶部 312に格納する。
[0140] また、特徴量解析部 378は、各ピークのスペクトル線幅を測定位置における圧力に 換算するとともに、スペクトル線幅の統計量をもとに圧力に関する解析を実行し、測定 位置における圧力及び統計量に基づく圧力の解析の結果を解析結果記憶部 312に 格納する。
[0141] また、特徴量解析部 378は、各ピークの波長、及びシフト量力も測定位置に存在す るラジカル、または、プラズマの特性を同定するとともに、ピーク強度及びその統計量 カゝら同定された特性のラジカル、または、プラズマの質量、流量、及び数量、並びに それらの統計量を算出し、上記ラジカル、または、プラズマの特性評価値と質量、流 量、及び数量、並びにそれらの統計量とを解析結果として解析結果記憶部 312に格 納する。さらに、この解析結果をもとに、分子分析、元素分析等の成分分析を実行し その結果を解析結果記憶部 312に格納する。
[0142] また、特徴量解析部 378は、測定位置においてノッキング等の反応異常があつたか 否かを検査する処理を実行する。そしてその検査結果を解析結果記憶部 312に格 納する。
[0143] このようにして連続パターン解析部 308及びピーク解析部 310による解析結果は、 解析結果記憶部 312に格納される。ユーザインタフェース 314がユーザより所望の計 測対象情報の出力を要求する操作を受付けると、ユーザインタフェース 314は、この
操作に対応する命令を出力部 316に与える。出力部 314は、与えられた命令に従い 、ユーザの要求に対応する情報を解析結果記憶部 312から読出し、解析結果 116と して出力する。
[0144] 以上のように、本実施形態に係る計測システム 100は、測定領域 102から発せられ た光の集光を光学素子 104が行なう。この光学素子 104においては、集光に関与す る面が反射面のみであるため、色収差の発生がなぐ高空間分解能で分光測定、並 びに輝炎及び煤等の発生の検知、ノッキングの検知、及び反応領域に関する種々の 解析を行なうことができる。また、本実施形態では、測定信号として時系列の信号を 発生し、当該時系列信号を用いて時系列で信号処理を実行する。そのため、測定領 域 102における反応の時系列変化についての情報を得ることが可能になる。
[0145] また、本実施形態では、分光測定により得られ第 1の波長成分の強度の同じ時点で 得られた第 2の波長成分の強度に対する相対強度に基づいて、連続的なスペクトル ノターンの光が発生したことを判定する。そしてその判定結果をもって煤、または、輝 炎の発生、または、燃料予混合不良等を検出する。したがって、煤の付着等による光 を受ける光学素子の性能の劣化等に影響を受けることなぐ煤、または、輝炎の発生 、または、燃料予混合不良等を検出することができる。
[0146] また本実施形態では、上述の判定の結果に基づき、分光測定の結果の解析手法 を選択するため、無駄な処理が実行されるのを回避でき、測定位置で発せられた光 に応じた有効な解析処理が可能になる。さらには、分光測定の結果を無駄なく有効 利用して、測定結果力もより多くの情報を得ることが可能になる。
[0147] また本実施形態では、ノッキングに伴う圧力波の影響によって OH*から発せられる 光と、反応によって生じるその他のラジカル力 発せられる光との相対的な関係及び OH*から発せられる光の時間的な変化に基づき、ノッキングの発生を検出する。した がって、圧力、振動など力 ノッキングを検知するより直接的にノッキングを検知する ことができ、ノッキング発生の検知の再現性が向上する。また、煤の付着等による光を 受ける光学素子の性能の劣化等に影響を受けることなぐノッキングの発生を検知す ることが可能になる。
[0148] 〔変形例〕
上記実施形態では、光学素子 104は、反射により光を集光させる光学系であった 力 この光学素子 114に代えて凸レンズ等の光学系を用いてもよい。ただしこの場合 、種々の手法で光の波長に起因する収差を軽減させることが望ましい。
[0149] 上記実施形態では、光ファイバ 108Α、 · · ·、 108Nの光学素子 104側の端面は、 光学素子 104の結像面上に平面的に配置されたが、本発明はこのような実施形態に は限定されない。光ファイバ 108A、 · · ·、 108Nの入射端面を立体的に配置するよう にしてもよい。こうすることにより、反応領域から発せられる光を立体的に測定'解析 することが可能になる。
[0150] 上記実施形態では、分光測定装置 112A、 · · ·、 112Nは、入射された光をスぺタト ル分光し、その結果得られるスペクトル光を光検出器 180によって電気信号に変換し て出力するものであった。しかし、本発明はこのような実施形態には限定されない。計 測位置反応領域で行なわれている反応が既知であるならば、または、所定のプラズ マ特性を有する対象の反応にっ 、てのみ情報を得ることが計測の目標であるならば 、分光測定装置は、反応領域から発せられる光のうち特定の波長成分のみを抽出し て電気信号に変換するものであってもよ 、。
[0151] 例えば、分光されたスペクトル光のうち特定の波長成分のみが通過する位置に、光 検出器 180を配置するようにしてもよい。所望の波長成分が複数存在するならば、複 数の光検出器を、それぞれ所望の波長成分に対応する位置に配置すればよい。
[0152] また例えば、光の波長に対し選択的な透過、反射、若しくは吸収特性を有する光学 素子、または、それら光学素子力もなる光学系の糸且合せによって、特定の波長成分 のみを抽出するようにしてもよい。図 12に、このような機能を有する構成の分光測定 装置の一例を示す。図 12を参照して、この分光測定装置 600には、光ファイバ 108 Aが接続されている。この分光測定装置 600は、計測の対象に応じて予め選択され た波長(以下、単に「選択波長」と呼ぶ。)の光の強度を測定するための複数系統の 分光測定ユニット 610A、 610B、 610C、 · · ·、 610Nを有する。例えば、反応領域に おける反応が炭化水素系燃料と空気との混合気の燃焼反応であれば、選択波長に は、 OH*から生じる光、 CH*から生じる光、 CN*から生じる光、及び C *から生じる
2
光の波長等、並びに煤の温度及び濃度の算出に用いる 2つの波長がそれぞれ選択
される。なお、この分光測定装置 600を適用する場合、レーザ光束の波長には、選択 波長以外の波長が選択される。
[0153] 分光測定ユニット 610Aは、光ファイバ 108Aから出射される光の光軸上にこの光 軸に対し所定の角度をなすよう配置され、分光測定ユニット 610Aの選択波長を含む 所定帯域の光成分に対し反射特性を有し、かつレーザ光束の波長及び分光測定ュ ニット 610A以外の選択波長を含むその他の波長帯域の光成分に対して透過特性を 有するダイクロイツクミラー 612Aと、ダイクロイツクミラー 612Aにより反射される光の 光軸上に配置され、分光測定ユニット 610Aの選択波長の光成分に対して透過特性 を有するフィルタ 614Aと、ダイクロイツクミラー 612Aにより反射される光の光軸上の フィルタ 614Aを挟んでダイクロイツクミラー 612Aの反対側に配置された光検出器 6 16 Aとを有する。
[0154] 分光測定ユニット 610B、 610C、 · · ·、 610Nの構成もまた、分光測定ユニット 610 Aのものと同様である。ただし、それらの選択波長に応じてそれらのダイクロイツクミラ 一及びフィルタの波長特性が選択される。
[0155] この分光測定装置 600は、次のように動作する。すなわち、光ファイバ 108Aから光 が入射されると、その光は、ダイクロイツクミラー 612A、 612B、 612C、 · · ·、 612Nに より分光される。分光された光成分のうち選択波長近辺の波長帯域の成分は、それ ぞれフィルタ 614A、 614B、 614C、 · · ·、 614Nを通過して光検出器 616A、 616B 、 616C、 · · ·、 616Nに到達する。光検出器 616A、 616B、 616C、 · · ·、 616Nはそ れぞれ、到達した光成分を逐次的に測定信号 112Aに変換して出力する。
[0156] このようにして出力された測定信号 112Aをもとに、信号処理装置 114が判定及び 解析を実行すると、選択波長の近傍以外の波長帯域についてピーク検出その他の 処理を実行する必要がなくなる。処理すべき情報量が減少するため、信号処理が効 率化し、高速処理が可能になる。
[0157] なお、波長方向でのスペクトル線幅、シフト量、及びラインシェイブに基づく解析の 結果が計測対象情報として必要なければ、光検出器 616A、 616B、 616C、 · · ·、 6 16Nの出力信号は、受光位置の情報を必ずしも含まなくてよい。また、このような場 合、光検出器 616A、 616B、 616C、 · · ·、 616Nとして、光電子増倍管等を適用し
てもよい。光電子増倍管は CCD等のイメージセンサより時間応答性が高いため、高 時間分解能での計測が可能になる。
[0158] また、このような分光測定装置 600においては、光検出器 616A、 616B、 616C、 · • ·、 616Nの出力信号を、それぞれ別個に増幅し、増幅後の信号を測定信号 112A として出力するようにしてもよい。ただし、その場合、図 6に示す基準値記憶部 336に 記憶される基準値を、信号の増幅率に応じた値に設定しておく必要がある。
[0159] 上記実施形態では、連続的なスペクトルパターンに基づく温度及び濃度解析処理 、ピークに基づく解析処理を、分光データの全体が図 6に示す分光データ記憶部 30 2に格納された後の段階で実行する構成となっていた。しかし、これら解析処理のうち 、時間方向での統計処理を要しないものについては、ある時刻に対応する分光デー タが生成されるたびに、その時刻の分光データに基づく解析を実行するようにしても よい。さらには、当該解析処理をリアルタイムで実行するようにしてもよい。さらに、そ のようなリアルタイム処理で得られた解析結果を、リアルタイムで出力するようにしても よい。
[0160] 上記実施形態では、主として燃焼反応における輝炎に起因する連続的なスぺタト ルパターンに対する処理について説明した力 本発明はその他の種々の反応にお いても、連続的なスペクトルパターンを判定し、それに基づき解析処理を選択するこ とができる。例えば、反応領域にレーザ光などを照射して、その領域にある物質等を プラズマ化させる反応では、反応の最も初期の段階で、特に短波長域に連続的なス ベクトルパターンを持つ光が発生することがある。このような場合にも、第 1の波長成 分及び第 2の波長成分、並びに判定のための基準値を適切に選択すれば、反応の 初期段階を適切に検出することも可能になる。また、このように検出された初期段階 につ!/、ては、ピーク解析処理を実行しな!、ようにしてもよ!、。
[0161] 上記実施形態では、図 6を参照して、出力部 316はスペクトルパターン判定部 304 による判定の結果及びピーク解析部 310によるノッキングの判定の結果を測定領域 1 02の状態に関する情報に変換して出力するとともに、解析結果記憶部 312に保持さ れた計測対象情報を読出し出力した。しかし、信号処理部 114はさらに、これら出力 部 316が出力すべき情報を総合して新たな情報を生成し、出力するようにしてもよい
。例えば、反応領域が自動車用エンジンの燃焼室などのように一定のサイクルで繰 返し反応が起こる領域であるならば、計測対象情報記憶部 312に記憶される情報を もとに各解析結果を総合して、それら解析結果と反応のサイクルとの関係を表す情報 を生成し出力するようにしてもよい。具体的には、各解析結果のサイクル変動などを 表す情報を生成し出力するようにすれば、反応領域について、より分かり易い情報を 提供することができる。また、上記解析結果同士を比較したり、相関性を解析したりし て、上記解析結果同士の関係を表す情報を生成し出力するようにしてもよい。
今回開示された実施形態は単なる例示であって、本発明が上述の実施形態のみ に制限されるわけではない。本発明の範囲は、発明の詳細な説明の記載を参酌した 上で、特許請求の範囲の各請求項によって示され、そこに記載された文言と均等の 意味及び範囲内でのすべての変更を含む。
産業上の利用可能性
本発明は、燃焼、または、プラズマ反応等を利用する技術一般において、その反応 の測定、解析、エラー検知、反応解析及び診断等に利用可能である。
Claims
[1] 反応領域力 発せられた光の分光測定装置による測定結果から、第 1の波長成分 の強度値及び第 2の波長成分の強度値を取得する取得手段と、
前記取得手段により取得された前記第 1の波長成分の強度値及び前記第 2の波長 成分の強度値から、前記第 2の波長成分に対する前記第 1の波長成分の相対強度 を算出する相対強度算出手段と、
前記相対強度算出手段により算出された相対強度が所定の範囲内の値であるか 否かを判定する判定手段と、
前記判定手段により前記相対強度が前記所定の範囲内の値であると判定されたこ とに応答して、前記反応領域の状態が所定の状態にあることを通知する通知手段と を有する
ことを特徴とする反応解析装置。
[2] 前記取得手段は、炭化水素の反応領域から発せられた光の分光測定装置による 測定結果から、 C *から発せられる光の波長と略一致する波長成分の強度値を前記
2
第 1の波長成分の強度値とし、 CH*、 CN*、及び OH*からなる群より選ばれた少なく とも一のラジカル力 発せられる光の波長と略一致する波長の成分の強度値を第 2の 波長成分の強度値として、それぞれ取得することを特徴とする請求項 1記載の反応 解析装置。
[3] 前記通知手段は、前記判定手段により前記相対強度が前記所定の範囲内の値で あると判定されたことに応答して、前記反応領域において煤が発生したことを通知す る
ことを特徴とする請求項 1、または、請求項 2記載の反応解析装置。
[4] 前記取得手段は、反応領域から発せられた光の前記分光測定装置による測定結 果から、第 3の波長成分の強度値及び第 4の波長成分の強度値を取得し、
前記相対強度算出手段は、前記取得手段により取得された前記第 3の波長成分の 強度値及び前記第 4の波長成分の強度値から、前記第 4の波長成分に対する前記 第 3の波長成分の相対強度を算出し、
前記判定手段が前記相対強度が前記所定の範囲内の値であると判定したことに応
答して、前記通知手段が前記反応領域において煤が発生したことを通知したときに、 算出手段により、前記第 3の波長成分の強度値及び前記第 4の波長成分の強度値を もとに、前記反応領域において発生した煤の温度を算出する
ことを特徴とする請求項 3記載の反応解析装置。
[5] 前記通知手段が前記反応領域において煤が発生したことを通知したときに、前記 第 3の波長成分の強度値、前記第 4の波長成分の強度値及び前記煤の温度をもとに 、前記反応領域において発生した煤の濃度を算出する濃度算出手段を有する ことを特徴とする請求項 4記載の反応解析装置。
[6] 前記通知手段は、前記判定手段により前記相対強度が前記所定の範囲内の値で あると判定されたことに応答して、前記反応領域にぉ 、て連続的なスペクトルパター ンの光を発する反応がおきている状態にあることを通知する
ことを特徴とする請求項 1、または、請求項 2記載の反応解析装置。
[7] 前記通知手段は、前記判定手段により前記相対強度が前記所定の範囲内の値で あると判定されたことに応答して、前記反応領域において輝炎が発生したことを通知 する
ことを特徴とする請求項 1、または、請求項 2記載の反応解析装置。
[8] 前記通知手段は、前記判定手段により前記相対強度が前記所定の範囲内の値で あると判定されたことに応答して、前記反応領域において不完全燃焼が発生したこと を通知する
ことを特徴とする請求項 1、または、請求項 2記載の反応解析装置。
[9] 前記通知手段は、前記判定手段により前記相対強度が前記所定の範囲内の値で あると判定されたことに応答して、前記反応領域において燃料と酸化剤との予混合不 良が発生したことを通知する
ことを特徴とする請求項 1、または、請求項 2記載の反応解析装置。
[10] 前記通知手段は、前記判定手段により前記相対強度が前記所定の範囲内の値で あると判定されたことに応答して、前記反応領域の状態がプラズマ反応の所定の状 態にあることを通知する
ことを特徴とする請求項 1、または、請求項 2記載の反応解析装置。
[11] 前記通知手段は、前記判定手段により前記相対強度が前記所定の範囲内の値で あると判定されたことに応答して、前記反応領域がレーザ誘起ブレイクダウン反応の 初期状態にあることを通知する
ことを特徴とする請求項 1、または、請求項 2記載の反応解析装置。
[12] 前記判定手段により前記相対強度が前記所定の範囲内の値ではないと判定され たときに、前記分光測定装置による測定結果をもとに、前記反応領域の空気過剰率 を算出する算出手段を有する
ことを特徴とする請求項 1乃至請求項 11のいずれか一に記載の反応解析装置。
[13] 前記判定手段による判定の結果に応じて、第 1の波長範囲及び第 2の波長範囲か ら、波長範囲を選択する選択手段と、
前記判定手段による判定が実行された測定結果のうち、前記選択手段により選択 された波長範囲内に出現するピークの特徴量をもとに、前記反応領域の特徴に関す る所定の情報を生成するピーク解析手段と
を備えたことを特徴とする請求項 1乃至請求項 12のいずれか一に記載の反応解析 装置。
[14] 前記ピーク解析手段は、前記判定手段による判定が実行された測定結果のうち、 前記選択手段により選択された波長範囲内の第 5の波長及び第 6の波長にそれぞれ 出現するピークの出現時期をもとに、ノッキングの発生の有無を判定し、当該判定の 結果を示す情報を生成する
ことを特徴とする請求項 13記載の反応解析装置。
[15] 前記ピーク解析手段は、前記判定手段による判定が実行された測定結果のうち、 前記選択手段により選択された波長範囲内の第 5の波長及び第 6の波長にそれぞれ 出現するピークにおける強度の時間変化をもとに、ノッキングの発生の有無を判定し 、当該判定の結果を示す情報を生成する
ことを特徴とする請求項 13記載の反応解析装置。
[16] 前記ピーク解析手段は、前記判定手段による判定が実行された測定結果のうち、 前記選択手段により選択された波長範囲内に出現するピークの特徴量をもとに、前 記反応領域における反応の伝播速度を算出し、その結果を示す情報を生成する
ことを特徴とする請求項 13記載の反応解析装置。
[17] 前記ピーク解析手段は、前記判定手段による判定が実行された測定結果のうち、 前記選択手段により選択された波長範囲内に出現するピークの特徴量をもとに、前 記反応領域における反応帯の厚さを算出し、その結果を示す情報を生成する ことを特徴とする請求項 13記載の反応解析装置。
[18] 前記ピーク解析手段は、前記判定手段による判定が実行された測定結果のうち、 前記選択手段により選択された波長範囲内に出現するピークの特徴量をもとに、前 記反応領域の温度解析を算出し、その結果を示す情報を生成する
ことを特徴とする請求項 13記載の反応解析装置。
[19] 前記ピーク解析手段は、前記判定手段による判定が実行された測定結果のうち、 前記選択手段により選択された波長範囲内に出現するピークの特徴量をもとに、前 記反応領域の成分を分析し、その結果を示す情報を生成する
ことを特徴とする請求項 13記載の反応解析装置。
[20] コンピュータにより実行され、当該コンピュータを請求項 1乃至請求項 19のいずれ か一に記載の反応解析装置として動作させるプログラムが記録された記録媒体。
[21] 請求項 1乃至請求項 19のいずれか一に記載の反応解析装置と、
物点力 光が入射されたときに、この光を像点で集光させる光学素子と、 前記光学素子により前記像点に集光された光を分光測定し、この分光測定の結果 を信号として出力する分光測定手段と
を備え、
前記反応解析装置は、前記分光測定手段により出力される信号を受信する ことを特徴とする計測システム。
[22] 前記光学素子は、前記物点側より順に第 1面及び第 2面を有して一体的に形成さ れ、前記第 1面及び前記第 2面がそれぞれ第 1領域と第 2領域とを有し、前記第 1面 の第 1領域が凹面の透過面となされ、第 2面の第 1領域が凹面反射面となされ、前記 第 1面の第 2領域が反射面となされ、前記物点から入射された光を、前記第 2面の第 1領域及び前記第 1面の第 2領域において反射し、前記像点で集光させる ことを特徴とする請求項 21記載の計測システム。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2006/323030 WO2008059598A1 (fr) | 2006-11-17 | 2006-11-17 | Dispositif d'analyse de réaction, support d'enregistrement et système de mesure |
CN2007800426657A CN101535797B (zh) | 2006-11-17 | 2007-11-17 | 反应分析装置及测量系统 |
US12/514,533 US8758689B2 (en) | 2006-11-17 | 2007-11-17 | Reaction analysis apparatus, recording medium, measurement system and control system |
PCT/JP2007/072329 WO2008059976A1 (en) | 2006-11-17 | 2007-11-17 | Reaction analyzer, recording medium, measurement system, and control system |
JP2008544216A JP5311305B2 (ja) | 2006-11-17 | 2007-11-17 | 反応解析装置、記録媒体、計測システム及び制御システム |
KR1020097009963A KR101331437B1 (ko) | 2006-11-17 | 2007-11-17 | 반응 해석 장치, 기록 매체, 계측 시스템, 및 제어 시스템 |
EP07832059.5A EP2085767A4 (en) | 2006-11-17 | 2007-11-17 | REACTION ANALYZER, RECORDING MEDIUM, MEASUREMENT SYSTEM, AND CONTROL SYSTEM |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2006/323030 WO2008059598A1 (fr) | 2006-11-17 | 2006-11-17 | Dispositif d'analyse de réaction, support d'enregistrement et système de mesure |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008059598A1 true WO2008059598A1 (fr) | 2008-05-22 |
Family
ID=39401413
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/323030 WO2008059598A1 (fr) | 2006-11-17 | 2006-11-17 | Dispositif d'analyse de réaction, support d'enregistrement et système de mesure |
PCT/JP2007/072329 WO2008059976A1 (en) | 2006-11-17 | 2007-11-17 | Reaction analyzer, recording medium, measurement system, and control system |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2007/072329 WO2008059976A1 (en) | 2006-11-17 | 2007-11-17 | Reaction analyzer, recording medium, measurement system, and control system |
Country Status (5)
Country | Link |
---|---|
US (1) | US8758689B2 (ja) |
EP (1) | EP2085767A4 (ja) |
KR (1) | KR101331437B1 (ja) |
CN (1) | CN101535797B (ja) |
WO (2) | WO2008059598A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101846317A (zh) * | 2009-01-15 | 2010-09-29 | 通用电气公司 | 驻焰和回火的光学检测 |
JP2011241753A (ja) * | 2010-05-18 | 2011-12-01 | Toyota Motor Corp | 火花点火式内燃機関の筒内状態モニタリング装置及び制御装置 |
JP2016180343A (ja) * | 2015-03-24 | 2016-10-13 | 本田技研工業株式会社 | 内燃機関燃焼状態判定方法および内燃機関燃焼状態判定装置 |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI401923B (zh) * | 2009-06-06 | 2013-07-11 | Generalplus Technology Inc | 適應性時脈重建方法與裝置以及進行音頻解碼方法 |
JP5330978B2 (ja) * | 2009-12-14 | 2013-10-30 | 三菱重工業株式会社 | ガス成分計測装置及び方法 |
US20110206721A1 (en) * | 2010-02-19 | 2011-08-25 | Vijaya Nair | Fermented soy nutritional supplements including mushroom components |
DE102010048748A1 (de) * | 2010-10-16 | 2012-04-19 | Man Truck & Bus Ag | Verfahren und Vorrichtung zur Bestimmung der Russkonzentration im Motoröl von Brennkraftmaschinen |
JP2013113183A (ja) * | 2011-11-28 | 2013-06-10 | National Institute Of Advanced Industrial Science & Technology | レーザ着火エンジン及びレーザ着火エンジンにおける混合気の調整方法 |
US10078053B2 (en) * | 2011-12-28 | 2018-09-18 | Imagineering, Inc. | Gas concentration estimation device |
KR101423988B1 (ko) | 2012-12-13 | 2014-08-01 | 광주과학기술원 | 레이저 플라즈마 스펙트럼을 이용한 시료 내 측정 대상 원소의 정량 분석 방법 |
JP6100005B2 (ja) * | 2013-02-04 | 2017-03-22 | 株式会社東芝 | 温度測定装置 |
JP6088939B2 (ja) * | 2013-08-26 | 2017-03-01 | 株式会社島津製作所 | プラグ内蔵型光学測定用プローブ及びこれを備えた光学測定装置 |
JP6166156B2 (ja) * | 2013-11-18 | 2017-07-19 | 株式会社Soken | 燃焼解析装置 |
KR102220812B1 (ko) * | 2013-12-09 | 2021-02-26 | 삼성전자주식회사 | 검사장치 및 검사방법 |
CN105067572A (zh) * | 2015-08-19 | 2015-11-18 | 江西农业大学 | 一种增强激光诱导等离子体信号的方法及装置 |
CN105651747B (zh) * | 2016-01-07 | 2019-02-01 | 浙江工业大学 | 一种用于定点捕捉火焰自由基荧光强度的测量装置 |
CN108414501B (zh) * | 2018-02-09 | 2020-04-24 | 中国科学院力学研究所 | 测量系统及释热控制方法 |
CN110907341A (zh) * | 2018-09-14 | 2020-03-24 | 山东省医疗器械产品质量检验中心 | 手术单抗激光性试验系统 |
JP7188949B2 (ja) * | 2018-09-20 | 2022-12-13 | 株式会社Screenホールディングス | データ処理方法およびデータ処理プログラム |
JP7188950B2 (ja) | 2018-09-20 | 2022-12-13 | 株式会社Screenホールディングス | データ処理方法およびデータ処理プログラム |
CN110082342B (zh) * | 2019-02-26 | 2021-12-07 | 天津大学 | 利用激光光谱测量燃烧流场物质组分浓度的方法和装置 |
JP6948679B1 (ja) * | 2020-11-16 | 2021-10-13 | 東京瓦斯株式会社 | 空気比推定システム、空気比推定方法及びプログラム |
JP6948678B1 (ja) * | 2020-11-16 | 2021-10-13 | 東京瓦斯株式会社 | 空気比調整方法、空気比調整システム及びプログラム |
CN114088662B (zh) * | 2021-12-07 | 2024-04-19 | 上海交通大学 | 一种固体推进剂燃烧特性测量及方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62276421A (ja) * | 1986-05-24 | 1987-12-01 | Ishikawajima Harima Heavy Ind Co Ltd | 燃焼診断装置 |
JP2005164128A (ja) * | 2003-12-02 | 2005-06-23 | Kawasaki Heavy Ind Ltd | 燃焼制御方法および燃焼制御システム |
JP2005226893A (ja) * | 2004-02-12 | 2005-08-25 | Kawasaki Heavy Ind Ltd | 燃焼診断方法および燃焼診断装置 |
JP2006039481A (ja) * | 2004-07-30 | 2006-02-09 | Imagineering Kk | 光学素子、光学系、受光器及び光計測装置 |
JP2006292524A (ja) * | 2005-04-08 | 2006-10-26 | Imagineering Kk | 熱機関またはプラズマ装置に用いる点火または放電プラグ、及び、光計測装置 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3728029A (en) * | 1971-02-22 | 1973-04-17 | Block Engineering | Electro-optical spectrometer |
JP3891672B2 (ja) | 1997-12-02 | 2007-03-14 | 高圧ガス保安協会 | 不完全燃焼防止装置 |
JP3524407B2 (ja) | 1998-12-10 | 2004-05-10 | バブコック日立株式会社 | バーナ燃焼診断装置 |
-
2006
- 2006-11-17 WO PCT/JP2006/323030 patent/WO2008059598A1/ja active Application Filing
-
2007
- 2007-11-17 EP EP07832059.5A patent/EP2085767A4/en not_active Ceased
- 2007-11-17 WO PCT/JP2007/072329 patent/WO2008059976A1/ja active Application Filing
- 2007-11-17 CN CN2007800426657A patent/CN101535797B/zh not_active Expired - Fee Related
- 2007-11-17 US US12/514,533 patent/US8758689B2/en not_active Expired - Fee Related
- 2007-11-17 KR KR1020097009963A patent/KR101331437B1/ko not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62276421A (ja) * | 1986-05-24 | 1987-12-01 | Ishikawajima Harima Heavy Ind Co Ltd | 燃焼診断装置 |
JP2005164128A (ja) * | 2003-12-02 | 2005-06-23 | Kawasaki Heavy Ind Ltd | 燃焼制御方法および燃焼制御システム |
JP2005226893A (ja) * | 2004-02-12 | 2005-08-25 | Kawasaki Heavy Ind Ltd | 燃焼診断方法および燃焼診断装置 |
JP2006039481A (ja) * | 2004-07-30 | 2006-02-09 | Imagineering Kk | 光学素子、光学系、受光器及び光計測装置 |
JP2006292524A (ja) * | 2005-04-08 | 2006-10-26 | Imagineering Kk | 熱機関またはプラズマ装置に用いる点火または放電プラグ、及び、光計測装置 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101846317A (zh) * | 2009-01-15 | 2010-09-29 | 通用电气公司 | 驻焰和回火的光学检测 |
JP2011241753A (ja) * | 2010-05-18 | 2011-12-01 | Toyota Motor Corp | 火花点火式内燃機関の筒内状態モニタリング装置及び制御装置 |
JP2016180343A (ja) * | 2015-03-24 | 2016-10-13 | 本田技研工業株式会社 | 内燃機関燃焼状態判定方法および内燃機関燃焼状態判定装置 |
Also Published As
Publication number | Publication date |
---|---|
WO2008059976A1 (en) | 2008-05-22 |
US8758689B2 (en) | 2014-06-24 |
EP2085767A4 (en) | 2014-12-03 |
CN101535797A (zh) | 2009-09-16 |
US20100055001A1 (en) | 2010-03-04 |
CN101535797B (zh) | 2013-03-27 |
KR20090082893A (ko) | 2009-07-31 |
KR101331437B1 (ko) | 2013-11-21 |
EP2085767A1 (en) | 2009-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2008059598A1 (fr) | Dispositif d'analyse de réaction, support d'enregistrement et système de mesure | |
JP4264480B2 (ja) | 熱機関、または、プラズマ装置に用いる点火、または、放電プラグ、及び、光計測装置 | |
JP5470534B2 (ja) | 分光器 | |
US7619742B2 (en) | High-speed spectrographic sensor for internal combustion engines | |
US6317205B1 (en) | Method for monitoring an optical system having a front lens disposed immediately at a combustion chamber, and a device for carrying out the method | |
JP2006292524A5 (ja) | ||
JPH05231938A (ja) | 高感度多波長分光装置 | |
JP2011527006A (ja) | スペクトル分析に適合する配置 | |
JP2005502870A (ja) | 排気不透明度測定装置 | |
CN108020540A (zh) | 一种激光诱导击穿光谱检测系统 | |
CN111239072B (zh) | 一种精确测量燃烧气体温度的方法 | |
JP5401638B2 (ja) | 光計測装置及び計測システム | |
CN113358160B (zh) | 一种大气数据测量方法及系统 | |
EP3173770B1 (en) | A portable analyzer using optical emission spectroscopy | |
CN212111024U (zh) | 发动机尾喷流颗粒物参数监测装置 | |
CN108195823B (zh) | 一种激光诱导击穿光谱检测系统 | |
JP2000111398A (ja) | 火炎自発光計測装置 | |
JP2005062192A (ja) | 角度スペクトルを得る方法、ゴニオ分光光度計および加工中の製品を検査する方法 | |
US20090173891A1 (en) | Fluorescence detection system | |
JP3242232B2 (ja) | 火炎検出および燃焼診断装置 | |
JP5311305B2 (ja) | 反応解析装置、記録媒体、計測システム及び制御システム | |
JP4665211B2 (ja) | 光学素子 | |
US20240219238A1 (en) | Device for the Spectrally Resolved Detection of Optical Radiation | |
CN111208044B (zh) | 发动机尾喷流颗粒物参数监测装置与方法 | |
US7479636B2 (en) | Device and method for analyzing a materials library |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 06832908 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06832908 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |