JP6948678B1 - 空気比調整方法、空気比調整システム及びプログラム - Google Patents

空気比調整方法、空気比調整システム及びプログラム Download PDF

Info

Publication number
JP6948678B1
JP6948678B1 JP2020190178A JP2020190178A JP6948678B1 JP 6948678 B1 JP6948678 B1 JP 6948678B1 JP 2020190178 A JP2020190178 A JP 2020190178A JP 2020190178 A JP2020190178 A JP 2020190178A JP 6948678 B1 JP6948678 B1 JP 6948678B1
Authority
JP
Japan
Prior art keywords
air ratio
self
ratio
air
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020190178A
Other languages
English (en)
Other versions
JP2022079168A (ja
Inventor
将英 山崎
将英 山崎
徹 茂木
徹 茂木
隆一 冨永
隆一 冨永
村井 隆一
隆一 村井
史光 赤松
史光 赤松
翔馬 樋野
翔馬 樋野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Tokyo Gas Co Ltd
Original Assignee
Osaka University NUC
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC, Tokyo Gas Co Ltd filed Critical Osaka University NUC
Priority to JP2020190178A priority Critical patent/JP6948678B1/ja
Application granted granted Critical
Publication of JP6948678B1 publication Critical patent/JP6948678B1/ja
Publication of JP2022079168A publication Critical patent/JP2022079168A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Regulation And Control Of Combustion (AREA)
  • Control Of Combustion (AREA)

Abstract

【課題】炉内における空気比を高精度に調整可能にする。【解決手段】空気比調整方法は、燃料ガスと空気が供給される炉内で燃焼する火炎から出力される、紫外線帯域の第1の波長帯の光量と、第1の波長帯とは異なる紫外線帯域の第2の波長帯の光量とに基づいて、第1の波長帯と第2の波長帯の光量比を算出する処理と、算出された光量比に基づいて、炉内における現在の空気比を推定する処理と、推定された空気比に基づいて、炉内における空気比を調整する処理とを有する。【選択図】図1

Description

本発明は、空気比調整方法、情報提供方法、空気比調整システム、情報提供システム及びプログラムに関する。
工業炉には、燃料の燃焼用に空気が供給される。炉内に供給される空気の空気比は、均圧弁等により決定される。ここでの「空気比」とは、供給する燃料の燃焼に必要な理論空気量に対する実際に供給する空気量の比率のことである。
特許文献1には、炉内状況に基づいて、炉内が予め設定された状況となるように加熱装置への燃焼用空気の供給量を制御する装置が記載されている。
特開2014−29244号公報
空気比は、予め定めた値となるように空気弁等で調整されるが、空気弁の経年劣化等を原因として実際の空気比が目標値と一致しない可能性がある。
そこで、空気比を測定する目的で酸素濃度計やガスクロマトグラフィーを炉内に配置する手法が提案されているが、これらのデバイスは高価な上に耐久性がない。また、これらのデバイスによる測定は、侵入空気を考慮することができない。
本発明は、炉内における空気比を高精度に調整可能にすることを目的とする。
請求項1に記載の発明は、燃料ガスと空気が供給される炉内で燃焼する火炎から出力されるOH自発光の光量とNH自発光の光量とに基づいて、当該OH自発光と当該NH自発光の光量比を算出する処理と、算出された前記光量比を検量線と照合し、前記炉内における現在の空気比を推定する処理と、推定された空気比に基づいて、前記炉内における空気比を調整する処理とを有し、前記検量線は、前記OH自発光と前記NH自発光の光量比と空気比との線形の関係を与える、空気比調整方法である。
請求項2に記載の発明は、前記空気比に基づいて、前記炉内に供給される空気量を調整する、請求項1に記載の空気比調整方法である。
請求項3に記載の発明は、前記空気比に基づいて、前記炉内に供給される前記燃料ガスの供給量を調整する、請求項1に記載の空気比調整方法である。
請求項4に記載の発明は、燃料ガスと空気が供給される炉内で燃焼する火炎から出力されるOH自発光の光量とNH自発光の光量とに基づいて、当該OH自発光と当該NH自発光の光量比を算出する算出部と、算出された前記光量比を検量線と照合し、前記炉内における現在の空気比を推定する空気比推定部と、推定された空気比に基づいて、前記炉内における空気比を調整する調整部とを有し、前記検量線は、前記OH自発光と前記NH自発光の光量比と空気比との線形の関係を与える、空気比調整システムである。
請求項5に記載の発明は、コンピュータに、燃料ガスと空気が供給される炉内で燃焼する火炎から出力されるOH自発光の光量とNH自発光の光量とに基づいて、当該OH自発光と当該NH自発光の光量比を算出する機能と、算出された前記光量比を検量線と照合し、前記炉内における現在の空気比を推定する機能と、推定された空気比に基づいて、前記炉内における空気比を調整する機能とを実現させるためのプログラムであり、前記OH自発光と前記NH自発光の光量比と空気比との線形の関係を与える、ことを特徴とするプログラムである。
請求項1記載の発明によれば、炉内の空気比を高精度に調整できる。
請求項2記載の発明によれば、炉内に供給される空気量の増減により、炉内の空気比を高精度に調整できる。
請求項3記載の発明によれば、炉内に供給される燃料ガスの増減により、炉内の空気比を高精度に調整できる
請求項記載の発明によれば、炉内の空気比を高精度に調整するシステムを実現できる
請求項記載の発明によれば、炉内の空気比を高精度に調整するシステムを実現できる。
実施の形態1で想定する空気比調整システムの構成例を示す図である。 検量線DBに記憶される検量線の一例を説明する図である。 空気比推定装置のハードウェア構成の一例を説明する図である。 空気比推定装置を構成するCPUによるプログラムの実行により実現される機能構成の一例を説明する図である。 流量調整装置を構成するCPUによるプログラムの実行により実現される機能構成の一例を説明する図である。 実施の形態1で想定する空気比調整システムで実行される処理動作の一例を説明する図である。 実施の形態2で想定する空気比調整システムの構成例を示す図である。 実施の形態2で想定する空気比調整システムで実行される処理動作の一例を説明する図である。 実施の形態3で想定する空気比調整システムの構成例を示す図である。 実施の形態4で想定する空気比調整システムの構成例を示す図である。 実施の形態5で想定する情報提供システムの構成例を示す図である。 端末のディスプレイに表示される画面の例を説明する図である。
以下、図面を参照して、本発明の実施の形態を説明する。
<実施の形態1>
<システムの構成>
図1は、実施の形態1で想定する空気比調整システム1の構成例を示す図である。図1に示す空気比調整システム1は、空気を含む混合ガスを燃焼する工業炉が設置されている敷地内に構築される。本実施の形態における混合ガスは、燃料ガスに空気を予混合したガスである。本実施の形態では、燃料ガスとしてアンモニア含有ガスを使用する。
アンモニア含有ガスには、例えばアンモニアガスやアンモニアを、都市ガスやLPGガス等の炭化水素系燃料に混合したガスがある。
都市ガスは、例えばメタンを主成分とする天然ガスである。LPGは、例えばプロパンやブタンを主成分とする液化石油ガスである。
空気比調整システム1は、炉室10と、火炎11に含まれる2種類のラジカル自発光の発光強度を測定する光学センサ20と、検量線を記憶する検量線DB(=DataBase)30と、測定された発光強度の比(以下「発光強度比」という)に基づいて炉室10内の現在の空気比を推定する空気比推定装置40と、推定された空気比に基づいて炉室10内に供給される空気量を調整する流量調整装置50を有している。
炉室10内に設けられるバーナー12には、配管13を通じて混合ガスが供給され、燃焼される。燃焼により発生するガス等(以下「排ガス」という)は、排気用の配管14から大気中に排出される。排気用の配管14は、燃焼により発生した煙が大気中に排出される道の意味で「煙道」とも呼ばれる。
配管13は、燃料ガスが供給される主管と空気が供給される枝管で構成され、枝管にはバルブ13Aが取り付けられている。本実施の形態の場合、バルブ13Aの開度の調整は、バルブ13Aに取り付けられたアクチエータの制御により実現される。すなわち、本実施の形態では、空気が供給される枝管に取り付けられたバルブ13Aの開度の調整により、炉室10内の空気比をフィードバック制御する。
本実施の形態における光学センサ20は、火炎11に含まれる2種類のラジカル自発光の発光強度をリアルタイムで測定し、それらの比を発光強度比として出力する。具体的には、OH自発光とNH自発光の発光強度比をリアルタイムで出力する。以下の説明では、発光強度比を「光量比」ともいう。
因みに、OH自発光とNH自発光は、紫外線帯域の波長を有する光である。OH自発光は306.5nmを中心波長とするラジカル自発光であり、NH自発光は336nmを中心波長とするラジカル自発光である。OH自発光は、第1の波長帯の光の一例であり、NH自発光は、第2の波長帯の光の一例である。
OH自発光とNH自発光は、紫外線帯域の波長を有する光であるので、可視光の影響を除外した発光強度の測定が可能である。換言すると、炉壁から輻射される可視光の測定結果への影響を除外できる。
炉壁から輻射される可視光は、おおよそ400nm〜600nmの波長を有している。炉壁から輻射される可視光の発光強度は、400nm付近から徐々に増加し、500nm付近ではOH自発光の何十倍もの強度になる。
OH自発光とNH自発光の発光強度は、炉室10内に実在する空気と燃料ガスの比率を反映するので、炉室10の開口や隙間等から侵入する空気の影響も反映する。このため、OH自発光とNH自発光の発光強度比には、炉室10の現実の空気比の情報が反映されている。
図1の場合、光学センサ20は、炉室10の底部に設けられているが、設置の場所及び設置の個数は任意である。例えば光学センサ20は、炉室10の側面や天井に配置してもよい。また、光学センサ20は、炉室10内に複数設けてもよい。
本実施の形態で使用する光学センサ20は、OH自発光の測定に用いる第1のセンサ21と、NH自発光の測定に用いる第2のセンサ22と、発光強度比を算出する演算回路23とで構成されている。なお、図1においては、作図上の都合により、光学センサ20の内部構造を拡大して表している。
図1の場合、第1のセンサ21は、耐熱性を有する光学素子21Aと、OH自発光に対応する波長の光を選択的に透過させるバンドパスフィルタ21Bと、バンドパスフィルタ21Bを透過した光の強度に応じた電気信号を出力する半導体センサ21Cで構成される。
本実施の形態の場合、バンドパスフィルタ21Bは、306.5nmを中心波長とし、中心波長に対して±10nmの帯域幅を有している。ここでの296.5nm〜316.5nmで規定される波長帯は、第1の波長帯の一例である。
本実施の形態の場合、半導体センサ21Cには、例えば浜松フォトニクスのS12698シリーズを使用する。
一方、第2のセンサ22は、耐熱性を有する光学素子22Aと、NH自発光に対応する波長の光を選択的に透過させるバンドパスフィルタ22Bと、バンドパスフィルタ22Bを透過した光の強度に応じた電気信号を出力する半導体センサ22Cで構成される。
本実施の形態の場合、バンドパスフィルタ22Bは、336nmを中心波長とし、中心波長に対して±10nmの帯域幅を有している。ここでの326nm〜346nmで規定される波長帯は、第2の波長帯の一例である。
半導体センサ22Cにも、例えば浜松フォトニクスのS12698シリーズを使用する。
演算回路23は、第1のセンサ21の電気信号と第2のセンサ22の電気信号を入力し、NH自発光の最大強度値に対するOH自発光の最大強度値の比(すなわちOH自発光の最大強度値/NH自発光の最大強度値)を算出する。本実施の形態における演算回路23は、例えばロジックICで構成される。本実施の形態における演算回路23は、炉室10の外部に配置される。
演算回路23は、算出した発光強度比を空気比推定装置40に出力する。もっとも、演算回路23による発光強度比(すなわち光量比)の算出は、空気比推定装置40において実行してもよい。演算回路23は、光量比を算出する算出部の一例である。
検量線DB30は、発光強度比と空気比の検量線の情報を記憶する記憶装置である。検量線DB30は、例えばハードディスク装置や半導体メモリの記憶領域に記憶される。
図1の場合、検量線DB30は空気比推定装置40に外付けされているが、空気比推定装置40のハードディスク装置43(図3参照)に記憶されていてもよい。
図2は、検量線DB30に記憶される検量線の一例を説明する図である。図2の場合、縦軸は発光強度比であり、横軸は空気比αである。
本実施の形態の場合、縦軸の発光強度比は、NH自発光の最大強度値に対するOH自発光の最大強度値の比で与えられる。
図中のMAX(OH*)はOH自発光の最大強度値を表し、MAX(NH*)はNH自発光の最大強度値を表している。図中の黒丸は、既知の空気比αが与えられる場合に実測された発光強度値の中央値を表している。図中の検量線は、最小二乗法等を用いて描いている。
検量線DB30には、このように描かれた検量線に従って、発光強度比に対応する空気比αの値が記憶されている。もっとも、検量線DB30には、発光強度比の値から空気比αを計算するための計算式が記憶されてもよい。
空気比推定装置40は、演算回路23から与えられる発光強度比と検量線DB30との照合により、炉室10内における現在の空気比αを推定する。
図3は、空気比推定装置40のハードウェア構成の一例を説明する図である。なお、図3に示すハードウェア構成は、流量調整装置50とも共通である。このため、図3においては、流量調整装置50側の構成を括弧付きの数字で表している。
空気比推定装置40は、例えばコンピュータにより構成される。図3に示す空気比推定装置40は、プログラムを実行するCPU41と、半導体メモリ42と、ハードディスク装置43と、通信モジュール44とで構成されている。
なお、空気比推定装置40には、推定された空気比αや空気比の変化をグラフとして表示するモニターや作業者の指示の入力に使用されるキーボードやマウスが接続されていてもよい。
半導体メモリ42は、例えばBIOS(=Basic Input Output System)を記憶するROM(=Read Only Memory)と、ワークエリアとして用いるRAM(=Random Access Memory)とで構成される。RAMは、主記憶装置の一例である。
ハードディスク装置43は、例えば基本ソフトウェアやアプリケーションプログラムを記憶する不揮発性の記憶装置である。図3では、ハードディスク装置43を用いるが、半導体メモリを用いてもよい。ハードディスク装置43は、補助記憶装置の一例である。
図4は、空気比推定装置40を構成するCPU41によるプログラムの実行により実現される機能構成の一例を説明する図である。本実施の形態における空気比推定装置40は、プログラムの実行により、強度比取得部41A、照合部41B、空気比推定部41Cとして機能する。
強度比取得部41Aは、火炎11中のOH自発光とNH自発光の発光強度比を光学センサ20から取得するモジュールである。
照合部41Bは、取得した発光強度比を検量線DB30の検量線と照合するモジュールである。
空気比推定部41Cは、検量線との照合を通じ、現在の空気比を推定するモジュールである。
空気比推定部41Cは、リアルタイムに取得される発光強度比に対応する空気比をそのまま各時刻の空気比として出力する。もっとも、空気比推定部41Cは、予め定めた時間毎にその時刻の空気比を出力してもよいし、予め定めた時間内に得られた複数の空気比の時間平均値を出力してもよい。
なお、炉室10に複数の光学センサ20が設けられている場合、空気比推定部41Cは、各時刻に同時に取得される複数の発光強度比の平均値を用いて、空気比を推定してもよい。
空気比推定装置40は、推定された空気比を外部の装置に出力する。本実施の形態の場合、外部の装置の1つとして、流量調整装置50が接続されている。なお、外部の装置の1つとしてモニターが接続されてもよい。モニターが接続される場合、モニターには、推定された空気比がリアルタイムで表示される。また、モニターには、推定された空気比の時間変化がグラフとして表示されてもよい。
流量調整装置50も、例えばコンピュータにより構成される。流量調整装置50は、例えば図3に示すハードウェア構成を有している。すなわち、流量調整装置50は、プログラムを実行するCPU51と、半導体メモリ52と、ハードディスク装置53と、通信モジュール54とで構成されている。この流量調整装置50は、調整部の一例である。
なお、流量調整装置50には、モニターや作業者の指示の入力に使用されるキーボードやマウスが接続されていてもよい。
因みに、半導体メモリ52は、例えばBIOSが記憶されているROMと、ワークエリアとして用いられるRAMとで構成される。RAMは、主記憶装置の一例である。
ハードディスク装置53は、例えば基本ソフトウェアやアプリケーションプログラムを記憶する不揮発性の記憶装置である。図3では、ハードディスク装置53を用いているが、半導体メモリを用いてもよい。ハードディスク装置53も、補助記憶装置の一例である。
本実施の形態では、説明の都合上、空気比推定装置40と流量調整装置50を別の装置として区別しているが、ハードウェア上は1つのコンピュータで構成し、各装置の機能は、プログラムによって実現してもよい。
なお、流量調整装置50にモニターが接続される場合、モニターには、空気比の推定値と設定値との差を表示してもよい。また、モニターには、空気比の推定値の時間変化を数値やグラフで表示してもよい。なお、空気比の推定値と設定値との差が予め定めた閾値を超える場合、アラームを出力してもよい。
本実施の形態における流量調整装置50は、空気比の推定値が設定値に一致するように、空気の流量を調整するバルブ13A(図1参照)の開度を自動制御する。例えば推定された空気比が設定値より小さい場合、流量調整装置50は、バルブ13Aの開度を自動的に増加させる。一方、推定された空気比が設定値より大きい場合、流量調整装置50は、バルブ13Aの開度を自動的に減少させる。バルブ13Aの開度は、アクチエータに与える制御値により調整される。
図5は、流量調整装置50を構成するCPU51によるプログラムの実行により実現される機能構成の一例を説明する図である。本実施の形態における流量調整装置50は、プログラムの実行により、空気比取得部51A、比較部51B、流量調整部51Cとして機能する。
空気比取得部51Aは、空気比推定装置40から出力される空気比の推定値をリアルタイムで取得するモジュールである。
比較部51Bは、取得した空気比を設定値と照合するモジュールである。空気比の設定値は、オペレータや外部のシステムから与えられる。オペレータには、炉室10の燃焼を管理する作業者が含まれる。
流量調整部51Cは、推定された空気比と設定値との比較の結果に応じ、バルブ13Aの開度を自動制御するモジュールである。
流量調整部51Cによる自動制御の内容は、例えばバルブ13Aの開度を「維持する」、「増加させる」、及び、「減少させる」のいずれかである。流量調整部51Cによる制御の方式には、開度を増加させるか減少させるかの情報だけをアクチエータに出力する方法がある。この場合、予め定めた制御量だけ開度が調整される。また、流量調整部51Cによる制御の方式には、推定された空気比と設定値との差に応じた大きさの制御量と開度を増加させるか減少させるかの情報をアクチエータに出力する方法がある。
また、流量調整部51Cによる開度の自動制御は、空気比推定装置40から与えられる空気比が更新されるたびに実行してもよいし、予め定めた時間毎に空気比の最新値を用いて実行してもよい。また、流量調整部51Cによる開度の自動制御は、予め定めた時間内に得られた空気比の時間平均値を用いて実行してもよい。
本実施の形態では、空気比の調整のみに着目するが、炉内温度の制御と組み合わせて実行してもよい。
なお、光学センサ20と空気比推定装置40、検量線DBと空気比推定装置40、空気比推定装置40と流量調整装置50、流量調整装置50とバルブ13Aのアクチエータは、例えばローカルエリアネットワークや信号線等により接続されている。
<処理動作>
図6は、実施の形態1で想定する空気比調整システム1(図1参照)で実行される処理動作の一例を説明する図である。図6に示す処理動作は、空気比調整方法の一例である。なお、図中に示す記号のSはステップを意味する。
本実施の形態における空気比調整システム1は、炉室10(図1参照)内に設けた第1のセンサ21及び第2のセンサ22によりOH自発光の発光強度値とNH自発光の発光強度値をリアルタイムで測定する(ステップ1)。
次に、空気比調整システム1は、測定された2つの発光強度比を算出する(ステップ2)。この算出は、本実施の形態の場合、演算回路23(図1参照)が実行する。
続いて、空気比調整システム1は、算出された発光強度比を検量線と照合する(ステップ3)。この照合は、本実施の形態の場合、空気比推定装置40(図1参照)の照合部41B(図4参照)が実行する。
その後、空気比調整システム1は、炉室10内の空気比を推定して出力する(ステップ4)。この推定は、本実施の形態の場合、空気比推定装置40の空気比推定部41C(図4参照)が実行する。
続いて、空気比調整システム1は、推定した空気比と設定値とを比較する(ステップ5)。この比較は、本実施の形態の場合、流量調整装置50の比較部51B(図5参照)が実行する。
その後、空気比調整システム1は、推定した空気比は設定値と同じか否かを判定する(ステップ6)。この判定も、流量調整装置50の比較部51B(図5参照)が実行する。因みに、ステップ6における「同じ」は、2つの数値が完全に一致する場合だけでなく、2つの数値の違いが予め定めた範囲内である場合も含むものとする。ここでの範囲は、予め定められていてもよいし、作業者が個別に指示してもよい。
ステップ6で肯定結果が得られた場合、バルブ13Aの開度を変更する必要がない。このため、空気比調整システム1は、バルブ13Aの開度を変更することなく、今回の調整を終了する。もっとも、空気比調整システム1は、現在の開度を指示する制御値をバルブ13Aのアクチエータに送信してもよい。
一方、ステップ6で否定結果が得られた場合、空気比調整システム1は、更に、推定した空気比は設定値より多いか否かを判定する(ステップ7)。この判定も、流量調整装置50の比較部51B(図5参照)が実行する。
ステップ7で肯定結果が得られた場合、空気比調整システム1は、バルブ13Aの開度の減少を指示する(ステップ8)。この処理は、流量調整装置50の流量調整部51C(図5参照)が実行する。開度の減少の指示により、炉室10(図1参照)に供給される空気の供給量が減少し、炉室10内の空気比を設定値に近づけることができる。
一方、ステップ7で否定結果が得られた場合、空気比調整システム1は、バルブ13Aの開度の増加を指示する(ステップ9)。この処理も、流量調整装置50の流量調整部51Cが実行する。開度の増加の指示により、炉室10に供給される空気の供給量が増加し、炉室10内の空気比を設定値に近づけることができる。
本実施の形態の場合、ステップ1〜ステップ9までの処理が、炉室10内の空気比の管理が必要な間、繰り返し実行される。
本実施の形態の場合、可視光との分別が可能な紫外線帯域のOH自発光とNH自発光の発光強度値を検出の対象とするので、測定ノイズとなる炉壁の赤熱光の影響を受けずに、炉室10内における燃焼の状況を測定することが可能になる。
また、OH自発光とNH自発光の発光強度値の測定に用いる半導体センサ21C及び22Cは、酸素濃度計やガスクロマトグラフィーに比して安価であり、耐久性にも優れている。このため、従前のシステム構成に比して安価に必要な情報を測定できる。
しかも、OH自発光とNH自発光の発光強度値は、炉室10内における実際の空気比の状況を反映する。
すなわち、侵入空気が存在する炉室10の場合にも、炉室10内の火炎に含まれるOH自発光とNH自発光の発光強度比に着目することで、炉室10内の空気比を高精度かつ安価に測定できる。
また、炉室10の空気比を高精度かつリアルタイムに推定できるので、炉室10に供給される空気の流量をリアルタイムで設定値に近づけることができる。この結果、空気不足による未燃損失や空気過剰による廃棄損の抑制が可能になり、炉室10を安全かつ高効率に運転することが可能になる。
<実施の形態2>
図7は、実施の形態2で想定する空気比調整システム1Aの構成例を示す図である。図7には、図1との対応部分に対応する符号を付して示している。
実施の形態1の場合には、炉室10に供給される燃料ガスの流量を維持したまま、空気を供給する枝管に取り付けられたバルブ13Aの開度を、推定された空気比に応じてフィードバック制御した。
一方、本実施の形態では、炉室10に供給される空気の流量を維持したまま、燃料ガスが供給される主管に取り付けられたバルブ13Bの開度を、推定された空気比に応じてフィードバック制御する。
このため、図7に示す空気比調整システム1Aでは、燃料ガスが供給される主管側にのみバルブ13Bを配置し、空気が供給される枝管にはバルブ13Aを配置していない。もっとも、空気が供給される枝管へのバルブの取り付けを排除する意味ではない。あくまでも、本実施の形態は、燃料ガスの増減により、空気比を相対的に制御することを目的とする。
本実施の形態における制御の対象の違いにより、流量調整装置50Aで実行される制御の内容が実施の形態1と相違する。
図8は、実施の形態2で想定する空気比調整システム1A(図7参照)で実行される処理動作の一例を説明する図である。図8には、図6との対応部分に対応する符号を付して示している。図8に示す処理動作も、空気比調整方法の一例である。
図8に示す処理動作のうちステップ1〜ステップ7は、実施の形態1と同じである。このため、以下では、相違する動作についてのみ説明する。
ステップ7で肯定結果が得られた場合、空気比調整システム1Aは、バルブ13Bの開度の増加を指示する(ステップ8A)。この処理は、流量調整装置50の流量調整部51C(図5参照)が実行する。開度の増加の指示により、炉室10(図1参照)に供給される燃料ガスの供給量が増加し、結果的に、炉室10内の空気比は、設定値に近づくように減少する。
一方、ステップ7で否定結果が得られた場合、空気比調整システム1Aは、バルブ13Bの開度の減少を指示する(ステップ9A)。この処理も、流量調整装置50の流量調整部51Cが実行する。開度の減少の指示により、炉室10に供給される燃料ガスの供給量が減少し、結果的に、炉室10内の空気比は、設定値に近づくように増加する。
本実施の形態の場合、フィードバック制御の対象が異なるが、実施の形態1と同様の効果が実現される。
<実施の形態3>
前述した実施の形態1及び2で説明したシステムは、空気を含む混合ガスを燃焼する工業炉が設置されている敷地内に構築されているが、本実施の形態では、空気比のフィードバック制御がクラウドサービスとして提供される場合について説明する。
図9は、実施の形態3で想定する空気比調整システム1Bの構成例を示す図である。図9には、図1との対応部分に対応する符号を付して示している。
図9に示す空気比調整システム1Bの場合、工業炉が設置されている敷地側には、炉室10、空気を供給する枝管に取り付けられたバルブ13A、第1のセンサ21、第2のセンサ22が設けられ、他の構成部分は、インターネット60側に配置されている。
図9の場合、演算回路23、検量線DB30、空気比推定装置40、流量調整装置50は、インターネット60上のサーバに配置されている。本実施の形態の場合、演算回路23の機能は、サーバを構成するCPUの演算処理を通じて実現される。
本実施の形態の場合、演算回路23、検量線DB30、空気比推定装置40、流量調整装置50は、単一のサーバ内に設けられる。
もっとも、演算回路23、検量線DB30、空気比推定装置40、流量調整装置50の全部又は一部が、複数のサーバに分散的に配置されてもよい。それぞれが専用のサーバとして実現される場合、インターネット60には、各機能に対応するサーバが直接接続され、処理の順番に、各サーバ間でデータが伝送される。
本実施の形態の場合、インターネット60上のサーバ側から、遠隔地に存在する炉室10内の空気比をフィードバック制御することが可能になる。なお、このサーバを通じてサービスを提供する事業者は、工業炉を稼働している事業者と同じでもよいし、工業炉を稼働している事業者とは別の事業者でもよい。
なお、本実施の形態では、炉室10内の空気比をフィードバック制御する例について説明したが、炉室10について推定された空気比、空気比の時間変化、プログラムによるデータ解析の結果をそれぞれ炉側に提供してもよい。
因みに、演算回路23、検量線DB30、空気比推定装置40、流量調整装置50のうちいずれか1つだけ又は複数の組み合わせをインターネット60上のサーバに配置することも可能である。
例えば演算回路23は炉室10と同じ敷地内に配置してもよい。また例えば空気比推定装置40と検量線DB30だけをインターネット60上のサーバに配置してもよいし、流量調整装置50だけをインターネット60上のサーバに配置してもよい。
<実施の形態4>
前述の実施の形態3の場合には、流量調整装置50によって空気を供給する枝管に取り付けられたバルブ13Aの開度を調整しているが、本実施の形態の場合には、燃料ガスであるアンモニア含有ガスを供給する主管に取り付けられたバルブ13Bの開度を調整する。
図10は、実施の形態4で想定する空気比調整システム1Cの構成例を示す図である。図10には、図7及び図9との対応部分に対応する符号を付して示している。
本実施の形態の場合も、インターネット60上のサーバ側に配置するのは、演算回路23、検量線DB30、空気比推定装置40、流量調整装置50Aのうちいずれか1つだけ又は複数の組み合わせでもよい。
例えば演算回路23は炉室10と同じ敷地内に配置してもよい。また例えば空気比推定装置40と検量線DB30だけをインターネット60上のサーバに配置してもよいし、流量調整装置50Aだけをインターネット60上のサーバに配置してもよい。
<実施の形態5>
前述の実施の形態1〜4では、流量調整装置50(図1参照)や流量調整装置50A(図7参照)を使用してバルブ13A(図1参照)やバルブ13B(図7参照)の開度をフィードバック制御する場合を説明したが、本実施の形態では、推定された空気比や空気比の調整を支援する情報(以下「空気比等」という)を炉側に提供する場合について説明する。なお、空気比等の提供は、開度のフィードバック制御と同時に行ってもよい。
図11は、実施の形態5で想定する情報提供システム1Dの構成例を示す図である。図11には、図1及び図9との対応部分に対応する符号を付して示している。
図11に示す情報提供システム1Dの場合、検量線DB30と空気比推定装置40Aが、インターネット60上のサーバに配置されている。
図11の例では、演算回路23を炉側に配置しているが、実施の形態3や実施の形態4の場合と同様に、演算回路23をインターネット60上のサーバに配置してもよい。
本実施の形態における空気比推定装置40Aは、空気比等を炉側のユーザが使用する端末70に提供する。この意味で、本実施の形態における空気比推定装置40Aは、情報を提供する提供部の一例である。
図11では、端末70がノート型のコンピュータである場合を表しているが、スマートフォン、タブレット型の端末、ウェアラブル端末でもよい。
本実施の形態における空気比推定装置40Aは、空気比だけでなく空気比の調整を支援する情報も端末70に提供するが、空気比だけを提供することも可能であるし、空気比の調整を支援する情報だけを提供することも可能である。
空気比の調整を支援する情報には、例えば供給する空気の増減を示唆する情報、燃料ガスの増減を示唆する情報、空気や燃料ガスの増減量、空気や燃料ガスの目標値がある。
情報提供システム1Dによる情報の提供は、図6のステップ1〜4の実行後に、推定された空気比を予め定めた端末70に通知するステップを設けることで実現できる。
また、図6のステップ1〜4の実行後に、推定された空気比を用いて空気比の調整を支援する情報を生成するステップと、生成された情報を予め定めた端末70に通知するステップを設けることで実現できる。これらの処理は、情報提供方法の一例である。
図12は、端末70のディスプレイに表示される画面71の例を説明する図である。
画面71には、設定値72とその数値73、空気比の現在の値74とその数値75、調整の内容を示唆する情報76が表示されている。
炉室10内の空気比が数値75としてリアルタイムに表示されることで、ユーザは、炉室10が目標とする環境であるかを容易に理解できる。また、ユーザは、設定値72の数値73と空気比の数値75との比較により、バルブ13Aの開度の調整の必要性や調整の内容を容易に理解できる。
なお、画面71の場合には、情報76として「空気側のバルブの開度を増加させてください」が表示され、調整の内容が具体的に示唆されている。空気比の調整を支援する情報76が表示されることで、ユーザのスキルが低い場合にも、空気比の調整を誤り難く実行できる。
図12の例では、情報76の例として、空気の増減が示唆されているが、燃料ガス側のバルブ13B(図7参照)の調整が可能な場合には、「燃料ガス側のバルブの開度を増加させてください」等の表示を行ってもよい。
また、空気や燃料ガスの増減量を数値として具体的に示唆する場合には、バルブの正確な調整が可能になる。
また、空気や燃料ガスの目標値を数値として具体的に示唆してもよい。空気や燃料ガスの現在の供給量を表す数値とともに表示すれば、設定された空気比に近づけるための具体的な調整量も容易に計算できる。
なお、これらの数値は、空気比推定装置40A(図11参照)におけるデータ解析の結果として端末70(図11参照)に通知してもよいし、端末70側で計算して表示してもよい。
因みに、図11の例では、空気が供給される枝管にバルブ13Aが配置されているが、実施の形態2の場合のように、燃料ガスが供給される主管にバルブ13Bを配置してもよい。
<他の実施の形態>
(1)以上、本発明の実施の形態について説明したが、本発明の技術的範囲は、前述の実施の形態に記載の範囲に限定されない。前述した実施の形態に、種々の変更又は改良を加えたものも、本発明の技術的範囲に含まれることは、特許請求の範囲の記載から明らかである。
(2)例えば前述の実施の形態1〜5においては、工業炉を想定したが、炉内における空気比の管理が要求される燃焼炉であれば、工業炉に限らない。
(3)前述の実施の形態では、紫外線帯域のラジカル自発光のうちOH自発光とNH自発光の発光強度比を算出したが、他のラジカル自発光を含めた発光強度比を算出してもよい。他のラジカル自発光には、例えばNH2自発光やH自発光がある。
なお、空気比の推定に使用する発光強度比は、OH自発光と、NH自発光と、NH2自発光と、H自発光のうちの任意の2つの組み合わせで与えられてもよい。
例えばOH自発光とNH2自発光の発光強度比でもよいし、OH自発光とH自発光の発光強度比でもよいし、NH自発光とNH2自発光の発光強度比でもよいし、NH自発光とH自発光の発光強度比でもよいし、NH2自発光とH自発光の発光強度比でもよい。
いずれの組み合わせを使用する場合にも、炉室10内の空気比は、各組み合わせについて用意した検量線を用いて推定すればよい。
(4)前述の実施の形態では、燃料ガスとしてアンモニア含有ガスを想定するが、燃料ガスは、例えば水素含有ガスでもよいし、炭化水素系ガスでもよいし、アンモニア含有ガスと炭化水素系ガスの混合ガスでもよい。
(5)前述の実施の形態では、空気が供給される枝管にバルブ13Aが配置される例と燃料ガスが供給される主管にバルブ13Bが配置される例を説明したが、バルブ13Aとバルブ13Bの両方を配置して、空気の流量と燃料ガスの流量の両方を調整可能としてもよい。この場合、流量調整装置50(図1参照)や流量調整装置50A(図7参照)は、バルブ13Aとバルブ13Bを同時にフィードバック制御することで、炉室10内の空気比を設定値に調整する。また、空気比推定装置40A(図11参照)は、バルブ13Aとバルブ13Bの調整を支援するための情報を提供する。
(6)前述の実施の形態においては、空気比推定装置40や流量調整装置50のハードウェア構成の一例としてCPUを例示したが、GPUその他の処理装置でもよい。
1、1A、1B、1C…空気比調整システム、1D…情報提供システム、10…炉室、20…光学センサ、30…検量線DB、40、40A…空気比推定装置、50…流量調整装置、60…インターネット、70…端末

Claims (5)

  1. 燃料ガスと空気が供給される炉内で燃焼する火炎から出力されるOH自発光の光量とNH自発光の光量とに基づいて、当該OH自発光と当該NH自発光の光量比を算出する処理と、
    算出された前記光量比を検量線と照合し、前記炉内における現在の空気比を推定する処理と、
    推定された空気比に基づいて、前記炉内における空気比を調整する処理と
    を有し、
    前記検量線は、前記OH自発光と前記NH自発光の光量比と空気比との線形の関係を与える、空気比調整方法。
  2. 前記空気比に基づいて、前記炉内に供給される空気量を調整する、
    請求項1に記載の空気比調整方法。
  3. 前記空気比に基づいて、前記炉内に供給される前記燃料ガスの供給量を調整する、
    請求項1に記載の空気比調整方法。
  4. 燃料ガスと空気が供給される炉内で燃焼する火炎から出力されるOH自発光の光量とNH自発光の光量とに基づいて、当該OH自発光と当該NH自発光の光量比を算出する算出部と、
    算出された前記光量比を検量線と照合し、前記炉内における現在の空気比を推定する空気比推定部と、
    推定された空気比に基づいて、前記炉内における空気比を調整する調整部と
    を有し、
    前記検量線は、前記OH自発光と前記NH自発光の光量比と空気比との線形の関係を与える、空気比調整システム。
  5. コンピュータに、
    燃料ガスと空気が供給される炉内で燃焼する火炎から出力されるOH自発光の光量とNH自発光の光量とに基づいて、当該OH自発光と当該NH自発光の光量比を算出する機能と、
    算出された前記光量比を検量線と照合し、前記炉内における現在の空気比を推定する機能と、
    推定された空気比に基づいて、前記炉内における空気比を調整する機能と
    を実現させるためのプログラムであり、
    前記OH自発光と前記NH自発光の光量比と空気比との線形の関係を与える、ことを特徴とするプログラム
JP2020190178A 2020-11-16 2020-11-16 空気比調整方法、空気比調整システム及びプログラム Active JP6948678B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020190178A JP6948678B1 (ja) 2020-11-16 2020-11-16 空気比調整方法、空気比調整システム及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020190178A JP6948678B1 (ja) 2020-11-16 2020-11-16 空気比調整方法、空気比調整システム及びプログラム

Publications (2)

Publication Number Publication Date
JP6948678B1 true JP6948678B1 (ja) 2021-10-13
JP2022079168A JP2022079168A (ja) 2022-05-26

Family

ID=78001337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020190178A Active JP6948678B1 (ja) 2020-11-16 2020-11-16 空気比調整方法、空気比調整システム及びプログラム

Country Status (1)

Country Link
JP (1) JP6948678B1 (ja)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6036825A (ja) * 1983-08-10 1985-02-26 Hitachi Ltd 燃焼火炎の制御方法および装置
JPH01244214A (ja) * 1988-03-25 1989-09-28 Agency Of Ind Science & Technol バーナ運転空気比の監視制御方法および装置
JPH02157515A (ja) * 1988-12-09 1990-06-18 Hitachi Ltd ガスタービン燃焼器の火炎分光映像装置
JPH07133927A (ja) * 1993-11-09 1995-05-23 Hitachi Ltd 燃焼器制御装置
JPH11257651A (ja) * 1998-03-12 1999-09-21 Toto Ltd 燃焼制御装置
JP2000274669A (ja) * 1999-03-26 2000-10-03 Tokyo Gas Co Ltd 燃焼安全装置
JP2003322562A (ja) * 2002-05-07 2003-11-14 Yamatake Corp 紫外線検出装置
WO2005045379A1 (ja) * 2003-11-05 2005-05-19 Yamatake Corporation 火炎検知方法および火炎検知装置
JP2005226893A (ja) * 2004-02-12 2005-08-25 Kawasaki Heavy Ind Ltd 燃焼診断方法および燃焼診断装置
WO2008059976A1 (en) * 2006-11-17 2008-05-22 Imagineering, Inc. Reaction analyzer, recording medium, measurement system, and control system
JP2014504657A (ja) * 2010-12-29 2014-02-24 テトラ・ラヴァル・ホールディングス・アンド・ファイナンス・ソシエテ・アノニム 基材の火炎処理

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6036825A (ja) * 1983-08-10 1985-02-26 Hitachi Ltd 燃焼火炎の制御方法および装置
JPH01244214A (ja) * 1988-03-25 1989-09-28 Agency Of Ind Science & Technol バーナ運転空気比の監視制御方法および装置
JPH02157515A (ja) * 1988-12-09 1990-06-18 Hitachi Ltd ガスタービン燃焼器の火炎分光映像装置
JPH07133927A (ja) * 1993-11-09 1995-05-23 Hitachi Ltd 燃焼器制御装置
JPH11257651A (ja) * 1998-03-12 1999-09-21 Toto Ltd 燃焼制御装置
JP2000274669A (ja) * 1999-03-26 2000-10-03 Tokyo Gas Co Ltd 燃焼安全装置
JP2003322562A (ja) * 2002-05-07 2003-11-14 Yamatake Corp 紫外線検出装置
WO2005045379A1 (ja) * 2003-11-05 2005-05-19 Yamatake Corporation 火炎検知方法および火炎検知装置
JP2005226893A (ja) * 2004-02-12 2005-08-25 Kawasaki Heavy Ind Ltd 燃焼診断方法および燃焼診断装置
WO2008059976A1 (en) * 2006-11-17 2008-05-22 Imagineering, Inc. Reaction analyzer, recording medium, measurement system, and control system
JP2014504657A (ja) * 2010-12-29 2014-02-24 テトラ・ラヴァル・ホールディングス・アンド・ファイナンス・ソシエテ・アノニム 基材の火炎処理

Also Published As

Publication number Publication date
JP2022079168A (ja) 2022-05-26

Similar Documents

Publication Publication Date Title
US7302334B2 (en) Automatic mapping logic for a combustor in a gas turbine engine
JP2014163383A (ja) 燃料ウォッベ指数を迅速に検知するための方法および装置
KR102324007B1 (ko) 건식 저공해 기관을 위한 벌크 화염 온도 조정기
JP7417762B2 (ja) フレアの排出量監視システム
CN104279084A (zh) 确定热值参数的方法和设备及包括该设备的气体动力系统
US20220252265A1 (en) Systems and methods for detecting discrepancy in a combustion system
WO2020255093A1 (en) Systems and methods for combustion system control based on computational fluid dynamics using current operating parameters
EP3830483A1 (en) Combustion system with inferred fuel and associated methods
JP7393511B2 (ja) 学習モデル生成方法およびプログラム
US20090182441A1 (en) Control loop and method of creating a process model therefor
JP6948678B1 (ja) 空気比調整方法、空気比調整システム及びプログラム
JP7348864B2 (ja) 燃焼制御方法、制御装置、およびプログラム
EP3418636B1 (en) Combustion monitoring method and system for natural gas burner
JP6948679B1 (ja) 空気比推定システム、空気比推定方法及びプログラム
JP2005506540A (ja) 酸化剤として高濃度酸素を含む空気又は純粋酸素を使用する加熱炉の排気筒出口の窒素酸化物ソフトウェアセンサ
JP2020009171A (ja) 燃焼評価システム、情報処理装置およびプログラム
JP7348863B2 (ja) 燃焼制御方法、制御装置、およびプログラム
JP6996724B1 (ja) 情報提供方法、情報提供システム及びプログラム
US10378765B2 (en) Apparatus and method for detecting furnace flooding
KR20120000787A (ko) 방산가스를 이용한 보일러 온수 공급 장치 및 방법과 보일러 온수 공급 제어 장치
JP7058370B1 (ja) 燃焼設備
JP2014159886A (ja) ボイラシステム
US20240070535A1 (en) Cause estimation system, program, and model construction method
JP7315528B2 (ja) プロセス制御を支援するための表示装置および表示方法
US20230046593A1 (en) Method for controlling a combustion device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201116

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20201116

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20201208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210909

R150 Certificate of patent or registration of utility model

Ref document number: 6948678

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150