WO2005045379A1 - 火炎検知方法および火炎検知装置 - Google Patents

火炎検知方法および火炎検知装置 Download PDF

Info

Publication number
WO2005045379A1
WO2005045379A1 PCT/JP2004/016405 JP2004016405W WO2005045379A1 WO 2005045379 A1 WO2005045379 A1 WO 2005045379A1 JP 2004016405 W JP2004016405 W JP 2004016405W WO 2005045379 A1 WO2005045379 A1 WO 2005045379A1
Authority
WO
WIPO (PCT)
Prior art keywords
flame
wavelength
self
combustion
ratio
Prior art date
Application number
PCT/JP2004/016405
Other languages
English (en)
French (fr)
Inventor
Kazuo Seki
Ken Kishimoto
Original Assignee
Yamatake Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamatake Corporation filed Critical Yamatake Corporation
Priority to JP2005515310A priority Critical patent/JP4274179B2/ja
Priority to CN2004800117433A priority patent/CN1781014B/zh
Publication of WO2005045379A1 publication Critical patent/WO2005045379A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/08Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements
    • F23N5/082Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2229/00Flame sensors
    • F23N2229/04Flame sensors sensitive to the colour of flames

Definitions

  • the present invention relates to a flame detection method and a flame detection device suitable for detecting a state of a flame due to combustion, particularly a flame due to lean combustion.
  • each component such as NO, OH, and CH in a flame be accurately detected using a plurality of types of ultraviolet detectors having mutually different detection wavelength ranges.
  • a detection method is described in, for example, a Japanese patent application (Patent Document 2) whose patent application publication number is Japanese Patent Application Laid-Open No. 2003-322562.
  • FIG. 1 In an ultraviolet detecting device as disclosed in Patent Document 2 described above, for example, FIG.
  • the present invention has been made in view of such circumstances, and a purpose thereof is to focus on a self-luminous characteristic of a flame in an ultraviolet region and to easily detect a state of the flame. It is to provide a method. [0006] It is still another object of the present invention to provide a flame detection method capable of detecting a state of a flame by effectively using an ultraviolet detector having a relatively narrow detection wavelength region.
  • Another object of the present invention is to provide a flame detection device having a simple configuration suitable for detecting the state of flame due to combustion, particularly the state of flame due to lean combustion.
  • the flame detection method provides a method for detecting a ratio of two peak intensities and a local equivalent in a self-luminous component of a flame, for example, a self-emission spectrum in an ultraviolet region from OH radicals. It focuses on the relationship with the combustion characteristics such as the ratio, and the self-luminous component power of the flame due to combustion, especially the flame due to lean combustion.
  • the emission intensity ratio which is the mutual ratio of the self-emission intensities of the wavelengths, is determined, and at least the relationship between the emission intensity ratio and the flame temperature, and the relationship between the emission intensity ratio and the air ratio of the air-fuel mixture used for the lean combustion are determined. It is characterized by detecting the state of the flame based on one of them!
  • the self-luminous intensity is measured by measuring a self-luminous spectrum from a specific radical species accompanying an electron transition from an excited state to a ground state due to the lean burn. It is characterized by performing.
  • the OH band spectrum of the electronic transition A 2 A + ⁇ ⁇ 2 ⁇ ⁇ is measured, and OH (2,0) around 260 nm, OH (1,0) around 28 Onm, and 287 nm around 287 nm
  • the flame state detection is performed by calculating the self-luminous intensity ratio of ⁇ (2,1) and OH (0,0) near the wavelength of 306 nm.
  • the flame state is detected by focusing on the OH band spectrum having a wavelength of about 310 nm or less.
  • the flame detection method employs such a flame self-luminous switch. Focusing on the relationship between the wavelength component that forms the peak in the vector and its emission intensity, and detecting the flame state, especially in lean burn, from the relationship between the emission intensity ratio of at least two peaks and the flame temperature or air ratio Is what you do.
  • the flame detection device includes an ultraviolet detector that detects a plurality of self-luminous intensities of the same radical species having different wavelengths from the self-luminous components of the flame due to combustion, and the ultraviolet detector.
  • the spontaneous emission intensity of each wavelength is obtained, and at least one of the relationship between the mutual ratio of the spontaneous emission intensity and the flame temperature and the relationship between the ratio and the air ratio of the air-fuel mixture used in the combustion is obtained.
  • a processing device for detecting the state of the flame based on the flame.
  • the self-luminous components in the lean burn flame are focused on a plurality of self-luminous intensities of the same radical species, specifically, a self-luminous spectrum in the ultraviolet region of the OH radical force.
  • a self-luminous spectrum in the ultraviolet region of the OH radical force For example, simply using an ultraviolet detector that detects the wavelength range of 250 to 450 nm, preferably an ultraviolet detector that detects the wavelength range of 250 to 350 nm, can easily determine the flame state of combustion, especially for lean combustion. Flames can be detected.
  • the intensity of self-emission in the above-mentioned wavelength range in the flame is generally higher than the radiation intensity from the wall of the combustion furnace, it is possible to detect the OH band spectrum component having a wavelength of about 310 nm or less as described above.
  • the presence / absence of a flame, and finally the state of the flame can be reliably detected without being largely affected by the combustion furnace wall, which is the background upon flame detection.
  • FIG. 1 is a diagram showing a schematic configuration of a lean burn device and a flame detection device used in a flame detection method according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a schematic configuration of an ultraviolet detector used for flame detection.
  • FIG. 3 is a diagram showing a configuration example of a drive circuit of an ultraviolet detector.
  • FIG. 4 is a diagram showing an example of a self-luminous spot of OH radicals of a flame detected by the flame detector according to the present invention.
  • FIG. 5 is a diagram showing a relationship between a light emission intensity ratio R, an air ratio, and a flame temperature.
  • FIG. 6 is a diagram showing a relationship between radiant energy of a furnace wall and temperature.
  • FIG. 7 is a diagram showing a self-emission spectrum of a flame.
  • FIG. 1 is a simplified diagram showing a schematic configuration of a lean burn device in which the method of the present invention is carried out and a flame detecting device incorporated in the lean burn device.
  • Reference numeral 1 denotes a combustion furnace.
  • the combustion furnace for example around enclosure with heat bricks, ceramic fiber or the like, a combustion furnace volume as 2.5 8 X 10- 3 m 3, that of a rectangular type in which a 100 X 100 mm of the exhaust port on the top in the combustion chamber heat load of that it is set to 1.16 X 10 3 kWZm 3.
  • the burner 2 provided in the combustion furnace 1 is of a wall recess type having an inner diameter of 40 mm and a height of 60 mm.
  • a fuel for example, propane gas
  • air are mixed and supplied to the burner 2 at an air ratio of, for example, 0.8 to 1.4 in a mixer 3 provided immediately before the burner.
  • Mixer 3 is supplied with fuel from fuel tank F via metering device VI, pressure gauge P1 and flow meter Ml, and is supplied with air via blower B force metering device V2 and flow meter M2.
  • in-furnace observation windows 4a and 4b in which quartz glass is fitted at height positions of 65 mm and 130 mm, respectively.
  • the light of the flame which emits light by the combustion in the combustion furnace 1 and which can be visually recognized from the in-furnace observation windows 4a and 4b is guided to the monochromator 5 (spectroscope) via the optical fiber 6.
  • the monochromator 5 is provided with a diffraction grating for extracting a desired wavelength component of neutral light having various wavelength components, and a predetermined wavelength range selected according to an angle formed between the diffraction grating and the incident light. Is configured to be detected by a light receiving element such as a CCD.
  • Such a monochromator 5 receives and detects the self-emission due to the flame of the fuel leanly burned by the parner 2, and converts a voltage (or current) corresponding to the received light intensity.
  • the electric signal (ultraviolet light intensity) detected in this way is taken into the computer (PC) 8 via the AZD converter 7 and the emission intensity ratio between peak wavelengths is determined as described later. The relationship with the ratio is investigated, and the presence or absence of the flame and its state are detected.
  • a filter capable of detecting a wavelength range of 250 to 450 nm is used as the filter (diffraction grating) in the monochromator 5, the OH band spectrum can be confirmed for detecting the flame state. Data in the wavelength range of 250-350nm is adopted. Also computer 8 The input signal to the input signal contains noise caused by the fluctuation of the flame and the dark current of the monochromator 5, so the signal is smoothed by using the ensemble average and the moving average of the input signal (output signal of the monochromator 5). And this is used as a detection signal.
  • Fig. 5 When the relationship with the air ratio or the flame temperature was examined for an air flow rate of 90 LZmin or less, the relationship shown in Fig. 5 was obtained.
  • Fig. 5 the ratio of the emission intensity of OH (0,0) near the wavelength 306 nm of the R260 (expr) force to the emission intensity of OH (2,0) near the wavelength of 260 nm is shown, and the R280 (expr) force near the wavelength of 306 nm is shown. It shows the ratio between the emission intensity of OH (0,0) and the emission intensity of OH (1,0) near a wavelength of 280 nm. At this flow rate, the flame was stably present inside the recess spanner 2.
  • the emissivity of the furnace wall of the combustion furnace 1 varies depending on its material and surface condition, but it can be regarded as approximately 1.0 in firebricks such as alumina. Also, as the furnace wall becomes hotter, the radiant energy of any wavelength rises almost uniformly as the temperature rises, as shown in Fig. 6, for example. By the way, the energy of the non-luminous flame is about lOWZm 2 at the maximum, and at the wavelength corresponding to CH (around 315 nm, 390 nm, and 430 nm), it is easily affected by the emissivity of the furnace wall. When the temperature exceeds 1600K, the SZN ratio approaches 1, so that light from the flame (visible wavelength range) becomes almost invisible. Therefore, dilution from the wavelength corresponding to CH It is difficult to detect a flame. Therefore, flame detection at a wavelength that does not depend on the furnace wall is required.
  • the spontaneous emission wavelength of this species is 431.4 nm, which is relatively long, making it unsuitable for detecting diluted flames, which is suitable for visual inspection.
  • OH exists not only in the flame but also in the burned high-temperature gas. Therefore, caution is required for detection in the flame reaction zone.
  • the wavelength of self-emission of OH 306.4 nm, is the highest in the flame reaction zone compared to the emission in burned gas, and is strong enough to ignore the emission from the downstream flame zone. It should be noted that although the intensity is lower than that of OH, it is shorter than 260 ⁇ m, and it is also possible to use the emission of NO, depending on the wavelength, or even NO.
  • the ratio to 306 281 Zl 306 depends only on temperature, and the higher the temperature, the greater the intensity ratio.
  • the curve shown by the broken line is ⁇ ( ⁇ , ⁇ ), where ⁇ ( ⁇ , ⁇ ) is the single-color emission performance of the black body of Planck.
  • R260 (calc) is the calculated value of the emission intensity ratio for OH (2,0) around wavelength 260nm
  • R280 (calc) is the calculated value of OH (1,0) around wavelength 280nm.
  • the calculated values of the emission intensity ratios are shown below.
  • the gas temperature measurement using a thermocouple was too powerful to obtain a correct value due to the effect of the wall surface, etc., so the calculation was performed using the adiabatic flame temperature by thermochemical equilibrium calculation.
  • the emission intensity ratio hardly changes under the rich condition of a small air ratio, but when the self-emission intensity ratio R is focused on a flame temperature as high as 1500-1900 ° C, the value is 0.20-0. .
  • the force is sufficiently strong compared to the radiation intensity of the furnace wall, which is the background of spontaneous emission detection. Therefore, for example, by focusing on self-emission with a wavelength shorter than about 310 nm, and preferably focusing on self-emission with a wavelength shorter than 306 nm, it is clear that the method can be sufficiently used for detecting the state of a flame in dilution combustion. Was.
  • a discharge tube type ultraviolet detector 9 as disclosed in Japanese Patent Publication No. 44-1039 is used. A plurality of them can be used in combination. As shown in FIG. 2, the ultraviolet detector 9 is provided with a mesh-like anode (anode) 9a and a cathode (force sword) 9b at predetermined intervals in a glass tube that transmits ultraviolet light, and also performs Bening mixing. Gas is sealed.
  • the wavelength that can be detected by this type of discharge tube type ultraviolet detector 9 is determined mainly by the material of the cathode 9b. That is, ultraviolet rays having a wavelength shorter than the wavelength defined by the work function of the material of the cathode 9b are detected.
  • the detection wavelength band it is configured such that the detection light hits the cathode 9b after passing through a predetermined optical bandpass filter.
  • a drive circuit of the ultraviolet detector 9 for example, a circuit disclosed in Japanese Patent Publication No. 47-7878 can be used.
  • the ultraviolet detector 9 is driven by applying an AC voltage of about 300 V through a drive circuit configured as shown in FIG. 3, for example. Then, the ultraviolet ray detector 9 generates a discharge current between the anode (anode) 9a and the cathode (force sword) 9b only when the ultraviolet ray having a specific wavelength or more is irradiated.
  • the discharge current causes a voltage drop in the resistor RL, and the voltage decreases in cooperation with the capacitor C connected in parallel to the resistor RL. Or generate current.
  • this type of discharge tube type ultraviolet detector 9 cannot generally obtain a current output according to the intensity of ultraviolet light. Since the probability of discharge occurring in the ultraviolet detector increases as the intensity of the ultraviolet light increases, it is possible to obtain a relative output signal corresponding to the intensity of the ultraviolet light, for example, by measuring the discharge time.
  • the above-mentioned ultraviolet detector 9 cannot normally detect a specific wavelength and force, but the self-emission spectrum in the ultraviolet region from OH radicals If two ultraviolet detectors 9 having the same detection wavelength as those of the monochromator 5 are used, the device can be configured at a lower cost than the monochromator 5. For example, one of the ultraviolet detectors 9 that detects the intensity of OH radical emission around a wavelength of 306 nm is used, and the other ultraviolet detector 9 is one that detects the intensity of OH radical emission around a wavelength of 280 nm. Good. By calculating the emission intensity ratio of the two wavelengths from the detection results from these two ultraviolet detectors 9, it is possible to determine the relationship between the emission intensity ratio and the flame temperature or air ratio as described above. .
  • one ultraviolet detector 9 it is possible to change the detection wavelength of one ultraviolet detector 9 although it is a special use.
  • an ultraviolet detector 9 that can detect both wavelengths of 306 nm and 280 nm (for example, using silver as the material of the cathode 9b)
  • the sensitivity to the wavelength of 306nm increases when a high voltage is applied, and the wavelength decreases when the applied voltage is reduced.
  • a phenomenon occurs in which the sensitivity to 306 nm decreases.
  • one ultraviolet detector 9 can be used for detecting ultraviolet rays having two different wavelengths.
  • each luminous intensity is detected for each single radical luminescence having a peak at a specific wavelength using the ultraviolet detector 9 having a narrow detection wavelength band.
  • an ultraviolet detector 9 having a relatively wide detection wavelength band is used. Considering that ultraviolet light with a wavelength of 200 nm or less is attenuated in the atmosphere and cannot be detected, for example, an ultraviolet detector 9 with a carbon cathode 9b is an ultraviolet detector with a copper cathode 9b of about 200-280 nm.
  • the UV detector 9 has a silver electrode 9b of about 200-300nm. Each can be detected.
  • the ultraviolet detector 9 with the carbon cathode 9b detects ultraviolet light in the dominant wavelength band of the radical emission OH (2,0) having a peak at a wavelength of 260 nm (at around the limit wavelength 280 nm of the carbon cathode 9b). Radical emission having a peak at 280 nm does not have a dominant effect due to reduced sensitivity.)
  • the ultraviolet detector 9 having the copper cathode 9b detects ultraviolet light in a wavelength band in which radical light emission (1,0) having a peak at a wavelength of 280 nm is dominant.
  • An ultraviolet detector 9 having a silver cathode 9b detects ultraviolet light in a wavelength band in which radical light emission OH (0, 0) having a peak at a wavelength of 306 nm is dominant. Therefore, as an alternative value of the above-mentioned emission intensity ratio R260, (detected value of the ultraviolet detector 9 having the carbon cathode 9b) / (detected value of the ultraviolet detector 9 having the silver cathode 9b) is adopted. As an alternative value of the emission intensity ratio R280, (detected value of the UV detector 9 having the copper cathode 9b) / (detected value of the UV detector 9 having the silver cathode 9b) can be adopted.
  • the ultraviolet detector 9 having the copper cathode 9b may detect the radical OH (2, 1) having a peak at a wavelength of 287 nm together with the radical OH (1, 0) having a peak at a wavelength of 280 nm.
  • measurement is performed by changing the applied voltage to the ultraviolet detector 9 to change the sensitivity to the wavelength as described above, and the calculation of the measurement data affects the detected value due to unnecessary radical emission. Can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Control Of Combustion (AREA)

Abstract

 比較的検出波長領域の狭い紫外線検出器を有効に用いて、簡易に、しかも効果的に火炎を検出することのできる火炎検知方法を提供する。  火炎の自発光成分における紫外領域の自発光スペクトルのうち、同じラジカル種の波長の異なる複数の自発光強度をそれぞれ計測し、計測されたそれぞれの波長の自発光強度の相互の比である発光強度比を求め、これらの発光強度比と火炎温度との関係、または発光強度比と燃焼に用いられる混合気の空気比との関係に基づいて火炎検知を行う。特に希薄燃焼による火炎の自発光成分のうち、燃焼による励起状態から基底状態への電子遷移A2Σ+→X2ΠのOH帯スペクトルを計測し、波長260nm付近のOH(2,0)、波長280nm付近のOH(1,0)、波長287nm付近のOH(2,1)、および波長306nm付近のOH(0,0)の発光強度比を求めて火炎の状態検知を行う。

Description

明 細 書
火炎検知方法および火炎検知装置
技術分野
[0001] 本発明は、燃焼による火炎、特に希薄燃焼による火炎の状態を検出するに好適な 火炎検知方法および火炎検知装置に関する。
背景技術
[0002] 高温空気燃焼のような低 NOx燃焼は、燃料の予熱、予混合および不活性ガス等に よる希釈を行って実現することが多い。このように火炎が希釈されると、その火炎の検 知が困難となる。自着火温度程度に予熱された空気中で高度に希釈した場合、一般 的には燃料が燃焼している力否かの判断は、気体中でィ匕学反応が生じている度合 いを検出して行われる。このような火炎の状態検知に、例えば燃焼炉内における燃 焼火炎の発光スぺ外ル強度を分析し、その分析結果力 燃焼状態を診断すること が知られている。このようなシステムは、例えば特許出願公開番号が特開平 11— 325 460号である日本国公開特許公報 (特許文献 1)に記載されて!、る。
[0003] また本発明者らは、先に検出波長領域が互いに異なる複数種類の紫外線検出器 を用いて火炎中の NO, OH, CH等の各成分をそれぞれ正確に検出することを提唱 した。このような検出方法は、例えば特許出願公開番号が特開 2003— 322562号で ある日本国特許出願 (特許文献 2)に記載されて 、る。
[0004] し力しながら上記特許文献 2に示すような紫外線検出装置においては、例えば図 7
(上記特許文献 2の図 4)に示すように火炎の自発光スペクトルを良好に検出し得るも のの、例えばその力ソード (陰極)を異なる材料で製作した検出波長領域の異なる複 数種類の紫外線検出器を用いることが必要であることのみならず、その構成が大掛 力りとなるという問題がある。
発明の開示
[0005] 本発明はこのような事情を考慮してなされたもので、その目的は、紫外領域におけ る火炎の自発光特性に着目し、簡易に火炎の状態を検知することのできる火炎検知 方法を提供することにある。 [0006] 更には比較的検出波長領域の狭い紫外線検出器を有効に用いて、火炎の状態を 検出することのできる火炎検知方法を提供することにある。
[0007] また本発明の別の目的は、燃焼による火炎の状態、特に希薄燃焼による火炎の状 態を検出するに好適な簡易な構成の火炎検知装置を提供することにある。
[0008] 上述した目的を達成するべく本発明に係る火炎検知方法は、火炎の自発光成分に おける、例えば OHラジカルからの紫外領域の自発光スペクトルのうち、 2つのピーク 強度の比と局所当量比等の燃焼特性との関連性に着目したもので、燃焼による火炎 、特に希薄燃焼による火炎の自発光成分力 同じラジカル種の波長の異なる複数の 自発光強度をそれぞれ計測し、計測されたそれぞれの波長の自発光強度の相互の 比である発光強度比を求め、これらの発光強度比と火炎温度との関係、および発光 強度比と希薄燃焼に用いられる混合気の空気比との関係の少なくとも一方に基づい て火炎の状態検知を行うことを特徴として!ヽる。
[0009] 好ましくは、希薄燃焼による火炎の自発光成分のうち、希薄燃焼による励起状態か ら基底状態への電子遷移に伴う特定ラジカル種からの自発光スペクトルを計測する ことにより自発光強度の計測を行うことを特徴としている。また、好ましくは電子遷移 A 2∑+→Χ2Πの OH帯スペクトルを計測し、特に波長 260nm付近の OH(2,0)、波長 28 Onm付近の OH(1,0)、波長 287nm付近の ΟΗ(2,1)、および波長 306nm付近の OH (0,0)の自発光強度比を求めて火炎の状態検知を行うことを特徴としている。また、好 ましくは、波長が略 310nm以下の OH帯スペクトルに着目して、火炎の状態を検知 することを特徴としている。
[0010] 即ち、 2原子分子のポテンシャルにおいて、 2原子分子の電子基底状態 V "と電子 励起状態 V 'は、それぞれ V " = 0,1,2,3,…, V,=0,1, 2,3,· ··と多くの振動準位をと る。そして電子励起状態 V ' =0, 1,2,3,…にある 2原子分子が電子基底状態 v " = 0, 1,2,3,…に戻る際、光を放出する。上述した OH( v ' , V ")はそのときの準位を示して おり、 OH帯においては (0,0)でのスペクトルが最も強い光強度を持つ。
[0011] 換言すれば電子が高いエネルギ軌道から低いエネルギ軌道に移動するとき、その エネルギの差分を光として放出する際、そのスペクトル成分がエネルギ軌道に固有な 波長と光強度を有する。本発明に係る火炎検知方法は、このような火炎の自発光ス ベクトル中のピークをなす波長成分とその発光強度との関係に着目し、少なくとも 2つ のピークの発光強度比と火炎温度または空気比との関係から、特に希薄燃焼におけ る火炎の状態を検出するものである。
[0012] また本発明に係る火炎検知装置は、燃焼による火炎の自発光成分の中から同じラ ジカル種の波長の異なる複数の自発光強度をそれぞれ検出する紫外線検出器と、こ の紫外線検出器の検出信号力 それぞれの波長の自発光強度を求め、これら自発 光強度の相互の比と火炎温度との関係、および該比と上記燃焼に用いられる混合気 の空気比との関係の少なくとも一方に基づいて前記火炎の状態を検知する処理装置 とを備えることを特徴として ヽる。
[0013] 力べして本発明によれば、希薄燃焼火炎における自発光成分の、同じラジカル種の 複数の自発光強度、具体的には OHラジカル力 の紫外領域における自発光スぺク トルに着目しているので、例えば 250— 450nmの波長域を検出する紫外線検出器、 好ましくは 250— 350nmの波長域を検出する紫外線検出器を用いるだけで、簡易 に燃焼の火炎状態を、特に希薄燃焼の火炎を検知することができる。しかも火炎に おける上記波長域の自発光の強度は、一般的に燃焼炉の壁面からの放射強度より も高いので、上述したように波長が略 310nm以下の OH帯スペクトルの成分を検出 することで、火炎検出時の背景となる上記燃焼炉壁面の影響を殆ど受けることなく火 炎の有無、ひ 、ては火炎の状態を確実に検出することが可能となる。
図面の簡単な説明
[0014] [図 1]本発明の一実施形態に係る火炎検知方法に用いられる希薄燃焼装置と火炎 検知装置の概略構成を示す図。
[図 2]火炎検出に用いる紫外線検出器の概略構成を示す図。
[図 3]紫外線検出器の駆動回路の構成例を示す図。
[図 4]本発明に係る火炎検知装置で検知された火炎の OHラジカルの自発光スぺタト ルの例を示す図。
[図 5]発光強度比 Rと空気比および火炎温度との関係を示す図。
I
[図 6]炉壁の放射エネルギと温度との関係を示す図。
[図 7]火炎の自発光スペクトルを示す図。 発明を実施するための最良の形態
[0015] 以下、図面を参照して本発明の一実施形態に係る火炎検知方法および火炎検知 装置について説明する。
[0016] 図 1は本発明方法が実施される希薄燃焼装置と、この希薄燃焼装置に組み込んだ 火炎検知装置の概略構成を簡略化して示す図で、 1は燃焼炉である。この燃焼炉 1 は、例えばその周囲を耐熱煉瓦やセラミックファイバ等で囲い、燃焼炉内体積を 2.5 8 X 10— 3m3とし、その上部に 100 X 100mmの排気口を設けた矩形型のもので、そ の燃焼室熱負荷は 1.16 X 103kWZm3に設定されている。また燃焼炉 1内に設けた パーナ 2は、内径 40mm、高さが 60mmのウォールリセス型のものからなる。このバー ナ 2には、その直前に設けられた混合器 3にて燃料 (例えばプロパンガス)と空気とが 、例えば 0.8— 1.4の空気比にて混合されて供給されるようになっている。混合器 3に は、燃料タンク Fから調量器 VI、圧力計 P1および流量計 Mlを経て燃料が供給され ると共に、ブロワ B力 調量器 V2および流量計 M2を経て空気が供給される。
[0017] 一方、前記燃焼炉 1の側壁面には、 65mmおよび 130mmの高さ位置にそれぞれ 石英ガラスが嵌め込まれた炉内観測窓 4a,4bが設けられて 、る。この炉内観測窓 4a, 4bから視認することのできる前記燃焼炉 1内の燃焼により自発光する火炎の光は、光 ファイバ 6を介してモノクロメータ 5 (分光器)に導かれる。このモノクロメータ 5は、種々 の波長成分をもつ入射光の中力 希望の波長成分を取り出すための回折格子を備 え、この回折格子と入射光とのなす角度に応じて選択された所定波長域の光成分を CCD等の受光素子により検出するように構成される。このようなモノクロメータ 5により 、パーナ 2により希薄燃焼された燃料の火炎による自発光が受光検知され、その受光 強度に相当する電圧 (または電流)が変換される。このようにして検出される電気信号 (紫外線強度)が AZD変換器 7を介してコンピュータ (PC) 8に取り込まれて後述する ようにピーク波長間の発光強度比が求められ、更に火炎温度や空気比との関係が調 ベられて火炎の有無やその状態が検出される。
[0018] 尚、ここではモノクロメータ 5におけるフィルタ(回折格子)として 250— 450nmの波 長域を検出し得るものを用いているが、火炎状態の検知には上記 OH帯スペクトルの 確認が可能な 250— 350nmの波長域のデータを採用している。またコンピュータ 8 に入力される信号には、火炎の揺らぎやモノクロメータ 5の暗電流に起因する雑音が 含まれることから、入力信号 (モノクロメータ 5の出力信号)のアンサンブル平均と移動 平均とを用いることで平滑化し、これを検出信号として 、る。
[0019] このような希薄燃焼装置を用いて、先ず燃焼炉 1内を十分に加熱し、炉内温度が安 定した後、空気比が 0.8となるように燃料流量および空気流量を設定して、そのときの 希薄燃焼火炎の自発光強度を計測した。また空気流量を一定にした状態で燃料流 量を徐々に減少させ、空気比が 1.4になる力、或いは吹き消え限界となるまで複数回 に亘つて計測を繰り返したところ、空気流量が 80LZmin、空気比 1.35において、例 えば図 4に示す如き自発光スペクトルが得られた。
[0020] この図 4に示す自発光スペクトルにお!/、て確認できたピークは、電子遷移 A2∑ +→ Χ2Πにおける OH帯スペクトルであり、特に波長 260nm付近の ΟΗ(2,0)、波長 280η m付近の ΟΗ(1,0)、波長 287nm付近の ΟΗ(2,1)、および波長 306nm付近の OH (0,0)の 4ケ所であった。そこで最も強くピークの現れた波長 306nm付近の OH(0,0)の 発光強度を基準とし、波長 260nm付近の ΟΗ(2,0)の発光強度、および波長 280nm 付近の OH(1,0)の発光強度との比 (発光強度比) Rを求め、これらの発光強度比 Rと
I I
空気比または火炎温度との関係を空気流量 90LZmin以下について調べたところ、 図 5に示す関係が得られた。図 5において R260(expr)力 波長 306nm付近の OH (0,0)の発光強度と波長 260nm付近の OH(2,0)の発光強度との比を示し、 R280 (expr)力 波長 306nm付近の OH(0,0)の発光強度と波長 280nm付近の OH(1,0)の 発光強度との比を示す。尚、この流量においては、リセスパーナ 2の内部に火炎が安 定に存在していた。
[0021] 一方、燃焼炉 1の炉壁は、その材料や表面状態によって放射率が異なるが、アルミ ナ等の耐火煉瓦等においては略 1.0と看做すことができる。また炉壁が高温になるほ ど、例えば図 6に示すように温度の上昇に伴ってどの波長の放射エネルギもほぼ一 様に上昇する。ちなみに不輝炎のエネルギは最大で lOWZm2程度であり、 CHに対 応する波長(315nm付近, 390nm付近, 430nm付近)では、炉壁の放射率の影響を 受け易くなる。そしてその温度が 1600Kを越えると SZN比が 1に近くなるので、火炎 からの光 (可視波長範囲)は殆ど見えなくなる。従って CHに対応する波長から希釈 火炎を検知することは困難となる。従って炉壁に依存し難い波長での火炎検出が必 要となる。
[0022] このような観点力 従来より一般にも火炎検出に用いる化学発光を検出するべぐ OH,CH,Cや赤外線が用いられており、炭化水素火炎の検出に最も適した化学種
2
は、専ら、 CHであると考えられている。しかしこの種の化学種の自発光波長は 431.4 nmと比較的長ぐ目視確認には適している力 希釈された火炎の検知には不向きで ある。
[0023] この点、 OHは火炎中のみならず、既燃の高温ガス中にも存在する。これ故、火炎 の反応帯のでの検出には注意が必要である。しかし OHの自発光の波長 306.4nm は、既燃ガス中の発光に比較して、火炎反応帯中で最も高い強度を持ち、後流の火 炎帯からの発光を無視し得る程強い。尚、 OHに比較してその強度が弱いが、 260η mよりも短 、波長にぉ 、ては NOの発光を利用することも可能である。
[0024] また前述した図 6に示したように、炉壁の温度が高くなつてくると、その放射ェネル ギはプランク(Planck)の式に従って強くなる。従って OH分子中でのエネルギ分配が 熱平衡であれば、前述した発光強度比 R、例えば図 6に示す波長 281. lnmの強度 I
I
281と波長 306.4nmの強度 I I
306との比 281 Zl 306は温度のみに依存し、その温度が高く なればなるほど強度比が大きくなる関係を有する。
[0025] そこで前述した図 1に示す希薄燃焼装置に着目すると、その計測は OH反応帯で 行われている為、 OHの励起状態から失活するまでの時間が 400— 800nSec程度と 非常に短 、としても、その分子中の電子エネルギの分配が十分に熱平衡状態に達し ているとは考え難い。
[0026] そこで火炎中の Α2∑+→Χ2Π(0,0)と OH(1,0)等との発光強度比 Rをとつてみたとこ
I
ろ、前述した図 5に示すような結果が得られた。尚、図 5中、破線で示す曲線は、ブラ ンク (Planck)の黒体の単色射出性能を Ε(Τ, λ )として、
R = Ε(Τ, 28 lnm)/E(T, 306nm)
I
R = E(T, 262nm)/E(T, 306nm)
I
をそれぞれ計算し、これを併記したものである。 R260(calc)が波長 260nm付近の O H(2,0)に関する発光強度比の計算値、 R280(calc)が波長 280nm付近の OH(1,0)に 関する発光強度比の計算値をそれぞれ示す。但し、ここでは熱電対によるガス温度 計測が、壁面の影響等で正しい値を得ることができな力つたので、熱化学平衡計算 による断熱火炎温度を用いて計算した。
[0027] このようにして求められた発光強度比 Rと空気比および火炎温度との関係を検討し
I
て見たところ、雑音等の影響受けているものの、上述した計算に示す熱平衡を仮定し た変化に近い傾向を示すことが確認できた。特に信号が大きい R での
280 発光強度比 は、空気比の小さな過濃条件ではその比が殆ど変わらないが、 1500— 1900°C程 度の高い火炎温度において自発光強度比 R に着目した場合、その値は 0.20— 0.
1280
32の範囲に有り、し力も自発光検出の背景となる炉壁の放射強度に比較して十分に 強い。従って、例えば波長が略 310nmよりも短い自発光に注目することで、好ましく は波長が 306nmよりも短い自発光に注目することで、希釈燃焼における火炎の状態 検知に十分に利用できることが明らかとなった。
[0028] 本発明の他の実施形態として上述した高価なモノクロメータ 5に代えて、例えば特 公昭 44— 1039号の日本国特許公報に開示されているような放電管型の紫外線検出 器 9を複数組み合わせて用いることもできる。この紫外線検出器 9は、図 2に示すよう に紫外線を透過するガラス管中に、網目状の陽極 (アノード) 9aと陰極 (力ソード) 9b とを所定の間隔を隔てて設けると共にべニング混合ガスを封入したものである。この 種の放電管型の紫外線検出器 9における検出可能な波長は、主に陰極 9bの材質に よって決定される。すなわち、陰極 9bの材質の持つ仕事関数によって規定される波 長よりも短い波長の紫外線を検出する。もし検出波長帯域を限定したい場合には、 検出光が所定の光学的バンドパス ·フィルタを通過した後に陰極 9bに当たるように構 成する。またこの紫外線検出器 9の駆動回路としては、例えば特公昭 47-7878号の 日本国特許公報に開示されるようなものが用いられる。
[0029] 即ち、紫外線検出器 9の駆動は、例えば図 3に示すように構成された駆動回路を介 して 300V程度の交流電圧が印加されておこなわれる。すると紫外線検出器 9は、或 る強さ以上の特定波長の紫外線が照射されているときにだけ陽極 (アノード) 9aと陰 極 (力ソード) 9bとの間に放電電流を生起する。そしてこの放電電流により抵抗 RLに 電圧降下を生じせしめ、該抵抗 RLに並列接続されたコンデンサ Cと協働して電圧ま たは電流を発生する。
[0030] ちなみにこの種の放電管型の紫外線検出器 9は、一般的には紫外線の強さに応じ た電流出力を得ることができない。し力 紫外線が強いほど紫外線検出器に放電が 発生する確率が大きくなことから、例えば放電時間を計時することにより、紫外線の強 さに応じた相対的な出力信号を得ることが可能である。
[0031] また検出波長を可変可能な前記モノクロメータ 5とは異なり上述の紫外線検出器 9 においては通常は特定の波長し力検出することができないが、 OHラジカルからの紫 外領域における自発光スペクトルと同じ検出波長を持つ紫外線検出器 9を 2台用い れば、モノクロメータ 5よりも安価に装置を構成することができる。例えば一方の紫外 線検出器 9として波長 306nm付近の OHラジカル発光の強さを検出するものを用い 、他方の紫外線検出器 9として波長 280nm付近の OHラジカル発光の強さを検出す るものを用いれば良 、。これらの 2台の紫外線検出器 9からの検出結果から 2つの波 長の発光強度比を算出すれば、前述したように発光強度比と火炎温度または空気比 との関係を求めることが可能となる。
[0032] 更に他の実施形態として、特殊な使い方ではあるが一台の紫外線検出器 9の検出 波長を変化させることも可能である。例えば 306nmと 280nmの両波長を検出可能な 紫外線検出器 9 (例えば陰極 9bの材料として銀を用いたもの)においては、高電圧を 印加すると波長 306nmに対する感度が高くなり、印加電圧を下げると波長 306nm に対する感度が低下するという現象が生じる。この現象を利用することで、例えば計 測中に印加電圧を切り替えることによって一台の紫外線検出器 9を異なる二つの波 長の紫外線の検出に用いることができる。
[0033] 上述の実施形態では、狭い検出波長帯域を有する紫外線検出器 9を用いて特定 波長でピークを生じる単一のラジカル発光ごとにそれぞれの発光強度を検出するも のであった。これに対し次に述べる他の実施形態では、比較的広い検出波長帯域を 有する紫外線検出器 9を用いる。 200nm以下の波長を持つ紫外線は大気中で減衰 してしまって検出されないことを考慮すると、例えば、炭素製陰極 9bを持つ紫外線検 出器 9は約 200— 280nmの、銅製陰極 9bを持つ紫外線検出器は約 200— 300nm の、銀製電極 9bを持つ紫外線検出器 9は約 200— 380nmの波長帯域の紫外線を、 それぞれ検出することができる。したがって、炭素製陰極 9bを持つ紫外線検出器 9は 波長 260nmにピークを持つラジカル発光 OH (2, 0)の支配的な波長帯域の紫外線 を検出する(炭素製陰極 9bの限界波長 280nm付近では検出感度が落ちるので 280 nmにピークを持つラジカル発光は支配的に作用しない)。銅製陰極 9bを持つ紫外 線検出器 9は波長 280nmにピークを持つラジカル発光 ΟΗ (1, 0)が支配的な波長 帯域の紫外線を検出する。銀製陰極 9bを持つ紫外線検出器 9は波長 306nmにピ ークを持つラジカル発光 OH (0, 0)が支配的な波長帯域の紫外線を検出する。そこ で、上述の発光強度比 R260の代替値として、(炭素製陰極 9bを持つ紫外線検出器 9の検出値) / (銀製陰極 9bを持つ紫外線検出器 9の検出値)を採用し、上述の発光 強度比 R280の代替値として、(銅製陰極 9bを持つ紫外線検出器 9の検出値) / (銀 製陰極 9bを持つ紫外線検出器 9の検出値)を採用することができる。これにより、前 述の実施例同様、発光強度比と火炎温度との関係、あるいは発光強度と空気比との 関係、を求めることが可能となる。なお、この実施例においては検出する波長帯域が 比較的広いので複数のラジカル発光を検出するおそれがある。例えば、銅製陰極 9b を持つ紫外線検出器 9は波長 280nmにピークを持つラジカル発光 OH (1, 0)と共 に波長 287nmにピークを持つラジカル発光 OH (2, 1)を検出するおそれがある。こ のような場合、上述のように紫外線検出器 9への印加電圧を変化させ波長に対する 感度を変更して測定を行い、この測定データどうしの演算によって不要なラジカル発 光による検出値への影響を減じることが可能である。
以上のように本発明における火炎検知方法および火炎検知装置においては、希薄 燃焼による火炎の自発光成分から Α2∑ +→Χ2Πの OH帯スペクトルを計測し、その 自発光強度比 R
Iを判定することで、希釈燃焼における火炎温度または空気比を確実 に検出し得ることが明らかとなった。この故、各種の希薄燃焼の火炎検出を燃焼炉の 壁面における熱放射の影響を受けることなしに簡易に、し力も確実に行うことが可能 となる等の実用上多大なる効果が奏せられる。

Claims

請求の範囲
[1] 燃焼による火炎の自発光成分の中から同じラジカル種の波長の異なる複数の自発 光強度をそれぞれ計測し、
計測されたそれぞれの波長の自発光強度の相互の比である発光強度比を求め、 該発光強度比と火炎温度との関係、および該発光強度比と上記燃焼に用いられる 混合気の空気比との関係の少なくとも一方に基づいて火炎の状態検知を行うことを 特徴とする火炎検知方法。
[2] 前記自発光強度の計測は、燃焼による励起状態から基底状態への電子遷移に伴う 特定ラジカル種力もの自発光スペクトルを計測するものであることを特徴とする、請求 項 1に記載の火炎検知方法。
[3] 前記自発光強度の計測は、電子遷移 A2∑ +→Χ2Πの OH帯スペクトルを計測するも のであって、
波長 260nm付近の ΟΗ(2,0)、波長 280nm付近の ΟΗ(1,0)、波長 287nm付近の Ο H(2,l)、および波長 306nm付近の OH(0,0)の自発光強度の相互の比を求めて火炎 の状態検知を行うものである請求項 2に記載の火炎検知方法。
[4] 波長が略 310nm以下の ΟΗ帯スペクトルに着目して、火炎の状態を検知することを 特徴とする請求項 1に記載の火炎検知方法。
[5] 燃焼による火炎の自発光成分の中から同じラジカル種の波長の異なる複数の自発 光強度をそれぞれ検出する紫外線検出器と、
この紫外線検出器の検出信号力 それぞれの波長の自発光強度を求め、これら自 発光強度の相互の比と火炎温度との関係、および該比と上記燃焼に用いられる混合 気の空気比との関係の少なくとも一方に基づいて前記火炎の状態を検知する処理装 置と
を具備したことを特徴とする火炎検知装置。
PCT/JP2004/016405 2003-11-05 2004-11-05 火炎検知方法および火炎検知装置 WO2005045379A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005515310A JP4274179B2 (ja) 2003-11-05 2004-11-05 火炎検知方法および火炎検知装置
CN2004800117433A CN1781014B (zh) 2003-11-05 2004-11-05 火焰检测方法及火焰检测装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003376177 2003-11-05
JP2003-376177 2003-11-05

Publications (1)

Publication Number Publication Date
WO2005045379A1 true WO2005045379A1 (ja) 2005-05-19

Family

ID=34567104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/016405 WO2005045379A1 (ja) 2003-11-05 2004-11-05 火炎検知方法および火炎検知装置

Country Status (3)

Country Link
JP (1) JP4274179B2 (ja)
CN (1) CN1781014B (ja)
WO (1) WO2005045379A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108592078A (zh) * 2018-06-07 2018-09-28 西安交通大学 一种基于光谱特征的燃烧状态监测装置及其监测方法
JP2019029199A (ja) * 2017-07-31 2019-02-21 アズビル株式会社 紫外線センサのカソード電極の製造方法および紫外線センサ
US20200082693A1 (en) * 2018-09-11 2020-03-12 Rohm Co., Ltd. Ultraviolet detector and fire alarm
JP2020165831A (ja) * 2019-03-29 2020-10-08 アズビル株式会社 火炎検出システムおよび故障診断方法
JP6948679B1 (ja) * 2020-11-16 2021-10-13 東京瓦斯株式会社 空気比推定システム、空気比推定方法及びプログラム
JP6948678B1 (ja) * 2020-11-16 2021-10-13 東京瓦斯株式会社 空気比調整方法、空気比調整システム及びプログラム
JP6996724B1 (ja) 2021-06-18 2022-01-17 東京瓦斯株式会社 情報提供方法、情報提供システム及びプログラム
JP7443115B2 (ja) 2019-03-26 2024-03-05 レール・リキード-ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード 燃焼プロセスおよびそれを実施するためのバーナー

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009080094A1 (en) * 2007-12-19 2009-07-02 Abb Research Ltd Flame scanning device and method for its operation
CN101793827B (zh) * 2010-01-15 2013-02-13 公安部上海消防研究所 在线测量b类火火焰区oh自由基浓度的方法及火焰装置
CN103180722A (zh) * 2010-10-27 2013-06-26 西门子公司 用于使含碳燃料气化的设备和方法
CN102538957B (zh) * 2010-12-20 2015-07-15 西安航天远征流体控制股份有限公司 火药燃烧光强传感器
KR20150034035A (ko) * 2013-09-25 2015-04-02 한국생산기술연구원 광센서를 포함하는 공연비 계측시스템
KR101550447B1 (ko) 2013-10-29 2015-09-08 한국생산기술연구원 포토 다이오드 센서를 이용한 공연비 제어장치 및 방법
CN104864411B (zh) * 2015-03-17 2017-06-23 厦门奥普拓自控科技有限公司 一种层燃锅炉熄灭界限的智能检测系统
CN107729794A (zh) * 2016-08-10 2018-02-23 富士通株式会社 火焰检测方法、火焰检测装置和电子设备
CN106959281A (zh) * 2017-04-15 2017-07-18 广东蓝新氢能源科技有限公司 一种自由基检测装置
CN112014513A (zh) * 2019-05-30 2020-12-01 上海迪勤传感技术有限公司 氢火焰离子化检测器熄火判断装置
KR102289029B1 (ko) * 2019-10-28 2021-08-11 서울대학교산학협력단 화염 자발광 분광 기반의 연소 상태 진단 장치 및 방법
JP2021131249A (ja) * 2020-02-18 2021-09-09 アズビル株式会社 光検出システムおよび放電確率算出方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60159515A (ja) * 1984-01-27 1985-08-21 Hitachi Ltd 火炉システム
JPS6293485A (ja) * 1985-10-18 1987-04-28 Hitachi Ltd 燃焼光空燃比センサ
JPH01244214A (ja) * 1988-03-25 1989-09-28 Agency Of Ind Science & Technol バーナ運転空気比の監視制御方法および装置
JP2000111398A (ja) * 1998-09-30 2000-04-18 Hamamatsu Photonics Kk 火炎自発光計測装置
JP2000241249A (ja) * 1999-02-08 2000-09-08 General Electric Co <Ge> 燃焼火炎温度測定方法及び分光計
JP2002039864A (ja) * 2000-05-01 2002-02-06 General Electric Co <Ge> 燃焼火炎温度測定方法及び分光計
JP2002350235A (ja) * 2001-02-27 2002-12-04 General Electric Co <Ge> 光学分光計及び燃焼火炎温度測定方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85101184B (zh) * 1985-04-01 1988-11-30 株式会社日立制作所 燃烧系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60159515A (ja) * 1984-01-27 1985-08-21 Hitachi Ltd 火炉システム
JPS6293485A (ja) * 1985-10-18 1987-04-28 Hitachi Ltd 燃焼光空燃比センサ
JPH01244214A (ja) * 1988-03-25 1989-09-28 Agency Of Ind Science & Technol バーナ運転空気比の監視制御方法および装置
JP2000111398A (ja) * 1998-09-30 2000-04-18 Hamamatsu Photonics Kk 火炎自発光計測装置
JP2000241249A (ja) * 1999-02-08 2000-09-08 General Electric Co <Ge> 燃焼火炎温度測定方法及び分光計
JP2002039864A (ja) * 2000-05-01 2002-02-06 General Electric Co <Ge> 燃焼火炎温度測定方法及び分光計
JP2002350235A (ja) * 2001-02-27 2002-12-04 General Electric Co <Ge> 光学分光計及び燃焼火炎温度測定方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019029199A (ja) * 2017-07-31 2019-02-21 アズビル株式会社 紫外線センサのカソード電極の製造方法および紫外線センサ
CN108592078A (zh) * 2018-06-07 2018-09-28 西安交通大学 一种基于光谱特征的燃烧状态监测装置及其监测方法
US20200082693A1 (en) * 2018-09-11 2020-03-12 Rohm Co., Ltd. Ultraviolet detector and fire alarm
US11011039B2 (en) * 2018-09-11 2021-05-18 Rohm Co., Ltd. Ultraviolet detector and fire alarm
JP7443115B2 (ja) 2019-03-26 2024-03-05 レール・リキード-ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード 燃焼プロセスおよびそれを実施するためのバーナー
JP7232104B2 (ja) 2019-03-29 2023-03-02 アズビル株式会社 火炎検出システムおよび故障診断方法
JP2020165831A (ja) * 2019-03-29 2020-10-08 アズビル株式会社 火炎検出システムおよび故障診断方法
JP6948678B1 (ja) * 2020-11-16 2021-10-13 東京瓦斯株式会社 空気比調整方法、空気比調整システム及びプログラム
JP2022079168A (ja) * 2020-11-16 2022-05-26 東京瓦斯株式会社 空気比調整方法、空気比調整システム及びプログラム
JP2022079171A (ja) * 2020-11-16 2022-05-26 東京瓦斯株式会社 空気比推定システム、空気比推定方法及びプログラム
JP6948679B1 (ja) * 2020-11-16 2021-10-13 東京瓦斯株式会社 空気比推定システム、空気比推定方法及びプログラム
JP2023000601A (ja) * 2021-06-18 2023-01-04 東京瓦斯株式会社 情報提供方法、情報提供システム及びプログラム
JP6996724B1 (ja) 2021-06-18 2022-01-17 東京瓦斯株式会社 情報提供方法、情報提供システム及びプログラム

Also Published As

Publication number Publication date
CN1781014B (zh) 2011-04-13
JPWO2005045379A1 (ja) 2007-11-29
CN1781014A (zh) 2006-05-31
JP4274179B2 (ja) 2009-06-03

Similar Documents

Publication Publication Date Title
WO2005045379A1 (ja) 火炎検知方法および火炎検知装置
US9651480B2 (en) Online detection method of gaseous alkali metal concentration in boiler burning flame
US7414726B1 (en) Gas analyzer systems and methods
JP5336394B2 (ja) 燃焼ガス分析
Ferioli et al. Measurements of hydrocarbons using laser-induced breakdown spectroscopy
Arias et al. On the spectral bands measurements for combustion monitoring
D’Anna et al. Nano-organic carbon and soot particle measurements in a laminar ethylene diffusion flame
US4934926A (en) Method and apparatus for monitoring and controlling burner operating air equivalence ratio
Stavropoulos et al. Laser-induced breakdown spectroscopy as an analytical tool for equivalence ratio measurement in methane–air premixed flames
JP2001527632A (ja) 燃焼バーナーの光学炎制御方法及び装置
US6780378B2 (en) Method for measuring concentrations of gases and vapors using controlled flames
Rutkowski et al. Detection of OH in an atmospheric flame at 1.5 um using optical frequency comb spectroscopy
Yang et al. Improved colour-modelled CH* and C2* measurement using a digital colour camera
Oh et al. Non-intrusive laser-induced breakdown spectroscopy in flammable mixtures via limiting inverse-bremsstrahlung photon absorption
JP2007524801A (ja) エキシマー紫外線励起蛍光の検出
Sivathanu et al. Fire detection using time series analysis of source temperatures
Leipertz et al. Industrial combustion control using UV emission tomography
Schorsch et al. Detection of flame radicals using light-emitting diodes
US3504976A (en) Process and apparatus for the detection of halogens
JP2008540804A (ja) 分解炉バーナのための過剰空気制御
EP4102135A1 (en) Control mechanism for a gas boiler
Zhang et al. Diagnosis of iso-octane combustion in a shock tube by emission spectroscopy
Xu et al. Temperature-corrected spectroscopic evaluation method for gas concentration monitoring
Garcés et al. Radiation sensor in a oil boiler based on flame spectral analysis
CA3230582A1 (en) Metallurgical melting furnace, and method for determining the amount of heteromolecular gas

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20048117433

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2005515310

Country of ref document: JP

122 Ep: pct application non-entry in european phase