WO2008056526A1 - Pressurized-oil supply amount control device for vehicle-mounted crane - Google Patents

Pressurized-oil supply amount control device for vehicle-mounted crane Download PDF

Info

Publication number
WO2008056526A1
WO2008056526A1 PCT/JP2007/070434 JP2007070434W WO2008056526A1 WO 2008056526 A1 WO2008056526 A1 WO 2008056526A1 JP 2007070434 W JP2007070434 W JP 2007070434W WO 2008056526 A1 WO2008056526 A1 WO 2008056526A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow rate
pressure oil
hydraulic pump
control
control valve
Prior art date
Application number
PCT/JP2007/070434
Other languages
English (en)
French (fr)
Inventor
Tomohiko Kitani
Original Assignee
Furukawa Unic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006303660A external-priority patent/JP5248005B2/ja
Priority claimed from JP2006324506A external-priority patent/JP5032102B2/ja
Priority claimed from JP2006345394A external-priority patent/JP5248011B2/ja
Application filed by Furukawa Unic Corporation filed Critical Furukawa Unic Corporation
Priority to US12/513,725 priority Critical patent/US8454319B2/en
Priority to EP07830168.6A priority patent/EP2080728B1/en
Priority to KR1020097011161A priority patent/KR101160733B1/ko
Priority to CN2007800417183A priority patent/CN101535168B/zh
Priority to AU2007318798A priority patent/AU2007318798B2/en
Publication of WO2008056526A1 publication Critical patent/WO2008056526A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/18Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes specially adapted for use in particular purposes
    • B66C23/36Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes specially adapted for use in particular purposes mounted on road or rail vehicles; Manually-movable jib-cranes for use in workshops; Floating cranes
    • B66C23/40Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes specially adapted for use in particular purposes mounted on road or rail vehicles; Manually-movable jib-cranes for use in workshops; Floating cranes with a single prime mover for both crane and vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/20Control systems or devices for non-electric drives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/12Arrangements of means for transmitting pneumatic, hydraulic, or electric power to movable parts of devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/40Applications of devices for transmitting control pulses; Applications of remote control devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/04Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/0205Circuit arrangements for generating control signals using an auxiliary engine speed control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque

Definitions

  • the present invention relates to a pressure oil supply amount control device for a vehicle-mounted crane mounted on a vehicle such as a truck, and in particular, a structure that operates using a hydraulic pump driven by an engine of the vehicle as a hydraulic source.
  • the present invention relates to a pressure oil supply amount control device suitable for a vehicle-mounted crane.
  • Patent Document 1 As a pressure oil supply amount control device for this type of vehicle-mounted crane, for example, a technique described in Patent Document 1 is known.
  • the pressure oil supply amount control device includes a main hydraulic pump 7 and a sub hydraulic pump 8 that are simultaneously driven by an engine 6 as shown in FIG. It is equipped with a flow control valve 5 that controls the flow rate of the pressure oil discharged from the auxiliary hydraulic pump 8, and the pressure oil discharged from the main hydraulic pump 7 is discharged from the auxiliary hydraulic pump 8 to the flow control valve 5
  • the pressure oil adjusted to an arbitrary flow rate is combined and supplied to the control valve 3! /.
  • This pressure oil supply amount control apparatus includes an accelerator cylinder 4 and a governor 20 that controls the fuel injection amount of the engine 6.
  • the accelerator cylinder 4 and the governor 20 are mutually connected by a first link 21.
  • the accelerator cylinder 4 and the flow control valve 5 of the auxiliary hydraulic pump 8 are connected to each other by a second link 22 that operates simultaneously with the first link 21. For this reason, the accelerator cylinder 4 and the flow rate control valve 5 are in a fixed operating relationship, and the pressure oil supply amount can be reliably controlled by this fixed operating relationship.
  • the accelerator cylinder 4 that controls the rotational speed of the engine 6 is controlled according to the operation input by the controller 120, and at the same time, the flow control valve 5 of the auxiliary hydraulic pump 8 connected to the accelerator cylinder 4 is set to the first.
  • the pressure oil discharged from the main hydraulic pump 7 is joined to the pressure oil discharged from the sub hydraulic pump 8 and adjusted to a predetermined flow rate by the flow control valve 5.
  • To supply to the control valve 3 of the crane. According to the pressure oil supply amount control device described in the same document, it is possible to suppress engine noise and improve fuel efficiency as compared with, for example, a vehicle-mounted crane equipped with only a main hydraulic pump.
  • Patent Document 1 Japanese Patent Publication No. 6-6476
  • Patent Document 2 JP-A-9 216790
  • the volume of the main hydraulic pump 7 is set to a volume that can discharge the pressure oil at the rated pressure so that it does not stall even in the idling state where the engine speed is low and the rotational torque is low.
  • the volume of the secondary hydraulic pump 8 is set so that it can be driven simultaneously with the main hydraulic pump 7 and discharge the pressure oil at the rated pressure after the engine speed increases and the rotational torque increases. Yes.
  • the flow control valve 5 for controlling the flow rate of the pressure oil from the auxiliary hydraulic pump 8 is opened, and the pressure oil from the main hydraulic pump 7 is The purpose is to conserve energy and reduce noise by combining the pressure oil from the hydraulic pump 8, increasing the supply amount of pressure oil by the required amount, and keeping the engine speed as low as possible.
  • the pressure oil from the auxiliary hydraulic pump 8 is joined at a stage where the engine speed is lower. You can do it.
  • the engine speed that generates the rotational torque that can drive the main hydraulic pump 7 and the sub hydraulic pump 8 at the same time and discharge the hydraulic oil at the rated pressure depends on the type of vehicle equipped with the crane. Or it depends on the vehicle manufacturer. Therefore, the hydraulic oil from the auxiliary hydraulic pump 8 must be merged at the engine speed corresponding to each vehicle.
  • the sub-hydraulic pump is used after securing the necessary rotational torque by raising the engine speed to a little higher so that the engine rotational torque does not become insufficient. It is set so that the pressure oil from In other words, the engine speed increases almost proportionally over the entire range according to the amount of link movement, so the engine speed is increased until it becomes a little higher so that the engine torque is not always insufficient.
  • the pressure oil from the sub hydraulic pump 8 is set to join while ensuring the necessary rotational torque!
  • the main hydraulic pump 7 and the sub hydraulic pump 8 can be simultaneously driven at a lower engine speed, and the pressure oil at the rated pressure can be discharged.
  • the engine speed will be increased more than necessary. Therefore, there is still room for improvement in terms of further energy saving and noise reduction.
  • the present invention has been made paying attention to such problems, and in a pressure oil supply amount control device that employs a double pump system, it is possible to further suppress engine noise and improve fuel consumption.
  • the objective is to provide a pressure oil supply control device for on-board cranes.
  • a first invention of the present invention is used to control the supply amount of pressure oil supplied to a crane mounted on a vehicle and is simultaneously controlled by the engine of the vehicle.
  • a pressure oil supply amount control device for supplying a control valve for driving a crane, wherein the controller includes an engine speed control means for controlling the engine speed and a flow control valve.
  • a discharge flow rate control means for controlling the flow rate of the pressurized oil, wherein the discharge flow rate control means fully closes the flow rate control valve and supplies only the pressure oil of the main hydraulic pump to the control valve.
  • the discharge amount of the pressure oil after merging is proportional to the ratio of the operation signal input.
  • the second flow rate control that is combined so as to change to the control valve and supplied to the control valve, and the control unit controls the maximum amount of pressure oil that can be discharged from the main hydraulic pump and the sub hydraulic pressure pump by fully opening the flow control valve.
  • a third flow rate control for supplying to the valve, and the engine speed control means is configured so that the engine rotational torque does not become insufficient from the idling speed.
  • the first engine speed control for increasing the engine speed to proportionally change in accordance with the ratio of the operation signal input up to the second engine engine speed at which sufficient torque is obtained, and the engine engine speed, According to the ratio of the operation signal input, the second engine speed is maintained at the engine speed, and the engine speed is changed from the second engine speed to a third engine speed higher than the second engine speed.
  • a third rotational speed control that increases proportionally, and the controller further includes the first rotational speed control unit when the operation signal input ratio is less than the first ratio.
  • the second flow rate control and the first flow rate control corresponding thereto, and the ratio of the operation signal input is greater than the first ratio and less than the second ratio and less than the second ratio.
  • the second flow rate control is executed correspondingly, and when the ratio of the operation signal input is the third region equal to or higher than the second ratio, the third rotational speed control and the corresponding control are performed.
  • the third flow rate control is performed.
  • the pressure oil supply amount control apparatus of the first invention when the operation signal input ratio is in the first region, only the pressure oil of the main hydraulic pump is discharged by the first flow rate control by the discharge flow rate control means.
  • the engine speed is controlled by the engine speed control means from the idling speed to the second engine speed at which the engine torque is sufficient to prevent the engine torque from becoming insufficient. Since the first rotational speed control is performed to increase proportionally according to the ratio, the engine rotational speed should be kept low when the pressure oil discharge amount is small, such as inching operation. Therefore, energy saving and noise reduction are possible.
  • the engine speed control means has a second speed sufficient to prevent the engine rotational torque from being insufficient by the second speed control.
  • the engine speed is maintained, and at the second engine speed, the merging of pressure oil is started by the second flow rate control by the discharge flow rate control means correspondingly.
  • the second flow rate control since the discharge amount of the pressure oil after merging is merged so as to change proportionally according to the ratio of the operation signal input, the pressure oil after merging is By combining the discharge amounts so as to change proportionally, extreme fluctuations in torque to the engine are suppressed. Therefore, engine noise can be suppressed and fuel consumption can be improved.
  • the merging of the hydraulic oil is started after the engine speed has been increased to the second engine speed in advance, it is possible to smoothly start the merging without the risk of engine stall and to discharge the oil. Since the flow of pressure oil can be stabilized, the force S can be used to stabilize the crane operation.
  • the discharge flow rate control means fully opens the flow rate control valve by the third flow rate control and can be discharged from the main hydraulic pump and the sub hydraulic pump.
  • the engine speed control means controls the engine speed higher than the second engine speed according to the ratio of the operation signal input by the third speed control. ! / Since the engine speed is increased proportionally to the third engine speed according to the ratio of the operation signal input, even after the flow control valve is fully opened, the torque fluctuations to the engine are extremely variable. It is suppressed. Therefore, engine noise can be suppressed and fuel consumption can be improved.
  • the controller supplies pressure to the control valve in cooperation with the engine speed control means and the discharge flow rate control means. It is preferable that the total flow rate of oil is proportionally increased over the entire region in accordance with the ratio of the operation signal input. In such a configuration, the total flow rate of the pressure oil supplied to the control valve increases proportionally over the entire area in accordance with the ratio of the operation signal input, so the flow of discharged pressure oil is more stable. As a result, the noise of the engine is suppressed more appropriately, the fuel consumption is improved, and the crane The operation can be made more stable.
  • the maximum discharge amount of the main hydraulic pump is set to an amount that is smaller than the maximum discharge amount of the sub hydraulic pump! Being! /, That power S is preferred.
  • Such a configuration is more suitable for suppressing the engine torque load when the engine speed is low and the rotational torque is small.
  • the maximum discharge amount of the main hydraulic pump is set to a discharge amount necessary and sufficient for the inching operation.
  • Such a configuration is more suitable for suppressing the torque load of the engine when the engine speed is low and the rotational torque is small.
  • a second invention of the present invention is a main hydraulic pump that is used to control a supply amount of pressure oil supplied to a crane mounted on a vehicle and is simultaneously driven by the engine of the vehicle.
  • a sub-hydraulic pump a flow rate control valve for adjusting the flow rate of the pressure oil discharged from the sub-hydraulic pump to a predetermined flow rate, the number of revolutions of the engine according to the operation input to the crane, and A controller for individually controlling the flow rate control valves, and a control for driving the crane by joining the pressure oil discharged from the main hydraulic pump with the pressure oil adjusted by the flow rate control valve.
  • a control device for controlling the amount of pressure oil supplied to the valve wherein the controller relates to the operation input to the crane, the rotational speed of the engine, and the predetermined flow rate of the pressure oil by the flow rate control valve.
  • a plurality of settings are set, and a desired relationship among the plurality of set relationships can be selected.
  • the engine The special feature is to individually control the rotational speed and the predetermined flow rate of the pressure oil by the flow rate control valve.
  • the engine speed of the vehicle and the predetermined flow rate of the pressure oil by the flow rate control valve can be individually controlled. Since a plurality of relations for individually controlling are set and a desired relation among the plurality of relations can be selected, for example, a more optimal relationship is set according to the engine characteristics of the vehicle on which the crane is mounted.
  • the engine speed and the flow rate control valve can be controlled. For this reason, for example, when the main hydraulic pump and the auxiliary hydraulic pump are simultaneously driven at a lower engine speed, the present invention is applied to a vehicle capable of generating a rotational torque capable of discharging pressure oil of a rated pressure. In this case, energy saving and noise reduction can be achieved more than ever.
  • the control valve is a stack type control valve
  • a plurality of indirect drive type switching valves for driving each actuator and the flow rate of the pressure oil discharged from the auxiliary hydraulic pump are adjusted and joined to the pressure oil discharged from the main hydraulic pump.
  • the pressure reducing valve and the back pressure valve provided so as to obtain necessary pilot oil only from the main hydraulic pump are stacked to form a stack type! /.
  • a stack type control valve is formed by stacking a plurality of switching valves, a flow control valve and an unload relief valve, and a pressure reducing valve and a back pressure valve for obtaining pilot oil. Since it is configured, it is possible to save space and improve assemblability.
  • this stack type control valve since the pressure reducing valve and the back pressure valve for obtaining the pilot oil necessary for driving the indirect drive type switching valve are provided, for example, emergency stop is made in an emergency.
  • the operation can be performed by remote control (radio control operation).
  • these pressure reducing valves and back pressure valves are provided so as to obtain pilot oil necessary for driving the plurality of switching valves only from the main hydraulic pump, the pipes after the main hydraulic pump and the sub hydraulic pump have joined together are provided. Compared with the one provided on the road, the oil temperature rise can be suppressed.
  • the flow control valve is configured to join the pressure oil of the auxiliary hydraulic pump with the pressure oil of the main hydraulic pump.
  • this Such a vehicle-mounted crane is generally equipped with an overload prevention device that controls the crane to a desired state according to the load factor of the crane.
  • this type of overload prevention device one having a separate flow control valve for controlling the flow rate of the hydraulic oil supplied to each switching valve for driving the crane according to the load factor on the crane is known. (For example, see Patent Document 2).
  • Patent Document 2 According to the technique described in Patent Document 2, the crane can be controlled to a desired state according to the load factor of the crane.
  • the third invention of the present invention has been made paying attention to such a problem, and in a pressure oil supply control device employing a double pump system, a flow control valve for merging and a load are used.
  • the purpose of the present invention is to provide a pressure oil supply amount control device that can also serve as a flow rate control valve that controls the flow rate according to the rate.
  • a third invention of the present invention is a main hydraulic pump that is used to control the supply amount of pressure oil supplied to a crane mounted on a vehicle and is simultaneously driven by the engine of the vehicle, and A sub-hydraulic pump, a flow rate control valve for adjusting the flow rate of the pressure oil discharged from the sub-hydraulic pump to a desired flow rate, and a main oil capable of bypassing the pressure oil discharged from the main hydraulic pump and the sub-hydraulic pump to the tank
  • An operation signal to the crane is input to the controller, and a load signal corresponding to a load factor of the crane is input to the controller, and the controller receives the input signal.
  • the flow rate control valve is controlled based on the operation signal and the input load signal is large, when the input load signal is small In comparison, the flow control valve is controlled so as to reduce the flow rate of the pressure oil discharged from the auxiliary hydraulic pump, or each unload valve is operated.
  • the controller receives a load signal corresponding to the load factor of the crane and an operation signal to the crane, respectively. Since the flow rate control valve is controlled based on these load signals and operation signals, V, the flow rate control of the pressure oil merged by one flow rate control valve and the flow rate control corresponding to the load factor are combined. It is possible. And this controller gives priority to the load signal side according to the load factor of the crane among the load signal and the operation signal, and controls one flow control valve, so according to the load factor to the crane. Ensure that the flow rate is as desired.
  • the flow control valve when the input load signal is in a first range less than a first predetermined value, The flow control valve is controlled based on only the operation signal, and the input load signal exceeds the first predetermined value and is greater than the first predetermined value and less than a second predetermined value. In the second range, the flow control valve is controlled to decrease the flow rate of the pressure oil discharged from the auxiliary hydraulic pump as the load signal increases, and the flow rate is controlled based on the operation signal.
  • the control valve is controlled and the input load signal exceeds the second predetermined value and is in a third range that is greater than the second predetermined value and less than the third predetermined value, the flow control valve And the input load signal is the third place.
  • the fourth range above value is preferably adapted to bypass the tank the pressure oil from the main operating each unloading valve hydraulic pump and double hydraulic pump.
  • the flow control valve is controlled based only on the operation signal to the crane, so that agile operation is possible.
  • the flow rate control valve is controlled so as to decrease the flow rate of the pressure oil discharged from the sub hydraulic pressure pump as the load signal increases. Therefore, the crane can be operated at a speed corresponding to the degree of the load factor, and further, for example, in the third range where the load factor is relatively high, the flow control valve is controlled to be fully closed. It is possible to operate at a low speed equivalent to the crane speed during slow motion, and in the fourth range, the crane operation can be stopped by operating the unload relief valve. Therefore, it is suitable for controlling the crane to a desired state.
  • the noise for the engine can be further suppressed and the fuel consumption can be improved.
  • a pressure oil supply amount control device for a crane can be provided.
  • the pressure oil supply amount control device adopting the double pump system has a flow rate control for controlling the flow rate according to the flow rate control valve for merging and the load factor.
  • a pressure oil supply amount control device that can also serve as a control valve can be provided.
  • FIG. 1 is a diagram illustrating a first embodiment of a hydraulic circuit including a pressure oil supply amount control device for a crane mounted on a vehicle according to the present invention.
  • FIG. 2 is a diagram illustrating a predetermined control function (control map used for pressure oil supply amount control processing) applied to the control device shown in FIG.
  • FIG. 3 is a diagram showing another control function for comparison (a control map used for pressure oil supply amount control processing).
  • FIG. 4 is a diagram for explaining a first control function (first control map used for pressure oil supply amount control processing) applied to the control device of the second embodiment.
  • FIG. 5 is a diagram illustrating a second control function (second control map used for pressure oil supply amount control processing) applied to the control device of the second embodiment.
  • FIG. 6 is a diagram for explaining a radio operating device of a crane for mounting on a vehicle according to the present invention
  • FIG. 6 (a) is a perspective view of the radio operating device
  • FIG. 6 (b) is a side view.
  • FIG. 7 is a diagram for explaining a predetermined control function (control map used for pressure oil supply amount control processing) applied to the control device of the third embodiment.
  • FIG. 8 A program for executing pressure oil supply amount control processing executed by the controller of the third embodiment. It is a flowchart of a program.
  • FIG. 9 A diagram illustrating an example of a hydraulic circuit including a conventional hydraulic oil supply amount control device for a vehicle-mounted crane.
  • Engine speed control unit (Engine speed control means)
  • Discharge flow control unit (Discharge flow control means)
  • FIG. 1 is a diagram for explaining a hydraulic circuit including a pressure oil supply amount control device for a vehicle-mounted crane according to the present invention.
  • the pressure oil supply amount control device (hereinafter also simply referred to as “control device”) of the crane mounted on a vehicle has an operation input device 1 for an operator to input a desired operation signal input.
  • the operation input device 1 can output an operation signal corresponding to the operation of the operator to the controller 2 via the signal spring 50 (the controller 2 will be described in detail later). ).
  • the control device includes a main hydraulic pump 7 and a sub hydraulic pump 8 that are simultaneously driven by the engine 6.
  • the discharge side of the main hydraulic pump 7 is directly connected to the control valve 3 via the main circuit 24 of the hydraulic circuit.
  • the discharge side of the auxiliary hydraulic pump 8 is connected to the main circuit 24 via the flow control valve 5, and the auxiliary hydraulic pump adjusted by the flow control valve 5 is added to the pressure oil discharged from the main hydraulic pump 7.
  • the pressure oil of pump 8 is joined and supplied to the control valve 3.
  • the discharge amount of the main hydraulic pump 7 is smaller than the discharge amount of the sub hydraulic pump 8, and in particular, the discharge amount of the main hydraulic pump 7 in this embodiment is used for the inching operation of the crane. Necessary and sufficient discharge amount is set.
  • the flow rate control valve 5 is connected to the controller 2 via the signal line 52, and based on the control signal from the controller 2, the flow rate of the pressure oil discharged from the auxiliary hydraulic pump 8 is set to a predetermined flow rate. Can be adjusted.
  • a switching valve 40 for driving each actuator (not shown) of the crane is provided for each actuator.
  • Each switching valve 40 is connected to the controller 2 via a signal line 53, and an oil passage switching operation is executed based on a control signal from the controller 2 in response to the operation signal. Yes.
  • control valve 3 will be described in more detail.
  • control valve 3 of this onboard crane A plurality of directional control valves 40, and pressure compensation valve 45, flow control valve 5, unload relief valve 27, pressure reducing valve 47, back pressure valve 46, and unloading relief valve 29 is configured as a stack type in which the plurality of switching valves 40 are stacked in this order from the switching valve 40 side.
  • the unload relief valve 29, the pressure reducing valve 47, the back pressure valve 46, and the pressure compensating valve 45 are provided in the main hydraulic pump 7 as shown in FIG. These are connected in this order from the discharge side.
  • the pressure reducing valve 47 and the back pressure valve 46 are provided so as to obtain pilot oil necessary for driving the plurality of switching valves 40 only from the main hydraulic pump 7, thereby Only by this, the pilot oil required for each switching valve 40 can be obtained.
  • the flow control valve 5 and the unload relief valve 27 are connected to the discharge side of the sub hydraulic pump 8.
  • the flow rate control valve 5 adjusts the flow rate of the pressure oil discharged from the auxiliary hydraulic pump 8 to a desired flow rate, and joins the pressure oil discharged from the main hydraulic pump 7 to combine the plurality of switching valves 40. It is possible to send the pressure oil that has joined to
  • the control valve 3 operates the two unload relief valves 27 and 29 to return the pressure oil from the pumps 7 and 8 to the tank 9 without passing through the switching valve 40. Sometimes it is possible to make an emergency stop of the crane.
  • the control device includes an accelerator cylinder 4 and a governor 20, and the accelerator cylinder 4 and the governor 20 are connected to each other by a first link 21.
  • the accelerator cylinder 4 is also connected to the controller 2 via the signal line 51, and is driven based on a control signal from the controller 2 corresponding to the operation signal.
  • this control device can control the engine speed to a desired speed by adjusting the fuel injection amount to the engine 6 by the governor 20 according to the operation of the accelerator cylinder 4. That is, in the present embodiment, the second link 22 as illustrated above is not provided, and the rotational speed of the engine 6 and the predetermined flow rate of the pressure oil by the flow control valve 5 are individually controlled by the controller 2. It is configured to be controllable with.
  • the controller 2 receives an operation signal input from the operation input device 1.
  • the control pressure oil supply amount management unit 11 that manages the pressure oil supply amount
  • the control pressure oil supply amount management unit 11 outputs the corresponding control signal to the accelerator cylinder 4 according to the command of the force.
  • the engine speed control unit 12 and the discharge flow rate control unit 13 that outputs a corresponding control signal to the flow rate control valve 5 in response to a command from the control pressure oil supply amount management unit 11 are provided.
  • the engine speed controller 12 corresponds to the engine speed controller
  • the discharge flow controller 13 corresponds to the discharge flow controller V.
  • the controller 2 performs calculation related to the pressure oil supply amount control processing based on a predetermined control program (hereinafter not shown) V and the entire system of the control device.
  • a CPU that controls the CPU, a ROM that stores CPU control programs and the like in a predetermined area, a RAM that stores data read from the ROM and the computation results required in the computation process of the CPU, and the above-mentioned It is configured with an I / F (interface) that mediates input and output of data to external devices including the operation input device 1, control valve 3, accelerator cylinder 4, and flow control valve 5! /
  • the I / F of the controller 2 transmits an operation signal to each external device through a signal line (reference numerals 50 to 55 indicated by a broken line in FIG. 1) such as a bus for transferring data.
  • a signal line reference numerals 50 to 55 indicated by a broken line in FIG. 1
  • Data such as control signals are connected so that they can be sent and received, so that the control signals corresponding to the operation signals input from the operation input device 1 are sent to the control valve 3, the accelerator cylinder 4, and the flow control valve. 5 can be output to each.
  • a program for executing the pressure oil supply amount control process is stored in a predetermined area of the ROM so that it can be referred to as appropriate in a format in which a calculation result necessary for the calculation process can be derived.
  • a predetermined control function is stored as table data in the ROM.
  • the predetermined control function force is referred to in the pressure oil supply amount control process executed by the controller 2.
  • the pressure oil supply amount control process executed by the controller 2 is such that the control signals output to the accelerator cylinder 4 and the flow rate control valve 5 in accordance with the operation signal input from the operation input device 1 Based on the control function, V is set individually! / [0042]
  • the predetermined control function and the pressure oil supply amount control process corresponding thereto will be described in more detail.
  • FIG. 2 is a diagram for explaining a predetermined control function (a control map used for pressure oil supply amount control processing) applied to the control device.
  • the graph shown in the figure shows the control function (control map) that can be referred to as the above table data.
  • the lowermost stage is the opening of the flow control valve 5, and the upper stage is the total pump at the engine speed and rated pressure.
  • the drive torque and the total flow G from the main and secondary hydraulic pumps 7 and 8 are shown in sequence.
  • control pressure oil supply amount management unit 11 in the controller 2 is set with three areas for executing control according to the ratio of operation signal input. That is, as shown in the figure, in the present embodiment, the first region R1 in which the operation signal input ratio is less than 10% (first ratio) and the operation signal input ratio is 10% or more and 44%. A second area R2 less than (second ratio) and a third area R3 in which the operation signal input ratio is 44% or more are set.
  • the discharge flow rate control unit 13 is configured to be able to execute three controls corresponding to the three regions Rl, R2, and R3. That is, as shown in the figure, the discharge flow rate control unit 13 includes a first flow rate control VI, a second flow rate control V2, and a third flow rate control V3. It is made.
  • the discharge flow rate control unit 13 performs control to fully close the flow rate control valve 5 and supply only the pressure oil of the main hydraulic pump 7 to the control valve 3, and the second flow rate control VI.
  • the volume control V2 when the pressure oil of the auxiliary hydraulic pump 8 is merged with the pressure oil discharged from the main hydraulic pump 8, the discharge amount of the pressure oil after merging is proportional to the ratio of the operation signal input.
  • the third flow control V3 is controlled so that the flow control valve 5 is fully opened and the main hydraulic pump 7 and the sub hydraulic pump 8 are discharged. Control is performed to supply the maximum amount of oil to the control valve 3.
  • the engine speed controller 12 is also configured to be able to execute three controls corresponding to the three regions Rl, R2, and R3. That is, as shown in the figure, the engine speed control unit 12 includes a first speed control El, a second speed control E2, and a third speed control E3! / RU
  • the engine speed control unit 12 provides the necessary and sufficient torque for the first engine speed control E1 so that the engine 6 does not have a shortage of the engine 6 torque from the idling engine speed (400 rpm).
  • the second engine speed control E2 is used to increase the engine speed of the engine 6 to 550 rpm (second engine speed).
  • the engine speed is maintained at 550 rpm, which is the second engine speed, and further, in the third speed control E3, the engine 6 speed is increased from the second engine speed, 550 rpm, to a third speed higher than that.
  • the engine speed (lOOOrpm) is controlled to increase proportionally according to the ratio of the operation signal input.
  • the discharge flow rate control unit 13 causes the engine rotation number control unit 12 to execute the first rotation number control E1, and controls the discharge flow rate control accordingly.
  • Part 13 is adapted to execute the first flow control VI.
  • the engine speed control unit 12 executes the second speed control E2, and the discharge flow rate control unit 13 correspondingly performs the second flow rate control E2. It is supposed to run V2.
  • the engine speed control unit 12 The third rotation speed control E3 is executed in response to this, and the discharge flow rate control unit 13 is caused to execute the third flow rate control V3 correspondingly.
  • the controller 2 accelerates the increase in the rotational speed of the engine 6 until the rotational speed of the engine 6 reaches 550 rpm, and at the stage where the rotational speed reaches 550 rpm (second engine rotational speed).
  • the rotational speed is maintained, and after that state, the opening of the flow control valve 5 is started, and the total flow G is increased proportionally by the merging of the pressure oil between the main hydraulic pump 7 and the auxiliary hydraulic pump 8. Then, after the flow control valve 5 is fully opened, the increase in the rotational speed of the engine 6 is resumed, and the total flow G is increased proportionally.
  • the controller 2 linearly calculates the total flow rate G of the hydraulic oil supplied to the control valve 3 in cooperation with the engine speed control unit 12 and the discharge flow rate control unit 13, that is, as shown in FIG. In addition, control is performed so as to increase proportionally over the entire region R1 to R3 in accordance with the ratio of operation signal input.
  • the controller 2 uses the first flow rate control VI in the discharge flow rate control unit 13 when the operation signal input ratio is in the first region R1. Only the pressure oil from the main hydraulic pump 7 is discharged, and the engine speed control unit 12 correspondingly causes the engine 6 speed to be reduced from idling speed (400 rpm), resulting in insufficient engine 6 torque. Since the first rotation speed control E1 is performed to increase proportionally according to the ratio of the operation signal input up to 550 rpm (second engine rotation speed), which becomes a necessary and sufficient torque, for example, inching When the amount of discharged hydraulic oil is small, such as during operation, it is possible to save energy and reduce noise by keeping the engine speed low.
  • the engine speed control unit 12 performs the rotation of the engine 6 by the second speed control E2. Maintaining the necessary and sufficient second engine speed of 550 rpm so that the torque does not become insufficient.
  • the discharge flow rate control unit 13 The second flow control at V2 starts the merging of pressure oil.
  • the total flow rate G of pressure oil after merging changes proportionally.
  • the discharge flow rate control unit 13 fully opens the flow rate control valve 5 with the third flow rate control V3.
  • the maximum amount of pressure oil that can be discharged from the main hydraulic pump 7 and the sub hydraulic pump 8 is discharged, and in response to this, the engine speed control unit 12 performs the third speed control E3.
  • the engine 6 speed is proportionally increased to the third engine speed (lOOOrpm) higher than the second engine speed, so the flow control valve 5 is fully opened.
  • the extreme fluctuations in torque to the engine 6 are also suppressed afterwards. Therefore, the noise of engine 6 can be suppressed and fuel consumption can be improved.
  • the total flow rate G of the hydraulic oil supplied to the control valve 3 by the cooperation of the engine speed control unit 12 and the discharge flow rate control unit 13 is set to the ratio of the operation signal input. Accordingly, the flow is controlled so as to increase proportionally over the entire range R1 to R3, so that the flow of pressure oil to be discharged becomes more stable, thereby more appropriately suppressing the noise of the engine 6 and improving fuel efficiency. While improving more, the operation
  • FIG. 3 shows another control function for comparison with the above-described example.
  • the pump capacity and the rated engine speed are the same for the above-described predetermined control function and other control functions according to the present invention.
  • the speed of the engine 6 is assumed to be only one speed control E in which the speed of the engine 6 increases in proportion to the operation signal input to 400 rpm, etc.
  • the number of rotations that generates torque that can be driven without causing an engine stall or the like even when the pressure oil from the sub-hydraulic pump 8 is combined with the pressure oil from the pump 7 is assumed to be 550 rpm as described above.
  • the flow rate control valve 5 has a flow rate control valve 5 after the engine 6 reaches 550 rpm, that is, when the operation signal input becomes 25%. Will shift from fully closed flow control VI to flow control V2 ', which requires opening.
  • the timing of the flow rate control V3 ′ at which the flow rate control valve 5 is fully opened is a force that can be arbitrarily set.
  • the total flow rate (discharge amount) supplied to the control valve 3 is a bent graph including the total flow rates Gl, G2, and G3, as shown in the upper part of the figure.
  • the pump volume and the rated rotational speed of the engine 6 are the same for both the predetermined control function and other control functions according to the present invention.
  • the total flow rate supplied is similar.
  • the predetermined control function according to the present invention shown in FIG. 2 the merging of the pressure oil from the auxiliary hydraulic pump 8 is started at an early stage, and the engine 6 revolutions in the second region R2 which is an intermediate region of the operation signal Since the total flow rate (discharge amount) G obtained is controlled so as to increase linearly, the overall engine speed is compared with the other control functions shown in Fig. 3. As low as possible. This makes it possible to keep the engine speed even lower than in the other control functions in Fig. 3 in most of the operating range.
  • the space saving and assembling can be improved in the double-pump type vehicle-mounted crane, and the crane can be stopped urgently and remotely operated. Even in this case, the rise in oil temperature can be suppressed.
  • a plurality of switching valves 40, a flow control valve 5 and unload relief valves 27 and 29, and a pressure reducing valve 47 and a back pressure valve 46 for obtaining pilot oil are laminated together. Since a stack type control valve is configured, it is possible to save space and improve assembly.
  • two unload relief valves 29, 27 are provided in a pipe line located between the plurality of switching valves 40 and the main hydraulic pump 7 and the sub hydraulic pump 8. Since the two unload relief valves 29 and 27 are operated, the pressure oil from each pump 7 and 8 is returned to the tank 9 without passing through the switching valve 40. Eg emergency The crane can be emergency stopped.
  • the plurality of switching valves 40 are of an indirect drive system, and are equipped with a pressure reducing valve 47 and a back pressure valve 46 for obtaining the pilot oil.
  • the operation to make an emergency stop at any time can be performed by remote control (radio control operation).
  • the pressure reducing valve 47 and the back pressure valve 46 are provided so as to obtain necessary pilot oil from the main hydraulic pump 7 only, for example, the main hydraulic pump 7 and the sub hydraulic pump 8 merge. Compared with the case where the pressure reducing valve 47 and the back pressure valve 46 are provided in the later pipe line, the rise in the oil temperature can be suppressed.
  • the second embodiment is an example in which a plurality of control functions are stored as table data in the ROM of the controller 2.
  • the operation input device 1 includes a selection switch (not shown) for selecting the plurality of control functions.
  • the plurality of control functions are set so as to be individually selectable with respect to the operation signal generated by the operation of the selection switch from the operation input device 1, and the selected desired control function force S, This is referred to in a predetermined pressure oil supply amount control process executed by the controller 2.
  • two control functions of the first control function and the second control function are supplied as pressure oil as the plurality of control functions. It is stored so that it can be referred to as appropriate in a format that can derive the calculation results required in the calculation process of the quantity control process.
  • the plurality of control functions can be selected according to the operation by the selection switch on the operation input device 1 by the operator, and the plurality of control functions are appropriately selected according to the engine characteristics of the vehicle. .
  • Each control function is a total discharge flow rate force of the main hydraulic pump 7 and the auxiliary hydraulic pump 8.
  • the first control function and the second control function are set to control the accelerator cylinder 4 and the flow control valve 5 in a proportional manner. The balance is different.
  • the first control function and the second control function will be described in more detail.
  • FIG. 4 is a view for explaining a first control function (first control map used for pressure oil supply amount control processing) applied to the control device of the second embodiment.
  • the lowest level represents the first control function (control map) that can be referred to as the above table data
  • the upper level represents the total pump drive torque at the engine speed and rated pressure.
  • the total flow rate by the main and sub hydraulic pumps is shown in order.
  • the engine speed when the ratio of the operation signal input is 25% is calculated under the previously assumed conditions, the engine speed is 60% between the idling speed 400 rpm and the rated speed lOOOrpm. Therefore, the engine speed is 760rpm. That is, in the case of the pressure oil supply amount control process by the first control function, when the engine speed becomes 760 rpm or more, the merging of the pressure oil from the auxiliary hydraulic pump 8 starts and the torque load on the engine 6 increases. It will be. Further, the pump driving torque at that time is a torque for driving the main hydraulic pump 7 and the auxiliary hydraulic pump 8. The torque varies depending on the discharge pressure. Torque at MPa.
  • this first control function is more than necessary. This will increase the engine speed.
  • control apparatus of the second embodiment further includes a second control function that starts the merging of the auxiliary hydraulic pumps 8 at a lower engine speed, and can be selected according to the engine characteristics of the vehicle. ing.
  • FIG. 5 shows the second control function (control map).
  • the assumption conditions such as the pump volume and the engine speed are the same as those of the first control function shown in FIG.
  • the above-mentioned “relationship between the operation input to the crane and the engine speed and the predetermined flow rate of the pressure oil by the flow rate control valve” corresponds to the first and second control functions, respectively.
  • the above-mentioned “desired relationship among the plurality of set relationships” corresponds to a control function appropriately selected according to the engine characteristics of the vehicle from among the plurality of control functions. To do.
  • the controller 2 sets a plurality of different control functions (first and second control functions) as table data.
  • a desired control function from among the plurality of control functions can be selected from the operation input device 1, so that it matches the engine characteristics of the vehicle on which the crane is mounted.
  • By selecting an appropriate control function it is possible to control the flow rate control valve 5 for controlling the flow rate of the pressure oil from the sub-hydraulic pump 8 and a more optimal engine speed.
  • the crane for mounting on a vehicle includes a wireless controller 60 that can be operated by remote control (radio control).
  • the wireless controller 60 can transmit and receive necessary signals such as operation signals to and from the controller 2 by known wireless communication means.
  • the wireless controller 60 will be described with reference to FIG. 6 as appropriate.
  • FIG. 6 (a) is a perspective view of the wireless controller
  • FIG. 6 (b) is a side view.
  • this wireless controller 60 includes a grip part 67 and an operation part 68.
  • the operation unit 68 includes a boom raising / lowering switch 61, a winch switch 62, a boom telescopic switch 63, a left / right turning switch 64, and the like. Operation signals corresponding to valve 40 (reference symbols D to S in Fig. 1) can be transmitted to controller 2 respectively.
  • an inching button 66 for performing an inching operation of the crane is also arranged on the operation unit 68 so that a corresponding operation signal can be transmitted to the controller 2.
  • a speed lever 65 projects downward from the lower surface of the operation unit 68. As shown in Fig. 6 (b), this speed lever 65 is a speed controller that can adjust the ratio of the crane operation signal from 0 to 100%. An operation signal is sent to the controller 2 so that the crane operating speed can be adjusted.
  • the controller 2 discharges the auxiliary hydraulic pump 8 force when the input load signal is large compared to when it is small.
  • the operation input device 1 V and the wireless operation device 60 (hereinafter, the operation input device 1 etc. are also V) can be operated by the operator.
  • the pressure oil supply amount control process for controlling the flow rate control valve 5 is executed based on the operation signal input accordingly.
  • the flow control valve 5 is a proportional type in which the maximum operating amount of the spool is appropriately limited according to the load signal, and the pressure oil discharged from the auxiliary hydraulic pump 8 by limiting the maximum operating amount of the spool. The flow rate can be adjusted proportionally.
  • the program for executing the pressure oil supply amount control processing is stored in a predetermined area of the ROM so that the calculation result necessary for the calculation process can be derived as appropriate. Has been.
  • a predetermined control function is stored as table data in the ROM. Then, it is referred to in the pressure oil supply amount control process executed by the predetermined control function force controller 2.
  • the pressure oil supply amount control process executed by the controller 2 is performed according to the operation signal input from the operation input device 1 etc. and the load signal input from the overload prevention device 10 according to the accelerator cylinder 4 and the flow control valve.
  • the control signals output to 5 are individually set based on the predetermined control function.
  • FIG. 7 is a diagram for explaining a predetermined control function (control map used for the pressure oil supply amount control process) applied to the control device of the third embodiment.
  • the graph shown in the figure shows the control function (control map) that can be referred to as the table data above.
  • the bottom is the spool opening of the flow control valve 5, and the top is the engine speed and rated pressure.
  • the total pump drive torque and the total flow rate by the main and secondary hydraulic pumps 7 and 8 are shown in order.
  • the volume of the main hydraulic pump 7 is 20 cm 3 / rev and the volume of the sub hydraulic pump 8 is 40 cm 3 / rev.
  • the discharge amount of the main hydraulic pump 7 is smaller than the discharge amount of the sub hydraulic pump 8, and in particular, the discharge amount of the main hydraulic pump 7 in this embodiment is
  • the discharge rate is set to a small value within the necessary and sufficient range for the inching operation of the crane.
  • the pressure oil supply amount control process in the controller 2 is set in four ranges according to the input load signal.
  • the first range is when the input load signal is less than 50% (first predetermined value), and the input load signal exceeds 50% (first predetermined value) and 95%.
  • the second range When it is less than (second predetermined value), the second range, and when the input load signal exceeds 95% (second predetermined value) and less than 100% (third predetermined value)
  • the inching button 66 is operated and the signal is input! /
  • the input load signal exceeds 100% (third predetermined value). It is set as the fourth range.
  • FIG. 8 is a flowchart of a program for executing the pressure oil supply amount control process executed by the controller 2 of the third embodiment. As shown in the figure, in the example of the present embodiment, when the program is executed in the controller 2, the process first proceeds to step S1.
  • Step S1 it is determined whether or not the inching button 66 of the wireless controller 60 is operated. If it is operated (Yes), the process proceeds to Step S6. If not (No), Moves to step S2. In step S2, it is determined whether or not the load signal input from the overload prevention device 10 is within the first range. If it is within the first range (Yes), the process proceeds to step S3. For (No), go to step S4.
  • step S3 a series of processes for controlling the flow control valve 5 based on only the operation signal is executed, and the process returns. Specifically, the control at this time is controlled by a predetermined function equation (basic function equation) K based on the graph shown at the bottom of FIG.
  • This first range is set, for example, as a range where there is no risk of the crane falling over.
  • step S4 it is determined whether or not the load signal is within the second range. If it is within the second range (Yes), the process proceeds to step S5. If not (No), the process proceeds to step S6.
  • step S5 the flow control valve 5 is controlled so as to decrease the flow rate of the pressure oil discharged from the auxiliary hydraulic pump 8 as the input load signal increases, and the flow control valve is controlled based on the operation signal.
  • a series of processes for controlling 5 is executed, and the process returns. Specifically, the control at this time is obtained by multiplying the predetermined function equation (basic function equation) K by the reciprocal of the load factor.
  • the flow rate control valve 5 is controlled to V based on the operation signal at that time by reducing the slope of the predetermined function K and using the function formula with the slope reduced.
  • step S6 it is determined whether or not the load signal is within the third range. If it is within the third range (Yes), the process proceeds to step S8, and if not (No), step S7 is performed.
  • step S8 a series of processes for fully closing the flow control valve 5 is executed, and the process returns. As a result, the flow control valve 5 is not operated.
  • step S7 it is determined whether or not the load signal is in the fourth range. If the load signal is in the fourth range (Yes), the process proceeds to step S9. If not (No), the process proceeds to step S8. To do.
  • step S9 a series of processing including control for operating the above-mentioned relief relief valve 27 29 is executed, and the processing is returned. As a result, the pressure oil is returned to the tank 9 side without passing through each switching valve 40, and the crane operation is stopped.
  • Each switching valve 40 of the control valve 3 is provided with a transmitter (differential transformer) that can grasp the operation amount of the spool, and the total flow rate required by the crane is calculated from these operation amounts, and Based on the calculated required total flow rate, the required maximum spool operating amount of the flow rate control valve 5 is calculated.
  • the controller 2 receives a load signal corresponding to the load factor of the crane and an operation signal to the crane, respectively. Since one flow control valve 5 is controlled based on these load signals and operation signals, the flow control of the pressure oil joined by this one flow control valve 5 and the flow control according to the load factor are performed. Can also be used.
  • the flow control valve 5 is controlled with priority given to the load signal side corresponding to the load factor of the crane among the load signal and the operation signal.
  • the flow rate can be reliably brought into a desired state according to the load factor.
  • controller 2 since four ranges are set according to the load factor on the crane, it is more suitable for controlling to a desired state according to the load factor of the crane.
  • the flow rate of the hydraulic oil discharged from the auxiliary hydraulic pump 8 decreases as the load signal increases.
  • the flow control valve 5 is controlled so that In other words, by multiplying the predetermined function formula K by the reciprocal of the load factor, the slope of the predetermined function formula K is decreased, and the flow rate control valve 5 is based on the operation signal at that time by reducing the slope. Therefore, stable crane operation at a speed corresponding to the degree of the load factor is possible.
  • the flow control valve 5 is controlled to be fully closed. Therefore, this In this case, the pressure oil is supplied to the switching valve 40 of the control valve 3 only by the pressure oil discharged from the main hydraulic pump 7, and the fourth range in which the load factor exceeds the limit (the input load signal is (100% or more), the unload relief valves 27 and 29 are operated, and the hydraulic oil is returned to the tank 9 side to stop the crane operation. be able to.
  • this pressure oil supply amount control device it is possible to perform crane operation that ensures good operability during normal times and reliably controls the flow rate according to the load factor to a desired state. Furthermore, the slow motion system can be constructed easily and inexpensively.
  • pressure oil supply amount control device for a vehicle-mounted crane is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention. Of course.
  • the force described in the example in which the volumes of the main hydraulic pump 7 and the sub hydraulic pump 8 are both 30 cm 3 / rev is not limited to this.
  • the maximum discharge amount of the main hydraulic pump is An amount smaller than the maximum discharge amount of the auxiliary hydraulic pump may be set.
  • Such a configuration is more suitable for suppressing the torque load of the engine when the engine speed is low and the rotational torque is small.
  • it is preferable that the maximum discharge amount of the main hydraulic pump is set to a discharge amount that is necessary and sufficient for the inching operation.
  • Such a configuration is more suitable for suppressing the engine torque load when the engine speed is low and the rotational torque is small.
  • the present invention is not limited to this.
  • a dip switch may be provided on the controller 2 board, and by setting this dip switch, the optimal control function for the corresponding engine characteristic may be set at the time of shipment as the desired control function! /, .
  • the control oil supply amount control process executed by the controller 2 has been described with reference to a plurality of different control function forces that can be selected.
  • the present invention is not limited to this. For example, it may be configured to be selectable from three or more types.
  • the slow motion system corresponds to the control in the pressure oil supply amount control process executed by the controller 2 when the inching button 66 is operated and the signal is input.
  • the force described in the example is not limited to this.
  • a slow motion can be achieved by operating this switch via a switch that can be turned ON / OFF on the signal spring 52 connecting the flow control valve 5 and the controller 2.
  • the system can be configured. Even with such a configuration, the slow motion system can be easily and inexpensively constructed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Control And Safety Of Cranes (AREA)

Description

明 細 書
車両搭載用クレーンの圧油供給量制御装置
技術分野
[0001] 本発明は、トラック等の車両に搭載される車両搭載用クレーンの圧油供給量制御装 置に係り、特に、その車両のエンジンにより駆動される油圧ポンプを油圧源として作 動する構造の車両搭載用クレーンに好適な圧油供給量制御装置に関する。
背景技術
[0002] この種の車両搭載用クレーンの圧油供給量制御装置としては、例えば特許文献 1 に記載の技術が知られている。
特許文献 1に記載の技術では、圧油供給量制御装置は、例えば図 9に示すように、 エンジン 6によって同時に駆動される主油圧ポンプ 7および副油圧ポンプ 8を備えて いる。そして、副油圧ポンプ 8から吐出される圧油の流量を制御する流量制御弁 5を 装備しており、主油圧ポンプ 7から吐出された圧油に、副油圧ポンプ 8から吐出され 流量制御弁 5で任意の流量に調整された圧油を合流させて、コントロールバルブ 3へ 供給するように構成されて!/、る。
[0003] この圧油供給量制御装置では、アクセルシリンダ 4とエンジン 6の燃料噴射量を制 御するガバナ 20とを備え、このアクセルシリンダ 4とガバナ 20とは、第一のリンク 21で 相互に連結されており、また、アクセルシリンダ 4と副油圧ポンプ 8の流量制御弁 5と は、第一のリンク 21と同時に作動する第二のリンク 22で相互に連結されている。その ため、アクセルシリンダ 4と流量制御弁 5とは一定の動作関係にあり、この一定の動作 関係によって圧油供給量の制御を確実に行えるようになつている。
[0004] そして、コントローラ 120による操作入力に応じて、エンジン 6の回転数を制御する アクセルシリンダ 4の制御がなされ、同時に、アクセルシリンダ 4に連結した副油圧ポ ンプ 8の流量制御弁 5を第二のリンク 22を介して作動させ、これにより、主油圧ポンプ 7から吐出される圧油に、副油圧ポンプ 8から吐出されて流量制御弁 5で所定の流量 に調整された圧油を合流させて、クレーンのコントロールバルブ 3に供給するようにな つている。 [0005] 同文献に記載の圧油供給量制御装置によれば、例えば主油圧ポンプのみを装備 する車両搭載用クレーンに比べ、エンジンの騒音を抑制し、燃費を向上させることが 可能である。
特許文献 1:特公平 6— 6476号公報
特許文献 2 :特開平 9 216790号公報
発明の開示
[0006] [発明が解決しょうとする課題]
ところで、主油圧ポンプ 7の容積は、エンジン回転数が低く回転トルクが小さいアイ ドリングの状態であってもエンストすることがないように、定格圧力の圧油を吐出する ことが可能な容積に設定されている。また、副油圧ポンプ 8の容積は、エンジン回転 数が上昇し回転トルクが大きくなつた後、主油圧ポンプ 7と同時に駆動し、定格圧力 の圧油を吐出することが可能な容積に設定されている。
[0007] このシステムの目的とするところは、エンジン回転数が低く回転トルクが小さい場合 は、エンジン 6のトルク負荷を抑えるために、副油圧ポンプ 8からの圧油については流 量制御弁 5によってタンク 9に戻して、主油圧ポンプ 7からの圧油のみをコントロール バルブ 3側へ供給するためである。
また、エンジン回転数が上昇し回転トルクが大きくなつた場合は、副油圧ポンプ 8か らの圧油の流量を制御するための流量制御弁 5を開き、主油圧ポンプ 7からの圧油 に副油圧ポンプ 8からの圧油を合流させ、圧油の供給量を必要量だけ増やし、ェン ジン回転数をできるだけ低く抑えることで、省エネおよび低騒音化を図ることにある。
[0008] ここで、この種の圧油供給量制御装置で更なる省エネおよび低騒音化をするため には、エンジン回転数がより低い段階で、副油圧ポンプ 8からの圧油を合流させるよう にすれば良い。し力、し、主油圧ポンプ 7と副油圧ポンプ 8とを同時に駆動し、定格圧 力の圧油を吐出することが可能な回転トルクを発生するエンジン回転数は、クレーン を搭載する車両の車種又は車両メーカーにより異なる。そのため、各車両に応じたェ ンジン回転数で、副油圧ポンプ 8からの圧油を合流させるようにしなければならない。
[0009] しかしながら、特許文献 1に記載の技術では、アクセルシリンダ 4とガバナ 20とは、 第一のリンク 21で相互に連結されており、同時に、アクセルシリンダ 4と流量制御弁 5 とは、第二のリンク 22で相互に連結されているので、エンジン回転数と流量制御弁 5 の制御流量との関係を変更することができない。
そのため、エンジンの特性等が異なる車両においても、エンジンの回転トルクが不 足することがないよう、エンジン回転数を少し高くなるまで上昇させて必要な回転トノレ クを確保した後、副油圧ポンプ 8からの圧油を合流させるように設定されている。つま り、リンクの移動量に応じてエンジン回転が全範囲に亘つてほぼ比例的に上昇するの で、常にエンジンの回転トルクが不足することがないよう、エンジン回転数を少し高く なるまで上昇させて必要な回転トルクを確保しつつ、副油圧ポンプ 8からの圧油を合 流させるように設定されて!/、る。
[0010] したがって、特許文献 1に記載の技術によれば、例えば、より低いエンジン回転数 で主油圧ポンプ 7と副油圧ポンプ 8を同時に駆動し得て、定格圧力の圧油を吐出す ることができる回転トルクを発生可能な車両においては、必要以上にエンジン回転数 を上昇させてしまうことになる。したがって、更なる省エネおよび低騒音化をする上で は、未だ改善の余地が残されている。
そこで、本発明は、このような問題点に着目してなされたものであって、ダブルボン プ方式を採用する圧油供給量制御装置において、更にエンジンの騒音を抑制し、燃 費を向上させ得る車両搭載用クレーンの圧油供給量制御装置を提供することを目的 としている。
[0011] [課題を解決するための手段]
上記課題を解決するために、本発明のうち第一の発明は、車両に搭載されるクレー ンに供給する圧油の供給量を制御するために用いられ、前記車両のエンジンによつ て同時に駆動される主油圧ポンプ及び副油圧ポンプと、前記副油圧ポンプから吐出 される圧油の流量を所望の流量に調整する流量制御弁と、前記クレーン の操作信 号入力に応じて、前記エンジンの回転数および前記流量制御弁を制御可能なコント ローラとを備え、前記主油圧ポンプから吐出される圧油に、前記流量制御弁で調整さ れた前記副油圧ポンプの圧油を合流させて前記クレーンを駆動するためのコント口 ールバルブに供給する圧油供給量制御装置であって、前記コントローラは、前記ェ ンジンの回転数を制御するエンジン回転数制御手段と、前記流量制御弁から吐出さ れる圧油の流量を制御する吐出流量制御手段とを備え、前記吐出流量制御手段は 、前記流量制御弁を全閉して前記主油圧ポンプの圧油のみを前記コントロールバル ブに供給する第一の流量制御と、前記副油圧ポンプの圧油を前記主油圧ポンプか ら吐出される圧油に合流させるときに、合流後の圧油の吐出量を前記操作信号入力 の割合に応じて比例的に変化するように合流させて前記コントロールバルブに供給 する第二の流量制御と、前記流量制御弁を全開して前記主油圧ポンプおよび副油 圧ポンプから吐出可能な圧油の最大量を前記コントロールバルブに供給する第三の 流量制御とを含んで構成され、前記エンジン回転数制御手段は、前記エンジンの回 転数をアイドリング回転数から前記エンジンの回転トルクが不足することがない必要 十分なトルクとなる第二のエンジン回転数まで前記操作信号入力の割合に応じて比 例的に変化するように上昇させる第一の回転数制御と、前記エンジンの回転数を、 前記第二のエンジン回転数に維持する第二の回転数制御と、前記エンジンの回転 数を、前記第二のエンジン回転数からそれよりも高い第三のエンジン回転数に、前記 操作信号入力の割合に応じて比例的に上昇させる第三の回転数制御とを含んで構 成されており、さらに、前記コントローラは、前記操作信号入力の割合が第一の割合 未満の第一の領域のときには、前記第一の回転数制御およびこれに対応して前記 第一の流量制御を実行し、前記操作信号入力の割合が第一の割合以上且つ第一 の割合よりも大きい第二の割合未満の第二の領域のときには、前記第二の回転数制 御およびこれに対応して前記第二の流量制御を実行し、前記操作信号入力の割合 が第二の割合以上の第三の領域のときには、前記第三の回転数制御およびこれに 対応して前記第三の流量制御を実行するようになっていることを特徴としている。 第一の発明に係る圧油供給量制御装置によれば、操作信号入力の割合が第一の 領域のときには、吐出流量制御手段での第一の流量制御によって主油圧ポンプの 圧油のみが吐出され、これに対応してエンジン回転数制御手段によってエンジンの 回転数をアイドリング回転数からエンジンの回転トルクが不足することがない必要十 分なトルクとなる第二のエンジン回転数まで操作信号入力の割合に応じて比例的に 変化するように上昇させる第一の回転数制御がなされるので、例えばインチング動作 等のように、圧油の吐出量が少なくて済むときには、エンジン回転数を低く抑えること で、省エネおよび低騒音化が可能である。
[0013] そして、操作信号入力の割合が第二の領域のときには、エンジン回転数制御手段 は、第二の回転数制御によって、エンジンの回転トルクが不足することがない必要十 分な第二のエンジン回転数を維持しており、その第二のエンジン回転数で、これに対 応して吐出流量制御手段での第二の流量制御によって圧油の合流が開始される。 そして、この第二の流量制御によれば、合流後の圧油の吐出量が操作信号入力の 割合に応じて比例的に変化するように合流させるようになっているので、合流後の圧 油の吐出量を比例的に変化するように合流させることで、エンジンへのトルクの極端 な変動が抑制される。したがって、エンジンの騒音を抑制し、燃費を向上させることが できる。また、予め第二のエンジン回転数までエンジン回転数を上げておいてから圧 油の合流が開始されるので、エンストのおそれがなぐ合流を円滑に開始することが 可能であり、また、吐出する圧油の流れを安定させることができるので、クレーンの動 作をより安定させること力 Sでさる。
[0014] さらに、操作信号入力の割合が第三の領域のときには、吐出流量制御手段は、第 三の流量制御によって流量制御弁を全開して主油圧ポンプおよび副油圧ポンプから 吐出可能な圧油の最大量を吐出するようになっており、これに対応してエンジン回転 数制御手段は、第三の回転数制御によって、操作信号入力の割合に応じて、第二の エンジン回転数よりも高!/、第三のエンジン回転数に、エンジンの回転数を操作信号 入力の割合に応じて比例的に上昇させるので、流量制御弁が全開後についても、ェ ンジンへのトルクの極端な変動が抑制される。したがって、エンジンの騒音を抑制し、 燃費を向上させることができる。
[0015] ここで、第一の発明に係る圧油供給量制御装置において、前記コントローラは、前 記エンジン回転数制御手段と前記吐出流量制御手段との協働によって前記コント口 ールバルブに供給する圧油の合計流量を、前記操作信号入力の割合に応じて全領 域に亘つて比例的に上昇させるようになつていることが好ましい。このような構成であ れば、コントロールバルブに供給される圧油の合計流量が操作信号入力の割合に応 じて全領域に亘つて比例的に増えるので、吐出する圧油の流れがより安定し、これに より、エンジンの騒音をより好適に抑制し、燃費をより向上させるとともに、クレーンの 動作をより安定させることができる。
[0016] また、第一の発明に係る圧油供給量制御装置におレ、て、前記主油圧ポンプの最大 吐出量は、上記副油圧ポンプの最大吐出量よりも少な!/、量に設定されて!/、ること力 S 好ましい。このような構成であれば、エンジン回転数が低く回転トルクが小さいときに、 エンジンのトルク負荷を抑える上でより好適である。さらに、前記主油圧ポンプの最大 吐出量は、インチング動作に必要十分な吐出量に設定されていることが好ましい。こ のような構成であれば、エンジン回転数が低く回転トルクが小さいときに、エンジンの トルク負荷を抑える上で一層好適である。
[0017] また、本発明のうち第二の発明は、車両に搭載されるクレーンに供給する圧油の供 給量を制御するために用いられ、前記車両のエンジンによって同時に駆動される主 油圧ポンプ及び副油圧ポンプと、その副油圧ポンプから吐出される圧油の流量を所 定の流量に調整する流量制御弁と、前記クレーンへの操作入力に応じて、前記ェン ジンの回転数、および前記流量制御弁をそれぞれ個別に制御するコントローラとを備 え、前記主油圧ポンプから吐出される圧油に、前記流量制御弁で調整された圧油を 合流させて前記クレーンを駆動するためのコントロールバルブに供給する圧油供給 量制御装置であって、前記コントローラは、前記クレーンへの操作入力と前記ェンジ ンの回転数および前記流量制御弁による圧油の所定の流量との関係が複数設定さ れ、さらに、前記設定された複数の関係のうちの所望の関係が選択可能になっており 、前記クレーンへの操作入力および前記選択された所望の関係に基づいて、前記ェ ンジンの回転数、および前記流量制御弁による圧油の所定の流量を個別に制御す ることを特 ί毁としている。
[0018] 第二の発明に係る圧油供給量制御装置によれば、車両のエンジンの回転数、およ び流量制御弁による圧油の所定の流量をそれぞれ個別に制御可能としており、さら に、その個別に制御するための関係を複数設定し、それら複数の関係のうちの所望 の関係が選択可能になっているので、例えばクレーンを搭載する車両のエンジン特 性に応じて、より最適なエンジン回転数および流量制御弁の制御が可能となる。その ため、例えばより低いエンジン回転数で、主油圧ポンプと副油圧ポンプとを同時に駆 動させて、定格圧力の圧油を吐出可能な回転トルクを発生できる車両に適用した場 合には、今まで以上に省エネ、低騒音化を図ることができる。
[0019] ここで、上記第一な!/、し第二の発明に係る圧油供給量制御装置にお!/、て、前記コ ントロールバルブは、スタック型のコントロールバルブであり、前記クレーンの各ァクチ ユエータを駆動するための間接駆動方式の複数の切換弁と、前記副油圧ポンプから 吐出される圧油の流量を調整するとともに、前記主油圧ポンプから吐出される圧油に 合流させて前記複数の切換弁に送り出す流量制御弁と、前記複数の切換弁と前記 主油圧ポンプおよび前記副油圧ポンプとの間にそれぞれ介装される二つのアンロー ドリリーフ弁と、前記複数の切換弁の駆動に必要なパイロット油を前記主油圧ポンプ のみから取得するように設けられた減圧弁および背圧弁と、を互いに積層したスタツ ク型にして構成してなることが好まし!/、。
[0020] コントロールバルブがこのような構成であれば、複数の切換弁、流量制御弁および アンロードリリーフ弁、並びにパイロット油を得るための減圧弁及び背圧弁を互いに 積層してスタック型コントロールバルブを構成しているので、省スペース化を可能とし 、組み付け性を向上させることができる。
そして、このスタック型コントロールバルブによれば、複数の切換弁と主油圧ポンプ および副油圧ポンプとの間に位置する管路に、二つのアンロードリリーフ弁がそれぞ れ介装されているので、二つのアンロードリリーフ弁を作動させることで、各ポンプか らの圧油を、切換弁を通過させずにタンクに戻すことができる。したがって、例えば非 常時にクレーンを緊急停止させることができる。
[0021] また、このスタック型コントロールバルブによれば、間接駆動方式の切換弁の駆動 に必要なパイロット油を得るための減圧弁及び背圧弁を備えているので、例えば非 常時に緊急停止をさせる操作を、遠隔操作 (ラジコン操作)によって行うことができる。 さらに、これら減圧弁及び背圧弁が、複数の切換弁の駆動に必要なパイロット油を主 油圧ポンプのみから取得するように設けられているので、主油圧ポンプおよび副油圧 ポンプが合流した後の管路に設けたものと比べて、油温の上昇を抑制することができ
[0022] ところで、例えば、上記第一の発明に係る圧油供給量制御装置では、副油圧ボン プの圧油を主油圧ポンプの圧油に合流させる構成を流量制御弁にて行う。他方、こ の種の車両搭載用クレーンでは、一般に、クレーンの負荷率に応じてクレーンを所望 の状態に制御する過負荷防止装置が装備される。この種の過負荷防止装置としては 、クレーンへの負荷率に応じて、クレーンを駆動するための各切換弁へ供給する圧 油の流量を制御するための流量制御弁を別個に有するものが知られている(例えば 特許文献 2参照)。この特許文献 2に記載の技術によれば、クレーンを、クレーンの負 荷率に応じて所望の状態に制御することができる。
[0023] そこで、上記第一の発明に係る圧油供給量制御装置に対し、特許文献 2に記載の 技術を盛り込むことが考えられる。しかし、単にこれらの技術を組み合わせるだけでは 、同様の構成をもつ流量制御弁を、ダブルポンプの合流用および負荷率に応じた流 量制御用とそれぞれに有することになるので、装置を簡素化し、コストを抑制する上 では、未だ改善の余地がある。
そこで、本発明のうち第三の発明は、このような問題点に着目してなされたものであ つて、ダブルポンプ方式を採用する圧油供給量制御装置において、合流用の流量 制御弁および負荷率に応じて流量を制御する流量制御弁を兼用し得る圧油供給量 制御装置を提供することを目的として!/、る。
[0024] すなわち、本発明のうち第三の発明は、車両に搭載されるクレーンに供給する圧油 の供給量を制御するために用いられ、前記車両のエンジンによって同時に駆動され る主油圧ポンプ及び副油圧ポンプと、前記副油圧ポンプから吐出される圧油の流量 を所望の流量に調整する流量制御弁と、前記主油圧ポンプ及び副油圧ポンプから 吐出される圧油をタンクにバイパス可能な主油圧ポンプ用アンロード弁及び副油圧 ポンプ用アンロード弁と、前記クレーンへの操作信号に応じて、前記エンジンの回転 数および前記流量制御弁を制御可能なコントローラとを備え、前記主油圧ポンプから 吐出される圧油に、前記流量制御弁で調整された前記副油圧ポンプの圧油を合流 させて前記クレーンを駆動するための各切換弁に供給する圧油供給量制御装置で あって、前記コントローラには、前記クレーンへの操作信号が入力されるほか、前記ク レーンの負荷率に応じた負荷信号が入力されるようになっており、前記コントローラは 、前記入力される操作信号に基づいて、前記流量制御弁を制御し、且つ前記入力さ れる負荷信号に基づいて、当該入力される負荷信号が大きいときには小さいときに 比べて前記副油圧ポンプから吐出される圧油の流量を減少させるように前記流量制 御弁を制御し、あるいは前記各アンロード弁を作動するように構成されていることを特 徴としている。
[0025] 第三の発明に係る圧油供給量制御装置によれば、コントローラは、クレーンの負荷 率に応じた負荷信号と、クレーンへの操作信号とがそれぞれ入力されるようになって おり、これら負荷信号および操作信号に基づいて上記流量制御弁を制御するように なって V、るので、一つの流量制御弁で合流する圧油の流量制御および負荷率に応 じた流量制御を兼用することが可能である。そして、このコントローラは、上記負荷信 号および操作信号のうち、クレーンの負荷率に応じた負荷信号側を優先して、一つ の流量制御弁を制御するので、クレーンへの負荷率に応じて流量を確実に所望の状 にすることカでさる。
[0026] ここで、第三の発明に係る圧油供給量制御装置におレ、て、前記入力される負荷信 号が第一の所定値未満の第一の範囲のときには、前記クレーンへの操作信号のみ に基づレ、て前記流量制御弁を制御し、前記入力される負荷信号が前記第一の所定 値を超え且つその第一の所定値よりも大きい第二の所定値未満の第二の範囲のとき には、前記負荷信号が大きくなるにつれ前記副油圧ポンプから吐出される圧油の流 量を減少させるように前記流量制御弁を制御するとともに、前記操作信号に基づい て前記流量制御弁を制御し、前記入力される負荷信号が前記第二の所定値を超え 且つその第二の所定値よりも大きい第三の所定値未満の第三の範囲のときには、前 記流量制御弁を全閉する制御をし、前記入力される負荷信号が前記第三の所定値 を超える第四の範囲のときには、前記各アンロード弁を作動して主油圧ポンプ及び 複油圧ポンプからの圧油をタンクにバイパスするようになっていることが好ましい。
このような構成であれば、クレーンへの負荷率に応じて 4つの範囲が設定されて!/ヽ るので、クレーンの負荷率に応じた所望の状態に制御する上でより好適である。
[0027] つまり、例えば負荷率が比較的に低い第一の範囲のときには、クレーンへの操作信 号のみに基づいて流量制御弁が制御されるので、機敏な操作が可能であり、また、 例えば負荷率が中程度の第二の範囲のときには、負荷信号が大きくなるにつれ副油 圧ポンプから吐出される圧油の流量を減少させるように流量制御弁が制御されるの で、その負荷率の程度に応じた速度のクレーン操作が可能であり、さらに、例えば負 荷率が比較的に高い第三の範囲のときには、流量制御弁を全閉する制御がされるの で、微速動時のクレーン速度と同等の低速作動が可能であり、さらに第四の範囲のと きには、アンロードリリーフ弁を作動してクレーン操作を止めることができる。したがつ て、クレーンを所望の状態に制御する上で好適である。
[0028] [発明の効果]
上述のように、本発明のうち第一ないし第二の発明によれば、ダブルポンプ方式を 採用する圧油供給量制御装置において、更にエンジンの騒音を抑制し、燃費を向上 させ得る車両搭載用クレーンの圧油供給量制御装置を提供することができる。また、 本発明のうち第三の発明によれば、ダブルポンプ方式を採用する圧油供給量制御 装置にお V、て、合流用の流量制御弁および負荷率に応じて流量を制御する流量制 御弁を兼用し得る圧油供給量制御装置を提供することができる。
図面の簡単な説明
[0029] [図 1]本発明に係る車両搭載用クレーンの圧油供給量制御装置を含む油圧回路の 第一実施形態を説明する図である。
[図 2]図 1に示す制御装置に適用される所定の制御関数 (圧油供給量制御処理に用 いられる制御マップ)を説明する図である。
[図 3]比較のための他の制御関数 (圧油供給量制御処理に用いられる制御マップ)を 示す図である。
[図 4]第二実施形態の制御装置に適用される第一の制御関数 (圧油供給量制御処 理に用いられる第一の制御マップ)を説明する図である。
[図 5]第二実施形態の制御装置に適用される第二の制御関数 (圧油供給量制御処 理に用いられる第二の制御マップ)を説明する図である。
[図 6]本発明に係る車両搭載用クレーンの無線操作器を説明する図であり、図 6 (a) は、無線操作器の斜視図であり、図 6 (b)は側面図である。
[図 7]第三実施形態の制御装置に適用される所定の制御関数 (圧油供給量制御処 理に用いられる制御マップ)を説明する図である。
[図 8]第三実施形態のコントローラで実行される、圧油供給量制御処理を実行するプ ログラムのフローチャートである。
園 9]従来の車両搭載用クレーンの圧油供給量制御装置を含む油圧回路の一例を 説明する図である。
符号の説明
[0030] 1 操作入力装置
2 コン卜ローラ
3 :πン卜ロー
4
5 流量制御弁
6 エンジン
7 主油圧ポンプ
8 副油圧ポンプ
9 タンク
10 過負荷防止装置
11 圧油供給量管理部
12 エンジン回転数制御部 (エンジン回転数制御手段)
13 吐出流量制御部(吐出流量制御手段)
20 ガバナ
21 第一のリンク
24 主回路
27, 29 アンロー ーフ弁
40 切換弁
46 背圧弁
47 減圧弁
50、 51、 52、 53、 54、 55 信号線
60 無線操作器
発明を実施するための最良の形態
[0031] 以下、本発明に係る車両搭載用クレーンの圧油供給量制御装置の第一実施形態 について、図面を適宜参照しつつ説明する。なお、上記従来例と同様の構成につい ては、同一の符号を付して説明する。
図 1は、本発明に係る車両搭載用クレーンの圧油供給量制御装置を含む油圧回路 を説明する図である。
同図に示すように、この車両搭載用クレーンの圧油供給量制御装置(以下、単に「 制御装置」ともいう)は、作業者が所望の操作信号入力を入力するための操作入力 装置 1を有しており、この操作入力装置 1は、作業者の操作に応じた操作信号を、信 号泉 50を介してコントローラ 2に出力可能になっている(なお、コントローラ 2について は後に詳述する)。
[0032] そして、この制御装置は、エンジン 6によって同時に駆動される主油圧ポンプ 7およ び副油圧ポンプ 8を備えている。主油圧ポンプ 7は、その吐出側が油圧回路の主回 路 24を介してコントロールバルブ 3に直接接続されている。
また、副油圧ポンプ 8は、その吐出側が流量制御弁 5を介して主回路 24に接続され ており、主油圧ポンプ 7から吐出される圧油に、流量制御弁 5で調整された副油圧ポ ンプ 8の圧油を合流させて、コントロールバルブ 3へ供給するように構成されている。 ここで、主油圧ポンプ 7の吐出量は、副油圧ポンプ 8の吐出量よりも小さくなつており、 特に、本実施形態での主油圧ポンプ 7の吐出量は、クレーンのインチング操作をする のに必要十分な吐出量に設定されている。
[0033] 流量制御弁 5は、信号線 52を介してコントローラ 2に接続されており、コントローラ 2 からの制御信号に基づいて、副油圧ポンプ 8から吐出される圧油の流量を所定の流 量に調整可能になっている。
そして、コントロールバルブ 3内には、クレーンの各ァクチユエータ(不図示)をそれ ぞれ駆動するための切換弁 40がァクチユエータ毎に設けられている。そして、各切 換弁 40は、信号線 53を介してコントローラ 2に接続されており、上記操作信号に応じ たコントローラ 2からの制御信号に基づいて油路の切換動作が実行されるようになつ ている。
[0034] 以下、このコントロールバルブ 3について、より詳しく説明する。
図 1に示すように、この車両搭載用クレーンのコントロールバルブ 3は、間接駆動方 式の複数の切換弁 40を有しており、これら複数の切換弁 40に対し、圧力補償弁 45 、流量制御弁 5、アンロードリリーフ弁 27、減圧弁 47、背圧弁 46、およびアンロードリ リーフ弁 29が、複数の切換弁 40側からこの順番で互いに積層されたスタック型として 構成されている。
[0035] ここで、コントロールバルブ 3を構成する上記各弁のうち、アンロードリリーフ弁 29、 減圧弁 47、背圧弁 46および圧力補償弁 45は、同図に示すように、主油圧ポンプ 7 に、その吐出側からこの順に接続されている。なお、減圧弁 47及び背圧弁 46は、複 数の切換弁 40の駆動に必要なパイロット油を主油圧ポンプ 7のみから取得するように 設けられており、これにより、主油圧ポンプ 7の圧油のみによって各切換弁 40に必要 なパイロット油を得られるようになつている。
[0036] また、流量制御弁 5およびアンロードリリーフ弁 27は、副油圧ポンプ 8の吐出側に接 続されている。そして、この流量制御弁 5は、副油圧ポンプ 8から吐出される圧油の流 量を所望の流量に調整するとともに、主油圧ポンプ 7から吐出される圧油に合流させ て複数の切換弁 40に対して合流した圧油を送り出し可能になっている。そして、この コントロールバルブ 3は、上記二つのアンロードリリーフ弁 27、 29を作動させることで 、各ポンプ 7、 8からの圧油を、切換弁 40を通過させずにタンク 9に戻し、例えば非常 時にクレーンを緊急停止させることが可能になっている。
[0037] さらに、この制御装置は、図 1に示すように、アクセルシリンダ 4およびガバナ 20を備 えており、アクセルシリンダ 4とガバナ 20とは、第一のリンク 21で互いに連結されてい る。そして、このアクセルシリンダ 4についても、信号線 51を介してコントローラ 2に接 続されており、上記操作信号に応じたコントローラ 2からの制御信号に基づいて駆動 される。
さらに、この制御装置は、アクセルシリンダ 4の動作に応じて、ガバナ 20によってェ ンジン 6への燃料噴射量を調整することでエンジン回転数を所望の回転数に制御可 能になっている。つまり、本実施形態では、上記例示したような第二のリンク 22を有し ない構造であり、エンジン 6の回転数、および流量制御弁 5による圧油の所定の流量 は、それぞれ個別にコントローラ 2で制御可能に構成されている。
[0038] ここで、このコントローラ 2は、図 1に示すように、操作入力装置 1の操作信号入力に 応じて、圧油の供給量の管理をする制御圧油供給量管理部 11と、その制御圧油供 給量管理部 11力 の指令に応じてアクセルシリンダ 4に、対応する制御信号を出力 するエンジン回転数制御部 12と、制御圧油供給量管理部 11からの指令に応じて流 量制御弁 5に、対応する制御信号を出力する吐出流量制御部 13とを備え、エンジン 6の回転数および流量制御弁 5による圧油の流量を、クレーンへの操作信号入力の 割合に応じて制御する圧油供給量制御処理を実行可能になっている。なお、ェンジ ン回転数制御部 12は、上記エンジン回転数制御手段に対応し、吐出流量制御部 13 は、上記吐出流量制御手段に対応して V、る。
[0039] より詳しくは、このコントローラ 2は、(以下、いずれも図示しない)所定の制御プログ ラムに基づ V、て、上記圧油供給量制御処理に係る演算およびこの制御装置のシステ ム全体を制御する CPUと、所定領域にあらかじめ CPUの制御プログラム等を格納し ている ROMと、 ROM等から読み出したデータや CPUの演算過程で必要な演算結 果を格納するための RAMと、上述した操作入力装置 1、コントロールバルブ 3、ァク セルシリンダ 4、および流量制御弁 5等を含めた外部装置に対してデータの入出力を 媒介する I/F (インターフェイス)とを備えて構成されて!/、る。
[0040] そして、コントローラ 2の I/Fは、上記各外部装置に対して、データを転送するため のバス等の信号線(図 1に破線で示す符号 50〜55)によって相互に操作信号ないし 制御信号等のデータを授受可能に接続されており、これにより、上記操作入力装置 1 力、ら入力された操作信号に応じた制御信号を、コントロールバルブ 3、アクセルシリン ダ 4、および流量制御弁 5にそれぞれに出力可能になっている。
[0041] ここで、 ROMの所定領域には、上記圧油供給量制御処理を実行するプログラムが 、その演算過程で必要な演算結果を導出可能な形式で適宜参照可能に格納されて いる。また、 ROMには、所定の制御関数がテーブルデータとして格納されている。そ して、この所定の制御関数力、コントローラ 2で実行される上記圧油供給量制御処理 において参照されるようになっている。つまり、コントローラ 2で実行される圧油供給量 制御処理は、操作入力装置 1からの操作信号入力に応じて、アクセルシリンダ 4およ び流量制御弁 5に出力される制御信号が、上記所定の制御関数に基づ V、て個別に 設定されるようになって!/、る。 [0042] 以下、この所定の制御関数およびこれに対応する圧油供給量制御処理につ 、てよ り詳しく説明する。
図 2は、この制御装置に適用される所定の制御関数 (圧油供給量制御処理に用い られる制御マップ)を説明する図である。
同図に示すグラフは、上記テーブルデータとして参照可能な制御関数 (制御マップ )を表しており、最下段が流量制御弁 5の開度、その上段に、エンジン回転数、定格 圧力時の合計ポンプ駆動トルク、および主'副油圧ポンプ 7, 8による合計流量 Gを順 に示している。なお、同図に示すグラフの数値は、主油圧ポンプ 7と副油圧ポンプ 8 の容積を、共に 30cm3/revとし、エンジンのアイドリング回転数を 400rpm、定格回 転数を 1000rpm、回転トルクが不足することがない必要十分な回転トルクとなるェン ジン回転数を 550rpm、エンジンとポンプの減速比を 1 (エンジン回転数 =ポンプ回 転数)、定格圧力 20MPaと仮定した場合のものである。
[0043] なお、油圧ポンプの駆動トルク Tは、以下の(式 1)で算出される。また、吐出流量 Q は、以下の(式 2)で算出される。
T = P * q/2 (式 1)
Q = q * N (式 2)
但し、 P :吐出圧力
q :ポンプ容積
N :ポンプ回転数
ここで、このコントローラ 2内の制御圧油供給量管理部 1 1は、操作信号入力の割合 に応じた制御を実行するための 3つの領域が設定されている。つまり、同図に示すよ うに、本実施形態では、操作信号入力の割合が 10% (第一の割合)未満の第一の領 域 R1と、操作信号入力の割合が 10%以上且つ 44% (第二の割合)未満の第二の領 域 R2と、操作信号入力の割合が 44%以上の第三の領域 R3とがそれぞれ設定され ている。
[0044] さらに、上記吐出流量制御部 13は、その 3つの領域 Rl、 R2、 R3に対応する 3つの 制御を実行可能に構成されている。つまり、同図に示すように、吐出流量制御部 13 は、第一の流量制御 VI、第二の流量制御 V2および第三の流量制御 V3を含んで構 成されている。
詳しくは、吐出流量制御部 13は、第一の流量制御 VIでは、流量制御弁 5を全閉し て主油圧ポンプ 7の圧油のみをコントロールバルブ 3に供給する制御をし、第二の流 量制御 V2では、副油圧ポンプ 8の圧油を主油圧ポンプ 8から吐出される圧油に合流 させるときに、合流後の圧油の吐出量を前記操作信号入力の割合に応じて比例的に 変化するように合流させてコントロールバルブ 3に供給する制御をし、さらに、第三の 流量制御 V3では、流量制御弁 5を全開して主油圧ポンプ 7および副油圧ポンプ 8か ら吐出可能な圧油の最大量をコントロールバルブ 3に供給する制御をするようになつ ている。
[0045] また、上記エンジン回転数制御部 12についても、上記 3つの領域 Rl、 R2、 R3に 対応する 3つの制御を実行可能に構成されている。つまり、同図に示すように、ェン ジン回転数制御部 12は、第一の回転数制御 El、第二の回転数制御 E2および第三 の回転数制御 E3を含んで構成されて!/、る。
詳しくは、エンジン回転数制御部 12は、第一の回転数制御 E1では、エンジン 6の 回転数をアイドリング回転数(400rpm)からエンジン 6の回転トルクが不足することが ない必要十分なトルクとなる 550rpm (第二のエンジン回転数)まで前記操作信号入 力の割合に応じて比例的に変化するように上昇させる制御をし、第二の回転数制御 E2では、エンジン 6の回転数を、第二のエンジン回転数である 550rpmに維持する 制御をし、さらに、第三の回転数制御 E3では、エンジン 6の回転数を、第二のェンジ ン回転数である 550rpmからそれよりも高い第三のエンジン回転数(lOOOrpm)に、 前記操作信号入力の割合に応じて比例的に上昇させる制御をするようになっている
[0046] そして、吐出流量制御部 13は、上記第一の領域 R1のときには、エンジン回転数制 御部 12には第一の回転数制御 E1を実行させるとともに、これに対応して吐出流量 制御部 13には、第一の流量制御 VIを実行させるようになつている。また、上記第二 の領域 R2のときには、エンジン回転数制御部 12には第二の回転数制御 E2を実行さ せるとともに、これに対応して吐出流量制御部 13には、第二の流量制御 V2を実行さ せるようになつている。さらに、第三の領域 R3のときには、エンジン回転数制御部 12 には第三の回転数制御 E3を実行させるとともに、これに対応して吐出流量制御部 1 3には、第三の流量制御 V3を実行させるようになつている。
[0047] つまり、このコントローラ 2は、エンジン 6の回転数が 550rpmになるまでの間は、ェ ンジン 6の回転数の上昇を早め、 550rpm (第二のエンジン回転数)になった段階で その回転数を維持し、その状態以降に流量制御弁 5の開口を開始し、主油圧ポンプ 7と副油圧ポンプ 8との圧油の合流により、合計流量 Gを比例的に増加させている。そ して、流量制御弁 5が全開になった後は、エンジン 6の回転数の上昇を再開し、さら に、合計流量 Gを比例的に増加させている。そして、このコントローラ 2は、エンジン回 転数制御部 12と吐出流量制御部 13との協働によってコントロールバルブ 3に供給す る圧油の合計流量 Gを直線的に、つまり、同図に示すように、操作信号入力の割合 に応じて全領域 R1〜R3に亘つて比例的に上昇させるように制御している。
[0048] 次に、この第一実施形態の車両搭載用クレーンの圧油供給量制御装置の作用 '効 果について説明する。
上述のように、この第一実施形態の制御装置によれば、そのコントローラ 2は、操作 信号入力の割合が第一の領域 R1のときには、吐出流量制御部 13での第一の流量 制御 VIによって主油圧ポンプ 7の圧油のみが吐出され、これに対応してエンジン回 転数制御部 12によってエンジン 6の回転数をアイドリング回転数(400rpm)からェン ジン 6の回転トルクが不足することがない必要十分なトルクとなる 550rpm (第二のェ ンジン回転数)まで前記操作信号入力の割合に応じて比例的に変化するように上昇 させる第一の回転数制御 E1がなされるので、例えばインチング動作等のように、圧 油の吐出量が少なくて済むときには、エンジン回転数を低く抑えることで、省エネおよ び低騒音化が可能である。
[0049] そして、このコントローラ 2によれば、操作信号入力の割合が第二の領域 R2のとき には、エンジン回転数制御部 12は、第二の回転数制御 E2によって、エンジン 6の回 転トルクが不足することがない必要十分な第二のエンジン回転数である 550rpmを維 持しており、その第二のエンジン回転数まで上げておいてから、これに対応して吐出 流量制御部 13での第二の流量制御 V2によって圧油の合流が開始される。そして、 この第二の流量制御 V2によれば、合流後の圧油の合計流量 Gが比例的に変化する ように合流させるようになっているので、エンジン 6へのトルクの極端な変動が抑制さ れる。したがって、エンジン 6の騒音を抑制し、燃費を向上させること力 Sできる。また、 予めエンジン 6の回転トルクが不足することがない必要十分な第二のエンジン回転数 (550rpm)までエンジン 6の回転数を上げておいて力、ら圧油の合流が開始されるの で、エンストのおそれがなぐ合流を円滑に開始することが可能であり、また、吐出す る圧油の流れを安定させることができるので、クレーンの動作をより安定させることが できる。
[0050] さらに、このコントローラ 2によれば、操作信号入力の割合が第三の領域 R3のときに は、吐出流量制御部 13は、第三の流量制御 V3で流量制御弁 5を全開して主油圧ポ ンプ 7および副油圧ポンプ 8から吐出可能な圧油の最大量を吐出するようになってお り、これに対応してエンジン回転数制御部 12は、第三の回転数制御 E3によって、操 作信号入力の割合に応じて、第二のエンジン回転数よりも高い第三のエンジン回転 数(lOOOrpm)に、エンジン 6の回転数を比例的に上昇させるので、流量制御弁 5が 全開後についても、エンジン 6へのトルクの極端な変動が抑制される。したがって、ェ ンジン 6の騒音を抑制し、燃費を向上させることができる。
[0051] また、このコントローラ 2によれば、エンジン回転数制御部 12と吐出流量制御部 13 との協働によってコントロールバルブ 3に供給する圧油の合計流量 Gを、操作信号入 力の割合に応じて全領域 R1〜R3に亘つて比例的に上昇させるように制御している ので、吐出する圧油の流れがより安定し、これにより、エンジン 6の騒音をより好適に 抑制し、燃費をより向上させるとともに、クレーンの動作をより安定させることができる。
[0052] 例えば、図 3に上述した例との比較のための他の制御関数を示す。なお、ポンプ容 積、エンジンの定格回転数は、上述した本発明に係る所定の制御関数およびこの他 の制御関数ともに同じである。
同図に示すように、この他の制御関数では、エンジン 6の回転数が、 400力、ら 1000 rpmまで操作信号入力に対して比例上昇する一つの回転数制御 Eのみのものとし、 主油圧ポンプ 7からの圧油に副油圧ポンプ 8からの圧油を合流させてもエンスト等を 起こさないで駆動させることができるトルクを発生する回転数を上記同様に 550rpm と仮定した例である。 [0053] この例の場合、流量制御弁 5は、同図に示すように、エンジン 6の回転数が 550rp mになってから、つまり、操作信号入力が 25%になってから流量制御弁 5が全閉の 流量制御 VI,から開口を開始させる必要が生じる流量制御 V2'に移行することにな る。なお、流量制御弁 5が全開となる流量制御 V3'のタイミングは任意に設定できる 力、同図の例では、 75%にて全開となる設定とした。その結果、コントロールバルブ 3 に供給される合計流量(吐出量)は、同図上段に示すように、合計流量 Gl、 G2、 G3 を含む折れ曲がったグラフとなる。
[0054] ここで、図 2および図 3のグラフを比較すると、ポンプ容積、エンジン 6の定格回転数 は本発明に係る所定の制御関数および他の制御関数ともに同じであるため、操作信 号入力に対して、供給される合計流量は同様である。しかし、図 2に示す本発明に係 る所定の制御関数では、副油圧ポンプ 8からの圧油の合流を早い時期に始めて、操 作信号の中間領域となる第二の領域 R2においてエンジン 6回転数を維持するように 制御しており、得られる合計流量(吐出量) Gが直線的に上昇するように制御している ので、図 3に示す他の制御関数に比べてエンジン回転数を全体として低く抑えること を可能としている。これにより、操作領域の大半の部分で、図 3の他の制御関数に比 ベてエンジン回転数を一層低く抑えることを可能としている。
[0055] そして、上記コントロールバルブ 3によれば、ダブルポンプ方式の車両搭載用クレー ンにおいて、省スペース化および組み付け性を向上させ、さらに、クレーンの緊急停 止を可能とし且つ遠隔操作を可能とした場合であっても、油温の上昇を抑制可能で ある。
すなわち、上述したコントロールバルブ 3によれば、複数の切換弁 40、流量制御弁 5およびアンロードリリーフ弁 27、 29、並びにパイロット油を得るための減圧弁 47及 び背圧弁 46を互いに積層してスタック型コントロールバルブを構成しているので、省 スペース化を可能とし、組み付け性を向上させることができる。
[0056] そして、このコントロールバルブ 3によれば、複数の切換弁 40と主油圧ポンプ 7およ び副油圧ポンプ 8との間に位置する管路に、二つのアンロードリリーフ弁 29、 27がそ れぞれ介装されているので、二つのアンロードリリーフ弁 29、 27を作動させることで、 各ポンプ 7、 8からの圧油を、切換弁 40を通過させずにタンク 9に戻し、例えば非常時 にクレーンを緊急停止させることができる。
[0057] また、このコントロールバルブ 3によれば、複数の切換弁 40が間接駆動方式であり、 そのパイロット油を得るための減圧弁 47及び背圧弁 46を備えて!/、るので、例えば非 常時に緊急停止をさせる操作を、遠隔操作 (ラジコン操作)によって行うことができる。 さらに、これら減圧弁 47及び背圧弁 46が、必要なパイロット油を主油圧ポンプ 7のみ 力、ら取得するように設けられているので、例えば、主油圧ポンプ 7および副油圧ポン プ 8が合流した後の管路に減圧弁 47及び背圧弁 46を設けたものと比べて、油温の 上昇を抑制することができる。
[0058] 次に、本発明に係る車両搭載用クレーンの圧油供給量制御装置の第二実施形態 について説明する。なお、以下の説明では、上記第一実施形態同様の構成につい ては同一の符号を附すとともに説明を適宜省略し、異なる構成について詳しく説明 する。
この第二実施形態では、コントローラ 2の ROMに、複数の制御関数がテーブルデ ータとして格納されている例である。一方、操作入力装置 1には、これら複数の制御 関数を選択するための選択用スィッチ(不図示)を有して構成されている。そして、こ れら複数の制御関数は、上記操作入力装置 1からの選択用スィッチの操作による操 作信号に対して個別に選択可能に設定されており、選択された所望の制御関数力 S、 コントローラ 2で実行される所定の圧油供給量制御処理において参照されるようにな つている。つまり、選択された所望の制御関数に対応する圧油供給量制御処理によ つて、操作入力装置 1の操作信号に対して、アクセルシリンダ 4および流量制御弁 5 に出力されるコントローラ 2からの制御信号が個別に設定されるようになっている。
[0059] 詳しくは、この第二実施形態のコントローラ 2の ROM所定領域には、上記複数の制 御関数として、第一の制御関数および第二の制御関数の二つの制御関数が、圧油 供給量制御処理の演算過程で必要な演算結果を導出可能な形式で適宜参照可能 に格納されている。これら複数の制御関数は、作業者による操作入力装置 1での選 択用スィッチによる操作に応じて選択可能になっており、これら複数の制御関数は、 車両のエンジン特性に合わせて適宜選択される。
そして、各制御関数は、主油圧ポンプ 7と副油圧ポンプ 8との合計吐出流量力 タレ ーン の操作入力に応じた操作信号に対して比例的に変化するように設定されてお り、第一の制御関数と第二の制御関数とでは、アクセルシリンダ 4と流量制御弁 5の制 御バランスを異ならせている。以下、この第一の制御関数および第二の制御関数に ついてより詳しく説明する。
[0060] 図 4は、この第二実施形態の制御装置に適用される第一の制御関数 (圧油供給量 制御処理に用いられる第一の制御マップ)を説明する図である。
同図に示すグラフは、最下段が、上記テーブルデータとして参照可能な第一の制 御関数 (制御マップ)を表しており、その上段に、エンジン回転数、定格圧力時の合 計ポンプ駆動トルク、主 ·副油圧ポンプによる合計流量を順に示している。なお、同図 に示すグラフの数値は、主油圧ポンプ 7と副油圧ポンプ 8の容積を、共に 30cm3/re Vとし、エンジンのアイドリング回転数を 400rpm、定格回転数を 1000rpm、エンジン とポンプの減速比を 1 (エンジン回転数 =ポンプ回転数)、定格圧力 20MPaと仮定し た場合のものである。
[0061] 同図に示すように、この第一の制御関数の場合、上記圧油供給量制御処理におい て、操作信号入力の割合が 25%のときは、アクセルシリンダストロークは 60%になり、 流量制御弁 5が開口を開始するよう設定されている。また、操作信号入力の割合が 2 5%未満のときは、コントロールバルブ 3には、主油圧ポンプ 7からの圧油のみが供給 される。さらに、操作信号入力の割合が 25%を超えるときは、流量制御弁 5が開口を 始め、副油圧ポンプ 8からの圧油が合流するようになる。そして、副油圧ポンプ 8から の圧油が合流するようになると、副油圧ポンプ 8にも負荷が発生するようになり、ボン プの駆動トルクが増加し、エンジン 6へのトルク負荷が増大するようになっている。
[0062] ここで、操作信号入力の割合が 25%のときのエンジン回転数を、先に仮定した条 件で計算すると、アイドリング回転数 400rpmと定格回転数 lOOOrpmの間の 60%の 回転数となるため、エンジン回転数は 760rpmとなる。すなわち、この第一の制御関 数による圧油供給量制御処理の場合、エンジン回転数が 760rpm以上になると、副 油圧ポンプ 8からの圧油の合流が始まり、エンジン 6へのトルク負荷が増大することに なる。また、そのときのポンプ駆動トルクは、主油圧ポンプ 7と副油圧ポンプ 8とを駆動 するトルクとなる。そのトルクは、吐出圧力により変わってくる力 最大で定格圧力 20 MPaの時のトルクとなる。すなわち、仮定した条件(定格圧力 P = 20MPa、ポンプ容 積 q = 30cm3/rev+ 30cm3/rev= 60cm3/rev)で計算すると 191N'mとなる。そ のため、この第一の制御関数を適用する場合には、 191N 'mの回転トルクがェンジ ン回転数 760rpm以下で発生するエンジンである必要がある。
[0063] し力、し、エンジンの出力が大きぐより低いエンジン回転数で、 191N .mの回転トノレ クを発生させることができる車両の場合、この第一の制御関数では、必要以上にェン ジン回転数を上昇させてしまうことになる。
そこで、この第二実施形態の制御装置では、より低いエンジン回転数で副油圧ボン プ 8の合流が始まるようにした第二の制御関数をさらに備え、車両のエンジン特性に 合わせて選択可能になっている。
第二の制御関数 (制御マップ)を図 5に示す。なお、この第二の制御関数において 、ポンプ容積、エンジン回転数等の仮定条件については、上記図 4に示した第一の 制御関数と同様である。
[0064] 図 5に示すように、この第二の制御関数に基づく圧油供給量制御処理の場合、操 作信号入力の割合が 10%のとき、アクセルシリンダストロークは 25%になり、流量制 御弁 5が開口を開始するように設定されている。そして、この第二の制御関数におい て、上記第一の制御関数と同様にエンジン回転数を計算すると、操作信号入力の割 合が 10%のときのエンジン回転数は 550rpmとなり、エンジン回転数が 550rpm以 上になると、副油圧ポンプ 8からの圧油の合流が始まる。よって、この第二の制御関 数を適用するには、 191N 'mの回転トルクがエンジン回転数 550rpm以下で発生す るエンジンである必要がある。
[0065] ここで、図 4および図 5のグラフを比較すると、ポンプ容積、エンジンの定格回転数 は第一および第二の制御関数ともに同じであるため、操作信号入力に対して、供給 される合計流量は同じである。しかし、図 5に示す第二の制御関数では、副油圧ボン プ 8からの圧油の合流が早い時期に始まるため、操作信号の中間領域において、図 4に示す第一の制御関数よりもエンジン回転数を低く抑えることができる。つまり、例 えばエンジン回転数 500rpmで 191N .mの回転トルクを発生するエンジンであれば 、第二の制御関数に基づく圧油供給量制御処理を適用した方力 より低いエンジン 回転数でクレーン作業を行える。
ここで、上記の「クレーンへの操作入力とエンジンの回転数および流量制御弁によ る圧油の所定の流量との関係」には、上記第一および第二の制御関数がそれぞれ対 応しており、また、上記の「前記設定された複数の関係のうちの所望の関係」には、上 記複数の制御関数のうちの、車両のエンジン特性に合わせて適宜選択された制御 関数が対応する。
[0066] 上述のように、この第二実施形態の制御装置では、コントローラ 2は、異なる複数の 制御関数 (第一および第二の制御関数)をテーブルデータとして設定しており、その コントローラ 2で実行される圧油供給量制御処理では、これら複数の制御関数のうち の所望の制御関数が操作入力装置 1から選択可能になっているので、クレーンを搭 載する車両のエンジン特性に合わせて、適宜の制御関数を選択して、より最適なェ ンジン回転数と副油圧ポンプ 8からの圧油を流量制御するための流量制御弁 5の制 御が可能となる。そのため、例えばより低いエンジン回転数で、主油圧ポンプ 7と副油 圧ポンプ 8を同時に駆動させて、定格圧力の圧油を吐出することができる回転トルク が発生する車両に適用した場合には、今まで以上に省エネ、低騒音化を図ることが できる。
[0067] 次に、本発明に係る車両搭載用クレーンの圧油供給量制御装置の第三実施形態 について説明する。なお、以下の説明では、上記第一実施形態同様の構成につい ては同一の符号を附すとともに説明を適宜省略し、異なる構成について詳しく説明 する。
この第三実施形態の車両搭載用クレーンは、クレーンの操作を、遠隔操作 (ラジコ ン操作)によって行うことができる無線操作器 60を備えている。この無線操作器 60は 、上記コントローラ 2との間で、公知の無線の通信手段によって操作信号等の必要な 信号の送受信が可能になっている。以下、図 6を適宜参照しつつ、この無線操作器 6 0について説明する。なお、図 6 (a)は、無線操作器の斜視図であり、図 6 (b)は側面 図である。
[0068] 同図に示すように、この無線操作器 60は、握り部 67および操作部 68を備えている 操作部 68には、ブーム起伏スィッチ 61、ウィンチスィッチ 62、ブーム伸縮スィッチ 6 3、左右旋回スィッチ 64等がそれぞれ配置されており、各スィッチは、対応する各ァク チユエータをそれぞれ駆動するための切換弁 40 (図 1での符号 D〜S)に対応する操 作信号をコントローラ 2にそれぞれ送信可能になっている。また、操作部 68上には、 クレーンのインチング操作をするためのインチングボタン 66も配置されており、対応 する操作信号をコントローラ 2に送信可能になっている。さらに、操作部 68の下面に は、下方に速度レバー 65が突出している。この速度レバー 65は、図 6 (b)に示すよう に、クレーンの操作信号の割合を、 0〜; 100%まで調整可能なスピードコントローラで あり、速度レバー 65を引く操作の大小によって、対応する操作信号をコントローラ 2に 送信し、クレーンの作動速度を調整可能になっている。
[0069] ここで、上記コントローラ 2は、過負荷防止装置 10から入力される負荷信号に基づ いて、その入力される負荷信号が大きいときには小さいときに比べて副油圧ポンプ 8 力、ら吐出される圧油の流量を減少させるように流量制御弁 5を制御しつつ、操作入力 装置 1な V、し無線操作器 60 (以下、操作入力装置 1等とも V、う)から作業者の操作に 応じて入力される操作信号に基づ V、て、流量制御弁 5を制御する圧油供給量制御処 理が実行されるように構成されている。なお、上記流量制御弁 5は、そのスプールの 最大作動量が負荷信号に応じて適宜制限される比例型であり、スプールの最大作動 量を制限することで副油圧ポンプ 8から吐出される圧油の流量を比例的に調整可能 になっている。
[0070] この第三実施形態のコントローラ 2は、 ROMの所定領域に、圧油供給量制御処理 を実行するプログラムが、その演算過程で必要な演算結果を導出可能な形式で適宜 参照可能に格納されている。また、 ROMには、所定の制御関数がテーブルデータと して格納されている。そして、この所定の制御関数力 コントローラ 2で実行される圧 油供給量制御処理において参照されるようになっている。つまり、コントローラ 2で実 行される圧油供給量制御処理は、操作入力装置 1等からの操作信号入力および過 負荷防止装置 10から入力される負荷信号に応じて、アクセルシリンダ 4および流量 制御弁 5に出力される制御信号が、上記所定の制御関数に基づいて個別に設定さ れるようになっている。 [0071] 以下、この第三実施形態での所定の制御関数およびこれに対応する圧油供給量 制御処理についてより詳しく説明する。なお、図 7は、この第三実施形態の制御装置 に適用される所定の制御関数 (圧油供給量制御処理に用いられる制御マップ)を説 明する図である。
同図に示すグラフは、上記テーブルデータとして参照可能な制御関数 (制御マップ )を表しており、最下段が流量制御弁 5のスプールの開度、その上段に、エンジン回 転数、定格圧力時の合計ポンプ駆動トルク、および主'副油圧ポンプ 7, 8による合計 流量を順に示している。主油圧ポンプ 7の容積は、 20cm3/rev、副油圧ポンプ 8の 容積は、 40cm3/revであり、同図に示すグラフの数値は、エンジンのアイドリング回 転数を 400rpm、定格回転数を 1000rpm、エンジンとポンプの減速比を 1 (エンジン 回転数 =ポンプ回転数)、定格圧力 20MPaと仮定した場合のものである。
[0072] ここで、上記のように、主油圧ポンプ 7の吐出量は、副油圧ポンプ 8の吐出量よりも 小さくなつており、特に、本実施形態での主油圧ポンプ 7の吐出量は、クレーンのイン チング操作をするのに必要十分な範囲で小さい吐出量に設定されている。
そして、このコントローラ 2内での圧油供給量制御処理は、入力される負荷信号に 応じて 4つの範囲が設定されている。具体的には、入力される負荷信号が 50% (第 一の所定値)未満のときを第一の範囲とし、入力される負荷信号が 50% (第一の所 定値)を超え且つ 95% (第二の所定値)未満のときを第二の範囲とし、さらに、入力さ れる負荷信号が 95% (第二の所定値)を超え且つ 100% (第三の所定値)未満のとき 、およびインチングボタン 66が操作されてその信号が入力されたときの!/、ずれかのと きを第三の範囲とし、入力される負荷信号が 100% (第三の所定値)を超えるときを第 四の範囲として設定している。
[0073] 図 8は、この第三実施形態のコントローラ 2で実行される、圧油供給量制御処理を 実行するプログラムのフローチャートである。同図に示すように、本実施形態の例に おいて、コントローラ 2内では、同プログラムが実行されると、まず、ステップ S 1に移行 する。
ステップ S 1では、無線操作器 60のインチングボタン 66が操作されているか否かを 判定し、操作されているとき(Yes)にはステップ S6に移行し、そうでないとき(No)に はステップ S2に移行する。ステップ S2では、過負荷防止装置 10から入力される負荷 信号が上記第一の範囲内か否かを判定し、第一の範囲内であれば (Yes)ステップ S 3に移行し、そうでないとき(No)にはステップ S4に移行する。
[0074] ステップ S3では、操作信号のみに基づいて流量制御弁 5を制御する一連の処理が 実行されて、処理を戻す。具体的には、この際の制御は、図 8の最下段に示すグラフ に基づく所定の関数式 (基本関数式) Kにて制御される。なお、この第一の範囲は、 例えばクレーンの転倒のおそれがない範囲として設定されている。
ステップ S4では、負荷信号が上記第二の範囲内か否かを判定し、第二の範囲内で あれば (Yes)ステップ S5に移行し、そうでないとき(No)にはステップ S6に移行する
[0075] ステップ S5では、入力される負荷信号が大きくなるにつれ副油圧ポンプ 8から吐出 される圧油の流量を減少させるように流量制御弁 5を制御するとともに、操作信号に 基づいて流量制御弁 5を制御する一連の処理が実行されて、処理を戻す。具体的に は、この際の制御は、上記所定の関数式 (基本関数式) Kに負荷率の逆数を掛けあ わせており、これにより、入力される負荷信号が大きくなるほど、図 7に示す所定の関 数式 Kの傾きを減少させ、当該傾きを減少させた関数式によってその際の操作信号 に基づ V、て流量制御弁 5を制御するようになって V、る。
[0076] ステップ S6では、負荷信号が上記第三の範囲内か否かを判定し、第三の範囲内で あれば (Yes)ステップ S8に移行し、そうでないとき(No)にはステップ S7に移行する ステップ S8では、流量制御弁 5を全閉する一連の処理が実行されて、処理を戻す。 これにより、流量制御弁 5を作動させないようになつている。また、ステップ S7では、負 荷信号が上記第四の範囲か否かを判定し、第四の範囲であれば (Yes)ステップ S9 に移行し、そうでないとき(No)にはステップ S8に移行する。ステップ S9では、上記ァ ンロードリリーフ弁 27 29を作動させる制御を含む一連の処理が実行されて、処理を 戻す。これにより、圧油を、各切換弁 40を介さずにタンク 9側に戻してクレーンの作動 を停止するようになっている。
[0077] ここで、上記操作信号に基づく流量制御弁 5の流量の制御は、より具体的には、上 記コントロールバルブ 3の各切換弁 40に、そのスプールの作動量を把握可能なトラン スミッタ(差動トランス)が設けられており、それらの作動量からクレーンが必要とする 合計流量が算出され、その算出された必要とする合計流量に基づいて、流量制御弁 5の必要なスプールの最大作動量が演算されるようになっている。
[0078] 次に、この第三実施形態の圧油供給量制御装置の作用 ·効果について説明する。
この第三実施形態の圧油供給量制御装置によれば、そのコントローラ 2は、クレー ンの負荷率に応じた負荷信号と、クレーンへの操作信号とがそれぞれ入力されるよう になっており、これら負荷信号および操作信号に基づいて、一つの流量制御弁 5を 制御するようになっているので、この一つの流量制御弁 5で合流する圧油の流量制 御および負荷率に応じた流量制御を兼用することが可能である。
[0079] そして、このコントローラ 2によれば、上記負荷信号および操作信号のうち、クレーン の負荷率に応じた負荷信号側を優先して、流量制御弁 5を制御しているので、クレー ンへの負荷率に応じて流量を確実に所望の状態にすることができる。
さらに、このコントローラ 2によれば、クレーンへの負荷率に応じて 4つの範囲が設定 されているので、クレーンの負荷率に応じた所望の状態に制御する上でより好適であ
[0080] つまり、負荷率が比較的に低い第一の範囲(入力される負荷信号が 50%未満)の ときには、上記所定の関数式 (基本関数式) Kに変更はなぐクレーン の操作信号 のみに基づレ、て流量制御弁 5が制御されるので、機敏な操作が可能である。
そして、負荷率が中程度の第二の範囲(入力される負荷信号が 50%以上 95%未 満)のときには、負荷信号が大きくなるにつれ副油圧ポンプ 8から吐出される圧油の 流量を減少させるように流量制御弁 5が制御される。つまり、所定の関数式 Kに負荷 率の逆数を掛けあわせて、所定の関数式 Kの傾きを減少させ、その傾きを減少させ た関数式によって、その際の操作信号に基づいて流量制御弁 5を制御するようにな つているので、その負荷率の程度に応じた速度での安定したクレーン操作が可能で ある。
[0081] さらに、負荷率が比較的に高いとき(入力される負荷信号が 95%以上 100%未満) である第三の範囲のときには、流量制御弁 5を全閉する制御がされる。そのため、こ の際には、主油圧ポンプ 7から吐出される圧油のみによってコントロールバルブ 3の 切換弁 40へ圧油が供給され、さらに、負荷率が限度を超える第四の範囲(入力され る負荷信号が 100%以上)では、アンロードリリーフ弁 27, 29を作動させて、圧油をタ ンク 9側に戻してクレーンの作動を停止するようになっているので、その際のクレーン 操作を確実に止めることができる。
[0082] また、クレーンのインチング操作が実行されるときには、流量制御弁 5を全閉する制 御がされる。そのため、この際には、主油圧ポンプ 7から吐出される圧油のみによって コントロールバルブ 3の切換弁 40へ圧油が供給されるので、微速動システムを簡単 かつ安価に構築することができる。
したがって、この圧油供給量制御装置によれば、通常時の操作性を良好とするとと もに、負荷率に応じた流量を確実に所望の状態に制御するクレーン操作が可能であ る。さらに、微速動システムを簡単かつ安価に構築することができる。
[0083] なお、本発明に係る車両搭載用クレーンの圧油供給量制御装置は、上記各実施 形態に限定されるものではなぐ本発明の趣旨を逸脱しなければ種々の変形が可能 なことは勿論である。
例えば、上記第一実施形態では、主油圧ポンプ 7と副油圧ポンプ 8の容積を、共に 30cm3/revとしている例で説明した力 これに限定されず、例えば主油圧ポンプの 最大吐出量を、副油圧ポンプの最大吐出量よりも少ない量に設定してもよい。このよ うな構成であれば、エンジン回転数が低く回転トルクが小さいときに、エンジンのトノレ ク負荷を抑える上でより好適である。また、その場合において、例えば、主油圧ポンプ の最大吐出量は、インチング動作に必要十分な吐出量に設定されてレ、ることが好ま しい。このような構成であれば、エンジン回転数が低く回転トルクが小さいときに、ェン ジンのトルク負荷を抑える上で一層好適である。
[0084] また、例えば上記第二実施形態では、複数の制御関数のうちの所望の制御関数が 操作入力装置 1から選択可能になっている例で説明したが、これに限定されず、例え ば、コントローラ 2の基板上にディップスィッチを設け、このディップスィッチの設定に よって、対応するエンジン特性に最適な制御関数を上記所望の制御関数として出荷 時に設定するように構成してもよ!/、。 また、上記第二実施形態では、コントローラ 2で実行される圧油供給量制御処理に ぉレ、て選択可能な異なる複数の制御関数力、二種類の例で説明したが、これに限定 されず、例えば 3種類以上から選択可能な構成としてもよい。
また、例えば上記第三実施形態では、微速動システムは、インチングボタン 66が操 作されてその信号が入力されたときに、コントローラ 2によって実行される圧油供給量 制御処理での制御が対応する例で説明した力 これに限定されず、例えば、流量制 御弁 5とコントローラ 2とを結ぶ信号泉 52に ON/OFF可能なスィッチを介装して、こ のスィッチを操作することで微速動システムを構成可能である。このような構成であつ ても、微速動システムを簡単かつ安価に構築することができる。

Claims

請求の範囲
車両に搭載されるクレーンに供給する圧油の供給量を制御するために用いられ、 前記車両のエンジンによって同時に駆動される主油圧ポンプ及び副油圧ポンプと、 前記副油圧ポンプから吐出される圧油の流量を所望の流量に調整する流量制御弁 と、前記クレーンへの操作信号入力に応じて、前記エンジンの回転数および前記流 量制御弁を制御可能なコントローラとを備え、前記主油圧ポンプから吐出される圧油 に、前記流量制御弁で調整された前記副油圧ポンプの圧油を合流させて前記タレ ーンを駆動するためのコントロールバルブに供給する圧油供給量制御装置であって 前記コントローラは、前記エンジンの回転数を制御するエンジン回転数制御手段と 、前記流量制御弁から吐出される圧油の流量を制御する吐出流量制御手段とを備え 前記吐出流量制御手段は、前記流量制御弁を全閉して前記主油圧ポンプの圧油 のみを前記コントロールバルブに供給する第一の流量制御と、前記副油圧ポンプの 圧油を前記主油圧ポンプから吐出される圧油に合流させるときに、合流後の圧油の 吐出量を前記操作信号入力の割合に応じて比例的に変化するように合流させて前 記コントロールバルブに供給する第二の流量制御と、前記流量制御弁を全開して前 記主油圧ポンプおよび副油圧ポンプから吐出可能な圧油の最大量を前記コントロー ルバルブに供給する第三の流量制御とを含んで構成され、
前記エンジン回転数制御手段は、前記エンジンの回転数をアイドリング回転数から 前記エンジンの回転トルクが不足することがない必要十分なトルクとなる第二のェン ジン回転数まで前記操作信号入力の割合に応じて比例的に変化するように上昇させ る第一の回転数制御と、前記エンジンの回転数を、前記第二のエンジン回転数に維 持する第二の回転数制御と、前記エンジンの回転数を、前記第二のエンジン回転数 からそれよりも高い第三のエンジン回転数に、前記操作信号入力の割合に応じて比 例的に上昇させる第三の回転数制御とを含んで構成されており、
さらに、前記コントローラは、前記操作信号入力の割合が第一の割合未満の第一 の領域のときには、前記第一の回転数制御およびこれに対応して前記第一の流量 制御を実行し、前記操作信号入力の割合が第一の割合以上且つ第一の割合よりも 大きい第二の割合未満の第二の領域のときには、前記第二の回転数制御およびこ れに対応して前記第二の流量制御を実行し、前記操作信号入力の割合が第二の割 合以上の第三の領域のときには、前記第三の回転数制御およびこれに対応して前 記第三の流量制御を実行するようになっていることを特徴とする車両搭載用クレーン の圧油供給量制御装置。
[2] 請求項 1において、
前記コントローラは、前記エンジン回転数制御手段と前記吐出流量制御手段との 協働によって前記コントロールバルブに供給する圧油の合計流量を、前記操作信号 入力の割合に応じて全領域に亘つて比例的に上昇させるようになつていることを特徴 とする車両搭載用クレーンの圧油供給量制御装置。
[3] 車両に搭載されるクレーンに供給する圧油の供給量を制御するために用いられ、 前記車両のエンジンによって同時に駆動される主油圧ポンプ及び副油圧ポンプと、 その副油圧ポンプから吐出される圧油の流量を所定の流量に調整する流量制御弁 と、前記クレーンへの操作入力に応じて、前記エンジンの回転数、および前記流量 制御弁をそれぞれ個別に制御するコントローラとを備え、前記主油圧ポンプから吐出 される圧油に、前記流量制御弁で調整された圧油を合流させて前記クレーンを駆動 するためのコントロールバルブに供給する圧油供給量制御装置であって、
前記コントローラは、前記クレーンへの操作入力と前記エンジンの回転数および前 記流量制御弁による圧油の所定の流量との関係が複数設定され、さらに、前記設定 された複数の関係のうちの所望の関係が選択可能になっており、前記クレーンへの 操作入力および前記選択された所望の関係に基づいて、前記エンジンの回転数、 および前記流量制御弁による圧油の所定の流量を個別に制御することを特徴とする 車両搭載用クレーンの圧油供給量制御装置。
[4] 請求項;!〜 3のいずれか一項において、
前記コントロールバルブは、スタック型のコントロールバルブであり、前記クレーンの 各ァクチユエータを駆動するための間接駆動方式の複数の切換弁と、前記副油圧ポ ンプから吐出される圧油の流量を調整するとともに、前記主油圧ポンプから吐出され る圧油に合流させて前記複数の切換弁に送り出す流量制御弁と、前記複数の切換 弁と前記主油圧ポンプおよび前記副油圧ポンプとの間にそれぞれ介装される二つの アンロードリリーフ弁と、前記複数の切換弁の駆動に必要なパイロット油を前記主油 圧ポンプのみから取得するように設けられた減圧弁および背圧弁と、を互いに積層し たスタック型にして構成してなることを特徴とする車両搭載用クレーンの圧油供給量 制御装置。
[5] 車両に搭載されるクレーンに供給する圧油の供給量を制御するために用いられ、 前記車両のエンジンによって同時に駆動される主油圧ポンプ及び副油圧ポンプと、 前記副油圧ポンプから吐出される圧油の流量を所望の流量に調整する流量制御弁 と、前記主油圧ポンプ及び副油圧ポンプから吐出される圧油をタンクにバイパス可能 な主油圧ポンプ用アンロード弁及び副油圧ポンプ用アンロード弁と、前記クレーンへ の操作信号に応じて、前記エンジンの回転数および前記流量制御弁を制御可能な コントローラとを備え、前記主油圧ポンプから吐出される圧油に、前記流量制御弁で 調整された前記副油圧ポンプの圧油を合流させて前記クレーンを駆動するための各 切換弁に供給する圧油供給量制御装置であって、
前記コントローラには、前記クレーンへの操作信号が入力されるほ力、、前記クレーン の負荷率に応じた負荷信号が入力されるようになっており、
前記コントローラは、前記入力される操作信号に基づいて、前記流量制御弁を制御 し、且つ前記入力される負荷信号に基づいて、当該入力される負荷信号が大きいと きには小さいときに比べて前記副油圧ポンプから吐出される圧油の流量を減少させ るように前記流量制御弁を制御し、あるいは前記各アンロード弁を作動するように構 成されていることを特徴とする車両搭載用クレーンの圧油供給量制御装置。
[6] 請求項 5において、
前記入力される負荷信号が第一の所定値未満の第一の範囲のときには、前記タレ ーンへの操作信号のみに基づいて前記流量制御弁を制御し、
前記入力される負荷信号が前記第一の所定値を超え且つその第一の所定値よりも 大きい第二の所定値未満の第二の範囲のときには、前記負荷信号が大きくなるにつ れ前記副油圧ポンプから吐出される圧油の流量を減少させるように前記流量制御弁 を制御するとともに、前記操作信号に基づレ、て前記流量制御弁を制御し、 前記入力される負荷信号が前記第二の所定値を超え且つその第二の所定値よりも 大きい第三の所定値未満の第三の範囲のときには、前記流量制御弁を全閉する制 御をし、
前記入力される負荷信号が前記第三の所定値を超える第四の範囲のときには、前 記各アンロード弁を作動して主油圧ポンプ及び複油圧ポンプからの圧油をタンクに バイパスするようになっていることを特徴とする車両搭載用クレーンの圧油供給量制 御装置。
PCT/JP2007/070434 2006-11-09 2007-10-19 Pressurized-oil supply amount control device for vehicle-mounted crane WO2008056526A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US12/513,725 US8454319B2 (en) 2006-11-09 2007-10-19 Pressurized-oil supply amount control device for vehicle-mounted crane
EP07830168.6A EP2080728B1 (en) 2006-11-09 2007-10-19 Pressurized-oil supply amount control device for vehicle-mounted crane
KR1020097011161A KR101160733B1 (ko) 2006-11-09 2007-10-19 차량 탑재용 크레인의 압유 공급량 제어장치
CN2007800417183A CN101535168B (zh) 2006-11-09 2007-10-19 车载起重机的压油供给量控制装置
AU2007318798A AU2007318798B2 (en) 2006-11-09 2007-10-19 Pressurized-oil supply amount control device for vehicle-mounted crane

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2006303660A JP5248005B2 (ja) 2006-11-09 2006-11-09 車両搭載用クレーンのスタック型コントロールバルブ
JP2006-303660 2006-11-09
JP2006324506A JP5032102B2 (ja) 2006-11-30 2006-11-30 車両搭載用クレーンの圧油供給量制御装置
JP2006-324506 2006-11-30
JP2006345394A JP5248011B2 (ja) 2006-12-22 2006-12-22 車両搭載用クレーンの圧油供給量制御装置
JP2006-345394 2006-12-22

Publications (1)

Publication Number Publication Date
WO2008056526A1 true WO2008056526A1 (en) 2008-05-15

Family

ID=39364349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/070434 WO2008056526A1 (en) 2006-11-09 2007-10-19 Pressurized-oil supply amount control device for vehicle-mounted crane

Country Status (5)

Country Link
US (1) US8454319B2 (ja)
EP (1) EP2080728B1 (ja)
KR (1) KR101160733B1 (ja)
AU (1) AU2007318798B2 (ja)
WO (1) WO2008056526A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2293162A1 (fr) * 2009-09-04 2011-03-09 Carrosserie Vincent et Fils Module de commande pour grue de manutention sur poids lourd
WO2012094900A1 (zh) * 2011-01-14 2012-07-19 长沙中联重工科技发展股份有限公司 一种起重机闭式液压卷扬回路的控制装置及方法
CN108715411A (zh) * 2018-08-03 2018-10-30 中船绿洲镇江船舶辅机有限公司 一种船用起重机液压应急停止单元

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2006268C2 (en) * 2011-02-21 2012-08-22 Reedijk Hydrauliek B V Mobile crane and method of operating a mobile crane.
DE102012025253A1 (de) 2012-12-21 2014-07-10 Liebherr-Werk Ehingen Gmbh Verfahren zur Drehzahlnachführung eines Kranantriebs und Kranantrieb
CN105122605B (zh) * 2014-03-18 2018-09-11 三菱电机株式会社 机械装置
DE202014007585U1 (de) * 2014-09-23 2016-01-05 Thomas Haug Bedienvorrichtung
US10677269B2 (en) 2018-08-30 2020-06-09 Jack K. Lippett Hydraulic system combining two or more hydraulic functions
EP3725727A1 (en) * 2019-04-18 2020-10-21 Deere & Company Control system for a crane of a working machine, method and working machine
FR3101867B1 (fr) * 2019-10-10 2021-10-08 Manitou Bf Engin de manutention de charge équipé d'un moteur thermique et procédé de commande de la vitesse en rotation du moteur thermique d'un tel engin

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6073901U (ja) * 1984-06-21 1985-05-24 株式会社ナブコ パイロツト操作型切換弁
JPH0551883U (ja) * 1991-12-20 1993-07-09 株式会社タダノ 車両搭載型油圧式作業機の油圧制御装置
JPH066476A (ja) 1992-06-22 1994-01-14 Toshiba Corp 情報送信サービスシステム
JPH08282975A (ja) * 1995-04-12 1996-10-29 Komatsu Ltd クレーンの油圧回路制御方法およびその油圧回路
JPH09216790A (ja) 1996-02-13 1997-08-19 Furukawa Co Ltd クレーンの安全装置
JP2006290561A (ja) * 2005-04-12 2006-10-26 Shin Caterpillar Mitsubishi Ltd クレーン作業制御装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53718Y2 (ja) 1973-05-11 1978-01-11
JPH066476B2 (ja) 1984-11-21 1994-01-26 古河機械金属株式会社 油圧式クレーンの速度制御方法
JP2586563B2 (ja) 1988-04-06 1997-03-05 株式会社豊田自動織機製作所 産業車両の2スピードリフト機構
JPH0539192A (ja) 1991-08-02 1993-02-19 Kato Works Co Ltd クレ−ンにおける緩制動装置
JPH0551883A (ja) * 1991-08-23 1993-03-02 Keiichiro Tani 写し糊染色法
JP3373914B2 (ja) 1993-12-14 2003-02-04 日立建機株式会社 油圧ポンプの吐出流量制御装置
JP3418050B2 (ja) 1996-02-02 2003-06-16 株式会社クボタ 建機の油圧回路
DE10038526B4 (de) 2000-08-08 2004-09-02 Carl Zeiss Jena Gmbh Verfahren und Anordnung zur Erfassung des wellenlängenabhängigen Verhaltens einer beleuchteten Probe
JP5005249B2 (ja) 2006-04-24 2012-08-22 古河ユニック株式会社 車両搭載用クレーンの圧油供給量制御装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6073901U (ja) * 1984-06-21 1985-05-24 株式会社ナブコ パイロツト操作型切換弁
JPH0551883U (ja) * 1991-12-20 1993-07-09 株式会社タダノ 車両搭載型油圧式作業機の油圧制御装置
JPH066476A (ja) 1992-06-22 1994-01-14 Toshiba Corp 情報送信サービスシステム
JPH08282975A (ja) * 1995-04-12 1996-10-29 Komatsu Ltd クレーンの油圧回路制御方法およびその油圧回路
JPH09216790A (ja) 1996-02-13 1997-08-19 Furukawa Co Ltd クレーンの安全装置
JP2006290561A (ja) * 2005-04-12 2006-10-26 Shin Caterpillar Mitsubishi Ltd クレーン作業制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2080728A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2293162A1 (fr) * 2009-09-04 2011-03-09 Carrosserie Vincent et Fils Module de commande pour grue de manutention sur poids lourd
FR2949874A1 (fr) * 2009-09-04 2011-03-11 Carrosserie Vincent Et Fils Module de commande pour grue de manutention sur poids lourd.
WO2012094900A1 (zh) * 2011-01-14 2012-07-19 长沙中联重工科技发展股份有限公司 一种起重机闭式液压卷扬回路的控制装置及方法
CN108715411A (zh) * 2018-08-03 2018-10-30 中船绿洲镇江船舶辅机有限公司 一种船用起重机液压应急停止单元

Also Published As

Publication number Publication date
EP2080728A4 (en) 2013-01-09
US20100054956A1 (en) 2010-03-04
KR20090085656A (ko) 2009-08-07
EP2080728A1 (en) 2009-07-22
AU2007318798B2 (en) 2011-06-16
KR101160733B1 (ko) 2012-06-28
EP2080728B1 (en) 2015-04-15
AU2007318798A1 (en) 2008-05-15
US8454319B2 (en) 2013-06-04

Similar Documents

Publication Publication Date Title
WO2008056526A1 (en) Pressurized-oil supply amount control device for vehicle-mounted crane
US7512471B2 (en) Control device for working vehicle
US7810323B2 (en) Load control device for engine of work vehicle
JP5714703B2 (ja) 建設機械の油圧ポンプ制御装置
WO2012029462A1 (ja) フォークリフトのエンジン制御装置
JP2012159130A (ja) 産業用車両の油圧ポンプ制御システムと産業用車両
JP5005249B2 (ja) 車両搭載用クレーンの圧油供給量制御装置
RU2516687C2 (ru) Способ управления двигателем внутреннего сгорания и узел управления
US8522541B2 (en) Hydraulic circuit of winch for crane
JP5248011B2 (ja) 車両搭載用クレーンの圧油供給量制御装置
JP5032102B2 (ja) 車両搭載用クレーンの圧油供給量制御装置
JP2009197805A (ja) 作業車両のエンジンの負荷制御装置
RU2415803C2 (ru) Устройство управления количеством подачи масла под давлением для передвижного крана
JP2019156620A (ja) 油圧ウインチの制御装置
KR101301234B1 (ko) 굴삭기의 엔진 회전수의 제어에 따른 압력 보상 유압회로
JP2004292102A (ja) ウインチの速度制御装置およびクレーン
JP2011017281A (ja) 作業車両の制御装置
WO2019220564A1 (ja) 油圧システム
JPH1182413A (ja) 作業機の油圧制御装置
JP6162367B2 (ja) 油圧駆動作業機
JP2005291259A (ja) 液圧装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780041718.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07830168

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12513725

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007830168

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007318798

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1020097011161

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2009121825

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2007318798

Country of ref document: AU

Date of ref document: 20071019

Kind code of ref document: A