WO2008055498A1 - ABGLEICHSYSTEM FÜR EINE FUßBODENTEMPERIERUNGS-ANORDNUNG - Google Patents

ABGLEICHSYSTEM FÜR EINE FUßBODENTEMPERIERUNGS-ANORDNUNG Download PDF

Info

Publication number
WO2008055498A1
WO2008055498A1 PCT/DK2007/000478 DK2007000478W WO2008055498A1 WO 2008055498 A1 WO2008055498 A1 WO 2008055498A1 DK 2007000478 W DK2007000478 W DK 2007000478W WO 2008055498 A1 WO2008055498 A1 WO 2008055498A1
Authority
WO
WIPO (PCT)
Prior art keywords
return
valve seat
valve
temperature
thermostatic element
Prior art date
Application number
PCT/DK2007/000478
Other languages
English (en)
French (fr)
Inventor
Fester Garm
Jens Møller JENSEN
Original Assignee
Danfoss A/S
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Danfoss A/S filed Critical Danfoss A/S
Priority to EP07817874.6A priority Critical patent/EP2087291B1/de
Publication of WO2008055498A1 publication Critical patent/WO2008055498A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/10Feed-line arrangements, e.g. providing for heat-accumulator tanks, expansion tanks ; Hydraulic components of a central heating system
    • F24D3/1058Feed-line arrangements, e.g. providing for heat-accumulator tanks, expansion tanks ; Hydraulic components of a central heating system disposition of pipes and pipe connections
    • F24D3/1066Distributors for heating liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1009Arrangement or mounting of control or safety devices for water heating systems for central heating
    • F24D19/1015Arrangement or mounting of control or safety devices for water heating systems for central heating using a valve or valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/12Tube and panel arrangements for ceiling, wall, or underfloor heating
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/01Control of temperature without auxiliary power
    • G05D23/02Control of temperature without auxiliary power with sensing element expanding and contracting in response to changes of temperature
    • G05D23/021Control of temperature without auxiliary power with sensing element expanding and contracting in response to changes of temperature the sensing element being a non-metallic solid, e.g. elastomer, paste
    • G05D23/022Control of temperature without auxiliary power with sensing element expanding and contracting in response to changes of temperature the sensing element being a non-metallic solid, e.g. elastomer, paste the sensing element being placed within a regulating fluid flow
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1927Control of temperature characterised by the use of electric means using a plurality of sensors
    • G05D23/193Control of temperature characterised by the use of electric means using a plurality of sensors sensing the temperaure in different places in thermal relationship with one or more spaces
    • G05D23/1932Control of temperature characterised by the use of electric means using a plurality of sensors sensing the temperaure in different places in thermal relationship with one or more spaces to control the temperature of a plurality of spaces
    • G05D23/1934Control of temperature characterised by the use of electric means using a plurality of sensors sensing the temperaure in different places in thermal relationship with one or more spaces to control the temperature of a plurality of spaces each space being provided with one sensor acting on one or more control means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the invention relates to balancing system for a floor temperature control arrangement with at least two Temper istsniken, each of which has a laid in a floor or in a ceiling wall heat transfer line with a flow and a return.
  • a floor heating arrangement designed as a floor heating arrangement is known from DE 199 11 866 A1.
  • the temperature at each return is detected and reported to a central controller.
  • the control device controls a valve in the corresponding flow.
  • US 6 390 381 B1 shows a similar floor heating arrangement in which the flow temperature and the return temperature are detected.
  • a valve in the flow is controlled by a control device so that the temperature difference between flow and return for all heating circuits is the same.
  • Underfloor heating arrangements are becoming increasingly popular. They make it possible to heat a room evenly. The heat is supplied to the room via the floor so that it gets a pleasant temperature for a resident. The same applies if the floor or ceiling wall of a room is used for cooling. To simplify the following explanation, the invention will be described with reference to a floor heating. However, it is also applicable in a corresponding manner for room cooling over the ceiling or in general for controlling the temperature of a room via lines through which a heat transfer medium flows in any wall of the room. However, it is relatively complicated to coordinate in an apartment or a building several heating circuits of the underfloor heating. In a small room, only a short heating medium pipe is laid because relatively little heat has to be supplied to this room.
  • the heating medium line in the smaller space has a lower flow resistance than the heating medium line in the larger space.
  • the heat transfer medium usually hot water, is divided in proportion to the flow resistance, so that much more heat transfer medium flows through the heating medium line of the smaller space, which is exactly the opposite of what you actually want to achieve.
  • the installer who installs the underfloor heating must therefore install and adjust certain throttling points before or at the latest during commissioning, which ensure the distribution of the heat transfer medium to the individual rooms in the desired ratio.
  • the installer uses a flow indicator in each heating circuit, which makes the flow visible.
  • the installer will then adjust the throttles so that the flow in all heating circuits is the same or follows a predetermined distribution.
  • this procedure is relatively complicated and error-prone. With a decreasing training standard of the personnel involved in the installation, one can no longer necessarily assume that the settings are made correctly.
  • the invention has for its object to simplify the distribution of heat output to individual heating circuits.
  • This object is achieved in a balancing system of the type mentioned in that at each return a return temperature controller is arranged with a temperature detecting the temperature in each return temperature sensor and all return temperature controller have the same temperature control behavior.
  • the return temperature controller ensures that the back-flowing heat transfer medium is maintained at a predetermined temperature.
  • the invention will be described below with reference to hot water as an example of the heat transfer medium. However, it can also be used for other heat transfer media and also for cooling or generally for tempering.
  • the heat transfer medium flowing through the heating circuit is supplied to the heating circuit via the supply line, which can also be referred to as an inflow, and is discharged via the return line, which can also be referred to as outflow.
  • the return temperature controller thus ensures that the water leaving the heating circuit always has a predetermined temperature.
  • the necessary temperature information is provided by the temperature sensor. If the water is still too hot when leaving the heating circuit, the return temperature controller throttles more. Accordingly, in a smaller space where less heat is released from the heating water to the room than in a larger room, the return temperature controller will throttle the flow more because the heating water still has a higher temperature after flowing through the heating line.
  • This throttling is automatic, so that all heating circuits connected to the same underfloor heating arrangement can be kept in mutual equilibrium. An intervention of an installer is thus practically no longer required or only to a simplified extent.
  • the return temperature controller so the combination of throttle bodies and temperature sensor and optionally control unit have, so to speak, the same characteristics, ie the same dependence between the Temperature and the passage.
  • this can be achieved by the fact that the return temperature controller are the same structure, so have the same thermostatic elements and the same geometric dimensions or the same temperature sensor, the same throttle devices and the same controls.
  • it is particularly easy to automatically compensate for a heating circuit to realize, so the vote of several heating circuits that are used in a common floor heating arrangement.
  • Such an arrangement is dynamic, ie it automatically adapts to changing requirements.
  • a distributor is provided, into which each return opens with a connection, wherein the return temperature regulator is associated with the connection.
  • the distributor which can also be referred to as "return distributor” here, more or less ready pre-assemble, including the return temperature controller. You just have to install this return manifold and connect the returns. Thereafter, the underfloor heating arrangement is not only fully assembled. It is also automatically adjusted.
  • the temperature sensor is designed as a thermostatic element.
  • a thermostatic element not only detects the temperature, but also generates an actuating force for a throttle element or even acts as a throttle element itself, so that the temperature sensor and the control device are basically coupled together.
  • the return temperature controller is designed as a return thermostat in this case.
  • the thermostatic element thus serves not only to gain the temperature information, but also to generate the actuation force for the throttle body.
  • the thermostatic element is thus temperature sensor and drive for the throttle point or even the throttle body.
  • the temperature sensor can be configured, for example, as an electrical temperature sensor. it is.
  • the output from the temperature sensor data can then be processed, for example by an electronic control.
  • the electronic control can then open or close the corresponding throttle element (valve element) of the return temperature controller accordingly.
  • an actuator element can be used, which is designed, for example, as a bimetal device, as an electric motor, as a stepping motor, etc.
  • the return temperature controller has a hot water throttle point and / or a cold water throttle point, the hot water throttle point having a first valve seat cooperating with a first valve element actuated by the thermostatic element, and the cold water point having a second valve seat having a second one of an actuator element , in particular a thermostatic element be-5 actuated valve element cooperates.
  • the return temperature controller Even if a cold heat transfer medium is passed through the heating circuit, the problem arises that the individual heating circuits must be coordinated.
  • the ratio with which the heat transfer medium is divided among the individual heating circuits depends on the ratio of the current resistance.
  • the return temperature controller it is particularly advantageous if the return temperature controller has both a hot water throttle point, and a cold water throttle point. If two different throttling points are provided for the return flow temperature controller, namely once for warm water and once for cold water (or a correspondingly different heat transfer medium), then you can use the the same return flow temperature control both the heating and the cooling of the room so that basically all rooms get the appropriate amount of heat or cold.
  • both valve elements are actuated by the same actuator element, in particular a thermostatic element.
  • the thermostatic element expands when heated and contracts when cooled. Both directions of movement can be used to throttle the individual throttle points more or less. If the hot water choke point is throttled more, then opens the cold water throttle point and vice versa. From a certain opening, the restriction through the open throttle then no longer plays a major role, so that then only the throttle point is decisive for the flow, which is acted upon in the closing direction5.
  • At least one valve element is formed by the respective associated actuator element, in particular thermostatic element. So you do not need any additional components.
  • the valve element o must not rest against the valve seat during throttling, but it is sufficient if a gap which is formed between the valve element and the valve seat is variable in size. Accordingly, the thermostatic element is readily sufficient as a valve element.
  • the actuator element in particular the thermostatic element has an increase in diameter, which forms the second valve element. It is therefore possible to use different gap sizes for the heated heat transfer medium and for the cooled heat transfer medium.
  • the passage cross section o can be kept larger.
  • the return temperature controller is disposed within a conduit connected to the port. Thus, the size of the distributor remains small. Larger components protruding outwards can be avoided.
  • the return temperature controller can be integrated into the connection in FIG.
  • the at least one actuator element in particular the at least one thermostatic element has a variable in the flow direction length. Even with this, the size of the distributor is kept small0.
  • the thermostatic element changes its length practically only within the return, a connection associated therewith or a line connected thereto. However, it does not change its extent so that this change would be noticeable to the outside and thus requires an enlarged size. 5
  • a separating device which separates the actuator element, in particular the thermostatic element from the heat transfer medium into a manifold of the distributor, from which branch off the terminals.
  • the thermostatic element is thermally acted upon exclusively by the heat transfer medium, which flows back through the return from the individual heating circuit. This allows the flow through this heating circuit to be precisely controlled. A mixing with a heat transfer medium from another heating circuit is avoided by the separating element, so that clear conditions can be adjusted
  • a movable valve seat device in particular the separating device forms the first valve seat.
  • the movable valve seat device is preferably displaceable from the outside in the direction of the change in length of the actuator element, in particular of the thermostatic element. This can cause a certain default for the hot water choke point.
  • the hot water choke closes earlier. Conversely, it closes later when the separator is removed from the thermostatic element.
  • the movable valve seat device in particular the separating device, preferably forms on the side opposite the first or the second valve seat a third valve seat, which cooperates with a third valve element, which can be actuated from the outside.
  • the third valve element can then be used to influence the flow through the respective heating circuit, wherein the heating circuit can then be controlled, for example, as a function of the temperature prevailing in the corresponding room.
  • the third valve element can for example be controlled by a thermostatic attachment, which is connected via a capillary with a heat sensor in the corresponding
  • Room is connected. It is also possible to displace the third valve element by a motor drive, which is controlled as a function of a room temperature. It is possible that the proposed, external operation with a pure Warmwasser Weglauftemperaturregier, a pure cold water return temperature controller or a combination of hot water and cold water return temperature controller is realized. Accordingly, in particular pairings such as a first and a third valve seat (without a second valve seat must be present) or a second and a third valve seat (without a first valve seat must be present) possible. Of course, a combination of first, second and third valve seat is possible.
  • the third valve element is mounted in an insert on which the movable valve seat device, in particular the separating device is attached. This simplifies assembly of the distributor. All you have to do is screw the insert into the housing and then practically automatically place the separator in the right place.
  • the insert in the housing is preferably displaceable parallel to the direction of the change in length of the actuator element, in particular the thermostatic element, assigned to the first and the second valve element. You can then use the insert then to properly position the separator and thus the first valve seat.
  • the at least one thermostatic element is designed as expansion element with solid filling.
  • expansion element has only a relatively small stroke. But this hub is essentially independent of the prevailing pressures.
  • each actuator element in particular each thermostatic element has a restoring device.
  • the return device can be formed, for example, by a compression spring. This ensures that the thermostatic element always has its smallest length depending on the temperature.
  • the actuator element in particular the thermostatic element has a seal which seals a gap between two mutually movable parts, wherein the seal is designed as a return spring.
  • the seal is designed as a return spring.
  • a wax cartridge or a wax thermostat which in and of itself should not be used within a liquid heat transfer medium, in particular not within water.
  • a plunger or extension is attached by a housing mounted in a housing. arranged expansion filler filling displaced to the outside. Accordingly, the plunger moves relative to the housing. There must be a small gap between the plunger and the housing through which heat transfer medium could penetrate in the worst case. This penetration is reliably prevented by the seal.
  • the seal is also used as a return spring, so that when the temperature drops, the plunger is pressed back into the housing.
  • the return temperature controller is designed as an electrically operating control device.
  • the temperature sensor reports the temperature in the return to a controller, which in turn adjusts an adjustable throttle device, such as a valve.
  • the throttle device, the temperature sensor and the control device then form a closed loop, with which it is also possible to keep the temperature in the return constant.
  • the seal has a corrugated sheath. This increases the possible movement length of the plunger relative to the housing. Normally no greater force is required to return the plunger to the housing. A corrugated jacket not only allows a large movement length of the plunger, but also brings a sufficient restoring force.
  • FIG. 1 is a schematic representation of a floor heating
  • FIG. 2 shows a schematic section through a return thermostat
  • 3 shows a schematic section through a modified embodiment of a return thermostat
  • Fig. 4 shows a modified embodiment according to FIG. 1 and
  • FIG. 5 shows a modified embodiment according to FIG. 2.
  • Fig. 1 shows a floor heating arrangement 1 for an apartment with several heated rooms 2, 3, 4 and a technical room 5.
  • a heating medium line 6-8 is laid in the floor.
  • These heating medium lines 6-8 are shown here only schematically. Usually, they are laid in the form of a double spiral in the floor, wherein always a portion which are arranged by a warmer heat transfer medium and a portion which is flowed through by a colder heat transfer medium, adjacent.
  • the heat transfer medium flowing back from the individual heating medium lines 6-8 reaches an output distributor 11.
  • An inflow 12 to the input distributor 9 and an outflow 13 from the output distributor 11 are shown here only schematically by arrows.
  • Each room 2-4 has a temperature sensor 14-16.
  • the temperature sensors 14-16 are connected to a common control device 17. This connection is shown here by dashed lines. she must not be mechanically present.
  • a wireless transmission path such as radio, infrared, ultrasound or the like.
  • the control device 17 controls for each heating medium line 6-8 a drive 18-20 of a valve, which is shown in more detail in FIG.
  • Each heating medium line 6-8 i.
  • Each heating circuit of each heated space 2-4 is connected via a return 21-23 to the output manifold 11.
  • the output distributor 11 has a number of terminals 24-26 corresponding to the number of heating circuits or heating medium lines 6-8, wherein a return thermostat 27-29 is arranged at each connection.
  • Such a return thermostat 27 is shown schematically in Fig. 2.
  • the other return thermostats 28, 29 are constructed accordingly.
  • a housing 30 of the distributor 11 is provided with a plurality of terminals 24-26, of which in Fig. 2, only the terminal 24 is shown.
  • a tubular connecting piece 31 of the return thermostat 27 connects.
  • the return 23 of the heating medium line 8 is connected.
  • the flow direction through the return 23 is shown.
  • the nozzle 31 is separated by a separator 33 from a manifold 34 which is formed in the output manifold 11. In this manifold 34 open all ports 24-26.
  • the separating device 33 is formed by a hollow cylindrical sleeve.
  • This sleeve is sealed with a seal 35 opposite the terminal 24.
  • the separator 33 thus ensures that heat transfer fluids Dium 34 in the output manifold 11 can not mix with heat transfer medium in the nozzle 31, so that the heat transfer medium within the nozzle 31 always only has the temperature that has the back flowing from the space 4 heat transfer medium.
  • a thermostatic element 36 is arranged, which is formed in the present embodiment as a wax cartridge.
  • wax instead of wax, of course, another wax can be used. However, preference is given to a solid as an expanding material which has similar properties to wax.
  • the thermostatic element 36 has an extension 37, which is pushed out more or less far from the thermostatic element 36 as a function of the prevailing temperature. So that the extension 37 is always pressed into the thermostatic element 36 as far as the temperature permits, a return spring 38 is provided.
  • the extension 37 is supported on an abutment 39, which is formed in the stub 31.
  • the separator 33 forms at its end facing the thermostatic element 36 a first valve seat 40, with which the thermostatic element 36 cooperates.
  • the first valve element 41 forms with the first valve seat 40 a throttle point which determines the flow through the return thermostat 27.
  • the nozzle 31 has a reduction in its inner diameter.
  • a second valve seat 43 is arranged, with which a portion 44 of the thermostatic element 36 cooperates, which has an enlarged diameter.
  • this section 44 also acts the return spring 38, which is supported on the other 24 at the other.
  • the portion 44 forms a second valve element, which cooperates with the second valve seat 43.
  • the second valve seat and the second valve element form a throttle point for a cooled heat transfer medium, which is used to cool the space 2-4 by flowing through the heating medium line 6-8.
  • the thermostatic element 36 shortens its length.
  • the extension 37 is moved further into the thermostatic element 36, so that the portion 44 of the thermostatic element 36 more closely approaches the second valve seat 43.
  • the cooled heat transfer medium is throttled until it has absorbed enough heat from the respective cooled space 2-4.
  • thermostatic elements it may also be beneficial to have the upper return temperature control (for room 2-4 heating) and the lower return temperature control (for 2-4 room cooling) separated by separate thermostatic elements.
  • the construction can then be cheaper, because then you can tune each thermostatic element to the respective temperature. It can also be observed in many cases that the temperature / length ratio of a thermostatic element is not linear.
  • two thermostatic elements it is also possible to keep the maximum operating length of a thermostatic element shorter.
  • return thermostat 27 shown in FIG. 2 without the second valve seat 43. There is then only a first valve seat 40 and a third valve element 46 before.
  • Such an embodiment is particularly advantageous for pure heating systems. Such pure heating systems are still the rule in many temperate and colder countries.
  • the second valve seat 43 can be avoided, for example, by reducing the inner diameter of the connecting piece 31 in a region which is offset further in the direction of the return 23. This is the case in the valve shown in Fig. 5.
  • the inner diameter of the nozzle 31 can be kept continuously constant. It is also possible to make section 44 smaller or omitted. The return spring 38 must then of course be supported on other areas of the thermostatic element 36. It would be conceivable, for example, to provide appropriate grooves or tabs. It is also possible to form the section 44 is not continuous radially circumferential, but only to individual, smaller radial sections to restrict (example, two, three or four sections with a radial length of 5 ° each).
  • the separating device 33 forms, on its side facing away from the first valve seat 40, a third valve seat 45, with which a third valve element 46, which can be actuated by the valve drive 18 (whereby it is possible that no second valve seat 43 is provided).
  • the valve drive 18 acts on a pin 47, which is guided by a stuffing box 48 and in turn acts on a plunger 49, to which the third valve element 46 is attached.
  • the plunger 49 is acted upon by a spring 50 in the opening direction.
  • the valve drive 18 is controlled by the control device 17 as a function of a temperature which is determined by means of the temperature sensor 16.
  • the valve formed by the third valve element 46 and the third valve seat 45 thus effects a thermostatic control of the room temperature.
  • the plunger 49 is mounted in an insert 51. At this use, the separator 33 is attached.
  • the insert 51 is in the housing 30, more precisely, an extension 52 of the housing 30, screwed. By further screwing or further unscrewing one can shift the position of the insert 51 in the direction of a double arrow 53.
  • the insert 33 is then also approximated to the thermostatic element 36 or removed further from the thermostatic element 36. This makes it possible, for example, to make a certain presetting of the return temperature.
  • thermostatic valve instead of a combined with the return thermostats 27-29 valve for controlling the room temperature, you can also use a separate thermostatic valve conventional type.
  • thermostatic element 36 is arranged in the nozzle 31 and, so to speak, in the longitudinal direction, ie the direction of itsInternixe- tion, is flowed around by the heat transfer medium, an additional space for the thermostatic element is not required.
  • an automatic adjustment between different heating circuits can be performed.
  • the return thermostats 27-29 By using the return thermostats 27-29 a very convenient installation can be realized. Adjustments are virtually unnecessary. If all return thermostats 27-29 are set the same, in particular have a same temperature opening degree characteristic, then you can install the output manifold 11 more or less and then forgotten. Of course, by screwing or unscrewing the insert 51 in the extension 52 still make a certain fine adjustment, if necessary. However, in most cases this will not even be necessary.
  • Such a heating arrangement works reliably even under changing external conditions, i. It dynamically adjusts the balancing of the heating circuits.
  • Fig. 3 shows a modified embodiment of a vomauerthermosta- th 27.
  • the same parts as in Figs. 1 and 2 are provided with the same reference numerals.
  • the thermostatic element 36 is designed as a wax cartridge, i. it has a housing 54 from which protrudes an extension 37, also referred to as "plunger". With increasing temperature, the extension 37 is further pushed out of the housing 54. With decreasing temperature, when the expansion material in the interior of the housing 54 reduces its volume, the extension 37 can be pushed further into the housing 54.
  • a gap is present, which by a seal 55 against the heating water through Arrows 56 should be symbolized, sealed.
  • the seal 55 is fixed to the housing 54 by a clamping ring 57. With the extension 37, it is connected via a cage 58, which is closed to the extension 37 out. By the seal 55 so a penetration of heating water 5 56 is prevented in the gap between the extension 37 and the housing 54.
  • the seal 55 still has a second task. It is designed as a return spring, i. it exerts on the extension 37 a train-0 force acting in the direction of the housing 54.
  • the seal 55 has a corrugated jacket 59, which may be formed, for example, of a metal in the manner of a corrugated tube or of an elastomer. Due to its corrugation, the jacket 59 permits a relatively large stroke of the extension 37 relative to the housing 54. At the same time, however, the seal 55 exerts sufficient restoring forces on the extension 37.
  • the underfloor heating arrangement according to Fig. 1 has remindlaufthermosta- o th 27-29, which operate with a thermostatic element 36.
  • the thermostatic element 36 acts simultaneously as a temperature sensor and as an adjustment.
  • Fig. 4 shows a modified embodiment in which the remindlaufther-5 mostaten 27-29 work electrically.
  • a temperature sensor 36a-36c is arranged in each return line 21-23.
  • Each temperature sensor 36a-36c detects the temperature in the return line 21-23 and forwards it to a controller 60a-60c.
  • the regulator 60a-60c operates an adjustable valve 61a-61c to more or less throttle the amount of heat transfer medium. This adjustment of the valves 61 a-61 c is continued until the temperature of the respective return 21- 23 flowing through the heat transfer medium has reached the desired value.
  • the temperature sensors 36a-36c supply the temperatures determined in the return lines 21-23 to a central controller, e.g. the controller 17, report, which then turn the valves 61a-61c adjusted accordingly.
  • the corresponding information and signals can be transmitted by cable or without wires.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Fluid Mechanics (AREA)
  • Remote Sensing (AREA)
  • Temperature-Responsive Valves (AREA)

Abstract

Es wird ein Abgleichsystem für eine Fußbodentemperierungs-Anordnung (1) angegeben mit mindestens zwei Temperierungskreisen (6-8), von denen jeder eine in einem Fußboden oder in einer Deckenwand verlegte Wärmeträgerleitung mit einem Vorlauf und einem Rücklauf (21-23) aufweist. Man möchte die Verteilung der Wärmeleistung auf einzelne Heizungskreise vereinfachen können. Dazu ist vorgesehen, dass an jedem Rücklauf (21-23) ein Rücklauftemperaturregler (27-29) mit einem die Temperatur im jeweiligen Rücklauf (21-23) erfassenden Temperatursensor (36) angeordnet ist und alle Rücklauftemperaturregler (27-29) ein gleiches Temperatursteuerverhalten aufweisen.

Description

Abgleichsystem für eine Fußbodentemperierunαs-Anordnunq
Die Erfindung betrifft Abgleichsystem für eine Fußbodentemperierungs- Anordnung mit mindestens zwei Temperierungskreisen, von denen jeder eine in einem Fußboden oder in einer Deckenwand verlegte Wärmeträgerleitung mit einem Vorlauf und einem Rücklauf aufweist.
Eine als Fußbodenheizungs-Anordnung ausgebildete Fußbodentemperie- rungs-Anordnung ist aus DE 199 11 866 A1 bekannt. Die Temperatur an jedem Rücklauf wird erfasst und an eine zentrale Steuereinrichtung weitergemeldet. Die Steuereinrichtung steuert ein Ventil im entsprechenden Vorlauf.
US 6 390 381 B1 zeigt eine ähnliche Fußbodenheizungs-Anordnung, bei der die Vorlauftemperatur und die Rücklauftemperatur erfasst werden. Ein Ventil im Vorlauf wird durch eine Steuereinrichtung so angesteuert, dass die Temperaturdifferenz zwischen Vorlauf und Rücklauf für alle Heizkreise gleich ist.
Fußbodenheizungs-Anordnungen erfreuen sich zunehmender Beliebtheit. Sie ermöglichen es, einen Raum gleichmäßig zu beheizen. Die Wärme wird dem Raum über den Fußboden zugeführt, so dass dieser eine für einen Bewohner angenehme Temperatur bekommt. Das gleiche gilt dann, wenn der Fußboden oder die Deckenwand eines Raums zum Kühlen verwendet wird. Um die nachfolgende Erläuterung zu vereinfachen, wird die Erfindung anhand einer Fußbodenheizung beschrieben. Sie ist aber in entsprechender Weise auch zur Raumkühlung über die Decke oder allgemein zur Temperierung eines Raums über von einem Wärmeträger durchströmte Leitungen in irgendeiner Wand des Raumes anwendbar. Allerdings ist es relativ kompliziert, in einer Wohnung oder einem Gebäude mehrere Heizkreise der Fußbodenheizung aufeinander abzustimmen. In einem kleinen Raum wird nur eine kurze Heizmittelleitung verlegt, weil diesem Raum relativ wenig Wärme zugeführt werden muss. In einem großen Raum, dem mehr Wärme zugeführt werden muss, ist eine entsprechend längere Heizmittelleitung erforderlich, damit alle Bereiche dieses Raumes entsprechend beheizt werden können. Dies führt dazu, dass die Heizmittelleitung im kleineren Raum einen geringeren Strömungswiderstand aufweist als die Heizmittelleitung im größeren Raum. Das Wär- meträgermedium, in der Regel heißes Wasser, teilt sich im Verhältnis der Strömungswiderstände auf, so dass wesentlich mehr Wärmeträgermedium durch die Heizmittelleitung des kleineren Raumes fließt, was genau das Gegenteil dessen ist, was man eigentlich erreichen möchte.
Der Installateur, der die Fußbodenheizung installiert, muss also vor oder spätestens bei der Inbetriebnahme bestimmte Drosselstellen einbauen und einstellen, die die Aufteilung des Wärmeträgermediums auf die einzelnen Räume im gewünschten Verhältnis sicherstellen. In der Regel verwendet der Installateur dazu einen Durchflussindikator in jedem Heizkreis, der den Durchfluss sichtbar macht. Der Installateur wird dann die Drosseln so einstellen, dass der Durchfluss in allen Heizkreisen gleich ist oder einer vorbestimmten Verteilung gehorcht. Diese Vorgehensweise ist aber relativ aufwendig und fehleranfällig. Bei einem abnehmenden Ausbildungsstandard des bei der Installation tätigen Personals kann man nicht mehr unbe- dingt davon ausgehen, dass die Einstellungen richtig vorgenommen werden.
Der Erfindung liegt die Aufgabe zugrunde, die Verteilung der Wärmeleistung auf einzelne Heizkreise zu vereinfachen.
Diese Aufgabe wird bei einem Abgleichsystem der eingangs genannten Art dadurch gelöst, dass an jedem Rücklauf ein Rücklauftemperaturregler mit einem die Temperatur im jeweiligen Rücklauf erfassenden Temperatursensor angeordnet ist und alle Rücklauftemperaturregler ein gleiches Temperatursteuerverhalten aufweisen.
Der Rücklauftemperaturregler sorgt dafür, dass das rückströmende Wärmeträgermedium auf einer vorbestimmten Temperatur gehalten wird. Die Erfindung wird im folgenden anhand von heißem Wasser als Beispiel für das Wärmeträgermedium beschrieben. Sie kann jedoch auch bei anderen Wärmeträgermedien und auch zur Kühlung oder allgemein zur Temperie- rung verwendet werden.
Das den Heizkreis durchströmende Wärmeträgermedium wird dem Heizkreis über den Vorlauf, der auch als Zufluss bezeichnet werden kann, zugeführt und über den Rücklauf, der auch als Abfluss bezeichnet werden kann, abgeführt. Der Rücklauftemperaturregler sorgt also dafür, dass das den Heizkreis verlassende Wasser immer eine vorbestimmte Temperatur hat. Die notwendige Temperaturinformation wird vom Temperatursensor bereitgestellt. Wenn das Wasser beim Verlassen des Heizkreises noch zu heiß ist, dann drosselt der Rücklauftemperaturregler stärker. Dementspre- chend wird der Rücklauftemperaturregler bei einem kleineren Raum, bei dem weniger Wärme vom Heizungswasser an den Raum abgegeben wird als bei einem größeren Raum, den Durchfluss stärker drosseln, weil das Heizungswasser nach dem Durchströmen der Heizungsleitung noch eine höhere Temperatur hat. Diese Drosselung erfolgt automatisch, so dass sämtliche Heizkreise, die an die gleiche Fußbodenheizungs-Anordnung angeschlossen sind, gegenseitig im Gleichgewicht gehalten werden können. Ein Eingriff eines Installateurs ist damit praktisch nicht mehr oder nur in einem vereinfachten Umfang erforderlich.
Die Rücklauftemperaturregler, also die Kombination aus Drosselorgane und Temperatursensor und gegebenenfalls Steuereinheit haben sozusagen die gleichen Kennlinien, also die gleiche Abhängigkeit zwischen der Temperatur und dem Durchlass. Im einfachsten Fall kann dies dadurch erreicht werden, dass die Rücklauftemperaturregler gleich aufgebaut sind, also gleiche Thermostatelemente und gleiche geometrische Abmessungen oder gleiche Temperaturfühler, gleiche Drosseleinrichtungen und gleiche Steuerungen aufweisen. In diesem Fall ist es besonders einfach, automatisch einen Ausgleich eines Heizkreises zu realisieren, also die Abstimmung von mehreren Heizkreisen, die in einer gemeinsamen Fußbodenheizungs-Anordnung verwendet werden. Eine derartige Anordnung ist dynamisch, d.h. sie passt sich automatisch wechselnden Anforderungen an.
Vorzugsweise ist ein Verteiler vorgesehen, in den jeder Rücklauf mit einem Anschluss mündet, wobei der Rücklauftemperaturregler dem An- schluss zugeordnet ist. Dies ist eine besonders einfache Realisierungsmöglichkeit. Man kann dann den Verteiler, der hier auch als "Rücklauf- Verteiler" bezeichnet werden kann, mehr oder weniger fertig vormontieren, also auch mit dem Rücklauftemperaturregler. Man muss diesen Rücklaufverteiler nur noch einbauen und die Rückläufe anschließen. Danach ist die Fußbodenheizungs-Anordnung nicht nur fertig montiert. Sie ist auch automatisch abgeglichen.
Bevorzugterweise ist der Temperatursensor als Thermostatelement ausgebildet. Ein Thermostatelement ermittelt nicht nur die Temperatur, sondern erzeugt auch eine Betätigungskraft für ein Drosselelement oder wirkt sogar selbst als Drosselelement, so dass der Temperatursensor und die Regeleinrichtung im Grunde miteinander gekoppelt sind. Dies vereinfacht den Aufbau der Anordnung. Der Rücklauftemperaturregler ist in diesem Fall als Rücklaufthermostat ausgebildet. Das Thermostatelement dient also nicht nur dazu, die Temperaturinformation zu gewinnen, sondern auch dazu, die Betätigungskraft für das Drosselorgan zu erzeugen. Das Thermostatelement ist also Temperatursensor und Antrieb für die Drosselstelle oder sogar das Drosselorgan. Ebenso ist es möglich, dass der Temperatursensor beispielsweise als elektrischer Temperatursensor ausgebil- det ist. Die vom Temperatursensor ausgegebenen Daten können dann beispielsweise durch eine elektronische Steuerung verarbeitet werden. Die elektronische Steuerung kann dann das entsprechende Drosselorgan (Ventilelement) des Rücklauftemperaturreglers entsprechend öffnen bzw. 5 schließen. Dazu kann ein Aktuatorelement verwendet werden, welches beispielsweise als Bimetalleinrichtung, als elektrischer Motor, als Schrittmotor usw. ausgebildet ist.
Vorzugsweise weist der Rücklauftemperaturregler eine Warmwasserdros-0 selstelle und/oder eine Kaltwasserdrosselstelle auf, wobei die Warmwasserdrosselstelle einen ersten Ventilsitz aufweist, der mit einem ersten vom Thermostatelement betätigten Ventilelement zusammenwirkt, und die Kaltwasserstelle weist einen zweiten Ventilsitz auf, der mit einem zweiten von einem Aktuatorelement, insbesondere einem Thermostatelement be-5 tätigten Ventilelement zusammenwirkt. Man kann den Rücklauftemperaturregler nicht nur bei der Beheizung des Raumes verwenden, bei dem ein erhitztes Wärmeträgermedium, also beispielsweise heißes Wasser, durch die Heizmittelleitung geführt wird, sondern auch bei einer Kühlung des Raumes, bei der kaltes Wärmeträgermedium, also beispielsweise kaltes o Wasser, durch die Heizmittelleitung geleitet wird. Auch dann, wenn ein kaltes Wärmeträgermedium durch den Heizkreis geführt wird, entsteht das Problem, dass die einzelnen Heizkreise aufeinander abgestimmt werden müssen. Das Verhältnis, mit dem sich das Wärmeträgermedium auf die einzelnen Heizkreise aufteilt, richtet sich nach dem Verhältnis der Strö-5 mungswiderstände. Auch wenn es möglich ist, den Rücklauftemperaturregler so auszubilden, dass dieser lediglich eine Warmwasserdrosselstelle bzw. eine Kaltwasserdrosselstelle aufweist, ist es besonders vorteilhaft, wenn der Rücklauftemperaturregler sowohl eine Warmwasserdrosselstelle, als auch eine Kaltwasserdrosselstelle aufweist. Wenn man beim Rück- o lauftemperaturregler zwei unterschiedliche Drosselstellen vorsieht, nämlich einmal für warmes Wasser und einmal für kaltes Wasser (oder ein entsprechend anderes Wärmeträgermedium) dann kann man mit dem gleichen Rücklauftemperaturregler sowohl die Beheizung als auch die Kühlung des Raumes so steuern, dass im Grunde alle Räume die entsprechende Wärme- beziehungsweise Kältemenge erhalten.
5 Vorzugsweise sind beide Ventilelemente vom gleichen Aktuatorelement, insbesondere Thermostatelement betätigt. Damit wird der Aufbau relativ einfach. Das Thermostatelement dehnt sich bei einer Erwärmung aus und zieht sich bei einer Abkühlung zusammen. Beide Bewegungsrichtungen kann man dazu nutzen, dass die einzelnen Drosselstellen mehr oder we-0 niger stark gedrosselt werden. Wenn die Warmwasserdrosselstelle stärker gedrosselt wird, dann öffnet die Kaltwasserdrosselstelle und umgekehrt. Ab einer gewissen Öffnung spielt die Drosselung durch die geöffnete Drosselstelle dann keine größere Rolle mehr, so dass dann ausschließlich die Drosselstelle bestimmend für den Durchfluss ist, die in Schließrichtung5 beaufschlagt ist.
Vorzugsweise ist mindestens ein Ventilelement durch das jeweils zugeordnete Aktuatorelement, insbesondere Thermostatelement gebildet. Man benötigt also keine zusätzlichen Bauelemente. Das Ventilelement muss o bei einer Drosselung nicht am Ventilsitz anliegen, sondern es reicht aus, wenn ein Spalt, der zwischen dem Ventilelement und dem Ventilsitz gebildet ist, in seiner Größe veränderbar ist. Dementsprechend reicht das Thermostatelement als Ventilelement ohne weiteres aus.
5 Vorzugsweise weist das Aktuatorelement, insbesondere das Thermostatelement eine Durchmesservergrößerung auf, die das zweite Ventilelement bildet. Man kann also für das erhitzte Wärmeträgermedium und für das gekühlte Wärmeträgermedium unterschiedliche Spaltgrößen verwenden. Für das gekühlte Wärmeträgermedium kann der Durchtrittsquerschnitt o größer gehalten werden. Vorzugsweise ist der Rücklauftemperaturregler innerhalb einer mit dem Anschluss verbundenen Leitung angeordnet. Damit bleibt die Baugröße des Verteilers klein. Größere Bauteile, die nach außen vorstehen, können vermieden werden. Insbesondere kann der Rücklauftemperaturregler in 5 den Anschluss integriert werden.
Vorzugsweise weist das mindestens eine Aktuatorelement, insbesondere das mindestens eine Thermostatelement eine in Strömungsrichtung veränderbare Länge auf. Auch damit wird die Baugröße des Verteilers klein0 gehalten. Das Thermostatelement verändert seine Länge praktisch nur innerhalb des Rücklaufs, eines diesem zugeordneten Anschlusses oder einer damit verbundenen Leitung. Es ändert seine Ausdehnung aber nicht so, dass diese Änderung nach außen spürbar wäre und somit eine vergrößerte Baugröße erfordert. 5
Vorzugsweise ist eine Trenneinrichtung vorgesehen, die das Aktuatorelement, insbesondere das Thermostatelement vom Wärmeträgermedium in eine Sammelleitung des Verteilers trennt, von der die Anschlüsse abzweigen. Damit wird das Thermostatelement ausschließlich von dem Wärme- o trägermedium thermisch beaufschlagt, das durch den Rücklauf aus dem einzelnen Heizkreis zurückfließt. Damit lässt sich der Durchfluss durch diesen Heizkreislauf genau steuern. Eine Vermischung mit einem Wärmeträgermedium aus einem anderen Heizkreislauf wird durch das Trennelement vermieden, so dass klare Verhältnisse eingestellt werden können.5
Hierbei ist bevorzugt, dass eine bewegliche Ventilsitzeinrichtung, insbesondere die Trenneinrichtung den ersten Ventilsitz bildet. Mit einer derartigen beweglichen Ventilsitzeinrichtung ist es möglich, das Ventil quasi von zwei Seiten aus zu steuern. Denn schlussendlich kommt es beim Ventil o auf die relative Lage zwischen Ventilsitz und Ventilstift an. Wenn insbesondere die Trenneinrichtung den ersten Ventilsitz bildet, sind weitere Bauteile nicht erforderlich. Vorzugsweise ist die bewegliche Ventilsitzeinrichtung, insbesondere die Trenneinrichtung von außen in Richtung der Längenänderung des Aktua- torelements, insbesondere des Thermostatelements verlagerbar. Damit lässt sich eine gewisse Voreinstellung für die Warmwasserdrosselstelle bewirken. Wenn der Ventilsitz, der an der Trenneinrichtung angeordnet ist, näher an das Thermostatelement herangerückt wird, dann schließt die Warmwasserdrosselstelle früher. Umgekehrt schließt sie später, wenn die Trenneinrichtung vom Thermostatelement entfernt wird.
Vorzugsweise bildet die bewegliche Ventilsitzeinrichtung, insbesondere die Trenneinrichtung auf der dem ersten bzw. dem zweiten Ventilsitz gegenüberliegenden Seite einen dritten Ventilsitz, der mit einem dritten Ventilelement zusammenwirkt, das von außen betätigbar ist. Das dritte Ventil- element kann dann verwendet werden, um Einfluss auf den Durchfluss durch den jeweiligen Heizkreis zu nehmen, wobei der Heizkreis dann beispielsweise in Abhängigkeit von der in dem entsprechenden Raum herrschenden Temperatur gesteuert werden kann. Das dritte Ventilelement kann beispielsweise durch einen Thermostataufsatz gesteuert werden, der über einen Kapillarleitung mit einem Wärmefühler in dem entsprechenden
Raum verbunden ist. Es ist auch möglich, das dritte Ventilelement durch einen motorischen Antrieb zu verlagern, der in Abhängigkeit von einer Raumtemperatur gesteuert wird. Es ist möglich, dass die vorgeschlagene, von außen erfolgende Betätigung mit einem reinen Warmwasserrücklauf- temperaturregier, einem reinen Kaltwasserrücklauftemperaturregler bzw. einer Kombination aus Warmwasser- und Kaltwasserrücklauftemperaturregler realisiert wird. Demzufolge sind insbesondere Paarungen wie ein erster und ein dritter Ventilsitz (ohne dass ein zweiter Ventilsitz vorliegen muss) bzw. ein zweiter und ein dritter Ventilsitz (ohne dass ein erster Ven- tilsitz vorliegen muss) möglich. Natürlich ist auch eine Kombination aus erstem, zweitem und drittem Ventilsitz möglich. Vorzugsweise ist das dritte Ventilelement in einem Einsatz gelagert, an dem die bewegliche Ventilsitzeinrichtung, insbesondere die Trenneinrichtung befestigt ist. Dies vereinfacht die Montage des Verteilers. Man muss lediglich den Einsatz in das Gehäuse einschrauben und hat dann prak- tisch automatisch die Trenneinrichtung an der richtigen Stelle platziert.
Vorzugsweise ist der Einsatz im Gehäuse parallel zur Richtung der Längenänderung des dem ersten bzw. dem zweiten Ventilelement zugeordneten Aktuatorelements, insbesondere Thermostatelements verlagerbar. Man kann den Einsatz dann noch verwenden, um die Trenneinrichtung und damit den ersten Ventilsitz richtig zu positionieren.
Vorzugsweise ist das mindestens eine Thermostatelement als Dehnstoffelement mit Feststoff-Füllung ausgebildet. Ein derartiges Dehnelement hat zwar nur einen relativ geringen Hub. Dafür ist dieser Hub aber im wesentlichen unabhängig von den herrschenden Drücken.
Auch ist es von Vorteil, wenn jedes Aktuatorelement, insbesondere jedes Thermostatelement eine Rückstelleinrichtung aufweist. Die Rückstellein- richtung kann beispielsweise durch eine Druckfeder gebildet sein. Man stellt damit sicher, dass das Thermostatelement immer seine in Abhängigkeit von der Temperatur kleinste Länge aufweist.
Vorzugsweise weist das Aktuatorelement, insbesondere das Thermostat- element eine Dichtung auf, die einen Spalt zwischen zwei gegeneinander bewegbaren Teilen abdichtet, wobei die Dichtung als Rückstellfeder ausgebildet ist. Damit ist man bei der Verwendung unterschiedlicher Thermostatelemente freier. Man kann beispielsweise auch eine Wachspatrone oder einen Wachsthermostaten verwenden, die an und für sich nicht in- nerhalb eines flüssigen Wärmeträgermediums, insbesondere nicht innerhalb von Wasser, eingesetzt werden sollten. Bei einer derartigen Wachspatrone wird ein Stößel oder Fortsatz durch eine in einem Gehäuse ange- ordnete Dehnstoff-Füllung nach außen verdrängt. Dementsprechend bewegt sich der Stößel gegenüber dem Gehäuse. Zwischen dem Stößel und dem Gehäuse muss dabei ein kleiner Spalt vorhanden sein, durch den im ungünstigen Fall Wärmeträgermedium eindringen könnte. Dieses Eindrin- gen wird durch die Dichtung zuverlässig verhindert. Man nutzt die Dichtung aber gleichzeitig auch als Rückstellfeder aus, so dass bei einem Absinken der Temperatur der Stößel in das Gehäuse zurückgedrückt wird.
In einer alternativen Ausgestaltung kann vorgesehen sein, dass der Rück- lauftemperaturregler als elektrisch arbeitende Regelvorrichtung ausgebildet ist. In diesem Fall meldet der Temperatursensor die Temperatur im Rücklauf an einen Regler, der seinerseits eine verstellbare Drosseleinrichtung, beispielsweise ein Ventil, verstellt. Die Drosseleinrichtung, der Temperatursensor und die Regeleinrichtung bilden dann einen geschlossenen Regelkreis, mit dem es ebenfalls möglich ist, die Temperatur im Rücklauf konstant zu halten.
Hierbei ist es bevorzugt, dass die Dichtung einen gewellten Mantel aufweist. Damit erhöht man die mögliche Bewegungslänge des Stößels ge- genüber dem Gehäuse. Für das Rückstellen des Stößels in das Gehäuse ist normalerweise keine größere Kraft erforderlich. Ein gewellter Mantel erlaubt dabei nicht nur eine große Bewegungslänge des Stößels, sondern bringt auch eine ausreichende Rückstellkraft auf.
Die Erfindung wird im folgenden anhand eines bevorzugten Ausführungsbeispiels in Verbindung mit der Zeichnung beschrieben. Hierin zeigen:
Fig. 1 eine schematische Darstellung einer Fußbodenheizungs-
Anordnung,
Fig. 2 einen schematischen Schnitt durch einen Rücklaufthermostaten, Fig. 3 einen schematischen Schnitt durch eine abgewandelte Ausführungsform eines Rücklaufthermostaten,
Fig. 4 eine abgewandelte Ausführung entsprechend Fig. 1 und
Fig. 5 eine abgewandelte Ausführung entsprechend Fig. 2.
Fig. 1 zeigt eine Fußbodenheizungs-Anordnung 1 für eine Wohnung mit mehreren beheizten Räumen 2, 3, 4 und einem Technikraum 5. In jedem beheizten Raum 2-4 ist eine Heizmittelleitung 6-8 im Fußboden verlegt. Diese Heizmittelleitungen 6-8 sind hier nur schematisch dargestellt. Üblicherweise werden sie in Form einer doppelten Spirale im Fußboden verlegt, wobei immer ein Abschnitt, der von einem wärmeren Wärmeträger- medium und ein Abschnitt, der von einem kälteren Wärmeträgermedium durchflössen ist, benachbart angeordnet sind.
In entsprechenderweise kann man durch die Heizmittelleitungen 6-8 auch ein kälteres Medium leiten, um den Raum oder die Räume zu kühlen. Wenn die Kühl-Funktion vorherrschen soll, ist es zweckmäßig, die Heizmittelleitungen in den Decken der Räume zu verlegen.
Die Versorgung der einzelnen Heizmittelleitungen 6-8 erfolgt über einen Eingangsverteiler 9, der mit einem Zuflusssteuerventil 10 versehen ist. Das von den einzelnen Heizmittelleitungen 6-8 zurückströmende Wärmeträgermedium gelangt zu einem Ausgangsverteiler 11. Ein Zufluss 12 zum Eingangsverteiler 9 und ein Abfluss 13 vom Ausgangsverteiler 11 sind hier lediglich schematisch durch Pfeile dargestellt.
Jeder Raum 2-4 weist einen Temperaturfühler 14-16 auf. Die Temperaturfühler 14-16 sind mit einer gemeinsamen Steuereinrichtung 17 verbunden. Diese Verbindung ist hier durch gestrichelte Linien dargestellt. Sie muss nicht mechanisch vorhanden sein. Für die Verbindung zwischen den Temperaturfühler 14-16 und der Steuereinrichtung 17 kann man auch eine leitungslose Übertragungsstrecke verwenden, beispielsweise Funk, Infrarot, Ultraschall oder dergleichen.
Die Steuereinrichtung 17 steuert für jede Heizmittelleitung 6-8 einen Antrieb 18-20 eines Ventils, das in Fig. 2 näher dargestellt ist.
Jede Heizmittelleitung 6-8, d.h. jeder Heizkreis eines jeden beheizten Raumes 2-4 ist über einen Rücklauf 21-23 mit dem Ausgangsverteiler 11 verbunden. Hierbei weist der Ausgangsverteiler 11 eine der Anzahl von Heizkreisen oder Heizmittelleitungen 6-8 entsprechende Anzahl von Anschlüssen 24-26 auf, wobei an jedem Anschluss ein Rücklaufthermostat 27-29 angeordnet ist.
Ein derartiger Rücklaufthermostat 27 ist in Fig. 2 schematisch dargestellt. Die anderen Rücklaufthermostate 28, 29 sind entsprechend aufgebaut.
Ein Gehäuse 30 des Verteilers 11 ist mit einer Mehrzahl von Anschlüssen 24-26 versehen, von denen in Fig. 2 nur der Anschluss 24 dargestellt ist.
An den Anschluss 24 schließt sich ein rohrförmiger Stutzen 31 des Rücklaufthermostaten 27 an. An den Stutzen 31 ist der Rücklauf 23 der Heizmittelleitung 8 angeschlossen. Durch einen Pfeil 32 ist die Strömungsrichtung durch den Rücklauf 23 dargestellt.
Der Stutzen 31 ist durch eine Trenneinrichtung 33 von einer Sammelleitung 34 getrennt, die im Ausgangsverteiler 11 ausgebildet ist. In diese Sammelleitung 34 münden alle Anschlüsse 24-26.
Die Trenneinrichtung 33 ist durch eine hohlzylindrische Hülse gebildet.
Diese Hülse ist mit einer Dichtung 35 gegenüber dem Anschluss 24 abgedichtet. Damit sorgt die Trenneinrichtung 33 dafür, dass Wärmeträgerme- dium 34 in dem Ausgangsverteiler 11 sich nicht mit Wärmeträgermedium im Stutzen 31 vermischen kann, so dass das Wärmeträgermedium innerhalb des Stutzens 31 immer nur die Temperatur aufweist, die das vom Raum 4 zurückfließende Wärmeträgermedium hat.
Im Stutzen 31 ist ein Thermostatelement 36 angeordnet, das im vorliegenden Ausführungsbeispiel als Wachspatrone ausgebildet ist. Anstelle von Wachs kann natürlich auch ein anderer Dehnstoff verwendet werden. Bevorzugt ist aber ein Feststoff als Dehnstoff, der ähnliche Eigenschaften hat wie Wachs.
Das Thermostatelement 36 weist einen Fortsatz 37 auf, der in Abhängigkeit von der herrschenden Temperatur mehr oder weniger weit aus dem Thermostatelement 36 herausgedrückt wird. Damit der Fortsatz 37 immer, soweit es die Temperatur zulässt, in das Thermostatelement 36 hineingedrückt wird, ist eine Rückstellfeder 38 vorgesehen.
Der Fortsatz 37 stützt sich an einem Widerlager 39 ab, das im Stutzen 31 ausgebildet ist.
Die Trenneinrichtung 33 bildet an ihrer dem Thermostatelement 36 zugewandten Stirnseite einen ersten Ventilsitz 40, mit dem das Thermostatelement 36 zusammenwirkt. Man kann daher das vordere Ende 41 des Thermostatelements 36 als erstes Ventilelement ansehen, das mit dem ersten Ventilsitz 40 zusammenwirkt. Das erste Ventilelement 41 bildet mit dem ersten Ventilsitz 40 eine Drosselstelle, die den Durchfluss durch den Rücklaufthermostaten 27 bestimmt. Je höher die Temperatur des durch den Rücklauf 23 zurückströmenden Wärmeträgermediums ist, desto mehr verlängert sich das Thermostatelement 36 und desto stärker verringert sich ein Spalt 42 zwischen dem Thermostatelement 36 und dem ersten Ventilsitz 40, so dass das Wärmeträgermedium stärker gedrosselt wird. In dem Bereich, wo das Widerlager 39 angeordnet ist, weist der Stutzen 31 eine Verringerung seines Innendurchmessers auf. Am Übergang vom verringerten Durchmesser zum größeren Durchmesser ist ein zweiter Ventilsitz 43 angeordnet, mit dem ein Abschnitt 44 des Thermostatelements 36 zusammenwirkt, der einen vergrößerten Durchmesser aufweist. Auf diesen Abschnitt 44 wirkt auch die Rückstellfeder 38, die sich im übrigen am Anschluss 24 abstützt. Der Abschnitt 44 bildet ein zweites Ventilelement, das mit dem zweiten Ventilsitz 43 zusammenwirkt. Der zweite Ventilsitz und das zweite Ventilelement bilden eine Drosselstelle für ein ge- kühltes Wärmeträgermedium, das zum Kühlen des Raumes 2-4 verwendet wird, indem es die Heizmittelleitung 6-8 durchströmt.
Wenn das Wärmeträgermedium kälter ist, dann verkürzt das Thermostatelement 36 seine Länge. Der Fortsatz 37 wird weiter in das Thermostat- element 36 eingefahren, so dass sich der Abschnitt 44 des Thermostatelements 36 stärker an den zweiten Ventilsitz 43 annähert. Damit wird das gekühlte Wärmeträgermedium so lange gedrosselt, bis es genügend Wärme aus dem jeweils gekühlten Raum 2-4 aufgenommen hat.
Es kann allerdings auch günstig sein, die Steuerung für die obere Rücklauftemperatur (für eine Beheizung des Raumes 2-4) und die Steuerung für die untere Rücklauftemperatur (für eine Kühlung des Raumes 2-4) durch voneinander getrennte Thermostatelemente durchführen zu lassen. Trotz der Verwendung von zwei Thermostatelementen kann die Konstruk- tion dann kostengünstiger sein, weil man dann jedes Thermostatelement auf die jeweilige Temperatur abstimmen kann. Auch ist vielfach zu beobachten, dass das Temperatur/Längen-Verhältnis eines Thermostatelements nicht linear ist. Durch die Verwendung von zwei Thermostatelementen ist es auch möglich, die maximale Betätigungslänge eines Thermo- statelements kürzer zu halten. Weiterhin ist es möglich, den in Fig. 2 dargestellten Rücklaufthermostat 27 ohne den zweiten Ventilsitz 43 auszubilden. Es liegt dann lediglich ein erster Ventilsitz 40 sowie ein drittes Ventilelement 46 vor. Eine derartige Ausführung ist insbesondere für reine Heizungsanlagen vorteilhaft. Derartige reine Heizungsanlagen sind in vielen Ländern der gemäßigten Breiten und in kälteren Gebieten nach wie vor die Regel.
Der zweite Ventilsitz 43 kann bei dem in Fig. 2 dargestellten Rücklaufthermostat 27 beispielsweise dadurch vermieden werden, dass die Verrin- gerung des Innendurchmessers des Stutzens 31 in einem Bereich erfolgt, der weiter in Richtung zum Rücklauf 23 hin versetzt liegt. Dies ist beim in Fig. 5 dargestellten Ventil der Fall.
Gegebenenfalls kann auch der Innendurchmesser des Stutzens 31 durch- gängig konstant gehalten werden. Möglich ist es auch, den Abschnitt 44 verkleinert auszubilden oder fortzulassen. Die Rückstellfeder 38 muss sich dann natürlich an anderen Bereichen des Thermostatelements 36 abstützen. Denkbar wäre es beispielsweise, entsprechende Aufnahmenuten oder Laschen vorzusehen. Auch ist es möglich, den Abschnitt 44 nicht durchgängig radial umlaufend auszubilden, sondern lediglich auf einzelne, kleinere radiale Abschnitte zu beschränken (beispiels-weise zwei, drei oder vier Abschnitte mit einer radialen Länge von jeweils 5°).
Derartige Ausbildungen können sich als vorteilhaft erweisen, wenn bei- spielsweise ein stark abgekühlter Raum erstmalig wieder beheizt werden soll. Bei einer Bauausführung mit einem zweiten Ventilsitz 43 könnte das Rücklaufthermostat ansonsten aufgrund der niedrigen Temperatur des im Rücklauf 23 zurückfließenden Wassers die Kaltwasserdrosselstelle 43 schließen. Dadurch würde sich der erste Aufheizvorgang unnötig verlän- gern. Die Trenneinrichtung 33 bildet auf ihrer dem ersten Ventilsitz 40 abgewandten Seite einen dritten Ventilsitz 45, mit dem ein drittes Ventilelement 46 zusammenwirkt, das von dem Ventilantrieb 18 betätigbar ist (wobei es möglich ist, dass kein zweiter Ventilsitz 43 vorgesehen ist). DerVentilan- trieb 18 wirkt dabei auf einen Stift 47, der durch eine Stopfbuchse 48 geführt ist und seinerseits einen Stößel 49 beaufschlagt, an dem das dritte Ventilelement 46 befestigt ist. Der Stößel 49 wird durch eine Feder 50 in Öffnungsrichtung beaufschlagt.
Der Ventilantrieb 18 wird durch die Steuereinrichtung 17 in Abhängigkeit von einer Temperatur gesteuert, die mit Hilfe des Temperaturfühlers 16 ermittelt wird. Das durch das dritte Ventilelement 46 und den dritten Ventilsitz 45 gebildete Ventil bewirkt also eine thermostatische Steuerung der Raumtemperatur.
Der Stößel 49 ist in einem Einsatz 51 gelagert. An diesem Einsatz ist auch die Trenneinrichtung 33 befestigt. Der Einsatz 51 ist in das Gehäuse 30, genauer gesagt, einen Fortsatz 52 des Gehäuses 30, eingeschraubt. Durch Weiterhereinschrauben oder Weiterherausschrauben kann man die Position des Einsatzes 51 in Richtung eines Doppelpfeils 53 verlagern.
Durch diese Verlagerung wird dann auch der Einsatz 33 mehr an das Thermostatelement 36 angenähert oder weiter vom Thermostatelement 36 entfernt. Damit lässt sich beispielsweise eine gewisse Voreinstellung der Rücklauftemperatur vornehmen.
Anstelle eines mit den Rücklaufthermostaten 27-29 zusammengefassten Ventils für die Steuerung der Raumtemperatur kann man natürlich auch ein getrenntes Thermostatventil herkömmlicher Art verwenden.
Dadurch, dass das Thermostatelement 36 im Stutzen 31 angeordnet ist und sozusagen in Längsrichtung, also der Richtung seiner Längenände- rung, vom Wärmeträgermedium umströmt wird, ist ein zusätzlicher Bauraum für das Thermostatelement nicht erforderlich.
Mit einem Ausgangsverteiler 11, wie er in der Zeichnung dargestellt ist, lässt sich ein automatischer Abgleich zwischen verschiedenen Heizkreisen durchführen. Man kann durch die Verwendung der Rücklaufthermostaten 27-29 eine sehr bequeme Montage realisieren. Einstellarbeiten sind praktisch nicht erforderlich. Wenn alle Rücklaufthermostaten 27-29 gleich eingestellt sind, insbesondere eine gleiche Temperatur-Öffnungsgradkenn- linie aufweisen, dann kann man den Ausgangsverteiler 11 mehr oder weniger einbauen und dann vergessen. Natürlich kann durch Hineinschrauben oder Herausschrauben des Einsatzes 51 im Fortsatz 52 noch eine gewisse Feineinstellung vornehmen, wenn dies erforderlich ist. In den meisten Fällen wird dies jedoch nicht einmal erforderlich sein. Eine derar- tige Heizungsanordnung arbeitet auch unter wechselnden äußeren Bedingungen zuverlässig, d.h. sie passt den Abgleich der Heizkreise dynamisch an.
Fig. 3 zeigt eine abgewandelte Ausführungsform eines Rücklaufthermosta- ten 27. Gleiche Teile wie in den Fig. 1 und 2 sind mit den gleichen Bezugszeichen versehen.
Das Thermostatelement 36 ist als Wachspatrone ausgebildet, d.h. es weist ein Gehäuse 54 auf, aus dem ein auch als "Stößel" bezeichneter Fortsatz 37 herausragt. Mit steigender Temperatur wird der Fortsatz 37 weiter aus dem Gehäuse 54 herausgedrängt. Bei sinkender Temperatur, wenn der Dehnstoff im Inneren des Gehäuses 54 sein Volumen verkleinert, kann der Fortsatz 37 weiter in das Gehäuse 54 hineingeschoben werden.
Zwischen dem Gehäuse 54 und dem Fortsatz 37 ist ein Spalt vorhanden, der durch eine Dichtung 55 gegenüber dem Heizungswasser, das durch Pfeile 56 symbolisiert sein soll, abgedichtet ist. Die Dichtung 55 ist am Gehäuse 54 durch einen Klemmring 57 befestigt. Mit dem Fortsatz 37 ist sie über einen Käfig 58 verbunden, der zum Fortsatz 37 hin geschlossen ist. Durch die Dichtung 55 wird also ein Vordringen von Heizungswasser 5 56 in den Spalt zwischen dem Fortsatz 37 und dem Gehäuse 54 verhindert.
Gleichzeitig hat die Dichtung 55 noch eine zweite Aufgabe. Sie ist nämlich als Rückstellfeder ausgebildet, d.h. sie übt auf den Fortsatz 37 eine Zug-0 kraft aus, die in Richtung auf das Gehäuse 54 wirkt.
Die Dichtung 55 weist einen gewellten Mantel 59 auf, der beispielsweise aus einem Metall nach Art eines Wellrohrs oder auch aus einem Elastomer gebildet sein kann. Der Mantel 59 lässt aufgrund seiner Wellung einen5 relativ großen Hub des Fortsatzes 37 gegenüber dem Gehäuse 54 zu. Gleichzeitig übt die Dichtung 55 aber ausreichende Rückstellkräfte auf den Fortsatz 37 aus.
Die Fußbodenheizungs-Anordnung nach Fig. 1 weist Rücklaufthermosta- o ten 27-29 auf, die mit einem Thermostatelement 36 arbeiten. Das Thermostatelement 36 wirkt dabei gleichzeitig als Temperatursensor und als Verstelleinrichtung.
Fig. 4 zeigt eine abgewandelte Ausgestaltung, bei der die Rücklaufther-5 mostaten 27-29 elektrisch arbeiten. Hierzu ist in jeder Rücklaufleitung 21- 23 ein Temperatursensor 36a-36c angeordnet. Jeder Temperatursensor 36a-36c ermittelt die Temperatur im Rücklauf 21-23 und meldet sie an einen Regler 60a-60c weiter. Der Regler 60a-60c wiederum betätigt ein verstellbares Ventil 61a-61c, um die Menge des Wärmeträgermediums mehr o oder weniger stark zu drosseln. Diese Verstellung der Ventile 61 a-61 c wird so lange fortgesetzt, bis die Temperatur des den jeweiligen Rücklauf 21- 23 durchströmenden Wärmeträgermediums den gewünschten Wert erreicht hat.
In einer Abwandlung dieser Ausführungsform kann vorgesehen sein, dass die Temperatursensoren 36a-36c die in den Rücklaufleitungen 21-23 ermittelten Temperaturen an einen zentralen Regler, z.B. den Regler 17, melden, der dann wiederum die Ventile 61a-61c entsprechend verstellt. Die entsprechenden Informationen und Signale können leitungsgebunden oder leitungslos übertragen werden.

Claims

Patentansprüche
1. Abgleichsystem für eine Fußbodentemperierungs-Anordnung mit mindestens zwei Temperierungskreisen, von denen jeder eine in einem Fußboden oder in einer Deckenwand verlegte Wärmeträger- leitung mit einem Vorlauf und einem Rücklauf aufweist, und einem Abgleichsystem, dadurch gekennzeichnet, dass an jedem Rück- lauf (21-23) ein Rücklauftemperaturregler (27-29) mit einem die
Temperatur im jeweiligen Rücklauf (21-23) erfassenden Temperatursensor (36) angeordnet ist und alle Rücklauftemperaturregler (27-29) ein gleiches Temperatursteuerverhalten aufweisen.
2. System nach Anspruch 1 , dadurch gekennzeichnet, dass ein Verteiler vorgesehen ist, in den jeder Rücklauf mit einem Anschluss mündet, wobei der Rücklauftemperaturregler (27-29) dem Anschluss zugeordnet ist.
3. System nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Temperatursensor als Thermo- statelement (36) ausgebildet ist.
4. System nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Rücklauftemperaturregler (27-29) eine Warmwasser- drosselstelle (40-42) und/oder eine Kaltwasserdrosselstelle (41 , 44) aufweist, wobei die Warmwasserdrosselstelle (40-42) einen ersten Ventilsitz (40) aufweist, der mit einem ersten vom Thermostatelement (36) betätigten Ventilelement (41) zusammenwirkt, und die Kaltwasserstelle (41 , 44) einen zweiten Ventilsitz (43) aufweist, der mit einem zweiten von einem Aktua-torelement, insbesondere von einem Thermostatelement (36) betätigten Ventilelement (44) zusammenwirkt.
5. System nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass beide Ventilelemente (41 , 44) vom gleichen Aktuatorele- ment, insbesondere Thermo-statelement (36) betätigt sind.
6. System nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass mindestens ein Ventilelement (40, 44) durch das jeweils zugeordnete Aktuator-element, insbesondere Thermostatelement (36) gebildet ist.
7. System nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, dass das Aktuatorelement, insbesondere das Thermostatelement (36) eine Durchmesservergrößerung aufweist, die das zweite Ventilelement (44) bildet.
8. System nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Rücklauftemperaturregler (27-29) innerhalb einer mit dem Anschluss (24-26) verbundenen Leitung (31) angeordnet ist.
9. System nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das mindestens eine Aktuator-element, insbesondere das mindestens eine Thermo-statelement (36) eine in Strömungsrichtung veränderbare Länge aufweist.
10. System nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass eine Trenneinrichtung (33) vorgesehen ist, die das Aktuatorelement, insbesondere das Thermostatelement (36) vom Wärmeträgermedium in eine Sammelleitung (34) des Verteilers trennt, von der die Anschlüsse (24-26) abzweigen.
11. System nach Anspruch 10, dadurch gekennzeichnet, dass eine bewegliche Ventilsitzeinrichtung, insbesondere die Trenneinrichtung (33) den ersten Ventilsitz (40) bildet.
5 12. System nach einem der Ansprüche 1 bis 11 , dadurch gekennzeichnet, dass die bewegliche Ventilsitzeinrichtung, insbesondere die Trenneinrichtung (33) von außen in Richtung der Längenänderung des Aktuatorelements, insbesondere des Thermostatelements (36) verlagerbar ist. 0
13. System nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die bewegliche Ventilsitzeinrichtung, insbesondere die Trenneinrichtung (33) auf der dem ersten bzw. dem zweiten Ventilsitz (40) gegenüberliegenden Seite einen dritten Ventilsitz (45) bil-5 det, der mit einem dritten Ventilelement (46) zusammenwirkt, das von außen betätigbar ist.
14. System nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass das dritte Ventilelement in einem Einsatz (51) gelagert ist, 0 an dem die bewegliche Ventilsitzeinrichtung, insbesondere die
Trenneinrichtung (33) befestigt ist.
15. System nach Anspruch 14, dadurch gekennzeichnet, dass der Einsatz (51) im Gehäuse (52) parallel zur Richtung der Längenände-5 rung des dem ersten bzw. dem zweiten Ventilelement (41) zugeordneten Aktuatorelements, insbesondere Thermostatelements verlagerbar ist.
16. System nach einem der Ansprüche 1 bis 15, dadurch gekennzeich- o net, dass der mindestens eine Temperatursensor (36) als Dehnstoffelement mit Feststoff-Füllung ausgebildet ist.
17. System nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass jedes Aktuatorelement, insbesondere jedes Thermostatelement (36) eine Rückstelleinrichtung (38) aufweist.
18. System nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, dass das Aktuatorelement, insbesondere das Thermostatelement (36) eine Dichtung (55) aufweist, die einen Spalt zwischen zwei gegeneinander bewegbaren Teilen (54, 37) abdichtet, wobei die Dichtung (55) als Rückstellfeder ausgebildet ist.
19. System nach Anspruch 18, dadurch gekennzeichnet, dass die Dichtung (55) einen gewellten Mantel (59) aufweist.
20. System nach einem der Ansprüche 1 bis 19, dadurch gekennzeich- net, dass der Rücklauftemperaturregler (27-29) als elektrisch arbeitende Regel Vorrichtung ausgebildet ist.
PCT/DK2007/000478 2006-11-06 2007-11-05 ABGLEICHSYSTEM FÜR EINE FUßBODENTEMPERIERUNGS-ANORDNUNG WO2008055498A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP07817874.6A EP2087291B1 (de) 2006-11-06 2007-11-05 ABGLEICHSYSTEM FÜR EINE FUßBODENTEMPERIERUNGS-ANORDNUNG

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006052124.2 2006-11-06
DE102006052124A DE102006052124A1 (de) 2006-11-06 2006-11-06 Abgleichsystem für eine Fußbodentemperierungs-Anordnung

Publications (1)

Publication Number Publication Date
WO2008055498A1 true WO2008055498A1 (de) 2008-05-15

Family

ID=38922721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DK2007/000478 WO2008055498A1 (de) 2006-11-06 2007-11-05 ABGLEICHSYSTEM FÜR EINE FUßBODENTEMPERIERUNGS-ANORDNUNG

Country Status (3)

Country Link
EP (1) EP2087291B1 (de)
DE (1) DE102006052124A1 (de)
WO (1) WO2008055498A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2221627A1 (de) 2009-02-20 2010-08-25 IBBT vzw Verfahren und Anordnung zum Korrigieren einer Relaxationskarte für medizinische Bildgebungsanwendungen
DE102017115376A1 (de) 2017-07-10 2019-01-10 Rehau Ag + Co Verfahren zur Durchführung eines hydraulischen Abgleichs eines Heizungs- und/oder Kühlungssystems wie z. B. ein Gebäude

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0601812D0 (en) * 2006-01-30 2006-03-08 Polypipe Building Products Ltd Floor heating systems
FR2931226B1 (fr) * 2008-05-19 2013-08-16 Acome Soc Coop Production Procede et systeme de controle d'un circuit hydraulique a plusieurs boucles d'echange de chaleur
DE102009004319A1 (de) * 2009-01-10 2010-07-22 Henry Klein Verfahren, Computerprogramm und Regelgerät für einen temperaturbasierten hydraulischen Abgleich
FI121579B (fi) 2009-02-18 2011-01-14 Uponor Innovation Ab Lämmitys-/jäähdytysjärjestelmän ohjaus
FI121551B (fi) 2009-02-18 2010-12-31 Uponor Innovation Ab Pinnan alaisen lämmityksen/jäähdytyksen ohjaus
FI121552B (fi) 2009-02-18 2010-12-31 Uponor Innovation Ab Lämmitys-/-jäähdytysjärjestelmän ohjaus
IT1400007B1 (it) * 2010-04-16 2013-05-09 Bortolaso Apparato e metodo per il controllo degli impianti termici, in particolare per gli impianti radianti.
EP2557365B1 (de) 2011-08-09 2015-05-27 Danfoss A/S Fluidverteilungssteuersystem
DE202014010256U1 (de) 2013-03-05 2015-02-23 Oblamatik Ag System zum Temperieren von Bauteilen
CH707678A1 (de) * 2013-03-05 2014-09-15 Oblamatik Ag Verfahren und System zum Temperieren von Bauteilen.
CN104456700A (zh) * 2014-10-27 2015-03-25 珠海格力电器股份有限公司 供热装置及浴室的温控系统
DE202016004616U1 (de) * 2016-07-26 2017-10-27 Gebr. Kemper Gmbh + Co. Kg Metallwerke System zur flächenmäßigen Wärmeübertragung und Verteiler eines solchen Systems
EP3412978B1 (de) * 2017-06-09 2020-03-04 REHAU AG + Co Verfahren zur steuerung eines heiz- und/oder kühlsystems
DE102017123560A1 (de) 2017-10-10 2019-04-11 Eut Edelstahl Umformtechnik Gmbh Selbstregulierende Einstellvorrichtung für ein Durchflussregelventil, ein Temperierungssystem als auch eine Verteilervorrichtung mit derselben, sowie Verfahren hierzu

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19838511A1 (de) * 1997-09-03 1999-03-18 U S H Fittings & Kunststofftei Ventilgruppe und Rücklauftemperaturbegrenzer, insbesondere für Fußbodenheizungen
EP0903543A2 (de) * 1997-09-18 1999-03-24 Dumser Metallbau GmbH & Co. KG Verteilervorrichtung für einen mit einem flüssigen Medium betriebenen Kreislauf einer Wärme- oder Kälteversorgungsanlage
EP1640669A1 (de) * 2004-09-24 2006-03-29 Danfoss A/S Raumbeheizungseinrichtung
DE102005043255B3 (de) * 2005-09-09 2007-01-04 Simplex Armaturen + Fittings Gmbh & Co. Kg Ventilarmatur für Niedertemperaturheizungen mit einem Rücklauftemperaturbegrenzer

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3309532A1 (de) * 1983-03-17 1984-09-20 Diehl GmbH & Co, 8500 Nürnberg Thermostatventil
DE8902815U1 (de) * 1989-03-08 1989-04-27 Metallwerke Neheim Goeke & Co. Gmbh, 5760 Arnsberg, De
DE19911866B4 (de) * 1999-03-17 2018-10-18 Xylem Ip Holdings Llc Vorrichtung zum Abgleich von Heizkreisen in Großflächen-Heizungsanlagen
US6390381B1 (en) * 2000-03-20 2002-05-21 Oliver Peter Laing Control unit and process for adjusting the heating loops in large area heating systems and to control the adjusted heating loops
DE102004059767B3 (de) * 2004-12-11 2006-08-24 Danfoss A/S Rücklauftemperaturbegrenzer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19838511A1 (de) * 1997-09-03 1999-03-18 U S H Fittings & Kunststofftei Ventilgruppe und Rücklauftemperaturbegrenzer, insbesondere für Fußbodenheizungen
EP0903543A2 (de) * 1997-09-18 1999-03-24 Dumser Metallbau GmbH & Co. KG Verteilervorrichtung für einen mit einem flüssigen Medium betriebenen Kreislauf einer Wärme- oder Kälteversorgungsanlage
EP1640669A1 (de) * 2004-09-24 2006-03-29 Danfoss A/S Raumbeheizungseinrichtung
DE102005043255B3 (de) * 2005-09-09 2007-01-04 Simplex Armaturen + Fittings Gmbh & Co. Kg Ventilarmatur für Niedertemperaturheizungen mit einem Rücklauftemperaturbegrenzer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2221627A1 (de) 2009-02-20 2010-08-25 IBBT vzw Verfahren und Anordnung zum Korrigieren einer Relaxationskarte für medizinische Bildgebungsanwendungen
WO2010094655A1 (en) 2009-02-20 2010-08-26 Ibbt Vzw Method and assembly for correcting a relaxation map for medical imaging applications
US8655038B2 (en) 2009-02-20 2014-02-18 Iminds Vzw Method and assembly for correcting a relaxation map for medical imaging applications
DE102017115376A1 (de) 2017-07-10 2019-01-10 Rehau Ag + Co Verfahren zur Durchführung eines hydraulischen Abgleichs eines Heizungs- und/oder Kühlungssystems wie z. B. ein Gebäude

Also Published As

Publication number Publication date
DE102006052124A1 (de) 2008-05-15
EP2087291B1 (de) 2016-09-21
EP2087291A1 (de) 2009-08-12

Similar Documents

Publication Publication Date Title
EP2087291B1 (de) ABGLEICHSYSTEM FÜR EINE FUßBODENTEMPERIERUNGS-ANORDNUNG
DE102004017593B3 (de) Kühl- und/oder Heizvorrichtung
DE10312825B4 (de) Verfahren zum Einstellen mehrerer parallel geschalteter Wärmetauscher
DE10057361C2 (de) Verfahren zum Steuern einer Heizungsanlage und Heizungsanlage
EP2435887B1 (de) Verbesserte betätigung einer thermostatventil
DE102010010541A1 (de) Heizkörper und Stell- oder Ventileinrichtung zur Verwendung an einem Heizkörper
DE102007036139A1 (de) Ein- oder mehrreihiger Heizkörper mit zumindest zwei verschieden ausgelegten Abschnitten
DE102005001842B4 (de) Thermostataufsatz für ein Heizungs- oder Kälteventil
DE19650892C2 (de) Fußbodenheizung
EP2474789A1 (de) Heizkörper und Stell- oder Ventileinrichtung zur Verwendung an einem Heizkörper
EP1979796B1 (de) Ventilanordnung zum anschliessen eines wärmetauschers einer warmwasserentnahmevorrichtung an ein fernwärmenetz
DE19643902C2 (de) Ventileinrichtung sowie Heizkörper mit dieser
DE10303827A1 (de) Kühldeckenanordnung
EP1789747B1 (de) Wärmetauscher
DE10323525B3 (de) Heizungs-Ventileinheit
EP3098522B1 (de) Warmwasserzirkulationssystem mit einem sma gesteuerten ventil
EP0735450A2 (de) Thermostatventil für eine Fussbodenheizung
DE102007036143A1 (de) Ein- oder mehrreihiger Heizkörper mit zumindest zwei verschiedenen ausgelegten Abschnitten
DE19855926A1 (de) Rücklauf-Raumtemperatur Regelventil
DE102016010386A1 (de) Warmwasserversorgungssystem zum zentralen Versorgen eines Verbrauchernetzes
DE102007036142A1 (de) Ein- oder mehrreihiger Heizkörper mit zumindest zwei verschieden ausgelegten Abschnitten
EP1979686B1 (de) Ventilanordnung zum anschliessen eines wärmetauschers einer warmwasserentnahmevorrichtung an ein fernwärmenetz
DE10002787B4 (de) Heizsystem für einen Raum
DE3142549C2 (de) Beimischventil zum Anschluß von Hausanlagen oder sonstigen Verbrauchern an ein Fernheiznetz
DE102016202009B4 (de) Thermisches Drosselventil

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07817874

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2007817874

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007817874

Country of ref document: EP