WO2008050654A1 - Dispositif à cycle frigorifique et machine à fluide utilisée pour celui-ci - Google Patents

Dispositif à cycle frigorifique et machine à fluide utilisée pour celui-ci Download PDF

Info

Publication number
WO2008050654A1
WO2008050654A1 PCT/JP2007/070268 JP2007070268W WO2008050654A1 WO 2008050654 A1 WO2008050654 A1 WO 2008050654A1 JP 2007070268 W JP2007070268 W JP 2007070268W WO 2008050654 A1 WO2008050654 A1 WO 2008050654A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
refrigeration cycle
working chamber
piston
cycle apparatus
Prior art date
Application number
PCT/JP2007/070268
Other languages
English (en)
French (fr)
Inventor
Hiroshi Hasegawa
Masaru Matsui
Takeshi Ogata
Fumitoshi Nishiwaki
Hidetoshi Taguchi
Fuminori Sakima
Masanobu Wada
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Priority to US12/438,438 priority Critical patent/US8074471B2/en
Priority to CN200780031179.5A priority patent/CN101506597B/zh
Priority to EP07830002A priority patent/EP2077426A4/en
Priority to JP2008540954A priority patent/JP4261620B2/ja
Publication of WO2008050654A1 publication Critical patent/WO2008050654A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/08Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing
    • F01C1/082Details specially related to intermeshing engagement type machines or engines
    • F01C1/084Toothed wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/30Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F01C1/32Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F01C1/02 and relative reciprocation between the co-operating members
    • F01C1/322Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F01C1/02 and relative reciprocation between the co-operating members with vanes hinged to the outer member and reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/30Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F01C1/34Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members
    • F01C1/356Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F01C1/3562Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation
    • F01C1/3564Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C11/00Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type
    • F01C11/002Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type of similar working principle
    • F01C11/004Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type of similar working principle and of complementary function, e.g. internal combustion engine with supercharger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C11/00Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type
    • F01C11/006Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type of dissimilar working principle
    • F01C11/008Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type of dissimilar working principle and of complementary function, e.g. internal combustion engine with supercharger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C11/00Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations
    • F04C11/008Enclosed motor pump units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/06Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters

Definitions

  • the present invention relates to a refrigeration cycle apparatus and a fluid machine used therefor.
  • a refrigerant circuit of a refrigeration cycle apparatus has a configuration in which a compressor that compresses a refrigerant, a gas cooler that cools the refrigerant, an expansion valve that expands the refrigerant, and an evaporator that heats the refrigerant are sequentially connected. Yes.
  • the refrigerant drops in pressure from the high pressure to the low pressure in the expansion valve, and internal energy is released at that time.
  • the greater the pressure difference between the low-pressure side (evaporator side) and the high-pressure side (gas cooler side) of the refrigerant circuit the greater the internal energy that is released, thus reducing the energy efficiency of the refrigeration cycle.
  • Japanese Patent Application Laid-Open No. 2004-44569 proposes a technique for recovering energy by connecting a rotary shaft of a rotary expander to a rotary shaft of an electric motor for driving a compressor.
  • FIG. 26 is a configuration diagram of a conventional refrigeration cycle apparatus 501 that recovers energy by connecting a shaft 507 of an expander 504 to a rotating shaft of an electric motor 506 for driving the compressor 502.
  • the refrigeration cycle apparatus 501 includes a refrigerant circuit in which a gas cooler 503, an expander 504, an evaporator 505, and a compressor 502 are connected in order.
  • the expander 504 is a rotary or scroll expander having a shaft 507 as a rotation axis.
  • the shaft 507 is connected to an electric motor 506 that drives a compressor 502.
  • the rotational energy (power) of the shaft 507 is transmitted to the rotating shaft of the electric motor 506. For this reason, part of the internal energy released when the refrigerant drops in the expander 504 while expanding from high pressure to low pressure is converted into rotational energy of the shaft 507 and transmitted to the electric motor 506, where it is compressed. Used as part of power for driving the machine 502. Therefore, According to the refrigeration cycle apparatus 501, high energy efficiency can be realized.
  • JP-A-57-108555 discloses a technique for recovering energy from a refrigerant using a medium drive motor that does not have an inherent volume ratio (expansion ratio).
  • FIG. 30 is a diagram showing the configuration and operating principle of the medium drive motor disclosed in Japanese Patent Laid-Open No. 57-108555.
  • the medium drive motor 700 is composed of a cylinder 701, a rotor 702 (piston) that rotates in the cylinder 701, and a working chamber formed between the cylinder 701 and the rotor 702. And a vane 705 which is partitioned into a chamber 706b.
  • a suction port 703 is formed so that the refrigerant can be sucked into the suction side working chamber 706a, and a discharge port 704 is formed so that the refrigerant can be discharged from the discharge side working chamber 706b.
  • the suction port 703 and the discharge port 704 are provided with valves! /, N! /, But the shape of the rotor 702 has been devised so that refrigerant does not blow directly from the suction port 703 to the discharge port 704. Yes. Specifically, it has a partial force S on the outer peripheral surface of the rotor 702 and the same radius of curvature as the inner peripheral surface of the cylinder 701.
  • JP-A-2006-266171 A technique for recovering power from a refrigerant is also disclosed in JP-A-2006-266171.
  • Japanese Patent Application Laid-Open No. 2006-266171 proposes a technique for recovering power by connecting a rotary shaft of a sub-compressor provided on the suction side of a compressor and a rotary shaft of a rotary expander.
  • FIG. 27 is a configuration diagram of a power recovery type refrigeration cycle apparatus 601 using an expander-integrated compressor 608 described in Japanese Patent Application Laid-Open No. 2006-266171.
  • the refrigeration cycle apparatus 601 includes a refrigerant circuit in which a ⁇ IJ compressor 602, a main compressor 603, a gas cooler 604, an S tensioner 605, and an evaporator 606 are sequentially connected.
  • FIG. 28 is a cross-sectional view of the expander-integrated compressor 608.
  • the expander-integrated compressor 608 includes a sub-compressor 602 and an expander 605 that have a common rotating shaft 607. For this reason, the energy recovered by the expander 605 is supplied to the sub-compressor 602 via the rotating shaft 607 and used as the driving force of the sub-compressor 602. Therefore, according to the refrigeration cycle apparatus 601 shown in FIG. 27, high energy efficiency can be realized.
  • FIG. 29 is a cross-sectional view of the expander 605.
  • the expander 605 is a swing type in which a piston 61 la and a vane 61 lb are integrally formed. Vane 61 lb One 612 is attached.
  • a fine refrigerant path 613 communicating with the working chamber 614 is formed.
  • the vane 611b reciprocates and the shear 612 swings.
  • the refrigerant path 613 is opened and closed by the reciprocating motion of the vane 61 lb and the swinging motion of the shoe 612, and the refrigerant suction timing is controlled.
  • An expander disclosed in Japanese Patent Laid-Open Nos. 2004-44569 and 2006-266171 has a specific volume ratio (ratio between suction volume and discharge volume). For this reason, in the expander disclosed in JP-A-2004-44569 and JP-A-2006-266171, the discharge pressure is automatically determined from the suction pressure and the volume ratio of the expander. However, the high pressure and low pressure of the force refrigeration cycle change from time to time depending on the operating conditions. For this reason, there are cases where the discharge pressure of the expander (pressure of the refrigerant discharged from the expander) does not match the low pressure of the refrigeration cycle. For example, when the discharge pressure of the expander is lower than the low pressure of the refrigeration cycle, there is a problem that overexpansion loss occurs, and the recovery efficiency of the internal energy of the refrigerant in the expander decreases.
  • the expander 605 shown in FIG. 28 and FIG. 29 has a complicated configuration, and there are problems in cost and productivity. According to the expander 605, it is necessary to form a fine refrigerant path 613 in the swing 612 that swings. For this reason, when the expander 605 is used, the configuration of the refrigeration cycle apparatus becomes complicated, which tends to increase costs and decrease productivity.
  • medium drive motor 700 shown in FIG. 30 does not have a specific volume ratio (volume ratio is 1), the efficiency of recovering energy from the refrigerant is not easily influenced by the pressure state of the refrigeration cycle. In addition, since the structure is simple, it is difficult to introduce cost and productivity problems.
  • this medium drive motor 700 as shown in stroke 4 and stroke 5 in FIG. 30, the state in which only one working chamber 706 is formed in the cylinder 701 is the rotation angle of the rotor 702. In addition, as can be seen from step 5, the period in which both the suction port 703 and the discharge port 704 are closed by the rotor 702 continues for a relatively long time.
  • the medium drive motor 700 is incorporated in the refrigerant circuit as power recovery means, the pulsation of the refrigerant in the refrigerant circuit becomes extremely large, causing noise and vibration. In addition, poor piston lubrication occurs. Cheap.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a refrigeration cycle apparatus having a simple configuration while being operable with high energy efficiency. .
  • a refrigeration cycle apparatus including a refrigerant circuit through which refrigerant circulates
  • Power recovery means for performing a suction process for sucking the refrigerant from the radiator and a discharge process for discharging the sucked refrigerant substantially continuously;
  • a refrigeration cycle apparatus having
  • the invention provides:
  • a fluid machine used in a refrigeration cycle apparatus including a refrigerant circuit having a compressor that compresses a refrigerant, a radiator that radiates heat of the refrigerant compressed by the compressor, and an evaporator that evaporates the refrigerant.
  • a fluid machine provided with power recovery means that performs a process of sucking refrigerant from a radiator and a process of discharging the sucked refrigerant to an evaporator side in a substantially continuous manner.
  • FIG. 1 is a configuration diagram of a refrigeration cycle apparatus according to a first embodiment.
  • FIG. 2 is a cross-sectional view showing configurations of a compressor, an electric motor, and a fluid pressure motor in the first embodiment.
  • FIG. 12 is a cross-sectional view showing a configuration of a fluid pressure motor according to Modification 2
  • FIG. 15 is a cross-sectional view of the fluid machine shown in FIG.
  • FIG. 27 Configuration diagram of a power recovery type refrigeration cyclone system using the conventional expander-integrated compressor shown in FIG.
  • FIG. 28 A longitudinal sectional view of a conventional expander-integrated compressor
  • a fluid pressure motor which is normally used only for incompressible media, is applied to a refrigeration cycle apparatus using a compressible medium as a power recovery means because of its characteristics. It is intended to effectively suppress the expansion loss and improve the energy efficiency of the operation of the refrigeration cycle equipment.
  • the “fluid pressure motor” refers to the pressure of the refrigerant on the suction side (pressure of the refrigerant to be sucked) and the pressure of the refrigerant on the discharge side (in the pipe connected to the discharge port of the motor). This is a motor that rotates due to the pressure difference between the refrigerant and the pressure of the refrigerant and starts the discharge stroke without changing the volume of the drawn refrigerant.
  • the fluid pressure motor refers to a motor that does not change the volume of the refrigerant until the discharge stroke of the sucked refrigerant is started.
  • the discharge stroke is started, in other words, after the inside of the fluid pressure motor communicates with the low pressure discharge path, the inside of the fluid pressure motor is decompressed and the refrigerant expands.
  • the technology disclosed in this specification is particularly effective for a refrigeration cycle apparatus that uses a refrigerant that is in a supercritical state on the high-pressure side, such as carbon dioxide.
  • a refrigerant that is in a supercritical state on the high-pressure side such as carbon dioxide.
  • the expansion coefficient of the refrigerant which is expressed by the ratio between the refrigerant density at the radiator outlet and the refrigerant density at the evaporator inlet, is very small.
  • the energy released by this type of refrigerant during expansion is dominated by the internal energy released based on the pressure drop, and the internal energy released based on the increase in specific volume is small. Is smaller than the overexpansion loss.
  • the fluid pressure motor applied as the power recovery means performs the suction stroke for sucking the refrigerant and the discharge stroke for discharging the sucked refrigerant substantially continuously. It is. Specifically, there is substantially no period during which the refrigerant suction path and the discharge path are simultaneously closed, that is, at least one of the refrigerant suction path and the discharge path is open over substantially the entire period. It is configured as follows.
  • the refrigerant circuit is configured such that at least a part of the refrigerant discharged from the fluid pressure motor as described below is in the gas phase.
  • a part of the discharged refrigerant becomes a gas phase and acquires compressibility, so that the water hammer caused by fluctuations in the discharge flow rate caused by intermittent refrigerant discharge is reduced.
  • the fluid pressure motor can be operated more smoothly and vibration and noise can be further reduced.
  • FIG. 1 is a configuration diagram of a refrigeration cycle apparatus 1 according to the first embodiment.
  • the refrigeration cycle apparatus 1 includes a refrigerant circuit in which a compressor 2, a first heat exchanger 3, a fluid pressure motor 4, and a second heat exchanger 5 are sequentially connected.
  • the refrigerant circuit includes a refrigerant (specifically, carbon dioxide) in a supercritical state on the high pressure side (portion from the compressor 2 through the first heat exchanger 3 to the fluid pressure motor 4). ) Will be described.
  • the refrigerant is not limited to one that is in a supercritical state on the high pressure side, but is a refrigerant that does not enter the supercritical state on the high pressure side (for example, a fluorocarbon refrigerant). Etc.).
  • the compressor 2 is driven by the electric motor 6 and compresses the circulating refrigerant to high temperature and high pressure.
  • the first heat exchanger 3 exchanges heat between the refrigerant and the fluid to be heated, thereby cooling the refrigerant compressed to a high temperature and a high pressure by the compressor 2 to a low temperature and a high pressure.
  • the fluid pressure motor 4 sucks the refrigerant that has been reduced in temperature and pressure by the first heat exchanger 3 and discharges it to the second heat exchanger 5 side. In the fluid pressure motor 4, the volume of the sucked refrigerant does not change until the discharge stroke starts.
  • the second heat exchanger 5 heats the low-pressure refrigerant discharged by the fluid pressure motor 4 by exchanging heat between the refrigerant and the fluid to be cooled. Then, the refrigerant heated by the second heat exchanger 5 is sucked into the compressor 2 and is compressed by the compressor 2 to become high temperature and high pressure again.
  • the refrigeration cycle apparatus 1 cools (cools) or heats (heats) the outside air or the like by repeating such refrigerant circulation (refrigeration cycle).
  • FIG. 2 is a cross-sectional view (longitudinal cross-sectional view) showing the configuration of the compressor 2, the electric motor 6, and the fluid pressure motor 4 in the first embodiment.
  • 3 is a cross-sectional view (cross-sectional view) in FIG. 4A is a cross-sectional view (cross-sectional view) taken along the line IV-IV in FIG.
  • FIG. 5 is an operation principle diagram of the fluid pressure motor 4 and shows the state of the fluid pressure motor 4 every 90 ° with respect to the rotation angle ⁇ of the shaft 51.
  • the compressor 2, the electric motor 6, and the fluid pressure motor 4 are integrally housed in the hermetic container 11 to achieve a compact size.
  • An electric motor 6 is arranged in the center of the internal space 11a of the sealed container 11.
  • the electric motor 6 includes a cylindrical stator 6b fixed to the hermetic container 11 so as not to rotate, and a rotor 6a provided inside the stator 6b and rotatable relative to the stator 6b. It is configured .
  • a through hole penetrating in the axial direction is formed in the center of the rotor 6a in plan view.
  • a shaft 7 (compressor shaft) extending vertically from the rotor 6a is inserted into and fixed to the through hole. That is, the shaft 7 is rotated by driving the electric motor 6. Yes.
  • the compressor 2 is a scroll type compressor, and is disposed and fixed above the internal space 11a of the sealed container 11.
  • the compressor 2 is provided with a fixed scroll 32, a turning scroll 33, an Oldham ring 34, a car bearing receiver 35, a muffler 36, a suction pipe 37, and a discharge pipe 38.
  • the fixed scroll 32 is attached to the sealed container 11 so as not to be displaced.
  • a wrap 32a having a spiral shape (for example, an involute shape) in a plan view is formed on the lower surface of the fixed scroll 32.
  • the orbiting scroll 33 is disposed opposite to the fixed scroll 32, and on the surface facing the fixed scroll 32, a spiral wrap 33a (for example, an involute shape) engaging with the wrap 32a is formed.
  • a crescent-shaped working chamber (compression chamber) 39 is defined between the wraps 32a and 33a.
  • the peripheral part of the orbiting scroll 33 is supported in contact with a thrust bearing 32b provided so as to protrude downward so as to constitute the peripheral part of the fixed scroll 32.
  • An eccentric portion 7b having a central axis different from that of the shaft 7 is fitted and fixed to the center portion of the lower surface of the orbiting scroll 33 at the upper end portion of the shaft 7 extending from the rotor 6a.
  • An Oldham ring 34 is disposed below the orbiting scroll 33. This Oldham ring 34 regulates the rotation of the orbiting scroll 33, and the function of this Oldham ring 34 causes the orbiting scroll 33 to orbit in a state of being eccentric from the center axis of the shaft 7 as the shaft 7 rotates. It is configured to do.
  • Lubricating oil (refrigeration oil) mixed in the refrigerant during the residence period is separated by gravity and centrifugal force.
  • the refrigerant from which the oil has been separated is discharged from the discharge pipe 38 to the refrigerant circuit.
  • the compressor 2 is not limited to a scroll type compressor as long as the compressor 2 has a shaft 7 and rotates around the shaft 7.
  • the compressor 2 may be a rotary compressor.
  • a fluid pressure motor 4 is disposed below the electric motor 6.
  • the fluid pressure motor 4 is constituted by a rotary fluid pressure motor
  • the “rotary type” includes both a rolling piston type in which a piston and a vane are formed of separate members, and a swing type in which the piston and the vane are integrated.
  • the fluid pressure motor 4 is not particularly limited to the rotary type.
  • the fluid pressure motor 4 may be, for example, a scroll type fluid pressure motor.
  • the fluid pressure motor 4 includes a shaft 51 as a rotating shaft.
  • the shaft 51 is connected to the shaft 7 by the joint 13 when assembled, and rotates in synchronization with the shaft 7.
  • An oil pump 14 is installed at the lower end of the shaft 51.
  • the oil pump 14 supplies oil for lubrication and sealing to the bearings and gaps of the compressor 2 and the hydraulic motor 4 through oil supply holes 7a and 51a provided in the shafts 7 and 51, respectively. It is like that.
  • the shaft 51 includes an eccentric part 51 b having a central axis different from the central axis of the shaft 51.
  • the eccentric portion 51b is fitted with a cylindrical (specifically, cylindrical) piston 53 provided on the outer periphery of the eccentric portion 51b. For this reason, the piston 53 comes to rotate eccentrically as the shaft 51 rotates!
  • the piston 53 is disposed in a cylinder 52 having an inner peripheral surface with both ends closed by a first closing member 56 and a second closing member 57 that also serve as bearings for the shaft 51.
  • the shaft 51 passes through the center of the cylinder 52.
  • the central axis of the internal space of the cylinder 52 coincides with the central axis of the shaft 51.
  • the piston 53 is pivotally supported by the shaft 51 in an eccentric state with respect to the central axis of the cylinder 52.
  • a working chamber 60 having a volume (total volume) substantially unchanged is defined between the piston 53 and the inner peripheral surface of the cylinder 52.
  • a line communicating with the inside of the cylinder 52 A groove 52c is formed.
  • a plate-like partition member 54 is disposed in the groove 52c so as to be slidably displaced.
  • One end of the partition member 54 is connected to a spring 55 disposed behind the partition member 54.
  • the partition member 54 is urged toward the piston 53 by the spring 55, and the other end of the partition member 54 is constantly pressed against the outer peripheral surface of the piston 53.
  • the piston 53, the cylinder 52, the first closing member 56, and the second closing member 57 partition the partitioned working chamber 60 into a high-pressure side suction working chamber 60a and a low-pressure side discharge working chamber 60b. ing.
  • a suction path 61 is opened in a portion adjacent to the partition member 54 of the suction working chamber 60a.
  • This suction path 61 is formed in a first closing member 56 located above the cylinder 52.
  • the suction path 61 communicates with the suction pipe 58.
  • the refrigerant is guided from the suction pipe 58 to the suction working chamber 60a via the suction path 61.
  • a discharge path 62 is opened in a portion adjacent to the partition member 54 of the discharge working chamber 60b.
  • the discharge path 62 is formed on the second closing member 57 located below the cylinder 52 and located further away from the compressor 2 than the first closing member 56 where the suction path 61 is formed. Yes.
  • the discharge path 62 communicates with the discharge pipe 59.
  • the refrigerant is discharged from the discharge working chamber 60b to the discharge pipe 59 via the discharge path 62.
  • the opening 63 (suction port 63) of the suction passage 61 with respect to the suction working chamber 60a is a direction in which the suction working chamber 60a extends from a portion adjacent to the partition member 54 of the suction working chamber 60a (see FIG. 3).
  • it is formed in a substantially fan shape extending in an arc shape counterclockwise. Then, the suction port 63 is completely closed by the cylinder 52 only at the moment when the piston 53 is located at the top dead center. Then, at least a part of the suction port 63 is opened over the entire period except for the moment when the piston 53 is located at the top dead center.
  • the end 63a of the suction port 63 located outside in the radial direction of the cylinder 52 has an arc shape along the outer circumferential surface of the piston 53 (that is, the piston It has a circular arc shape with the same radius as the outer peripheral surface of 53).
  • the opening 64 (discharge port 64) of the discharge path 62 with respect to the discharge working chamber 60b is a direction in which the discharge working chamber 60b extends from a portion adjacent to the partition member 54 of the discharge working chamber 60b (clockwise in FIG. 3).
  • the discharge port 64 is completely closed by the cylinder 52. Then, at least a part of the discharge port 64 is opened over the entire period except for the moment when the piston 53 is located at the top dead center.
  • the end 64a of the discharge port 64 located on the outer side in the radial direction of the cylinder 52 has an arcuate shape along the outer peripheral surface of the piston 53 (i.e., the piston It is formed in a circular arc shape having the same radius as the outer peripheral surface of 53.
  • FIG. 31 shows a configuration of a conventional rotary fluid machine.
  • the suction hole 720 and the discharge hole 722 are formed on the inner peripheral surface of the cylinder 724, respectively.
  • the suction hole 720 and the discharge hole 722 are not completely closed. Therefore, at this moment, the fluid can directly blow through the working chamber 728 from the suction hole 720 to the discharge hole 722. This hinders efficient energy recovery when the fluid machine is used as a power recovery means.
  • both the suction port 63 and the discharge port 64 are completely closed only at the moment when the piston 53 is located at the top dead center.
  • the working chamber 60 is immediately divided into the suction working chamber 60a and the discharge working chamber 60b, the suction port 63 communicates only with the suction working chamber 60a, and the discharge port 64 It communicates only with the discharge working chamber 60b. Therefore, the refrigerant cannot blow through from the suction path 61 to the discharge path 62 by design. Thereby, highly efficient energy recovery is realized.
  • the suction port 63 opens and the suction path 61 communicates with the suction working chamber 60a over the entire period except the moment when the piston 53 is located at the top dead center
  • the discharge port 64 also opens and the discharge path 62 opens. It communicates with the discharge working chamber 60b. That is, a configuration is realized in which there is substantially no period in which the suction path 61 and the discharge path 62 are simultaneously closed. Therefore, unlike the conventional medium drive motor 700 shown in FIG. 30, the problem (mainly the problem of pulsation) due to the long period in which both the suction port 703 and the discharge port 704 are closed by the rotor 702 hardly occurs. .
  • the "moment when piston 53 is located at the top dead center” is the moment when partition member 54 is pushed most into groove 52c, and fluid pressure motor 4 is in the state shown in ST1 of FIG. It is a moment.
  • “the moment when the piston 53 is located at the top dead center” is not strictly limited to the moment when the piston 53 is located at the top dead center. It may have a certain period of time.
  • the rotation angle ( ⁇ ) of the piston 53 when the piston 53 is located at the top dead center is 0 °, for example, the rotation angle ( ⁇ ) of the piston 53 is within 0 ° ⁇ 5 ° (or 0 ° ⁇
  • the configuration in which both the suction port 63 and the discharge port 64 are closed over a period of 3 °) is also included in the configuration in which the suction path 61 and the discharge path 62 are not substantially closed at the same time. .
  • the opening area of the discharge port 64 is set larger than the opening area of the suction port 63.
  • the relationship between the opening area of the suction port 63 and the opening area of the discharge port 64 is not particularly limited.For example, the suction port 63 and the discharge port 64 have the same opening area! / Moyo! /
  • the opening 61c of the suction passage 61 with respect to the suction working chamber 60a extends in the axial direction of the cylinder 52 (FIG. 4A) so as to extend in the direction in which the suction working chamber 60a (the high pressure side working chamber) expands. In the vertical direction).
  • the opening 62c of the discharge path 62 with respect to the discharge working chamber 60b is formed to be inclined with respect to the axial direction of the cylinder 52 so as to extend in the direction in which the discharge working chamber 60b (low pressure side working chamber) expands.
  • the diameter (inner diameter or cross-sectional area) of the discharge path 62 is set larger than the diameter of the suction path 61.
  • FIG. 5 shows diagrams of four states from ST ;! to ST4.
  • ST1 is a view when the rotation angle of the piston 53 ( ⁇ , the counterclockwise direction in FIG. 5 is positive) is 0 °, 360 °, and 720 °.
  • ST2 is a view when the rotation angle ( ⁇ ) of the piston 53 is 90 ° and 450 °.
  • ST3 is a diagram when the rotation angle ( ⁇ ) force of the piston 53 is 80 ° and 540 °.
  • ST4 is a view when the rotation angle ( ⁇ ) of the piston 53 is 270 ° and 630 °.
  • the low-temperature and high-pressure refrigerant supplied from the first heat exchanger 3 side flows into the suction working chamber 60a via the suction path 61.
  • This suction stroke is maintained until the rotation angle ( ⁇ ) reaches 360 °, that is, until the piston 53 is again at the top dead center.
  • both the suction port 63 and the discharge port 64 are closed by the piston 53, and the working chamber 60 is isolated as shown in ST1. Thereafter, when the piston 53 further rotates, the discharge port 64 is opened, and the isolated working chamber 60 is now communicated with the discharge path 62. In this way, the working chamber 60 is isolated only at the moment when the piston 53 is located at the top dead center, and the suction stroke and the discharge stroke are performed substantially continuously.
  • the sucked refrigerant is discharged from the working chamber 60 without being compressed or expanded in the working chamber 60.
  • the suction volume and the discharge volume are substantially equal.
  • the second heat exchanger 5 side is lower in pressure than the fluid pressure motor 4 than the first heat exchanger 3 side.
  • the isolated working chamber 60 communicates with the discharge path 62 and the working chamber 60 becomes the discharge working chamber 60b
  • the low-temperature and high-pressure refrigerant in the discharge working chamber 60b is sucked to the low pressure side.
  • the pressure in the discharge working chamber 60b decreases instantaneously and becomes equal to the pressure on the low pressure side of the refrigerant circuit.
  • the rotation angle ( ⁇ ) of the piston 53 increases, the refrigerant in the discharge working chamber 60b is sequentially discharged to the low pressure side of the refrigerant circuit.
  • the fluid pressure motor 4 receives a force due to a pressure difference between the high-pressure suction working chamber 60a and the low-pressure discharge working chamber 60b, thereby causing the piston 53 and the shaft 51 connected to the piston 53 to react with each other. Rotate clockwise. The rotational torque of the shaft 51 is transmitted to the shaft 7 connected to the shaft 51, and is used as a part of power for compressing the refrigerant in the compressor 2. [0057] Frozen Cytanoray
  • Point E shown in Fig. 6 is the critical point.
  • EL is a saturated liquid line.
  • EG is a saturated gas line.
  • L is an isobaric line passing through the critical point (point E).
  • R is an isotherm passing through the critical point (point E).
  • the region on the left side of the gas line EG is a gas-liquid two phase.
  • the closed loop ABCD in Fig. 6 represents the power recovery type refrigeration cycle shown in Fig. 1.
  • AB in the closed loop of ABCD indicates a change in refrigerant state in the compressor 2.
  • BC indicates the change in the state of the refrigerant in the first heat exchanger 3.
  • CD indicates the change in refrigerant state in the fluid pressure motor 4.
  • DA indicates a change in the state of the refrigerant in the second heat exchanger 5.
  • the refrigerant is compressed from the low-temperature and low-pressure gas phase (point A) to the high-temperature and high-pressure supercritical phase (point).
  • the high-pressure supercritical phase (point B) is cooled to the low-temperature and high-pressure liquid phase (point C), and then the refrigerant is transferred from the low-temperature and high-pressure liquid phase (point C) to the saturated liquid (point C) in the fluid pressure motor 4. It expands (pressure drop) to the gas-liquid two-phase (D) via point S), and in this process of pressure drop (expansion), the refrigerant is an incompressible liquid phase from point C to point S.
  • the specific volume of the refrigerant does not change so much, while between point S and point D, there is a pressure drop with a sudden change in specific volume due to the phase change from the liquid phase to the gas phase, that is, a pressure drop with expansion. Then, the refrigerant is heated in the second heat exchanger 5 and changes from the gas-liquid two phase (point D) to the gas phase (point A) with evaporation! /.
  • the pressure difference of the gas-liquid two-phase pressure drop (SD) in the fluid pressure motor 4 is sufficiently smaller than the pressure difference of the single-phase (liquid phase) pressure drop (CS).
  • SD gas-liquid two-phase pressure drop
  • CS single-phase pressure drop
  • the first heat exchanger 3 adds heat compared to using a low-temperature side heat source such as a cooling application.
  • the temperature of the heated medium to be heated eg air or water
  • point C tends to move to the low enthalpy side.
  • FIG. 7 the motor 6 and the shaft 7 are omitted
  • the internal heat exchanger 18 is provided on the suction side of the compressor 2 and the suction side of the fluid pressure motor 4, the suction is performed by the compressor 2.
  • FIG. 8 is a graph showing the relationship between the specific volume of the refrigerant and the pressure in the fluid pressure motor 4.
  • FIG. 8 shows the result of a computer simulation when the refrigeration cycle apparatus 1 is used for a hot water heater.
  • the pressure at point C is 9.77 MPa and the temperature is 16.3 ° C.
  • the pressure at point D is 3.96 MPa. It is assumed that there is isentropy between point C and point D.
  • FCSDHG The area surrounded by FCSDHG in Fig. 8 corresponds to the theoretical value of power that can be recovered from the refrigerant per unit mass.
  • the theoretical recovery power W corresponding to the area of the part surrounded by FCSDHG is the recovery power W due to the pressure drop surrounded by FCHG, and CSDH.
  • W is actually about 96% of W and W is about 4% of W. From this
  • the power that can be recovered by the fluid pressure motor 4 can be recovered efficiently even when the fluid pressure motor 4 that is substantially different from the power that can be recovered by the conventional expander is used.
  • the refrigerant when the refrigerant is in the supercritical phase on the high-pressure side of the refrigeration cycle, or when using a high-temperature heat source such as heating or hot water, the theoretical recovery power W
  • the magnitude of the overexpansion loss W varies depending on the operating conditions of the refrigeration cycle apparatus 1.
  • the overexpansion loss W is equal to or
  • the fluid pressure motor 4 has a simple configuration as compared with the conventional expander, the cost of the refrigeration cycle apparatus 1 can be reduced by using the fluid pressure motor 4 as power recovery means. That power S. Furthermore, loss due to friction of the sliding portion and the seal portion and loss due to refrigerant leakage can be reduced.
  • the refrigerant is sucked into the suction path 61 and the refrigerant is discharged from the discharge path 62. It is performed substantially continuously, not intermittently.
  • the volume of the suction working chamber 60a changes in a sine wave shape, the piston 53 is located at the top dead center, and the volume change rate of the suction working chamber 60a becomes zero. Only the inlet 63 is closed. In other words, the suction port 63 is closed only at the moment when the flow rate of the refrigerant sucked into the suction working chamber 60a becomes zero.
  • the volume of the discharge working chamber 60b changes in a sine wave shape, and the piston 53 is positioned at the top dead center, and the discharge port 64 is closed only at the moment when the volume change rate of the discharge working chamber 60b becomes zero.
  • the discharge port 64 is closed only at the moment when the flow rate of the coolant discharged from the discharge working chamber 60b becomes zero. Therefore, the pressure pulsation and the water hammer phenomenon resulting therefrom are effectively suppressed. As a result, breakage, vibration and noise of the constituent members of the refrigeration cycle apparatus 1 are suppressed. In addition, fluctuations in the rotational torque of the compressor 2 are reduced, and the refrigeration cycle apparatus 1 can be operated stably.
  • At least a part of the refrigerant discharged from the fluid pressure motor 4 is a gas phase.
  • a gas-liquid two-phase refrigerant is discharged from the fluid pressure motor 4.
  • the refrigerant is depressurized simultaneously with the start of the discharge stroke, and a part of the refrigerant changes from the liquid phase to the gas phase to become a gas-liquid two phase.
  • the discharged gas-phase refrigerant acts as a cushion, and its water hammer is mitigated. Therefore, the operation of the fluid pressure motor 4 can be made smoother. Moreover, vibration and noise can be further reduced.
  • the suction port 720 and the discharge port 722 are at the moment when the piston 726 is located at the top dead center. Both 722 cannot be completely closed.
  • the suction port 63 is formed in the first closing member 56
  • the discharge port 64 is formed in the second closing member 57. Therefore, at the moment when the piston 53 is located at the top dead center, both the suction port 63 and the discharge port 64 are completely closed, and the blow-through from the suction port 63 to the discharge port 64 can be effectively suppressed. As a result, efficient power recovery is possible, and the refrigeration cycle apparatus 1 that can be operated with higher efficiency can be realized.
  • the suction port 63 may be formed in the second closing member 57, and the discharge port 64 may be formed in the first closing member 56.
  • the suction path 61 may be formed in the second closing member 57
  • the discharge path 62 may be formed in the first closing member 56.
  • both the suction port 63 and the discharge port 64 may be formed in the first closing member 56 or the second closing member 57.
  • both the suction path 61 and the discharge path 62 are formed in the first closing member 56 or the second closing member 57! /, Or! /.
  • the configuration in which both the suction port 63 and the discharge port 64 can be completely closed at the moment when the piston 53 is located at the top dead center is the end side of the suction port 63 positioned on the outer side in the radial direction of the cylinder 52.
  • 63a is formed in an arc shape along the outer peripheral surface of the piston 53 when located at the top dead center in plan view, and the end 64a of the discharge port 64 positioned on the outer side in the radial direction of the cylinder 52 is This is realized by forming an arc along the outer peripheral surface of the piston 53 when positioned at the top dead center in view.
  • the opening 61c is formed to be inclined with respect to the axial direction of the cylinder 52 so as to extend in the direction in which the suction working chamber 60a extends.
  • the opening 61c which is the connection portion of the suction passage 61 with the suction working chamber 60a, As it approaches the suction working chamber 60a, it extends obliquely inside the first closing member 56 so as to move away from the reference plane BH including the center axis of the shaft 51 and the center line parallel to the longitudinal direction of the partition member 54.
  • the opening 62c is also formed to be inclined with respect to the axial direction of the cylinder 52 so as to extend in the direction in which the discharge working chamber 60b extends.
  • the opening 62c which is the connection portion of the discharge path 62 with the discharge working chamber 60b, includes the central axis of the shaft 51 and the center line parallel to the longitudinal direction of the partition member 54 as the distance from the discharge working chamber 60b increases. It extends obliquely inside the second closing member 57 so as to approach the reference plane BH. As a result, as indicated by a broken arrow in FIG.
  • the suction path 61 is formed in the first closing member 56, while the discharge path 62 is formed in the second closing member 57 different from the first closing member 56. Interference between the suction path 61 and the discharge path 62 that are relatively close to each other is prevented, and the degree of freedom in design is improved. This configuration is particularly effective when the suction path 61 and the discharge path 62 are formed obliquely with respect to the axis of the cylinder 52 as described with reference to FIG. 4A.
  • the suction path 61 having a relatively high internal refrigerant temperature is formed in the first closing member 56 close to the compressor 2, and the discharge path 62 having a relatively low internal refrigerant temperature is separated from the compressor 2.
  • the second closing member 57 is formed. Therefore, heat transfer from the compressor 2 to the fluid pressure motor 4 can be minimized. Therefore, it is possible to effectively suppress the decrease in the heat exchange amount in the first heat exchanger 3 and the second heat exchanger 5 and the reduction in the COP of the refrigeration cycle.
  • the opening area of the discharge path 62 is larger than the opening area of the suction path 61.
  • the opening area of the discharge port 64 is set larger than the opening area of the suction port 63. It is. Since the discharged refrigerant has a larger specific volume than the sucked refrigerant, the pressure loss when the refrigerant is discharged becomes larger than the pressure loss when the refrigerant is sucked. According to the configuration in which the discharge port 64 is enlarged, the pressure loss when the refrigerant is discharged can be effectively reduced, and the pressure loss of the refrigerant can be reduced comprehensively. Therefore, it is possible to further improve the skew of power recovery.
  • a plurality of discharge ports 64 may be provided. From the same viewpoint, it is also effective to make the diameter of the discharge path 62 larger than the diameter of the suction path 61 as described with reference to FIG. 4A.
  • a one-cylinder rotary fluid pressure motor 4 that does not include a suction mechanism such as a valve mechanism is employed.
  • a suction mechanism such as a valve mechanism
  • the present invention is not limited to this configuration.
  • the energy recovered by the fluid pressure motor 4 may be once converted into electric energy.
  • FIG. 3 is referred to in common with the first embodiment.
  • constituent elements having substantially the same functions are described with reference numerals common to the first embodiment, and description thereof is omitted.
  • FIG. 9 is a configuration diagram of a power recovery type refrigeration cycle apparatus 8 according to the second embodiment.
  • FIG. 10 is a longitudinal sectional view of a fluid pressure motor 4 provided with the generator 15 of the second embodiment.
  • the refrigeration cycle apparatus 8 includes the refrigeration unit according to the first embodiment in that the shaft 51 of the fluid pressure motor 4 and the shaft 7 of the electric motor 6 are not connected. Different from Ital device 1. In the present embodiment, as shown in FIGS. 9 and 10, the shaft 51 of the fluid pressure motor 4 is connected to the generator 15.
  • the generator 15 is housed in the sealed container 16 together with the fluid pressure motor 4 so as to be compact.
  • the generator 15 includes a cylindrical stator 15b that is attached to the hermetic container 16 so as not to rotate but to displace.
  • a cylindrical rotor 15a having an outer diameter slightly smaller than the inner diameter of the stator 15b is disposed so as to be rotatable with respect to the stator 15b.
  • the shaft 51 of the fluid pressure motor 4 is inserted and fixed so as not to rotate but to move up and down. Then, as the fluid pressure motor 4 is driven and the shaft 51 rotates, the rotor 15a rotates relative to the stator 15b, thereby generating electric power.
  • the generator 15 is designed to generate power even if the shaft 51 rotates clockwise and counterclockwise! /, Even if there is a slight deviation! /.
  • the generator 15 is electrically connected to a power supply line to the electric motor 6 that drives the compressor 2, and the electric power generated by the electric generator 15 is It is used as part of the power supplied to the electric motor 6 to drive the compressor 2.
  • a four-way valve 9 is provided in the refrigerant circuit as a switching mechanism that can switch the direction in which the compressed refrigerant flows. For this reason, the flow direction of the refrigerant compressed and extruded by the compressor 2 is variable.
  • the four-way valve 9 includes a suction port (suction pipe 37) and a discharge port (discharge pipe 38) of the compressor 2, a first heat exchanger 3, and a second heat exchanger 5. It is connected. Then, by operating the four-way valve 9, the discharge port of the compressor 2 is connected to the first heat exchanger 3, while the suction port of the compressor 2 is connected to the second heat exchanger 5. (The connection state shown by the solid line in FIG. 9) and the outlet of compressor 2 are connected to the second heat exchanger 5, while the inlet of compressor 2 is connected The force S can be switched between the second connection state connected to the first heat exchanger 3 (connection state indicated by a broken line in FIG. 9).
  • the second heat exchanger 5 functions as a gas cooler (heat radiator), and the refrigerant is cooled in the second heat exchanger 5 to a low temperature and high pressure.
  • the low temperature and high pressure refrigerant flows from the second connection pipe 59 of the fluid pressure motor 4 into the working chamber 60 via the second path 62.
  • the refrigerant in the working chamber 60 is discharged from the first connection pipe 58 to the first heat exchanger 3 side via the first path 61.
  • the refrigerant that has been heated and vaporized in the first heat exchanger 3 returns to the compressor 2 again. Therefore, in the second connection state, the shaft 51 rotates in the direction opposite to that in the first connection state.
  • the first heat exchanger 3 functions as a gas cooler (heat radiator), and the second heat exchanger 5 functions as an evaporator.
  • the first heat exchanger 3 functions as an evaporator and the second heat exchanger 5 functions as a gas cooler (heat radiator). Therefore, according to the refrigeration cycle apparatus 8 according to the second embodiment, for example, both cooling (cooling) and heating (heating) of an air conditioner and the like can be performed.
  • the shaft 7 and the shaft 51 are configured to rotate independently as in the present embodiment, the shaft 7 and the shaft 51 are rotated in directions opposite to each other. It is also possible to let In other words, by providing the four-way valve 9 and generating power by connecting the shaft 51 to the generator 15, power recovery is possible, and cooling (cooling) and heating (heating) ) Can be realized such as air conditioning equipment (air conditioning air conditioner, etc.)
  • the switching mechanism for switching between the first state and the second state is not limited to the four-way valve, but may be a bridge circuit or the like.
  • the fluid pressure motor is not limited to this configuration, and may be, for example, a multi-cylinder single-port fluid pressure motor. Furthermore, a fluid pressure motor of a system other than the rotary type, for example, a scroll type fluid pressure motor may be used.
  • FIG. 11 is a longitudinal sectional view of a fluid pressure motor 4a provided with the generator 15 of the first modification.
  • the fluid pressure motor 4a is a two-cylinder type having two cylinders 52a and 52b.
  • the shaft 51 is provided with two eccentric portions 51bl and 51b2 and a force S.
  • a piston 53a is eccentrically attached to the eccentric portion 51M. Piston 53a It is housed in a cylinder 52a closed at both ends by the closing members 56a and 57a.
  • a working chamber 60c is defined by the piston 53a, the closing member 56a, the closing member 57a, and the cylinder 52a.
  • the working chamber 60c is divided into two spaces (a suction working chamber and a discharge working chamber) by a partition member 54a biased in the direction of the piston 53a by a spring 55a.
  • the piston 53b is attached to the eccentric part 51b2 in an eccentric state.
  • the piston 53b is accommodated in a cylinder 52b closed at both ends by a closing member 56b (common to the closing member 57a) and 57b.
  • the working chamber 60d is partitioned by the screw 53b, the blockages 56b and 57b, and the cylinder 52b.
  • the working chamber 60d is divided into two spaces (a suction working chamber and a discharge working chamber) by a partition member 54b biased in the direction of the piston 53b by a spring 55b.
  • a first path 61 is formed in the closing member 56a.
  • the first path 61 is connected to the other end of the first connection pipe 58 having one end connected to the first heat exchanger 3.
  • the first path 61 communicates with one of the working chambers 60c divided into two by the partition member 54a and one of the working chambers 60d divided into two by the partition member 54b.
  • a second path 62a is formed in the closing member 57a.
  • the second path 62a is connected to the other end of the second connection pipe 59a, one end of which is connected to the second heat exchanger 5.
  • the second path 62a communicates with the other of the working chambers 60c divided into two by the partition member 54a.
  • a second path 62b is formed in the closing member 57b.
  • the second path 62b is connected to the second connection pipe 59b.
  • the second path 62b communicates with the other of the working chambers 60d divided into two by the partition member 54b.
  • the second connection pipe 59b is connected to the second heat exchanger 5 together with the second connection pipe 59a.
  • the refrigerant from the first heat exchanger 3 flows from the first connection pipe 58 to the first path 61 as indicated by solid arrows in FIG. Are supplied to both working chambers 6 Oc and 60d. Then, the refrigerant in the working chamber 60c is discharged from the second connection pipe 59a to the second heat exchanger 5 side via the second path 62a. On the other hand, the refrigerant in the working chamber 60d is discharged from the second connection pipe 59b to the second heat exchanger 5 side via the second path 62b. In the second connected state, the refrigerant flows in the direction indicated by the dashed arrow.
  • the fluid pressure motor 4a includes one of the working chamber 60c divided into two by the partition member 54a and the operation chamber 60d divided into two by the partition member 54b.
  • a common first path 61 is configured to communicate with both of the two. However, it may be configured such that different first paths communicate with each of the working chambers 60c and 60d. That is, a dedicated first route may be provided for each.
  • the plurality of pistons 53a, 53b are arranged such that the positions of their top dead centers are equally spaced in the rotation direction of the shaft 51. Specifically, the two pistons 53a and 53b are arranged to face each other so that the positions of their top dead centers are located at equal intervals in the rotation direction of the shaft 51. For this reason, the phase of the piston 53a and the phase of the piston 53b are shifted from each other by a half period.
  • the torque fluctuations can be canceled by the pistons 53a and 53b. Accordingly, the rotation of the fluid pressure motor 4a is further stabilized, and vibration and noise can be reduced.
  • the vibration and noise of the discharge are likely to increase compared to an expander having an expansion stroke. The effect of using 2 cylinders as in Modification 1 is remarkable.
  • the positions of the respective top dead centers are arranged at equal intervals in the rotation direction of the shaft 51. Specifically, when three cylinders are provided, it is preferable to arrange them 120 ° apart from each other.
  • the fluid pressure motor 4 b includes a turning shronole 71, a fixed scronore 72, an Oldham ring 34 a, a bearing member 35 a, a suction pipe 73, and a discharge pipe 74.
  • the fixed scroll 72 is attached to the hermetic container 16 so that it cannot be displaced and rotated.
  • an involute wrap 72a is formed on the upper surface of the fixed scroll 72.
  • the orbiting scroll 71 is disposed so as to face the fixed scroll 72, and an impoule-shaped wrap 71 a that meshes with the wrap 72 a is formed on the surface facing the fixed scroll 72.
  • a working chamber 75 is defined by these wraps 72a and 71a.
  • An eccentric portion having a central axis different from that of the shaft 51 is fitted and fixed to the upper central portion of the orbiting scroll 71 at the lower end portion of the shaft 51.
  • an Oldham ring 34 a is arranged above the turning scroll 71. This Oldham ring 34a regulates the rotation of the orbiting scroll 71, and the function of this Oldham ring 34a allows the orbiting scroll 71 to move in a state of being eccentric from the central axis of the shaft 51 as the shaft 51 rotates. Is configured to do.
  • the fixed scroll 72 is formed with a suction path 72b that opens to the central portion of the working chamber 75 in a plan view so as to be opened and closed and is connected to a suction pipe 73 communicating with the outside of the hermetic container 16. .
  • the refrigerant is sucked into the working chamber 75 via the suction path 72b.
  • FIG. 13 shows diagrams of four states S 1 to S 4.
  • the starting end of the wrap 72a is in contact with the inner peripheral surface of the lap 71a, and the starting end of the wrap 71a is in contact with the inner peripheral surface of the wrap 72a.
  • the fixed scroll 72 and the orbiting scroll 71 form a suction working chamber 75a that communicates with the suction path 72b.
  • the scroll fluid pressure motor 4b described in the second modification example also determines the direction in which the refrigerant flows, similarly to the rotary fluid pressure motor 4 described in the first and second embodiments. Absent. That is, the scroll fluid pressure motor 4b can also be operated by switching the suction port and the discharge port. Accordingly, it is possible to use the fluid pressure motor 4b of the second modification instead of the fluid pressure motor 4 of the second embodiment.
  • a supercharger comprising a fluid pressure motor is disposed between the evaporator and the compressor, and the supercharger is driven by power recovered by power recovery means comprising a fluid pressure motor. It is characterized by that.
  • the energy efficiency of the refrigeration cycle apparatus can be improved.
  • both the turbocharger and the power recovery means are configured by a fluid pressure motor having a relatively simple configuration as compared with the compressor and the expander, so that the configuration of the refrigeration cycle apparatus is simple and inexpensive.
  • Ability to do S The basic structure of the fluid pressure motor used in this embodiment and the fluid pressure motor described in the previous embodiment is the same.
  • FIG. 14 is a configuration diagram of the refrigeration cycle apparatus 101 according to the embodiment.
  • the refrigeration cycle apparatus 101 includes a refrigerant circuit 109 having a compressor 103, a gas cooler 104, a power recovery means 105, an evaporator 106, and a supercharger 102.
  • the refrigerant filled in the refrigerant circuit 109 is, for example, carbon dioxide or hyde fluorocarbon.
  • the present invention exhibits a particularly excellent effect when a refrigerant that is in a supercritical state on the high-pressure side of the refrigeration cycle, such as carbon dioxide, is used.
  • the compressor 103 includes a compression mechanism 103a (compressor main body), an electric motor 108 connected to the compression mechanism 103a, and a casing 160 that houses the compression mechanism 103a and the electric motor 108.
  • the compression mechanism 103a is driven by the electric motor 108.
  • the compression mechanism 103a compresses the refrigerant circulating in the refrigerant circuit 109 to high temperature and high pressure.
  • the compression mechanism 103a may be, for example, a scroll type compressor! /, Or a rotary type compressor! /.
  • the gas cooler (heat radiator) 104 is connected to the compressor 103.
  • the gas cooler 104 radiates heat from the refrigerant compressed by the compressor 103.
  • the gas cooler 104 cools the refrigerant compressed by the compressor 103.
  • the refrigerant cooled by the gas cooler 104 becomes low temperature and high pressure.
  • the power recovery means 105 is connected to the gas cooler 104.
  • the power recovery means 105 It is composed of a body pressure motor. Specifically, the power recovery means 105 performs the process of sucking the refrigerant from the gas cooler 104 and the process of discharging the sucked refrigerant substantially continuously. That is, the power recovery means 105 sucks the refrigerant that has been made low-temperature and high-pressure by the gas cooler 104 and discharges it to the evaporator 106 side without substantially changing the volume.
  • the gas cooler 104 side has a relatively high pressure across the power recovery means 105
  • the evaporator 106 side has a relatively low pressure. For this reason, the refrigerant sucked into the power recovery means 105 expands to a low pressure when discharged from the power recovery means 105.
  • the evaporator 106 is connected to the power recovery means 105.
  • the evaporator 106 heats and evaporates the refrigerant from the power recovery means 105.
  • the supercharger 102 is disposed between the evaporator 106 and the compressor 103.
  • the supercharger 102 is connected to the power recovery means 105 by the shaft 12.
  • the supercharger 102 is driven by the power recovered by the power recovery means 105.
  • the supercharger 102 is configured by a fluid pressure motor, similar to the power recovery means 105.
  • the supercharger 102 performs the process of sucking the refrigerant from the evaporator 106 and the process of discharging the sucked refrigerant to the compressor 103 side substantially continuously.
  • the supercharger 102 sucks the refrigerant from the evaporator 106 and discharges it to the compressor 103 side without substantially changing the volume.
  • the refrigerant from the evaporator 106 is preliminarily pressurized by being discharged from the supercharger 102.
  • the preliminarily pressurized refrigerant is compressed by the compressor 103 and becomes high temperature and high pressure again.
  • the power recovery means 105 and the supercharger 102 constitute a single fluid machine 110.
  • the fluid machine 110 has a closed container 111 filled with refrigeration oil.
  • the power recovery means 105 and the supercharger 102 are arranged in the sealed container 111. As a result, the refrigeration cycle apparatus 101 is made compact.
  • the power recovery means 105 is disposed below the sealed container 111.
  • the power recovery means 105 is constituted by a rotary fluid pressure motor.
  • the power recovery means 105 is a fluid pressure motor other than the rotary type.
  • it may be constituted by a scroll type hydraulic motor shown in FIG.
  • the power recovery means 105 includes a first closing member 115 and a second closing member 113.
  • the first closing member 115 and the second closing member 113 are opposed to each other.
  • a first cylinder 22 is disposed between the first closing member 115 and the second closing member 113.
  • the first cylinder 22 has a substantially cylindrical internal space. The internal space of the first cylinder 22 is closed by the first closing member 115 and the second closing member 113.
  • the shaft 12 passes through the first cylinder 22 in the axial direction of the first cylinder 22.
  • the shaft 12 is disposed on the central axis of the first cylinder 22.
  • the shaft 12 is supported by the second closing member 113 and a third closing member 114 described later.
  • the shaft 12 is formed with an oil supply hole 12a penetrating the shaft 12 in the axial direction. Via this oil supply hole 12 a, the bearings of the refrigeration machine hydraulic power supercharger 102 and the power recovery means 105 in the hermetic container 111 are supplied to gaps and the like.
  • the first piston 21 is disposed in a substantially cylindrical internal space defined by the inner peripheral surface of the first cylinder 22, the first closing member 115, and the second closing member 113.
  • the first piston 21 is fitted into the shaft 12 in an eccentric state with respect to the central axis of the shaft 12.
  • the shaft 12 includes an eccentric portion 12 b having a central axis different from the central axis of the shaft 12.
  • a cylindrical first piston 21 is fitted in the eccentric portion 12b. For this reason, the first piston 21 is eccentric with respect to the central axis of the first cylinder 22. Therefore, the first piston 21 rotates eccentrically as the shaft 12 rotates.
  • a first working chamber 23 is defined in the first cylinder 22 by the inner peripheral surfaces of the first piston 21 and the first cylinder 22, the first closing member 115, and the second closing member 113. (See also Figure 16). The volume of the first working chamber 23 is substantially unchanged even when the first piston 21 rotates with the shaft 12.
  • the first cylinder 22 is formed with a linear groove 22 a that opens into the first working chamber 23.
  • a plate-like first partition member 24 is slidably inserted into the linear groove 22a.
  • a biasing means 25 is disposed between the first partition member 24 and the bottom of the linear groove 22a. By this urging means 25, the first partition member 24 is pressed toward the outer peripheral surface of the first piston 21.
  • the first working chamber 23 is partitioned into two spaces. Ingredients Specifically, the first working chamber 23 is divided into a high-pressure side suction working chamber 23a and a low-pressure side discharge working chamber 23b.
  • the biasing means 25 can be configured by a spring force S, for example.
  • the urging means 25 may be a compression coil spring.
  • the biasing means 25 may be a so-called gas spring or the like. That is, when the first partition member 24 and the first partition member 24 are slid in the direction to reduce the volume of the back space, the pressure in the back space becomes higher than the pressure in the first working chamber 23. It is possible to set a pressing force in the direction of the first piston 21 against the first partition member 24 due to the pressure difference.
  • the back space of the first partition member 24 may be a sealed space, and a reaction force may be applied to the first partition member 24 when the volume of the back space decreases due to the retraction of the first partition member 24.
  • the biasing means 25 may be constituted by a plurality of types of springs such as a compression coil spring and a gas spring.
  • the pressure in the first working chamber 23 means the average pressure of the pressure in the suction working chamber 23a and the pressure in the discharge working chamber 23b.
  • the back space is a space formed between the rear end of the first partition member 24 and the bottom of the linear groove 22a.
  • a suction path 27 is opened in a portion adjacent to the first partition member 24 of the suction working chamber 23a.
  • the suction path 27 is formed in a second closing member 113 positioned below the first cylinder 22.
  • the suction path 27 communicates with the suction pipe 28.
  • the high-pressure refrigerant from the gas cooler 104 shown in FIG. 14 is guided to the suction working chamber 23a via the suction pipe 28 and the suction path 27.
  • the opening (suction port) 26 of the suction path 27 (first suction path) to the suction working chamber 23a is a circle extending from the portion adjacent to the first partition member 24 of the suction working chamber 23a in the direction in which the suction working chamber 23a extends. It is formed in a substantially fan shape extending in an arc shape.
  • the suction port 26 is completely closed by the first piston 21 only when the first piston 21 is located at the top dead center. Then, at least a part of the suction port 26 is exposed to the suction working chamber 23a over the entire period except the moment when the first piston 21 is located at the top dead center.
  • the outer end side 26a of the suction port 26 is formed in an arc shape along the outer peripheral surface of the first piston 21 located at the top dead center.
  • the outer end side 26 a is formed in an arc shape having substantially the same radius as the outer peripheral surface of the first piston 21.
  • a discharge path 30 (first discharge path) is opened in a portion adjacent to the first partition member 24 of the discharge working chamber 23b.
  • the discharge path 30 is also formed in the second closing member 113 in the same manner as the suction path 27.
  • the discharge path 30 communicates with the discharge pipe 31 (see FIG. 15).
  • the refrigerant in the discharge working chamber 23b is discharged to the evaporator 106 side through the discharge path 30 and the discharge pipe 31.
  • the force S is shown with the reference numerals 31 and 28. This description refers to the suction pipe 28 and the discharge pipe. It does not mean that 31 is composed of a common pipe.
  • the opening (discharge port) 29 of the discharge path 30 with respect to the discharge working chamber 23b is substantially fan-shaped and extends in an arc shape from the portion adjacent to the first partition member 24 of the discharge working chamber 23b in the direction in which the discharge working chamber 23b extends. Is formed.
  • the discharge port 29 is completely closed by the first piston 21 only when the first piston 21 is located at the top dead center. At least a part of the discharge port 29 is exposed to the discharge working chamber 23b over the entire period except for the moment when the first piston 21 is located at the top dead center.
  • the outer side edge 29a of the discharge port 29 located on the outer side in the radial direction of the first cylinder 22 has an arc shape along the outer peripheral surface of the first piston 21 located at the top dead center. Is formed.
  • the outer end side 29 a is formed in an arc shape having substantially the same radius as the outer peripheral surface of the first piston 21.
  • the power recovery means 105 has substantially the same configuration as the rotary fluid pressure motor described in the previous embodiment.
  • the top dead center is also as described in the first embodiment.
  • the suction port is only at the moment when the first piston 21 is located at the top dead center. Both 2 6 and outlet 29 are completely closed. That is, at the moment when the first working chamber 23 becomes one, both the suction port 26 and the discharge port 29 are completely closed. More specifically, the suction working chamber 23a communicates with the suction passage 27 until the moment when the suction working chamber 23a communicates with the discharge passage 30. The suction port 26 is closed by the first piston 21 after the moment when the suction working chamber 23a communicates with the discharge passage 30 and the suction working chamber 23a becomes the discharge working chamber 23b. For this reason, the blow-through of the refrigerant from the suction path 27 to the discharge path 30 is suppressed. Therefore, Highly efficient power recovery is realized.
  • the suction port 26 and the discharge port 29 are connected at the moment when the first piston 21 is located at the top dead center. Preferably both are closed. However, at the moment when the first piston 21 is located at the top dead center, only one of the suction port 26 and the discharge port 29 is closed! / ,! The differential force between the timing when 26 is closed and the timing when discharge port 29 is closed. If it is smaller than the degree, no blow-through occurs between the suction path 27 and the discharge path 30.
  • the suction working chamber 23a is always in communication with the suction path 27. Further, the discharge operation chamber 23b is always in communication with the discharge path 30.
  • the stroke of sucking the refrigerant and the stroke of discharging the sucked refrigerant are performed substantially continuously. For this reason, the sucked refrigerant passes through the power recovery means 105 without substantially changing its volume.
  • FIG. 18 is an operation principle diagram of the power recovery means 105, and shows diagrams of four states from ST ;! to ST4. As is clear from the comparison between FIG. 18 and FIG. 5, the description of the fluid pressure motor in the first embodiment can be used for the operation principle of the power recovery means 105.
  • the evaporator 106 side When viewed from the power recovery means 105, the evaporator 106 side has a lower pressure than the gas cooler 104 side.
  • the low-temperature and high-pressure refrigerant in the discharge working chamber 23b is sucked to the evaporator 106 side, and the discharge working chamber 23b is also discharged to the discharge path 30.
  • the discharge working chamber 23b and the discharge path 30 communicate with each other and the discharge stroke starts, the specific volume of the refrigerant increases rapidly. Due to this refrigerant discharge stroke, the first piston
  • the rotational torque applied to 21 is also part of the rotational driving force of the shaft 12. That is, the shaft 12 is rotated by the flow of the high-pressure refrigerant into the suction working chamber 23a and the suction of the refrigerant in the discharge stroke.
  • the rotational torque of the shaft 12 is used as power for the supercharger, as will be described in detail later.
  • the supercharger 102 is disposed above the power recovery means 105 in the sealed container 111.
  • the relatively high-temperature supercharger 102 above the relatively low-temperature power recovery means 105 in this way, heat exchange between the supercharger 102 and the power recovery means 105 can be suppressed. it can.
  • the supercharger 102 may be disposed below the power recovery means 105.
  • the supercharger 102 is connected to the power recovery means 105 by the shaft 12.
  • the supercharger 102 is configured by a rotary fluid pressure motor.
  • the supercharger 102 is constituted by a fluid pressure motor other than the rotary type, for example, a scroll type fluid pressure motor shown in FIG.
  • the basic configuration of the supercharger 102 is substantially the same as the power recovery means 105 described above.
  • the supercharger 102 includes a first closing member 115 and a third closing member 114 as shown in FIG.
  • the first closing member 115 is a common structural member for the supercharger 102 and the power recovery means 105.
  • the first closing member 115 and the third closing member 114 are opposed to each other.
  • the third closing member 114 faces the surface of the first closing member 115 opposite to the surface facing the second closing member 113.
  • a second cylinder 42 is arranged between the first closing member 115 and the third closing member 114.
  • the second cylinder 42 has a substantially cylindrical internal space. The internal space of the second cylinder 42 is closed by the first closing member 115 and the third closing member 114.
  • the shaft 12 passes through the second cylinder 42 in the axial direction of the second cylinder 42.
  • the shaft 12 is disposed on the central axis of the second cylinder 42.
  • the second piston 41 is disposed in a substantially cylindrical internal space defined by the inner peripheral surface of the second cylinder 42, the first closing member 115, and the third closing member 114.
  • the second piston 41 is fitted into the shaft 12 in an eccentric state with respect to the central axis of the shaft 12.
  • shaft 12 is a shaft Equipped with an eccentric part 12c having a central axis different from the central axis of 12!
  • a cylindrical second piston 41 is fitted into the eccentric portion 12c.
  • the second piston 41 is eccentric with respect to the central axis of the second cylinder 42. Accordingly, the second piston 41 moves eccentrically with the rotation of the shaft 12.
  • the eccentric portion 12c to which the second piston 41 is attached is eccentric in substantially the same direction as the eccentric portion 12b to which the first piston 21 is attached. For this reason, in this embodiment, the eccentric direction of the first piston 21 with respect to the central axis of the first cylinder 22 and the eccentric direction of the second piston 41 with respect to the central axis of the second cylinder 42 are substantially the same. is there.
  • a second working chamber 43 is defined in the second cylinder 42 by the inner peripheral surface of the second piston 41 and the second cylinder 42, the first closing member 115 and the third closing member 114, thereby forming a lower limit. (See also Figure 17).
  • the volume of the second working chamber 43 is substantially unchanged even when the second piston 41 rotates with the shaft 12. Note that “substantially the same” means that there is a case where there is an error of about ⁇ 2 to 3 °, not only when they are completely the same.
  • the second cylinder 42 is formed with a linear groove 42 a that opens into the second working chamber 43.
  • a plate-like second partition member 44 is slidably inserted into the linear groove 42a.
  • Biasing means 45 is disposed between the second partition member 44 and the bottom of the linear groove 42a.
  • the second partition member 44 is pressed against the outer peripheral surface of the second piston 41 by the biasing means 45.
  • the second working chamber 43 is divided into two spaces. Specifically, the second working chamber 43 is divided into a high-pressure side suction working chamber 43a and a low-pressure side discharge working chamber 43b.
  • the biasing means 45 can be configured by a spring, for example, with a force S.
  • the biasing means 45 may be a compression coil spring.
  • the biasing means 45 may be a so-called gas spring or the like. That is, when the second partition member 44 slides in the direction of reducing the volume of the back space 155, the pressure in the back space 155 is set to be higher than the pressure in the second working chamber 43, A pressing force in the direction of the second piston 41 may act on the second partition member 44 due to a pressure difference between the back space 155 and the second working chamber 43. For example, when the back space 155 is a sealed space and the volume of the back space 155 decreases due to the retreat of the second partition member 44, the second partition member 44 A reaction force may be applied to.
  • the back space 155 is not a sealed space, but when the second partition member 44 is far away from the second piston 41, the back space 155 May be a sealed space.
  • the urging means 45 may be constituted by a plurality of types of springs such as a compression coil spring and a gas spring.
  • the pressure in the second working chamber 43 refers to the average pressure of the pressure in the suction working chamber 43a and the pressure in the discharge working chamber 43b.
  • the back space 155 refers to a space formed between the rear end of the second partition member 44 and the bottom of the linear groove 42a.
  • a suction path 47 (second suction path) is opened in a portion adjacent to the second partition member 44 of the suction working chamber 43a.
  • the suction path 47 is formed in the third closing member 114 located on the upper side of the second cylinder 42.
  • the suction path 47 communicates with the suction pipe 48.
  • the refrigerant from the evaporator 106 (see FIG. 1) is guided to the suction working chamber 43a through the suction pipe 48 and the suction path 47.
  • the opening (suction port) 46 of the suction passage 47 with respect to the suction working chamber 43a is a substantially fan-like shape extending in an arc shape in the direction in which the suction working chamber 43a extends from a portion adjacent to the second partition member 44 of the suction working chamber 43a. Is formed.
  • the suction port 46 is completely closed by the second piston 41 only when the second piston 41 is located at the top dead center. At least a part of the suction port 46 is exposed to the suction working chamber 43a over the entire period except for the moment when the second piston 41 is located at the top dead center.
  • the outer edge 46a of the suction port 46 located outside in the radial direction of the second cylinder 42 is a circle along the outer peripheral surface of the second piston 41 located at the top dead center. It is formed in an arc shape.
  • the outer end side 46a is formed in an arc shape having substantially the same radius as the outer peripheral surface of the second piston 41.
  • a discharge path 50 (second discharge path) is opened in a portion adjacent to the second partition member 44 of the discharge working chamber 43b. As shown in FIG. 15, this discharge path 50 is also formed in the third closing member 114 in the same manner as the suction path 47.
  • the discharge path 50 communicates with the discharge pipe 151. Thereby, the refrigerant in the discharge working chamber 43b is discharged to the compressor 103 side through the discharge path 50 and the discharge pipe 151.
  • the force indicated by the reference numerals 151 and 48 is the same as the suction pipe 48 and the discharge pipe 151. Means that is composed of a common tube is not.
  • the discharge path 50 is connected to the back space 155 via the communication path 156.
  • this communication path 156 communicates with the back space 155 when the second partition member 44 comes closest to the central axis of the shaft 12.
  • the communication path 156 is configured to be blocked by the second partition member 44 when the second partition member 44 is separated from the central axis of the shaft 12 to some extent. That is, the communication path 156 changes from the open state to the closed state during the period in which the second partition member 44 slides from the forward position closest to the central axis of the shaft 12 to the retracted position farthest from the central axis of the shaft 12.
  • the rear space 155 changes from an open space communicating with the communication path 156 to a sealed space blocked from the communication path 156. For this reason, after the communication path 156 is blocked by the second partition member 44 and the back space 155 becomes a closed space, the back space 155 serves as a gas spring and presses the second partition member 44 toward the second piston 41. To do.
  • the opening (discharge port) 49 to the discharge working chamber 43b of the discharge path 50 is a substantially fan-like shape extending in an arc shape from the portion adjacent to the second partition member 44 of the discharge working chamber 43b in the direction in which the discharge working chamber 43b extends. Is formed.
  • the discharge port 49 is completely closed by the second piston 41 only when the second piston 41 is located at the top dead center. In addition, at least a part of the discharge port 49 is exposed to the discharge working chamber 43b over the entire period except for the moment when the second piston 41 is located at the top dead center.
  • the outer end side 49a of the discharge port 49 located on the outer side in the radial direction of the second cylinder 42 has an arc shape along the outer peripheral surface of the second piston 41 located at the top dead center. Is formed.
  • the outer end side 49 a is formed in an arc shape having substantially the same radius as the outer peripheral surface of the second piston 41.
  • the suction port 46 and the discharge port are discharged only at the moment when the second piston 41 is located at the top dead center. Both the outlet 49 and the outlet 49 are completely closed. That is, at the moment when the second working chamber 43 becomes one, both the suction port 46 and the discharge port 49 are completely closed. More specifically, the suction working chamber 43a communicates with the suction passage 47 until the moment when the suction working chamber 43a communicates with the discharge port 49. The suction working chamber 43a communicates with the discharge path 50, and the suction working chamber 43a is connected to the discharge working chamber 43.
  • both the suction path 47 and the discharge path 50 are at the moment when the second piston 41 is located at the top dead center. Is preferably closed. However, at the moment when the second piston 41 is located at the top dead center, only one of the suction port 46 and the discharge port 49 is closed! / ,! The differential force between the timing when 46 is closed and the timing when outlet 49 is closed. If it is less than the degree, the reverse flow of the refrigerant from the discharge path 50 to the suction path 47 does not substantially occur.
  • the suction working chamber 43a is always in communication with the suction path 47 as described above. Further, the discharge working chamber 43b always communicates with the discharge path 50. In other words, in the supercharger 102, the stroke of sucking the refrigerant and the stroke of discharging the sucked refrigerant are performed substantially continuously. For this reason, the sucked refrigerant passes through the supercharger 102 without substantially changing its volume.
  • FIG. Figure 19 shows a diagram of four states from T1 to T4.
  • the description of the fluid pressure motor in the first embodiment can be used for the operating principle of the supercharger 102.
  • the shaft 12 is rotated by the power recovered by the power recovery means 105. As the shaft 12 rotates, the second piston 41 also rotates, and the supercharger 102 is driven.
  • the volume of the second working chamber 43 is substantially unchanged.
  • the suction working chamber 43a is always in communication with the suction passage 47.
  • the discharge working chamber 43b is always in communication with the discharge path 50.
  • the refrigerant is neither compressed nor expanded. Since the shaft 12 is rotated by the power recovery means 105 and the supercharger 102 is driven, the pressure on the downstream side of the second working chamber 43 is higher than that on the upstream side of the second working chamber 43.
  • the supercharger 102 driven by the power recovered by the power recovery means 105 causes the pressure on the compressor 103 side to be higher than the discharge port 49 than the pressure on the evaporator 106 side than the suction port 46. . That is, the pressure is increased by the supercharger 102.
  • the timing at which the first piston 21 of the power recovery means 105 is located at the top dead center and the timing at which the second piston 41 of the supercharger 102 is located at the top dead center are substantially the same. I'm doing it.
  • the fluid machine 110 is provided with a balance weight 152.
  • a balance weight 152a and a balance weight 152b are attached to the end of the shaft 12.
  • the balance weight 152a and the balance weight 152b are collectively referred to as the balance weight 152! /.
  • the balance weight 152 includes a shaft 12, a first piston 21 attached eccentrically to the shaft 12, and a second piston 41 attached eccentrically to the shaft 12. This is to reduce the weight variation around the rotation axis of the shaft 12 of the rotating body 153. In particular, this is for making the weight balance around the rotation axis of the shaft 12 of the rotating body 153 uniform.
  • each of the balance weights 152a and 152b is formed in a columnar shape having the central axis of the shaft 12 as the central axis, as shown in FIG.
  • the shape (external shape) of each of the balance weights 152a and 152b is axisymmetric with respect to the rotation axis of the shaft 12.
  • each of the balance weights 152a and 152b is formed with an internal space 154 having a circular arc shape in plan view with the central axis of the shaft 12 as the center. For this reason, each of the balance weights 152a and 152b has a weight deviation around the central axis of the shaft 12. As shown in FIG.
  • the balance weights 152a and 152b have a partial force located on the side opposite to the eccentric direction of the first piston 21 and the second piston 41 than the portion located on the side that coincides with the eccentric direction. Take the shaft 12 Is attached. In other words, the balance weights 152a and 152b are attached to the shaft 12 so that they are located on the eccentric side of the first piston 21 and the second piston 41 with respect to the central axis of the partial force shaft 12 in which the internal space 154 is formed. It has been.
  • each of the balance weights 152a and 152b is formed with a communication hole 157 communicating with the internal space 154. This is to allow the lubricant filling the sealed container 111 described later to flow into the internal space 154.
  • FIG. 21 is a schematic diagram illustrating a schematic configuration of the compressor 103.
  • the compressor 103 includes a compression mechanism 103a, an electric motor 108, and a casing 160 that houses them.
  • An oil sump 161 in which refrigerating machine oil is stored is formed at the bottom of the casing 160.
  • a fluid pump 162 is disposed in the oil reservoir 161. The fluid pump 162 sucks up the refrigerating machine oil stored in the oil reservoir 161 and supplies it to the compression mechanism 103a.
  • the compressor 103 is arranged at a higher position than the fluid machine 110.
  • An oil leveling pipe 163 is connected to the oil reservoir 161.
  • the oil equalizing pipe 163 is connected to the sealed container 111.
  • a throttle mechanism 164 is attached to the oil equalizing pipe 163.
  • the throttle mechanism 164 adjusts the pressure in the sealed container 111 to be less than the pressure in the casing 160.
  • the throttle mechanism 164 adjusts the pressure force S in the sealed container 111 to be between the high-pressure side pressure of the refrigerant circuit 109 and the low-pressure side pressure of the refrigerant circuit 109.
  • the pressure in the sealed container 111 is set to be larger than the pressure on the low pressure side of the refrigerant circuit 109 and lower than the pressure on the high pressure side of the refrigerant circuit 109!
  • FIG. 22 is a Mollier diagram similar to FIG. In Fig. 22, h, h, h, h, h are
  • the closed loop of ABCDE in Fig. 22 is the power recovery type refrigeration cycle apparatus shown in Fig. 14. 101 refrigeration cycles are shown.
  • A—B in the closed loop of ABCDE indicates a change in the state of the refrigerant due to the supercharger 102.
  • B—C indicates a change in refrigerant state in the compression mechanism 103a.
  • C—D indicates a change in the state of the refrigerant in the gas cooler 104.
  • D — E indicates a change in the state of the refrigerant in the power recovery means 105.
  • E—A indicates a change in the state of the refrigerant in the evaporator 106.
  • the refrigerant flows from a low-temperature low-pressure gas phase (point B) to a high-temperature high-pressure supercritical phase.
  • the refrigerant expands (pressure drop) from the low-temperature high-pressure liquid phase (point D) to the gas-liquid two-phase (point E) through the saturated liquid (point S) in the power recovery means 105.
  • the specific volume of the refrigerant does not change so much.
  • point S and point E there is a pressure drop with a sudden change in specific volume due to a phase change from the liquid phase to the gas phase, that is, a pressure drop with expansion.
  • the refrigerant from the power recovery means 105 is heated in the evaporator 106 and changes into a gas-liquid two-phase (point E) force gas phase (point A) while being evaporated.
  • the refrigerant heated by the evaporator 106 is increased in pressure by the supercharger 102 and changed to a gas phase (point B).
  • power is recovered by the power recovery means 105.
  • the power recovered by the power recovery means 105 is used as power for the supercharger 102. For this reason, high energy efficiency is achieved.
  • the power recovery means 105 recovers energy corresponding to (h — h) from the refrigerant as power.
  • the compression mechanism 103a compresses the refrigerant from the point A on the outlet side of the evaporator 106 to the point C on the inlet side of the gas cooler 104.
  • the refrigerant passes from the point A to the point B by passing through the supercharger 102. Boosted.
  • the compression mechanism 103a may compress the refrigerant from point B to point C. Therefore, the work amount of the compression mechanism 103a is energy equivalent to (h -h).
  • a conventional expander may be used as the power recovery means 105.
  • a conventional expander is used as the dynamic force recovery means 105, both energy due to refrigerant expansion and energy due to a pressure difference between the suction side and the discharge side can be recovered.
  • the fluid pressure motor does not expand the refrigerant inside. Therefore, when a fluid pressure motor is used as the power recovery means 105 as in the present embodiment, only energy due to the pressure difference between the suction side and the discharge side can be recovered. For this reason, it seems that energy efficiency is improved when a conventional expander is used as the power recovery means 105.
  • the force using a fluid pressure motor as the power recovery means 105 on the contrary, the power to increase the energy efficiency of the refrigeration cycle apparatus 101.
  • the power to be able to do is superior in terms of preventing a decrease in efficiency due to overexpansion loss.
  • the power recovery means 105 and the supercharger 102 are configured by a fluid pressure motor that is simpler than a compressor or an expander that requires a reed valve or the like. Yes.
  • the power recovery means 105 and the supercharger 102 are constituted by a rotary fluid pressure motor having a relatively simple structure among the fluid pressure motors. Therefore, a simple and inexpensive refrigeration cycle apparatus 101 is realized.
  • FIG. 23 is a graph showing the relationship between the specific volume of refrigerant and the pressure in the supercharger 102 and the compression mechanism 3a.
  • Point A, point B, and point C in Fig. 23 correspond to point A, point B, and point C in Fig. 22, respectively.
  • FIG. 23 shows the result of a computer simulation when the refrigeration cycle apparatus 101 is used for a hot water heater.
  • the pressure at point A is 3.96 MPa.
  • the pressure at point B is 4.36 MPa.
  • the pressure at point C is 9.77 MPa. It is assumed to be isentropic between point A and point B and between point B and point C.
  • the refrigerant from the evaporator 106 is first sucked into the supercharger 102.
  • the refrigerant is pressurized from point A to point B.
  • the supercharger 102 discharges the refrigerant without substantially changing the volume.
  • the pressure of the refrigerant is increased by the force of the supercharger 102 that sends out the refrigerant. For this reason, the state of the refrigerant does not change directly from point A to point B as in the case of using a sub-compressor.
  • the area of the portion surrounded by NCBOALM in Fig. 23 corresponds to the theoretical value of work required to compress the refrigerant per unit mass.
  • the total theoretical compression work W corresponding to the area enclosed by NCBOALM is expressed as the sum of the theoretical compression work W in the turbocharger 102 and the theoretical compression work W in the compressor cO cl structure 103a.
  • the theoretical pressure at turbocharger 102 is expressed as the sum of the theoretical compression work W in the turbocharger 102 and the theoretical compression work W in the compressor cO cl structure 103a.
  • the contraction work W is expressed as the sum of the work W of adiabatic compression (AB) and the work Wc cl cll 12 increased compared to the adiabatic compression.
  • the efficiency 7] of the power recovery means 105 is 81%, and the turbocharger 102 exp
  • W 90% of W.
  • W 4% of W.
  • W is 0 ⁇ 4 c2 c2 cO cl2 cl cl2 cO
  • the recovered torque recovered by the expander and the load applied in the sub-compressor Torque is different in waveform from each other.
  • the ratio of recovered torque and load torque changes during one cycle.
  • the ratio of the recovered torque to the load torque increases, the rotational speed of the shaft increases.
  • the ratio of the recovered torque to the load torque is reduced, the rotational speed of the shaft is reduced. That is, a rotation angle region where the rotation speed of the shaft increases and a rotation angle region where the rotation speed of the shaft decreases are generated during one cycle. As a result, the shaft does not rotate smoothly.
  • energy recovery efficiency is also reduced.
  • the suction stroke and the discharge stroke are performed continuously.
  • the pressure in the suction working chamber is equal to the pressure on the suction side.
  • the pressure in the discharge chamber is equal to the pressure on the discharge side. Therefore, the pressure acting on the piston is always constant. Therefore, the waveform of the recovery torque with respect to the rotation of the shaft is substantially sinusoidal.
  • the working chamber is isolated from both the suction path and the discharge path, and the refrigerant is compressed during that time. Therefore, although the pressure in the suction working chamber is constant, the pressure in the working chamber increases during the compression stroke. Therefore, the waveform of the load torque with respect to the rotation of the shaft must not be sinusoidal! /.
  • the supercharger 102 is arranged and an expander is used as power recovery means.
  • the waveform of the recovery torque with respect to the rotation of the shaft will not be sinusoidal.
  • the supercharger 102 is a fluid pressure motor, the waveform of the load torque with respect to the rotation of the shaft is substantially sinusoidal.
  • the waveforms of the recovery torque and the load torque are different from each other. As a result, it is difficult to realize a sufficiently smooth rotation of the shaft.
  • each of the supercharger 102 and the power recovery means 105 that are connected to each other is constituted by a fluid pressure motor. Therefore, as shown in FIGS. 24A and 24B, the waveform of the recovered torque recovered by the power recovery means 105 and the waveform of the load torque in the supercharger 102 are relatively approximate. Specifically, the waveform of the recovered torque and the waveform of the load torque are similar in the vertical axis indicating the recovered torque. The waveform of the collection torque and the waveform of the load torque are both sinusoidal with a rotation angle of 360 ° of the shaft 12 as one cycle. Therefore, the ratio between the load torque and the recovery torque is constant. Specifically, the recovery torque increases as the load torque increases. As the load torque decreases, the recovery torque decreases accordingly. As a result, the shaft 12 rotates smoothly without decelerating. Therefore, energy recovery efficiency is improved. In addition, the generation of vibration and noise is suppressed.
  • the waveform of the load torque And the waveform of the recovery torque can be matched with each other.
  • the ratio force between the load torque and the recovered torque is substantially constant. Therefore, the uneven rotation speed of the shaft can be suppressed.
  • the energy efficiency of the refrigeration site apparatus can be further improved.
  • vibration and noise of the refrigeration cycle apparatus can also be suppressed.
  • the direction in which the first partition member 24 is disposed with respect to the shaft 12 and the direction in which the second partition member 44 is disposed with respect to the shaft 12 are substantially mutually omitted. It is the same. Further, the eccentric direction of the first piston 21 with respect to the central axis of the first cylinder 22 and the eccentric direction of the second piston 41 with respect to the central axis of the second cylinder 42 are substantially the same. The Thereby, the timing at which the piston of the power recovery means 105 is located at the top dead center and the timing at which the piston of the supercharger 102 is located at the top dead center are synchronized (matched). The configuration in which the directions of the eccentric portions 12b and 12c of the shaft 12 are the same facilitates the manufacture of the fluid machine 110 as compared to a different configuration.
  • the eccentric direction of the first piston 21 with respect to the central axis of the first cylinder 22 and the eccentric direction of the second piston 41 with respect to the central axis of the second cylinder 42 are made substantially the same, so that the shaft 12
  • the frictional force between the second closing member 113 and the third closing member 114 that support the shaft 12 can be reduced.
  • the first piston 21 of the power recovery means 105 is subjected to a direction force and differential pressure in the direction from the relatively high pressure suction working chamber 23a to the relatively low pressure discharge working chamber 23b.
  • the second piston 41 of the supercharger 102 is subjected to a directional force and differential pressure from the relatively high pressure discharge working chamber 43b to the relatively low pressure suction working chamber 43a.
  • a configuration is employed in which the differential pressure acting on the two pistons 41 is in opposite directions. As shown in FIG. 24C, in the power recovery means 105, the differential pressure F acting on the first piston 21 is
  • the differential pressure F acting on the second piston 41 is a value obtained by multiplying the area S of the second piston 41 by the difference between the discharge pressure P and the suction pressure P.
  • the differential pressure F and the differential pressure F are projected onto the same plane cd cs 1 2, it can be seen that they cancel each other.
  • the differential pressure F and differential pressure F are equal, the differential pressure F and differential pressure F
  • the weight balance around the central axis of the shaft 12 of the rotating body 153 is made uniform. Therefore, smooth rotation of the rotating body 153 is realized. In addition, vibration during rotation of the rotating body 153 is suppressed, and vibration and noise of the refrigeration cycle apparatus 101 are reduced. From the viewpoint of effectively reducing the vibration of the rotating body 153, it is effective to arrange at least the balance weights 152 at both ends of the shaft 12. However, one or more balance weights may be attached to the shaft 12 in addition to the balance weights 152a and 152b.
  • the shapes of the balance weights 152a and 152b are axisymmetric with respect to the rotational axis of the shaft 12. For this reason, the balance weights 152a and 152b are not displaced by the rotation of the shaft 12. In other words, the shape force of the space occupied by balance weights 152a and 152b is constant regardless of the rotation angle of shaft 12. For example, when the balance weights 152a and 152b are displaced by the rotation of the shaft 12, the refrigerating machine oil in the sealed container 111 is agitated by the rotation of the balance weights 152a and 152b. For this reason, rotational resistance is generated for the balance weights 152a and 152b.
  • the respective shapes of the balance weights 152a and 152b are axisymmetric with respect to the rotation axis of the shaft 12. Therefore, do not stir the refrigerating machine oil in the sealed container 111 too much even if the non-rotation weights 152a and 152b rotate! Therefore, energy loss due to rotation of the balance weights 152a and 152b is suppressed. As a result, high energy recovery efficiency is realized.
  • a circular arc-shaped internal space 154 centering on the central axis of the shaft 12 is formed in the cylindrical main body, so that the weight around the rotation axis of the shaft 12 is increased. In the case of forming a deviation, it is preferable to form a communication hole 157 communicating with the internal space 154 so that the refrigeration oil is introduced into the internal space 154.
  • the eccentric direction of the first piston 21 with respect to the central axis of the first cylinder 22 and the eccentric direction of the second piston 41 with respect to the central axis of the second cylinder 42 May be different from each other.
  • the eccentric direction of the first piston 21 with respect to the central axis of the first cylinder 22 may be different from the eccentric direction of the second piston 41 with respect to the central axis of the second cylinder 42 by 180 °.
  • the casing 160 is filled with refrigeration oil. This is because the motor 108 is short-circuited if the insulation of the refrigeration oil is not sufficient.
  • airtight container 111 electronic parts must be stored inside!
  • the compressor 103 in which a relatively large amount of refrigeration oil is stored is disposed at a position higher than the fluid machine 110.
  • An oil leveling pipe 163 that communicates between the oil reservoir 161 of the compressor 103 and the inside of the sealed container 111 is provided. For this reason, if the amount of refrigeration oil in the airtight container 111 is reduced, the oil pressure accumulation 161 of the compressor 103 through the oil equalizing pipe 163, The refrigerating machine oil is automatically supplied to the sealed container 111.
  • the refrigerating machine oil supplied to the power recovery means 105 and the supercharger 102 returns to the oil reservoir 161 of the compressor 103 via the refrigerant pipe of the refrigerant circuit 109. Therefore, the amount of refrigerating machine oil stored in the oil sump 161 of the compressor 103 can always be maintained at a substantially constant amount.
  • the oil equalizing pipe 163 is provided with a throttle mechanism 164. With this throttle mechanism 164, the flow rate of the refrigerating machine oil to the sealed container 111 and the pressure in the sealed container 111 can be adjusted.
  • the configuration that connects the power recovery means 105 and the turbocharger 102 is the first implementation.
  • the power recovery means 105 and the supercharger 102 are stored in the sealed container 111.
  • the power recovery means 105 and the supercharger 102 are combined in a compact manner, and a compact refrigeration cycle apparatus 101 is realized.
  • the first closing member 115 is commonly used by the supercharger 102 and the power recovery means 105, a particularly compact refrigeration cycle apparatus 101 is realized.
  • both the suction path 27 and the discharge path 30 are formed in the second closing member 113.
  • the suction path 47 and the discharge path 50 are formed in the third closing member 114.
  • the thickness of the first closing member 115 can be reduced, and the further fluid machine 110 can be reduced. Is being made more compact. For example, if one of the suction path 27, the discharge path 30, the suction path 47, and the discharge path 50 is formed in the first closing member 115, the thickness of the first closing member 115 must be increased accordingly. . As a result, the fluid machine 110 increases in size. From the viewpoint of making the fluid machine 110 compact, all of the suction path 27, the discharge path 30, the suction path 47, and the discharge path 50 may be formed in the first closing member 115! /, .
  • the urging means 45 that presses the second partition member 44 is a compact spring installed in the narrow back space 155.
  • the biasing force of the biasing means 45 is insufficient depending on the operating conditions. If the urging force of the urging means 45 is insufficient, the suction working chamber 43a and the discharge working chamber 43b are connected, and refrigerant blows out. As a result, energy recovery efficiency decreases. For this reason, the pressure in the back space 155 is made larger than the pressure in the second working chamber 43, and the pressure at which the second cutting member 44 presses the second piston 41 is kept higher than the pressure in the second working chamber 43. It is preferable to do this.
  • the pressure with which the second partition member 44 presses the second piston 41 is higher than the pressure in the second working chamber 43! /, And as low as possible within the range! /.
  • the communication path 156 that connects the back space 155 and the relatively high-pressure discharge path 50 is formed in the cylinder 42.
  • the pressure in the back space 155 is equal to the pressure in the discharge path 50. Therefore, the back space 155 functions as a so-called gas spring, and the pressure at which the second partition member 44 presses the second piston 41 can be maintained at a level always higher than the pressure in the second working chamber 43. As a result, the blow-through of the refrigerant is suppressed, and the energy efficiency of the refrigeration cycle apparatus 101 can be further improved.
  • the supercharger 102 is a fluid pressure motor, the pressure difference between the suction working chamber 43a and the discharge working chamber 43b is not so large. For this reason, the pressure in the back space 155 is not so high. Therefore, excessive pressure is not applied between the second partition member 44 and the second piston 41, and wear of the second partition member 44 and the second piston 41 is suppressed. From the viewpoint of particularly effectively suppressing wear between the second partition member 44 and the second piston 41, it is particularly preferable that the pressure in the rear space 155 is lower than the pressure in the sealed container 111! ! /
  • the force that urges the second partition member 44 against the second piston 41 is most necessary when the second partition member 44 is farthest from the central axis of the shaft 12. That is, the second piston 41 is located at the top dead center, and the movement direction of the second partition member 44 changes. This is because the second partition member 44 is pressed by the second piston 41 until the second piston 41 reaches the top dead center, but after the second piston 41 reaches the top dead center, the second partition member 44 is pressed. Piston 41 circumference After the second piston 41 passes through the top dead center, the position of the portion of the surface in contact with the second partition member 44 approaches the central axis of the shaft 12, and then the second piston 41 and the second partition member 44 This is because the pressure between the two tends to decrease.
  • the communication path 156 is preferably formed so as to be closed by the second partition member 44 when the second partition member 44 slides in the direction of reducing the volume of the back space 155. That is, the force S is preferably such that when the second partition member 44 slides in the direction of reducing the volume of the back space 155, the back space 155 becomes a sealed space and a so-called gas spring is formed. According to this, when the second piston 41 that requires the most force to urge the second partition member 44 against the second piston 41 is located at the top dead center, the second partition member 44 is a gas spring. As a result, the second piston 41 is urged.
  • the back space 155 communicates with the suction path 47 having a relatively low pressure, so that the pressure in the back space 155 is lower than in the above embodiment. For this reason, the pressure between the second partition member 44 and the second piston 41 when the second piston 41 is located at the bottom dead center (the load acting on the contact) is further smaller than in the above embodiment. Therefore, in the first modification, when the second partition member 44 is slid in the direction in which the volume of the back space 155 is reduced, the second partition member is secured in the first modification so that the effect of the gas spring can be reliably obtained. It is particularly preferred to form it so as to be closed by 44. [0226] ⁇ Modification 2>
  • the back space 155 may be communicated with the inside of the sealed container 111 so as to have the same pressure as the pressure inside the sealed container 111. Then, the pressure in the sealed container 111 and the pressure in the back space 155 may be adjusted by adjusting the throttle mechanism 164 shown in FIG. In this case, from the viewpoint of suppressing the blow-through of the refrigerant from the high pressure side to the low pressure side in the supercharger 102 and suppressing excessive wear between the second partition member 44 and the second piston 41, The pressure in the rear space 155 is preferably between the pressure on the high pressure side and the pressure on the low pressure side of the refrigerant circuit 109.
  • the back space 155 may be a sealed space.
  • the pressure in the back space 155 is preferably higher than the pressure in the second working chamber 43.
  • the pressure in the back space 155 is preferably less than the pressure in the sealed container 111! /.
  • the eccentric direction of the first piston 21 with respect to the central axis of the first cylinder 22 and the eccentric direction of the second piston 41 with respect to the central axis of the second cylinder 42 are different from each other from the viewpoint of reducing the number of balance weights 152, etc. Good.
  • the eccentric direction of the first piston 21 with respect to the central axis of the first cylinder 22 and the eccentric direction of the second piston 41 with respect to the central axis of the second cylinder 42 are 180. °
  • the power to be different is preferable.
  • the eccentric direction of the first piston 21 with respect to the central axis of the first cylinder 22 is different from the eccentric direction of the second piston 41 with respect to the central axis of the second cylinder 42 by 180 °. In this case, when one starting torque becomes zero, the other starting torque becomes maximum. Therefore, the power recovery means 105 and the supercharger 102 can be activated particularly easily.
  • all of the suction path 27, the discharge path 30, the suction path 47, and the discharge path 50 may be formed in the first closing member 115! /.
  • the refrigerant circuit 9 may be filled with a refrigerant that does not enter a supercritical state on the high-pressure side.
  • the refrigerant circuit 109 may be filled with, for example, a fluorocarbon refrigerant.
  • balance weights 152a and 152b may be attached to the shaft 12.
  • the force S described in the example in which the refrigerant circuit 9 includes the compressor 103, the gas cooler 104, the power recovery means 105, the evaporator 106, and the supercharger 102 is A component other than the above components (for example, a gas-liquid separator or an oil separator) may be further included.
  • the force S described in the example in which the power recovery means 105 and the supercharger 102 are directly connected by the shaft 12, and the present invention is not limited to this configuration.
  • a generator may be connected to the power recovery means 105, while an electric motor is connected to the supercharger 102, and the electric motor that drives the supercharger 102 may be driven by the electric power obtained by the generator. .
  • the present invention is useful for refrigeration cycle apparatuses such as water heaters and air conditioning air conditioners.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Description

明 細 書
冷凍サイクル装置およびそれに用いる流体機械
技術分野
[0001] 本発明は、冷凍サイクル装置およびそれに用いる流体機械に関する。
背景技術
[0002] 一般的に、冷凍サイクル装置の冷媒回路は、冷媒を圧縮する圧縮機、冷媒を冷却 するガスクーラ、冷媒を膨張させる膨張弁および冷媒を加熱する蒸発器が順に接続 された構成となっている。この冷媒回路における冷凍サイクルでは、膨張弁において 冷媒が高圧から低圧へと膨張を伴いながら圧力降下し、その際に内部エネルギーが 放出される。冷媒回路の低圧側 (蒸発器側)と高圧側 (ガスクーラ側)との間の圧力差 が大きくなればなるほど、放出される内部エネルギーが大きくなるため、冷凍サイクル のエネルギー効率は低下してしまう。
[0003] このような問題に鑑み、膨張機において放出される冷媒の内部エネルギーを回収 する技術が種々提案されている。例えば、特開 2004— 44569号公報では、圧縮機 を駆動するための電動機の回転軸にロータリ式膨張機の回転軸を連結してエネルギ 一回収を行う技術が提案されている。
[0004] 図 26は、圧縮機 502を駆動するための電動機 506の回転軸に膨張機 504のシャ フト 507を連結してエネルギー回収を行う従来の冷凍サイクル装置 501の構成図で ある。
[0005] 冷凍サイクル装置 501は、図 26に示すように、ガスクーラ 503、膨張機 504、蒸発 器 505および圧縮機 502が順に接続されてなる冷媒回路を備えている。膨張機 504 は、回転軸としてシャフト 507を有するロータリ式またはスクロール式の膨張機である 。シャフト 507は圧縮機 502を駆動する電動機 506に連結されている。シャフト 507の 回転エネルギー(動力)が電動機 506の回転軸へ伝達される。このため、膨張機 504 において冷媒が高圧から低圧へと膨張を伴いながら圧力降下する際に放出される内 部エネルギーの一部は、シャフト 507の回転エネルギーに変換されて電動機 506に 伝達され、圧縮機 502を駆動するための動力の一部として利用される。したがって、 冷凍サイクル装置 501によれば高いエネルギー効率を実現することができる。
[0006] また、特開昭 57— 108555号公報には、固有の容積比(膨張比)を有さない媒質 駆動モータを用いて冷媒からエネルギー回収を行う技術が開示されている。図 30は 、特開昭 57— 108555号公報に開示された媒質駆動モータの構成と動作原理を示 す図である。媒質駆動モータ 700は、シリンダ 701と、シリンダ 701内で回転するロー タ 702 (ピストン)と、シリンダ 701とロータ 702との間に形成される作動室を吸入側作 動室 706aと吐出彻 J作動室 706bとに仕切るベーン 705とを備えている。シリンダ 701 には、吸入側作動室 706aに冷媒を吸入できるように吸入口 703が形成されるととも に、吐出側作動室 706bから冷媒を吐出できるように吐出口 704が形成されている。 吸入口 703および吐出口 704には弁が設けられて!/、な!/、が、吸入口 703から吐出口 704に冷媒が直接吹き抜けることがないように、ロータ 702の形状に工夫がなされて いる。具体的には、ロータ 702の外周面の一部力 S、シリンダ 701の内周面と同一の曲 率半径を有している。
[0007] 冷媒から動力回収を行う技術は、特開 2006— 266171号公報にも開示されている 。特開 2006— 266171号公報では、圧縮機の吸入側に設けた副圧縮機の回転軸と 、ロータリ式膨張機の回転軸とを連結して動力回収を行う技術が提案されている。
[0008] 図 27は、特開 2006— 266171号公報に記載された膨張機一体型圧縮機 608を 用いた動力回収型冷凍サイクル装置 601の構成図である。図 27に示すように、冷凍 サイクノレ装置 601は、畐 IJ圧縮機 602、主圧縮機 603、ガスクーラ 604、 S彭張機 605お よび蒸発器 606が順に接続されてなる冷媒回路を備えている。
[0009] 図 28は、膨張機一体型圧縮機 608の断面図である。図 28および図 27に示すよう に、膨張機一体型圧縮機 608は、相互に共通の回転軸 607を有する副圧縮機 602 と膨張機 605とにより構成されている。このため、膨張機 605により回収されたェネル ギ一は、回転軸 607を介して副圧縮機 602に供給され、副圧縮機 602の駆動力とし て利用される。したがって、図 27に示す冷凍サイクル装置 601によれば、高いエネル ギー効率を実現することができる。
[0010] 図 29は、膨張機 605の断面図である。図 29に示すように、膨張機 605は、ピストン 61 l aとべーン 61 lbとが一体形成されたスウィング型である。ベーン 61 lbには、シュ 一 612が取り付けられている。シユー 612には、作動室 614に連通する微細な冷媒 経路 613が形成されている。膨張機 605では、ベーン 611bが往復運動すると共に、 シユー 612が揺動運動する。このべーン 61 lbの往復運動とシユー 612の揺動運動と により冷媒経路 613が開閉され、冷媒の吸入タイミングが制御される。
[0011] 特開 2004— 44569号公報ゃ特開 2006— 266171号公報に開示された膨張機 は固有の容積比(吸入容積と吐出容積との比)を有している。このため、特開 2004— 44569号公報ゃ特開 2006— 266171号公報に開示された膨張機では、吐出圧力 は吸入圧力と膨張機の容積比とから自動的に決定される。ところ力 冷凍サイクルの 高圧と低圧とは作動条件により随時変化するものである。このため、膨張機の吐出圧 力(膨張機から吐出される冷媒の圧力)が冷凍サイクルの低圧と一致しない場合が生 じる。例えば、膨張機の吐出圧力が冷凍サイクルの低圧よりも低くなるような場合には 過膨張損失が生じ、膨張機における冷媒の内部エネルギーの回収効率が低下して しまうという問題がある。
[0012] すなわち、上記各文献に開示された膨張機を用いたのでは冷媒の内部エネルギー を効率的に回収することが難しい。
[0013] さらに、図 28および図 29に示す膨張機 605は構成が複雑であり、コストおよび生産 性に問題がある。膨張機 605によると、揺動運動するシユー 612に、微細な冷媒経路 613を形成する必要がある。このため、膨張機 605を用いると冷凍サイクル装置の構 成が複雑となり、コストの増大や生産性の低下を招きやすい。
[0014] 図 30に示す媒質駆動モータ 700は、固有の容積比を有さないので(容積比が 1)、 冷媒からのエネルギーの回収効率は、冷凍サイクルの圧力状態に左右されにくい。 また、構造がシンプルなので、コストや生産性の問題も招来しにくい。し力、しながら、こ の媒質駆動モータ 700によれば、図 30の行程 4および行程 5に示すように、シリンダ 701内に作動室 706が 1つのみ形成された状態がロータ 702の回転角で約 90° も 継続するうえ、行程 5から分かるように、吸入口 703および吐出口 704の両方がロー タ 702によって閉じられた期間が比較的長く続く。そのため、媒質駆動モータ 700を 動力回収手段として冷媒回路に組み込むと、冷媒回路における冷媒の脈動が極め て大きくなり、騒音および振動の発生原因となる。また、ピストンの潤滑不良も発生し やすい。
発明の開示
[0015] 本発明は、上記問題に鑑みてなされたものであり、その目的とするところは、高いェ ネルギー効率で運転可能でありながらも、シンプルな構成の冷凍サイクル装置を提 供することにある。
[0016] すなわち、本発明は、
冷媒が循環する冷媒回路を備えた冷凍サイクル装置であって、
冷媒回路は、
冷媒を圧縮する圧縮機と、
圧縮機により圧縮された冷媒を放熱させる放熱器と、
放熱器からの冷媒を吸入する吸入行程と、その吸入した冷媒を吐出する吐出行 程と、を実質的に連続して行う動力回収手段と、
動力回収手段により吐出された冷媒を蒸発させる蒸発器と、
を有する冷凍サイクル装置を提供する。
[0017] 他の側面において、本発明は、
冷媒を圧縮する圧縮機と、圧縮機により圧縮された冷媒を放熱させる放熱器と、冷 媒を蒸発させる蒸発器と、を有する冷媒回路を備えた冷凍サイクル装置に用いられ る流体機械であって、
放熱器からの冷媒を吸入する行程と、その吸入した冷媒を蒸発器側に吐出する行 程と、を実質的に連続して行う動力回収手段を備えた流体機械を提供する。
[0018] 本発明によれば、高!/、エネルギー効率で運転可能でありながらも、シンプルな構成 の冷凍サイクル装置を実現することができる。
図面の簡単な説明
[0019] [図 1]第 1の実施形態に係る冷凍サイクル装置の構成図
[図 2]第 1の実施形態における圧縮機、電動機および流体圧モータの構成を表す断 面図
[図 3]図 2における ΙΠ-ΠΙ矢視図
[図 4A]図 3における IV-IV矢視図 園 4B]冷媒の流れ方向を示す IV-IV矢視図
園 5]第 1の実施形態における流体圧モータの動作原理図
園 6]第 1の実施形態の冷凍サイクル装置における冷凍サイクルのモリエル線図 園 7]内部熱交換器を設けた冷凍サイクル装置の構成図
園 8]第 1の実施形態の流体圧モータにおける冷媒の比容積と圧力の関係を表すグ ラフ
園 9]第 2の実施形態に係る冷凍サイクル装置の構成図
園 10]第 2の実施形態の発電機を備えた流体圧モータの縦断面図
園 11]変形例 1の発電機を備えた流体圧モータの縦断面図
[図 12]変形例 2に係る流体圧モータの構成を表す断面図
園 13]変形例 2に係る流体圧モータの動作原理図
園 14]第 3の実施形態に係る冷凍サイクル装置の構成図
[図 15]図 14に示す流体機械の断面図
[図 16]図 15における D1— D1矢視図
[図 17]図 15における D2— D2矢視図
園 18]流体圧モータの動作原理図
園 19]過給機の動作原理図
[図 20]図 15における D3— D3矢視図
[図 21]圧縮機の概略構成を表す模式図
[図 22]冷凍サイクルのモリエル線図
園 23]過給機および圧縮機における冷媒の比容積と圧力の関係を表すグラフ [図 24A]流体圧モータにおける回収トルクとシャフトの回転角との関係を表すグラフ 園 24B]過給機における負荷トルクとシャフトの回転角との関係を表すグラフ 園 24C]差圧力が相殺される理由の説明図
園 25]変形例 1に係る過給機の断面図
園 26]従来の冷凍サイクル装置の構成図
園 27]図 26に示す従来の膨張機一体型圧縮機を用いた動力回収型冷凍サイクノレ 装置の構成図 [図 28]従来の膨張機一体型圧縮機の縦断面図
[図 29]図 28における D5— D5矢視図
[図 30]従来の媒質駆動モータの動作原理図
[図 31]従来のロータリ式流体機械の構成図
発明を実施するための最良の形態
[0020] 以下、本発明の実施形態について、図面を参照しながら説明する。ただし、本発明 は、以下に説明する実施形態によって限定解釈されるものではない。また、各実施形 態は、本発明の要旨を逸脱しない範囲内において、相互に組み合わせてもよい。
[0021] くく第 1の実施形態〉〉
第 1の実施形態は、その特性上、通常は非圧縮性の媒体に対してのみ用いられる 流体圧モータを、圧縮性の媒体を用いる冷凍サイクル装置に動力回収手段として適 用することにより、過膨張損失の発生を効果的に抑制し、冷凍サイクル装置の運転の エネルギー効率を向上しょうとするものである。
[0022] なお、本明細書において、「流体圧モータ」とは、吸入側の冷媒の圧力(吸入する冷 媒の圧力)と吐出側の冷媒の圧力(モータの吐出口が連結された配管内の冷媒の圧 力)との間の圧力差によって回転し、吸入した冷媒を体積変化させることなく吐出行 程を開始するモータをいう。詳細には、流体圧モータは、吸入した冷媒の吐出行程 が開始されるまでは、冷媒を体積変化させないモータをいう。なお、吐出行程が開始 された後は、換言すれば、流体圧モータの内部が低圧な吐出経路と連通した後は、 流体圧モータの内部が減圧され、冷媒が膨張する。
[0023] 本明細書で開示する技術は、二酸化炭素などの高圧側で超臨界状態となる冷媒を 用いる冷凍サイクル装置に特に有効なものである。高圧側で超臨界状態となる冷媒 を用いた場合、放熱器の出口における冷媒の密度と蒸発器の入口における冷媒の 密度との比で表される冷媒の膨張率は非常に小さい。この種の冷媒が膨張時に放出 するエネルギーは、圧力降下に基づいて放出される内部エネルギーが大部分を占 め、比容積の増加に基づいて放出される内部エネルギーは僅かであり、それは、場 合によっては過膨張損失よりも小さくなる。したがって、比容積の増加に基づいて放 出される内部エネルギーの回収をあえて断念し、過膨張損失の発生を防止できる構 成を採用した方力 S、放出される内部エネルギーの全量の回収を試みた構成よりもェ ネルギー回収効率の面で有利となりうる。
[0024] また、第 1の実施形態では、動力回収手段として適用する流体圧モータは、冷媒を 吸入する吸入行程と、その吸入した冷媒を吐出する吐出行程とを実質的に連続して 行うものである。具体的には、冷媒の吸入経路と吐出経路とが同時に閉じられる期間 が実質的にない、すなわち、実質的に全期間にわたって冷媒の吸入経路と吐出経 路とのうち少なくとも一方が開放されているように構成されている。
[0025] このため、圧力脈動の発生が抑制される。したがって、吸入経路を構成する吸入管 等の冷凍サイクル装置の構成部材の破損、トルク変動による流体圧モータの回転の 不安定化、振動および騒音の発生、といった問題が表面化しに《なる。なお、「吸入 経路と吐出経路とが同時に閉じられる期間が実質的にない」とは、流体圧モータのト ルク変動が生じない程度において瞬間的に吸入経路と吐出経路とが同時に閉じられ ることを含む概念である。
[0026] さらに、冷媒回路は、下記の如ぐ流体圧モータから吐出される冷媒の少なくとも一 部が気相となるように構成されている。吐出される冷媒の一部が気相となって圧縮性 を獲得することにより、間欠的な冷媒吐出によって生じる吐出流速の変動に起因する 水撃力が緩和される。この結果、流体圧モータのよりスムーズな稼働が可能になると ともに、振動および騒音をより低減することができる。
[0027] 以下、第 1の実施形態の構成およびその作用効果について、図 1ないし図 8を参照 しながら詳細に説明する。
[0028] 冷凍サイクル装置 1の概要
図 1は第 1の実施形態に係る冷凍サイクル装置 1の構成図である。冷凍サイクル装 置 1は、圧縮機 2と、第 1熱交換器 3と、流体圧モータ 4と、第 2熱交換器 5とが順に接 続されてなる冷媒回路を備えている。第 1の実施形態では、この冷媒回路に、高圧側 (圧縮機 2から第 1熱交換器 3を経て流体圧モータ 4に至る部分)において超臨界状 態となる冷媒 (具体的には二酸化炭素)が充填されている例について説明する。しか しながら、本発明において、冷媒は、高圧側において超臨界状態となるものに限定さ れるものではなぐ高圧側において超臨界状態とならない冷媒 (例えばフロン系冷媒 等)であってもよい。
[0029] 圧縮機 2は、電動機 6により駆動され、循環する冷媒を高温高圧に圧縮する。第 1 熱交換器 3は、冷媒と被加熱流体とを熱交換させることにより、圧縮機 2によって高温 高圧に圧縮された冷媒を冷却して低温高圧にする。流体圧モータ 4は、第 1熱交換 器 3によって低温高圧にされた冷媒を吸入し、第 2熱交換器 5側に吐出する。流体圧 モータ 4内において、吸入した冷媒の体積は、吐出行程が始まるまでは変化しない。 流体圧モータ 4の内部が低圧な吐出経路と連通し、吐出行程が始まると、流体圧モ ータ 4の内部は減圧され、流体圧モータ 4内の冷媒は膨張して低圧となる。第 2熱交 換器 5は、冷媒と被冷却流体とを熱交換させることによって、流体圧モータ 4により吐 出された低圧の冷媒を加熱する。そして、第 2熱交換器 5によって加熱された冷媒は 圧縮機 2に吸入され、圧縮機 2によって圧縮されて再び高温高圧となる。冷凍サイク ル装置 1は、このような冷媒の循環 (冷凍サイクル)を繰り返すことによって外気等を冷 却(冷房)したり加熱(暖房)したりするものである。
[0030] 冷凍サイクル装置 1の具体的構成
図 2は、第 1の実施形態における圧縮機 2、電動機 6および流体圧モータ 4の構成 を表す断面図(縦断面図)である。図 3は図 2における ΠΗΠ矢視図(横断面図)である 。図 4Aは図 3における IV-IV矢視図(横断面図)である。図 5は流体圧モータ 4の動作 原理図であり、シャフト 51の回転角 Θに関して 90° ごとに流体圧モータ 4の状態を 示している。
[0031] 図 2に示すように、本実施形態においては、圧縮機 2、電動機 6および流体圧モー タ 4は密閉容器 11の内部に一体的に収納され、コンパクト化が図られている。
[0032] 電動機 6および圧縮機 2の構成
密閉容器 11の内部空間 11aの中央には電動機 6が配置されている。詳細に、電動 機 6は密閉容器 11に対して回転不能に固定された円筒状の固定子 6bと、固定子 6b の内部に設けられ、固定子 6bに対して回転自在な回転子 6aとにより構成されている 。回転子 6aの平面視中央には軸方向に貫通する貫通孔が形成されている。その貫 通孔に回転子 6aから上下に延びるシャフト 7 (圧縮機シャフト)が揷入されて固定され ている。すなわち、シャフト 7は電動機 6を駆動させることにより回転するようになって いる。
[0033] 圧縮機 2は、スクロール式の圧縮機であり、密閉容器 11の内部空間 11aの上部に 配置固定されている。圧縮機 2は、固定スクロール 32と、旋回スクロール 33と、オル ダムリング 34と、車由受咅 才 35と、マフラー 36と、吸人管 37と、吐出管 38とを備免てい
[0034] 固定スクロール 32は密閉容器 11に対して変位不能に取り付けられている。固定ス クロール 32の下面には平面視渦巻き状(例えばインポリュート形状等)のラップ 32a が形成されている。旋回スクロール 33は固定スクロール 32に対向配置されており、そ の固定スクロール 32に対向する表面上に、ラップ 32aとかみ合う平面視渦巻き状(例 えばインポリュート形状等)のラップ 33aが形成されている。これらラップ 32aおよび 33 aの間に三日月状の作動室 (圧縮室) 39が区画形成されている。また、旋回スクロー ル 33の周辺部は、固定スクロール 32の周辺部を構成するように下側に突出する形 で設けられたスラスト軸受 32bに当接して支持されている。
[0035] 旋回スクロール 33の下面中央部には、回転子 6aから延びるシャフト 7の上端部に 設けられ、シャフト 7とは異なる中心軸を有する偏心部 7bが嵌合揷入されて固定され ている。また、旋回スクロール 33の下側にはオルダムリング 34が配置されている。こ のオルダムリング 34は旋回スクロール 33の自転を規制するものであり、このオルダム リング 34の機能により、旋回スクロール 33はシャフト 7の回転に伴ってシャフト 7の中 心軸から偏心した状態で旋回運動するように構成されてレ、る。
[0036] 旋回スクロール 33の旋回運動に伴い、ラップ 32aとラップ 33aとの間に形成された 作動室 39が、その容積を縮小しながら外側から内側に移動する。これにより、吸入管 37から作動室 39に吸入された冷媒が圧縮される。そして、圧縮された冷媒は、固定 スクロール 32の中央部に設けられた吐出孔 32cおよびマフラー 36の内部空間 36aを 経由し、固定スクロール 32および軸受部材 35を貫通して形成された流路 40から密 閉容器 11の内部空間 11aへと吐出される。吐出された冷媒は、内部空間 11aに一時 滞留される。その滞留期間中に冷媒に混入した潤滑用のオイル (冷凍機油)が重力 や遠心力により分離される。そして、オイルが分離された冷媒は吐出管 38から冷媒 回路へと吐出される。 [0037] なお、圧縮機 2は、シャフト 7を有し、そのシャフト 7を中心に回転動作を行う圧縮機 であれば、スクロール式の圧縮機に限定されない。例えば、圧縮機 2がロータリ式の 圧縮機であってもよい。
[0038] 一流体圧モータ 4の構成
図 2に示すように、電動機 6の下方には流体圧モータ 4が配置されている。本実施 形態では、流体圧モータ 4がロータリ式の流体圧モータにより構成されている例につ いて説明する。「ロータリ式」には、ピストンとベーンとが別部材で構成されたローリン グピストン式と、ピストンとベーンとが一体化されたスイング式との両方が含まれる。た だし、流体圧モータ 4は特にロータリ式に限定されるものではない。流体圧モータ 4は 、例えばスクロール式の流体圧モータであってもよい。
[0039] 流体圧モータ 4は、回転軸としてのシャフト 51を備えている。このシャフト 51は、組 立て時に継手 13によってシャフト 7と連結され、シャフト 7と同期して回転するようにな つている。シャフト 51の下端部にはオイルポンプ 14が設置されている。このオイルポ ンプ 14によって、シャフト 7および 51の各々に設けられた給油孔 7aおよび 51aを介し て圧縮機 2および流体圧モータ 4の軸受、隙間等に潤滑およびシールのためのオイ ルが供給されるようになっている。
[0040] シャフト 51は、シャフト 51の中心軸と異なる中心軸を有する偏心部 51bを備えてい る。この偏心部 51bは、偏心部 51bの外周に設けられた筒状(具体的には円筒状)の ピストン 53と嵌合している。このため、ピストン 53は、シャフト 51の回転に伴って偏心 回転運動するようになって!/、る。
[0041] ピストン 53は、シャフト 51の軸受を兼ねる第 1閉塞部材 56および第 2閉塞部材 57 により両端が閉塞され、内周面を有するシリンダ 52内に配置されている。シャフト 51 は、シリンダ 52の中心を貫通している。シリンダ 52の内部空間の中心軸はシャフト 51 の中心軸と一致している。このため、ピストン 53はシリンダ 52の中心軸に対して偏心 した状態でシャフト 51に軸支されている。そして、図 3に示すように、ピストン 53とシリ ンダ 52の内周面との間に容積 (総容積)が実質的に不変である作動室 60が区画形 成されている。
[0042] シリンダ 52の上死点側(図 3において左側)には、シリンダ 52の内部に連通する線 条の溝 52cが形成されている。その溝 52cに摺動変位自在に配置された板状の仕切 部材 54が配置されている。仕切部材 54の一方端は、仕切部材 54の後方に配置され たばね 55に連結されている。このばね 55によって仕切部材 54がピストン 53方向に 付勢されており、仕切部材 54の他方端が常時ピストン 53の外周面に押圧された状 態となつている。これにより、ピストン 53、シリンダ 52、第 1閉塞部材 56および第 2閉 塞部材 57により、区画形成された作動室 60が高圧側の吸入作動室 60aと低圧側の 吐出作動室 60bとに区画されている。
[0043] 吸入作動室 60aの仕切部材 54と隣接する部分には、図 2に示すように、吸入経路 6 1が開口している。この吸入経路 61はシリンダ 52の上側に位置する第 1閉塞部材 56 に形成されている。吸入経路 61は、吸入管 58と連通している。吸入経路 61を介して 、吸入管 58から吸入作動室 60aへと冷媒が導かれる。一方、吐出作動室 60bの仕切 部材 54と隣接する部分には、吐出経路 62が開口している。この吐出経路 62は、シリ ンダ 52の下側に位置し、吸入経路 61が形成された第 1閉塞部材 56よりも圧縮機 2か ら離れたところに位置する第 2閉塞部材 57に形成されている。吐出経路 62は、吐出 管 59と連通している。吐出経路 62を介して、吐出作動室 60bから吐出管 59へと冷媒 が排出される。
[0044] 図 3に示すように、吸入経路 61の吸入作動室 60aに対する開口 63 (吸入口 63)は 、吸入作動室 60aの仕切部材 54と隣接する部分から吸入作動室 60aの広がる方向( 図 3では反時計回り)に円弧状に延びる略扇状に形成されている。そして、ピストン 5 3が上死点に位置する瞬間においてのみ、吸入口 63はシリンダ 52によって完全に閉 鎖される。そして、ピストン 53が上死点に位置する瞬間を除いた全期間にわたって、 吸入口 63の少なくとも一部が開いた状態となる。具体的には、シリンダ 52の半径方 向に関して外側に位置する吸入口 63の端辺 63aが、平面視において上死点に位置 したときのピストン 53の外周面に沿った円弧状 (すなわち、ピストン 53の外周面と同じ 半径の円弧状)に形成されている。
[0045] また、吐出経路 62の吐出作動室 60bに対する開口 64 (吐出口 64)は、吐出作動室 60bの仕切部材 54と隣接する部分から吐出作動室 60bの広がる方向(図 3では時計 回り)に円弧状に延びる略扇状に形成されている。そして、ピストン 53が上死点に位 置する瞬間においてのみ、吐出口 64はシリンダ 52によって完全に閉鎖される。そし て、ピストン 53が上死点に位置する瞬間を除いた全期間にわたって、吐出口 64の少 なくとも一部が開いた状態となる。具体的には、シリンダ 52の半径方向に関して外側 に位置する吐出口 64の端辺 64aが、平面視において上死点に位置したときのピスト ン 53の外周面に沿った円弧状 (すなわち、ピストン 53の外周面と同じ半径の円弧状) に形成されている。
[0046] 図 31に、従来のロータリ式流体機械の構成を示す。この流体機械においては、吸 入孔 720および吐出孔 722が、それぞれ、シリンダ 724の内周面に形成されている。 ピストン 726が上死点に位置する瞬間において、吸入孔 720および吐出孔 722は、 完全に閉じられていない。そのため、この瞬間においては、作動室 728を通じて吸入 孔 720から吐出孔 722へと流体が直接吹き抜けることが可能である。このことは、当 該流体機械を動力回収手段として用いる際の効率的なエネルギー回収の妨げとなる
[0047] これに対し、本実施形態によれば、ピストン 53が上死点に位置する瞬間において のみ吸入口 63と吐出口 64との両方が完全に閉じられる。ピストン 53が上死点から少 しでも回転すると、作動室 60は直ちに吸入作動室 60aと吐出作動室 60bとに区画さ れ、吸入口 63が吸入作動室 60aのみに連通し、吐出口 64が吐出作動室 60bのみに 連通する。そのため、吸入経路 61から吐出経路 62への冷媒の吹き抜けが設計上起 こりえない。これにより、高効率なエネルギー回収が実現されている。
[0048] また、ピストン 53が上死点に位置する瞬間を除く全期間にわたって、吸入口 63が 開いて吸入経路 61が吸入作動室 60aに連通するとともに、吐出口 64も開いて吐出 経路 62が吐出作動室 60bに連通する。すなわち、吸入経路 61と吐出経路 62とが同 時に閉じられる期間が実質的に存在しない構成が実現されている。そのため、図 30 に示す従来の媒質駆動モータ 700のように、吸入口 703および吐出口 704の両方が ロータ 702によって閉じられた期間が長く続くことによる問題(主に脈動の問題)が生 じにくい。
[0049] なお、「ピストン 53が上死点に位置する瞬間」とは、仕切部材 54が溝 52cに最も押 し込まれた瞬間であり、流体圧モータ 4が図 5の ST1に示す状態になる瞬間である。 ただし、「ピストン 53が上死点に位置する瞬間」は、厳密にピストン 53が上死点に位 置している瞬間に限定されるものではなぐピストン 53が上死点に位置しているときを 挟んである程度の期間を有するものであってもよい。ピストン 53が上死点に位置して いるときのピストン 53の回転角( Θ )を 0° としたとき、例えば、ピストン 53の回転角( Θ )が 0° ± 5° 以内(または 0° ± 3° )である期間にわたって吸入口 63および吐出口 64の両方が閉じられるような構成も、吸入経路 61と吐出経路 62とが同時に閉じられ る期間が実質的にない構成に含まれるものとする。
[0050] なお、この第 1の実施形態では、吐出口 64の開口面積が吸入口 63の開口面積より も大きく設定されている。ただし、吸入口 63の開口面積と吐出口 64の開口面積との 関係は特に限定されるものではなぐ例えば、吸入口 63と吐出口 64とが相互に同じ 開口面積を有して!/、てもよ!/、。
[0051] 吸入経路 61の吸入作動室 60aに対する開口部 61cは、図 4Aに示すように、吸入 作動室 60a (高圧側の作動室)の広がる方向に延びるようにシリンダ 52の軸方向(図 4Aにおける上下方向)に対して傾斜して形成されている。一方、吐出経路 62の吐出 作動室 60bに対する開口部 62cは、吐出作動室 60b (低圧側の作動室)の広がる方 向に延びるようにシリンダ 52の軸方向に対して傾斜して形成されている。なお、図 4A に示すように、吐出経路 62の口径(内径または断面積)は吸入経路 61の口径よりも 大きく設定されている。
[0052] 一流体圧モータ 4の動作原理
次に、図 5を参照しながら流体圧モータ 4の動作原理について説明する。なお、図 5 には、 ST;!〜 ST4までの 4つの状態の図が示されている。 ST1は、ピストン 53の回転 角(Θ、図 5において反時計回り方向を正とする)が 0° 、 360° 、 720° であるときの 図である。 ST2は、ピストン 53の回転角( Θ )が 90° 、 450° であるときの図である。 ST3は、ピストン 53の回転角( Θ )力 80° 、 540° であるときの図である。 ST4は、 ピストン 53の回転角(Θ )が 270° 、 630° であるときの図である。
[0053] 図 5の ST1に示すように、ピストン 53が上死点に位置するとき(Θ =0° )、吸入口 6 3および吐出口 64はいずれもピストン 53によって閉じられており、作動室 60は吸入 経路 61および吐出経路 62の!/、ずれにも連通して!/、な!/、孤立した状態にある。この 状態からピストン 53が回転して Θが増加するに伴い、シリンダ 52の内周面、ピストン 5 3の外周面、第 1閉塞部材 56、第 2閉塞部材 57および仕切部材 54によって区画形 成される吸入作動室 60aが新規に形成されると共に、その容積が増大して!/、く (ST2 〜ST4)。吸入作動室 60aの容積拡大に伴って、第 1熱交換器 3側から供給される低 温高圧の冷媒が吸入経路 61を経由して吸入作動室 60aに流入していく。この吸入 行程は回転角( Θ )が 360° になるまで、すなわちピストン 53が再び上死点に位置す るまで fiわれる。
[0054] ピストン 53が再び上死点に位置した瞬間、ピストン 53によって吸入口 63および吐 出口 64の両方が閉じられ、 ST1に示すように、作動室 60は孤立する。その後、さら にピストン 53が回転することによって吐出口 64が開き、孤立した作動室 60が今度は 吐出経路 62と連通する。このように、ピストン 53が上死点に位置する瞬間のみ作動 室 60が孤立し、吸入行程と吐出行程とが実質的に連続して行われる。吸入された冷 媒は作動室 60において圧縮や膨張されることなく作動室 60から吐出される。吸入容 積と吐出容積とは、実質的に等しくなる。
[0055] 冷媒回路内に配置された圧縮機 2の機能により、流体圧モータ 4よりも第 2熱交換 器 5側は第 1熱交換器 3側よりも低圧にされている。上記孤立した作動室 60が吐出経 路 62と連通して作動室 60が吐出作動室 60bとなった瞬間に、吐出作動室 60b内の 低温高圧の冷媒が低圧側に吸引される。すると、吐出作動室 60b内の圧力は瞬間的 に低下し、冷媒回路の低圧側の圧力と等しくなる。ピストン 53の回転角( Θ )が大きく なるに伴って吐出作動室 60b内の冷媒が順次冷媒回路の低圧側に吐出されていく。 そして、ピストン 53が再び上死点に位置したとき( Θ = 720° )吐出作動室 60bは消 滅する。この吐出行程と同期して、吸入作動室 60aが再び形成され、次の吸入行程 が行われる。以上のように、吸入行程開始から吐出行程終了までの一連の行程は、 ピストン 53が 720° 回転すると完了する。
[0056] この流体圧モータ 4は、高圧の吸入作動室 60aと低圧の吐出作動室 60bとの間の 圧力差により力を受け、それによりピストン 53とピストン 53に連結されたシャフト 51と を反時計回りに回転させる。シャフト 51の回転トルクはシャフト 51に連結されたシャフ ト 7に伝達され、圧縮機 2において冷媒を圧縮するための動力の一部として利用され [0057] 冷凍サイタノレー
次に、冷凍サイクル装置 1の冷凍サイクルについて図 6を参照して詳細に説明する 。図 6中に示す点 Eは臨界点である。 ELは飽和液線である。 EGは飽和ガス線である 。 Lは臨界点(点 E)を通る等圧線である。 Rは臨界点(点 E)を通る等温線である。
P T
図 6に示すモリエル線図上で、飽和ガス線 EGより右側かつ等圧線 Lより下の領域は
P
気相である。飽和液線 ELより左側かつ等温線 Rより下側の領域は液相である。等圧
T
線し、等温線 Rよりも上側の領域は超臨界相である。飽和液線 ELより右側かつ飽和 p τ
ガス線 EGよりも左側の領域は気液二相である。なお、図 6中の ABCDの閉ループは 図 1で示した動力回収型の冷凍サイクルを示している。 ABCDの閉ループ中の AB は圧縮機 2における冷媒の状態変化を示している。 BCは第 1熱交換器 3における冷 媒の状態変化を示している。 CDは流体圧モータ 4における冷媒の状態変化を示して いる。 DAは第 2熱交換器 5における冷媒の状態変化を示している。
[0058] 圧縮機 2におレ、て、冷媒は低温低圧の気相(点 A)から高温高圧の超臨界相(点 へと圧縮される。そして、冷媒は第 1熱交換器 3において高温高圧の超臨界相(点 B) 力、ら低温高圧の液相(点 C)まで冷却される。その後、冷媒は、流体圧モータ 4におい て低温高圧の液相(点 C)から飽和液(点 S)を経て気液二相( D)まで膨張 (圧力降 下)する。この圧力降下 (膨張)の行程において、点 Cから点 Sまでは冷媒が非圧縮性 の液相であるため、冷媒の比容積はそれほど変化しない。その一方、点 Sから点 Dの 間は液相から気相への相変化による急激な比容積の変化を伴う圧力降下、すなわち 、膨張を伴う圧力降下が起きる。そして、冷媒は第 2熱交換器 5において加熱され、 気液二相(点 D)から蒸発を伴!/、ながら気相(点 A)へと変化する。
[0059] 流体圧モータ 4における気液二相の圧力降下(SD)の圧力差は、単相(液相)の圧 力降下(CS)の圧力差に比べて十分に小さい。点 Cがより低ェンタルピー側の点 C' になると気液二相の圧力降下が SDから S'D'へと変化することから分かるように、この 傾向は流体圧モータ 4の吸入側の点 Cが低ェンタルピー側に移るほど顕著である。
[0060] ところで、暖房用途や給湯用途など冷凍サイクルの高温側熱源を利用する場合は 、冷房用途などの低温側熱源を利用する場合に比べて、第 1熱交換器 3によって加 熱されるべき被加熱媒体 (例えば空気や水)の温度が低くなる。このため、点 Cが低 ェンタルピー側に移る傾向がある。また、図 7 (電動機 6およびシャフト 7は省略)に示 すように、圧縮機 2の吸入側と流体圧モータ 4の吸入側に内部熱交換器 18を設けた 場合、圧縮機 2に吸入されるべき冷媒と、流体圧モータ 4に吸入されるべき冷媒とが 熱交換する。すると、図 6に示すように、点 Cが点 C'に、点 Aが点 A'にそれぞれ移動 し、冷凍サイクルは A'B'C'D'の閉ループで特定される状態になる。このため、気液 二相での圧力降下(SD)の圧力差が液相での圧力降下(CS)の圧力差よりも小さく なる傾向がより顕著になる。また、この傾向は、冷凍サイクルの冷媒としてフロンや炭 化水素を用いる場合よりも二酸化炭素を用いる方がより顕著となる。
[0061] 一作用および効果
まず、動力回収手段として従来の膨張機に代えて流体圧モータ 4を用いることによ り得られる作用効果について、図 8に示す例を用いて説明する。
[0062] 図 8は、流体圧モータ 4における冷媒の比容積と圧力の関係を表すグラフである。
図 8中、点 C、点 D、点 Sは、それぞれ、図 6の点 C、点 D、点 Sに対応している。なお、 図 8は、冷凍サイクル装置 1を給湯機に用いた場合の計算機シミュレーションの結果 を示している。点 Cにおける圧力は 9. 77MPaであり、温度は 16. 3°Cである。点 Dに おける圧力は 3. 96MPaである。点 Cと点 Dの間は等エントロピーであると仮定してい
[0063] 図 8に示すように、非圧縮性である液相での圧力降下(CS)では、比容積がほぼ一 定のまま圧力だけが低下する。また、気液二相での圧力降下(SD)では、液相から気 相への相変化を伴うために比容積が大きく増加する。すなわち、液相(CS)における 圧力降下の方が、気液二相(SD)における圧力降下よりも数倍大きくなる。
[0064] 図 8の FCSDHGで囲まれる部分の面積は、単位質量あたりの冷媒から回収可能な 動力の理論値に相当する。この FCSDHGで囲まれる部分の面積に相当する理論回 収動力 W は、 FCHGで囲まれた圧力降下による回収動力 Wと、 CSDHで囲まれた
all p
比容積の増加による回収動力 W (膨張による回収動力)との合計で表される。図 8に
e
示すモデルでは、実際に Wが W の約 96%、 Wが W の約 4%となる。このことから
p all e all
分かるように、理論回収動力 W に占める膨張による回収動力 Wはごく僅かであり、
all e その大半が圧力降下による回収動力 wである。
P
[0065] 本実施形態において動力回収手段として用いた流体圧モータ 4は、吸入した冷媒 を膨張させることなく吐出するものであるため、理論回収動力 W のうち回収動力 W all p 分だけしか回収することができない。それに対して、動力回収手段として従来の膨張 機を用いた場合は、理論回収動力 W のすベて、すなわち回収動力 Wをも回収する
ail e
ことが可能となる。
[0066] しかしながら、上述のように、理論回収動力 W に占める膨張による回収動力 Wの
all e 割合はごく僅かであり、圧力降下による回収動力 Wがその大半を占めている。このた
P
め、流体圧モータ 4により回収可能な動力は、従来の膨張機により回収可能な動力と 実際上大差なぐ流体圧モータ 4を用いた場合でも効率的に動力を回収することが 可能である。特に、冷凍サイクルの高圧側において冷媒が超臨界相となるような場合 や、暖房や給湯などの高温側熱源を利用する場合においては、理論回収動力 W に
all 占める膨張による回収動力 Wは非常に少ない。そのため、本実施形態のように動力
e
回収手段として流体圧モータ 4を用いたとしても、高!/、エネルギー効率で運転可能な 冷凍サイクル装置 1を実現することができる。
[0067] また、動力回収手段として固有の容積比を有する膨張機を用いた場合には、過膨 張損失が生じる虞がある。これに対して、本実施形態のように、動力回収手段として 流体圧モータ 4を用いた場合は過膨張損失が生じる虞がなレ、。
[0068] 過膨張損失が生じると、図 8において破線で示す DJIで囲まれる部分の面積に相当 するエネルギーが過膨張損失として失われる。例えば、図 8に示すように、冷媒の比 容積が点 Cの 2. 0倍になる点ほで膨張したとすると、冷媒は点 Dから点 Iの間で冷凍 サイクルの低圧側の圧力よりも低い圧力まで一旦過膨張する。その後、吐出行程の 開始時に冷凍サイクルの低圧である点 Jまで圧力が上昇し、点 Gまでの吐出行程が行 われる。この冷媒の過膨張に起因する損失 (過膨張損失 W )は、例えば図 8に示す
loss
ケースでは、理論回収動力 W の約 3%に相当し、 W の約 4%に相当する Wに匹敵
all all e する。また、過膨張損失 W の大きさは冷凍サイクル装置 1の運転条件によって異な
loss
り、運転条件によっては過膨張損失 W が膨張による回収動力 Wと同等あるいはそ
loss e
れ以上となる場合もある。 [0069] このように、理論上は Weも回収可能な膨張機を用いた場合でも、実際上は過膨張 損失によってそれほど大きな動力を安定的に回収することができない。それに対して 、動力回収手段として流体圧モータ 4を用いた場合は、理論回収動力 W の大部分
all
を回収することができ、且つ冷媒の過膨張に起因する損失 w も生じることがない。
loss
そのため、冷凍サイクル装置 1の運転状態に関わらず、安定的に動力を回収すること ができる。場合によっては従来の膨張機を動力回収手段として用いる場合よりも大き な動力の回収が可能となる。言い換えれば、流体圧モータ 4を動力回収手段として用 いることによって、動力の平均回収効率をより向上することが可能となる。
[0070] また、流体圧モータ 4は従来の膨張機と比較してシンプルな構成を有しているため 、流体圧モータ 4を動力回収手段として用いることによって冷凍サイクル装置 1のコス トを低減させること力 Sできる。さらに、摺動部やシール部の摩擦による損失や冷媒の 漏れによる損失も低減することができる。
[0071] また、本実施形態では、吸入経路 61と吐出経路 62とが同時に閉じられる期間が実 質的にないため、吸入経路 61への冷媒の吸入および吐出経路 62からの冷媒の吐 出が、断続的ではなく実質的に連続して行われる。また、本実施形態の流体圧モー タ 4では、吸入作動室 60aの容積は正弦波状に変化し、且つピストン 53が上死点に 位置し、吸入作動室 60aの容積変化率がゼロとなる瞬間のみ吸入口 63が閉じられる 。換言すれば、吸入口 63は吸入作動室 60aが吸込む冷媒の流速がゼロとなる瞬間 だけ閉じられることになる。さらに、吐出作動室 60bの容積は正弦波状に変化し、且 つピストン 53が上死点に位置し、吐出作動室 60bの容積変化率がゼロとなる瞬間の み吐出口 64が閉じられる。換言すれば、吐出口 64は吐出作動室 60bが吐出する冷 媒の流速がゼロとなる瞬間だけ閉じられることになる。したがって、圧力脈動およびそ れに起因する水撃現象が効果的に抑制される。その結果、冷凍サイクル装置 1の構 成部材の破損、振動および騒音が抑制される。また、圧縮機 2の回転トルク変動も低 減され、安定した冷凍サイクル装置 1の運転が可能となる。
[0072] さらに、流体圧モータ 4から吐出される冷媒の少なくとも一部は気相である。具体的 には、流体圧モータ 4からは気液二相の冷媒が吐出される。詳細には、吐出行程の 開始と同時に冷媒は減圧し、一部の冷媒が液相から気相へと相変化し気液二相とな る。このため、本実施形態においても瞬間的には冷媒の吐出が停止されるため、若 干の水撃力が生じる。し力もながら、吐出される気相の冷媒がクッションとなり、その水 撃力は緩和される。したがって、流体圧モータ 4の動作をよりスムーズにすることがで きる。また、振動および騒音をより低減することができる。
[0073] 図 31で説明したように、シリンダ 724の内周面に吸入口 720および吐出口 722が 形成された構成では、ピストン 726が上死点に位置する瞬間において吸入口 720お よび吐出口 722の両方を完全に閉鎖できない。それに対して、本実施形態では、吸 入口 63が第 1閉塞部材 56に形成され、吐出口 64が第 2閉塞部材 57に形成されて いる。したがって、ピストン 53が上死点に位置する瞬間において吸入口 63および吐 出口 64の両方を完全に閉鎖し、吸入口 63から吐出口 64への吹き抜けを効果的に 抑制することが可能となる。その結果、効率的な動力回収が可能となり、より高い効率 で運転可能な冷凍サイクル装置 1を実現することが可能となる。
[0074] また、吸入口 63が第 2閉塞部材 57に形成されていてもよいし、吐出口 64が第 1閉 塞部材 56に形成されていてもよい。言い換えれば、吸入経路 61が第 2閉塞部材 57 に形成されていてもよぐ吐出経路 62が第 1閉塞部材 56に形成されていてもよい。さ らに、吸入口 63および吐出口 64の両方力 第 1閉塞部材 56または第 2閉塞部材 57 に形成されていてもよい。言い換えれば、吸入経路 61および吐出経路 62の両方が、 第 1閉塞部材 56または第 2閉塞部材 57に形成されて!/、てもよ!/、。このような構成によ つても、上記と同様の効果が得られる。
[0075] なお、ピストン 53が上死点に位置する瞬間において吸入口 63および吐出口 64の 両方を完全に閉鎖可能な構成は、シリンダ 52の半径方向に関して外側に位置する 吸入口 63の端辺 63aを、平面視において上死点に位置したときのピストン 53の外周 面に沿った円弧状に形成すると共に、シリンダ 52の半径方向に関して外側に位置す る吐出口 64の端辺 64aを、平面視において上死点に位置したときのピストン 53の外 周面に沿った円弧状に形成することにより実現される。
[0076] 本実施形態では、図 4Aを参照して説明したように、開口部 61cが吸入作動室 60a の広がる方向に延びるようにシリンダ 52の軸方向に対して傾斜して形成されている。 言い換えれば、吸入経路 61の吸入作動室 60aとの接続部分である開口部 61cは、 吸入作動室 60aに近づくにつれて、シャフト 51の中心軸と仕切部材 54の長手方向 に平行な中心線とを含む基準面 BHから遠ざかるように、第 1閉塞部材 56の内部で 斜めに延びている。これにより、図 4Bに破線矢印で示すように、冷媒が吸入作動室 6 Oaに吸入される際の冷媒の流動方向の変化を小さくでき、冷媒が吸入作動室 60aに スムーズに吸入される。よって冷媒の吸入行程における冷媒の流動方向が急激に変 化することによる圧力損失を抑制でき、動力回収の効率を向上することができる。
[0077] 同様に、開口部 62cも、吐出作動室 60bの広がる方向に延びるようにシリンダ 52の 軸方向に対して傾斜して形成されている。言い換えれば、吐出経路 62の吐出作動 室 60bとの接続部分である開口部 62cは、吐出作動室 60bから遠ざかるにつれて、 シャフト 51の中心軸と仕切部材 54の長手方向に平行な中心線とを含む基準面 BH に近づくように、第 2閉塞部材 57の内部で斜めに延びている。これにより、図 4Bに破 線矢印で示すように、冷媒が吐出作動室 60bから吐出される際の冷媒の流動方向の 変化を小さくでき、冷媒が吐出作動室 60bからスムーズに吐出される。よって冷媒の 吐出行程における冷媒の流動方向が急激に変化することによる圧力損失を抑制でき 、動力回収の効率を向上することができる。
[0078] また、吸入経路 61を第 1閉塞部材 56に形成する一方、吐出経路 62を第 1閉塞部 材 56とは異なる第 2閉塞部材 57に形成するようにしたことにより、平面視において比 較的近接する吸入経路 61と吐出経路 62との干渉が防止され、設計自由度が向上す る。この構成は、図 4Aを参照して説明したように、吸入経路 61および吐出経路 62を シリンダ 52の軸に対して斜めに形成するときに特に有効である。
[0079] また、比較的内部の冷媒の温度が高い吸入経路 61が圧縮機 2と近い第 1閉塞部材 56に形成され、比較的内部の冷媒の温度が低い吐出経路 62が圧縮機 2から離れた 第 2閉塞部材 57に形成されている。そのため、圧縮機 2から流体圧モータ 4への熱移 動を最小限に抑えることができる。したがって、第 1熱交換器 3や第 2熱交換器 5にお ける熱交換量が減少して冷凍サイクルの COPが低下することを効果的に抑制するこ と力 Sできる。
[0080] 本実施形態では、吐出経路 62の開口面積が、吸入経路 61の開口面積よりも大き い。言い換えれば、吐出口 64の開口面積が吸入口 63の開口面積よりも大きく設定さ れている。吸入された冷媒よりも吐出される冷媒の方が大きな比容積を有するため、 冷媒が吸入される際の圧力損失よりも冷媒が吐出される際の圧力損失が大きくなる。 吐出口 64を大きくする構成によれば、冷媒が吐出される際の圧力損失を効果的に低 減でき、総合的に冷媒の圧力損失を低減することができる。したがって、動力回収の ¾]串をより向上すること力できる。
[0081] 流体圧モータ 4から冷媒が吐出される際の圧力損失をより効果的に抑制する観点 から、複数の吐出口 64を設けるようにしてもよい。また、同様の観点から、図 4Aを参 照して説明したように、吐出経路 62の口径を吸入経路 61の口径よりも大きくすること も効果的である。
[0082] なお、本実施形態では、弁機構のような吸入機構を設けない 1シリンダのロータリ式 の流体圧モータ 4を採用している。これにより、従来のスクロール式膨張機や多段口 一タリ式膨張機、吸入機構を備えた 1シリンダのロータリ式膨張機等を用いる場合に 比べてシンプルな構成で動力回収を行うことが可能となる。したがって、低コストであ ると共に、メカの摺動部が減ることによる摩擦損失の低減により機械効率を向上させ ること力 S可能である。また、ロータリ式圧縮機の部品の流用が容易であり、さらなる低 コスト化も期待できる。
[0083] くく第 2の実施形態〉〉
上記第 1の実施形態では、流体圧モータ 4のシャフト 51が電動機 6のシャフト 7に連 結されており、流体圧モータ 4により回収されたエネルギーを直接圧縮機 2に供給す る例について説明した。しかしながら、本発明はこの構成に限定されるものではなぐ 例えば流体圧モータ 4により回収されたエネルギーを一旦電気エネルギーに変換す るようにしてもよい。第 2の実施形態では、そのような構成例について説明する。なお 、本実施形態の説明において、図 3は上記第 1の実施形態と共通に参照する。また、 実質的に同じ機能を有する構成要素を上記第 1の実施形態と共通の参照符号で説 明し、説明を省略する。ただし、以下に詳細に説明するように、本実施形態では、流 体圧モータ 4への冷媒の吸入方向が可変に構成されているため、吸入管 58を第 1接 続管 58、吐出管 59を第 2接続管 59、吸入経路 61を第 1経路 61、吐出経路 62を第 2 経路 62として説明する。 [0084] 図 9は第 2の実施形態に係る動力回収式の冷凍サイクル装置 8の構成図である。図 10は第 2の実施形態の発電機 15を備えた流体圧モータ 4の縦断面図である。
[0085] 上述の通り、本実施形態に係る冷凍サイクル装置 8は、流体圧モータ 4のシャフト 5 1と電動機 6のシャフト 7とが連結されていない点で上記第 1の実施形態に係る冷凍サ イタル装置 1と異なる。本実施形態では、図 9および図 10に示す通り、流体圧モータ 4のシャフト 51は発電機 15に連結されている。
[0086] 具体的に、発電機 15は、図 10に示すように、密閉容器 16内に流体圧モータ 4と共 に収納されてコンパクト化が図られている。発電機 15は、密閉容器 16に回動不能且 つ変位不能に取り付けられた円筒状の固定子 15bを備えている。固定子 15bの内部 には、固定子 15bの内径よりも若干小さな外径を有する円筒状の回転子 15aが固定 子 15bに対して回転自在に配置されている。この回転子 15aの内部には、流体圧モ ータ 4のシャフト 51が回動不能且つ上下動不能に揷入されて固定されている。そして 、流体圧モータ 4が駆動され、シャフト 51が回転するに伴って、回転子 15aが固定子 15bに対して相対的に回転し、それにより発電される仕組みになっている。なお、この 発電機 15は、シャフト 51が時計回りに回転した場合および反時計回りに回転した場 合の!/、ずれにぉレ、ても発電できるように設計されて!/、る。
[0087] 図 9および図 10には図示していないが、発電機 15は圧縮機 2を駆動させる電動機 6への給電ラインに電気的に接続されており、発電機 15によって発電された電力は 電動機 6に供給されて圧縮機 2を駆動させる動力の一部として使用されるようになつ ている。
[0088] 図 9に示すように、本実施形態では、冷媒回路内に、圧縮された冷媒の流れる方向 を切り替えることができる切り替え機構としての四方弁 9が設けられている。このため、 圧縮機 2により圧縮されて押し出された冷媒の流れる方向が可変となっている。
[0089] 具体的に、四方弁 9には、圧縮機 2の吸入口(吸入管 37)および吐出口(吐出管 38 )と、第 1熱交換器 3と、第 2熱交換器 5とが接続されている。そして、四方弁 9を操作 することによって、圧縮機 2の吐出口を第 1熱交換器 3に接続する一方、圧縮機 2の 吸入口を第 2熱交換器 5に接続する第 1の接続状態(図 9にお!/、て実線で示す接続 状態)と、圧縮機 2の吐出口を第 2熱交換器 5に接続する一方、圧縮機 2の吸入口を 第 1熱交換器 3に接続する第 2の接続状態(図 9において破線で示す接続状態)とを 切り替えること力 Sできる。
[0090] 第 2の接続状態においては、圧縮機 2により圧縮され高温高圧になった冷媒は第 2 熱交換器 5に供給される。この場合は、第 2熱交換器 5がガスクーラ (放熱器)として機 能し、冷媒は第 2熱交換器 5において冷却され低温高圧となる。低温高圧となった冷 媒は流体圧モータ 4の第 2接続管 59から第 2経路 62を経由して作動室 60に流入す る。作動室 60内の冷媒は第 1経路 61を経由して第 1接続管 58から第 1熱交換器 3側 に吐出される。そして、第 1熱交換器 3において加熱されて気化した冷媒が再び圧縮 機 2に戻るようになつている。したがって、この第 2の接続状態では、第 1の接続状態と は逆の方向にシャフト 51が回転する。
[0091] 第 1の接続状態においては、上記第 1の実施形態と同様に、第 1熱交換器 3がガス クーラ (放熱器)として機能し、第 2熱交換器 5が蒸発器として機能する。一方、第 2の 接続状態においては、上記第 1の実施形態とは逆に、第 1熱交換器 3が蒸発器として 機能し、第 2熱交換器 5がガスクーラ (放熱器)として機能する。したがって、この第 2 の実施形態に係る冷凍サイクル装置 8によれば、例えば冷暖房装置等の冷却(冷房 )と加熱(暖房)との両方が可能になる。
[0092] 以上のように、第 1の接続状態から第 2の接続状態へと接続状態を切り替えると、圧 縮機 2のシャフト 7の回転方向は変化しないものの、流体圧モータ 4のシャフト 51の回 転方向は変化し、シャフト 7とシャフト 51との回転方向が逆になる。このため、第 1の実 施形態のように、流体圧モータ 4のシャフト 51が圧縮機 2のシャフト 7と連結されており 、常にシャフト 7とシャフト 51とが連動して回転する構成では、第 1の接続状態と第 2 の接続状態を切り替えることはできない。したがって、第 1の実施形態に四方弁 9を 1 つ導入するのみでは圧縮機 2により圧縮された冷媒の流れる方向を可変にすること はできない。
[0093] それに対して、本実施形態のように、シャフト 7とシャフト 51とが独立して回転するよ うに構成されている場合は、シャフト 7とシャフト 51とを相互に逆の回転方向に回転さ せることも可能となる。すなわち、四方弁 9を設けると共に、シャフト 51を発電機 15に 接続して発電させる構成とすることで、動力回収が可能で、冷却 (冷房)と加熱 (暖房 )との両方が可能な冷暖房装置 (冷暖房エアコン等)などを実現することが可能となる
[0094] なお、固有の容積比を有する膨張機では、作動室の容積を拡大させる方向に冷媒 を流す必要があり、逆方向に冷媒を流すことができない。このため、膨張弁を膨張機 に置き換えるのみでは、本実施形態のような複数の接続状態を切り替え可能な構成 を実現することはできない。それに対して、流体圧モータでは、冷媒の流れる方向が 決まっていないため、上述のように、流体圧モータを膨張弁の替わりに用いるだけで 、高効率に内部エネルギーを回収することができる冷暖房エアコン等を容易に実現 すること力 Sできる。また、冷媒の流通方向を切り替えるための四方弁が 1つで足りると いう利点もある。
[0095] 以上、第 1および第 2の実施形態として、 1シリンダのロータリ式の流体圧モータを動 力回収手段として用いた例について説明した。し力もながら、第 1の状態と第 2の状 態とを切り替える切り替え機構は四方弁に限定されるものではぐ例えばブリッジ回路 等であってもよい。
[0096] また、流体圧モータは、この構成に限定されるものではなぐ例えば多シリンダの口 一タリ式の流体圧モータであってもよい。さらには、ロータリ式以外の方式の流体圧モ ータ、例えば、スクロール式の流体圧モータであってもよい。
[0097] 以下の変形例 1では、第 2の実施形態の変形例として 2シリンダ式のロータリ式流体 圧モータ用いる例について説明する。また、変形例 2では、第 1および第 2の実施形 態において説明したロータリ式の流体圧モータに代用可能なスクロール式の流体圧 モータについて説明する。なお、以下の変形例 1の説明において、図 9を上記第 2の 実施形態と共通に参照する。また、実質的に同じ機能を有する構成要素を上記第 1 および第 2の実施形態と共通の参照符号で説明し、説明を省略する。
[0098] くく変形例 1〉〉
図 11は変形例 1の発電機 15を備えた流体圧モータ 4aの縦断面図である。流体圧 モータ 4aは、 2つのシリンダ 52aおよび 52bを備えた 2シリンダタイプのものである。
[0099] 本変形例 1では、シャフト 51には、 2つの偏心部 51blと 51b2と力 S設けられている。
偏心部 51Mにはピストン 53aが偏心した状態で取り付けられている。ピストン 53aは 閉塞部材 56aおよび 57aによって両端が閉塞されたシリンダ 52aに収納されている。 ピストン 53a、閉塞部材 56a、閉塞部材 57aおよびシリンダ 52aによって作動室 60cが 区画形成されている。作動室 60cは、ばね 55aによってピストン 53a方向に付勢され た仕切部材 54aによって二つの空間(吸入作動室および吐出作動室)に区画されて いる。
[0100] 一方、偏心部 51b2にはピストン 53bが偏心した状態で取り付けられている。ピストン 53bは閉塞部材 56b (閉塞部材 57aと共通)および 57bによって両端が閉塞されたシ リンダ 52bに収糸内されている。ビス卜ン 53b、閉塞咅 才 56b、 57bおよびシリンダ 52bに よって作動室 60dが区画形成されている。作動室 60dは、ばね 55bによってピストン 5 3b方向に付勢された仕切部材 54bによって二つの空間(吸入作動室および吐出作 動室)に区画されている。
[0101] 閉塞部材 56aには第 1経路 61が形成されている。この第 1経路 61は第 1熱交換器 3に一端が接続された第 1接続管 58の他端に接続されている。また、第 1経路 61は 上記仕切部材 54aによって 2つに区画された作動室 60cの一方および上記仕切部 材 54bによって 2つに区画された作動室 60dの一方に連通している。
[0102] 閉塞部材 57aには第 2経路 62aが形成されている。この第 2経路 62aは第 2熱交換 器 5に一端が接続された第 2接続管 59aの他端に接続されている。また、第 2経路 62 aは上記仕切部材 54aによって 2つに区画された作動室 60cの他方に連通している。 一方、閉塞部材 57bには第 2経路 62bが形成されている。この第 2経路 62bは、第 2 接続管 59bに連結されている。また、第 2経路 62bは上記仕切部材 54bによって 2つ に区画された作動室 60dの他方に連通している。なお、第 2接続管 59bは、第 2接続 管 59aと共に第 2熱交換器 5に接続されている。
[0103] 図 9を参照して説明した第 1の接続状態においては、図 11中に実線矢印で示すよ うに、第 1熱交換器 3からの冷媒が第 1接続管 58から第 1経路 61を介して両作動室 6 Ocおよび 60dに供給される。そして、作動室 60c内の冷媒は第 2経路 62aを経由して 第 2接続管 59aから第 2熱交換器 5側に吐出される。一方、作動室 60d内の冷媒は第 2経路 62bを経由して第 2接続管 59bから第 2熱交換器 5側に吐出される。第 2の接 続状態においては、破線矢印で示す方向に冷媒が流れる。 [0104] このように、変形例 1に係る流体圧モータ 4aは、上記仕切部材 54aによって 2つに 区画された作動室 60cの一方および上記仕切部材 54bによって 2つに区画された作 動室 60dの一方の両方には共通した第 1経路 61が連通するように構成されている。 ただし、作動室 60cおよび 60dのそれぞれに異なる第 1経路が連通するように構成さ れていてもよい。すなわち、それぞれに専用の第 1経路を設けるようにしてもよい。
[0105] この変形例 1において、複数のピストン 53a, 53bは、各々の上死点の位置がシャフ ト 51の回転方向において等間隔に位置するように配置されている。具体的に、 2つの ピストン 53a, 53bは、各々の上死点の位置がシャフト 51の回転方向において等間 隔に位置するように、対向して配置されている。このため、ピストン 53aの位相とピスト ン 53bの位相とは相互に 1/2周期ずれるようになつている。
[0106] 上記構成によれば、ピストン 53aと 53bとで互いにトルク変動を打ち消すことができ る。したがって、流体圧モータ 4aの回転がより安定化し、振動および騒音を低減する ことができる。特に、流体圧モータでは、吐出行程の開始時に冷媒圧力が吸入圧力 力、ら吐出圧力まで急激に変化するために、膨張行程を有する膨張機と比較して吐出 の振動および騒音が大きくなりやすいので、本変形例 1のように 2シリンダにすること による効果が顕著である。
[0107] なお、シリンダを 3つ以上設けてもよぐその場合は、各々の上死点の位置がシャフ ト 51の回転方向において等間隔に位置するように配置することが好ましい。具体的 に、 3つのシリンダを設けた場合は、互いに 120° ずつずらして配置することが好まし い。
[0108] くく変形例 2〉〉
本変形例 2では、スクロール式の流体圧モータの構成例について図 12および図 13 を参照しながら説明する。なお、本変形例 2の説明において、実質的に同じ機能を有 する構成要素を上記第 1および第 2の実施形態並びに変形例 1と共通の参照符号で 説明し、説明を省略する。
[0109] スクロール式の流体圧モータ 4bの構成
図 12に示すように、流体圧モータ 4bは、旋回スクローノレ 71と、固定スクローノレ 72と 、オルダムリング 34aと、軸受部材 35aと、吸入管 73と、吐出管 74とを備えている。 [0110] 固定スクロール 72は密閉容器 16に対して変位および回転不能に取り付けられて いる。固定スクロール 72の上面には、インポリュート形状のラップ 72aが形成されてい る。一方、旋回スクロール 71は固定スクロール 72に対向配置されており、その固定ス クロール 72に対向する表面上には、ラップ 72aとかみ合うインポリュート形状のラップ 71 aが形成されている。これらラップ 72aおよび 71aによって作動室 75が区画形成さ れる。
[0111] 旋回スクロール 71の上部中央部には、シャフト 51の下端部に設けられ、シャフト 51 とは異なる中心軸を有する偏心部が嵌合揷入されて固定されている。また、旋回スク ロール 71の上側にはオルダムリング 34aが配置されている。このオルダムリング 34a は旋回スクロール 71の自転を規制するものであり、このオルダムリング 34aの機能に より、旋回スクロール 71はシャフト 51の回転に伴ってシャフト 51の中心軸から偏心し た状態で旋回運動するように構成されている。
[0112] 固定スクロール 72には、作動室 75の平面視における中央部に開閉自在に開口す ると共に、密閉容器 16外に連通する吸入管 73に接続された吸入経路 72bが形成さ れている。この吸入経路 72bを経由して冷媒が作動室 75内に吸入されるようになつ ている。
[0113] スクロール式の流体圧モータ 4bの動作原理
次に、流体圧モータ 4bの動作原理について図 13を参照しながら説明する。なお、 図 13には、 S 1〜S4までの 4つの状態の図が示されている。シャフト 51の回転角を φ で表し、 S 1に示す状態を φ = 0° として説明する。
[0114] S 1に示す状態において、ラップ 72aの始端がラップ 71aの内周面に接し、ラップ 71 aの始端がラップ 72aの内周面に接する。固定スクロール 72と旋回スクロール 71とに よって、吸入経路 72bに連通する吸入作動室 75aが形成される。
[0115] 旋回スクロール 71が旋回し、回転角 φが大きくなるにつれて、旋回スクロール 71と 固定スクロール 72との接点 P1および P2は外側に移動していき、吸入経路 72bから 冷媒を吸入しながら吸入作動室 75aの容積が拡大していく(吸入行程: S2〜S4参照
)。
[0116] そして、再び S 1に示す状態に戻ったときに、すなわち φ = 360° となったときに吸 入行程が終了する。詳細に、接点 P1は固定スクロール 72のラップ 72aの終端に位置 する一方、接点 P2は旋回スクロール 71のラップ 71aの終端に位置する。且つ、 S 1に 示すように、旋回スクロール 71と固定スクロール 72とは接点 P1および P2よりも内側 の接点 P3および P4においても接触する。これにより、吸入作動室 75aは、吸入経路 72bと遮断され、三日月状の孤立した 2つの作動室 75bとなる。
[0117] 回転角 φ力 ¾60° を超えると、接点 P1および P2が消滅する。すなわち、旋回スクロ ール 71のラップ 71aの終端が固定スクロール 72のラップ 72aから離れる一方、固定 スクロール 72のラップ 72aの終端が旋回スクロール 71のラップ 71aから離れる。これ により、孤立した 2つの作動室 75bのそれぞれが吐出管 74に連通し、吐出作動室 75 cとなる。そして、回転角 φ力 ¾60° 力 さらに増大するに従って吐出作動室 75cの 容積が減少していき、これに伴って吐出作動室 75c内の冷媒が吐出管 74から吐出さ れていく(吐出行程)。
[0118] 以上説明したように、 φ =0° となった瞬間だけ、旋回スクロール 71と固定スクロー ル 72とが接点 P1〜P4の 4点で接して作動室が孤立する。それ以外の期間において は、旋回スクロール 71と固定スクロール 72とが接点 P1および P2の 2点のみで接し、 吸入作動室 75aは常に吸入経路 72bに連通している一方、吐出作動室 75bは常に 吐出管 74に連通する。このような構成によって、スクロール式の流体圧モータ 4bが実 現される。
[0119] 本変形例 2において説明したスクロール式の流体圧モータ 4bを冷凍サイクル装置 の動力回収手段として適用した場合でも、上記実施形態において説明したロータリ 式の流体圧モータを適用した場合と同様に効率的な動力回収が実現される。よって 、高レ、エネルギー効率で運転可能な冷凍サイクル装置を実現することが可能となる。
[0120] また、本変形例 2において説明したスクロール式の流体圧モータ 4bも、上記第 1、 2 の実施形態で説明したロータリ式の流体圧モータ 4と同様に、冷媒の流れる方向が 決まっていない。すなわち、スクロール式の流体圧モータ 4bも、吸入口と吐出口とを 入れ替えて運転することができる。したがって、第 2の実施形態の流体圧モータ 4に 換えて本変形例 2の流体圧モータ 4bを用いることも可能である。
[0121] 《第 3の実施形態》 本実施形態は、蒸発器と圧縮機との間に、流体圧モータからなる過給機を配置し、 その過給機を流体圧モータからなる動力回収手段により回収された動力によって駆 動する構成としたことを特徴とする。このように、冷凍サイクル装置に動力回収手段と 、その動力回収手段により回収される動力によって駆動される過給機を配置すること により、冷凍サイクル装置のエネルギー効率を向上させることができる。また、過給機 と動力回収手段との両方を、圧縮機や膨張機と比較して比較的シンプルな構成の流 体圧モータにより構成することで、冷凍サイクル装置の構成をシンプルかつ安価にす ること力 Sできる。本実施形態で用いる流体圧モータと、先の実施形態で説明した流体 圧モータの基本構造は共通である。
[0122] 以下、本実施形態に係る冷凍サイクル装置について、図 14〜図 25を参照しながら 詳細に説明する。
[0123] 冷凍サイクル装置 101の概要
図 14は実施形態に係る冷凍サイクル装置 101の構成図である。冷凍サイクル装置 101は、圧縮機 103と、ガスクーラ 104と、動力回収手段 105と、蒸発器 106と、過給 機 102と、を有する冷媒回路 109を備えている。冷媒回路 109に充填される冷媒は、 例えば二酸化炭素やハイド口フルォロカーボンである。二酸化炭素のように冷凍サイ クルの高圧側で超臨界状態となる冷媒を使用する場合に本発明が特に優れた効果 を発揮することは、先に述べた通りである。
[0124] 圧縮機 103は、圧縮機構 103a (圧縮機本体)と、圧縮機構 103aに接続された電動 機 108と、圧縮機構 103aおよび電動機 108を収納するケーシング 160と、を備えて いる。圧縮機構 103aは、電動機 108により駆動される。圧縮機構 103aは、冷媒回路 109内を循環する冷媒を高温高圧に圧縮する。圧縮機構 103aは、例えば、スクロー ル式の圧縮機であってもよ!/、し、ロータリ式の圧縮機であってもよ!/、。
[0125] ガスクーラ (放熱器) 104は、圧縮機 103に接続されている。ガスクーラ 104は、圧 縮機 103により圧縮された冷媒を放熱させる。言い換えれば、ガスクーラ 104は、圧 縮機 103により圧縮された冷媒を冷却する。ガスクーラ 104により冷却された冷媒は 低温高圧になる。
[0126] 動力回収手段 105は、ガスクーラ 104に接続されている。動力回収手段 105は、流 体圧モータにより構成されている。具体的に、動力回収手段 105は、ガスクーラ 104 からの冷媒を吸入する行程と、その吸入した冷媒を吐出する行程と、を実質的に連 続して行う。すなわち、動力回収手段 105は、ガスクーラ 104によって低温高圧にさ れた冷媒を吸入し、実質的に体積変化させることなく蒸発器 106側に吐出する。ここ で、圧縮機 103により、動力回収手段 105を挟んでガスクーラ 104側が比較的高圧と なっており、蒸発器 106側が比較的低圧となっている。このため、動力回収手段 105 に吸入された冷媒は動力回収手段 105から吐出されるときに膨張し、低圧となる。
[0127] 蒸発器 106は、動力回収手段 105に接続されている。蒸発器 106は、動力回収手 段 105からの冷媒を加熱して蒸発させる。
[0128] 過給機 102は、蒸発器 106と圧縮機 103との間に配置されている。過給機 102は、 シャフト 12によって動力回収手段 105に連結されている。過給機 102は、動力回収 手段 105により回収された動力により駆動される。過給機 102は、動力回収手段 105 と同様に流体圧モータにより構成されている。過給機 102は、蒸発器 106からの冷媒 を吸入する行程と、その吸入した冷媒を圧縮機 103側に吐出する行程と、を実質的 に連続して行う。過給機 102は、蒸発器 106からの冷媒を吸入し、実質的に体積変 化させることなく圧縮機 103側に吐出する。蒸発器 106からの冷媒は、過給機 102か ら吐出されることによって予備的に昇圧される。予備的に昇圧された冷媒は圧縮機 1 03によって圧縮されて再び高温高圧となる。
[0129] 冷凍サイクル装置 101の具体的構成
一流体機械 110—
図 15に示すように、動力回収手段 105と過給機 102とは、ひとつの流体機械 110 を構成している。流体機械 110は、冷凍機油により満たされた密閉容器 111を有して いる。動力回収手段 105と過給機 102とは、この密閉容器 111内に配置されている。 これにより、冷凍サイクル装置 101のコンパクト化が図られている。
[0130] (動力回収手段 105の構成)
動力回収手段 105は、密閉容器 111の下部に配置されている。なお、本実施形態 では、動力回収手段 105がロータリ式の流体圧モータによって構成されている例に ついて説明する。ただし、動力回収手段 105は、ロータリ式以外の流体圧モータ、例 えば図 12に示すスクロール式の流体圧モータによって構成されていてもよい。
[0131] 動力回収手段 105は、第 1閉塞部材 115と、第 2閉塞部材 113とを備えている。第 1 閉塞部材 115と第 2閉塞部材 113とは、相互に対向している。第 1閉塞部材 115と第 2閉塞部材 1 13との間には、第 1シリンダ 22が配置されている。第 1シリンダ 22は略 円筒形の内部空間を有する。その第 1シリンダ 22の内部空間は、第 1閉塞部材 115 と第 2閉塞部材 113とによって閉塞されている。
[0132] シャフト 12は、第 1シリンダ 22内を第 1シリンダ 22の軸方向に貫通している。シャフト 12は第 1シリンダ 22の中心軸上に配置されている。シャフト 12は、上記第 2閉塞部材 113と、後述する第 3閉塞部材 114とによって支持されている。シャフト 12には、シャ フト 12を軸方向に貫通する給油孔 12aが形成されている。この給油孔 12aを経由し て、密閉容器 111内の冷凍機油力 過給機 102や動力回収手段 105の軸受ゃ隙間 等に供給される。
[0133] 第 1ピストン 21は、第 1シリンダ 22の内周面と第 1閉塞部材 115と第 2閉塞部材 113 とにより区画形成された略円筒形状の内部空間内に配置されている。第 1ピストン 21 は、シャフト 12の中心軸に対して偏心した状態でシャフト 12にはめ込まれている。具 体的には、シャフト 12は、シャフト 12の中心軸と異なる中心軸を有する偏心部 12bを 備えている。この偏心部 12bに筒状の第 1ピストン 21がはめ込まれている。このため、 第 1ピストン 21は、第 1シリンダ 22の中心軸に対して偏心している。したがって、第 1ピ ストン 21は、シャフト 12の回転に伴って偏心回転運動する。
[0134] この第 1ピストン 21と第 1シリンダ 22の内周面と第 1閉塞部材 115と第 2閉塞部材 11 3とにより、第 1シリンダ 22内に第 1作動室 23が区画形成されている(図 16も参照)。 第 1作動室 23は、第 1ピストン 21がシャフト 12と共に回転しても容積が実質的に不変 である。
[0135] 図 16に示すように、第 1シリンダ 22には、第 1作動室 23に開口する線条の溝 22aが 形成されている。この線条溝 22aには、板状の第 1仕切部材 24が摺動自在に揷入さ れている。第 1仕切部材 24と線条溝 22aの底部との間には、付勢手段 25が配置され ている。この付勢手段 25によって、第 1仕切部材 24は第 1ピストン 21の外周面に向 けて押圧されている。これにより、第 1作動室 23は、 2つの空間に区画されている。具 体的に、第 1作動室 23は、高圧側の吸入作動室 23aと、低圧側の吐出作動室 23bと に区画されている。
[0136] なお、付勢手段 25は、例えば、ばねによって構成すること力 Sできる。具体的に、付 勢手段 25は、圧縮コイルばねであってもよい。
[0137] また、付勢手段 25は、所謂ガスばね等であってもよい。すなわち、第 1仕切部材 24 、第 1仕切部材 24の背面空間の体積を縮小する方向にスライドしたときに、その背 面空間内の圧力が、第 1作動室 23の圧力よりも高くなるように設定されており、その 圧力差により、第 1仕切部材 24に対して第 1ピストン 21方向への押圧力が作用する ようにしてもよい。例えば、第 1仕切部材 24の背面空間を密閉空間とし、背面空間の 体積が第 1仕切部材 24の後退により減少したときに第 1仕切部材 24に反力が加わる ようにしてもよい。勿論、付勢手段 25を、圧縮コイルばねやガスばね等の複数種類の ばねにより構成してもよい。なお、第 1作動室 23の圧力とは、吸入作動室 23aの圧力 と吐出作動室 23bの圧力との平均圧力をいうものとする。背面空間とは、第 1仕切部 材 24の後端と線条溝 22aの底部との間に形成される空間をいう。
[0138] 吸入作動室 23aの第 1仕切部材 24と隣接する部分には、図 16に示すように、吸入 経路 27が開口している。図 15に示すように、この吸入経路 27は第 1シリンダ 22の下 側に位置する第 2閉塞部材 113に形成されている。図 15に示すように、吸入経路 27 は吸入管 28と連通している。図 14に示すガスクーラ 104からの高圧の冷媒は、吸入 管 28および吸入経路 27を介して吸入作動室 23aに導かれる。
[0139] 吸入経路 27 (第 1吸入経路)の吸入作動室 23aに対する開口(吸入口) 26は、吸入 作動室 23aの第 1仕切部材 24と隣接する部分から吸入作動室 23aの広がる方向に 円弧状に延びる略扇状に形成されている。吸入口 26は、第 1ピストン 21が上死点に 位置するときにおいてのみ、第 1ピストン 21によって完全に閉鎖される。そして、第 1 ピストン 21が上死点に位置する瞬間を除いた全期間にわたって、吸入口 26の少なく とも一部が吸入作動室 23aに露出している。具体的には、平面視において、吸入口 2 6の外側端辺 26aが、上死点に位置する第 1ピストン 21の外周面に沿った円弧状に 形成されている。言い換えれば、外側端辺 26aは、第 1ピストン 21の外周面と略同一 の半径の円弧状に形成されている。 [0140] 一方、吐出作動室 23bの第 1仕切部材 24と隣接する部分には、吐出経路 30 (第 1 吐出経路)が開口している。図 15に示すように、この吐出経路 30も、吸入経路 27と 同様に、第 2閉塞部材 113に形成されている。吐出経路 30は、吐出管 31と連通して いる(図 15参照)。これにより、吐出作動室 23b内の冷媒は、吐出経路 30および吐出 管 31を介して蒸発器 106側に吐出される。なお、図 15では、吐出管 31は、吸入管 2 8に対して紙面背面側に位置するため、符号 31と符号 28とを併記している力 S、この 記載は、吸入管 28と吐出管 31とが共通する管により構成されていることを意味するも のではない。
[0141] 吐出経路 30の吐出作動室 23bに対する開口(吐出口 ) 29は、吐出作動室 23bの 第 1仕切部材 24と隣接する部分から吐出作動室 23bの広がる方向に円弧状に延び る略扇状に形成されている。吐出口 29は、第 1ピストン 21が上死点に位置するときに おいてのみ、第 1ピストン 21によって完全に閉鎖される。そして、第 1ピストン 21が上 死点に位置する瞬間を除いた全期間にわたって、吐出口 29の少なくとも一部が吐出 作動室 23bに露出している。具体的には、平面視において、第 1シリンダ 22の半径 方向に関して外側に位置する吐出口 29の外側端辺 29aが、上死点に位置する第 1 ピストン 21の外周面に沿った円弧状に形成されている。言い換えれば、外側端辺 29 aは、第 1ピストン 21の外周面と略同一の半径の円弧状に形成されている。
[0142] このように、動力回収手段 105は、先の実施形態で説明したロータリ式の流体圧モ ータとほぼ同一の構成を有している。上死点についても、第 1の実施形態で説明した 通りである。
[0143] 上記のように吸入経路 27と吐出経路 30とを形成することによって、図 18の左上図( ST1)に示すように、第 1ピストン 21が上死点に位置する瞬間においてのみ吸入口 2 6と吐出口 29との両方が完全に閉じられる。すなわち、第 1作動室 23がひとつとなる 瞬間に吸入口 26と吐出口 29との両方が完全に閉じられる。より詳細には、吸入作動 室 23aが吐出経路 30と連通する瞬間まで、吸入作動室 23aは吸入経路 27と連通し ている。そして、吸入作動室 23aが吐出経路 30と連通して吸入作動室 23aが吐出作 動室 23bとなった瞬間以降は、吸入口 26が第 1ピストン 21によって閉じられる。この ため、吸入経路 27から吐出経路 30への冷媒の吹き抜けが抑制される。したがって、 高効率な動力回収が実現される。
[0144] なお、吸入経路 27から吐出経路 30への冷媒の吹き抜けを完全に禁止する観点か らは、第 1ピストン 21が上死点に位置する瞬間において、吸入口 26と吐出口 29との 両方が閉じられることが好ましい。ただし、第 1ピストン 21が上死点に位置する瞬間に ぉレ、て、吸入口 26と吐出口 29との一方のみしか閉じられて!/、な!/、場合であっても、 吸入口 26が閉じられるタイミングと、吐出口 29が閉じられるタイミングとの差力 シャ フト 12の回転角にして、 10。 程度よりも小さければ、吸入経路 27と吐出経路 30との 間で実質的に吹き抜けは生じない。つまり、吸入口 26が閉じられるタイミングと、吐出 口 29が閉じられるタイミングとの差力 S、シャフト 12の回転角にして、 10。 程度よりも小 さく設定することで、吸入経路 27から吐出経路 30への冷媒の吹き抜けを抑制するこ とができる。これらは、第 1の実施形態や第 2の実施形態にも共通していえる。
[0145] 上述のように、吸入作動室 23aは、常に吸入経路 27と連通している。また、吐出作 動室 23bは、常に吐出経路 30に連通している。言い換えれば、動力回収手段 105 において、冷媒を吸入する行程と、その吸入した冷媒を吐出する行程とが実質的に 連続して行われる。このため、吸入した冷媒は、実質的に体積変化することなく動力 回収手段 105を通過する。
[0146] (動力回収手段 105の動作)
図 18は、動力回収手段 105の動作原理図であり、 ST;!〜 ST4までの 4つの状態の 図が示されている。図 18と図 5との対比から明らかなように、動力回収手段 105の動 作原理については、第 1の実施形態における流体圧モータの説明を援用できる。
[0147] 第 1ピストン 21が回転し、吸入口 26が開くと、図 18 (ST2〜ST4)に示すように、吸 入口 26から流入する高圧の冷媒によって吸入作動室 23aの容積が増大して!/、く。こ の吸入作動室 23aの容積拡大に伴って第 1ピストン 21に加わる回転トルクがシャフト 12の回転駆動力の一部となる。
[0148] 動力回収手段 105からみて蒸発器 106側は、ガスクーラ 104側よりも低圧である。
吐出作動室 23b内の低温高圧の冷媒は蒸発器 106側に吸引され、吐出作動室 23b 力も吐出経路 30へと吐出される。吐出作動室 23bと吐出経路 30とが連通し、吐出行 程が始まると、冷媒の比容積が急増する。この冷媒の吐出行程によって、第 1ピストン 21に加わる回転トルクもシャフト 12の回転駆動力の一部となる。すなわち、シャフト 1 2は、吸入作動室 23aへの高圧の冷媒の流入と、吐出行程における冷媒の吸引とに よって回転する。そして、このシャフト 12の回転トルクは、後に詳述するように、過給 機の動力として利用される。
[0149] (過給機 102の構成)
図 15に示すように、過給機 102は、密閉容器 111内において、動力回収手段 105 よりも上方に配置されている。このように比較的高温の過給機 102を、比較的低温の 動力回収手段 105よりも上方に配置することにより、過給機 102と動力回収手段 105 との間の熱交換を抑制することができる。ただし、過給機 102を動力回収手段 105よ りも下方に配置してもよい。
[0150] 過給機 102はシャフト 12により動力回収手段 105と連結されている。本実施形態で は、過給機 102がロータリ式の流体圧モータによって構成されている例について説 明する。ただし、過給機 102は、ロータリ式以外の流体圧モータ、例えば図 12に示す スクロール式の流体圧モータによって構成されてレ、てもよレ、。
[0151] 過給機 102の基本的な構成は、上述の動力回収手段 105と略同一である。具体的 に、過給機 102は、図 15に示すように、第 1閉塞部材 115と、第 3閉塞部材 114とを 備えている。第 1閉塞部材 115は、過給機 102と動力回収手段 105との共通の構成 部材である。第 1閉塞部材 115と第 3閉塞部材 114とは、相互に対向している。具体 的には、第 3閉塞部材 114は、第 1閉塞部材 115の第 2閉塞部材 113と対向する面と は反対側の面と対向している。第 1閉塞部材 115と第 3閉塞部材 114との間には、第 2シリンダ 42が配置されている。第 2シリンダ 42は略円筒形の内部空間を有する。そ の第 2シリンダ 42の内部空間は、第 1閉塞部材 115と第 3閉塞部材 114とによって閉 塞されている。
[0152] シャフト 12は、第 2シリンダ 42内を第 2シリンダ 42の軸方向に貫通している。シャフト 12は第 2シリンダ 42の中心軸上に配置されている。第 2ピストン 41は、第 2シリンダ 4 2の内周面と第 1閉塞部材 115と第 3閉塞部材 114とにより区画形成された略円筒形 状の内部空間内に配置されている。第 2ピストン 41は、シャフト 12の中心軸に対して 偏心した状態でシャフト 12にはめ込まれている。具体的には、シャフト 12は、シャフト 12の中心軸と異なる中心軸を有する偏心部 12cを備えて!/、る。この偏心部 12cに筒 状の第 2ピストン 41がはめ込まれている。このため、第 2ピストン 41は、第 2シリンダ 42 の中心軸に対して偏心している。したがって、第 2ピストン 41は、シャフト 12の回転に 伴って偏心回転運動する。
[0153] なお、第 2ピストン 41が取り付けられた偏心部 12cは、第 1ピストン 21が取り付けら れた偏心部 12bと略同一の方向に偏心している。このため、本実施形態では、第 1シ リンダ 22の中心軸に対する第 1ピストン 21の偏心方向と、第 2シリンダ 42の中心軸に 対する第 2ピストン 41の偏心方向とは、相互に略同一である。
[0154] この第 2ピストン 41と第 2シリンダ 42の内周面と第 1閉塞部材 115と第 3閉塞部材 11 4とにより、第 2シリンダ 42内に第 2作動室 43が区画形成されてレ、る(図 17も参照)。 第 2作動室 43は、第 2ピストン 41がシャフト 12と共に回転しても容積が実質的に不変 である。なお、「略同一」とは、完全に同一である場合だけでなぐ ± 2〜3° 程度の誤 差がある場合も含むとレ、う趣旨である。
[0155] 図 17に示すように、第 2シリンダ 42には、第 2作動室 43に開口する線条の溝 42aが 形成されている。この線条溝 42aには、板状の第 2仕切部材 44が摺動自在に揷入さ れている。第 2仕切部材 44と線条溝 42aの底部との間には、付勢手段 45が配置され ている。この付勢手段 45によって第 2仕切部材 44は第 2ピストン 41の外周面に対し て押しつけられている。これにより、第 2作動室 43は、 2つの空間に区画されている。 具体的に、第 2作動室 43は、高圧側の吸入作動室 43aと、低圧側の吐出作動室 43 bとに区画されている。
[0156] なお、付勢手段 45は、例えば、ばねによって構成すること力 Sできる。具体的に、付 勢手段 45は、圧縮コイルばねであってもよい。
[0157] また、付勢手段 45は、所謂ガスばね等であってもよい。すなわち、第 2仕切部材 44 が背面空間 155の体積を縮小する方向にスライドしたときに、背面空間 155内の圧 力が、第 2作動室 43の圧力よりも高くなるように設定されており、その背面空間 155と 第 2作動室 43との間の圧力差により、第 2仕切部材 44に対して第 2ピストン 41方向 への押圧力が作用するようにしてもよい。例えば、背面空間 155を密閉空間として、 背面空間 155の体積が第 2仕切部材 44の後退により減少したときに第 2仕切部材 44 に反力が加わるようにしてもよい。また、第 2仕切部材 44がシャフト 12の中心軸に最 も接近したときには背面空間 155が密閉空間ではないものの、第 2仕切部材 44があ る程度第 2ピストン 41から離れたときに背面空間 155が密閉空間となるようにしてもよ い。勿論、付勢手段 45を、圧縮コイルばねやガスばね等の複数種類のばねにより構 成してもよい。なお、第 2作動室 43の圧力とは、吸入作動室 43aの圧力と吐出作動 室 43bの圧力との平均圧力をいうものとする。背面空間 155とは、第 2仕切部材 44の 後端と線条溝 42aの底部との間に形成される空間をいう。
[0158] 吸入作動室 43aの第 2仕切部材 44と隣接する部分には、図 17に示すように、吸入 経路 47 (第 2吸入経路)が開口している。図 15に示すように、この吸入経路 47は第 2 シリンダ 42の上側に位置する第 3閉塞部材 114に形成されている。吸入経路 47は、 吸入管 48と連通している。蒸発器 106 (図 1参照)からの冷媒は、吸入管 48および吸 入経路 47を介して吸入作動室 43aに導かれる。
[0159] 吸入経路 47の吸入作動室 43aに対する開口(吸入口) 46は、吸入作動室 43aの 第 2仕切部材 44と隣接する部分から吸入作動室 43aの広がる方向に円弧状に延び る略扇状に形成されている。吸入口 46は、第 2ピストン 41が上死点に位置するときに おいてのみ、第 2ピストン 41によって完全に閉鎖される。そして、第 2ピストン 41が上 死点に位置する瞬間を除いた全期間にわたって、吸入口 46の少なくとも一部が吸入 作動室 43aに露出している。具体的には、平面視において、第 2シリンダ 42の半径方 向に関して外側に位置する吸入口 46の外側端辺 46aが、上死点に位置する第 2ピ ストン 41の外周面に沿った円弧状に形成されている。言い換えれば、外側端辺 46a は、第 2ピストン 41の外周面と略同一の半径の円弧状に形成されている。
[0160] 一方、吐出作動室 43bの第 2仕切部材 44と隣接する部分には、吐出経路 50 (第 2 吐出経路)が開口している。図 15に示すように、この吐出経路 50も、吸入経路 47と 同様に、第 3閉塞部材 114に形成されている。吐出経路 50は、吐出管 151と連通し ている。これにより、吐出作動室 43b内の冷媒は、吐出経路 50および吐出管 151を 介して圧縮機 103側に吐出される。なお、図 15では、吐出管 151は、吸入管 48に対 して紙面背面側に位置するため、符号 151と符号 48とを併記している力 この記載 は、吸入管 48と吐出管 151とが共通する管により構成されていることを意味するもの ではない。
[0161] 吐出経路 50は、連通経路 156を介して背面空間 155に接続されている。具体的に 、本実施形態において、この連通経路 156は、第 2仕切部材 44がシャフト 12の中心 軸に最も接近したときには背面空間 155に連通している。連通経路 156は、第 2仕切 部材 44が、シャフト 12の中心軸からある程度離れると、第 2仕切部材 44によって塞 がれるようになつている。つまり、シャフト 12の中心軸に最も接近した前進位置から、 シャフト 12の中心軸から最も離間した後退位置へと第 2仕切部材 44がスライドする期 間において、連通経路 156が開状態から閉状態へと変化し、背面空間 155が連通経 路 156と連通した開放空間から、連通経路 156から遮断された密閉空間へと変化す る。このため、第 2仕切部材 44によって連通経路 156が塞がれ、背面空間 155が密 閉空間になった後は、背面空間 155はガスばねとして第 2仕切部材 44を第 2ピストン 41方向に押圧する。
[0162] 吐出経路 50の吐出作動室 43bに対する開口(吐出口) 49は、吐出作動室 43bの 第 2仕切部材 44と隣接する部分から吐出作動室 43bの広がる方向に円弧状に延び る略扇状に形成されている。吐出口 49は、第 2ピストン 41が上死点に位置するときに おいてのみ、第 2ピストン 41によって完全に閉鎖される。そして、第 2ピストン 41が上 死点に位置する瞬間を除いた全期間にわたって、吐出口 49の少なくとも一部が吐出 作動室 43bに露出している。具体的には、平面視において、第 2シリンダ 42の半径 方向に関して外側に位置する吐出口 49の外側端辺 49aが、上死点に位置する第 2 ピストン 41の外周面に沿った円弧状に形成されている。言い換えれば、外側端辺 49 aは、第 2ピストン 41の外周面と略同一の半径の円弧状に形成されている。
[0163] 第 2ピストン 41の上死点についても、第 1の実施形態での説明を援用する。
[0164] 上記のように吸入経路 47と吐出経路 50とを形成することによって、図 19の左上図 に示すように、第 2ピストン 41が上死点に位置する瞬間においてのみ吸入口 46と吐 出口 49との両方が完全に閉じられる。すなわち、第 2作動室 43がひとつとなる瞬間 に吸入口 46と吐出口 49との両方が完全に閉じられる。より詳細には、吸入作動室 43 aが吐出口 49と連通する瞬間まで、吸入作動室 43aは吸入経路 47と連通している。 そして、吸入作動室 43aが吐出経路 50と連通して吸入作動室 43aが吐出作動室 43 bとなった瞬間以降は、吸入口 46が第 2ピストン 41によって閉じられる。このため、比 較的圧力が高い吐出経路 50から、比較的圧力が低い吸入経路 47への冷媒の逆流 が抑制される。したがって、高効率な過給が実現される。その結果、回収された動力 の利用効率が向上する。
[0165] なお、吐出経路 50から吸入経路 47への冷媒の逆流を完全に規制する観点からは 、第 2ピストン 41が上死点に位置する瞬間において、吸入経路 47と吐出経路 50との 両方が閉じられることが好ましい。ただし、第 2ピストン 41が上死点に位置する瞬間に ぉレ、て、吸入口 46と吐出口 49との一方のみしか閉じられて!/、な!/、場合であっても、 吸入口 46が閉じられるタイミングと、吐出口 49が閉じられるタイミングとの差力 シャ フト 12の回転角にして、 10。 程度よりも小さければ、吐出経路 50から吸入経路 47へ の冷媒の逆流は実質的に生じない。つまり、吸入口 46が閉じられるタイミングと、吐 出口 49が閉じられるタイミングとの差力 S、シャフト 12の回転角にして、 10。 程度よりも 小さく設定することで、吐出経路 50から吸入経路 47への冷媒の逆流を抑制すること ができる。
[0166] なお、上述のように吸入作動室 43aは、常に吸入経路 47と連通している。また、吐 出作動室 43bは、常に吐出経路 50に連通している。言い換えれば、過給機 102に おいて、冷媒を吸入する行程と、その吸入した冷媒を吐出する行程とが実質的に連 続して行われる。このため、吸入した冷媒は、実質的に体積変化することなく過給機 102を通過する。
[0167] (過給機 102の動作)
次に、図 19を参照しながら過給機 102の動作原理について詳細に説明する。図 1 9には、 T1〜T4までの 4つの状態の図が示されている。図 19と図 5との対比から明ら かなように、過給機 102の動作原理については、第 1の実施形態における流体圧モ ータの説明を援用できる。
[0168] シャフト 12は、動力回収手段 105によって回収された動力によって回転する。この シャフト 12の回転と共に、第 2ピストン 41も回転し、過給機 102が駆動される。
[0169] 第 2作動室 43は、実質的に容積が不変である。吸入作動室 43aは吸入経路 47と 常に連通している。吐出作動室 43bは吐出経路 50と常に連通している。このため、 過給機 102の第 2作動室 43内においては、冷媒は圧縮も膨張もしない。シャフト 12 が動力回収手段 105によって回転し、過給機 102が駆動される分、第 2作動室 43の 上流側よりも第 2作動室 43の下流側の方が高圧になる。言い換えれば、動力回収手 段 105によって回収された動力で駆動される過給機 102によって、吐出口 49よりも圧 縮機 103側の圧力が吸入口 46よりも蒸発器 106側の圧力より高くなる。つまり、過給 機 102によって昇圧される。
[0170] なお、本実施形態において、動力回収手段 105の第 1ピストン 21が上死点に位置 するタイミングと、過給機 102の第 2ピストン 41が上死点に位置するタイミングとは略 一致している。
[0171] (バランスウェイト 152)
図 15に示すように、流体機械 110には、バランスウェイト 152が設けられている。具 体的には、シャフト 12の端部に、バランスウェイト 152aおよびバランスウェイト 152b が取り付けられている。なお、本明細書では、バランスウェイト 152aとバランスウェイト 152bとを総称してバランスウェイト 152と称呼して!/、る。
[0172] バランスウェイト 152は、シャフト 12と、シャフト 12に対して偏心した状態で取り付け られた第 1ピストン 21と、シャフト 12に対して偏心した状態で取り付けられた第 2ピスト ン 41とを含む回転体 153のシャフト 12の回転軸周りの重量ばらつきを低減するため のものである。特には、回転体 153のシャフト 12の回転軸周りの重量バランスを均一 にするためのものである。
[0173] 具体的には、バランスウェイト 152aおよび 152bのそれぞれは、図 20に示すように 、シャフト 12の中心軸を中心軸とする円柱状に形成されている。すなわち、バランス ウェイト 152aおよび 152bのそれぞれの形状(外部形状)は、シャフト 12の回転軸に 対して軸対称である。一方、バランスウェイト 152aおよび 152bのそれぞれには、シャ フト 12の中心軸を中心とした平面視円弧状の内部空間 154が形成されている。この ため、バランスウェイト 152aおよび 152bのそれぞれは、シャフト 12の中心軸周りに 重量偏差を有する。そして、図 15に示すように、バランスウェイト 152aおよび 152bは 、第 1ピストン 21および第 2ピストン 41の偏心方向とは反対側に位置する部分力 上 記偏心方向に一致する側に位置する部分よりも重くなるようにシャフト 12に対して取 り付けられている。つまり、バランスウェイト 152aおよび 152bは、内部空間 154が形 成された部分力 シャフト 12の中心軸よりも第 1ピストン 21と第 2ピストン 41との偏心 方向側に位置するように、シャフト 12に取り付けられている。
[0174] なお、バランスウェイト 152aおよび 152bのそれぞれには、内部空間 154に連通す る連通孔 157が形成されている。これは、後に詳述する密閉容器 111内を満たす潤 滑が内部空間 154に流入するようにするためのものである。
[0175] 圧縮機 103—
図 21は圧縮機 103の概略構成を表す模式図である。圧縮機 103は、圧縮機構 10 3aと、電動機 108と、それらを収納するケーシング 160とを備えている。ケーシング 1 60の底部には、冷凍機油が溜められたオイル溜り 161が形成されている。そのオイ ル溜り 161内には、流体ポンプ 162が配置されている。この流体ポンプ 162によって オイル溜り 161に溜められた冷凍機油が吸い上げられ、圧縮機構 103aに供給される
[0176] 本実施形態では、図 21に示すように、圧縮機 103は流体機械 110よりも高い位置 に配置されている。そして、オイル溜り 161には、均油管 163が接続されている。また 、この均油管 163は密閉容器 111に接続されている。均油管 163には、絞り機構 16 4が取り付けられている。この絞り機構 164により、ケーシング 160内の圧力と密閉容 器 111内の圧力とが調整されている。具体的には、この絞り機構 164により、密閉容 器 111内の圧力がケーシング 160内の圧力未満に調整されている。より具体的には 、絞り機構 164によって、密閉容器 111内の圧力力 S、冷媒回路 109の高圧側の圧力 と冷媒回路 109の低圧側の圧力との間となるように調整されている。言い換えれば、 密閉容器 111内の圧力は、冷媒回路 109の低圧側の圧力より大きく冷媒回路 109の 高圧側の圧力未満に設定されて!/、る。
[0177] 冷凍サイクル
次に、図 22を参照しながら、冷凍サイクル装置 101における冷凍サイクルについて 説明する。図 22は、図 6と同様のモリエル線図である。図 22中、 h 、 h 、 h 、 h 、 hは
A B C D E
、それぞれ A、 B、 C、 D、 Eの各点における冷媒のェンタルピーを示している。
[0178] 図 22中の ABCDEの閉ループは、図 14で示した動力回収型の冷凍サイクル装置 101の冷凍サイクルを示している。 ABCDEの閉ループ中の A— Bは、過給機 102に よる冷媒の状態変化を示している。 B— Cは、圧縮機構 103aにおける冷媒の状態変 化を示している。 C— Dは、ガスクーラ 104における冷媒の状態変化を示している。 D — Eは、動力回収手段 105における冷媒の状態変化を示している。 E— Aは、蒸発器 106における冷媒の状態変化を示している。
[0179] 圧縮機構 103aにおいて、冷媒は低温低圧の気相(点 B)から高温高圧の超臨界相
(点 C)へと圧縮される。圧縮機構 103aで圧縮された冷媒は、ガスクーラ 104におい ての超臨界相(点 C)から液相(点 D)まで冷却される。なお、点 Bでの冷媒の温度お よび圧力は点 Aでの温度および圧力よりもやや高い。
[0180] その後、冷媒は、動力回収手段 105において、飽和液(点 S)を経て低温高圧の液 相(点 D)から気液二相(点 E)まで膨張 (圧力降下)する。この圧力降下 (膨張)の行 程にぉレ、て、点 Dから点 Sまでは冷媒が非圧縮性の液相であるため、冷媒の比容積 はそれほど変化しない。その一方、点 Sから点 Eの間は液相から気相への相変化によ る急激な比容積の変化を伴う圧力降下、すなわち、膨張を伴う圧力降下となる。
[0181] 動力回収手段 105からの冷媒は、蒸発器 106において加熱され、蒸発を伴いなが ら気液二相(点 E)力 気相(点 A)へと変化する。蒸発器 106により加熱された冷媒 は、過給機 102にて昇圧され気相(点 B)へと変化する。
[0182] 一作用および効果
以上説明したように、本実施形態では、動力回収手段 105により動力が回収される 。動力回収手段 105で回収された動力は、過給機 102の動力として利用される。この ため、高いエネルギー効率が実現されている。具体的に、図 22を用いて説明すると、 動力回収手段 105では、冷媒から(h — h )に相当するエネルギーが動力として回収
D E
される。おおよそのところ、この回収されたェンタルピー(h —h )に、動力回収手段 1
D E
05の効率 7] と過給機 102の効率 7] とを乗じて得られるェンタルピー 7] · η exp pump exp pump
(h -h ) = (h -h )に相当するエネルギー力 S、過給機 102によって冷媒に与えら
D E B A
れる。その結果、冷媒は、図 22に示す点 Aから点 Bまで昇圧される。
[0183] 例えば、過給機 102が配置されていない冷凍サイクル装置では、圧縮機構 103aが 蒸発器 106の出口側の点 Aからガスクーラ 104の入口側の点 Cまで冷媒を圧縮する 。それに対して、動力回収手段 105に接続された過給機 102が設けられた本実施形 態の冷凍サイクル装置 101では、過給機 102を通過することによって、冷媒は点 Aか ら点 Bまで昇圧される。このため、圧縮機構 103aは、冷媒を点 Bから点 Cまで圧縮す ればよい。したがって、圧縮機構 103aの仕事量を (h -h )に相当するエネルギー
B A
分だけ減らすことができる。その結果、冷凍サイクル装置 101の COPを向上させるこ と力 Sできる。
[0184] また、例えば、動力回収手段 105として従来の膨張機を用いることも考えられる。動 力回収手段 105として従来の膨張機を用いた場合、冷媒の膨張によるエネルギーと 、吸入側と吐出側との圧力差によるエネルギーとの両方を回収することができる。そ れに対して、流体圧モータは、内部で冷媒を膨張させない。このため、本実施形態の ように、動力回収手段 105として流体圧モータを用いた場合は、吸入側と吐出側との 圧力差によるエネルギーしか回収できない。このため、見かけ上は、動力回収手段 1 05として従来の膨張機を用いた方が、エネルギー効率が向上するように思える。
[0185] しかしながら、第 1の実施形態で図 8を参照して説明したように、動力回収手段 105 として流体圧モータを用いた方力、かえって冷凍サイクル装置 101のエネルギー効 率を高くすること力できること力ある。特に、二酸化炭素のような超臨界冷媒を用いる 冷凍サイクル装置においては、固有の容積比を有さない流体圧モータの使用が、過 膨張損失による効率の低下を防ぐ観点で優れている。
[0186] また、本実施形態では、動力回収手段 105と過給機 102とが、リードバルブ等が必 要な圧縮機や膨張機等と比較して構成のシンプルな流体圧モータにより構成されて いる。特に、本実施形態では、動力回収手段 105と過給機 102とが、流体圧モータ の中でも比較的シンプルな構造のロータリ式の流体圧モータにより構成されている。 したがって、シンプルで安価な冷凍サイクル装置 101が実現されている。
[0187] 例えば、上述の特開 2006— 266171号公報のように、過給機 102のかわりに副圧 縮機を配置することも考えられる。しかしながら、副圧縮機は過給機 102よりも構成が 非常に複雑で、製造コストが高い。したがって、副圧縮機を用いると、冷凍サイクル装 置 101の構成が複雑になる。また、冷凍サイクル装置 101の製造コストが上昇する。
[0188] また、過給機 102を昇圧機として用いた場合でも、副圧縮機を昇圧機として用いた 場合と同等の結果を期待できる。以下、その理由について、図 23を参照しながら、詳 細に説明する。
[0189] 図 23は、過給機 102および圧縮機構 3aにおける冷媒の比容積と圧力の関係を表 すグラフである。図 23中の、点 A、点 B、点 Cは、それぞれ、図 22中の点 A、点 B、点 Cに対応している。なお、図 23は、冷凍サイクル装置 101を給湯機に用いた場合の 計算機シミュレーションの結果を示している。点 Aにおける圧力を 3. 96MPaとする。 点 Aにおける温度を 10. 7°Cとする。点 Bにおける圧力を 4.36MPaとする。点 Cにお ける圧力を 9. 77MPaとする。点 Aと点 Bとの間、および点 Bと点 Cとの間は等ェントロ ピーであると仮定している。
[0190] 図 23に示すように、蒸発器 106からの冷媒は、まず過給機 102に吸入される。そし て、過給機 102において、冷媒は点 Aから点 Bまで昇圧される。厳密には、過給機 10 2は、冷媒を実質的に体積変化させることなく吐出する。そして、過給機 102の冷媒 を送り出す力によって冷媒が昇圧される。このため、副圧縮機を用いた場合のように 、冷媒の状態は点 Aから点 Bへと直接変化するのではない。冷媒は、吸入作動室 43 aから吐出作動室 43bに移る際に、比容積一定のまま、点 Aから点 Oまで昇圧する。 その後、吐出作動室 43bから吐出される際に、点 Oから点 Bへと、圧縮機構 103aの 吸入側の冷媒と同じ比容積まで等圧変化する。
[0191] ここで、図 23の NCBOALMで囲まれる部分の面積は、単位質量あたりの冷媒を圧 縮するのに必要な仕事の理論値に相当する。この NCBOALMで囲まれる部分の面 積に相当する全理論圧縮仕事 W は、過給機 102での理論圧縮仕事 W と、圧縮機 cO cl 構 103aでの理論圧縮仕事 W との合計で表される。さらに、過給機 102での理論圧
C2
縮仕事 W は、断熱圧縮 (AB)の仕事 W と、断熱圧縮に比べて増加した仕事 Wc cl cll 12 との合計で表される。ここで、動力回収手段 105の効率 7] を 81 %とし、過給機 102 exp
の効率 7] を 81 %とすると、図 23に示すモデルでは、実際に W は W (=W +W pump cl cO cl
)の 10%となる。 W は W の 90%となる。 W は W の 4%となる。 W は W の 0· 4 c2 c2 cO cl2 cl cl2 cO
%となる。
[0192] このように、副圧縮機に替えて過給機 102を用いた場合の仕事の増加分 W はごく
cl2 僅かである。また、全理論圧縮仕事 W に占める仕事の増加分 W の割合は、ほとん ど無視できるレベルである。このため、過給機 102を昇圧機として用いた場合でも、 高レ、エネルギー効率を実現できる。
[0193] また、過給機 102を用いた場合は、吐出弁による圧力損失等がない。このため、過 給機 102を昇圧機として用いた場合の方が、副圧縮機を昇圧機として用いた場合よ りも高いエネルギー効率を実現できる可能性がある。
[0194] また、例えば、過給機 102のかわりに副圧縮機を配置し、動力回収手段として膨張 機を配置した場合、膨張機により回収される回収トルクと、副圧縮機において付加さ れる負荷トルクとは、相互に波形が異なる。言い換えれば、一周期の間に、回収トノレ クと負荷トルクとの比率が変化する。負荷トルクに対する回収トルクの比率が大きくな るとシャフトの回転数が増大する。一方、負荷トルクに対する回収トルクの比率が小さ くなるとシャフトの回転数が減少する。つまり、一周期の間に、シャフトの回転数が増 大する回転角領域と、シャフトの回転数が減少する回転角領域とが生じる。したがつ て、シャフトの回転がスムーズでなくなる。また、エネルギーの回収効率も低下する。
[0195] 過給機 102のかわりに副圧縮機を配置し、動力回収手段として流体圧モータを配 置した場合も、上記の場合と同様に、負荷トルクに対する回収トルクの比率の変化に 基づくシャフトの回転速度ムラを十分に抑制することはできない。
[0196] 流体圧モータでは、吸入行程と吐出行程とが連続して行われる。また、吸入作動室 の圧力は吸入側の圧力と等しぐ一定している。一方、吐出作動室の圧力は吐出側 の圧力と等しぐ一定している。よって、ピストンに作用する圧力は、常に一定である。 したがって、シャフトの回転に対する回収トルクの波形は略正弦波状となる。
[0197] それに対して、副圧縮機では、作動室が吸入経路と吐出経路との両方から孤立し、 その間に冷媒が圧縮される。このため、吸入作動室の圧力は一定であるものの、圧 縮行程において、作動室の圧力は上昇する。したがって、シャフトの回転に対する負 荷トルクの波形は正弦波状とはならな!/、。
[0198] このように、過給機 102の替わりに副圧縮機を配置し、動力回収手段として流体圧 モータを配置した場合は、回収トルクと負荷トルクとの波形が相互に異なる。その結 果、シャフトの十分にスムーズな回転を実現することが困難である。
[0199] また、過給機 102を配置し、動力回収手段として膨張機を用いた場合も同様である 。動力回収手段として膨張機を用いると、シャフトの回転に対する回収トルクの波形 は正弦波状とはならない。それに対して、過給機 102は流体圧モータであるため、シ ャフトの回転に対する負荷トルクの波形は略正弦波状となる。このように、この場合も 、回収トルクと負荷トルクとの波形が相互に異なる。その結果、シャフトの十分にスム ーズな回転を実現することが困難である。
[0200] これに対して、本実施形態では、相互に連結された過給機 102と動力回収手段 10 5とのそれぞれが流体圧モータにより構成されている。このため、図 24Aおよび図 24 Bに示すように、動力回収手段 105で回収される回収トルクの波形と、過給機 102に おける負荷トルクの波形とは、比較的近似する。具体的には、回収トルクの波形と負 荷トルクの波形とは、回収トルクを示す縦軸方向において相似形である。そして、回 収トルクの波形と、負荷トルクの波形とは、双方とも、シャフト 12の回転角 360° を一 周期とした正弦波状である。よって、負荷トルクと回収トルクとの比率が一定している。 具体的には、負荷トルクが大きくなると回収トルクも大きくなる。負荷トルクが小さくなる と、その分だけ回収トルクも小さくなる。その結果、シャフト 12が減速せずにスムーズ に回転する。よって、エネルギーの回収効率が向上する。また、振動および騒音の発 生が抑制される。
[0201] 具体的に、動力回収手段 105のピストンが上死点に位置するタイミングと、過給機 1 02のピストンが上死点に位置するタイミングとを同期させることにより、負荷トルクの波 形と、回収トルクの波形とを相互にあわせることができる。言い換えれば、シャフト 12 のどのような回転角においても、負荷トルクと回収トルクとの比率力 実質的に一定と なる。したがって、シャフトの回転速度ムラを抑制することができる。その結果、冷凍サ イタル装置のエネルギー効率をより向上させることができる。また、シャフトの回転速 度ムラを抑制できるので、冷凍サイクル装置の振動および騒音を抑制することもでき
[0202] より具体的に、本実施形態では、シャフト 12に対して第 1仕切部材 24が配置された 方向と、シャフト 12に対して第 2仕切部材 44が配置された方向とを相互に略同一に している。さらに、第 1ピストン 21の第 1シリンダ 22の中心軸に対する偏心方向と、第 2ピストン 41の第 2シリンダ 42の中心軸に対する偏心方向とを相互に略同一にしてい る。これにより、動力回収手段 105のピストンが上死点に位置するタイミングと、過給 機 102のピストンが上死点に位置するタイミングとを同期(一致)させている。シャフト 1 2の偏心部 12b, 12cの向きが同一となる構成は、異なる構成に比べて、流体機械 1 10の製造が容易になる。
[0203] また、第 1ピストン 21の第 1シリンダ 22の中心軸に対する偏心方向と、第 2ピストン 4 1の第 2シリンダ 42の中心軸に対する偏心方向とも相互に略同一にすることによって 、シャフト 12と、そのシャフト 12を軸支する第 2閉塞部材 113および第 3閉塞部材 11 4との間の摩擦力を低減することができる。
[0204] 動力回収手段 105の第 1ピストン 21には、比較的高圧の吸入作動室 23aから比較 的低圧の吐出作動室 23bの方向に向力、う差圧力が作用する。同様に、過給機 102 の第 2ピストン 41には、比較的高圧の吐出作動室 43bから比較的低圧の吸入作動室 43aに向力、う差圧力が作用する。これらの差圧力は、偏心部 12b, 12cを介してシャ フト 12を押し、シャフト 12を軸支する第 2閉塞部材 113および第 3閉塞部材 114の軸 受部に作用する。その結果、シャフト 12に対して回転阻害力が生じ、シャフト 12の摩 耗、軸受部の摩耗が促進される。
[0205] こうした問題を考慮して、本実施形態では、第 1ピストン 21に作用する差圧力と、第
2ピストン 41に作用する差圧力とが、互いに反対方向となる構成が採用されている。 図 24Cに示すように、動力回収手段 105において、第 1ピストン 21に働く差圧力 Fは
1
、第 1ピストン 21の面積 Sに吸入圧力 P と吐出圧力 P との差を乗じた値となる。過給 es ed
機 102において、第 2ピストン 41に働く差圧力 Fは、第 2ピストン 41の面積 Sに吐出 圧力 P と吸入圧力 P との差を乗じた値となる。差圧力 Fおよび差圧力 Fを同一平 cd cs 1 2 面に投影すると、これらが互いに相殺されることが分かる。 2つのピストン 21 , 41の偏 心方向および偏心量が等しいときは、軸方向に関して差圧力 Fおよび差圧力 Fの作
1 2 用点が一致し、より確実に相殺されうる。
[0206] 第 1ピストン 21と第 2ピストン 41との間で、差圧力が相殺する結果、シャフト 12と第 2 閉塞部材 113との間の摩擦力、ならびにシャフト 12と第 3閉塞部材 114との間の摩擦 力を低減すること力 Sできる。よって、シャフト 12を回転させるために必要な動力を低減 すること力 Sでき、エネルギー回収を向上させることができる。また、シャフト 12、第 2閉 塞部材 113および第 3閉塞部材 114の摩耗も抑制することができる。
[0207] ただし、上記のような構成とした場合、シャフト 12、第 1ピストン 21および第 2ピストン 41を含む回転体 153の、シャフト 12の中心軸周りの重量バランスにムラが生じる。具 体的には、第 1ピストン 21および第 2ピストン 41の偏心方向側が比較的重くなる。一 方、偏心方向と逆側が比較的軽くなる。本実施形態では、この回転体 153のシャフト 12の中心軸周りの重量ばらつきを低減するために、シャフト 12に 2つのバランスゥェ イト 152aおよび 152b力 S取り付けられている。これら 2つのバランスウェイト 152aおよ び 152bによって、回転体 153のシャフト 12の中心軸周りの重量ばらつきが低減され ている。本実施形態では、特に、回転体 153のシャフト 12の中心軸周りの重量バラン スが均一にされている。したがって、回転体 153のスムーズな回転が実現されている 。また、回転体 153の回転時における振動が抑制され、冷凍サイクル装置 101の振 動および騒音が低減する。なお、回転体 153の振動を効果的に低減する観点から、 シャフト 12の両端のそれぞれに少なくともバランスウェイト 152を配置することが効果 的である。ただし、バランスウェイト 152aおよび 152bに加えて、さらに 1または複数の バランスウェイトをシャフト 12に取り付けるようにしてもよい。
[0208] 図 15および図 20に示すように、バランスウェイト 152aおよび 152bのそれぞれの形 状は、シャフト 12の回転軸に対して軸対称である。このため、バランスウェイト 152a および 152bは、シャフト 12の回転によって変位しない。言い換えれば、バランスゥェ イト 152aおよび 152bの占める空間の形状力 シャフト 12の回転角度によらず一定 である。例えば、バランスウェイト 152aおよび 152bがシャフト 12の回転によって変位 する場合、バランスウェイト 152aおよび 152bが回転することによって、密閉容器 111 内の冷凍機油が攪拌される。このため、バランスウェイト 152aおよび 152bに対して 回転抵抗が生じる。その結果、エネルギー損失が生じ、エネルギーの回収効率が低 下する。それに対して、本実施形態では、バランスウェイト 152aおよび 152bのそれ ぞれの形状は、シャフト 12の回転軸に対して軸対称である。このため、ノ ランスウェイ ト 152aおよび 152bが回転しても密閉容器 111内の冷凍機油をあまり攪拌しな!/ヽ。し たがって、バランスウェイト 152aおよび 152bが回転することによるエネルギー損失が 抑制されている。その結果、エネルギーの高い回収効率が実現されている。 [0209] なお、本実施形態のように、円柱状の本体に、シャフト 12の中心軸を中心とした平 面視円弧状の内部空間 154を形成することにより、シャフト 12の回転軸周りに重量偏 差を形成するような場合には、冷凍機油が内部空間 154に導入されるように、内部空 間 154に連通する連通孔 157を形成しておくことが好ましい。
[0210] また、バランスウェイト 152の数量低減の観点等から、第 1ピストン 21の第 1シリンダ 22の中心軸に対する偏心方向と、第 2ピストン 41の第 2シリンダ 42の中心軸に対す る偏心方向とを相互に異ならしめてもよい。例えば、第 1ピストン 21の第 1シリンダ 22 の中心軸に対する偏心方向と、第 2ピストン 41の第 2シリンダ 42の中心軸に対する偏 心方向とが 180° 異なるようにしてもよい。
[0211] ところで、シャフト 12が高速で回転する流体機械 110や圧縮機構 103aにおいては 、摺動部の摩耗を抑制するために、摺動部に冷凍機油を供給する。本実施形態では 、流体機械 110の密閉容器 111内が冷凍機油により満たされている。そして、この冷 凍機油が各摺動部にしみこみ、各摺動部が潤滑される。このため、各摺動部に冷凍 機油を確実に供給することができる。冷凍機油の供給方法としては、圧縮機 103のよ うに、流体ポンプを用いて圧縮機構 103aの摺動部に冷凍機油を供給する方法が考 えられる。しかし、この場合は、流体ポンプの故障や冷凍機油の油面の低下が生じる と、各摺動部に十分な量の冷凍機油が確実に供給されなくなる虞がある。それに対し て、本実施形態のように、密閉容器 111内を冷凍機油で満たし、動力回収手段 105 および過給機 102を冷凍機油に直接浸漬すれば、各摺動部に対して、十分な量の 冷凍機油を確実に供給することができる。
[0212] なお、電動機 108が取り付けられた圧縮機構 103aの場合は、ケーシング 160を冷 凍機油で満たすことは好ましくなレ、。冷凍機油の絶縁性が十分でなければ、電動機 1 08がショートするためである。一方、密閉容器 111の場合は、内部に電子部品を収 納して!/ヽなレ、ため、ショート等の問題は生じなレ、。
[0213] さらに、本実施形態では、比較的多量の冷凍機油が溜められた圧縮機 103が流体 機械 110よりも高い位置に配置されている。そして、圧縮機 103のオイル溜り 161と 密閉容器 11 1内とを連通させる均油管 163が設けられている。このため、密閉容器 1 11内の冷凍機油の量が減ると、均油管 163を介して圧縮機 103のオイノレ溜り 161力、 ら密閉容器 111に冷凍機油が自動的に補給される。また、動力回収手段 105および 過給機 102へ給油された冷凍機油は冷媒回路 109の冷媒配管を経由して圧縮機 1 03のオイノレ溜り 161に戻る。したがって、圧縮機 103のオイル溜り 161に溜められた 冷凍機油の量を常に略一定量に維持することができる。
[0214] なお、均油管 163には、絞り機構 164が取り付けられている。この絞り機構 164によ つて、冷凍機油の密閉容器 111への流量および密閉容器 111内の圧力が調整可能 となっている。
[0215] また、過給機 102で予備昇圧された冷媒の温度は比較的低いので、図 15の流体 機械 110において過給機 102と動力回収手段 105との間で熱交換は起こりにくい。 その熱交換量は、動力回収手段 105と圧縮機構 103aとを接続する構成(第 1の実施 形態の構成)での熱交換量に比べて小さい。したがって、作動時に高温となる機構か ら低温となる機構への熱移動を抑制し、エネルギー効率を高める観点において、動 力回収手段 105と過給機 102とを接続する構成は、第 1の実施形態よりも有利である
[0216] また、本実施形態では、動力回収手段 105と過給機 102とは密閉容器 111に収納 されている。これにより、動力回収手段 105と過給機 102とがコンパクトにまとめられて おり、コンパクトな冷凍サイクル装置 101が実現されている。また、本実施形態では、 第 1閉塞部材 115を過給機 102と動力回収手段 105とで共通に使用しているため、 特にコンパクトな冷凍サイクル装置 101が実現されている。さらに、本実施形態では、 吸入経路 27と吐出経路 30との両方力 第 2閉塞部材 113に形成されている。一方、 吸入経路 47と吐出経路 50とは第 3閉塞部材 114に形成されている。このように、吸 入経路 27 (47)と吐出経路 30 (50)とを同じ側の閉塞部材に形成することによって、 第 1閉塞部材 115の厚さを薄くすることができ、さらなる流体機械 110のコンパクト化 が図られている。例えば、吸入経路 27、吐出経路 30、吸入経路 47および吐出経路 50の!/、ずれかを第 1閉塞部材 115に形成すると、その分だけ第 1閉塞部材 115の厚 さを厚くしなければならない。その結果、流体機械 110が大型化する。なお、流体機 械 110のコンパクト化の観点から、吸入経路 27、吐出経路 30、吸入経路 47および吐 出経路 50のすベてを第 1閉塞部材 115に形成するようにしてもよ!/、。 [0217] ところで、第 2仕切部材 44を押圧する付勢手段 45は、狭い背面空間 155に設置さ れたコンパクトなばねである。このため、運転条件によっては、付勢手段 45の付勢力 が不足する。付勢手段 45の付勢力が不足すると、吸入作動室 43aと吐出作動室 43 bとがつながり、冷媒の吹き抜けがおこる。その結果、エネルギー回収効率が低下す る。このため、背面空間 155内の圧力を第 2作動室 43の圧力よりも大きくして、第 2仕 切部材 44が第 2ピストン 41を押圧する圧力を第 2作動室 43の圧力よりも高く維持す ることが好ましい。
[0218] 一方、第 2仕切部材 44が第 2ピストン 41を押圧する圧力が高くなるほど、第 2仕切 部材 44と第 2ピストン 41との摺動摩擦も増大する。その結果、第 2仕切部材 44と第 2 ピストン 41との摩耗が激しくなる。このため、第 2仕切部材 44が第 2ピストン 41を押圧 する圧力は、第 2作動室 43の圧力よりも高!/、範囲で極力低!/、ことが好まし!/、。
[0219] 本実施形態では、背面空間 155と、比較的高圧な吐出経路 50とを連通させる連通 経路 156がシリンダ 42に形成されている。このため、背面空間 155内の圧力が吐出 経路 50内の圧力と等しくなつている。したがって、背面空間 155が所謂ガスばねとし て働き、第 2仕切部材 44が第 2ピストン 41を押圧する圧力を第 2作動室 43の圧力より も常に高く維持することができる。その結果、冷媒の吹き抜けが抑制され、冷凍サイク ル装置 101のエネルギー効率をより向上させることができる。
[0220] また、過給機 102は流体圧モータであるため、吸入作動室 43aと吐出作動室 43bと の圧力差はそれほど大きくない。このため、背面空間 155の圧力がそれほど高くなる ことはない。したがって、第 2仕切部材 44と第 2ピストン 41との間に過剰な圧力が印 加されず、第 2仕切部材 44と第 2ピストン 41との摩耗が抑制されている。第 2仕切部 材 44と第 2ピストン 41との摩耗を特に効果的に抑制する観点から、背面空間 155内 の圧力は、密閉容器 1 11内の圧力よりも低!/、ことが特に好まし!/、。
[0221] ところで、第 2仕切部材 44を第 2ピストン 41に対して付勢する力が最も必要となるの は、第 2仕切部材 44がシャフト 12の中心軸から最も離れたときである。すなわち、第 2 ピストン 41が上死点に位置し、第 2仕切部材 44の運動方向が変化するときである。こ れは、第 2ピストン 41が上死点に達するまでは、第 2仕切部材 44は第 2ピストン 41に よって押圧されるものの、第 2ピストン 41が上死点に達した後は、第 2ピストン 41の周 面の第 2仕切部材 44と接触している部分の位置がシャフト 12の中心軸に近づいてい き、第 2ピストン 41が上死点を通過した後は、第 2ピストン 41と第 2仕切部材 44との間 の圧力が低下する傾向にあるためである。
[0222] 一方、第 2ピストン 41が、第 2仕切部材 44がシャフト 12の中心軸に最も近づいたと き、すなわち、第 2ピストン 41が下死点に位置するときには、第 2仕切部材 44に対し てそれほど大きな付勢力は必要ない。これは、第 2ピストン 41が下死点に達したとき から、第 2仕切部材 44は第 2ピストン 41によって押圧され始めるからである。
[0223] したがって、連通経路 156は、第 2仕切部材 44が背面空間 155の体積を縮小する 方向にスライドしたときに、第 2仕切部材 44によって閉鎖されるように形成されている ことが好ましい。すなわち、第 2仕切部材 44が背面空間 155の体積を縮小する方向 にスライドしたときに背面空間 155が密閉空間となり、所謂ガスばねが形成されるよう にすること力 S好ましい。これによれば、第 2仕切部材 44を第 2ピストン 41に対して付勢 する力が最も必要となる第 2ピストン 41が上死点に位置したときにおいて、第 2仕切 部材 44は、ガスばねの作用により、第 2ピストン 41に向けて付勢される。このため、第 2ピストン 41が上死点に位置したときにおいても、第 2仕切部材 44と第 2ピストン 41と の間の圧力を比較的高く保つことができる。その結果、吸入作動室 43aから吐出作 動室 43bへの冷媒の吹き抜けを効果的に抑制することができる。
[0224] 《変形例 1》
上記実施形態では、背面空間 155が連通経路 156によって吐出経路 50と連通し ている例について説明した。し力もながら、図 25に示すように、付勢手段 45の付勢 力によっては、吸入経路 47と背面空間 155とを連通経路 156で連通させてもよい。
[0225] 本変形例では、背面空間 155は、比較的低圧な吸入経路 47に連通しているため、 上記実施形態の場合と比較して、背面空間 155内の圧力が低くなる。このため、第 2 ピストン 41が下死点に位置するときにおける第 2仕切部材 44と第 2ピストン 41との間 の圧力(接点に働く荷重)が、上記実施形態の場合よりもさらに小さくなる。したがって 、ガスばねの効果が確実に得られるように、本変形例 1では、連通経路 156を、第 2 仕切部材 44が背面空間 155の体積を縮小する方向にスライドしたときに、第 2仕切 部材 44によって閉鎖されるように形成することが特に好ましい。 [0226] 《変形例 2》
また、背面空間 155を密閉容器 111内と連通させて密閉容器 111内の圧力と同じ 圧力にしてもよい。そして、密閉容器 111内の圧力と背面空間 155内の圧力とを、図 21に示す絞り機構 164を調整することで調整してもよい。この場合、過給機 102にお ける高圧側から低圧側への冷媒の吹き抜けを抑制すると共に、第 2仕切部材 44と第 2ピストン 41との過剰な摩耗を抑制する観点から、密閉容器 111内の圧力と背面空 間 155の圧力とは、冷媒回路 109の高圧側の圧力と低圧側の圧力との間であること が好ましい。
[0227] 《変形例 3》
また、背面空間 155を密閉空間としてもよい。この場合、背面空間 155内の圧力は 、第 2作動室 43の圧力よりも高いことが好ましい。背面空間 155内の圧力は、密閉容 器 111内の圧力以下であることが好まし!/、。
[0228] 《変形例 4》
バランスウェイト 152の数量低減の観点等から、第 1ピストン 21の第 1シリンダ 22の 中心軸に対する偏心方向と、第 2ピストン 41の第 2シリンダ 42の中心軸に対する偏心 方向とを相互に異ならしめてもよい。特に、バランスウェイト 152の数量低減の観点等 からは、第 1ピストン 21の第 1シリンダ 22の中心軸に対する偏心方向と、第 2ピストン 4 1の第 2シリンダ 42の中心軸に対する偏心方向とが 180° 異なるようにすること力 S好 ましい。
[0229] また、第 1ピストン 21の第 1シリンダ 22の中心軸に対する偏心方向と、第 2ピストン 4 1の第 2シリンダ 42の中心軸に対する偏心方向とを相互に異ならしめることで、冷凍 サイクル装置 101の起動時において、動力回収手段 105および過給機 102が起動 しゃすくなる。
[0230] 冷凍サイクル装置 101の停止時には、冷媒回路 109の全体の圧力が等しくなる。
圧縮機 103を起動すると、圧縮機 103の吸入側、すなわち圧縮機 103と過給機 102 との間の配管内の圧力は低下する。一方、圧縮機 103の吐出側、すなわち圧縮機 1 03と動力回収手段 105との間の配管の圧力は上昇する。したがって、圧縮機 103の 吸入側と圧縮機 103の吐出側との間の圧力差により、過給機 102と動力回収手段 1 05との両方に起動トルクが生じる。この起動トルクにより、過給機 102と動力回収手 段 105とが自律回転を開始する。
[0231] 例えば、第 1ピストン 21の第 1シリンダ 22の中心軸に対する偏心方向と、第 2ピスト ン 41の第 2シリンダ 42の中心軸に対する偏心方向とが相互に同じであるような場合 には、冷凍サイクル装置 101の停止時において、動力回収手段 105の第 1ピストン 2 1と過給機 102の第 2ピストン 41とが、共に上死点(すなわち、 θ =0° )に位置する ケースが生じ得る。この場合、動力回収手段 105および過給機 102の起動トルクが 小さくなり、起動が困難となる可能性がある。
[0232] 一方、第 1ピストン 21の第 1シリンダ 22の中心軸に対する偏心方向と、第 2ピストン 4 1の第 2シリンダ 42の中心軸に対する偏心方向とが相互に異なる場合は、位相が相 互に異なるため、両方の起動トルクが同時にゼロになることはあり得ない。したがって 、冷凍サイクル装置 101の起動時において、動力回収手段 105および過給機 102が 起動しやすくなる。
[0233] 第 1ピストン 21の第 1シリンダ 22の中心軸に対する偏心方向と、第 2ピストン 41の第 2シリンダ 42の中心軸に対する偏心方向とが 180° 異なるようにすることが特に好ま しい。この場合は、一方の起動トルクがゼロとなるときに、他方の起動トルクが最大と なる。したがって、動力回収手段 105および過給機 102の起動が特に容易となる。
[0234] 《その他の変形例》
流体機械 110のコンパクト化の観点から、吸入経路 27、吐出経路 30、吸入経路 47 および吐出経路 50のすベてを第 1閉塞部材 115に形成するようにしてもよ!/、。
[0235] 冷媒回路 9には、高圧側において超臨界状態とならない冷媒が充填されていてもよ い。具体的に、冷媒回路 109には、例えば、フロン系冷媒が充填されていてもよい。
[0236] バランスウェイト 152aおよび 152bに加えて、さらに 1または複数のバランスウェイト をシャフト 12に取り付けるようにしてもよい。
[0237] 冷媒回路 9が、圧縮機 103と、ガスクーラ 104と、動力回収手段 105と、蒸発器 106 と、過給機 102とにより構成されている例について説明した力 S、冷媒回路 9は、上記 構成要素以外の構成要素 (例えば気液分離器やオイル分離器)をさらに有するもの であってもよい。 [0238] 上記実施形態では、動力回収手段 105と過給機 102とが直接シャフト 12で接続さ れている例について説明した力 S、本発明は、この構成に限定されない。例えば、動力 回収手段 105に発電機を接続する一方、過給機 102に電動機を接続し、その発電 機により得られた電力により過給機 102を駆動する電動機を駆動するようにしてもよ い。
産業上の利用可能性
[0239] 本発明は、給湯機、冷暖房エアコン等の冷凍サイクル装置に有用である。

Claims

請求の範囲
[1] 冷媒が循環する冷媒回路を備えた冷凍サイクル装置であって、
前記冷媒回路は、
冷媒を圧縮する圧縮機と、
前記圧縮機により圧縮された冷媒を放熱させる放熱器と、
前記放熱器からの冷媒を吸入する吸入行程と、その吸入した冷媒を吐出する吐 出行程と、を実質的に連続して行う動力回収手段と、
前記動力回収手段により吐出された冷媒を蒸発させる蒸発器と、
を有する冷凍サイクル装置。
[2] 前記動力回収手段は、
第 1閉塞部材と第 2閉塞部材とにより両端が閉塞され、内周面を有するシリンダと 前記シリンダをその軸方向に貫通する回転自在のシャフトと、
前記シリンダ内において前記シリンダの中心軸に対して偏心した状態で前記シャ フトに軸支され、前記シリンダの内周面との間に作動室を区画形成する筒状のピスト ンと、
前記作動室を高圧側と低圧側とに仕切る仕切部材と、
前記ピストンの回転に伴って開閉され前記高圧側の作動室に連通する吸入経路 と、
前記ピストンの回転に伴って開閉され前記低圧側の作動室に連通する吐出経路 と、
を備え、
前記吸入経路が前記第 1閉塞部材または前記第 2閉塞部材に形成され、前記吐出 経路が前記第 1閉塞部材または前記第 2閉塞部材に形成されて!/、る請求項 1に記載 の冷凍サイクル装置。
[3] 前記動力回収手段から吐出される冷媒の少なくとも一部が気相となるように構成さ れてレ、る請求項 1に記載の冷凍サイクル装置。
[4] 前記冷媒は二酸化炭素である請求項 1に記載の冷凍サイクル装置。
[5] 前記吸入経路および前記吐出経路のうちの少なくとも一方は、前記ピストンが上死 点に位置する瞬間のみ前記ピストンによって閉鎖される請求項 2に記載の冷凍サイク ル装置。
[6] 前記吸入経路は前記高圧側の作動室の前記仕切部材と隣接した部分に開口して おり、且つ前記吸入経路の前記作動室に対する開口は、その外側の端辺が上死点 に位置したときの前記ピストンの外周面に沿った円弧状に形成されている請求項 2に 記載の冷凍サイクル装置。
[7] 前記吐出経路は前記低圧側の作動室の前記仕切部材と隣接した部分に開口して おり、且つ前記吐出経路の前記作動室に対する開口は、その外側の端辺が上死点 に位置したときの前記ピストンの外周面に沿った円弧状に形成されている請求項 2に 記載の冷凍サイクル装置。
[8] 前記吸入経路は前記高圧側の作動室の前記仕切部材と隣接した部分に開口して おり、且つ前記吸入経路の前記作動室に対する開口部は、前記高圧側の作動室の 広がる方向に延びるように前記シリンダの軸方向に対して傾斜して形成されている請 求項 2に記載の冷凍サイクル装置。
[9] 前記吐出経路は前記低圧側の作動室の前記仕切部材と隣接した部分に開口して おり、且つ前記吐出経路の前記作動室に対する開口部は、前記低圧側の作動室の 広がる方向に延びるように前記シリンダの軸方向に対して傾斜して形成されている請 求項 2に記載の冷凍サイクル装置。
[10] 前記吸入経路および前記吐出経路のうち!/、ずれか一方が前記第 1閉塞部材に形 成され、他方が前記第 2閉塞部材に形成されている請求項 2に記載の冷凍サイクノレ 装置。
[11] 前記作動室に対する前記吐出経路の開口面積が、前記作動室に対する前記吸入 経路の開口面積よりも大きい請求項 2に記載の冷凍サイクル装置。
[12] 前記吐出経路の口径が前記吸入経路の口径よりも大きい請求項 2に記載の冷凍サ イタル装置。
[13] 前記動力回収手段は、
両端が閉鎖され且つ内周面を有し、前記シャフトがその中心軸を貫通するように 位置する他の 1または複数のシリンダと、
前記他のシリンダ内において前記他のシリンダの中心軸に対して偏心した状態で 前記シャフトに回転自在に軸支され、前記他のシリンダの内周面との間に他の作動 室を区画形成する筒状の他のピストンと、
前記他の作動室を高圧側と低圧側とに仕切る他の仕切部材と、
前記他のピストンの回転に伴って開閉され前記高圧側の他の作動室に連通する 他の吸入経路と、
前記他のピストンの回転に伴って開閉され前記低圧側の他の作動室に連通する 他の吐出経路と、
をさらに備えている請求項 2に記載の冷凍サイクル装置。
[14] 前記複数のピストンは、各々の上死点の位置が前記シャフトの回転方向において 等間隔に位置するように配置されている請求項 13に記載の冷凍サイクル装置。
[15] 前記圧縮機は、圧縮機シャフトを有し、前記圧縮機シャフトを中心に回転動作を行 うロータリ式またはスクロール式の圧縮機であり、前記圧縮機シャフトは前記動力回 収手段の前記シャフトに連結されている請求項 2に記載の冷凍サイクル装置。
[16] 前記吸入経路は前記吐出経路よりも前記圧縮機寄りに位置している請求項 2に記 載の冷凍サイクル装置。
[17] 前記シャフトに連結され、前記シャフトの回転により発電する発電機をさらに備えた 請求項 2に記載の冷凍サイクル装置。
[18] 前記冷媒回路内に配置され、それぞれ前記動力回収手段に接続された第 1熱交 換器および第 2熱交換器と、
前記圧縮機の吐出口および吸入口と前記第 1熱交換器と前記第 2熱交換器とが接 続されており、前記圧縮機の吐出口を前記第 1熱交換器に接続する一方、前記圧縮 機の吸入口を前記第 2熱交換器に接続する第 1の接続状態と、前記圧縮機の吐出 口を前記第 2熱交換器に接続する一方、前記圧縮機の吸入口を前記第 1熱交換器 に接続する第 2の接続状態とを切り替え可能な切り替え機構と、
を備え、
前記第 1の接続状態において、前記第 1熱交換器が前記放熱器として機能し、前 記第 2熱交換器が前記蒸発器として機能する一方、前記第 2の接続状態において、 前記第 1熱交換器が前記蒸発器として機能し、前記第 2熱交換器が前記放熱器とし て機能する請求項 1に記載の冷凍サイクル装置。
[19] 冷暖房エアコンである請求項 18に記載の冷凍サイクル装置。
[20] 前記冷媒回路が、
前記動力回収手段により回収された動力によって駆動され、前記蒸発器からの冷 媒を吸入する行程と、その吸入した冷媒を前記圧縮機側に吐出する行程と、を実質 的に連続して行う過給機をさらに有する請求項 1に記載の冷凍サイクル装置。
[21] 前記動力回収手段と前記過給機とを収納する密閉容器をさらに備えた請求項 20 に記載の冷凍サイクル装置。
[22] 前記密閉容器は、冷凍機油で満たされて!/、る請求項 21に記載の冷凍サイクル装 置。
[23] 前記圧縮機は、
冷媒を圧縮して吐出する圧縮機本体と、
前記圧縮機本体を収納し、前記圧縮機本体から圧縮された冷媒が吐出される内 部空間が形成されたケーシングと、
を有し、
前記内部空間の下部には、前記圧縮機本体を潤滑する冷凍機油が溜められるォ ィル溜りが形成されており、
前記オイル溜りと、前記密閉容器の内部とを連通させる油管をさらに備えた請求項 21に記載の冷凍サイクル装置。
[24] 前記油管に取り付けられた絞り機構をさらに備えた請求項 23に記載の冷凍サイク ル装置。
[25] 前記密閉容器の内部の圧力は、前記冷媒回路の高圧側の圧力よりも低ぐ前記冷 媒回路の低圧側の圧力よりも高い請求項 23に記載の冷凍サイクル装置。
[26] 第 1閉塞部材と、
前記第 1閉塞部材に対向する第 2閉塞部材と、
前記第 1閉塞部材と前記第 2閉塞部材とにより両端が閉塞され、内周面を有する第 1シリンダと、
前記第 1閉塞部材に対向する第 3閉塞部材と、
前記第 1閉塞部材と前記第 3閉塞部材とにより両端が閉塞されており、前記第 1シリ ンダの中心軸と共通する中心軸を有し、内周面を有する第 2シリンダと、
前記第 1シリンダと前記第 2シリンダとの中心軸上に配置され、前記第 1シリンダと前 記第 2シリンダとを貫通する回転自在のシャフトと、
前記第 1シリンダ内において、前記第 1シリンダの中心軸に対して偏心した状態で 前記シャフトに軸支され、前記第 1シリンダの内周面との間に、容積が実質的に不変 である第 1作動室を区画形成する筒状の第 1ピストンと、
前記第 1作動室を高圧側と低圧側とに仕切る第 1仕切部材と、
前記第 1ピストンの回転に伴って開閉され、前記第 1作動室の高圧側部分に連通 する第 1吸入経路と、
前記第 1ピストンの回転に伴って開閉され、前記第 1作動室の低圧側部分に連通 する第 1吐出経路と、
前記第 2シリンダ内において、前記第 2シリンダの中心軸に対して偏心した状態で 前記シャフトに軸支され、前記第 2シリンダの内周面との間に、容積が実質的に不変 である第 2作動室を区画形成する筒状の第 2ピストンと、
前記第 2作動室を高圧側と低圧側とに仕切る第 2仕切部材と、
前記第 2ピストンの回転に伴って開閉され、前記第 2作動室の低圧側部分に連通 する第 2吸入経路と、
前記第 2ピストンの回転に伴って開閉され、前記第 2作動室の高圧側部分に連通 する第 2吐出経路と、
を備え、
前記動力回収手段は、前記第 1閉塞部材と、前記第 2閉塞部材と、前記第 1シリン ダと、前記第 1ピストンと、前記第 1仕切部材と、前記第 1吸入経路と、前記第 1吐出 経路と、により構成されており、
前記過給機は、前記第 1閉塞部材と、前記第 3閉塞部材と、前記第 2シリンダと、前 記第 2ピストンと、前記第 2仕切部材と、前記第 2吸入経路と、前記第 2吐出経路と、 により構成されている請求項 20に記載の冷凍サイクル装置。
[27] 前記第 1吸入経路および前記第 1吐出経路は、いずれも前記第 2閉塞部材に形成 されている請求項 26に記載の冷凍サイクル装置。
[28] 前記第 1吸入経路および前記第 1吐出経路のうち少なくとも一方は、前記第 1ピスト ンが上死点に位置する瞬間のみ、前記第 1ピストンによって閉鎖される請求項 26に 記載の冷凍サイクル装置。
[29] 前記第 2吸入経路および前記第 2吐出経路は、いずれも前記第 3閉塞部材に形成 されている請求項 26に記載の冷凍サイクル装置。
[30] 前記第 2吸入経路および前記第 2吐出経路のうち少なくとも一方は、前記第 2ピスト ンが上死点に位置する瞬間のみ、前記第 2ピストンによって閉鎖される請求項 26に 記載の冷凍サイクル装置。
[31] 前記第 1ピストンが上死点に位置するタイミングと、前記第 2ピストンが上死点に位 置するタイミングとが略同一である請求項 26に記載の冷凍サイクル装置。
[32] 前記第 1ピストンの前記第 1シリンダの中心軸に対する偏心方向と、前記第 2ピスト ンの前記第 2シリンダの中心軸に対する偏心方向とは、相互に略同一である請求項 2
6に記載の冷凍サイクル装置。
[33] 前記シャフトの各端部に配置され、前記シャフトと前記第 1ピストンと前記第 2ピスト ンとを含む回転体の前記シャフトの回転軸周りの重量ばらつきを低減するバランスゥ エイトをさらに備えた請求項 26に記載の冷凍サイクル装置。
[34] 前記各バランスウェイトの形状は、前記シャフトの回転軸に対して軸対称である請求 項 33に記載の冷凍サイクル装置。
[35] 前記圧縮機は、
冷媒を圧縮して吐出する圧縮機本体と、
前記圧縮機本体を収納し、前記圧縮機本体から圧縮された冷媒が吐出される内 部空間が形成されたケーシングと、
を有し、
前記内部空間と前記密閉容器とは連通しており、
前記第 2シリンダには、前記第 2仕切部材が摺動可能に揷入された溝が形成されて おり、
前記溝と前記第 2仕切部材とにより区画形成される背面空間内の圧力は、前記密 閉容器内の圧力よりも低い請求項 26に記載の冷凍サイクル装置。
[36] 前記第 2シリンダには、前記第 2仕切部材が摺動可能に揷入された溝が形成されて おり、
前記溝と前記第 2仕切部材とにより区画形成される背面空間内の圧力が前記第 2 作動室内の圧力よりも高い請求項 26に記載の冷凍サイクル装置。
[37] 前記第 2シリンダには、前記第 2仕切部材が摺動可能に揷入された溝が形成されて おり、
前記溝と前記第 2仕切部材とにより区画形成される背面空間は密閉空間である請 求項 26に記載の冷凍サイクル装置。
[38] 前記第 2シリンダには、前記第 2仕切部材が摺動可能に揷入された溝が形成されて おり、
前記溝と前記第 2仕切部材とにより区画形成される背面空間と、前記第 2吸入経路 または前記第 2吐出経路と、を連通させる連通管をさらに備えた請求項 26に記載の 冷凍サイクル装置。
[39] 前記連通管は、前記溝と前記第 2仕切部材とによって区画形成される背面空間と、 前記第 2吸入経路と、を連通させるものであり、
前記第 2仕切部材は、前記第 2仕切部材が前記背面空間の体積を縮小する方向 にスライドしたときに、前記連通孔を閉鎖する請求項 38に記載の冷凍サイクル装置。
[40] 冷媒を圧縮する圧縮機と、前記圧縮機により圧縮された冷媒を放熱させる放熱器と
、冷媒を蒸発させる蒸発器と、を有する冷媒回路を備えた冷凍サイクル装置に用いら れる流体機械であって、
前記放熱器からの冷媒を吸入する行程と、その吸入した冷媒を前記蒸発器側に吐 出する行程と、を実質的に連続して行う動力回収手段を備えた流体機械。
[41] 前記動力回収手段により回収された動力によって駆動され、前記蒸発器からの冷 媒を吸入する行程と、その吸入した冷媒を前記圧縮機側に吐出する行程と、を実質 的に連続して行う過給機をさらに備えた請求項 40に記載の流体機械。 前記動力回収手段と前記過給機とを収納する密閉容器をさらに備えた請求項 41 に記載の流体機械。
PCT/JP2007/070268 2006-10-25 2007-10-17 Dispositif à cycle frigorifique et machine à fluide utilisée pour celui-ci WO2008050654A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/438,438 US8074471B2 (en) 2006-10-25 2007-10-17 Refrigeration cycle apparatus and fluid machine used for the same
CN200780031179.5A CN101506597B (zh) 2006-10-25 2007-10-17 冷冻循环装置以及用于该冷冻循环装置的流体机械
EP07830002A EP2077426A4 (en) 2006-10-25 2007-10-17 COOLING CYCLE DEVICE AND LIQUID MACHINE USED THEREFOR
JP2008540954A JP4261620B2 (ja) 2006-10-25 2007-10-17 冷凍サイクル装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-289817 2006-10-25
JP2006289817 2006-10-25
JP2007-052458 2007-03-02
JP2007052458 2007-03-02

Publications (1)

Publication Number Publication Date
WO2008050654A1 true WO2008050654A1 (fr) 2008-05-02

Family

ID=39324453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/070268 WO2008050654A1 (fr) 2006-10-25 2007-10-17 Dispositif à cycle frigorifique et machine à fluide utilisée pour celui-ci

Country Status (5)

Country Link
US (1) US8074471B2 (ja)
EP (1) EP2077426A4 (ja)
JP (2) JP4261620B2 (ja)
CN (1) CN101506597B (ja)
WO (1) WO2008050654A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009113261A1 (ja) * 2008-03-11 2009-09-17 ダイキン工業株式会社 膨張機
JP2009210249A (ja) * 2008-02-06 2009-09-17 Daikin Ind Ltd 流体機械
WO2009136488A1 (ja) * 2008-05-08 2009-11-12 パナソニック株式会社 流体機械
WO2009142014A1 (ja) * 2008-05-22 2009-11-26 パナソニック株式会社 流体機械および冷凍サイクル装置
EP2202384A1 (en) * 2008-05-23 2010-06-30 Panasonic Corporation Fluid machine and refrigeration cycle device
WO2010073586A1 (ja) 2008-12-22 2010-07-01 パナソニック株式会社 冷凍サイクル装置
GB2474259A (en) * 2009-10-08 2011-04-13 Ebac Ltd Vapour compression refrigeration circuit
US20110138848A1 (en) * 2008-08-22 2011-06-16 Sang-Myung Byun Variable capacity type rotary compressor, cooling apparatus having the same, and method for driving the same
US20110217197A1 (en) * 2010-03-01 2011-09-08 Frazier Scott R Rotary compressor-expander systems and associated methods of use and manufacture, including two-lobed rotor systems
WO2011135779A1 (ja) * 2010-04-30 2011-11-03 パナソニック株式会社 流体機械および冷凍サイクル装置
WO2011135805A1 (ja) 2010-04-28 2011-11-03 パナソニック株式会社 冷凍サイクル装置
US9551292B2 (en) 2011-06-28 2017-01-24 Bright Energy Storage Technologies, Llp Semi-isothermal compression engines with separate combustors and expanders, and associated systems and methods
US20220307733A1 (en) * 2020-07-10 2022-09-29 Energy Recovery, Inc. Low energy consumption refrigeration system with a rotary pressure exchanger replacing the bulk flow compressor and the high pressure expansion system
US12085324B2 (en) 2021-06-09 2024-09-10 Energy Recovery, Inc. Refrigeration and heat pump systems with pressure exchangers

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5111350B2 (ja) * 2007-12-26 2013-01-09 三菱電機株式会社 ロータリー圧縮機
US20100326124A1 (en) * 2008-01-29 2010-12-30 Panasonic Corporation Expander-integrated compressor and refrigeration cycle apparatus using the same
EP2177760A1 (en) * 2008-05-23 2010-04-21 Panasonic Corporation Fluid machine and refrigeration cycle device
US9222706B2 (en) 2010-03-25 2015-12-29 Mitsubishi Electric Corporation Refrigeration cycle apparatus and operating method of same
CN103184906B (zh) * 2011-12-31 2016-06-29 新奥科技发展有限公司 能源供应的方法及装置
CN103512256A (zh) * 2013-09-22 2014-01-15 孙西峰 一种制冷系统及空调
CN103939342B (zh) * 2014-04-22 2016-04-27 西安交通大学 一种两相流制冷系统用滑片式工质泵
CN105865084A (zh) * 2015-04-13 2016-08-17 李华玉 第一类热驱动压缩式热泵
US10634142B2 (en) 2016-03-21 2020-04-28 Emerson Climate Technologies, Inc. Compressor oil separation and assembly method
JP7210975B2 (ja) * 2018-09-28 2023-01-24 日本電産トーソク株式会社 モータユニット
CN111721014B (zh) * 2019-01-08 2023-06-16 李华玉 第二类热驱动压缩式热泵
CN111735225B (zh) * 2019-01-08 2023-03-21 李华玉 第二类热驱动压缩式热泵
CN111721019B (zh) * 2019-01-09 2023-03-24 李华玉 第一类热驱动压缩式热泵
CN109869940B (zh) * 2019-03-26 2024-07-23 天津商业大学 喷射式跨临界二氧化碳双级压缩制冷系统
KR102194017B1 (ko) * 2019-04-29 2020-12-22 엘지전자 주식회사 드레인 펌프를 구비하는 공기 조화기
WO2021061707A1 (en) 2019-09-23 2021-04-01 Omega Therapeutics, Inc. Compositions and methods for modulating apolipoprotein b (apob) gene expression
AU2020352552A1 (en) 2019-09-23 2022-03-17 Omega Therapeutics, Inc. Compositions and methods for modulating hepatocyte nuclear factor 4-alpha (HNF4α) gene expression
EP4118207A1 (en) 2020-03-11 2023-01-18 Omega Therapeutics, Inc. Compositions and methods for modulating forkhead box p3 (foxp3) gene expression
EP4367242A2 (en) 2021-07-07 2024-05-15 Omega Therapeutics, Inc. Compositions and methods for modulating secreted frizzled receptor protein 1 (sfrp1) gene expression
GB2612785B (en) * 2021-11-10 2024-01-31 Eliyahu Nitzan Thermal oscillation systems
CZ2022427A3 (cs) * 2022-10-07 2023-08-30 Pavel ÄŚinÄŤura Tepelný parní motor

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57108555A (en) * 1980-12-25 1982-07-06 Mitsubishi Electric Corp Air/liquid converter
JPS5915769A (ja) * 1982-07-19 1984-01-26 株式会社東芝 冷凍装置
JPH04143491A (ja) * 1990-10-05 1992-05-18 Daikin Ind Ltd ローリングピストン型圧縮機
JPH06193574A (ja) * 1992-10-29 1994-07-12 Mitsubishi Electric Corp 可逆回転式圧縮機及び可逆冷凍サイクル
JP2000329416A (ja) * 1999-03-15 2000-11-30 Denso Corp 冷凍サイクル
JP2003307358A (ja) * 2002-04-15 2003-10-31 Sanden Corp 冷凍空調装置
JP2004044569A (ja) 2002-05-14 2004-02-12 Daikin Ind Ltd ロータリ式膨張機及び流体機械
JP2006026617A (ja) 2004-07-22 2006-02-02 Ricoh Co Ltd 粒子排出装置及び粒子排出方法
JP2006266171A (ja) 2005-03-24 2006-10-05 Hitachi Appliances Inc 容積形流体機械

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6277562A (ja) 1985-09-30 1987-04-09 株式会社東芝 冷凍サイクル
DE69411351T2 (de) * 1993-10-27 1999-04-22 Mitsubishi Denki K.K., Tokio/Tokyo Umschaltbarer Rotationsverdichter
CN2205526Y (zh) * 1994-04-24 1995-08-16 周湘江 新型转子式气体压缩机
US5515694A (en) * 1995-01-30 1996-05-14 Carrier Corporation Subcooler level control for a turbine expansion refrigeration cycle
US6321564B1 (en) * 1999-03-15 2001-11-27 Denso Corporation Refrigerant cycle system with expansion energy recovery
JP2003172244A (ja) 2001-12-05 2003-06-20 Daikin Ind Ltd ロータリ式膨張機、流体機械、及び冷凍装置
JP3918633B2 (ja) 2002-05-29 2007-05-23 株式会社日立製作所 容積形機械
JP3674625B2 (ja) 2003-09-08 2005-07-20 ダイキン工業株式会社 ロータリ式膨張機及び流体機械
JP2005172336A (ja) 2003-12-10 2005-06-30 Kansai Electric Power Co Inc:The 自然冷媒ヒートポンプシステム
JP4375171B2 (ja) * 2004-08-31 2009-12-02 ダイキン工業株式会社 冷凍装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57108555A (en) * 1980-12-25 1982-07-06 Mitsubishi Electric Corp Air/liquid converter
JPS5915769A (ja) * 1982-07-19 1984-01-26 株式会社東芝 冷凍装置
JPH04143491A (ja) * 1990-10-05 1992-05-18 Daikin Ind Ltd ローリングピストン型圧縮機
JPH06193574A (ja) * 1992-10-29 1994-07-12 Mitsubishi Electric Corp 可逆回転式圧縮機及び可逆冷凍サイクル
JP2000329416A (ja) * 1999-03-15 2000-11-30 Denso Corp 冷凍サイクル
JP2003307358A (ja) * 2002-04-15 2003-10-31 Sanden Corp 冷凍空調装置
JP2004044569A (ja) 2002-05-14 2004-02-12 Daikin Ind Ltd ロータリ式膨張機及び流体機械
JP2006026617A (ja) 2004-07-22 2006-02-02 Ricoh Co Ltd 粒子排出装置及び粒子排出方法
JP2006266171A (ja) 2005-03-24 2006-10-05 Hitachi Appliances Inc 容積形流体機械

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2077426A4

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009210249A (ja) * 2008-02-06 2009-09-17 Daikin Ind Ltd 流体機械
WO2009113261A1 (ja) * 2008-03-11 2009-09-17 ダイキン工業株式会社 膨張機
WO2009136488A1 (ja) * 2008-05-08 2009-11-12 パナソニック株式会社 流体機械
CN101688537A (zh) * 2008-05-08 2010-03-31 松下电器产业株式会社 流体机械
JPWO2009136488A1 (ja) * 2008-05-08 2011-09-08 パナソニック株式会社 流体機械
US20110100025A1 (en) * 2008-05-22 2011-05-05 Panasonic Corporation Fluid machine and refrigeration cycle apparatus
WO2009142014A1 (ja) * 2008-05-22 2009-11-26 パナソニック株式会社 流体機械および冷凍サイクル装置
JP5296065B2 (ja) * 2008-05-22 2013-09-25 パナソニック株式会社 冷凍サイクル装置
EP2202384A1 (en) * 2008-05-23 2010-06-30 Panasonic Corporation Fluid machine and refrigeration cycle device
EP2202384A4 (en) * 2008-05-23 2013-12-11 Panasonic Corp FLUID MACHINE AND REFRIGERATION CYCLE DEVICE
CN102105694A (zh) * 2008-08-22 2011-06-22 Lg电子株式会社 变容式回转压缩机、具有该变容式回转压缩机的制冷装置及驱动该变容式回转压缩机的方法
US20110138848A1 (en) * 2008-08-22 2011-06-16 Sang-Myung Byun Variable capacity type rotary compressor, cooling apparatus having the same, and method for driving the same
US9017048B2 (en) 2008-08-22 2015-04-28 Lg Electronics Inc. Variable capacity type rotary compressor, cooling apparatus having the same, and method for driving the same
WO2010073586A1 (ja) 2008-12-22 2010-07-01 パナソニック株式会社 冷凍サイクル装置
GB2474259A (en) * 2009-10-08 2011-04-13 Ebac Ltd Vapour compression refrigeration circuit
US20110217197A1 (en) * 2010-03-01 2011-09-08 Frazier Scott R Rotary compressor-expander systems and associated methods of use and manufacture, including two-lobed rotor systems
US9057265B2 (en) 2010-03-01 2015-06-16 Bright Energy Storage Technologies LLP. Rotary compressor-expander systems and associated methods of use and manufacture
US9062548B2 (en) 2010-03-01 2015-06-23 Bright Energy Storage Technologies, Llp Rotary compressor-expander systems and associated methods of use and manufacture, including integral heat exchanger systems
WO2011135805A1 (ja) 2010-04-28 2011-11-03 パナソニック株式会社 冷凍サイクル装置
WO2011135779A1 (ja) * 2010-04-30 2011-11-03 パナソニック株式会社 流体機械および冷凍サイクル装置
US9551292B2 (en) 2011-06-28 2017-01-24 Bright Energy Storage Technologies, Llp Semi-isothermal compression engines with separate combustors and expanders, and associated systems and methods
US20220307733A1 (en) * 2020-07-10 2022-09-29 Energy Recovery, Inc. Low energy consumption refrigeration system with a rotary pressure exchanger replacing the bulk flow compressor and the high pressure expansion system
US12085324B2 (en) 2021-06-09 2024-09-10 Energy Recovery, Inc. Refrigeration and heat pump systems with pressure exchangers

Also Published As

Publication number Publication date
EP2077426A1 (en) 2009-07-08
EP2077426A4 (en) 2012-03-07
CN101506597A (zh) 2009-08-12
CN101506597B (zh) 2013-01-02
JP2009092378A (ja) 2009-04-30
US20100251757A1 (en) 2010-10-07
JP5178560B2 (ja) 2013-04-10
JPWO2008050654A1 (ja) 2010-02-25
US8074471B2 (en) 2011-12-13
JP4261620B2 (ja) 2009-04-30

Similar Documents

Publication Publication Date Title
JP4261620B2 (ja) 冷凍サイクル装置
JP4837094B2 (ja) 冷凍サイクル装置及びそれに用いる流体機械
JP4709076B2 (ja) 容積形流体機械
WO2005026499A1 (ja) ロータリ式膨張機及び流体機械
US7784303B2 (en) Expander
JP2008506885A (ja) 冷凍システムおよび冷凍方法
US20100132398A1 (en) Fluid machine and refrigeration cycle apparatus having the same
JP4991255B2 (ja) 冷凍サイクル装置
JP2012093017A (ja) 冷凍サイクル装置
EP2527591B1 (en) Positive displacement expander and refrigeration cycle device using the positive displacement expander
JP5296065B2 (ja) 冷凍サイクル装置
JP2009270529A (ja) 容積形流体機械
JP2008208758A (ja) 容積型膨張機、膨張機一体型圧縮機、および冷凍サイクル装置
JP2009063247A (ja) 冷凍サイクル装置およびそれに用いる流体機械
JP2005106064A (ja) ロータリ式膨張機
JP2004324595A (ja) 容積形流体機械
WO2012104934A1 (ja) スクロール膨張機及びこのスクロール膨張機を備えた冷凍サイクル装置
JP5119786B2 (ja) 流体機械および冷凍サイクル装置
JP2001207983A (ja) 気体圧縮機
WO2011161953A1 (ja) 冷凍サイクル装置
JP4888222B2 (ja) 流体機械およびそれを備えた冷凍サイクル装置
JP5095320B2 (ja) ロータリ流体機械および冷凍サイクル装置
JP5233690B2 (ja) 膨張機
JP2004360611A (ja) 容積形機械及びそれを用いた冷凍装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780031179.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07830002

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2008540954

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12438438

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007830002

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)