JP2004324595A - 容積形流体機械 - Google Patents

容積形流体機械 Download PDF

Info

Publication number
JP2004324595A
JP2004324595A JP2003123121A JP2003123121A JP2004324595A JP 2004324595 A JP2004324595 A JP 2004324595A JP 2003123121 A JP2003123121 A JP 2003123121A JP 2003123121 A JP2003123121 A JP 2003123121A JP 2004324595 A JP2004324595 A JP 2004324595A
Authority
JP
Japan
Prior art keywords
cylinder
positive displacement
working fluid
expander
vane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003123121A
Other languages
English (en)
Inventor
Hirokatsu Kosokabe
弘勝 香曽我部
Isao Hayase
功 早瀬
Kazuhiro Endo
和広 遠藤
Kenji Tojo
健司 東條
Kenichi Oshima
健一 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Appliances Inc
Original Assignee
Hitachi Ltd
Hitachi Home and Life Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Home and Life Solutions Inc filed Critical Hitachi Ltd
Priority to JP2003123121A priority Critical patent/JP2004324595A/ja
Publication of JP2004324595A publication Critical patent/JP2004324595A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • F04C29/124Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/32Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F04C18/02 and relative reciprocation between the co-operating members

Abstract

【課題】構造が簡単で、信頼性・組立性に優れた低コストの容積形膨張機の提供と膨張エネルギを機械エネルギに効率よく変換し、冷凍システムのCOP(成績係数)向上が可能な容積形流体機械(膨張/圧縮システム)の提供。
【解決手段】揺動ピストン式膨張機2で、ベーン部9cの往復運動とシュー10の揺動運動により作動流体の流入タイミングを効果的に制御し、膨張エネルギをローリングピストン式容積形ブロワ3の駆動源として利用する。
【選択図】 図4

Description

【0001】
【発明の属する技術分野】
本発明は、流体機械に関し、特に冷凍サイクルを構成するための少なくとも膨張機を含む容積形流体機械に関するものである。
【0002】
【従来の技術】
従来、蒸気圧縮冷凍サイクルで用いられる膨張機としては、特開平8−82296号公報(特許文献1)及び特開2001−153077号公報(特許文献2)に記載のものが知られている。
【0003】
この特許文献1は、ローリングピストン式膨張機で、シリンダの端面を閉塞する閉塞板(ポートプレート139)と軸受(主軸受部材125)との間に流入タイミングを制御する回転円板(円板153)が設けられ、該回転円板には開口(流入口161)が設けられ、駆動軸(主軸111)に固定されている。この回転円板の開口は駆動軸の回転に伴って回転し、閉塞板の冷媒吸入口(吸込ポート137)と軸受の冷媒吸入通路(取入口141)とが所定のタイミングで連通するように構成され、冷媒がシリンダ内の膨張室(135)に流入して膨張するようになっていた。この膨張機では、上記回転円板は駆動軸の回転に伴って回転するため摺動速度が大きく、機械摩擦損失が大きくなる問題があり、高効率化を図ることが難しかった。
【0004】
この特許文献1の課題を解決したのが特許文献2である。特許文献2では、シリンダの端面を閉塞する閉塞部材70と軸受35との間に流入タイミングを制御する公転部材80が設けられ、該公転部材には開口81が設けられ、駆動軸60に連結されるとともに自転阻止機構90が設けられている。この公転部材の開口は駆動軸の回転に伴って公転し、閉塞板の冷媒吸入口71と軸受の冷媒吸入通路3aとが所定のタイミングで連通するように構成され、冷媒がシリンダ内の膨張室32に流入して膨張するようになっている。このように冷媒の吸入口71を開閉する部材が自転阻止機構90により公転運動のみ行う公転部材80を備えることにより、特許文献1の回転円板に比して大幅に摺動速度を低減したものである。
【0005】
【特許文献1】
特開平8−82296号公報(図7)
【特許文献2】
特開2001−153077号公報(図1、図3)
【0006】
【発明が解決しようとする課題】
上述した従来の膨張機においては、冷媒の流入タイミングを制御するために回転円板(特許文献1)や公転部材(特許文献2)といった新たな摺動部品を付加する必要があるため、構造が複雑になり信頼性や組立性、コストの面で好ましくなかった。
【0007】
また、膨張機により得られた動力は、冷凍サイクルにおける主圧縮機の駆動軸と、電動機を間に挟んで同軸に連結して動力回収するようにしているが、このような構成では圧縮機と膨張機を電動機の両側に一体に組み込まなければならないため、組立性が悪く問題となる。また、主圧縮機と膨張機とが一体構造になるため、冷凍空調機器が室内ユニットと室外ユニット分かれたセパレートタイプでは配管が長くなり、コスト上昇や配管の圧力損失による性能低下の問題がある。また、膨張機のない通常の冷凍システムとの互換性に乏しいため、製造コストの上昇を引き起こしやすかった。さらに、比較的低温で動作する膨張機が、ガス圧縮作用により高温となった圧縮機及び電動機からの熱影響を受けて加熱されるため、膨張過程のエンタルピ差が減少して膨張機の回収動力を減らし、膨張機効率を低下させる問題があった。
【0008】
本発明の目的は、新たな部品を付加することなく膨張機の構造簡略化を図り、信頼性・組立性に優れた低コストの容積形膨張機を提供することにある。
【0009】
また、本発明の他の目的は、作動流体の膨張過程のエネルギを機械エネルギに効率よく変換して利用できる膨張/圧縮システムを構成することにより、冷凍サイクルのCOP(成績係数)向上が可能な、汎用性の高い容積形流体機械を提供することにある。
【0010】
【課題を解決するための手段】
上記目的を達成するために本発明の容積形流体機械は、両端面を端板により閉塞されるシリンダと、前記シリンダ内に配置される円筒形状のローラ部とそのローラ部から突出する板状のベーン部を有する揺動ピストンと、その揺動ピストンのベーン部を前記シリンダに設けられた円筒孔内で両側面から挟み込み揺動自在に嵌装されたシューと、前記揺動ピストンのローラ部内に回転自在に嵌合する偏心部を備えたクランク軸と、前記シューに設けられ前記円筒孔内周面から前記ベーン部に前記シリンダ外からの作動流体を導く第1の通路と、前記ベーン部に設けられ前記第1の通路からの作動流体を前記シリンダ内に導く第2の通路とを備え、第1及び第2の通路によって作動流体の流入を制御するものである。
【0011】
これにより、作動流体の流入タイミングを制御する新たな摺動部品を付加することなく、シューの揺動運動とベーンの往復運動によってシューに設けられた第1の通路とベーン部に設けられた第2の通路とが連通し、外部からシリンダ内に流入する作動流体が流入する区間を容易に設定することが可能になる。
【0012】
また、シリンダの外部に作動流体を導く導出路を複数設けて、それらの導入路の切替えを行うことにより作動流体の流出を制御することで、複数の設計容積比を実現できるようにしても良い。
【0013】
また、上記他の目的を達成するために本発明の容積形流体機械では、密閉容器内に、外部から流入した作動流体を膨張させてエネルギーを回収する膨張機と、外部から流入した作動流体の圧力を高めて吐出する容積形ブロワとを、前記膨張機の回転力を前記容積形ブロワに伝えるクランク軸を介して連結して、前記膨張機は、両端面を端板により閉塞されるシリンダと、前記シリンダ内に配置される円筒形状のローラ部とそのローラ部から突出する板状のベーン部を有する揺動ピストンと、その揺動ピストンのベーン部を前記シリンダに設けられた円筒孔内で両側面から挟み込み揺動自在に嵌装されたシューと、前記クランク軸に設けられ前記揺動ピストンのローラ部内に回転自在に嵌合する偏心部と、前記シューに設けられ前記円筒孔内周面から前記ベーン部に前記シリンダ外からの作動流体を導く第1の通路と、前記ベーン部に設けられ前記第1の通路からの作動流体を前記シリンダ内に導く第2の通路とを備え、前記容積形ブロワは、シリンダ内に作動流体を導入する吸入パイプと、前記クランク軸のもう一つの偏心部に回転自在に嵌合されたローラと、このローラに先端を接して往復運動し、シリンダ内を吸入室と圧縮室に仕切るベーンと、前記クランク軸を軸支しかつ前記シリンダの両端開口を閉塞する端板とを備えたものである。
【0014】
上記の構成では、作動流体の膨張エネルギを回収する機構を、圧力比が小さい(例えば圧力比1.2以下)容積形ブロワとすることにより、吐出ガスの温度上昇が小さいことから膨張機への熱影響を抑えることができる。
【0015】
また、容積形ブロワの形式をローリングピストン式として吸入側と吐出側に弁を持たない構造にすることにより、低圧力比運転での効率向上が図れる。
【0016】
さらに、膨張機と容積形ブロワとを積層状に配置することにより、容積形流体機械のコンパクト化が実現され、低コスト化に寄与するので好ましい。
【0017】
また、この容積形流体機械は、膨張機を持たない通常の冷凍サイクルに追加して設置することが可能なことから汎用性が高く、冷凍サイクルのCOP(成績係数)向上を促進することができる。
【0018】
【発明の実施の形態】
以下、本発明の第1の実施の形態を図面に基づいて詳細に説明する。図1から図3において、容積形流体機械1は、冷凍サイクルにおける作動流体の膨張エネルギを機械エネルギに変換する膨張機2と、この変換された機械エネルギにより仕事をする容積形ブロワ3から構成される。膨張機2と容積形ブロワ3は積層して配置され、それらはクランク軸4を介して連結し、密閉容器5内に収納されている。
【0019】
以下、膨張機2について説明する。クランク軸4の軸支持を兼ねた主軸受6と副軸受7の平面部により、シリンダ8の両端開口部が閉塞されている。シリンダ8の中央部に円筒状内周面8aが設けられている。クランク軸4には、シリンダ8の円筒状内周面8aに対応する位置に偏心部4aが設けられている。偏心部4aは、揺動ピストン9のローラ部9aに嵌合された円筒状内周面を備えた軸受メタル9bに、回転可能に嵌入されている。ローラ部9aの円筒状外周面から板状のベーン部9cが突き出たように設けられている。
【0020】
図2において、シリンダ8の円筒状内周面8aの外側には、円筒状内周面8aの中心軸と平行な中心軸を持つ円筒孔部8bが設けられている。円筒孔部8bのシリンダ8中心側とその反対側は、それぞれシリンダ8の円筒状内周面8a及び円筒孔部8bの外側に設けた逃げ孔部8cに連通している。揺動ピストン9のベーン部9cは円筒孔部8bと逃げ孔部8cとに挿入されている。ベーン部9cと円筒孔部8bとの間には、ベーン部9cの平面部に摺動可能に当接する平面部と、円筒孔部8bの円筒面部に摺動可能に当接する円筒面部とを有するシュー10が、ベーン部9cを挟み込む形に組込まれている。この結果、ベーン部9cは円筒孔部8bの中心軸を通る往復運動と中心軸廻りの揺動運動を行い、シュー10は円筒孔部8bの中心軸廻りの揺動運動を行う。ベーン部9cの先端部は、ローラ部9aが最も円筒孔部8bに近づいても、逃げ孔部8cの中で運動し、シリンダ8と干渉することはない。
【0021】
密閉容器5に取付けられた流入パイプ11は、シリンダ8の円筒孔部8bに開口するシリンダ8に設けられた流入通路8dと接続している。本実施形態における膨張機での作動流体の流入タイミングは、この流入パイプ11からシリンダ8の流入通路8dを通って入ってくる高圧の作動流体を、この流入通路8d側のシュー10に設けられてシュー10の内部を貫通する流入孔10a(第1の通路)と、この流入孔10aが設けられたシュー10に当接するベーン部9cの側面部に設けられた流入溝9d(第2の通路)とが連通する条件を変えることで、容易に調整できる。この流入タイミングの調整に関する詳細は後述する。
【0022】
以下、作動流体を圧縮する圧縮機としての機能を有する容積形ブロワ3について説明する。図1において、クランク軸4の軸支持を兼ねた補助軸受14と仕切り板15により容積型ブロワ3のシリンダ16の両端開口部が閉塞される。シリンダ16の中央部に円筒状内周面16aが設けられている。クランク軸4には、シリンダ16の円筒状内周面16aに対応するに、もう一方の偏心部4bが設けられている。膨張機2側の偏心部4aとこの偏心部4bとは回転位相が180°ずれている。円筒状のローラ17の内周面にはころ軸受が装着され、そのころ軸受内に偏心部4bが回転可能に嵌入されている。
【0023】
図3に示したように、ローラ17の円筒状外周面には、ベーンスプリング18aにより押圧された板状のベーン18が接触している。円筒状内周面16aの外側であるシリンダ16には、このベーン18が往復摺動可能なベーン溝16bと、シリンダ16とベーン18の干渉を防ぐ逃げ孔部16c及びベーンスプリング18aの他端部が嵌入されて装着されるスプリング孔部16dが設けられている。
【0024】
また、密閉容器5に取付けられた吸入パイプ19は、シリンダ16の吸入通路16eと接続している。吸入パイプ19から吸込まれた冷媒ガス等の作動流体は、吸入通路16eを通ってシリンダ16内に入り、クランク軸4の回転によってローラ17がシリンダ16の円筒状内周面16aに沿って偏心回転運動をすることによりシリンダ16内を移動し、シリンダ16の円筒状内周面16aの一部を切欠く形に設けられた吐出切欠き16fを通り、補助軸受14に設けられた吐出ポート14aから密閉容器5内に吐き出される。吐出された作動流体は、密閉容器5の上部に取付けられた吐出パイプ20から外部、例えば冷凍サイクルに流出する。
【0025】
密閉容器5には潤滑油21が貯溜されており、膨張機2および容積形ブロワ3の大部分がこの潤滑油21中に浸漬した状態である。そのため膨張機2および容積形ブロワ3の各摺動部に油供給路を通じて容易に潤滑油を導くことができる。軸受摺動部(クランク軸4の各軸受部)に強制的に給油する機構としては、クランク軸4の下端部に装着された給油ピース22から、クランク軸4内に設けられた給油通路4cを通して、クランク軸4の回転による遠心ポンプ作用で各軸受摺動部に潤滑油を供給する構成となっている。
【0026】
また、回転系のバランスは、クランク軸4の上端部に取付けられたバランスウエイト23によってとる。バランスウエイト23の周囲はバランスウエイトカバー24で囲まれている。
【0027】
以上のような構成からなる膨張機2と容積形ブロワ3は積層状に積み重ねられた状態で締付けボルト8によって組立て固定され、容積形ブロワ3のシリンダ16外周部で密閉容器5の内周に嵌合固定されている。
【0028】
次に、本発明の膨張機2の動作を図4〜図6により説明する。図4では、クランク軸の回転角が90°毎に、シリンダ8内における揺動ピストン9の位置関係を示したものである。図4において、揺動ピストン9のベーン部9cが上死点位置(ベーン部9cが最もシリンダ8の外周部に突き出した状態)を回転角θの0°とし、クランク軸4の回転角は時計廻りに増加した状態を示す。
【0029】
先ず、回転角0°の状態では、シリンダ8の流入通路8dとシュー10の流入孔10aとは一部連通しており、シュー10の流入孔10aと揺動ピストン9のベーン部9cに設けられた流入溝9dも連通している。この流入溝9dのシリンダ円筒状内周面8a側の端部aはシュー10により塞がれているため、蒸気圧縮冷凍サイクルの膨張過程入口にある高圧の作動流体はシリンダ8内への流入を遮断された状態にある。一方、シリンダ8の流出通路8eはシリンダ8内に連通しているため、作動流体は膨張過程出口にあたる低圧の圧力状態になっている。本実施形態の容積形流体機械1の起動方法については後述するが、この状態からクランク軸4が時計廻りに回転すると、ベーン部9cがシリンダ8内に突き出てくる。そして流入溝9dがシリンダ8内と連通を開始するため、高圧の作動流体がシリンダ8内に流入しはじめる。シリンダ8内の圧力差によりクランク軸4を時計廻りに回転させる機械エネルギが発生する。
【0030】
回転角90°の状態では、シュー10の揺動によりシリンダ流入通路8dとシュー流入孔10aの接続部bの流路面積も拡大するため作動流体の流入が促進される。さらに90°回転した回転角180°の状態では、シリンダ8の流入通路8dとシュー10の流入孔10aとは回転角0°の状態と同様に一部連通しているが、ベーン部9cのシリンダ円筒状内周面8a側への往復運動によりシュー流入孔10aとベーン流入溝9dとは連通が遮断され、高圧の作動流体の流入が遮断された状態で作動室の容積が拡大することから作動流体は膨張し機械エネルギを発生する。回転角270°の状態では、シュー流入孔10aとベーン流入溝9dとは連通しはじめるが、シリンダ8の流入通路8dとシュー10の流入孔10aとは、今度はシュー10が回転角90°の状態とは反対方向に揺動運動するため両者の連通は遮断された状態で、作動流体はさらに膨張して機械エネルギを発生し続ける。さらに回転が進むと、シリンダ8の流出通路8eはシリンダ8内に連通し、最初の回転角0°の状態になる。以上の動作を繰り返すことにより、作動流体の持つ膨張エネルギが機械エネルギに変換されることになる。
【0031】
一般に、容積形膨張機の設計容積比の値は、冷凍システムにおける作動流体の種類とその運転条件(圧力比)により決められることになる。本実施形態の膨張機2の設計容積比Vrexは、高圧の作動流体が流入する容積(流入完了容積)をVi、と膨張終了容積(流出開始容積)をVoとすると、
Vrex=Vo/Vi
で表される。図5は、膨張機における作動流体の流入完了と流出開始の状態をそれぞれ示した動作図である。
【0032】
流入完了状態は、ベーン流入溝9dとシュー流入孔10aとの連通が遮断された直後の状態で、本実施形態ではクランク軸の回転角が137°に相当する。流出開始状態は、シリンダ8内の膨張作動空間が流出通路8eと連通する直前の状態で、クランク軸回転角で317°に相当する。
【0033】
図6は、本発明の膨張機の容積変化特性図で、横軸はクランク軸回転角θ、縦軸は膨張機の理論容積(最大)Vthと膨張作動室容積Vの比をとっている。図から、本発明の膨張機2の設計容積比VrexはVrex=0.98/0.242=4.05
であることが分かる(設計条件は、作動流体:二酸化炭素(R744)、吸込圧力Ps=2.65MPa、吐出圧力Pd=8MPaの場合…図8参照)。
【0034】
また、図5と図6より、ベーン流入溝9dの長さ寸法を調整することにより流入完了となるクランク軸回転角すなわち流入完了容積が容易に変更できるとともに、流出通路8eの位置により流出開始容積も変更できることから、設計容積比Vrexも容易に設計変更可能であり、スクリュー式やスクロール式等の固有の設計容積比が組込まれた膨張機に比べて、設計対応が容易であるばかりでなく大幅な小型・低コスト化が図れる。さらに、例えば、シリンダ8に複数の流出通路8eを形成してこの流出通路の選択切替えを行うことにより、一つの膨張機で複数の設計容積比が実現できることから、冷凍サイクルとの適合性をより高めて冷凍空調機器のシステム効率を向上することが可能となる。
【0035】
次に、本発明の容積形流体機械1を組込んだ冷凍サイクルについて説明する。この説明では、特に冷媒として二酸化炭素(R744)を適用した例を説明する。この二酸化炭素は、自然冷媒であり地球温暖化係数(GWP)もフロン系冷媒の数千分の一と小さく地球環境保全の点で優れている。反面、臨界温度が約31℃と低いことから冷凍空調装置の通常の運転条件で高圧側の動作圧力が臨界圧力(約7MPa)を超える超臨界サイクルとなり、高圧冷媒でモリエル線図上の理論COP(成績係数)が低いという欠点がある。
【0036】
しかし、二酸化炭素は膨張過程の損失がフロン系冷媒に比べて大きいことから、この膨張過程の動力を回収することによりCOPの大幅な改善が可能と考えられる。そこで高効率で信頼性の高い膨張機を備えた容積形流体機械の開発が冷媒R744システムの実用化では重要となる。もちろん、フロン系冷媒のシステムでも改善比率は小さくなるがCOP向上が図れる。そこで冷媒としてR744(二酸化炭素)を適用した冷凍サイクルについて図7及び図8を用いて説明する。なお、図7、図8において、図1から図3と同一符号を付したものは同一部品であり同一の作用をなす。
【0037】
図7において、冷凍(冷蔵)システム25には、容積形流体機械1は一点鎖線で図示されている。容積型流体機械1の膨張機2は、放熱器(ガスクーラ)26と蒸発器27とに接続されている。また、容積型流体機械1の容積形ブロワ3は、蒸発器27と主圧縮機28とに接続されている。膨張弁29は放熱器26と蒸発器27との間に接続され、容積型流体機械1の膨張機2と並列に接続されている。
【0038】
冷媒の流れは、主圧縮機28から吐出された高温・高圧冷媒(図8モリエル線図上の点Cの状態)は、ガスクーラ26に入って放熱し温度低下する。このガスクーラ26から出た冷媒(図8の点D)は容積形流体機械1の膨張機2に流入パイプ11を通って入り、前述の図4で説明した膨張動作を行って膨張エネルギを機械エネルギに変換し、流出パイプ12から低温・低圧の気液二相冷媒(図8の点E)となって吐出される。膨張機2を出た冷媒は蒸発器27に入って吸熱・ガス化し、本発明の容積形流体機械1の容積形ブロワ3に吸入パイプを通って吸込まれ(図8の点A)、この容積形ブロワ3内で若干昇圧されて吐出パイプ20から吐出される(図8の点B)。容積形ブロワ3から吐出された冷媒ガスは主圧縮機28に戻って再び圧縮されて高温・高圧のガス冷媒となる。
【0039】
以上のサイクルが繰り返され冷凍(冷蔵)作用をなす。なお、膨張弁29は、サイクルの運転条件変化時の流量(圧力)調整等を行うため、冷媒ガスが膨張機2をバイパスために設けられている。
【0040】
本発明の一実施形態である容積形流体機械1を備えることにより、膨張過程が等エントロピ変化(D−E)となり、膨張機を持たない場合の等エンタルピ変化(破線で図示)と比べΔiexだけ冷凍効果が増えて冷凍能力が増加する。また、膨張エネルギを膨張機2で機械エネルギに変換して容積形ブロワを駆動することで動力回収することにより、単位質量のガスを圧縮するのに必要な仕事がΔiadからΔiad′に減少しCOPを向上することが可能となる。
【0041】
本発明の容積形流体機械1の起動方法として次の自立起動方法がある。それは主圧縮機を備える冷凍サイクルに接続されていることが条件である。すなわち、主圧縮機28を起動することにより最初に容積形ブロワ3の吐出パイプ側が負圧になる。すると駆動軸4を回転するトルクが発生し、次いで膨張機2の流入パイプ11に圧力が作用することで、膨張機2が回転駆動する。このとき、この主圧縮機28の起動を指示した制御部(図示せず)は膨張弁29が閉じていることを確認し、膨張弁29が閉じていなければ閉じるように制御する。このように自立起動が可能であるが、必要に応じてモータ等の起動装置を付属させてもよい。第1の実施形態では、容積形ブロワとしてローリングピストン式を例にあげて説明したが、本発明はこれに限定されるものではなく、スクロール式等の他形式の容積形ブロワにも適用される。
【0042】
次に、本発明の第2の実施形態を図面に基づいて説明する。図9及び図10において、図1から図3と同一符号を付したものは同一部品であり同一の作用をなす。本実施形態では、膨張機2を180°膨張の位相が異なる2気筒の揺動ピストン式膨張機としたことを特徴としており、基本的な膨張動作は図4と同様である。容積形ブロワ3は図示を省略している。このような2気筒の膨張機にすることにより、軸一回転中の膨張機の発生トルク変化が小さくなることからクランク軸4の速度変動も少なくなり、よりスムーズな回転が実現できる。これにより、容積型流体機械1の自立起動性をより向上することができる。
【0043】
本発明の第3の実施形態を図11を用いて説明する。図11において、図1から図3と同一符号を付したものは同一部品であり同一の作用をなす。本実施形態では、膨張機2と容積形ブロワ3とが仕切り板15間に挟んで積層する。クランク軸4を主軸受6と副軸受7の2個所のころがり軸受で軸支し、補助軸受を省いている。また、クランク軸4の膨張機2側の偏心部4aと容積形ブロワ3側の偏心部4bの位相差を無くしている。
【0044】
また、主軸受6にモータ/ジェネレータを装着し、クランク軸4の端部にこの回転子を嵌合固定している。このような構成により、先ず、クランク軸4の膨張機2側の偏心部4aと容積形ブロワ3側の偏心部4bの位相差無くしたことにより、膨張機2で発生した回転動力を容積形ブロワ3に直接作用させることができることから、クランク軸4を軸支している軸受の負荷が軽減され、軸受の個数削減と機械摩擦損失の低減を図ることができる。
【0045】
また、モータ/ジェネレータを装着することにより、起動の時はモータとして作動させ本容積形流体機械1の運転を確実にするとともに、通常運転時はジェネレータとして作動させてクランク軸4の回転速度を制御し、超臨界状態になるR744サイクル特有の冷凍サイクル制御に利用することができる。
【0046】
上述したように、本発明の各実施形態から、作動流体の流入タイミングを制御する新たな摺動部品を付加することなく、シューの揺動運動とベーンの往復運動によってシューに設けられた流入孔とベーンに設けられた流入溝とが連通し、流入パイプを通ってシリンダ内に流入する作動流体の流入区間を容易に設定することが可能になる。
【0047】
【発明の効果】
本発明によれば、簡単な構造で高性能の揺動ピストン式膨張機を提供することができる。
【0048】
また、本発明の膨張機と圧力比が小さい容積形ブロワとを一つの密閉容器内に両者を積層状に配置した構造にすることにより、膨張機への熱影響を抑えて、小型・低コストの容積形流体機械を実現することができる。
【0049】
さらに、この容積形流体機械は、膨張機を持たない通常の冷凍サイクルに追加して設置することが可能なことから汎用性が高く、冷凍サイクルのCOP(成績係数)向上を促進することができる。
【0050】
また、本発明の容積形流体機械を適用した冷凍サイクルを使用する冷凍空調機器は、冷凍空調機器のCOP(成績係数)向上が図れる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に係わる容積形流体機械の縦断面図である。
【図2】図1のA−A断面図である。
【図3】図1のB−B断面図である。
【図4】クランク軸回転角ごとの作動流体の流入過程を示した本発明の一実施形態における膨張機の動作説明図である。
【図5】本発明の一実施形態における膨張機における作動流体の流入・流出状態(流入完了、流出開始)を示した動作図である。
【図6】本発明の一実施形態における膨張機の容積変化特性図である。
【図7】本発明の第1の実施形態に係わる容積形流体機械を備えた冷凍サイクルの模式図である。
【図8】作動流体として自然冷媒である二酸化炭素(R744)のモリエル線図上に表した、本発明の一実施形態である冷凍サイクルを示す図である。
【図9】本発明の第2の実施形態に係わる容積形流体機械の要部縦断面図である。
【図10】図9のA−A断面図である。
【図11】本発明の第3の実施形態に係わる容積形流体機械の縦断面図である。
【符号の説明】
1 容積形流体機械、
2 膨張機、
3 容積形ブロワ、
4 クランク軸
4a 偏心部、
4b 偏心部、
4c 給油通路、
5 密閉容器、
6 主軸受、
7 副軸受、
8 シリンダ、
8a 円筒状内周面、
8b 円筒孔部、
8c 逃げ孔部、
8d 流入通路、
8e 流出通路、
9 揺動ピストン、
9a ローラ部、
9b 軸受メタル、
9c ベーン部、
9d 流入溝、
10 シュー、
10a 流入孔、
11 流入パイプ、
12 流出パイプ、
13 締付けボルト、
14 補助軸受、
14a 吐出ポート、
15 仕切り板、
16 シリンダ、
16a 円筒状内周面、
16b ベーン溝、
16c 逃げ孔部、
16d スプリング孔部、
16e 吸入通路、
16f 吐出切欠き、
17 ローラ、
18 ベーン、
18a ベーンスプリング、
19 吸入パイプ、
20 吐出パイプ、
21 潤滑油、
22 給油ピース、
23 バランスウエイト、
24 バランスウエイトカバー。

Claims (4)

  1. 両端面を端板により閉塞されるシリンダと、前記シリンダ内に配置される円筒形状のローラ部とそのローラ部から突出する板状のベーン部を有する揺動ピストンと、その揺動ピストンのベーン部を前記シリンダに設けられた円筒孔内で両側面から挟み込み揺動自在に嵌装されたシューと、前記揺動ピストンのローラ部内に回転自在に嵌合する偏心部を備えたクランク軸と、前記シューに設けられ前記円筒孔内周面から前記ベーン部に前記シリンダ外からの作動流体を導く第1の通路と、前記ベーン部に設けられ前記第1の通路からの作動流体を前記シリンダ内に導く第2の通路とを備え、第1及び第2の通路によって作動流体の流入を制御する容積形流体機械。
  2. 請求項1記載の容積形流体機械において、前記シリンダに前記シリンダ内の作動流体を外部に導出する複数の導出路を設けた容積形流体機械。
  3. 密閉容器内に、外部から流入した作動流体を膨張させてエネルギーを回収する膨張機と、外部から流入した作動流体の圧力を高めて吐出する容積形ブロワとを、前記膨張機の回転力を前記容積形ブロワに伝えるクランク軸を介して連結して、
    前記膨張機は、両端面を端板により閉塞されるシリンダと、前記シリンダ内に配置される円筒形状のローラ部とそのローラ部から突出する板状のベーン部を有する揺動ピストンと、その揺動ピストンのベーン部を前記シリンダに設けられた円筒孔内で両側面から挟み込み揺動自在に嵌装されたシューと、前記クランク軸に設けられ前記揺動ピストンのローラ部内に回転自在に嵌合する偏心部と、前記シューに設けられ前記円筒孔内周面から前記ベーン部に前記シリンダ外からの作動流体を導く第1の通路と、前記ベーン部に設けられ前記第1の通路からの作動流体を前記シリンダ内に導く第2の通路とを備え、
    前記容積形ブロワは、シリンダ内に作動流体を導入する吸入パイプと、前記クランク軸のもう一つの偏心部に回転自在に嵌合されたローラと、このローラに先端を接して往復運動し、シリンダ内を吸入室と圧縮室に仕切るベーンと、前記クランク軸を軸支しかつ前記シリンダの両端開口を閉塞する端板とを備えた容積形流体機械。
  4. 作動流体として、二酸化炭素を冷媒とする冷凍サイクルに接続されることを特徴とする請求項1〜3記載の容積形流体機械。
JP2003123121A 2003-04-28 2003-04-28 容積形流体機械 Withdrawn JP2004324595A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003123121A JP2004324595A (ja) 2003-04-28 2003-04-28 容積形流体機械

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003123121A JP2004324595A (ja) 2003-04-28 2003-04-28 容積形流体機械

Publications (1)

Publication Number Publication Date
JP2004324595A true JP2004324595A (ja) 2004-11-18

Family

ID=33501096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003123121A Withdrawn JP2004324595A (ja) 2003-04-28 2003-04-28 容積形流体機械

Country Status (1)

Country Link
JP (1) JP2004324595A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006274954A (ja) * 2005-03-30 2006-10-12 Toyota Motor Corp 排熱エネルギ回収装置
JP2007309252A (ja) * 2006-05-19 2007-11-29 Denso Corp 回転出力発生装置
JP2007315227A (ja) * 2006-05-24 2007-12-06 Matsushita Electric Ind Co Ltd 膨張機一体型圧縮機および冷凍サイクル装置
JP2008163831A (ja) * 2006-12-28 2008-07-17 Daikin Ind Ltd 流体機械
JP2011085035A (ja) * 2009-10-14 2011-04-28 Toshiba Carrier Corp 流体機械及び冷凍サイクル装置
CN106122013A (zh) * 2016-07-29 2016-11-16 珠海格力节能环保制冷技术研究中心有限公司 一种滚动转子压缩机

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006274954A (ja) * 2005-03-30 2006-10-12 Toyota Motor Corp 排熱エネルギ回収装置
JP2007309252A (ja) * 2006-05-19 2007-11-29 Denso Corp 回転出力発生装置
JP4711884B2 (ja) * 2006-05-19 2011-06-29 株式会社デンソー 回転出力発生装置
JP2007315227A (ja) * 2006-05-24 2007-12-06 Matsushita Electric Ind Co Ltd 膨張機一体型圧縮機および冷凍サイクル装置
JP2008163831A (ja) * 2006-12-28 2008-07-17 Daikin Ind Ltd 流体機械
JP2011085035A (ja) * 2009-10-14 2011-04-28 Toshiba Carrier Corp 流体機械及び冷凍サイクル装置
CN106122013A (zh) * 2016-07-29 2016-11-16 珠海格力节能环保制冷技术研究中心有限公司 一种滚动转子压缩机

Similar Documents

Publication Publication Date Title
US7399167B2 (en) Fluid machine operable in both pump mode and motor mode and waste heat recovering system having the same
US7249459B2 (en) Fluid machine for converting heat energy into mechanical rotational force
KR100840048B1 (ko) 용적형 유체 기계
JP4261620B2 (ja) 冷凍サイクル装置
AU2005240929B2 (en) Rotary compressor
US7263828B2 (en) Fluid machine
WO2012004992A1 (ja) ロータリ圧縮機及び冷凍サイクル装置
WO2011055444A1 (ja) ヒートポンプ装置、二段圧縮機及びヒートポンプ装置の運転方法
JP4055902B2 (ja) 膨張機を備えた冷凍装置
US20040258539A1 (en) Fluid machine
JP4697734B2 (ja) 冷凍サイクル
JP4617764B2 (ja) 膨張機
JPH02230995A (ja) ヒートポンプ用圧縮機及びその運転方法
JP4991255B2 (ja) 冷凍サイクル装置
JP2006266171A (ja) 容積形流体機械
JP2004324595A (ja) 容積形流体機械
JP2004325018A (ja) 冷凍サイクル
JP2012093017A (ja) 冷凍サイクル装置
JP2009270529A (ja) 容積形流体機械
US11953005B2 (en) Compressor having orbiting scroll supply hole to lubricate thrust surface
JP5119786B2 (ja) 流体機械および冷凍サイクル装置
KR100677527B1 (ko) 로터리 압축기
WO2022149225A1 (ja) 圧縮機
WO2011161953A1 (ja) 冷凍サイクル装置
JP2004360611A (ja) 容積形機械及びそれを用いた冷凍装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060130

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD02 Notification of acceptance of power of attorney

Effective date: 20060512

Free format text: JAPANESE INTERMEDIATE CODE: A7422

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060512

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061005

A711 Notification of change in applicant

Effective date: 20080619

Free format text: JAPANESE INTERMEDIATE CODE: A711

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080709

A521 Written amendment

Effective date: 20080623

Free format text: JAPANESE INTERMEDIATE CODE: A821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A711 Notification of change in applicant

Effective date: 20090212

Free format text: JAPANESE INTERMEDIATE CODE: A711

A761 Written withdrawal of application

Effective date: 20090225

Free format text: JAPANESE INTERMEDIATE CODE: A761