WO2008049681A1 - Ultraschallwandler - Google Patents
Ultraschallwandler Download PDFInfo
- Publication number
- WO2008049681A1 WO2008049681A1 PCT/EP2007/059270 EP2007059270W WO2008049681A1 WO 2008049681 A1 WO2008049681 A1 WO 2008049681A1 EP 2007059270 W EP2007059270 W EP 2007059270W WO 2008049681 A1 WO2008049681 A1 WO 2008049681A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- damping element
- diaphragm
- damping
- ultrasonic transducer
- pot
- Prior art date
Links
- 238000013016 damping Methods 0.000 claims abstract description 195
- 238000004519 manufacturing process Methods 0.000 claims abstract description 20
- 238000000034 method Methods 0.000 claims abstract description 16
- 239000000463 material Substances 0.000 claims description 29
- 239000012528 membrane Substances 0.000 claims description 26
- 229920001971 elastomer Polymers 0.000 claims description 13
- 239000000806 elastomer Substances 0.000 claims description 13
- 238000003780 insertion Methods 0.000 claims description 7
- 230000037431 insertion Effects 0.000 claims description 7
- 238000005266 casting Methods 0.000 claims description 6
- 239000006261 foam material Substances 0.000 claims description 5
- 230000002093 peripheral effect Effects 0.000 claims description 4
- 230000000295 complement effect Effects 0.000 claims description 2
- 238000007789 sealing Methods 0.000 claims 1
- 230000010355 oscillation Effects 0.000 abstract description 3
- 101100298225 Caenorhabditis elegans pot-2 gene Proteins 0.000 description 20
- 230000008901 benefit Effects 0.000 description 8
- 239000000853 adhesive Substances 0.000 description 6
- 230000001070 adhesive effect Effects 0.000 description 6
- 238000005187 foaming Methods 0.000 description 6
- 239000010410 layer Substances 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 229920002379 silicone rubber Polymers 0.000 description 5
- 230000007704 transition Effects 0.000 description 5
- 230000000712 assembly Effects 0.000 description 4
- 238000000429 assembly Methods 0.000 description 4
- 230000002238 attenuated effect Effects 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 239000004945 silicone rubber Substances 0.000 description 4
- 239000011358 absorbing material Substances 0.000 description 3
- 239000002390 adhesive tape Substances 0.000 description 3
- 239000011324 bead Substances 0.000 description 3
- 238000011049 filling Methods 0.000 description 3
- 238000005429 filling process Methods 0.000 description 3
- 239000012212 insulator Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920002323 Silicone foam Polymers 0.000 description 2
- 238000001723 curing Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 239000011344 liquid material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 239000013514 silicone foam Substances 0.000 description 2
- 230000008719 thickening Effects 0.000 description 2
- 229920006311 Urethane elastomer Polymers 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical group [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000007799 cork Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 230000028161 membrane depolarization Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000001029 thermal curing Methods 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 238000004073 vulcanization Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R31/00—Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/88—Sonar systems specially adapted for specific applications
- G01S15/93—Sonar systems specially adapted for specific applications for anti-collision purposes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/52—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
- G01S7/521—Constructional features
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K9/00—Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers
- G10K9/12—Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers electrically operated
- G10K9/122—Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers electrically operated using piezoelectric driving means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/88—Sonar systems specially adapted for specific applications
- G01S15/93—Sonar systems specially adapted for specific applications for anti-collision purposes
- G01S15/931—Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49005—Acoustic transducer
Definitions
- the present invention relates to an ultrasonic transducer for a vehicle and a corresponding method for manufacturing such an ultrasonic transducer.
- L 5 ultrasonic transducers are used in motor vehicles, for example, for a parking aid.
- the parking aid includes, for example, a control unit and ultrasonic sensors, which are provided with such ultrasonic transducers.
- a decay behavior of the ultrasonic transducer for a so-called Nahmesscite a crucial functional requirement (for example, ⁇
- An ultrasonic sensor has a housing in which the ultrasonic transducer is introduced.
- Such ultrasonic transducers generally consist of a diaphragm pot and a transducer element arranged therein.
- the diaphragm pot is usually formed from a metallic material, such as aluminum, or milled. It is made of anti-corrosion and Lackiertouchn with a primer
- the electromechanical transducer element e.g., a piezoelectric element
- the housing bottom for example glued, and contacted.
- the housing is filled with a damping material.
- a damping material One possibility is an injected silicone foam.
- L 5 operating frequency (48 kHz) of the ultrasonic sensor is based, in particular shares to
- Vibrations at the pot edge or bead are reflected by mismatch of mechanical impedance, but they are not converted into thermal energy, which would cause damping.
- housing fillers which consist of damping materials and / or additionally contain such.
- a material for example, a strongly dampening Aussch ⁇ ummaterial filling the interior of the diaphragm pot with a nearly homogeneous consistency, thereby not only results in a large damping of the wall vibrations but also the
- membrane pot is exposed to external environmental influences such as contamination, jamming of the sensor in its holder, embrittlement of the decoupling ring or penetrating water.
- L 0 DE 199 12 772 A1 describes an ultrasonic sensor for distance measurement, wherein a diaphragm pot is equipped with an elliptical and circular recess over a transducer element with a plurality of insulators, which are stacked and mechanically held by a Bohrungs Anlagensring in an annular groove in the diaphragm pot , A connection to the inner wall is not described.
- L 5 These insulators consist, for example, of different damping materials such as a silicone disk, felt and cork.
- the insulators have the shape of the elliptical recess and completely cover the transducer element.
- Example felt An insulating resin such as silicone or urethane rubber seals the piezoelectric transducer element and the sound absorbing material.
- the interior of the diaphragm pot has an elliptical and circular contour.
- the transducer element is mounted on the membrane and surrounded by a ring portion _5, for example, has a thinner wall thickness than the portion on which the transducer element is applied.
- transducer element and ring section are completely covered by the sound absorbing material.
- the annular portion of the membrane surrounding the transducer element is covered with an insulating resin having a low layer thickness. It can be for example silicone or urethane resin.
- Ring section dampened with thinner wall thickness.
- a connection of this thin damping layer of the insulating resin with the inner wall of the diaphragm pot is not described. - A -
- An ultrasonic sensor according to the description of DE 103 41 900 A1 has an interior of a diaphragm pot, which is filled with felt over a transducer element in layers and with a silicone rubber.
- a portion of a silicone foam with bubbles is arranged in the silicone rubber.
- the silicone rubber 5 seals the diaphragm pot.
- the felt layer completely covers the transducer element and is completely covered by the silicone rubber.
- Membrane pot in its lower part up to a definable height has a concentric structure of a homogeneous material, the inner region is filled above the piezoceramic on the surface of Nutzschwingung with a weakly dampening material. Another advantage is that the components are so
- L 5 are designed so that a production of the ultrasonic sensor has no difficult-to-control processes and manual production is made possible in a simple manner.
- the core of the invention is that the ultrasonic transducer has a diaphragm cup _ 0, which has a damping element with strong damping in an edge region or ring portion around the transducer element, which is positively connected to the membrane and the inner wall and centrally above the transducer element Has further damping element with low attenuation.
- Membrant pot received in relation to the diaphragm plane of the damping element.
- the kinetic energy of the unwanted vibrations in the damping element is converted into heat.
- the second damping element is arranged concentrically around the first damping element, wherein the first damping element has substantially no contact with the inner wall of the diaphragm pot.
- a particular advantage is that the diaphragm pot have a geometry L 0, which has a standard master pot, which no redesign is required and can be used on proven components with high quality.
- the ultrasonic transducer remains at its operating frequency (48 kHz) low impedance and thus advantageous efficient. It is controllable with smaller transmission voltages and has in the
- L 5 Microphone operation higher generator voltages The former is synonymous with the reduced risk of creeping depolarization of the piezoceramic of the transducer element and a higher overdrive limit in terms of transformer and transmission current source.
- the latter is synonymous with larger signal / noise ratios in microphone operation or reception.
- the ultrasonic transducer including the inner damping structure can be produced independently of the housing of the ultrasonic sensor and can be tested with regard to its parameters. This process can be advantageously unbundled (for example, separate locations of converter and sensor manufacturing) and rejects in the
- the ultrasonic transducer in particular for a vehicle, having a diaphragm pot with a circumferential wall, comprises: a diaphragm cup mounted on a transducer portion on an inner side of a membrane
- transducer element for generating ultrasonic vibrations; a first damping element arranged in the diaphragm pot on the transducer element for damping the diaphragm; and a second damper element disposed in the diaphragm pot in a peripheral portion of the diaphragm disposed about the transducer element for damping vibrations of the wall; wherein the second damping element both is at least partially positively connected to the edge portion and with an inner side of the wall.
- the damping of the wall modes is advantageously carried out without influence and necessity 5 of an outer decoupling ring on an almost metrologically no longer detectable
- a third damping element for further damping and / or
- the first damping element and the second damping element are designed as insertion components.
- L 5 automatic production as well as manual production is advantageously possible.
- Membrane or wall can be achieved by oversize or mechanical stress or by bonding.
- the second damping element has a contour that is complementary to a contour of the diaphragm pot, and a
- the first damping element is designed as an insert component, wherein the second damping element is made of a casting material, preferably an elastomer with microballoons, in the diaphragm pot.
- the second damping element 30 is made of a casting material, preferably an elastomer with microballoons, in the diaphragm pot.
- an adaptation and connection of the second damping element 30 to the membrane and the inner wall of the diaphragm pot is advantageously possible.
- the microballoons in the elastomer cause a further advantageous damping of the wall vibrations, which are converted into thermal energy.
- the third damping element is formed from a casting material, preferably a two-component elastomer. In this case, this damping element can advantageously be introduced easily. 5
- the first damping element comprises a foam material, preferably a closed-cell foam material.
- the first damping element has a larger width at its upper side than at its lower side, wherein the width at its upper side is greater than the width of the passage opening of the second damping element. This ensures that the first damping element has a larger width at its upper side than at its lower side, wherein the width at its upper side is greater than the width of the passage opening of the second damping element.
- first damping element for example, simply by biasing advantageous due to its conical shape without additional aids, such as an adhesive layer in the through-opening of the ⁇ second damping element is attachable.
- the third damping element _ 5 is formed integrally with the second damping element.
- the same material can be used and one operation can be advantageously saved.
- first and second damping element have a measured from the inside of the membrane at 30 previously determined height.
- the height is preferably the same for both elements.
- Ultrasonic transducer has the following process steps:
- the advantage is that a difficult to control foaming process is replaced by a simple mechanical filling process.
- the acoustic properties of the elastomer to be filled is pre-defined by its parameters (density, Shore A hardness, diameter of the microballoons) and does not change by, for example, thermal curing ⁇ .
- a core having the shape and dimensions of the first damping element on the transducer element and the second damping element as a castable material in the region between said core and
- An alternative method according to the invention for producing a 5 ultrasonic transducer according to the invention comprises the following method steps:
- the advantage is that the core for the second L 5 damping element to be enclosed forms a so-called "lost shape" and the first one
- Damping element is, where it can advantageously remain in place.
- Damping element takes place.
- the material of the second damping element is also used for the third damping element.
- the casting of the second and third damping element is then advantageously in only one production step.
- the difficult-to-control reaction equilibrium between propellant expansion and adhesion of a silicone in the foaming process of the same is replaced by a simple mechanical Einsetzvon and insertion and filling process.
- the acoustically relevant data such as Shore hardness, density, etc. are predefined and not dependent on the vulcanization process.
- the first and second damping element in the form of an insert part can be produced in an advantageously simple manner, for example by punching.
- FIG. 1 is a schematic sectional view of an exemplary diaphragm pot of an ultrasonic transducer
- FIG. 5 is a schematic sectional view of a first embodiment of an ultrasonic transducer according to the invention.
- FIG. FIG. 3 is a schematic sectional view of the first embodiment taken along section lines X-X of FIG. 2; 30
- FIG. 4 is a schematic sectional view of the first embodiment taken along section lines YY of FIG. 2;
- FIG. 5 is a schematic sectional view of a second embodiment of the ultrasonic transducer according to the invention.
- FIG. Figure 6 is a perspective view of an exemplary damping element
- FIG. 7 is a perspective view of another exemplary damping element.
- an inventive ultrasonic transducer 1 is shown in a sectional view as L 5 is a conventional design in a preliminary stage before filling with damping elements.
- a diaphragm pot 2 preferably in a cylindrical shape, has a circumferential wall 3 with a membrane 7 at the bottom. Furthermore, the diaphragm pot 2 has on its upper side an opening 6 which, for example, has a specific contour 11 '(see FIG. 4).
- a thickening 5 is arranged in the vicinity of the opening, which is provided, for example, for connection to a holding element and / or decoupling ring, not shown.
- the diaphragm pot 2 is in this example a extruded aluminum part.
- the circumferential wall of the diaphragm pot 2 encloses an interior 19, within which on the inside of the diaphragm 7 a transducer element 8, for example a
- Piezo transducer is applied in a transducer section 8, for example with an adhesive.
- the converter section 8 is arranged concentrically around the central axis of the diaphragm pot 2 and surrounded by an edge section 9.
- FIG. 2 shows a schematic sectional illustration of a first exemplary embodiment of an ultrasonic transducer 1 according to the invention with damping elements 12, 13 and 14.
- a first damping element 12 is arranged, in this example, a certain Edge region of the top of the transducer element 10 is not covered by the first damping element 12.
- the first damping element 12 may be, for example, a stamped insert which is mounted on the transducer element 10 by means of a double-sided adhesive tape or adhesive.
- the first damping element is, for example, a felt material or a foam part and has a low
- a second damping element 13 with a high damping value is arranged concentrically around the edge section 9 of the diaphragm 7, this being provided with the edge section 9 with a first fastening element 15 and with the inner wall of the diaphragm pot 2
- L 0 is frictionally connected to a second fastening element 16. It is preferred that this frictional connection is formed flat.
- the fasteners 15, 16 may be, for example, certain adhesives in one embodiment.
- L 5 wall 3 in relation to the plane of the membrane 7 are taken up by the second damping element 13 and converted into thermal energy for damping.
- the first and second damping elements 12 and 13 extend in the direction of the central axis of the diaphragm pot 2 into one from the inside of the diaphragm 7
- a third damping element 14 is arranged, which fills the upper interior 19 of the diaphragm pot 2 up to its upper edge of the opening 16 and seals.
- the third damping element 14 is a two-component elastomer.
- this structure has a selective damping according to functional requirements:
- the useful vibration of the diaphragm 7 in the converter section 8 is provided by the first damping element 12 with a low damping, wherein the wall vibrations or the Kipp_ / Knautschchismoden the wall relative to
- Fig. 3 shows a sectional view of the first embodiment of FIG. 2 along section lines XX.
- the inner cross section of the diaphragm pot 2 here has a special shape, which in Fig. 4, a sectional view taken along section lines YY of Fig. 2, is shown.
- This shape has a contour 11 ', which consists in this example of an oval-shaped and a circular recess.
- the first damping element 12 is embodied here with a circular cross section and is surrounded by the second damping element 13, which in its outer shape has the contour 11 (see FIG. 5) of the contour 11 'of the inner wall of the diaphragm pot 2. It is at this
- Embodiment to recognize that the contour 11 in a transverse axis of the diaphragm pot oval-shaped and in a rectangular arranged at right angles to the transverse axis, resulting in different wall thicknesses of the diaphragm pot 2, which influence the directional characteristic of the ultrasonic transducer 1.
- FIG 5 shows a schematic sectional representation of a second exemplary embodiment of the ultrasound transducer 1 according to the invention, wherein the second damping element 13 is integrally formed with the third damping element 14.
- FIGS. 6 and 7 show the damping elements 13 and 12 as insertion components.
- the second damping element 13 is punched from an elastomer material with the dimensions of the interior 19 of the diaphragm pot 2 at a certain height and has a through-opening 18 for the first damping element 12, which in this example has a cylindrical shape.
- the top 17 of the first damping element 12 has a larger diameter than its underside, whereby an advantageous clamping when inserting the first damping element 12 in the fürgangsöffhung 18 of the second damping element 13 can take place.
- the second damping element 13 is first so glued into the 30 lower portion of the interior 19 of the diaphragm pot 2, that it with his
- the first damping element 12 is then inserted into the fürgangsöffhung 18 of the second damping element, with its underside with the top of the Transducer element 10, for example by means of adhesive tape is connected.
- An adhesion of the outside of the first damping element 12 in the passage opening 18 with the second damping element 13 is conceivable.
- felt as a material for the first damping element 12 is completely dispensed with bonding in the direction 5 of the second damping element 13 and the diaphragm 7.
- Damping element 12 made of felt holds in this example, only by its shape, such as slight oversize or conicity, in the through hole 18th
- the first damping element 12 is mechanically fixed in the passage opening 18 due to its different diameters or widths. This applies exactly to the felt material with slightly enlarged diameter with respect to through opening 18.
- Membrane pot 2 introduced, for example, shed in the form of a two-component elastomer. Thus, the interior of the diaphragm pot 2 is also sealed at the same time.
- Another production method provides that initially a mold or a core with the
- Shape of the first damping element 12 is removably applied to the transducer element 10. Then, the second damper 13 in the form of a liquid elastomer is filled in the peripheral area around the core and thermally cured.
- the level of the still liquid elastomer corresponds to the height of the top
- the third damping element 14 is introduced into the remaining volume of the diaphragm pot 2 as explained above.
- the first damping element 12 is concentrically affixed as a "lost core" on the transducer element 10 by means of a double-sided adhesive tape or adhesive transfer adhesive is injected as a second damping element 13 into the peripheral area around the first transducer element 12 and cured
- the third damping element 14 is introduced into the remaining volume of the diaphragm cup 2 as explained above
- the second and third damping elements 13 and 14 are in the same encapsulation step made of the same material.
- L 5 invention are attenuated to an almost metrologically no longer detectable level.
- the principle of the above damper assemblies includes diaphragm assemblies in which the piezoelectric transducer element 10 rests on a pedestal on the diaphragm 7, for example, or is mounted in a recess of the diaphragm 7.
- the invention is not limited to the embodiments described above, but modifiable in a variety of ways.
- contour 11, 11 'described above may have other shapes, for example
- Example teardrop shape exhibit.
- the first damping element 12 is formed from a 30 closed-cell foam material, since thus a defined
- Transition region between the outer wall of the first damping element 12 in the through hole 18 to the second damping element 13 is advantageously possible.
- AI material for the second damping element 13 an elastomer has proven, which is offset with microballoons, since thus advantageously damping parameters are previously adjustable.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Acoustics & Sound (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Manufacturing & Machinery (AREA)
- Signal Processing (AREA)
- Transducers For Ultrasonic Waves (AREA)
Abstract
Description
Claims
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP07803234A EP2082258B1 (de) | 2006-10-24 | 2007-09-05 | Ultraschallwandler |
KR1020097008403A KR101432563B1 (ko) | 2006-10-24 | 2007-09-05 | 초음파 트랜스듀서 |
ES07803234T ES2401464T3 (es) | 2006-10-24 | 2007-09-05 | Transductor de ultrasonidos |
CN2007800395911A CN101529272B (zh) | 2006-10-24 | 2007-09-05 | 超声换能器 |
US12/308,300 US8587182B2 (en) | 2006-10-24 | 2007-09-05 | Ultrasonic transducer |
US14/042,907 US9503830B2 (en) | 2006-10-24 | 2013-10-01 | Method for manufacturing an ultrasonic transducer |
US15/293,453 US9992598B2 (en) | 2006-10-24 | 2016-10-14 | Method for manufacturing an ultrasonic transducer |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102006050037A DE102006050037A1 (de) | 2006-10-24 | 2006-10-24 | Ultraschallwandler |
DE102006050037.7 | 2006-10-24 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/308,300 A-371-Of-International US8587182B2 (en) | 2006-10-24 | 2007-09-05 | Ultrasonic transducer |
US14/042,907 Division US9503830B2 (en) | 2006-10-24 | 2013-10-01 | Method for manufacturing an ultrasonic transducer |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008049681A1 true WO2008049681A1 (de) | 2008-05-02 |
Family
ID=38740274
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2007/059270 WO2008049681A1 (de) | 2006-10-24 | 2007-09-05 | Ultraschallwandler |
Country Status (8)
Country | Link |
---|---|
US (3) | US8587182B2 (de) |
EP (1) | EP2082258B1 (de) |
KR (1) | KR101432563B1 (de) |
CN (1) | CN101529272B (de) |
DE (1) | DE102006050037A1 (de) |
ES (1) | ES2401464T3 (de) |
RU (1) | RU2430386C2 (de) |
WO (1) | WO2008049681A1 (de) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120304772A1 (en) * | 2009-11-23 | 2012-12-06 | Michael Schneider | ultrasonic sensor |
US9992598B2 (en) | 2006-10-24 | 2018-06-05 | Robert Bosch Gmbh | Method for manufacturing an ultrasonic transducer |
Families Citing this family (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006040344B4 (de) * | 2006-08-29 | 2022-09-29 | Robert Bosch Gmbh | Haltevorrichtung für einen Ultraschallwandler |
EP2229242B1 (de) * | 2008-01-09 | 2011-05-18 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Ultraschallwandler zur erzeugung asymmetrischer schallfelder |
DE102009022187A1 (de) * | 2009-05-20 | 2010-11-25 | Valeo Schalter Und Sensoren Gmbh | Ultraschallsensor und/oder Ultraschallwandler in einem geschlossenen Gehäuse und ein Herstellungsverfahren |
DE102009034418A1 (de) * | 2009-07-23 | 2011-01-27 | Valeo Schalter Und Sensoren Gmbh | Membran und Verfahren zur Herstellung einer Membran für einen Ultraschallwandler |
DE102009046144A1 (de) * | 2009-10-29 | 2011-05-19 | Robert Bosch Gmbh | Ultraschallwandler zum Einsatz in einem fluiden Medium |
JP5099175B2 (ja) * | 2010-05-28 | 2012-12-12 | 株式会社村田製作所 | 超音波センサ |
US9476095B2 (en) | 2011-04-15 | 2016-10-25 | The Johns Hopkins University | Safe sequencing system |
JP5659956B2 (ja) * | 2011-06-03 | 2015-01-28 | パナソニックIpマネジメント株式会社 | 超音波送受波器及び超音波流量計 |
KR20130016647A (ko) * | 2011-08-08 | 2013-02-18 | 삼성전기주식회사 | 초음파 센서 |
DE102012200639A1 (de) | 2012-01-17 | 2013-07-18 | Robert Bosch Gmbh | Ultraschallsensor |
JP6078994B2 (ja) * | 2012-06-13 | 2017-02-15 | セイコーエプソン株式会社 | 超音波トランスデューサー素子ユニットおよびプローブおよびプローブヘッド並びに電子機器および超音波診断装置 |
DE102012106696A1 (de) * | 2012-07-24 | 2014-01-30 | Volkswagen Ag | Ultraschallsensorvorrichtung mit einem verbesserten Entkopplungsring und Kraftfahrzeug |
DE102012106697A1 (de) * | 2012-07-24 | 2014-01-30 | Volkswagen Ag | Ultraschallsensoranordnung mit einem Versteifungshalter, Anordnung, Kraftfahrzeug und entsprechendes Verfahren |
KR101477862B1 (ko) | 2012-08-28 | 2015-01-06 | 주식회사 만도 | 초음파 트랜스듀서 구조 |
EP3447495B2 (de) | 2012-10-29 | 2024-03-13 | The Johns Hopkins University | Papanicolaou-test für ovarial- und endometriumkarzinome |
KR102277617B1 (ko) * | 2013-06-06 | 2021-07-16 | 리얼디 인크. | 스페클을 감소하기 위해 스크린들을 진동시키는 시스템 및 방법 |
DE102013211533A1 (de) | 2013-06-19 | 2014-12-24 | Robert Bosch Gmbh | Ultraschallwandler und Verfahren zum Betrieb eines Ultraschallwandlers |
DE102013211619A1 (de) * | 2013-06-20 | 2014-12-24 | Robert Bosch Gmbh | Umfeldsensiereinrichtung mit Ultraschallwandler, und Kraftfahrzeug mit einer derartigen Umfeldsensiereinrichtung |
DE102013211593A1 (de) * | 2013-06-20 | 2014-12-24 | Robert Bosch Gmbh | Umfeldsensiereinrichtung mit modularem Ultraschallwandler, und Kraftfahrzeug mit einer derartigen Umfeldsensiereinrichtung |
DE102013211606A1 (de) * | 2013-06-20 | 2014-12-24 | Robert Bosch Gmbh | Umfeldsensiereinrichtung mit Ultraschallwandler, und Kraftfahrzeug mit einer derartigen Umfeldsensiereinrichtung |
KR102131449B1 (ko) * | 2013-06-26 | 2020-08-05 | 현대모비스 주식회사 | 초음파 센서 조립체 및 그 제조방법 |
DE102013021328A1 (de) * | 2013-12-17 | 2015-06-18 | Valeo Schalter Und Sensoren Gmbh | Ultraschallsensoreinrichtung für ein Kraftfahrzeug, Kraftfahrzeug und entsprechendes Verfahren |
JP6249168B2 (ja) * | 2014-04-08 | 2017-12-20 | 株式会社デンソー | 車両用超音波センサ及びそれを備えた車両用距離検出器 |
US11117166B2 (en) * | 2015-05-22 | 2021-09-14 | Halliburton Energy Services, Inc. | Ultrasonic transducers with piezoelectric material embedded in backing |
TR201608786A2 (de) | 2015-07-16 | 2017-01-23 | Ford Global Tech Llc | |
WO2017027653A1 (en) | 2015-08-11 | 2017-02-16 | The Johns Hopkins University | Assaying ovarian cyst fluid |
DE102015217741A1 (de) * | 2015-09-16 | 2017-03-16 | Robert Bosch Gmbh | Akustischer Sensor zum Aussenden und Empfangen von akustischen Signalen und Verfahren zum Herstellen eines solchen Sensors |
DE102015217738A1 (de) * | 2015-09-16 | 2017-03-16 | Robert Bosch Gmbh | Abdeckung zum Befestigen eines akustischen Sensors an einer Durchgangsöffnung einer Fahrzeugkomponente |
DE102016221542A1 (de) | 2016-11-03 | 2018-05-03 | Robert Bosch Gmbh | Membrantopf für einen Ultraschallwandler und Ultraschallwandler |
CA3072195A1 (en) | 2017-08-07 | 2019-04-04 | The Johns Hopkins University | Methods and materials for assessing and treating cancer |
US10622270B2 (en) | 2017-08-31 | 2020-04-14 | Texas Instruments Incorporated | Integrated circuit package with stress directing material |
US10553573B2 (en) | 2017-09-01 | 2020-02-04 | Texas Instruments Incorporated | Self-assembly of semiconductor die onto a leadframe using magnetic fields |
WO2019058842A1 (ja) * | 2017-09-21 | 2019-03-28 | 株式会社村田製作所 | 超音波センサ |
DE102017216868A1 (de) * | 2017-09-25 | 2019-03-28 | Robert Bosch Gmbh | Schallwandler |
US10833648B2 (en) * | 2017-10-24 | 2020-11-10 | Texas Instruments Incorporated | Acoustic management in integrated circuit using phononic bandgap structure |
US10886187B2 (en) | 2017-10-24 | 2021-01-05 | Texas Instruments Incorporated | Thermal management in integrated circuit using phononic bandgap structure |
US10497651B2 (en) | 2017-10-31 | 2019-12-03 | Texas Instruments Incorporated | Electromagnetic interference shield within integrated circuit encapsulation using photonic bandgap structure |
US10371891B2 (en) | 2017-10-31 | 2019-08-06 | Texas Instruments Incorporated | Integrated circuit with dielectric waveguide connector using photonic bandgap structure |
US10557754B2 (en) | 2017-10-31 | 2020-02-11 | Texas Instruments Incorporated | Spectrometry in integrated circuit using a photonic bandgap structure |
US10444432B2 (en) | 2017-10-31 | 2019-10-15 | Texas Instruments Incorporated | Galvanic signal path isolation in an encapsulated package using a photonic structure |
DE102017127587A1 (de) * | 2017-11-22 | 2019-05-23 | Valeo Schalter Und Sensoren Gmbh | Anordnung für ein Kraftfahrzeug mit einem Ultraschallsensor und mit einem Dämpfungselement, welches Armierungselemente aufweist sowie Vorrichtung |
DE102018200315A1 (de) | 2018-01-11 | 2019-07-11 | Robert Bosch Gmbh | Schallwandler |
DE102018205527A1 (de) * | 2018-04-12 | 2019-10-17 | Robert Bosch Gmbh | Schallwandler |
DE112020002662A5 (de) * | 2019-06-04 | 2022-03-10 | Tdk Electronics Ag | Ultraschall-wandler und verfahren zur herstellung eines ultraschall-wandlers |
JP7347357B2 (ja) * | 2020-07-22 | 2023-09-20 | Tdk株式会社 | 超音波トランスデューサ |
USD1024818S1 (en) * | 2021-04-16 | 2024-04-30 | Chengdu Huitong West Electronic Co., Ltd. | Housing of ultrasonic sensor |
DE102021209732A1 (de) | 2021-09-03 | 2023-03-09 | Robert Bosch Gesellschaft mit beschränkter Haftung | Schallwandler |
JP1748345S (ja) * | 2022-07-05 | 2023-07-10 | 超音波センサ用筐体 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2097630A (en) * | 1981-04-29 | 1982-11-03 | Euratom | Ultrasonic transducers |
DE3721209A1 (de) * | 1987-06-26 | 1989-01-05 | Vega Grieshaber Gmbh & Co | Schall-/ultraschallmessgeraet |
DE10123612A1 (de) * | 2000-05-15 | 2001-11-29 | Murata Manufacturing Co | Ultraschallwellensender/empfänger |
DE10341900A1 (de) * | 2002-09-10 | 2004-06-24 | Murata Mfg. Co., Ltd., Nagaokakyo | Ultraschallsensor |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS612028Y2 (de) * | 1980-05-24 | 1986-01-23 | ||
DE4120681A1 (de) * | 1990-08-04 | 1992-02-06 | Bosch Gmbh Robert | Ultraschallwandler |
IT1256863B (it) | 1992-02-11 | 1995-12-27 | Sistema di rilevamento degli ostacoli in particolare per autoveicoli | |
DE4230773C2 (de) * | 1992-09-15 | 2000-05-04 | Endress Hauser Gmbh Co | Ultraschallwandler |
US5585557A (en) | 1995-05-12 | 1996-12-17 | Lockheed Corporation | Air data system for measuring fluid flow direction and velocity |
DE19727877A1 (de) * | 1997-06-30 | 1999-01-07 | Bosch Gmbh Robert | Ultraschallwandler |
DE19744229A1 (de) * | 1997-10-07 | 1999-04-29 | Bosch Gmbh Robert | Ultraschallwandler |
TW345132U (en) | 1998-03-26 | 1998-11-11 | shi-xiong Li | Improved structure for sensor of car backing radar |
US6250162B1 (en) * | 1998-04-24 | 2001-06-26 | Murata Manufacturing Co., Ltd. | Ultrasonic sensor |
WO2000030554A1 (en) * | 1998-11-20 | 2000-06-02 | Jones Joie P | Methods for selectively dissolving and removing materials using ultra-high frequency ultrasound |
DE10007050A1 (de) | 2000-02-17 | 2001-08-23 | Volkswagen Ag | Ultraschallsensor |
US6443900B2 (en) * | 2000-03-15 | 2002-09-03 | Olympus Optical Co., Ltd. | Ultrasonic wave transducer system and ultrasonic wave transducer |
JP3939652B2 (ja) * | 2000-11-15 | 2007-07-04 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | 多次元超音波トランスデューサアレイ |
DE10156259A1 (de) * | 2001-11-09 | 2003-05-22 | Valeo Schalter & Sensoren Gmbh | Ultraschallsensor und Verfahren zur Herstellung eines Ultraschallsensors |
JP3944052B2 (ja) * | 2001-12-27 | 2007-07-11 | 株式会社デンソー | 超音波送受波器及びこれを用いた超音波クリアランスソナー |
DE202004003487U1 (de) | 2004-03-03 | 2004-05-06 | Ponte Vecchio Consult Sagl | Näherungssensor und Vorrichtung zur Sicherung des Umgebungsbereiches eines Kraftfahrzeuges |
DE102004031310B4 (de) * | 2004-06-29 | 2017-02-09 | Robert Bosch Gmbh | Membrantopf für einen Ultraschallwandler |
JP4306561B2 (ja) * | 2004-08-11 | 2009-08-05 | 株式会社デンソー | 超音波センサ |
CN101258772B (zh) * | 2005-09-09 | 2012-04-25 | 株式会社村田制作所 | 超声波传感器 |
CN100411215C (zh) * | 2005-09-23 | 2008-08-13 | 中国人民解放军国防科学技术大学 | 组合式超声波换能器 |
KR100975517B1 (ko) * | 2005-12-14 | 2010-08-11 | 가부시키가이샤 무라타 세이사쿠쇼 | 초음파 트랜스듀서 |
JP4766112B2 (ja) * | 2006-03-06 | 2011-09-07 | 株式会社村田製作所 | 超音波センサおよびその製造方法 |
DE102006011155A1 (de) * | 2006-03-10 | 2007-09-13 | Robert Bosch Gmbh | Ultraschallsensor |
DE102006040344B4 (de) * | 2006-08-29 | 2022-09-29 | Robert Bosch Gmbh | Haltevorrichtung für einen Ultraschallwandler |
JP4835366B2 (ja) * | 2006-10-04 | 2011-12-14 | 株式会社デンソー | 超音波センサ |
DE102006050037A1 (de) | 2006-10-24 | 2008-04-30 | Robert Bosch Gmbh | Ultraschallwandler |
JP4367534B2 (ja) * | 2007-06-12 | 2009-11-18 | 株式会社デンソー | 超音波センサ |
US8544962B2 (en) | 2007-10-29 | 2013-10-01 | Kelsey-Hayes Company | Hydraulic brake system with controlled boost |
KR101868041B1 (ko) * | 2012-04-16 | 2018-06-18 | 한국전자통신연구원 | 초음파 무선전력 송수신장치 및 그 무선충전 방법 |
KR101477862B1 (ko) * | 2012-08-28 | 2015-01-06 | 주식회사 만도 | 초음파 트랜스듀서 구조 |
-
2006
- 2006-10-24 DE DE102006050037A patent/DE102006050037A1/de not_active Withdrawn
-
2007
- 2007-09-05 ES ES07803234T patent/ES2401464T3/es active Active
- 2007-09-05 EP EP07803234A patent/EP2082258B1/de active Active
- 2007-09-05 RU RU2009119360/09A patent/RU2430386C2/ru not_active IP Right Cessation
- 2007-09-05 CN CN2007800395911A patent/CN101529272B/zh active Active
- 2007-09-05 US US12/308,300 patent/US8587182B2/en active Active
- 2007-09-05 KR KR1020097008403A patent/KR101432563B1/ko active IP Right Grant
- 2007-09-05 WO PCT/EP2007/059270 patent/WO2008049681A1/de active Application Filing
-
2013
- 2013-10-01 US US14/042,907 patent/US9503830B2/en active Active
-
2016
- 2016-10-14 US US15/293,453 patent/US9992598B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2097630A (en) * | 1981-04-29 | 1982-11-03 | Euratom | Ultrasonic transducers |
DE3721209A1 (de) * | 1987-06-26 | 1989-01-05 | Vega Grieshaber Gmbh & Co | Schall-/ultraschallmessgeraet |
DE10123612A1 (de) * | 2000-05-15 | 2001-11-29 | Murata Manufacturing Co | Ultraschallwellensender/empfänger |
DE10341900A1 (de) * | 2002-09-10 | 2004-06-24 | Murata Mfg. Co., Ltd., Nagaokakyo | Ultraschallsensor |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9992598B2 (en) | 2006-10-24 | 2018-06-05 | Robert Bosch Gmbh | Method for manufacturing an ultrasonic transducer |
US20120304772A1 (en) * | 2009-11-23 | 2012-12-06 | Michael Schneider | ultrasonic sensor |
US8973442B2 (en) * | 2009-11-23 | 2015-03-10 | Robert Bosch Gmbh | Ultrasonic sensor |
Also Published As
Publication number | Publication date |
---|---|
ES2401464T3 (es) | 2013-04-19 |
CN101529272B (zh) | 2012-06-20 |
EP2082258A1 (de) | 2009-07-29 |
US20140026396A1 (en) | 2014-01-30 |
US20100296692A1 (en) | 2010-11-25 |
KR20090074055A (ko) | 2009-07-03 |
US9503830B2 (en) | 2016-11-22 |
US9992598B2 (en) | 2018-06-05 |
EP2082258B1 (de) | 2012-12-26 |
DE102006050037A1 (de) | 2008-04-30 |
RU2009119360A (ru) | 2010-11-27 |
KR101432563B1 (ko) | 2014-08-22 |
RU2430386C2 (ru) | 2011-09-27 |
US20170034637A1 (en) | 2017-02-02 |
CN101529272A (zh) | 2009-09-09 |
US8587182B2 (en) | 2013-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2082258B1 (de) | Ultraschallwandler | |
DE102008055123B3 (de) | Ultraschallwandler zum Einsatz in einem fluiden Medium | |
EP1997100B1 (de) | Ultraschallsensor | |
EP2311027B1 (de) | Ultraschallsensor | |
WO2007036528A1 (de) | Anordnung umfassend eine fahrzeugkomponente und zumindest einen elektroakustischen wandler, insbesondere ultraschall-wandler | |
EP2720909B1 (de) | Ultraschallsensorvorrichtung für ein fahrzeug sowie anordnung mit einer ultraschallsensorvorrichtung | |
DE102006028214A1 (de) | Ultraschallsensor, insbesondere Kraftfahrzeug-Ultraschallsensor | |
DE102006026247A1 (de) | Ultraschallsensorvorrichtung und Ultraschallwandler | |
WO2000079513A1 (de) | Dämpfende halterung für das gehäuse eines ultraschallwandlers und verfahren zur herstellung | |
DE102007010500A1 (de) | Ultraschallwandler mit direkt eingebettetem Piezo | |
EP1855093A1 (de) | Verfahren zum Einstellen der Resonanzfrequenz eines Schwingungsabschnitts für einen Sensor | |
DE102014218730A1 (de) | Energieabsorber und Überkopfsystem mit Energieabsorber | |
DE10156259A1 (de) | Ultraschallsensor und Verfahren zur Herstellung eines Ultraschallsensors | |
WO2014060317A2 (de) | Ultraschallsensorvorrichtung mit einer versteifungseinheit, anordnung, kraftfahrzeug und verfahren zum herstellen einer anordnung | |
DE102008017067A1 (de) | Elektroakustischer Wandler und elektroakustische Wandleranordnung | |
DE3241033A1 (de) | Verfahren zum messen des fuellstandes von fluessigkeiten in behaeltern | |
EP3020038B1 (de) | Schallwandleranordnung | |
DE10123612B9 (de) | Ultraschallwellensender/empfänger | |
DE3712656C2 (de) | ||
EP3012654A1 (de) | Ultraschallsensor für ein kraftfahrzeug, anordnung, kraftfahrzeug sowie herstellungsverfahren | |
DE102016101007B4 (de) | Ultraschallsensor für ein Kraftfahrzeug mit wasserundurchlässiger Abdeckeinrichtung, Fahrerassistenzsystem sowie Kraftfahrzeug | |
DE10106477C2 (de) | Ultraschallwandler mit Gehäuse | |
DE102023102541A1 (de) | Ultraschallsensor und Ultraschallsensorsystem für ein Kraftfahrzeug | |
WO2019197268A1 (de) | Schallwandler | |
DE102014218731A1 (de) | Energieabsorber und Überkopfsystem mit Energieabsorber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200780039591.1 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007803234 Country of ref document: EP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07803234 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020097008403 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2815/CHENP/2009 Country of ref document: IN |
|
ENP | Entry into the national phase |
Ref document number: 2009119360 Country of ref document: RU Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12308300 Country of ref document: US |