WO2008047430A1 - Convertisseur de puissance - Google Patents

Convertisseur de puissance Download PDF

Info

Publication number
WO2008047430A1
WO2008047430A1 PCT/JP2006/320807 JP2006320807W WO2008047430A1 WO 2008047430 A1 WO2008047430 A1 WO 2008047430A1 JP 2006320807 W JP2006320807 W JP 2006320807W WO 2008047430 A1 WO2008047430 A1 WO 2008047430A1
Authority
WO
WIPO (PCT)
Prior art keywords
converter
power
frequency
inverter
current
Prior art date
Application number
PCT/JP2006/320807
Other languages
English (en)
French (fr)
Inventor
Hideo Obi
Takahiro Kikuchi
Takeshi Tanaka
Daisuke Ito
Keita Hatanaka
Original Assignee
Mitsubishi Electric Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corporation filed Critical Mitsubishi Electric Corporation
Priority to US12/376,464 priority Critical patent/US8044632B2/en
Priority to CN2006800560882A priority patent/CN101523717B/zh
Priority to PCT/JP2006/320807 priority patent/WO2008047430A1/ja
Priority to JP2008539646A priority patent/JP4960374B2/ja
Publication of WO2008047430A1 publication Critical patent/WO2008047430A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters

Definitions

  • the present invention relates to a power conversion device, and more particularly to a power conversion device that converts alternating current power into direct current power by a converter and further converts the direct current power into alternating current power by an inverter to drive an induction motor.
  • a conventional power conversion device detects a pulsation on the DC side of an inverter due to rectification of a converter, and controls the output frequency of the inverter by frequency control means. This suppresses the beat phenomenon of the inverter due to the pulsation (converter rectification ripple) included in the DC input voltage of the inverter (pulsation correction operation).
  • Patent Document 1 the pulsation (change) of the output voltage of the converter (DC input voltage of the inverter) is detected to control the output frequency of the inverter. Because the output voltage of the converter hardly changes in response to load fluctuations of other vehicles that occur in the vehicle or speed fluctuations (load fluctuations) of the induction motor of the host vehicle, the pulsation correction operation described above can operate immediately. There was a problem.
  • Patent Document 1 Japanese Patent Publication No. 7-46918
  • the present invention has been made in view of the above problems, and the pulsation correction operation operates promptly even for pulsations caused by load fluctuations, and also for pulsations caused by the power source side.
  • An object of the present invention is to provide a voltage converter that performs pulsation correction operation.
  • the voltage converter of the present invention is a power converter that converts AC power from an AC power source into variable frequency AC power and supplies the AC power to the induction motor, and converts AC power from the AC power source into DC power.
  • Converter a converter controller for controlling the output voltage of the converter, an inverter for converting DC power into AC power of variable frequency, and
  • An inverter controller for controlling the output frequency of the converter and a current detector for detecting an alternating current on the input side of the converter, and for detecting fluctuations in the alternating current on the input side of the converter detected by the current detector. Accordingly, the inverter controller adjusts the slip frequency.
  • the inverter controller adjusts the slip frequency according to the fluctuation of the alternating current on the input side of the converter, and the pulsation correcting operation is performed even for the pulsation caused by the load fluctuation. Can be acted upon promptly and, at the same time, a pulsation correction operation can be performed for pulsations caused by the power source.
  • FIG. 1 is a configuration diagram showing a power conversion device according to a first embodiment of the present invention.
  • FIG. 2 is a control block diagram showing a converter controller according to the first embodiment.
  • FIG. 3 is a control block diagram showing an inverter controller according to the first embodiment.
  • FIG. 4 is a waveform diagram showing the time of applying beatless control according to the first embodiment.
  • FIG. 5 is a waveform diagram showing when the beatless control is applied and power is applied.
  • FIG. 1 is a configuration diagram showing a power conversion device according to Embodiment 1 of the present invention.
  • the power converter 100 is mounted on a vehicle, and AC power is supplied from the AC overhead line 1 through the pantograph 2. This AC power is stepped down to an appropriate AC voltage by the transformer 3, converted to DC power by the converter 4, and further converted to AC power of variable frequency by the inverter 5, and the induction motor 6 is driven.
  • 7 is a filter capacitor that smoothes the DC voltage that is the output of converter 4.
  • the converter controller 8 includes a transformer primary voltage on the primary side 10 of the transformer 3, a DC voltage of the capacitor 7 that is an output voltage of the converter 4, and a transformer detected by the current detector 11.
  • the secondary side of 3 ie, the AC current on the input side of the converter 4 and the rotational frequency of the induction motor 6 are input, and the control command to the converter 4 and the frequency correction amount to the inverter controller 9 are output.
  • the inverter controller 9 includes the rotation frequency of the induction motor 6, the DC voltage of the capacitor 7, the current of the induction motor 6 detected by the current detector 13, and the frequency from the converter 4.
  • the numerical correction amount is input and the control command to inverter 5 is output.
  • FIG. 2 is a control block diagram showing converter controller 8 according to the first embodiment.
  • 21 is the DC voltage command for converter 4.
  • 22 is the DC voltage of the capacitor 7.
  • 23 is a band elimination filter (BEF) that removes a component twice the power frequency (50 Hz or 60 Hz) from the DC voltage 22 and outputs it.
  • the subtracter 24 subtracts the output of BEF23 from the DC voltage command 21 and inputs it to the voltage controller 25 that generates a current command so that the DC voltage becomes constant.
  • BEF band elimination filter
  • the phase of the voltage is detected by the phase detector 27 from the primary voltage 26 of the transformer 3, and a sine wave synchronized with the primary voltage 26 is generated from the reference sine wave data 28.
  • the sine wave and the output of the voltage controller 25 are multiplied by a multiplier 29 to obtain an alternating current command.
  • Subtracter 31 subtracts AC current 30 detected by current detector 11 from this AC current command.
  • the output of the subtractor 31 is input to the current controller 32, and the output of the current controller 32 that controls the current to be in accordance with the command, the value 33 obtained by converting the AC primary voltage of the transformer 3 to the secondary side, and 33 Is added by adder 34 to obtain the converter output voltage command.
  • This converter voltage command is divided by the DC voltage 22 using the divider 35 to correct the DC voltage fluctuation, and the output is input to the PWM circuit 36. Each semiconductor element is driven. By doing so, the DC voltage on the output side of the converter 4 can be controlled to be constant while the power factor on the power source side is controlled to 1.
  • the pulsation frequency resulting from the fluctuations and the inverter are connected. If the rotation frequency of the induction motor (inverter output frequency) matches, the pulsation component is amplified, and as a result, a beat occurs in the induction motor current, possibly leading to an overcurrent stop. Therefore, when the two frequencies match, the slip frequency of the induction motor is controlled so as to suppress the generated beat component in order to suppress the amplification of the pulsating component.
  • the matching frequency at which the beat is generated is known to be a component twice the converter AC voltage (power supply) frequency.
  • the beat generation frequency is 100 Hz or 120 Hz. .
  • the beat generation frequency is 100 Hz or 120 Hz. .
  • BPF band pass filter
  • the multiplier 46 multiplies the gain table 45 (a table having a value only near the double component of the rotation frequency of the induction motor and a zero gain at other frequencies) by the multiplier 46.
  • a phase shift is performed to adjust the timing so that the output of the multiplier 46 can suppress the beat of the induction motor current.
  • a ring buffer (phase shifter) 47 is provided to delay the phase so that the suppression effect is maximized, and a beat correction amount (frequency correction amount) 48 is obtained.
  • the amount of phase shift in the ring buffer 47 is a value about 0.5 ° before one period of the frequency twice the rotation frequency of the induction motor.
  • FIG. 3 is a control block diagram showing the inverter controller 9 according to the first embodiment.
  • Inverter 5 performs slip frequency control.
  • the adder 54 adds the slip frequency command that is input to the slip frequency command generator 53 and output from the torque command 52 and the induction motor current 58, and the rotation frequency 51 obtained from the rotation frequency detector 12. Get the inverter output frequency command. Divide this inverter output frequency command by DC voltage 22 using divider 55. Then, the fluctuation of the DC voltage is corrected, and the output is input to the PWM circuit 56.
  • the PWM circuit 56 drives each semiconductor element of the inverter 5 and drives the induction motor 6.
  • the frequency correction amount (beat correction amount) 48 obtained by the converter controller 8 is added to the inverter slip frequency command by the adder 57, and the added output is sent to the adder 54.
  • the frequency correction amount (beat correction amount) 48 obtained by the converter controller 8 is added to the inverter slip frequency command by the adder 57, and the added output is sent to the adder 54.
  • the inverter component that is controlled by the inverter output frequency command considering beat suppression does not have a beat component superimposed on the output of the induction motor current, and the beat amplification phenomenon caused by load fluctuation and power supply fluctuation is This eliminates the overcurrent of the induction motor current.
  • FIG. 4 and FIG. 5 show the results of simulation using the first embodiment.
  • FIG. 4 is a waveform diagram showing when the beatless control according to the first embodiment is applied.
  • Figure 5 is a waveform diagram showing when the beatless control is applied.
  • the rotation frequency of induction motor 6, the AC current on the input side of converter 4, the DC voltage of capacitor 7, the current of induction motor 6, and the output torque waveform are plotted against time t on the horizontal axis. Show.
  • the beat of the induction motor current was clearly suppressed and the fluctuation of the DC voltage was also suppressed when the beatless control of Fig. 4 was applied.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Inverter Devices (AREA)

Description

明 細 書
電力変換装置
技術分野
[0001] 本発明は電力変換装置に係り、特に交流電力をコンバータにより直流電力に変換 し、さらにその直流電力をインバータにより交流電力に変換して誘導電動機を駆動す る電力変換装置に関する。
背景技術
[0002] 従来の特許文献 1による電力変換装置はコンバータの整流に起因するインバータ の直流側の脈動を検出し、周波数制御手段によりインバータの出力周波数を制御し ている。これによつて、インバータの直流入力電圧に含まれる脈動分 (コンバータの 整流リップル)に起因するインバータのビート現象を抑制している (脈動補正動作)。
[0003] し力しながら、特許文献 1のものでは、コンバータの出力電圧 (インバータの直流入 力電圧)の脈動(変化)を検出してインバータの出力周波数を制御するものであるた め、架線に生じる他の車両の負荷変動や、自車両の誘導電動機の速度変動 (負荷 変動)に対しては、コンバータの出力電圧はほとんど変化しないため、前述の脈動補 正動作が即応して動作し得な 、と 、う問題があった。
[0004] 特許文献 1 :特公平 7— 46918号公報
発明の開示
発明が解決しょうとする課題
[0005] 本発明は、上記問題に鑑みてなされたもので、負荷変動に原因する脈動に対して も脈動補正動作が即応的に動作し、合わせて、電源側に起因する脈動に対しても脈 動補正動作が行われる電圧変換装置を提供しょうとするものである。
課題を解決するための手段
[0006] 本発明の電圧変換装置は、交流電源からの交流電力を可変周波数の交流電力に 変換して誘導電動機に供給する電力変換装置であって、交流電源からの交流電力 を直流電力に変換するコンバータと、前記コンバータの出力電圧を制御するコンパ ータ制御器と、直流電力を可変周波数の交流電力に変換するインバータと、前記ィ ンバータの出力周波数を制御するインバータ制御器と、前記コンバータの入力側の 交流電流を検出する電流検出器とを備え、前記電流検出器で検出した前記コンパ ータの入力側の交流電流の変動に応じて、前記インバータ制御器がすべり周波数を 調整するものである。
発明の効果
[0007] この発明に係る電圧変換装置は、コンバータの入力側の交流電流の変動に応じて インバータ制御器がすべり周波数を調整するものであり、負荷変動に原因する脈動 に対しても脈動補正動作を即応的に働力せることができ、合わせて、電源側に起因 する脈動に対しても脈動補正動作を行うことができる。
本発明の前記以外の目的、特徴、観点及び効果は、図面を参照する以下の本発 明の詳細な説明から、さらに明らかになるであろう。
図面の簡単な説明
[0008] [図 1]本発明の実施の形態 1による電力変換装置を示す構成図である。
[図 2]実施の形態 1によるコンバータ制御器を示す制御ブロック図である。
[図 3]実施の形態 1によるインバータ制御器を示す制御ブロック図である。
[図 4]実施の形態 1によるビートレス制御適用時を示す波形図である
[図 5]ビートレス制御を適用しな力つた時を示す波形図である。
符号の説明
[0009] 1 交流架線 2 パンタグラフ
3 変圧器 4 コンバータ
5 インノ ータ 6 誘導電動機
7 フィルタコンデンサ 8 コンバータ制御器
9 インバータ制御器 10 変圧器の 1次側
11 電流検出器 12 回転周波数検出器
13 電流検出器
[0010] 21 直流電圧指令 22 直流電圧
23 帯域除去フィルタ 24 減算器
25 電圧制御器 26 変圧器 1次電圧 Ο
27 位相検出器 28 基準正弦波データ
寸 29 乗异器 30 交流電流
31 減算器 32 電流制御器
33 2次側換算値 34 加算器
35 除算器 36 PWM回路
帯域通過フィルタ 42 帯域除去フィルタ
43 乗异器 44 BPF
45 ゲインテープノレ 46 乗算器
47 リングノ ッファ 48 周波数補正
51 回転周波数 52 トルク指
53 すべり周波数指令発生器 54 加算器
55 除算器 56 PWM回路
57 加算器 58 誘導電動機電流
100 電力変換装置
発明を実施するための最良の形態
[0012] 実施の形態 1.
図 1は、本発明の実施の形態 1による電力変換装置を示す構成図である。電力変 換装置 100は車両に搭載され、交流架線 1からパンタグラフ 2を通して交流電力が供 給される。この交流電力は変圧器 3により適切な交流電圧に降圧され、コンバータ 4 により直流電力に変換され、さらにインバータ 5により可変周波数の交流電力に変換 され、誘導電動機 6が駆動される。 7はコンバータ 4の出力である直流電圧を平滑す るフィルタコンデンサである。
[0013] コンバータ制御器 8には、変圧器 3の 1次側 10の変圧器 1次電圧と、コンバータ 4の 出力電圧であるコンデンサ 7の直流電圧と、電流検出器 11で検出された変圧器 3の 2次側、即ちコンバータ 4の入力側の交流電流と、誘導電動機 6の回転周波数とが入 力され、コンバータ 4への制御指令と、インバータ制御器 9への周波数補正量が出力 される。インバータ制御器 9には、誘導電動機 6の回転周波数と、コンデンサ 7の直流 電圧と、電流検出器 13で検出された誘導電動機 6の電流と、コンバータ 4からの周波 数補正量とが入力され、インバータ 5への制御指令が出力される。
[0014] 次に動作について説明する。コンバータ 4は交流電圧を整流し直流電圧を得てい る。図 2は実施の形態 1によるコンバータ制御器 8を示す制御ブロック図である。 21は コンバータ 4の直流電圧指令である。 22はコンデンサ 7の直流電圧である。 23は帯 域除去フィルタ(Band Elimination Filter : BEF)で、直流電圧 22から電源周波数 (50Hz又は 60Hz)の 2倍の成分を除去し出力する。減算器 24では、直流電圧指令 21から BEF23の出力を減算し、直流電圧が一定になるように電流指令を発生する 電圧制御器 25に入力する。
[0015] 変圧器 3の 1次電圧 26から位相検出器 27で電圧の位相を検出し、基準となる正弦 波データ 28から 1次電圧 26に同期した正弦波を発生させる。この正弦波と電圧制御 器 25の出力とを、乗算器 29で乗算し交流電流指令を得る。この交流電流指令から 電流検出器 11で検出された交流電流 30を減算器 31で減算する。減算器 31の出力 を電流制御器 32に入力し、電流を指令どおりとなるように制御する電流制御器 32の 出力と、変圧器 3の交流 1次電圧を 2次側に換算した値 33とを加算器 34で加算しコ ンバータ出力電圧指令を得る。
[0016] このコンバータ電圧指令を直流電圧 22で、除算器 35を用いて除算して、直流電圧 の変動を補正し、その出力を PWM回路 36に入力し、 PWM回路 36により、コンパ一 タ 4の各半導体素子を駆動する。このようにすることにより電源側の力率を 1に制御し つつ、コンバータ 4の出力側の直流電圧を一定に制御することができる。
[0017] 次に、架線に生じる他の車両の負荷変動や、自車両の誘導電動機の速度変動 (負 荷変動)及び電源変動に対して、その変動に起因する脈動周波数と、インバータに 接続される誘導電動機の回転周波数 (インバータ出力周波数)がー致した場合、脈 動成分が増幅され、その結果、誘導電動機電流にビートが発生し、過電流停止に至 る可能性がある。そこで、両者の周波数が一致する場合に、脈動成分の増幅を抑制 するために、発生するビート成分を抑制するように、誘導電動機のすべり周波数を操 作する。前記ビートが発生する一致する周波数は、コンバータ交流電圧 (電源)周波 数の 2倍成分であることが知られており、電源周波数が 50Hz又は 60Hzであれば、 ビート発生周波数は 100Hz又は 120Hzである。 [0018] 負荷変動及び電源変動に対しては、初期にコンバータの交流側電流にビート成分 が発生するので、ビート抑制制御に対しては、このコンバータの交流電流を検出する 。次にコンバータの交流電流から、ビート成分を抽出する仕方を図 2をもとに説明す る。ビート成分はコンバータ 4の電源電圧周波数の 2倍であるため、コンバータ 4の交 流電流 30には、その周波数の 1倍と 3倍成分が発生する。 1倍成分は元々の交流電 流成分と区別できないため、 3倍成分のみを帯域通過フィルタ(Band Pass Filter : BPF) 41により抽出する。そのとき検出値の精度を上げるために適当なゲインをか けておくとよい。 3倍成分を抽出する BPF41を通過しても 1倍成分は残るため、これを 帯域除去フィルタ(BEF) 42を用いてカットする。
[0019] このようにして抽出された 3倍成分を、ビート抑制のため、誘導電動機の回転周波 数に作用させる周波数に変換するため、 2倍成分に変換する必要がある。そのため、 BEF42で抽出された 3倍成分に前記 2次側に換算された値 33を乗算器 43によって 乗じることにより、交流電流 30の周波数の 2倍成分と 4倍成分が抽出される。これより ビートに寄与する 2倍成分を抽出する BPF44を通過させる。さらにこの値に、ビートを 抑制したい周波数だけに作用させるようにするために、誘導電動機の回転周波数 fm (回転周波数検出器 12より得られた回転周波数 51)を横軸、ゲイン Gを縦軸としたゲ インテーブル 45 (誘導電動機の回転周波数の 2倍成分付近にのみ値をもち、それ以 外の周波数では 0ゲインとするテーブル)を、乗算器 46によって乗算する。乗算器 46 の出力が誘導電動機電流のビートを抑制可能となるようにタイミングを合わせるため に位相シフトを行う。そのため、リングバッファ (移相器) 47を設けて抑制効果が最大 になるように位相をずらせて遅延させ、ビート補正量 (周波数補正量) 48を得る。なお 、リングバッファ 47での移相量は、誘導電動機の回転周波数の 2倍の周波数の 1周 期より 0. 5° 程度前の値である。
[0020] 図 3は実施の形態 1によるインバータ制御器 9を示す制御ブロック図である。インバ ータ 5側はすべり周波数制御を行う。トルク指令 52と誘導電動機電流 58をすベり周 波数指令発生器 53に入力し出力されるすべり周波数指令と、回転周波数検出器 12 より得られた回転周波数 51と、を加算器 54で加算し、インバータ出力周波数指令を 得る。このインバータ出力周波数指令を直流電圧 22で、除算器 55を用いて除算して 、直流電圧の変動を補正し、その出力を PWM回路 56に入力し、 PWM回路 56によ り、インバータ 5の各半導体素子を駆動し、誘導電動機 6を駆動している。
[0021] このとき、コンバータ制御器 8で得られた周波数補正量 (ビート補正量) 48をインバ ータのすベり周波数指令に加算器 57で加算し、加算された出力を加算器 54に入力 することにより、コンバータ 5の交流電力の変動を抑制することができると共に誘導電 動機の電流変動 (ビート)を抑制することができる。
[0022] このように、ビート抑制を考慮したインバータ出力周波数指令によって制御されるィ ンバータカ 出力される誘導電動機電流には、ビート成分が重畳されず、負荷変動 及び電源変動に起因するビート増幅現象は解消され、誘導電動機電流の過電流が 回避される。
[0023] 実施の形態 1を用いてシミュレーションを実施した結果を図 4と図 5に示す。図 4は 実施の形態 1によるビートレス制御適用時を示す波形図である。図 5はビートレス制 御を適用しな力つた時を示す波形図である。図 4と図 5では、横軸の時間 tに対して、 誘導電動機 6の回転周波数、コンバータ 4の入力側の交流電流、コンデンサ 7の直流 電圧、誘導電動機 6の電流、出力トルクの波形をそれぞれ示している。図 5のビートレ ス制御を適用しな力つた時と比較して、図 4のビートレス制御適用時には、明らかに 誘導電動機電流のビートが抑制されおり、直流電圧の変動も抑制されていることが分 かる。
[0024] 前述の説明では、本発明の用途として交流架線電気車の場合を例に説明したが、 その他の単相交流電源を入力とし三相交流出力のインバータにより誘導電動機を駆 動する工作機械やファン'ポンプの分野にも利用できる。
[0025] この発明の各種の変形または変更は、関連する熟練技術者が、この発明の範囲と 精神を逸脱しない中で実現可能であり、この明細書に記載された実施の形態には制 限されな 、ことと理解されるべきである。

Claims

請求の範囲
[1] 交流電源からの交流電力を可変周波数の交流電力に変換して誘導電動機に供給 する電力変換装置であって、
交流電源からの交流電力を直流電力に変換するコンバータと、前記コンバータの出 力電圧を制御するコンバータ制御器と、直流電力を可変周波数の交流電力に変換 するインバータと、前記インバータの出力周波数を制御するインバータ制御器と、前 記コンバータの入力側の交流電流を検出する電流検出器とを備え、
前記電流検出器で検出した前記コンバータの入力側の交流電流の変動に応じて、 前記インバータ制御器がすべり周波数を調整することを特徴とする電力変換装置。
[2] 前記インバータ制御器は、すべり周波数指令発生器を備え、
前記電流検出器で検出した前記コンバータの入力側の交流電流の変動に応じた周 波数補正量を、前記すベり周波数指令発生器が出力するすべり周波数指令に加算 してすベり周波数を調整することを特徴とする請求項 1記載の電力変換装置。
[3] 前記電流検出器で検出した前記コンバータの入力側の交流電流力 抽出した交 流電源の周波数の 3倍付近の成分の量に応じて前記周波数補正量を求めることを特 徴とする請求項 2記載の電力変換装置。
PCT/JP2006/320807 2006-10-19 2006-10-19 Convertisseur de puissance WO2008047430A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/376,464 US8044632B2 (en) 2006-10-19 2006-10-19 Power conversion device
CN2006800560882A CN101523717B (zh) 2006-10-19 2006-10-19 功率转换装置
PCT/JP2006/320807 WO2008047430A1 (fr) 2006-10-19 2006-10-19 Convertisseur de puissance
JP2008539646A JP4960374B2 (ja) 2006-10-19 2006-10-19 電力変換装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/320807 WO2008047430A1 (fr) 2006-10-19 2006-10-19 Convertisseur de puissance

Publications (1)

Publication Number Publication Date
WO2008047430A1 true WO2008047430A1 (fr) 2008-04-24

Family

ID=39313689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/320807 WO2008047430A1 (fr) 2006-10-19 2006-10-19 Convertisseur de puissance

Country Status (4)

Country Link
US (1) US8044632B2 (ja)
JP (1) JP4960374B2 (ja)
CN (1) CN101523717B (ja)
WO (1) WO2008047430A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150005323A (ko) * 2013-07-05 2015-01-14 주식회사 만도 벅 컨버터의 저주파 출력전류 리플감소를 통한 듀티 사이클 제어시스템 및 그 제어방법

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5129363B2 (ja) * 2011-04-13 2013-01-30 ファナック株式会社 モータ制御装置
US9654033B2 (en) 2011-11-28 2017-05-16 Airbus Operations Gmbh Controlling an electrical consumer of an aircraft
DE102011119644B4 (de) 2011-11-28 2017-11-16 Airbus Operations Gmbh Steuern eines elektrischen Verbrauchers eines Luftfahrzeugs
DE102011121707A1 (de) 2011-12-20 2013-07-04 Airbus Operations Gmbh Elektrisches System für ein Luftfahrzeug
GB2530293B (en) * 2014-09-17 2017-08-02 Nidec Control Techniques Ltd Method of controlling a power output of an inverter drive
JP6612482B1 (ja) * 2019-07-29 2019-11-27 株式会社オリジン 交流出力電源

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10150796A (ja) * 1996-11-19 1998-06-02 Daikin Ind Ltd インバータ
JPH11262285A (ja) * 1998-03-12 1999-09-24 Toshiba Eng Co Ltd 電動機制御装置
JP2002095261A (ja) * 2000-09-12 2002-03-29 Toshiba Corp 電力変換装置
JP2003250300A (ja) * 1997-10-31 2003-09-05 Hitachi Ltd 電気車の駆動装置及び電気車駆動用インバータの制御方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4066938A (en) * 1976-10-06 1978-01-03 General Electric Company Input current modulation to reduce torque pulsations in controlled current inverter drives
JPS60128884A (ja) * 1983-11-28 1985-07-09 Mitsubishi Electric Corp エレベ−タの速度制御装置
JPS6152179A (ja) * 1984-08-22 1986-03-14 Toshiba Corp 電動機駆動用電源装置
CN1011688B (zh) 1985-04-01 1991-02-20 三菱电机株式会社 电梯速度控制装置
JPH0746918B2 (ja) 1987-06-03 1995-05-17 株式会社日立製作所 電力変換装置
JP3130160B2 (ja) * 1993-02-10 2001-01-31 三菱電機株式会社 無停電電源装置
WO1999023750A1 (fr) 1997-10-31 1999-05-14 Hitachi, Ltd. Convertisseur de courant
WO2007001007A1 (ja) * 2005-06-27 2007-01-04 The University Of Tokushima 電力変換制御装置、電力変換制御方法、および電力変換制御用プログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10150796A (ja) * 1996-11-19 1998-06-02 Daikin Ind Ltd インバータ
JP2003250300A (ja) * 1997-10-31 2003-09-05 Hitachi Ltd 電気車の駆動装置及び電気車駆動用インバータの制御方法
JPH11262285A (ja) * 1998-03-12 1999-09-24 Toshiba Eng Co Ltd 電動機制御装置
JP2002095261A (ja) * 2000-09-12 2002-03-29 Toshiba Corp 電力変換装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150005323A (ko) * 2013-07-05 2015-01-14 주식회사 만도 벅 컨버터의 저주파 출력전류 리플감소를 통한 듀티 사이클 제어시스템 및 그 제어방법
KR102087242B1 (ko) * 2013-07-05 2020-03-10 주식회사 만도 벅 컨버터의 저주파 출력전류 리플감소를 통한 듀티 사이클 제어시스템 및 그 제어방법

Also Published As

Publication number Publication date
CN101523717A (zh) 2009-09-02
JPWO2008047430A1 (ja) 2010-02-18
CN101523717B (zh) 2011-08-31
JP4960374B2 (ja) 2012-06-27
US8044632B2 (en) 2011-10-25
US20100231159A1 (en) 2010-09-16

Similar Documents

Publication Publication Date Title
JP3699663B2 (ja) インバータ制御方法およびその装置
AU2014325935B2 (en) Power conversion device
KR101594662B1 (ko) 전력 변환 장치
KR101995864B1 (ko) 인버터 제어장치 및 그 제어방법
US20130300334A1 (en) Power conversion apparatus
JP4960374B2 (ja) 電力変換装置
WO2014050441A1 (ja) 電力変換装置の制御方法
JP5126409B2 (ja) 電力変換装置
JPWO2008139518A1 (ja) 電力変換装置
JP3540665B2 (ja) 交流電気車駆動装置
JP6079094B2 (ja) インバータ制御装置
CN111919375B (zh) 功率转换装置
JP6381497B2 (ja) 電力変換装置
JP6219907B2 (ja) インバータ制御装置
JPH09215398A (ja) インバータの制御装置
US6750629B2 (en) Inverter control apparatus and motor driving system
JP4120868B2 (ja) 交流電動機の制御装置
WO2021033489A1 (ja) モータ制御装置およびモータ制御方法
JP2005020837A (ja) 多相電流供給回路
JP2020137286A (ja) 電動機駆動システムおよび電動機駆動システムにおけるインバータ制御方法
MX2009002564A (es) Convertidor de corriente.
JP2005218186A (ja) 交流電気車の制御装置
KR20170122050A (ko) 모터 제어용 인버터의 전압보상 방법
JP3656708B2 (ja) 電力変換器の制御装置
WO2019167173A1 (ja) 電力変換装置、その制御装置及び制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680056088.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06811995

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12376464

Country of ref document: US

Ref document number: 2008539646

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2009/002564

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06811995

Country of ref document: EP

Kind code of ref document: A1