WO2008044719A1 - Gabarit et procédé permettant de traiter un bloc-cylindre - Google Patents

Gabarit et procédé permettant de traiter un bloc-cylindre Download PDF

Info

Publication number
WO2008044719A1
WO2008044719A1 PCT/JP2007/069794 JP2007069794W WO2008044719A1 WO 2008044719 A1 WO2008044719 A1 WO 2008044719A1 JP 2007069794 W JP2007069794 W JP 2007069794W WO 2008044719 A1 WO2008044719 A1 WO 2008044719A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
pore
cylinder block
dummy head
protrusion
Prior art date
Application number
PCT/JP2007/069794
Other languages
English (en)
French (fr)
Inventor
Tomoyuki Shinkai
Takahiro Harada
Kazuhiro Asayama
Kazuki Watanabe
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to CN2007800366938A priority Critical patent/CN101522369B/zh
Priority to US12/443,610 priority patent/US8033534B2/en
Priority to EP07829532A priority patent/EP2072184B1/en
Publication of WO2008044719A1 publication Critical patent/WO2008044719A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q3/00Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine
    • B23Q3/02Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine for mounting on a work-table, tool-slide, or analogous part
    • B23Q3/06Work-clamping means
    • B23Q3/062Work-clamping means adapted for holding workpieces having a special form or being made from a special material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B33/00Honing machines or devices; Accessories therefor
    • B24B33/02Honing machines or devices; Accessories therefor designed for working internal surfaces of revolution, e.g. of cylindrical or conical shapes

Definitions

  • the present invention relates to a cylinder block machining jig (a so-called dummy head) and a cylinder block machining method used for finishing a cylinder pore in a cylinder block. Background leakage
  • a so-called dummy head has been used as a tool for machining a cylinder pore in a cylinder block. Specifically, it is as follows. That is, finishing processing such as honing is performed on the cylinder pores of the cylinder block in order to obtain a predetermined roundness. After finishing the cylinder pore, the cylinder head is assembled to the cylinder block.
  • a fastener such as a port (head port) is used. That is, the head port penetrates the cylinder head and is screwed into a port hole provided in the cylinder block, so that the cylinder head is fastened and fixed to the cylinder block.
  • the tightening force (fastening force) that acts on the cylinder block by the head bolt causes deformation of the cylinder block, leading to deformation of the cylinder pore (pore deformation), that is, to decrease the roundness of the cylinder pore.
  • the cylinder head is assembled.
  • a dummy head having a through hole that allows finishing to the cylinder pore is used as a processing jig.
  • a dummy head as a processing jig different from the cylinder head assembled as an actual product is connected to the cylinder block in the same manner as the cylinder head by a fastener such as a port (eg head port).
  • a fastener such as a port (eg head port).
  • the cylinder block is brought into a state similar to the state in which the cylinder head is assembled.
  • the cylinder pores in this state are finished with respect to the cylinder pores.
  • a finishing process is performed on the cylinder pore in a state where a specified tightening force is applied to the cylinder block, that is, a deformation due to the tightening force is applied to the cylinder pore, and the cylinder head is moved after the finishing process. Be found. As a result, bore deformation caused by the tightening force when assembling the cylinder head is prevented.
  • the following techniques are disclosed for finishing cylinder pores in a cylinder block using such dummy heads.
  • Japanese Unexamined Patent Publication No. 2 0 0 4-2 4 3 5 1 4 A configuration is disclosed in which a bead portion protruding toward the cylinder block is provided, and a concave portion is provided on the outer peripheral side of the bead portion.
  • the dummy head when the dummy head is attached to the cylinder block by port fastening, the dummy head undergoes inertia deformation due to the action of the bead portion and the concave portion, so that the force at the time of attachment is absorbed.
  • the deformation of the cylinder pore can be easily obtained without using a gasket or the like, and the finishing process of the cylinder pore can be performed with low cost and high accuracy.
  • Such contents are described in the publication. Yes.
  • the Japanese 'Opening 2 0 0 0-5 2 2 2 8 publication' discloses that the shape of the shim that is integrally attached to the mating surface of the dummy head and the cylinder block is devised. It has been broken. By devising the shape of such shims, the deformation when the dummy head is assembled to the cylinder block and the deformation when the cylinder head is assembled to the cylinder block are closer to each other. The cylinder pore accuracy when the cylinder head is assembled is improved.
  • the heat during actual operation of the engine configured by using the cylinder block is used.
  • thermal loads thermal loads
  • the pore deformation during engine operation is generated when the cylinder head is assembled (hereinafter referred to as “assembly deformation”), and is generated by the thermal load during engine operation (hereinafter referred to as “thermal deformation”). ”))).
  • both of the technologies disclosed in the above two publications are related to a configuration for improving the roundness of the cylinder pore when the cylinder head is “assembled” to the cylinder block via the gasket, that is, the pore deformation.
  • the pore deformation focuses only on assembly deformation, and it cannot embody pore deformation during engine operation including thermal deformation.
  • the tightening force by the port increases so that the pore load more than the pore load normally generated by the actual cylinder head being mounted is obtained. It is considered that deformation close to thermal deformation can occur due to the load acting.
  • thermal deformation of pore deformation is Since the deformation scale itself is larger than the assembly deformation at the time of actual cylinder head assembly, the tightening force by the port is increased and the pore load is increased, so that the dummy head is assembled. It is considered that pore deformation can approach pore deformation during engine operation including thermal deformation.
  • the dummy heads disclosed in the two publications both have a structure in which the dummy head itself positively elastically deforms. For this reason, it is desirable to ensure that the port axial force due to the port connection when the dummy head is assembled effectively acts as a pore load.
  • the port axial force due to the bolt fastening at the time of assembling the dummy head can be efficiently applied as a bore load, and by assembling the dummy head, the engine can be operated during thermal operation including thermal deformation.
  • An object of the present invention is to provide a processing tool and a processing method for a cylinder block that can embody pore deformation and can improve the roundness of the cylinder pore when the engine is actually operated. Disclosure of the invention
  • the cylinder pores are deformed by being assembled by port fastening to the cylinder head mounting surface of the cylinder block.
  • a protrusion having a contact surface that contacts the peripheral edge of the cylinder bore is provided, and at least the dummy head body is configured to have a higher height than the cylinder block.
  • the protrusion may be entirely transversal with respect to a peripheral portion of the cylinder pore through the inner surface.
  • the pore load applied to the peripheral part of the cylinder pore increases in order to embody the pore deformation at the time of actual engine operation by assembling the processing jig to the cylinder block.
  • the protrusion is a portion constricted in the radial direction of the cylinder pore with respect to the inner surface, and the rigidity of the protrusion is adjusted by adjusting the size of the constricted portion. It has a constricted part to be adjusted.
  • the protrusion is configured as a separate member with respect to the dummy head body.
  • the protrusion is made of a material having different rigidity with respect to the dummy head body.
  • the Dadami Meehead main body can be assembled to the surface of the head mounting surface by fastening the poplar tot.
  • the work to be performed on the cylinder borehole is performed.
  • Sicilinda Dub Block that performs up-lifting processing
  • the above-mentioned Dadami Me Headed main body is The structure of the Okaoka IIJJ is higher than the structure of the mouth of the mouth of the silicon cylinder, and the above-mentioned surface mounting surface of the head of the Sicilin Linda to the head is attached.
  • the damhead head Depending on the location of the main body of the damhead head, it is possible to reduce the axial force of the popollutot shaft due to the fastening of the populturt when the main body is assembled. This makes it possible to use this as an effective load as a Pore load. .
  • the 2200 Dadamami Headed main body can be assembled and assembled at the end of the actual engine operation including the thermothermal deformation. It is possible to realize the Popor's transformation of time. .
  • the above-mentioned protrusion protrusion member material is Said contact
  • the entire surface is brought into contact with the peripheral edge of the cylinder pore through the contact surface.
  • the pore load applied to the peripheral part (pore peripheral part) of the cylinder pore in order to embody the pore deformation during actual operation of the engine by assembling the dummy head body also increases the pore peripheral part. In this case, it is possible to prevent the occurrence of a local high surface pressure portion. This can prevent JHS from remaining in the pore periphery.
  • the projecting member is provided with a constricted portion that becomes a constricted portion in the radial direction of the cylinder pore with respect to the contact surface, and the size of the constricted portion is adjusted.
  • the rigidity of the protruding member is adjusted.
  • the dummy head body can be assembled to the cylinder block so that the bore load acting on the peripheral edge of the pore can be distributed. It is possible to power.
  • the pore deformation caused by assembling the dummy head body is a powerful capability to faithfully cope with pore deformation during engine operation including thermal deformation.
  • the protruding member is configured integrally with the dummy head main body.
  • FIG. 1 is a perspective view showing an assembled state of a dummy head with respect to a cylinder block according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a joint portion between a dummy head and a cylinder block according to an embodiment of the present invention.
  • FIG. 3 is a perspective view showing a dummy head according to an embodiment of the present invention.
  • FIG. 4 is also a longitudinal side view.
  • Figure 5 is also a bottom view.
  • Figure 6 is also a side view in the short direction.
  • FIG. 7 is an enlarged sectional view corresponding to ⁇ , showing the joint between the dummy head and the cylinder block according to the embodiment of the present invention.
  • FIG. 8 is a diagram showing a simulation result of a change in pore deformation caused by changing the size of the constricted portion.
  • the processing method of the cylinder mouthpiece according to the present invention is as shown in FIG. 1 and FIG. (Hereinafter, simply referred to as “head mounting surface”.) 4)
  • the cylinder head is assembled by assembling the dummy head 1 as a processing jig for the cylinder block including the dummy head body 10 by fastening the port. Finishing the cylinder pore 3 with 3 deformed.
  • the dummy head body 10 is configured to be more rigid than the cylinder block 2 and the head mounting surface 4 and the mounting surface 1 of the dummy head body 10 to the cylinder block 2 1 1, a protruding member having a contact surface 21 that contacts the peripheral edge of the cylinder pore 3 on the head mounting surface 4 is interposed.
  • the configuration of the dummy head 1 according to this embodiment includes the configuration of the cylinder block 2. I will explain it.
  • the dummy head 1 as a processing tool for the cylinder mouthpiece according to the present invention is used for finishing the cylinder pore 3 of the cylinder mouthpiece 2
  • a dummy head body 10 for deforming the cylinder pore 3 by being assembled to the head mounting surface 4 of the cylinder block 2 by port fastening is provided.
  • the cross-sectional view shown in FIG. 2 is a cross-sectional view of the cylinder block 2 at a position near the diameter of the cylinder pore 3 in the short direction, and shows the joint between the dummy head 1 and the cylinder block 2.
  • the side of the dummy head 1 that is assembled to the cylinder block 2 is “lower”, and the opposite side is “upper”.
  • the cylinder block 2 constitutes an in-line four-cylinder engine mounted on an automobile or the like.
  • the cylinder block 2 has four cylinder pores 3 arranged in a line.
  • Cylinder pore 3 has a piston slidably housed inside.
  • the cylinder bore 3 opens to the cylinder head mounting surface 4 where the cylinder head is assembled in the cylinder block 2.
  • the cylinder pore 3 has a cylindrical cylinder liner 6 on the inner peripheral surface side of the cylinder portion 5 formed in a substantially cylindrical shape so as to correspond to each cylinder pore 3 in the cylinder block 2. It is formed by lining up by stuffed or press-fitted. That is, the inner peripheral surface of the cylinder liner 6 forms the cylinder pore 3 and becomes the sliding surface of the piston.
  • the cylinder pore 3 is formed using the cylinder liner 6, but may be formed directly on the structure of the cylinder block 2.
  • a water jacket 7 is formed around the cylinder pore 3 in the cylinder mouthpiece 2 (on the outer circumference side of the cylinder part 5).
  • the water jacket 7 opens to the head mounting surface 4 side. That is, the cylinder mouthpiece 2 of the present embodiment has an open deck type structure in which the war evening jacket 7 is opened to the head mounting surface 4 side.
  • the dummy head body 10 constituting the dummy head 1 is formed in a substantially rectangular plate shape as a whole, and a plate surface (lower surface) on one side thereof is formed. Mounting surface for cylinder block 2 1 1
  • the dummy head body 10 is in the position corresponding to each cylinder pore 3 with the dummy head 1 assembled to the cylinder block 2. 1 and 2 are provided. ? L part 1 2 is a through hole to allow finishing of cylinder pore 3. In other words, when the dummy head 1 is assembled to the cylinder block 2, the cylinder pore 3 and the heel portion 12 are in communication with each other, and the finishing process for the cylinder pore 3 is performed through this hole portion 12. Done.
  • the cylinder block 2 has the four cylinder pores 3 arranged in a row as described above.
  • the dummy head body 10 has four holes 12 in an arrangement corresponding to the cylinder pores 3.
  • the dummy head 1 is assembled to the cylinder port 2 by port fastening using the head port 8 as a bolt member (fastener).
  • the head bolt 8 passes through the dummy head main body 10 through the port hole 13 and is inserted into a port hole (not shown) serving as a female screw portion provided on the head mounting surface 4 of the cylinder block 2. Raped.
  • the port through hole 13 is formed in the vertical direction with respect to the mounting surface 11 in the dummy head body 10.
  • the port through hole 1 3 is connected to the head of the cylinder block 2 in the dummy head body 10. It is provided at a position corresponding to the port hole provided in the mounting surface 4.
  • four port holes provided in the head mounting surface 4 of the cylinder mouthpiece 2 are provided at IH binding intervals around each cylinder pore 3, and two port holes are provided between adjacent cylinder pores 3.
  • a total of ten bolt holes are provided.
  • port through holes 13 of the dummy head 1 are provided (see Fig. 3 etc.).
  • both ⁇ in the longitudinal direction of the dummy head body 10 are handles 1 used for transporting the dummy head 1 when it is assembled to the cylinder block 2. 4 is provided.
  • the handle portion 14 protrudes on both sides in the longitudinal direction on the upper surface side of the dummy head body 10 (the side opposite to the mounting surface 11 side).
  • the handle portion 14 has a long hole-like hole portion 15 that is long in the short direction of the dummy head body 10.
  • the dummy head 1 having the dummy head body 10 having such a configuration is assembled to the cylinder block 2 using the head bolt 8 when finishing the cylinder bore 3 of the cylinder block 2.
  • the cylinder block 2 is in a state in which the cylinder pore 3 is deformed.
  • the head is attached to the mounting surface 11 side of the dummy head body 10 with respect to the cylinder block 2, as shown in FIGS.
  • a protrusion 20 having a hornworm worm surface 21 that is transmissible is provided on the peripheral edge of the cylinder pore 3.
  • the protruding member interposed between the head mounting surface 4 and the mounting surface 11 of the dummy head body 10 is provided on the dummy head body 10.
  • the projection 20 is formed integrally with the dummy head body 10.
  • the protrusion 20 is a peripheral portion of each hole 12 on the mounting surface 11 side of the dummy head body 10 Is formed in a state in which a portion facing the adjacent hole portion 12 is continuous (connected) among the substantially cylindrical portions.
  • the lower surface of the projection 20 (the mounting side surface with respect to the cylinder block 2) becomes the contact surface 2 1 that contacts the peripheral edge of the cylinder pore 3 on the head mounting surface 4 (hereinafter referred to as “pore peripheral edge”).
  • the contact surface 21 of the protrusion 20 contacts the peripheral edge of the pore. That is, the shape and size (area) of the contact surface 21 are formed corresponding to the peripheral edge of the pore.
  • the range (removal range with the contact surface 21) and shape (shape of the contact portion with the contact surface 21), etc., are not particularly limited.
  • the pore peripheral portion is a portion that extends from the opening end of the cylinder pore 3 to the outside in a certain distance on the head mounting surface 4, and is continuous between adjacent cylinder bores 3. Therefore, the shape of the transmissible surface 21 that transpires the pore periphery is a shape in which four annular portions are connected (connected) in a row (see FIG. 5).
  • the peripheral portion of the pore is the upper surface (the surface of the head mounting surface 4) of the cylinder portion 5 that forms the cylinder pore 3.
  • the protrusion 20 and its contact surface 21 are configured such that the portions corresponding to the cylinder pores 3 adjacent to the four cylinder pores 3 arranged in series are continuous.
  • the structure between parts may be a non-continuous structure. In other words, depending on the arrangement interval of the cylinder pore 3 in the cylinder block 2, the protrusion 20 and its transversal surface 21 are in each cylinder pore 3 (each hole 1 of the dummy head body 10). 2)
  • the structure may be provided independently (in a cylindrical shape).
  • At least the dummy head body 10 is Oka IJ characteristics higher than Cylinder Block 2. That is, in the dummy head 1, at least the dummy head body 10 is configured as a structure having higher rigidity than the cylinder block 2.
  • the dummy head body 10 is configured of a material with higher level of oj than the cylinder block 2.
  • a material having higher rigidity than the cylinder block 2 a material having a higher elastic modulus such as Young's modulus and Oka IJ property than the material constituting the cylinder block 2 is used.
  • the material of the cylinder block 2 is an aluminum alloy
  • the material constituting the dummy head body 10 is iron containing iron alloy such as cocoon. That is, in this case, the dummy head body 10 is made of iron with respect to the cylinder block 2 made of aluminum.
  • Oka IJ can be improved from the surface of the three-dimensional shape (structural surface) such as increasing the thickness of the dummy head body 10.
  • the dummy head body 10 in the dummy head 1 is more okay than the cylinder block 2. It is considered as a highly structured.
  • the dummy head 1 is provided with a protrusion 20 having a contact surface 21 that contacts the peripheral edge of the bore of the cylinder block 2, and the dummy head body 10 is provided by the cylinder block 2.
  • Mooka is considered to have a high lj property.
  • the port axial force resulting from the port connection when the dummy head 1 is assembled to the cylinder block 2 can be efficiently applied as a pore load.
  • by assembling the dummy head 1 to the cylinder block 2 it is possible to embody the pore deformation during engine operation including thermal deformation.
  • the thermal deformation included in the pore deformation during actual operation of the engine is a deformation caused by the thermal load during actual operation of the engine, which has a larger deformation scale than the assembly deformation generated when the cylinder head is assembled.
  • a limited total is obtained by assembling the dummy head 1 to the cylinder block 2 with the head port 8. It is necessary to make the load (the total of the port shafts) act as a load (pore load) for deforming the cylinder pore 3 as efficiently as possible.
  • the rigidity of the dummy head body 10 higher than that of the cylinder block 2, the deformation amount of the dummy head body 10 itself due to the port fastening can be suppressed as much as possible, and the port axial force is reduced to the dummy. Absorption due to inertial deformation of the head body 10 is suppressed. Furthermore, when the dummy head 1 is provided with a protrusion 20 and the dummy head 1 is assembled to the cylinder block 2, the contact surface 21 of the protrusion 20 is connected to the peripheral edge of the pore of the cylinder block 2. By making contact only with the pore, the pore load sharing ratio (the ratio of the load applied to the peripheral edge of the pore with respect to the total load) can be set to 100%.
  • the port shaft force due to the head bolts 8 can be efficiently transmitted to the cylinder block 2 side. Therefore, at least the portion of the dummy head body 10 in the dummy head 1 is sufficiently higher than the cylinder mouthpiece 2 so that the port axial force by the head port 8 can be efficiently transmitted as described above. It is composed of Oka I.
  • the cylinder head 2 on which the contact surface 2 1 of the protrusion 20 on the dummy head 1 is transmissible is limited to the peripheral edge of the bore, and the cylinder head 1 is assembled by attaching the dummy head 1
  • the total load applied to the mouthpiece 2 can be used as a pore load.
  • the improvement of the pore load by using the dummy head 1 having such a configuration is as follows.
  • the bolt axial force by the head bolt 8 when assembling the dummy head 1 to the cylinder block 2 is applied to the cylinder block 2 of the actual cylinder head and gasket (when assembling the actual head).
  • the pore load acting on the cylinder block 2 is multiplied by (1 / pore load sharing ratio when the actual head is assembled).
  • the port axial force when assembling the dummy head 1 is made larger than the port axial force for assembling the actual cylinder head and gasket.
  • the pore load acting on the cylinder mouthpiece 2 can be increased by a factor of 1 (pore load sharing ratio when assembling 1 Z actual head).
  • a pore load can be locally applied only to a desired portion of the peripheral edge of the pore. As a result, it becomes a powerful function to cope with more complex deformations such as pore deformation during engine operation including thermal deformation.
  • JBS remains due to the assembly of dummy head 1 on the periphery of the pore. Is a concern.
  • the JHS remaining at the periphery of the pore is the seal when the actual cylinder head and gasket are assembled to the cylinder block 2.
  • the protrusion 20 is connected to the peripheral edge of the bore via the contact surface 21. It is preferable to contact the entire surface.
  • the contact surface 21 of the protrusion 20 is formed in the same plane correspondingly. . Then, in a state where the dummy head 1 is assembled to the cylinder mouthpiece 2, the contact surface 21 of the protrusion 20 is configured to contact the entire surface of the pore rather than partially.
  • the protrusion 20 is fully in contact with the peripheral edge of the cylinder pore 3 through the contact surface 21, so that the dummy head 1 can be assembled to the cylinder block 2.
  • the pore load acting on the peripheral edge of the pore is increased in order to embody the pore deformation at the time of actual operation of the engine, it is possible to prevent a local high surface pressure portion from being generated at the peripheral edge of the pore. As a result, it is possible to prevent MS from remaining on the peripheral edge of the pore.
  • the protrusion 20 of the dummy head 1 is a portion constricted in the radial direction of the cylinder pore 3 with respect to the contact surface 21.
  • a constricted portion 22 2 in which the Oka ij property of the protrusion 20 is adjusted by adjusting the size of the constricted portion.
  • the constricted portion 2 2 is formed in the radial direction of the cylinder pore 3, that is, a dummy, in the projection 2 0 where the peripheral edge of each hole 1 2 in the mounting surface 1 1 of the dummy head body 1 0 protrudes in a substantially cylindrical shape.
  • the hole 1 2 is constricted with respect to the contact surface 2 1 in the radial direction (hereinafter also simply referred to as “radial direction”).
  • the constricted portion 2 2 has a reduced diameter at the projection 20 protruding in a substantially cylindrical shape between the mounting surface 1 1 of the dummy head body 1 0 and the contact surface 2 1 of the projection 2 0 as described above. It becomes the part which was done.
  • the constriction shape of the constricted portion 2 2 is the same as that of the protrusion 20. The shape is linear with respect to the protruding direction (stepwise with respect to other parts of the protrusion 20).
  • the constriction shape of the constricted part 22 is such that the constricted part 22 is smoothly narrowed with respect to the other parts of the protrusion 20 (thickness gradually decreases).
  • the constricted portion 22 is provided at a substantially central portion in the protruding direction (upward and downward direction) of the protrusion 20, and the protrusion 20 is formed on the protrusion 20 in a sectional view shown in FIG.
  • the outer circumferential groove it has a shape of a lateral recess.
  • the constricted portion 22 is provided directly on the mounting surface 11 of the dummy head body 10, and the protrusion 20 has an L shape in a cross-sectional view similar to the above. Good.
  • the constricted portion 22 has an inner surface that is flush with the wall surface forming the hole portion 12 of the dummy head body 10 together with the inner peripheral surface of the protrusion 20. It is provided to form.
  • the constricted portion 22 may be provided in the middle portion in the direction of the protrusion 20, and the protrusion 20 may have a letter shape or an inverted T shape in a cross-sectional view similar to the above.
  • the constricted portion 2 2 is not only thinned from the outer peripheral side of the projection 20 at the constricted portion in the radial direction of the cylinder pore 3, but also by forming an inner circumferential groove, for example, the projection 2
  • the case where the thickness is reduced from the inner peripheral side of 0 is also included.
  • the projection 20 is provided with the constricted portion 22 that becomes a constricted portion in the radial direction of the cylinder pore 3 with respect to the contact surface 21.
  • the Oka IJ property of the protrusion 20 is adjusted by adjusting the dimension of the constricted part 22.
  • the constricted portion 22 is a thin portion with a low rigidity relative to other portions in the protrusion 20. Therefore, by adjusting the dimensions of the constricted part 22, The stiffness as a whole is adjusted.
  • the dimensions adjusted in the constricted part 22 are the thickness dimension d 1 which is the dimension of the radial thickness in the constricted part 22, and And a length dimension d 2 that is a dimension in the protruding direction of the protrusion 20 at the constricted part 2 2 and a dimension including a thickness dimension d 1 and a length dimension d 2 at the constricted part 2 2.
  • the Oka IJ property of the protrusion 20 is adjusted through the constricted part 2 2.
  • FIG. 7 is a cross-sectional view in the same direction and position as the cross-sectional view shown in FIG. 2, and shows an enlarged view of one side in the radial direction of the joint portion between the dummy head 1 and the cylinder block 2.
  • the dimensions of the constricted portion 22 including the thickness dimension d 1 and the length dimension d 2 are changed according to the portion of the protrusion 20 (the contact portion of the contact surface 21 with respect to the peripheral edge of the pore).
  • the Oka IJ property of the protrusion 20 is partially adjusted. That is, the protrusion 20 has a configuration in which the constricted portion 2 2 has different dimensions depending on the part, so that the protrusion 20 has a partially different rigidity.
  • the constricted portion 22 is provided in the protrusion 20, and by adjusting the dimensions of the constricted portion 22, the structure of adjusting the Oka I ⁇ of the protrusion 20 is obtained.
  • the pore load acting on the peripheral edge of the pore can be distributed, and the pore load can be controlled intentionally rather than going forward.
  • the pore deformation caused by assembling the dummy head 1 to the cylinder block 2 can be faithfully handled by the bore deformation during engine operation including thermal deformation.
  • the surface pressure of the transversal part between the dummy head 1 and the peripheral edge of the cylinder mouthpiece 2 varies depending on the part, and the pore load (the load acting on the peripheral edge of the pore) is intentionally not achieved. It is necessary to be able to make a perfect controversy.
  • Toru's dummy head does not have the structural characteristics that can control the surface pressure and the rigidity in the shear direction according to each part as described above, so it can embody pore deformation during engine operation including thermal deformation. It was difficult.
  • the constricted portion 2 2 is provided on the protrusion 20, and the surface pressure and the like at the peripheral edge of the pore are controlled by adjusting the protrusion 20 by changing the vertical characteristics of each portion. It becomes possible.
  • the cylinder block 3 of the present embodiment which constitutes the cylinder bore 3 in the central portion, that is, the engine of the in-line four cylinders, which has a relatively high temperature and a high thermal load during engine operation and a relatively large pore deformation amount due to thermal deformation.
  • the size of the constricted portion 22 is changed so that the pore load acting on the peripheral edge of the pore corresponding to the two cylinder bores 3 in the center is increased.
  • cylinder bore 3 in cylinder block 2 the size of the constricted portion 22 of the corresponding portion is changed to be different, and the rigidity of the projection 20 is adjusted.
  • FIG. 8 shows the simulation result (simple model). This simulation is for the case where the constricted portion 22 2 has the same dimension in the circumferential direction at the portion corresponding to each cylinder bore 3 in the protrusion 20, and the constricted portion 22 has a thickness d 1 (No. 7 This shows the change in pore deformation for a certain cylinder pore 3 when the dimensions of (see Fig.) Are changed.
  • FIGS. 8 (a) to (c) are sectional views corresponding to FIG. 7, and the thickness d of the constricted portion 22 of this embodiment is d.
  • Fig. 8 (a) to (c) shows the case where the thickness dimension d 1 of the constricted part 2 2 is set to the dimension values L 1, L 2 and L 3 (L KL 2 ⁇ L 3), respectively. Show.
  • the dimension value L1 of the wall thickness dimension dl shown in Fig. 8 (a) is that the constricted part 2 2 is relatively thin (thickness of about 1 Z4 on the other part of the protrusion 20). Is the case.
  • the dimension value L 3 of the same dimension shown in FIG. 8 (c) is when the constricted part 22 is relatively thick (thickness about 3/4 of the other part of the protrusion 20).
  • the dimension value L 2 of the same dimension shown in Fig. 8 (b) is that the constricted part 2 2 is approximately halfway between the dimension value L 1 and the dimension value L 3 (approximately half of the other parts of the protrusion 20). Thickness).
  • FIG. 8 (A) to (C) shows the cylinder pores when the dummy head 1 corresponding to Figs. 8 (a) to (c) is assembled.
  • 3 shows the deformation of the inner surface of 3 (wall surface forming cylinder pore 3), and is an example using CAE calculation.
  • FIG. 8 (A) shows the pore deformation of ⁇ with the thickness dimension d 1 of the constricted part 2 2 as the dimension value L 1
  • Fig. 8 (B) shows the pore size when the dimension value L 2 is also used.
  • Figure (C) shows an example of the CAE calculation result of pore deformation when the dimension value is L3.
  • the top and bottom in each of FIGS. 8A to 8C correspond to the top and bottom of the cylinder pore 3.
  • the pore deformation shown in FIGS. 8A to 8C is exaggerated for convenience of explanation.
  • the striped pattern in FIG. 8 (A) to (C) indicates the amount of displacement of the inner surface of the cylinder pore 3, and the amount of displacement increases from the center to the outside.
  • the cylinder bore 3 is deformed so that its upper part is narrowed (deformation that the upper part of the cylinder part 5 falls inward) (refer to the dotted line in the figure) ). Further, the lower part of the cylinder pore 3 is deformed so as to bulge outward. Also, as shown in Fig. 8 (b), when the wall thickness dimension d 1 of the constricted part 2 2 is the dimension value L 2, the dimension of the constricted part 2 2 is larger than the dimension value L 1 described above. As it grows outward,
  • the deformation of the upper part of the cylinder pore 3 is relatively gradual compared to the case where the wall thickness dimension dl of the constricted part 2 2 is the dimension value L 1 (in the figure, Dotted line Minutes). That is, in this case, deformation of the upper part of the cylinder pore 3 is slight, and the cylinder pore 3 is deformed so that only its lower part swells outward as in the case described above (see FIG. 8 (A)).
  • the thickness dimension d 1 of the constricted part 2 2 is the dimension value L 3
  • the dimension of the constricted part 2 2 is larger than the dimension value L 1 described above.
  • the part on which the pore load acts on the peripheral edge of the pore is further spread outward by the amount larger than the dimension value L2.
  • the cylinder bore 3 is deformed so that its upper part expands (deformation that causes the upper part of the cylinder part 5 to fall outward) (refer to the dotted line in the figure).
  • the lower part of the cylinder pore 3 is deformed so as to swell outward as in the above cases (see FIGS. 8A and 8B).
  • the pore deformation due to the assembly of the dummy head 1 changes when at least the thickness dimension d 1 changes with respect to the size of the constricted part 22 of the protrusion 20.
  • the wall thickness dimension d 1 of the constricted part 22 it is possible to adjust the first degree of the protrusion 20, and it is possible to control the pore load and the like intentionally instead of the success. .
  • the deformation of the upper part of the cylinder pore 3 changes the thickness dimension d 1 of the constricted part 2 2, as in the simulation results described above. It becomes a part that is easily affected by. Specifically, as the wall thickness dimension d 1 of the constricted part 2 2 increases from the inside toward the outside, the deformation of the upper part of the cylinder pore 3 can be adjusted from the deformation on the narrow side to the deformation on the wide side. it can. Further, the upper part of the cylinder pore 3 is a part that becomes relatively high because a combustion chamber is formed above it, and is a part that is easily deformed when the engine is in operation.
  • adjusting the wall thickness dimension d 1 of the constricted part 2 2 means that pore deformation due to assembly of the dummy head 1 is effective for pore deformation during engine operation including thermal deformation. It will lead to making it correspond.
  • the cylinder head 2 is interposed between the head mounting surface 4 of the cylinder block 2 and the mounting surface 11 of the dummy head body 10.
  • the protrusion 20 as the protrusion member is configured integrally with the dummy head body 10.
  • the protrusion 20 is integrally formed with the dummy head body 10 on the dummy head 1 by, for example, forging integrally molding or cutting.
  • the protruding member interposed between the head mounting surface 4 of the cylinder block 2 and the mounting surface 11 of the dummy head body 10 is used as a protrusion 20 for the dummy head body 10.
  • the workability can be improved when finishing the cylinder pore 3 using the dummy head 1, and it is suitable in terms of cost and workability to automate the machining process. It will be something.
  • the protrusion 20 is integrated with the dummy head body 10
  • the dummy head 1 becomes an integral structure including the protrusion 20, so that the dummy head 1 is connected to the dummy head 1.
  • the work such as mounting on the mounting surface 4 can be simplified and workability is improved.
  • the protrusion 20 is integrated with the dummy head body 10, it is easy to transport the dummy head 1 and place it on the head mounting surface 4. It is suitable for automation of
  • the protrusion 20 on the dummy head 1 may be configured as a separate member 5 with respect to the dummy head body 10.
  • a two-dot chain line shown in FIG. 7 is set as the separation position, and the protrusion 20 is formed of a separate member with respect to the dummy head body 10.
  • the protrusion 20 is formed of a separate member with respect to the dummy head body 10
  • the protrusion 20 of the separate member is attached to the dummy head body 10 using a fastener such as a port.
  • a fastener such as a port
  • the protrusion 20 as a separate member with respect to the dummy head body 10, it is possible to configure the protrusion 20 with a material different in nature from the dummy head body 10. Thus, it is possible to adjust the protrusion 20 from the surface of the material.
  • the part that affects the rigidity that is, the part that directly affects the pore deformation is the constricted part 22.
  • the contact surface 21 reaches the wear limit, the surface of the contact surface 21 is processed and the surface of the contact surface 21 is peeled off so that the pore deformation due to the action of the protrusion 20 is not affected.
  • the cylinder block 2 as an object to be processed using the dummy head 1 has an open deck type structure, but is not limited to this, and is a so-called closed deck type. It may be the structure. Further, the present invention can be achieved without being limited by the material of the cylinder block 2 or the t method (aluminum die casting or the like). Industrial applicability
  • the port shaft shaft by the port fastening when assembling the dummy head can be efficiently acted as a pore load, and the dummy head is assembled. Therefore, it is possible to embody the pore deformation during engine operation including thermal deformation, and to improve the roundness of the cylinder pore during engine operation, which is industrially useful.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Drilling And Boring (AREA)

Description

明 細 書 シリンダブ口ックの加工用治具及び加工方法 漏分野
本発明は、 シリンダブロックにおけるシリンダポアの仕上げ加工に際して用いられ るシリンダブロックの加工用治具 (いわゆるダミーヘッド) 及びシリンダブロックの 加工方法に関する。 背景漏
従来、 シリンダブロックにおけるシリンダポアの仕上げ加工に際し、 その加工用治 具としていわゆるダミ一ヘッドが用いられている。 具体的には次のとおりである。 すなわち、 シリンダブロックのシリンダポアに対しては、 所定の真円度を出すため にホーニング加工等の仕上げ加工が行われる。 かかるシリンダポアに対する仕上げ加 ェの後、 シリンダブロックにシリンダへッドが組み付けられる。 シリンダブロックに 対するシリンダヘッドの組付けに際しては、 ポルト等の締結具 (ヘッドポルト) が用 いられる。 つまり、 ヘッドポルトが、 シリンダヘッドを貫通するとともにシリンダブ ロックに設けられるポルト穴に螺揷されることにより、 シリンダへッドがシリンダブ ロックに対して締結固定される。 このへッドボルトによつてシリンダブ口ックに作用 する締付け力 (締結力) は、 シリンダブロックに変形を生じさせ、 シリンダポアの変 形 (ポア変形)、 つまりシリンダポアの真円度の低下につながる。
そこで、 シリンダポアの仕上げ加工に際し、 シリンダヘッドが組み付けられた状態 で作用する締付け力と同等の締付け力をシリンダブロックに作用させるため、 加工用 治具としてシリンダポアに対する仕上げ加工を許容する貫通孔を備えるダミーへッド が用いられる。
つまり、 実際の製品として組み付けられるシリンダへッドとは異なる加工用治具と してのダミーヘッドが、 ポルト等の締結具 (例えばヘッドポルト) によってシリンダ へッドと同様にしてシリンダブ口ックに組み付けられることにより、 シリンダブ口ッ クが、 シリンダヘッドが組み付けられた状態と同様の状態とされる。 かかる状態のシ リンダブ口ックに対し、 そのシリンダポアに対する仕上げ加工が行われる。
これにより、 シリンダブ口ックに対して規定の締付け力が付与された状態、 つまり シリンダポアに対して締付け力による変形が付与された状態でシリンダポアに対する 仕上げ加工が行われ、 その仕上げ加工後にシリンダヘッドが且み付けられる。 結果と して、 シリンダへッド組付け時の締付け力によって生じるボア変形が防止される。 こうしたダミーへッドを用いたシリンダブ口ックにおけるシリンダポアの仕上げ加 ェに関し、 例えば次のような技術が開示されている。
日本特開 2 0 0 4— 2 4 3 5 1 4号公報においては、 ダミーへッドにおける、 シリ
Figure imgf000004_0001
シリンダブ口ックに向けて突出 するビ一ド部が設けられるとともに、 このビード部の外周側に凹部が設けられる構成 が開示されている。 力、かる構成において、 ダミーヘッドがシリンダブロックにポルト 締結によって取り付けられる際に、 ダミーへッドが前記ビ一ド部及び凹部の作用で弹 性変形することで、 その取付時の力が吸収される。 これにより、 ガスケット等を用い ることなくシリンダポアの変形を容易に得ることができ、 シリンダポアの仕上げ加工 を低コストで高精度に行うことができる。 このような内容が、 前記公報に記載されて いる。
また、 日本 '持開 2 0 0 0— 5 2 2 2 8号公報においては、 ダミ一へッドのシリンダ ブロックとの合わせ面に一体的に取り付けられるシムの形状が工夫されること等が行 われている。 こうしたシムの形状が工夫されること等により、 ダミーへッドがシリン ダブロックに組み付けられたときの変形と、 シリンダヘッドがシリンダブロックに組 み付けられたときの変形とがより近い状態とされ、 シリンダへッドが組み付けられた ときのシリンダポアの精度の向上が図られている。
ところで、 シリンダプロックにおけるポア変形に関しては、 前述したようなシリン ダへッドの組付けにともなう締付け力によって生じる変形に加え、 そのシリンダブ口 ックが用いられて構成されるエンジンの実働時における熱膨張や熱歪み等の熱負荷 (熱応力) によって生じる変形がある。 言い換えると、 エンジンの実働時におけるポ ァ変形は、 シリンダヘッドの組付け時に発生するもの (以下 「組付け変形」 という。) と、 エンジンの実働時の熱負荷によって発生するもの (以下「熱変形」 という。) とに 分けられる。
しかし、 前記二つの公報に開示されている技術は、 いずれも、 シリンダブロックに ガスケットを介してシリンダヘッドを 「組み付けた」 際におけるシリンダポアの真円 度向上のための構成についてのもの、 つまりポア変形のうち組付け変形のみに着目し たものであり、 熱変形を含むエンジン実働時のポア変形を体現することができない。 この点、ダミーへッドがポルト締結によってシリンダブロックに組み付けられる際、 ポルトによる締付け力が大きくされることで、 実際のシリンダへッドが ¾み付けられ ることで通常生じるポア荷重以上のポア荷重が作用することにより、 ポア変形につい て熱変形に近い変形が生じ得ると考えられる。 つまり、 ポア変形のうちの熱変形は、 実際のシリンダへッド組付け時の組付け変形に比べて変形規模そのものが大きいため、 ポルトによる締付け力が大きくされてポア荷重が大きくされることで、 ダミ一へッド が組み付けられることによるポア変形が、 熱変形を含むエンジン実働時のポア変形に 近付くことができると考えられる。
しかし、 前記二つの公報に開示されているダミーヘッドは、 いずれもダミーヘッド 自体が積極的に弾性変形を起こす構造となっている。 このため、 ダミ一へッドが組み 付けられる際のポルト締結によるポルト軸力が、 効率的にポア荷重として作用するよ うにすることが ¾しい。
また、 ポルトによる締付け力が必要以上に大きくされることにより、 ポルト締結部 におけるシリンダブロックの雌ねじ部分 (ポルト穴) が損傷するおそれがある。
そこで、本発明は、ダミーヘッドを組み付ける際のボルト締結によるポルト軸力を、 効率的にボア荷重として作用させることができ、 ダミ一へッドを組み付けることで、 熱変形を含むエンジン実働時のポア変形を体現することが可能となり、 エンジン実働 時におけるシリンダポアの真円度向上を図ることができるシリンダブ口ックの加工用 治具及び加工方法を提供することを目的とする。 発明の開示
本発明の解決しょうとする課題は以上の如くであり、 次にこの課題を解決するため の手段を説明する。
すなわち、 本発明のシリンダブロックの加工用治具においては、 シリンダブロック が有するシリンダポアに対する仕上げ加工に際し、 シリンダブロックのシリンダへッ ド取付面にポルト締結によって組み付けられることにより、 前記シリンダポアを変形 させるダミ一へッド本体を備えるシリンダブ口ックの加工用治具であつて、 前記ダミ 一へ、 J、 ド本体のシリンダブロックに対する取付面側に、 前記シリンダへッド取付面に おける前記シリンダボアの周縁部に接触する接触面を有する突起を設け、 少なくとも 前記ダミーへッド本体を、シリンダブロックよりも岡 I胜の高い構成としたものである。 このことによって、 加工用治具をシリンダブロックに組み付ける際のポルト締結に よるポルト軸力を、 効率的にポア荷重として作用させることができる。 これにより、 加工用治具をシリンダブロックに組み付けることで、 熱変形を含むエンジン実働時の ポア変形を体現することが可能となる。
また、 本発明のシリンダブロックの加工用治具においては、 前記突起は、 前記觀 面を介して前記シリンダポアの周縁部に対して全面的に翻虫するものである。
このことによって、 加工用治具をシリンダブロックに組み付けることによってェン ジン実働時のポア変形を体現させるためにシリンダポアの周縁部 (ポア周縁部) に作 用させるポア荷重が増加することによつても、 ポア周縁部において局所的な高面圧部 分が生じることを防止することができる。 これにより、 ポア周縁部に か ること を防止することができる。
また、 本発明のシリンダブロックの加工用治具においては、 前記突起は、 前記纖 面に対して前記シリンダポアの径方向にくびれた部分でありそのくびれた部分の寸法 の調整により該突起の剛性が調整されるくびれ部を有するものである。
このことによって、 シリンダブロックに組み付けることでポア周縁部に作用させる ポア荷重に分布を持たせることができ、 そのポア荷重を成行きではなく意図的にコン トロールすることが可能となる。 これにより、 シリンダブ口ックに組み付けることに より生じさせるポア変形を、 熱変形を含むエンジン実働時のポア変形により忠実に対 応させることが可能となる。
また、 本発明のシリンダブロックの加工用治具においては、 前記突起を、 前記ダミ 一へッド本体に対して別部材として構成したものである。
このことによって、 突起をダミーへッド本体に対して剛性の異なる材料で構成する
5 ことが可能となり、 材料の面から突起の岡 II性を調 ることが可能となる。
また、 多数のシリンダブ口ックに対する加工に際してシリンダブ口ックに対する組 付け及ぴ¾外しが繰り返されることで、 突起の接触面に、 ポア周縁部における IBSの 原因となる、 摩 による表面の荒れ (凹凸) が生じた場合であっても、 突起の部分 を交換することが可能となる。
1100 本本発発明明ののシシリリンンダダブブ口口ッッククのの加加工工方方法法ににおおいいててはは、、
Figure imgf000008_0001
ッッドド取取付付面面にに、、 ダダミミーーヘヘッッドド本本体体ををポポルルトト締締結結にによよっってて組組みみ付付けけるるここととにによよりり、、 シシリリ ンンダダブブ口口ッッククがが有有すするるシシリリンンダダボボアアをを変変形形ささせせたた状状態態でで、、 該該シシリリンンダダポポアアにに対対すするる仕仕 上上げげ加加工工をを行行ううシシリリンンダダブブロロッッククのの加加工工方方法法ででああっってて、、 前前記記ダダミミーーヘヘッッドド本本体体をを、、 シシ リリンンダダブブ口口ッッククよよりりもも岡岡 IIJJ性性のの高高いい構構成成ととしし、、 前前記記シシリリンンダダへへッッドド取取付付面面とと、、 前前記記ダダミミ 1155 ——へへッッドド本本体体ののシシリリンンダダブブ口口ッッククにに対対すするる取取付付面面ととのの間間にに、、 前前記記シシリリンンダダへへッッドド取取付付 面面ににおおけけるる前前記記シシリリンンダダポポアアのの周周縁縁部部にに接接触触すするる接接触触面面をを有有すするる突突起起部部材材をを介介在在ささせせ るるももののででああるる。。
ここののここととにによよっってて、、 ダダミミーーへへッッドド本本体体をを組組みみ付付けけるる際際ののポポルルトト締締結結にによよるるポポルルトト軸軸 力力をを、、 効効率率的的ににポポアア荷荷重重ととししてて作作用用ささせせるるここととががででききるる。。 ここれれにによよりり、、 ダダミミーーヘヘッッドド 2200 本本体体をを組組みみ付付けけるるここととでで、、 熱熱変変形形をを含含むむエエンンジジンン実実働働時時ののポポアア変変形形をを体体現現すするるここととがが 可可能能ととななるる。。
ままたた、、 本本発発明明ののシシリリンンダダブブロロッッククのの加加工工方方法法ににおおいいててはは、、 前前記記突突起起部部材材をを、、 前前記記接接 触面を介して前記シリンダポアの周縁部に対して全面的に接触させるものである。 このことによって、 ダミーへッド本体を組み付けることによってエンジン実働時の ポア変形を体現させるためにシリンダポアの周縁部 (ポア周縁部) に作用させるポア 荷重が増加することによつても、 ポア周縁部において局所的な高面圧部分が生じるこ とを防止することができる。 これにより、 ポア周縁部に JHSが残ることを防止するこ とができる。
また、 本発明のシリンダブロックの加工方法においては、 前記突起部材に、 前記接 触面に対して前記シリンダポアの径方向にくびれた部分となるくびれ部を設け、 該く びれ部の寸法を調整することにより、 該突起部材の剛性を調整するものである。 このことによって、 ダミーへッド本体をシリンダブ口ックに組み付けることでポア 周縁部に作用させるボア荷重に分布を持たせることができ、 そのポア荷重を成行きで はなく意図的にコント口一ルすること力可能となる。 これにより、 ダミーヘッド本体 を組み付けることにより生じさせるポア変形を、 熱変形を含むエンジン実働時のポア 変形により忠実に対応させること力河能となる。
また、 本発明のシリンダブロックの加工方法においては、 前記突起部材を、 前記ダ ミーへッド本体と一体的に構成するものである。
このことによって、 作業性の向上が図れ、 加工工程の自動化を図るうえでもコスト 面や作業性の面で好適なものとなる。 図面の簡単な説明
第 1図は、 本発明の一実施形態に係るダミーへッドのシリンダブロックに対する組 付け状態を示す斜視図である。 第 2図は、 本発明の一実施形態に係るダミーへッドとシリンダブ口ックとの接合部 を示す断面図である。
第 3図は、 本発明の一実施形態に係るダミーへッドを示す斜視図である。
第 4図は、 同じく長手方向側面図である。
第 5図は、 同じく底面図である。
第 6図は、 同じく短手方向側面図である。
第 7図は、 本発明の一実施形態に係るダミーへッドとシリンダブ口ックとの接合部 を示す §β分拡大断面図である。
第 8図は、 くびれ部の寸法を変化させることによるポア変形の変化についてのシミ ュレーション結果を示す図である。 発明を実施するための最良の形態
本発明に係るシリンダブ口ックの加工方法は、 第 1図及び第 2図に示すよう
Figure imgf000010_0001
(以下単に「へッド取付面」という。) 4に、 ダミーへッド本体 1 0を備えるシリンダブロックの加工用治具としてのダミーへッド 1をポルト締結によって組み付けることにより、 るシリン ダポア 3を変形させた状態で、シリンダポア 3に対する仕上げ加工を行うものである。 そして、ダミーへッド本体 1 0を、シリンダブ口ック 2よりも剛性の高い構成とし、 へッド取付面 4と、 ダミ一へッド本体 1 0のシリンダブ口ック 2に対する取付面 1 1 との間に、 へッド取付面 4におけるシリンダポア 3の周縁部に接触する接触面 2 1を 有する突起部材を介在させる。
本実施形態に係るダミーへッド 1の構成について、 シリンダブ口ック 2の構成を含 めて説明する。
第 1図及び第 2図に示すように、 本発明に係るシリンダブ口ックの加工用治具とし てのダミ一へッド 1は、 シリンダブ口ック 2が有するシリンダポア 3に対する仕上げ 加工に際し、 シリンダブロック 2のへッド取付面 4にポルト締結によって組み付けら れることにより、 シリンダポア 3を変形させるダミーへッド本体 1 0を備える。 なお、 第 2図に示す断面図は、 シリンダブロック 2の短手方向のシリンダポア 3直 径近傍位置における断面図であってダミーへッド 1とシリンダブロック 2との接合部 を示す。 また、 以下の説明においては、 ダミーヘッド 1について、 シリンダブロック 2に組み付けられる側を 「下」 とし、 その反対側を 「上」 とする。
本実施形態に係るシリンダブ口ック 2は、 自動車等に搭載される直列四気筒のェン ジンを構成するものである。 シリンダブロック 2は、 一列に並んだ状態となる四個の シリンダポア 3を有する。 シリンダポア 3は、 ピストンを摺動可能に内装するもので ある。 シリンダボア 3は、 シリンダブ口ック 2においてシリンダへッドが組み付けら れるシリンダへッド取付面 4に開口する。
第 2図に示すように、 シリンダポア 3は、 シリンダブロック 2において各シリンダ ポア 3に対応するように略筒状に形成されるシリンダ部 5の内周面側に、 筒状のシリ ンダライナ 6が、 錶ぐるみあるいは圧入等によって内装されることで形成される。つ まり、 シリンダライナ 6の内周面がシリンダポア 3を形成し、 前記ピストンの摺動面 となる。 なお、 本実施形態では、 シリンダポア 3は、 シリンダライナ 6が用いられて 形成される構成であるが、 シリンダブロック 2の構造体に対して直接形成される構成 であってもよい。
シリンダブ口ック 2におけるシリンダポア 3の周囲(シリンダ部 5の外周側)には、 ウォータジャケット 7が形成されている。 ゥォ一タジャケット 7は、 へッド取付面 4 側に開口する。 つまり、 本実施形態のシリンダブ口ック 2は、 ウォー夕ジャケット 7 がへッド取付面 4側に開放されているオープンデッキ型の構造となっている。
第 3図〜第 6図にも示すように、 ダミーへッド 1を構成するダミーへッド本体 1 0 は、 全体として略矩形板状に形成され、 その一側の板面 (下面) がシリンダブロック 2に対する取付面 1 1となる。
ダミ一へッド本体 1 0は、 ダミ一へッド 1がシリンダブ口ック 2に組み付けられた 状態で各シリンダポア 3に対応する位置に、 ?し部 1 2を有する。 ? L部 1 2は、 シリン ダポア 3に対する仕上げ加工を許容するための貫通孔となる。 つまり、 ダミーへッド 1がシリンダブ口ック 2に組み付けられた状態で、 シリンダポア 3と孑し部 1 2とが連 通した状態となり、 この孔部 1 2を介してシリンダポア 3に対する仕上げ加工が行わ れる。
本実施形態では、 前記のとおりシリンダブ口ック 2は一列に並ぶ四個のシリンダポ ァ 3を有する。 このため、 ダミーへッド本体 1 0は、 それらのシリンダポア 3に対応 する配置で四個の孔部 1 2を有する。
ダミーヘッド 1は、 ボルト部材 (締結具) としてのヘッドポルト 8が用いられてシ リンダブ口ック 2にポルト締結により組み付けられる。 へッドボルト 8は、 ポルト揷 通孔 1 3を介してダミ一へッド本体 1 0を貫通するとともに、 シリンダブロック 2の ヘッド取付面 4に設けられる雌ネジ部分となるポルト穴 (図示略) に螺揷される。 ポ ルト揷通孔 1 3は、 ダミ一へッド本体 1 0において取付面 1 1に対して薩直方向に 形成される。
ポルト揷通孔 1 3は、 ダミーへッド本体 1 0において、 シリンダブ口ック 2のへッ ド取付面 4に設けられるポルト穴に対応する位置に設けられる。 本実施形態では、 シ リンダブ口ック 2のへッド取付面 4に設けられるポルト穴は、 各シリンダポア 3の周 囲において IH縛間隔で四個設けられるとともに、 隣接するシリンダポア 3間において は二個のボルト穴が共用されて計十個設けられる。 これらのボルト穴に対応するよう に、 ダミーヘッド 1のポルト揷通孔 1 3が設けられる (第 3図等参照)。
また、 ダミーヘッド本体 1 0の長手方向 (?し部 1 2の直列方向) の両 βには、 ダ ミーへッド 1のシリンダブロック 2に対する組付けの際における搬送等に用いられる 取手部 1 4が設けられている。 取手部 1 4は、 ダミ一ヘッド本体 1 0の上面側 (取付 面 1 1側と反対側) において長手方向両側に突設される。 取手部 1 4は、 ダミーへッ ド本体 1 0の短手方向に長い長孔状の孔部 1 5を有する。
このような構成のダミーへッド本体 1 0を備えるダミーへッド 1が、 シリンダブ口 ック 2のシリンダボア 3の仕上げ加工に際し、 へッドボルト 8が用いられてシリンダ ブロック 2に組み付けられる。 これにより、 シリンダブロック 2が、 そのシリンダポ ァ 3に対して変形が付与された状態となる。
そして、 ダミーヘッド 1においては、 第 2図、 第 4図〜第 6図に示すように、 ダミ —へッド本体 1 0のシリンダブ口ック 2に対する取付面 1 1側に、 へッド取付面 4に おけるシリンダポア 3の周縁部に翻虫する接角虫面 2 1を有する突起 2 0が設けられて いる。
つまり、 本実施形態においては、 前記のとおりへッド取付面 4とダミ一へッド本体 1 0の取付面 1 1との間に介在する突起部材が、 ダミーへッド本体 1 0に設けられる 突起 2 0として、 ダミーへッド本体 1 0と一体的に構成されている。
突起 2 0は、 ダミ一ヘッド本体 1 0の取付面 1 1側において、 各孔部 1 2の周縁部 が略筒状に突出されるとともに、 その略筒状の部分のうち隣り合う孔部 1 2に対 ji る部分が連続した (接続された) 状態で形成されている。
突起 2 0の下面 (シリンダブ口ック 2に対する取付け側面) が、 へッド取付面 4に おけるシリンダポア 3の周縁部(以下「ポア周縁部」 とする。) に接触する接触面 2 1 となる。
突起 2 0が有する接触面 2 1は、 前記のとおりポア周縁部に接触する。 つまり、 接 触面 2 1の形状や大きさ (面積) は、 ポア周縁部に対応して形成される。
'ここで、 シリンダブロック 2におけるポア周縁部については、 その範囲 (接触面 2 1との撤虫範囲) や形状 (接触面 2 1との接触部分の形状) 等は特に限定されるもの ではない。 ポア周縁部は、 本実施形態では、 ヘッド取付面 4においてシリンダポア 3 の開口端から 向外側へ田^定距離まで広がつた部分であり、 隣り合うシリンダボ ァ 3の間で連続する。 したがって、 ポア周縁部に翻虫する翻虫面 2 1の形状は、 四つ の環状部分が一列に連続した(接続された)形状となる (第 5図参照)。そして、本実 施形態では、 シリンダブロック 2のデッキ構造上、 ポア周縁部はシリンダポア 3を形 成するシリンダ部 5の上面 (へッド取付面 4 』の面) 部分となる。
なお、 本実施形態では、 突起 2 0及びその接触面 2 1は、 直列配設される四つのシ リンダポア 3に対して隣り合うシリンダポア 3に対応する部分間が連続する構成であ るが、 当該部分間が非連続な構成であってもよい。 つまり、 シリンダブロック 2にお けるシリンダポア 3の配設間隔等によっては、 突起 2 0及びその翻虫面 2 1が、 各シ リンダポア 3に対して (ダミーへッド本体 1 0の各孔部 1 2に対して) 独立して (筒 状に) 設けられる構成であってもよい。
また、 本実施形態に係るダミーヘッド 1においては、 少なくともダミ一ヘッド本体 1 0が、 シリンダブ口ック 2よりも岡 IJ性の高い構成とされている。 つまり、 ダミーへ ッド 1において少なくともダミーへッド本体 1 0が、 シリンダブ口ック 2よりも剛性 の高い構造体として構成される。
ダミーへッド本体 1 0がシリンダブ口ック 2よりも岡 lj性の高い構成とされるに際し ては、 ダミーヘッド本体 1 0カ、 シリンダブロック 2よりも岡 lj性の高い材料により構 成される。 シリンダブ口ック 2よりも剛性の高い材料としては、 シリンダブ口ック 2 を構成する材料よりもヤング率や岡 IJ性率等の弾性率が大きい材料等が用いられる。 例 えば、 シリンダブロック 2の材料がアルミニゥム合金であるのに対し、 ダミーへッド 本体 1 0を構成する材料としては、 纖等の鉄合金を含む鉄が用いられる。 つまりこ の場合、 アルミニゥム製のシリンダブ口ック 2に対してダミ—へッド本体 1 0が鉄製 となる。 また、 ダミーヘッド本体 1 0の板厚を厚くする等のように、 その立体的形状 の面 (構造面) からも岡 IJ性が高められる。
つまり、 ダミーへッド本体 1 0の剛性が、 その材料面や構造面から高められること により、 ダミーへッド 1において少なくともダミーへッド本体 1 0が、 シリンダブ口 ック 2よりも岡 lj性の高い構成とされる。
このよう 、 ダミ一へッド 1においては、 シリンダブロック 2のポア周縁部に接触 する接触面 2 1を有する突起 2 0が設けられるとともに、 ダミ一へッド本体 1 0が、 シリンダブロック 2よりも岡 lj性の高い構成とされる。 このことによって、 ダミーへッ ド 1をシリンダブロック 2に組み付ける際のポルト締結によるポルト軸力を、 効率的 にポア荷重として作用させることができる。 これにより、 ダミーヘッド 1をシリンダ プロック 2に組み付けることで、 熱変形を含むエンジン実働時のポア変形を体現する ことが可能となる。 すなわち、 エンジン実働時のポア変形に含まれる熱変形は、 シリンダヘッドの組付 け時に発生する組付け変形に比べて変形規模が大きぐ エンジン実働時の熱負荷によ つて発生する変形である。 このエンジン実働時のポア変形に含まれる熱変形を、 シリ ンダポア 3の仕上げ加工に際して体現するためには、 ダミーへッド 1をへッドポルト 8によってシリンダブ口ック 2に組み付けることによる限られた総荷重 (ポルト軸カ の総計) を、可能な限り効率的にシリンダポア 3を変形させるための荷重(ポア荷重) として作用させることが必要となる。
そこで、ダミ一へッド本体 1 0の剛性をシリンダブ口ック 2よりも高くすることで、 ポルト締結によるダミーヘッド本体 1 0自体の変形量を極力抑えることができ、 ポル ト軸力がダミーへッド本体 1 0の弹性変形によって吸収されてしまうことが抑制され る。 さらに、 ダミーへッド 1に突起 2 0を設け、 このダミーへッド 1をシリンダブ口 ック 2に対して組み付ける際に、 前記突起 2 0の接触面 2 1をシリンダブロック 2の ポア周縁部にのみ接触させることで、 ポア荷重分担率 (総荷重に対してポア周縁部に かかる荷重の割合) を 1 0 0 %にすることができる。
つまり、 ダミーへッド本体 1 0の剛性を高めてそのボルト締結による変形量を減ら すことで、 へッドボルト 8によるポルト軸カを効率的にシリンダブ口ック 2側に伝達 できる。 したがって、 ダミーへッド 1における少なくともダミーへッド本体 1 0の部 分は、 前記のとおりへッドポルト 8によるポルト軸力を効率的に伝達できるようにシ リンダブ口ック 2よりも十分に高い岡 I胜を有する構成とされる。 また、 ダミーへッド 1における突起 2 0の接触面 2 1が翻虫するシリンダブ口ック 2側の面を、 ボア周縁 部に限定することで、 ダミ一へッド 1を組み付けることによりシリンダブ口ック 2に 力 ^かる総荷重を全てポア荷重として用いること力できる。 このような構成を有するダミーへッド 1を用いることによるポア荷重の向上性につ いては、 次のとおりとなる。
ダミーへッド 1のシリンダブ口ック 2に対する組付け時のへッドボルト 8によるポ ルト軸力を、 実際のシリンダへッド及びガスケットのシリンダブロック 2に対する組 付け時 (実ヘッド組付け時) のポルト軸力と同等とした場合、 シリンダブロック 2に 作用するポア荷重は、 (1 /実ヘッド組付け時のポア荷重分担率) 倍となる。
言い換えると、 本発明に係るダミーへッド 1を用いることにより、 ダミーへッド 1 を組み付ける際のポルト軸力を、 実際のシリンダへッド及びガスケットを組み付ける ためのポルト軸力よりも大きくすることなく、 ダミ一へッド 1を組み付けることでシ リンダブ口ック 2に作用するポア荷重を ( 1 Z実へッド組付け時のポア荷重分担率) 倍に向上することが可能となる。
このように、 シリンダブ口ック 2におけるシリンダボア 3の仕上げ加工に際し、 通 常のポルト軸力によってダミーへッド 1を組み付けることにより、 熱変形を含むェン ジン実働時のポア変形を体現することができる。 このことから、 シリンダブ口ック 2 のポルト穴 (雌ねじ部分) の損傷のおそれをともなうことなく、 エンジン実働時にお けるシリンダポア 3の真円度向上を図ることができる。
これにより、 シリンダポア 3におけるピストンの摺動にともなうフリクションを低 減させることができ、 シリンダブ口ック 2が用いられて構成されるエンジンについて の燃費の向上等が期待できる。
すなわち、 ピストンには、 シリンダポア 3に対して摺接するピストンリングが装着 される。 このため、 ポア変形に関し、 真円からの歪みが大きいと、 真円から大径に変 形する部分 (¾ί圣する部分) ではピストンリングによるシール性が低下し、 浸出によ るオイル消費やブローバイガスの増大を招くこととなる。 こうした状況は、 ピストン リングの張力(拡がろうとする力) を大きくし(高張力化し)、 シリンダポアの大径に 変化する部分でもピストンリングによる最低限の押付け力力 雀保できるようにするこ とで避けることができる。 しかし、 ピストンリングの高張力化は、 シリンダポア 3に おける全体的なフリクションの増大を招く。 そこで、 前記のとおり、 シリンダポア 3 の真円度の向上を図ることができることにより、 シリンダポア 3におけるピストンの 摺動にともなうフリクションを低減させることができる。
ここで、 ダミーヘッド 1に設けられる突起 2 0の接触面 2 1のポア周縁部に対する 接触に関しては、 部分的な劍虫あるいは全面的な接触が考えられる。
接触面 2 1のポア周縁部に対する接触を部分的なものとする場合、 ポア周縁部に対 して所望の部位にのみ局所的にポア荷重を作用させることができる。 これにより、 熱 変形を含むエンジン実働時のポア変形のように、 より複雑な変形に対応すること力河 能となる。
その一方で、 前述のようにダミーへッド 1を組み付けることによるポア周縁部に対 するポア荷重の増カロにともない、 ポア周縁部にダミーへッド 1を組み付けることによ る JBSが残ることが懸念事項として挙げられる。 ポア周縁部に残る JHSは、 実際のシ リンダへッド及びガスケットがシリンダブロック 2に組み付けられた際のシール [生の 低下につながる。
こうしたポア周縁部に残る については、 シリンダポア 3の仕上げ加工後にポア 周縁部の表面を加工することで対応できると考えられるが、 これは加工工程の増加に つながる。
そこで、 ダミーヘッド 1においては、 突起 2 0が、 接触面 2 1を介してボア周縁部 に対して全面的に接触することが好ましい。
すなわち、 例えば、 シリンダブロック 2においてポア周縁部 (シリンダ部 5の上面 部分) が同一平面状に形成される場合、 これに対応して突起 2 0の接触面 2 1が同一 平面状に形成される。 そして、 ダミーへッド 1がシリンダブ口ック 2に組み付けられ た状態で、 突起 2 0の接触面 2 1がポア周縁部に対して部分的ではなく全面で接触す るように構成される。
このように、 突起 2 0を、 接触面 2 1を介してシリンダポア 3の周縁部に対して全 面的に接 I虫させることにより、 ダミ一へッド 1をシリンダブ口ック 2に組み付けるこ とによってエンジン実働時のポア変形を体現させるためにポア周縁部に作用させるポ ァ荷重が増加することによっても、 ポア周縁部において局所的な高面圧部分が生じる ことを防止することができる。 これにより、 ポア周縁部に MSが残ることを防止する ことができる。
また、 第 2図、 第 4図、 第 6図及び第 7図に示すように、 ダミーヘッド 1の突起 2 0は、 接触面 2 1に対してシリンダポア 3の径方向にくびれた部分でありそのくびれ た部分の寸法の調整により突起 2 0の岡 ij性が調整されるくびれ部 2 2を有する。 くびれ部 2 2は、 ダミーへッド本体 1 0の取付面 1 1における各孔部 1 2の周縁部 が略筒状に突出する部分となる突起 2 0において、 シリンダポア 3の径方向、 つまり ダミ一へッド 1がシリンダブ口ック 2に組み付けられた状態での孔部 1 2の径方向 (以下単に「径方向」 ともいう。) に、接触面 2 1に対してくびれた部分となる。言い 換えると、 くびれ部 2 2は、 ダミ一へッド本体 1 0の取付面 1 1と突起 2 0の接触面 2 1と間で前記のとおり略筒状に突出する突起 2 0において縮径された部分となる。 なお、 図示のように、 本実施形態では、 くびれ部 2 2のくびれ形状は、 突起 2 0の 突出方向に対して直線的な (突起 2 0の他の部分に対して段階的な) 形状である。 こ の点、 くびれ部 2 2のくびれ形状は、 くびれ部 2 2が突起 2 0の他の部分に対して滑 らかに細くなるような (徐々に肉厚が薄くなるような) 形状等であってもよい。 また、 本実施形態では、 くびれ部 2 2は、 突起 2 0においてその突出方向 (上下方 向) 略中央部に設けられ、 突起 2 0が第 2図等に示す断面視で、 突起 2 0に外周溝が 形成されることで横凹部の形状を有する。 この点、 くびれ部 2 2は、 ダミーヘッド本 体 1 0の取付面 1 1に対して直接的に設けられ、 突起 2 0が前記と同様の断面視で L 字形状となる構成であってもよい。
さらに、 本実施形態では、 くびれ部 2 2は、 その内側面が、 突起 2 0の内周面とと もにダミ一へッド本体 1 0の孔部 1 2を形成する壁面と同一面を形成するように設け られている。この点、くびれ部 2 2は、突起 2 0における 向の中途部に設けられ、 突起 2 0が前記と同様の断面視でェ字形状あるいは逆 T字形状となる構成であっても よい。
つまり、 くびれ部 2 2についてシリンダポア 3の径方向にくびれた部分には、 突起 2 0の外周側から肉薄とされる場合だけでなく、 例えば内周溝が形成されること等に より、 突起 2 0の内周側から肉薄とされる場合も含まれる。
このように、 ダミーへッド 1においては、 突起 2 0に、 接触面 2 1に対してシリン ダポア 3の径方向にくびれた部分となるくびれ部 2 2が設けられている。
そして、 くびれ部 2 2を有する突起 2 0について、 くびれ部 2 2の寸法が調整され ることにより、 突起 2 0の岡 IJ性が調整される。
すなわち、 くびれ部 2 2は、 突起 2 0において他の部分に対して薄肉部分となり剛 性が低い部分となる。 そこで、 前記くびれ部 2 2の寸法が調整されることにより、 突 起 2 0全体としての剛性が調整される。
具体的には、 第 7図に示すように、 くびれ部 2 2において調 ¾ "る寸法には、 くび れ部 2 2における径方向の肉厚についての寸法である肉厚寸法 d 1と、 くびれ部 2 2 における突起 2 0の突出方向の長さについての寸法である長さ寸法 d 2とが含まれる。 これらくびれ部 2 2における肉厚寸法 d 1及び長さ寸法 d 2を含む寸法の調整が行わ れることにより、 くびれ部 2 2を介して突起 2 0の岡 IJ性が調整される。
なお、 第 7図は、 第 2図に示す断面図と同様の方向及び位置における断面図であつ てダミーへッド 1とシリンダブロック 2との接合部の径方向一側の拡大図を示す。 そして、 前記肉厚寸法 d 1及び長さ寸法 d 2を含むくびれ部 2 2の寸法が、 突起 2 0の部位 (ポア周縁部に対する接触面 2 1の接触部位) に応じて変化させられること で、 突起 2 0の岡 IJ性が部分的に調整される。 つまり、 突起 2 0が、 そのくびれ部 2 2 が部位に応じて異なる寸法を有する構成とされることで、 突起 2 0が部分的に異なる 剛性を有する構成とされる。
このように、 突起 2 0にくびれ部 2 2を設け、 このくびれ部 2 2の寸法を調 ¾fる ことにより、 突起 2 0の岡 I胜を調 ¾ "る構成とすることで、 ダミーヘッド 1をシリン ダブ口ック 2に組み付けることでポア周縁部に作用させるポア荷重に分布を持たせる ことができ、 そのポア荷重を成行きではなく意図的にコントロールすることが可能と なる。
これにより、 ダミーへッド 1をシリンダブ口ック 2に組み付けることにより生じさ せるポア変形を、 熱変形を含むエンジン実働時のボア変形により忠実に対応させるこ とが可能となる。
すなわち、 シリンダブロック 2におけるポア変形のうちエンジン実働時に生じる熱 変形は、 実ヘッド組付け時の組付け変形に比べて変形規模そのものが大きく、 また実 ヘッド組付け時に発生する荷重とは無関係の 「熱応力」 によって発生する。 したがつ て、 エンジン実働時のボア変形は、 シリンダブロック 2における冷却水の流れる位置 や流量、 あるいはシリンダポア 3間の間隔の大きさ等の影響を受け複雑となる。 このため、 ポア変形の熱変形を、 ダミ一ヘッド 1を組み付けることによってより忠 実に体現するためには、 ダミーへッド 1とシリンダブ口ック 2のポア周縁部との翻虫 部の面圧や、 ダミーヘッド 1のせん断方向 (?し部 1 2の径方向) の剛性を、 部位に応 じて異なるものにし、成行きではなく意図的にポア荷重(ポア周縁部に作用する荷重) をコント口一レすること力 S必要となる。
しかし、 徹のダミーヘッドは、 前記のような部位ごとに応じた面圧やせん断方向 の剛性をコントロールできる構造的特徴を有しないため、 熱変形を含むエンジン実働 時のポア変形を体現することが困難であった。
そこで、 前述のとおり、 突起 2 0にくびれ部 2 2を設け、 突起 2 0の岡 «性を部位ご とに変化させることで調整することにより、 ポア周縁部における面圧等をコントロ一 ルすることが可能となる。
突起 2 0においてくびれ部 2 2の寸法を部位ごとに変化させることについては、 次 のような態様が考えられる。
すなわち、 例えば、 エンジン実働時に比較的高温となって熱負荷が高くなり熱変形 によるポア変形量が比較的多くなる中央部のシリンダポア 3、 つまり直列四気筒のェ ンジンを構成する本実施形態のシリンダブ口ック 2においては中央二つのシリンダボ ァ 3に対応するポア周縁部に作用するポア荷重が大きくなるように、 くびれ部 2 2の 寸法を変化させる。 つまりこの場合、 シリンダブ口ック 2におけるシリンダボア 3ご とに、 その対応する部分のくびれ部 2 2の寸法を変化させて異なるものとし、 突起 2 0の剛性を調整する。
また、 各シリンダポア 3のポア周縁部に作用するポア荷重を周方向で変ィ匕させるよ うに、 くびれ部 2 2の寸法を変化させることが考えられる。 つまりこの場合、 突起 2 0における各シリンダポア 3に対応する部分においてくびれ部 2 2の寸法を周方向に 変化させて異なるものとし、 突起 2 0の岡舰を調 ¾ "る。
突起 2 0においてくびれ部 2 2の寸法を変化させることによるポア変形の変化につ いて、 そのシミュレーション結果 (簡易モデル) を示す第 8図を用いて説明する。 本シミュレ一ションは、 突起 2 0における各シリンダボア 3に対応する部分におい てくびれ部 2 2の寸法を周方向で同一とした場合であって、 くびれ部 2 2の肉厚寸法 d 1 (第 7図参照) の寸法を変化させた場合における、 あるシリンダポア 3について のポア変形の変化を示すものである。
第 8図において、 上段の図、 つまり第 8図 (a) 〜 (c ) は、 第 7図に対応する部 分の断面図であって、 本実施形態のくびれ部 2 2の肉厚寸法 d 1の変化を示すもので ある。 第 8図 (a) 〜 (c ) は、 くびれ部 2 2の肉厚寸法 d 1を、 それぞ、れ寸法値 L 1、 L 2、 L 3 (L KL 2 <L 3 ) とした場合を示す。
具体的には、 第 8図 (a) に示す肉厚寸法 d lの寸法値 L 1は、 くびれ部 2 2が比 較的肉薄(突起 2 0の他の部分の 1 Z4程度の肉厚)の場合である。また、第 8図(c ) に示す同寸法の寸法値 L 3は、 くびれ部 2 2が比較的肉厚 (突起 2 0の他の部分の 3 /4程度の肉厚) の場合である。 また、 第 8図 (b) に示す同寸法の寸法値 L 2は、 くびれ部 2 2が寸法値 L 1と寸法値 L 3の中間程度の肉厚 (突起 2 0の他の部分の略 半分の肉厚) の場合である。 また、 第 8図において、 下段の図、 つまり第 8図 (A) 〜 (C) は、 それぞれ同図 ( a) 〜 ( c ) に対応するダミ一へッド 1を組み付けた場合の、 シリンダポア 3の内 面 (シリンダポア 3を形成する壁面) の変形を示すものであり、 CAE計算を用いた 一例である。
5 つまり、 第 8図 (A) はくびれ部 2 2の肉厚寸法 d 1の値を寸法値 L 1とした^ のポア変形、 同図 (B) は同じく寸法値 L 2とした場合のポア変形、 同図 (C) は同 じく寸法値 L 3とした場合のポア変形の CAE計算結果例を示す。なお、第 8図(A) 〜(C)の各図における上下は、シリンダポア 3の上下に対応する。また、第 8図(A) 〜(C)に示すポア変形は、説明の便宜のためその変形を誇張して示してある。また、 0 第 8図 (A) 〜 (C) における縞模様は、 シリンダポア 3の内面の変位量を示すもの であり、 中央部から外側にかけてその変位量が多くなる。
第 8図 ( a ) に示すように、 くびれ部 2 2の肉厚寸法 d 1が寸法値 L 1の場合、 ダ ミーへッド 1を組み付けることによるボア荷重が、 シリンダブロック 2のポア周縁部 における内側部分に局所的に作用することとなる。
L5 この場合、 第 8図 (A) に示すように、 シリンダボア 3は、 その上部が窄まるよう な変形 (シリンダ部 5の上部が内側に倒れ込むような変形) をともなう (図中、 点線 部分参照)。 また、 シリンダポア 3の下部は外側に膨らむような変形をともなう。 また、 第 8図 (b) に示すように、 くびれ部 2 2の肉厚寸法 d 1が寸法値 L 2の場 合、 くびれ部 2 2の寸法が前述した寸法値 L 1の場合と比べて外側に大きくなる分、
!0 ポア周縁部においてポア荷重が作用する部分が外側に広がることとなる。
この場合、 第 8図 (B) に示すように、 シリンダポア 3の上部の変形が、 くびれ部 2 2の肉厚寸法 d lが寸法値 L 1の場合と比べて比較的緩やかとなる (図中、 点線部 分参照)。つまりこの場合、 シリンダポア 3の上部の変形はわずかであって、 シリンダ ポア 3は、 その下部のみが前記の場合 (第 8図 (A) 参照) と同様に外側に膨らむよ うな変形をともなう。
また、 第 8図 ( c ) に示すように、 くびれ部 2 2の肉厚寸法 d 1が寸法値 L 3の場 合、 くびれ部 2 2の寸法が前述した寸法値 L 1の場合と比べて寸法値 L 2の場合より もさらに外側に大きくなる分、 ポア周縁部においてポア荷重が作用する部分がより外 側に広がることとなる。
この場合、 第 8図 (C) に示すように、 シリンダボア 3は、 その上部が拡がるよう な変形 (シリンダ部 5の上部が外側に倒れるような変形) をともなう (図中、 点線部 分参照)。 また、 シリンダポア 3の下部は、 前記各場合(第 8図 (A)、 (B)参照) と 同様に外側に膨らむような変形をともなう。
これらのシミュレーション結果からわかるように、 突起 2 0のくびれ部 2 2の寸法 について少なくとも肉厚寸法 d 1が変化することにより、 ダミ一へッド 1を組み付け ることによるポア変形が変化する。 つまり、 くびれ部 2 2の肉厚寸法 d 1を変化させ ることにより、 突起 2 0の 1¾性を調整することができ、 成行きではなく意図的にポア 荷重等をコントロールすることが可能となる。 これにより、 ダミ一へッド 1を組み付 けることによるポア変形をコントロールすることが可能となる。
こうしたくびれ部 2 2の寸法を変化させることによるポア変形の変化に関し、特に、 前述したシミュレーション結果のように、 シリンダポア 3の上部の変形は、 くびれ部 2 2の肉厚寸法 d 1を変化させることによる影響を受けやすい部分となる。 具体的に は、 くびれ部 2 2の肉厚寸法 d 1を内側から外側に向けて大きくするほど、 シリンダ ポア 3上部の変形を窄まる側の変形から広がる側の変形に調^ fることができる。 また、 シリンダポア 3の上部は、 その上方に燃焼室が形成されることから比較的高 温となる部分でありエンジン実働時において変形しやすい部分となる。
したがつて、 くびれ部 2 2の肉厚寸法 d 1を調 ¾ "ることは、 ダミ一へッド 1を組 み付けることによるポア変形を、 熱変形を含むエンジン実働時におけるポア変形に効 果的に対応させることにつながる。
以上のように、 本実施形態に係るダミ一へッド 1においては、 シリンダブ口ック 2 のへッド取付面 4とダミーへッド本体 1 0の取付面 1 1との間に介在する突起部材と しての突起 2 0は、 ダミーへッド本体 1 0と一体的に構成されている。
具体的には、 例えば、 鎵造による一体成型や削り出し等により、 ダミーヘッド 1に おレて突起 2 0がダミ一へッド本体 1 0と一体的に構成される。
このように、 シリンダブ口ック 2のへッド取付面 4とダミーへッド本体 1 0の取付 面 1 1との間に介在させる突起部材を、 ダミーへッド本体 1 0に対する突起 2 0とし て一体的に構成することにより、 ダミーへッド 1を用いたシリンダポア 3の仕上げ加 ェに際し、 作業性の向上が図れ、 加工工程の自動化を図るうえでもコスト面や作業性 の面で好適なものとなる。
すなわち、 例えば従来のようにダミーへッドとシリンダブ口ックのへッド取付面と の間にガスケットが介装される構成の場合、 ダミーへッドのへッド取付面に対する組 付けに際しては、 ヘッド取付面に対するガスケットの載置、 及びその上からのダミー へッドの載置という手順を経ることとなる。
そこで、前記のとおり突起 2 0がダミーへッド本体 1 0と一体的であることにより、 ダミーへッド 1が突起 2 0を含め一体の構造物となるので、 ダミーへッド 1のへッド 取付面 4に対する載置等の作業の簡 匕が図れ作業性が向上する。 また、 突起 2 0がダミーへッド本体 1 0と一体的であることにより、 ダミ一へッド 1の搬送やへッド取付面 4に対する載置が容易となり、 シリンダブロック 2の加工ェ 程の自動化に適したものとなる。
一方、 ダミーへッド 1における突起 2 0は、 ダミーへッド本体 1 0に対して別部材 5 とされる構成であってもよい。
この場合、 例えば第 7図に示す二点鎖線が分離位置とされ、 突起 2 0がダミーへッ ド本体 1 0に対して別部材により構成される。
なお、 突起 2 0がダミーへッド本体 1 0に対して別部材により構成される場合であ つても、 別部材の突起 2 0がポルト等の締結具が用いられてダミーヘッド本体 1 0に 0 対して固着されること等により、 前述したような突起 2 0のダミーへッド本体 1 0に 対する一体的な構成が実現される。
このように、 突起 2 0をダミーヘッド本体 1 0に対して別部材とすることにより、 突起 2 0をダミーへッド本体 1 0に対して岡 11性の異なる材料で構成することが可能と なり、 材料の面から突起 2 0の岡胜を調 ることが可能となる。
L5 また、 突起 2 0をダミーへッド本体 1 0に対して別部材とすることにより、 突起 2 0の部分を交換することが可能となる。 これにより、 ダミーへッド 1を用いた多数の シリンダブロック 2に対する加工に際してダミーへッド 1のシリンダブロック 2に対 する組付け及び ¾^しが繰り返されることで、 突起 2 0の接触面 2 1に、 ポア周縁部 における圧痕の原因となる、 摩耗等による表面の荒れ (凹凸) が生じた場合であって !0 も、 突起 2 0の部分を交換することでの対応が可能となる。
この点、 突起 2 0がダミーへッド本体 1 0に対して铸造等により一体的に構成され る場合であっても、 突起 2 0の接触面 2 1の表面を剥くこと等により、 その摩耗限界 (荒れ具合の限界) に対処することができる。
すなわち、 突起 2 0において、 その剛性に影響する部位、 つまりポア変形に対して 直接的に影響する部位はくびれ部 2 2である。 このため、 接触面 2 1が摩耗限界に達 した際は、 その表面に加工を施して接触面 2 1の表面を剥くにより、 突起 2 0の作用 によるポア変形に影響することなぐ ダミーヘッド 1の再度の使用が可能となる。 以上の実施形態においては、 ダミーへッド 1が用いられて行われる加工の対象とし てのシリンダブ口ック 2は、 オープンデッキ型の構造であるが、 これに限定されず、 いわゆるクローズドデッキ型の構造であってもよい。 また、 本発明は、 シリンダブ口 ック 2の材質や^ t法 (アルミダイカスト等)にとらわれることなく ¾1可能である。 産業上の利用可能性
本発明に係るシリンダブロックの加工用治具及び加工方法は、 ダミーへッドを組み 付ける際のポルト締結によるポルト軸カを、 効率的にポア荷重として作用させること ができ、 ダミーヘッドを組み付けることで、 熱変形を含むエンジン実働時のポア変形 を体現することが可能となり、 エンジン実働時におけるシリンダポアの真円度向上を 図ることができるので、 産業上有用である。

Claims

請 求 の 範 囲
1 . シリンダブロックが有するシリンダポアに対する仕上げ加工に際し、 シリンダブ 口ックのシリンダへッド取付面にポルト締結によって組み付けられることにより、 前記シリンダポアを変形させるダミ一へッド本体を備えるシリンダブロックの加 ェ用治具であって、
前記ダミ一へッド本体のシリンダブ口ックに対する取付面側に、 前記シリンダへ ッド取付面における前記シリンダポアの周縁部に接触する接触面を有する突起を 設け、
少なくとも前記ダミ一へッド本体を、 シリンダブ口ックよりも岡【胜の高い構成と したことを特徵とするシリンダブロックの加工用治具。
2. 前記突起は、 前記接触面を介して前記シリンダポアの周縁部に対して全面的に接 触することを特徴とする請求項 1に記載のシリンダブロックの加工用治具。
3. 前記突起は、 前記接触面に対して前記シリンダポアの径方向にくびれた部分であ りそのくびれた部分の寸法の調整により該突起の剛性が調整されるくびれ部を有 することを特徴とする請求項 1または請求項 2に記載のシリンダブ口ックの加工 用治具。
4. 前記突起を、 前記ダミーヘッド本体に対して別部材として構成したことを特徴と する請求項 1〜 3のいずれかの項に記載のシリンダブ口ックの加工用治具。
5. シリンダブロックのシリンダヘッド取付面に、 ダミーヘッド本体をポルト締結に よって組み付けることにより、 シリンダブ口ックが有するシリンダポアを変形させ た状態で、 該シリンダポアに対する仕上げ加工を行うシリンダブロックの加工方法 であって、
前記ダミーへッド本体を、 シリンダブロックよりも岡 IJ性の高い構成とし、 前記シリンダへッド取付面と、 前記ダミーへッド本体のシリンダブロックに対す る取付面との間に、 前記シリンダへッド取付面における前記シリンダポアの周縁部 に接触する接触面を有する突起部材を介在させることを特徴とするシリンダブ口 ックの加工方法。
. 前記突起部材を、 前記接触面を介して前記シリンダポアの周縁部に対して全面的 に接触させることを特徴とする請求項 5に記載のシリンダブロックの加工方法。. 前記突起部材に、 前記翻虫面に対して前記シリンダポアの径方向にくびれた部分 となるくびれ部を設け、 該くびれ部の寸法を調 ることにより、 該突起部材の剛 性を調整することを特徴とする請求項 5または請求項 6に記載のシリンダブ口ッ クの加工方法。
. 前記突起部材を、 前記ダミーヘッド本体と一体的に構成することを特徴とする請 求項 5〜 7のいずれかの項に記載のシリンダブ口ックの加工方法。
PCT/JP2007/069794 2006-10-06 2007-10-03 Gabarit et procédé permettant de traiter un bloc-cylindre WO2008044719A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2007800366938A CN101522369B (zh) 2006-10-06 2007-10-03 汽缸体的加工用夹具及加工方法
US12/443,610 US8033534B2 (en) 2006-10-06 2007-10-03 Jig and method for processing cylinder block
EP07829532A EP2072184B1 (en) 2006-10-06 2007-10-03 Jig and method for processing cylinder block

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006275458A JP4518059B2 (ja) 2006-10-06 2006-10-06 シリンダブロックの加工用治具及び加工方法
JP2006-275458 2006-10-06

Publications (1)

Publication Number Publication Date
WO2008044719A1 true WO2008044719A1 (fr) 2008-04-17

Family

ID=39282909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/069794 WO2008044719A1 (fr) 2006-10-06 2007-10-03 Gabarit et procédé permettant de traiter un bloc-cylindre

Country Status (5)

Country Link
US (1) US8033534B2 (ja)
EP (1) EP2072184B1 (ja)
JP (1) JP4518059B2 (ja)
CN (1) CN101522369B (ja)
WO (1) WO2008044719A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101879618A (zh) * 2010-06-13 2010-11-10 镇江中船设备有限公司 一种专用镗孔设备

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4553018B2 (ja) * 2007-02-22 2010-09-29 トヨタ自動車株式会社 シリンダブロックの加工方法、加工用治具、およびシリンダブロック
CN101913089B (zh) * 2010-07-07 2012-05-30 铜陵精远线模有限责任公司 可方便定心的涂漆模具夹具
JP2012057481A (ja) * 2010-09-06 2012-03-22 Honda Motor Co Ltd シリンダブロックの加工用治具および加工方法
JP5807750B2 (ja) * 2012-01-05 2015-11-10 トヨタ自動車株式会社 締付装置及び締付方法
JP5866264B2 (ja) * 2012-08-02 2016-02-17 本田技研工業株式会社 シリンダブロックの加工用冶具及びシリンダブロックの製造方法
CN102785095B (zh) * 2012-08-08 2016-06-15 重庆百吉四兴压铸有限公司 摩托车发动机箱体曲轴孔与凸轮轴孔的定位装置
DE102016205754A1 (de) * 2016-04-07 2017-10-12 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Herstellung eines Motorblocks eines Verbrennungsmotors
CN108317250B (zh) * 2018-02-05 2021-03-02 华域三电汽车空调有限公司 一种缸体及其加工方法
US10835919B2 (en) * 2018-07-26 2020-11-17 Samsung Electronics Co., Ltd. Spin chuck jig and method of lifting spin chuck using the same
CN109483336A (zh) * 2018-10-17 2019-03-19 嘉兴学院 具有压力智能控制的薄壁缸套用研磨头及控制系统
CN112983670A (zh) * 2021-02-08 2021-06-18 重庆长安汽车股份有限公司 一种模拟缸盖及缸孔加工工艺
CN115383615A (zh) * 2022-08-31 2022-11-25 东风商用车有限公司 一种湿式缸套模拟加工工艺方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56134169A (en) * 1980-03-24 1981-10-20 Nissan Motor Co Ltd Working of cylinder bore for internal combustion engine
JPS597448A (ja) * 1982-07-05 1984-01-14 Mazda Motor Corp エンジンのシリンダ加工方法
JPS62287965A (ja) * 1986-06-02 1987-12-14 Mazda Motor Corp エンジン用シリンダの加工方法
JP2000052228A (ja) 1998-08-10 2000-02-22 Suzuki Motor Corp シリンダブロックのボア加工用治具
JP2004036511A (ja) * 2002-07-04 2004-02-05 Toyota Motor Corp 内燃機関のシリンダブロック及びその加工方法
JP2004243514A (ja) 2003-01-24 2004-09-02 Nissan Motor Co Ltd シリンダブロックの加工用治具および加工方法
JP2005199378A (ja) * 2004-01-14 2005-07-28 Toyota Motor Corp シリンダボア内周面のホーニング加工方法、及びシリンダボア内周面のホーニング加工装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08209384A (ja) * 1995-02-02 1996-08-13 Yamaha Motor Co Ltd 表面処理装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56134169A (en) * 1980-03-24 1981-10-20 Nissan Motor Co Ltd Working of cylinder bore for internal combustion engine
JPS597448A (ja) * 1982-07-05 1984-01-14 Mazda Motor Corp エンジンのシリンダ加工方法
JPS62287965A (ja) * 1986-06-02 1987-12-14 Mazda Motor Corp エンジン用シリンダの加工方法
JP2000052228A (ja) 1998-08-10 2000-02-22 Suzuki Motor Corp シリンダブロックのボア加工用治具
JP2004036511A (ja) * 2002-07-04 2004-02-05 Toyota Motor Corp 内燃機関のシリンダブロック及びその加工方法
JP2004243514A (ja) 2003-01-24 2004-09-02 Nissan Motor Co Ltd シリンダブロックの加工用治具および加工方法
JP2005199378A (ja) * 2004-01-14 2005-07-28 Toyota Motor Corp シリンダボア内周面のホーニング加工方法、及びシリンダボア内周面のホーニング加工装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2072184A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101879618A (zh) * 2010-06-13 2010-11-10 镇江中船设备有限公司 一种专用镗孔设备

Also Published As

Publication number Publication date
US20100072687A1 (en) 2010-03-25
US8033534B2 (en) 2011-10-11
JP4518059B2 (ja) 2010-08-04
EP2072184A4 (en) 2012-04-11
EP2072184A1 (en) 2009-06-24
CN101522369A (zh) 2009-09-02
JP2008095547A (ja) 2008-04-24
CN101522369B (zh) 2010-12-08
EP2072184B1 (en) 2013-02-27

Similar Documents

Publication Publication Date Title
WO2008044719A1 (fr) Gabarit et procédé permettant de traiter un bloc-cylindre
US20040164497A1 (en) Metal gasket
US7322750B1 (en) Locking engine bearing splay cap
US8347497B2 (en) Processing method, processing jig for cylinder block and the cylinder block
US6874229B2 (en) Connecting rod with ellipitical opening and method for production
JP4138657B2 (ja) 軸受
EP1865156A1 (en) A camshaft system for an internal combustion engine
JP2005509808A5 (ja)
US20210131377A1 (en) Bearing cap, internal combustion engine, and manufacturing method of internal combustion engine
JP5416495B2 (ja) シリンダブロックの加工方法
EP0950807B1 (en) Metal gasket
JP2000052228A (ja) シリンダブロックのボア加工用治具
JP2003322256A (ja) メタルガスケット
JP4285203B2 (ja) シリンダブロック
JPH08303295A (ja) エンジンのシリンダブロック
JP2007196242A (ja) シリンダブロック製造方法及びシリンダブロック
JP6821247B2 (ja) オープンデッキ型シリンダブロック
JPH10246330A (ja) 内燃機関用ピストン
JP6308192B2 (ja) レシプロ式エンジン
JP2006138226A (ja) 内燃機関
JP2017223174A (ja) 内燃機関用シリンダブロックおよびその製造方法
JP2008298053A (ja) シリンダブロックの加工方法及び加工用治具
JP2012057481A (ja) シリンダブロックの加工用治具および加工方法
JP2004197867A (ja) ボルト締結方法およびボルト締結体並びにこれらに使用される締付力分散プレート
JPH0526100A (ja) 水冷式内燃機関

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780036693.8

Country of ref document: CN

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07829532

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12443610

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007829532

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE