WO2008041568A1 - Carbonate de calcium traité au moyen d'un ingrédient actif de durcissement - Google Patents

Carbonate de calcium traité au moyen d'un ingrédient actif de durcissement Download PDF

Info

Publication number
WO2008041568A1
WO2008041568A1 PCT/JP2007/068610 JP2007068610W WO2008041568A1 WO 2008041568 A1 WO2008041568 A1 WO 2008041568A1 JP 2007068610 W JP2007068610 W JP 2007068610W WO 2008041568 A1 WO2008041568 A1 WO 2008041568A1
Authority
WO
WIPO (PCT)
Prior art keywords
calcium carbonate
active ingredient
weight
rubber
acid
Prior art date
Application number
PCT/JP2007/068610
Other languages
English (en)
French (fr)
Inventor
Takahiro Kawashima
Shoichi Tsutsui
Original Assignee
Shiraishi Kogyo Kaisha, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shiraishi Kogyo Kaisha, Ltd. filed Critical Shiraishi Kogyo Kaisha, Ltd.
Priority to CN2007800360081A priority Critical patent/CN101516985B/zh
Priority to KR1020097005906A priority patent/KR101426104B1/ko
Priority to US12/311,346 priority patent/US7923499B2/en
Priority to EP07828383A priority patent/EP2080783B1/en
Publication of WO2008041568A1 publication Critical patent/WO2008041568A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/242Applying crosslinking or accelerating agent onto compounding ingredients such as fillers, reinforcements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/02Compounds of alkaline earth metals or magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/02Compounds of alkaline earth metals or magnesium
    • C09C1/021Calcium carbonates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/02Compounds of alkaline earth metals or magnesium
    • C09C1/021Calcium carbonates
    • C09C1/022Treatment with inorganic compounds
    • C09C1/024Coating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2321/00Characterised by the use of unspecified rubbers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2998Coated including synthetic resin or polymer

Definitions

  • the present invention relates to a vulcanized active ingredient-treated calcium carbonate obtained by mixing a vulcanized active ingredient that is liquid at room temperature with modified calcium carbonate.
  • Calcium carbonate has been conventionally used in a wide range of fields such as rubber, plastics, paints, inks, sealing agents, papermaking, agricultural chemicals, neutralizing agents, food additives, cosmetics and the like.
  • a utilization method for improving workability as a carrier of a liquid product (carrier) which is exemplified in Patent Document 1 and Patent Document 2, for example.
  • a silane coupling agent or the like can be supported on powders mixed with calcium carbonate alone or with a high liquid absorption amount inorganic filler at a higher concentration, for example, fixed to rubber.
  • the amount of the silane coupling agent or the like is blended, the handleability is improved, but the addition amount is restricted, so that the blending effect of calcium carbonate is manifested.
  • Patent Document 3 an example of a small amount of loading is exemplified in Patent Document 3 and the like.
  • a certain amount of silane coupling agent is blended, a larger amount is used. Since it is necessary to mix
  • Patent Document 1 International Publication WO2006 / 025423
  • Patent Document 2 Japanese Patent Laid-Open No. 56-104950
  • Patent Document 3 International Publication WO2004 / 009711
  • the object of the present invention is due to calcium carbonate, such as slip resistance and heat resistance, which have good processability (no ringing) when added to rubber, and do not reduce rubber reinforcement. It is an object of the present invention to provide a vulcanized active ingredient-treated calcium carbonate that can maximize the merits.
  • the vulcanized active ingredient-treated calcium carbonate of the present invention is a modified calcium carbonate obtained by surface-treating fatty acids or resin acids and key acids and having an average primary particle size of 0.01 to 0.5 m. Furthermore, the special feature is that vulcanized active ingredients that are liquid at room temperature are mixed so that the content becomes 9.;-35 wt%.
  • Examples of the vulcanization active component in the present invention include organic silane compounds, organic titanate compounds, and organic aluminate compounds.
  • the processability is good, and the carbonation power such as slip resistance and heat resistance without reducing the rubber reinforcement is reduced. It is possible to maximize the benefits that come from Lucium.
  • modified calcium carbonate used in the present invention a material obtained by subjecting raw material calcium carbonate to a surface treatment with at least one selected from the group consisting of fatty acids or resin acids and key acids is used.
  • the modified calcium carbonate is not necessarily required to have a structure that covers all or part of the surface of raw calcium carbonate particles or treated calcium carbonate particles with fatty acids, resin acids, and key acids. It is not necessary to cover the entire surface continuously.
  • the order of processing is not limited.
  • Known calcium carbonate, synthetic (precipitating) calcium carbonate, and the like can be used as calcium carbonate as a raw material for the modified calcium carbonate.
  • Heavy calcium carbonate is made from naturally occurring calcium carbonate, such as roller mills, high-speed rotating mills (impact shear mills), container-driven media mills (ball mills), media stirring mills, planetary ball mills, jet mills, etc. Can be prepared by a dry or wet pulverization method.
  • Synthetic (precipitating) calcium carbonate can be obtained by known methods such as lime milk carbon dioxide reaction method, calcium chloride-soda ash reaction method, lime milk soda ash reaction method and the like.
  • lime milk carbon dioxide reaction method quick lime is obtained by co-firing raw limestone with Cotas or petroleum fuel (heavy oil, light oil), natural gas, LPG, etc.
  • a method of generating calcium carbonate by hydrating this quick lime to form a calcium hydroxide slurry and publishing and reacting with this by publishing carbon dioxide gas generated during co-firing.
  • desired submicron order fine particles can be obtained.
  • the primary particles which are the smallest unit, have a cubic shape! /, Which is spherical.
  • the primary particle diameter of the modified calcium carbonate in the present invention can be measured by a scanning electron microscope as described above, and is preferably (approximately 0.01 to 0.5 mm, more preferably (approximately 0. 01 -0. About 1 ⁇ m.
  • the primary particle diameter of the modified calcium carbonate in the present invention indicates the length of one side if the particle shape is a cube, and indicates the diameter if it is spherical.
  • primary particles aggregate to form secondary particles!
  • the particles are too large, the vulcanization active component cannot be sufficiently retained, and the reinforcing properties such as modulus and wear resistance may be impaired, which is not preferable. On the other hand, if it is too small, the dispersibility is deteriorated, and the reinforcing effect on the rubber component may be impaired.
  • examples of the fatty acids used in the modified calcium carbonate include saturated or unsaturated fatty acids having about 6 to 24 carbon atoms, salts or esters thereof.
  • saturated or unsaturated fatty acids having about 6 to 24 carbon atoms include stearic acid, palmitic acid, lauric acid, behenic acid, oleic acid, L-force acid, and linoleic acid.
  • S can.
  • stearic acid, normic acid, lauric acid and oleic acid are preferred. Two or more of these may be used in combination.
  • fatty acid salts examples include alkali metal salts and alkaline earth metal salts.
  • esters of fatty acids include esters of saturated or unsaturated fatty acids having 6 to 24 carbon atoms with lower alcohols having 6 to 18 carbon atoms.
  • Examples of the treatment method using fatty acids include the following methods.
  • an alkali metal aqueous solution such as NaOH aqueous solution or KOH aqueous solution (to form a metal salt such as Na salt or K salt) to form a solution.
  • the aqueous suspension of calcium carbonate on which the silica layer is formed is heated in advance to 30 to 50 ° C., and the above-mentioned solution-like fatty acid sarcophagus is added to the suspension and stirred. Mix to form a fatty acid layer.
  • sarcophagus such as fatty acid Na as it is, prepare a preheated aqueous solution and treat it in the same way as above.
  • the treatment can also be performed using the fatty acid without hatching.
  • the fatty acid layer can be formed by stirring the matrix calcium carbonate while heating it above the melting point of the fatty acid, adding the fatty acid thereto, stirring and mixing.
  • Examples of the resin acids used in the present invention include abietic acids such as abietic acid, dehydroabietic acid, and dihydroabietic acid or polymers thereof, disproportionated rosin, hydrogenated rosin, and polymerized rosin.
  • abietic acids such as abietic acid, dehydroabietic acid, and dihydroabietic acid or polymers thereof, disproportionated rosin, hydrogenated rosin, and polymerized rosin.
  • Examples thereof include salts (for example, alkali metal salts, alkaline earth metal salts) or esters. Of these, abietic acid and dehydroabietic acid are preferred.
  • the same method as for fatty acids can be employed. Specifically, the resin acid is hatched while heating in an aqueous alkali metal solution such as NaOH aqueous solution or KOH aqueous solution (to form a metal salt such as Na salt or K salt) to form a solution. Next, the calcium carbonate aqueous suspension having the silica layer formed thereon is heated to 30 to 50 ° C. in advance, and the above-mentioned solution-like resin stalagmite is added to the suspension and stirred. To form a resin acid layer. When using sarcophagus such as resin acid Na as it is, prepare a preheated aqueous solution and treat it in the same way as above.
  • an aqueous alkali metal solution such as NaOH aqueous solution or KOH aqueous solution (to form a metal salt such as Na salt or K salt)
  • a metal salt such as Na salt or K salt
  • a resin acid layer can be formed by stirring while heating the base calcium carbonate to a temperature equal to or higher than the melting point of the resin acid, adding the resin acid thereto, stirring the mixture, and mixing.
  • the amount of at least one organic acid selected from the group consisting of fatty acids and resin acids constituting the organic acid layer is not particularly limited, but is 100 parts by weight of calcium carbonate as a raw material. On the other hand, it is usually about 0.5 to 20 parts by weight. More preferably 1 to about 15 parts by weight, still more preferably about 2 to 12 parts by weight.
  • the key acids used for the modified calcium carbonate can be produced by a known method. For example, silica hydrosol by acid decomposition method, for example, sodium silicate solution, inorganic acid such as hydrochloric acid and sulfuric acid, aluminum sulfate, organic acid such as acetic acid and acrylic acid, and other acidic substances such as carbon dioxide gas.
  • An amorphous silica hydrosol produced by the addition can be used.
  • a silica hydrosol produced by a dialysis method in which sodium silicate is formed through a semipermeable membrane, or a silica hydrosol produced by an ion exchange method using an ion exchange resin can also be used.
  • the processing power S can be increased by adding the silica hydride sol to the calcium carbonate slurry and stirring vigorously.
  • the adhesion amount of the carboxylic acids to calcium carbonate is not particularly limited, but is usually about 0.5 to 15 parts by weight with respect to 100 parts by weight of calcium carbonate as a raw material. More preferably, it is about 1 to 12 parts by weight, more preferably about 2 to about 10 parts by weight.
  • the amount of adhesion is appropriately adjusted according to the BET specific surface area of the calcium carbonate to be adhered.
  • the average particle size of the modified calcium carbonate observed with a scanning electron microscope used in the present invention is preferably a force that can be set within a range in which the desired effect can be obtained. It is more preferable that the force is 0.01 to 0.3 ⁇ m, and more preferably 0.01 to 0.1 ⁇ m. [0034] If the particle size is too large, a rubber composition having sufficient wear resistance cannot be obtained, which is not preferable. On the other hand, if the particle size is too small, the dispersibility deteriorates and the reinforcing effect on the rubber component may be impaired, which is not preferable.
  • BET specific surface area of the modified calcium carbonate it is properly preferred to preferred instrument about 5 ⁇ 120m 2 / g is about. 10 to 120 m 2 / g, more preferably 60 ⁇ ; 11 Om 2 / g approximately It is.
  • the BET specific surface area is in too small than 5 m 2 / g, when sufficient abrasion resistance greater than 120 m 2 / g to Nag be preferable in that it can not obtain a is the scattering property becomes severe, It is not preferable.
  • the order of the surface treatment with the fatty acids or the resin acids and the surface treatment with the key acids is not particularly limited.
  • the calcium carbonate as the raw material that is, the untreated
  • the fatty acids or resin acids are preferably surface treated.
  • the vulcanization active ingredient used in the present invention is not particularly limited as long as it is a component capable of activating vulcanization in rubber or the like, for example, , Organic silane compounds, organic titanate compounds, organic aluminate compounds, and the like.
  • vulcanization accelerators, vulcanization acceleration assistants, and the like are also used. These may be used alone or in combination of two or more.
  • silane coupling agent for example, a compound known as a silane coupling agent can be used.
  • silane coupling agents include butyltrichlorosilane, butyltrimethoxysilane, butyltriethoxysilane, butyltris (/ 3-methoxyethoxy) silane, ⁇ - (3,4 epoxy cyclohexyleno) ethinoretrimethoxysilane, ⁇ - (2 —Aminoethinore) amino cypropinoretrimethinoregetoxysilane, ⁇ -glycidoxypropinoletriethoxysilane, ⁇ silane , ⁇ -methacryloxypropylmethyljetoxysilane, ⁇ -methacryloxypropyltriethoxysilane, ⁇ — / 3 (Aminoethyl) ⁇ —Aminopropylmethyldimethoxysilane
  • ⁇ - (2 aminoethyl) aminopropyltrimethoxysilane ⁇ - ⁇ ( alalane , bis (3- (triethoxysilyl) propyl) -tetrasulfane. Good.
  • any titanate coupling agent conventionally blended in rubber and plastics can be blended.
  • isopropyl triisostearate linoletitanate isopropinoretridodecinolebenzene senorephoninore Titanate
  • Ril titanate isopropyltri (dioctylphosphate) titanate, isopropyltricuminophenyl titanate, isopropyltri ( ⁇ amidoethinole'aminoethinole) titanate, dicumylphenyloxyacetate titanate, diisostearoylethylene titanate it can. These may be used alone or in combination of two or more. Of these, isopropyl triisostearoyl titanate is preferred.
  • an aluminate coupling agent can be used, and examples thereof include acetoalkoxyaluminum diisopropylate.
  • key acids and key salts in the present invention, as the key acid and key salt incorporated in the rubber separately from the modified calcium carbonate, for example, wet silica, dry silica, colloidal silica, sol-gel silica, fused silica, silica sand, cristobalite , Kaolin clay, calcined clay, sericite, my strength, tark, nepheline sinite, and the like. These may be used alone or in combination of two or more.
  • the calcium carbonate composition containing a vulcanized active ingredient of the present invention can be prepared by mixing the above modified calcium carbonate and the vulcanized active ingredient.
  • the mixing method is not particularly limited, but generally, a method in which a liquid vulcanization active ingredient is added and mixed under stirring of the modified calcium carbonate as a powder is preferably employed.
  • the content of the vulcanized active ingredient is 9.;!-35% by weight, preferably 9.;!-30, based on the total (total amount of the modified calcium calcium carbonate and the vulcanized active ingredient). % By weight, more preferably 10-25% by weight.
  • the content of the vulcanized active ingredient is less than 9.1% by weight, a large amount of vulcanized active ingredient-treated calcium carbonate needs to be blended with rubber, etc. Or, the stability of the scorch may be reduced. Conversely, if the content of the vulcanized active ingredient exceeds 35% by weight, the powder properties may not be maintained.
  • the vulcanized active ingredient-treated calcium carbonate of the present invention has an effect of improving slip resistance, compression set and heat resistance without deteriorating wear resistance, especially when blended with rubber! I can do it.
  • rubbers include natural rubber, synthetic rubber, ethylene acetate butyl copolymer (EVA), and the like.
  • the synthetic rubber a crosslinkable gen-based rubber is used.
  • the synthetic rubber include, for example, cis 1,4 polyisoprene, emulsion polymerization styrene butadiene copolymer, solution polymerization styrene butadiene copolymer, low cis 1,4 polybutadiene, high cis 1,4 polybutadiene, and ethylene.
  • Propylene copolymer, chloroprene, halogenated butyl rubber, acrylonitrile monobutadiene rubber, butyl rubber, urethane rubber, silicone rubber, fluoro rubber, chlorosulfonated polyethylene, epichlorohydrin rubber, polysulfide Rubber etc. are mentioned.
  • the rubber one type of natural rubber or gen-based synthetic rubber described above may be used, or two or more types may be mixed and used.
  • the mixing ratio can be appropriately set according to required characteristics.
  • the rubber composition of the present invention comprises a rubber component blended with a key acid and a key salt and the above-mentioned vulcanized active component-treated calcium carbonate.
  • the compounding amount of the key acid and the key salt is usually 0.;! To 100 parts by weight, preferably 20 to 100 parts by weight, and more preferably 20 parts per 100 parts by weight of the rubber component. ⁇ 90 parts by weight.
  • the amount of the vulcanized active ingredient-treated calcium carbonate is preferably such that the vulcanized active ingredient is 0.;! To 20 parts by weight with respect to 100 parts by weight of the rubber component. Preferably, it is 0.5 to 20 parts by weight, more preferably 1 to 10 parts by weight.
  • the blending amount of the vulcanized active ingredient-treated calcium carbonate is too small, it is not preferable because the rubber composition costs increase if the amount is too large, because the reinforcing property at the time of blending the rubber cannot be improved.
  • a known compounding agent may be further added to the rubber composition of the present invention, if necessary.
  • other fillers such as titanium oxide, precipitated barium sulfate, barite, aluminum hydroxide, magnesium hydroxide, and carbon black can be used in combination as appropriate.
  • process oils, antioxidants, anti-aging agents, activators, additives such as stearic acid, zinc oxide, and waxes, and vulcanizing agents such as DCP, sulfur, and vulcanization accelerators can be added as desired. Combine with force S.
  • the rubber composition of the present invention comprises a rubber component, wet silica and a vulcanized active component-treated calcium carbonate. It is manufactured by kneading, heating, extruding, vulcanizing, etc., and other ingredients selected as required.
  • the kneading conditions are not particularly limited. Various conditions such as the input volume to the kneading apparatus, the rotational speed of the rotor, the ram pressure, the kneading temperature, the kneading time, the type of the kneading apparatus, etc. It can be appropriately selected depending on the situation.
  • the kneading apparatus is not particularly limited, and either a closed type or an open type can be used.
  • a known kneading apparatus that is usually used for kneading a rubber composition, specifically, a Banbury mixer (registered trademark). ), Intermix (registered trademark), kneader, roll and the like.
  • the conditions for the heating can be appropriately selected according to the purpose with respect to various conditions such as the heating temperature, the heating time, and the heating apparatus, which are not particularly limited.
  • a heating apparatus the roll machine etc. which are normally used for the heating of a rubber composition are mentioned, for example.
  • Extrusion conditions can be appropriately selected according to the purpose with respect to various conditions such as extrusion time, extrusion speed, extrusion apparatus, and extrusion temperature, which are not particularly limited.
  • the extrusion apparatus include an extruder usually used for extruding a rubber composition.
  • the extrusion temperature can be determined as appropriate.
  • the vulcanization apparatus, method, conditions, etc. can be appropriately selected according to the purpose without particular limitations.
  • Examples of the vulcanizing apparatus include a molding vulcanizer using a mold.
  • As a vulcanization condition the vulcanization temperature is usually 100 to 190 ° C.
  • a synthetic calcium carbonate slurry having a BET specific surface area of 75 m 2 / g was heated to 40 ° C. with good stirring.
  • To 100 parts by weight of this synthetic calcium carbonate 7 parts by weight of an aqueous sodium silicate solution (manufactured by Wako Pure Chemical Industries, Ltd.) diluted 10-fold with water at room temperature was added, diluted hydrochloric acid was introduced, and a silica layer was formed on the surface of the carbonated lucite. was generated.
  • 5 parts by weight of a mixed fatty acid (oleic acid, stearic acid, palmitic acid (manufactured by Wako Pure Chemical Industries, Ltd.)) hatched by heating and stirring at 90 ° C.
  • a vulcanization active ingredient-treated calcium carbonate was prepared as follows.
  • the modified calcium carbonate which is a powder component, was stirred and mixed in a super mixer, and further mixed by spraying with stirring so that the content of the vulcanized active ingredient was 1% by weight with stirring.
  • the obtained calcium carbonate is designated as vulcanized active ingredient-treated calcium carbonate A.
  • the modified calcium carbonate which is a powder component, was stirred and mixed in a super mixer, and further mixed by spraying with stirring so that the content of the vulcanized active ingredient was 10% by weight.
  • the obtained calcium carbonate is designated as vulcanized active ingredient-treated calcium carbonate B.
  • the modified calcium carbonate which is a powder component, was stirred and mixed in a super mixer, and further mixed by spraying with stirring so that the content of the vulcanized active ingredient was 20% by weight with stirring.
  • the obtained calcium carbonate is designated as vulcanized active ingredient-treated calcium carbonate C.
  • the modified calcium carbonate which is a powder component, was stirred and mixed in a super mixer, and further mixed by spraying with stirring so that the content of the vulcanized active ingredient was 30% by weight with stirring.
  • the obtained calcium carbonate is designated as vulcanized active ingredient-treated calcium carbonate D.
  • the modified powdered calcium carbonate and silica are mixed so that the weight ratio is 90:10.
  • the mixture was put into a per mixer and mixed with stirring. Under stirring, the mixture was further mixed by spraying so that the content of the vulcanized active ingredient was 50% by weight.
  • the obtained calcium carbonate is designated as vulcanized active ingredient-treated calcium carbonate + silica E.
  • the modified calcium carbonate which is a powder component, was stirred and mixed in a super mixer, and further mixed by spraying with stirring so that the content of the vulcanized active ingredient was 50% by weight with stirring.
  • the obtained calcium carbonate is designated as vulcanized active ingredient-treated calcium carbonate F.
  • Each of the above vulcanized active ingredient-treated calcium carbonates was blended with a rubber component to prepare a rubber composition.
  • the following NBR, BR, and NR are used as rubber components, and other additives include zinc oxide, stearic acid, wet silica, anti-aging agent, PEG, Si69 (TESPT), carosulfurization accelerator DM, and vulcanization acceleration.
  • Agent M, vulcanization accelerator TS, and sulfur were used. Specifically, the following chemicals are used as rubber chemicals.
  • vulcanized active ingredient-treated calcium carbonate is TESP with respect to 100 parts by weight of rubber.
  • T is added to 1 part by weight.
  • Zinc oxide 5 parts by weight
  • Anti-aging agent 1 part by weight
  • Vulcanization accelerator DM 1.5 parts by weight
  • Vulcanization accelerator M 0.3 parts by weight
  • Vulcanization accelerator TS 0.2 part by weight
  • Sulfur 2 parts by weight
  • Vulcanized active ingredient-treated calcium carbonate A to E As shown in Table 1
  • NBR Medium-high nitrile content NBR, trade name “Nipol 1042”, acrylic nitrile content 33%, made by Nippon Zeon.
  • 'BR Butadiene rubber, trade name “BR01”, manufactured by JSR.
  • Anti-aging agent trade name “BHT”, manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.
  • Vulcanization accelerator DM Trade name “Noxeller DM”, manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.
  • Vulcanization accelerator M Trade name “Noxeller M”, manufactured by Ouchi Shinsei Chemical Co., Ltd.
  • Vulcanization accelerator TS Trade name “Noxeller TS”, manufactured by Ouchi Shinsei Chemical Co., Ltd.
  • the vulcanized active ingredient-treated calcium carbonate is TESP with respect to 100 parts by weight of rubber.
  • T is added to 5 parts by weight.
  • Zinc oxide 4 parts by weight
  • Anti-aging agent 1 part by weight
  • Vulcanization accelerator D l parts by weight
  • Vulcanization accelerator CZ 1 part by weight
  • Vulcanized active ingredient-treated calcium carbonate B to E As shown in Table 2
  • S-SBR Solution polymerization SBR, trade name “SL552”, manufactured by JSR.
  • Vulcanization accelerator D Trade name “Noxeller D”, manufactured by Ouchi Shinsei Chemical Co., Ltd.
  • Vulcanization accelerator CZ Trade name “Noxeller CZ”, manufactured by Ouchi Shinsei Chemical Co., Ltd.
  • Naphten oil Trade name “NP-24”, manufactured by Idemitsu Kosan Co., Ltd.
  • the rubber component was mixed using an 8-inch double roll.
  • the obtained rubber composition was subjected to press vulcanization based on the optimum vulcanization time tc (90) calculated with a curast meter (160 ° C.) to obtain a rubber sheet having a thickness of 2 mm.
  • the tensile test, compression set, abrasion resistance, and slip resistance were measured by the following methods.
  • a 300% modulus (a value obtained by dividing the stress at 300% elongation by the cross-sectional area) at 23 ° C was measured using a shopper tensile tester.
  • the large specimen was compressed 25% and held in this state for 24 hours. After 24 hours, the external force was removed and the sample was allowed to stand for another 30 minutes, and the thickness of the test piece at this time was measured. The results were marked according to JIS K 6262, 5.5.
  • a test piece (30 x 20 x 2mm) was placed on the PVC plate, and a 6g weight was attached to the top of the test piece.
  • the inclination angle of the PVC plate was gradually increased, and the inclination angle at which the test piece started to slide was defined as the slip angle, and was evaluated as slip resistance.
  • the initial temperature of 40 ° C force, the exothermic temperature and permanent strain were measured using a flexometer.
  • the test piece is a cylindrical shape with a diameter of 17.80 mm and a height of 25.0 mm.
  • the static compressive stress IMPa is applied 1800 times per minute at a stroke of 4 m / m, and the heat generation temperature after 25 minutes has passed. (At) was measured.
  • Example 1 Example 2 Example 3 Example 4 Example 5 Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4 Comparative Example 5 Silica powder [parts by weight 50 43 50 50 48.2 50 50 50 50 vulcanized active ingredient-treated calcium carbonate A 1 powder [parts by weight]------1 100 100-vulcanized active ingredient-treated calcium carbonate B 10 powders [part by weight] 10 10------ 1-Vulcanized active ingredient-treated calcium carbonate C 20 powder [part by weight] 1 5----1 Vulcanized active ingredient-treated calcium carbonate D 30 powder [part by weight]--.-3.3 3.3 ⁇ - ⁇ 1- Vulcanized active ingredient treated calcium carbonate + silica E 50 powder [parts by weight] 1-1--2-1 Vulcanized active ingredient treated calcium carbonate F 50 paste [parts by weight]-I—-1----1 2 Vulcanized active ingredient (100% concentration)-Liquid [parts by weight]---1----
  • the vulcanized active ingredient-treated calcium carbonate of Examples 5 to 5 according to the present invention is in powder form and is easier to measure than Comparative Example 1 and Comparative Example 5. is there. In addition, it is excellent in workability and workability during kneading, and when blended with rubber, it can improve the slip resistance and compression set without impairing the modulus and wear resistance.
  • Comparative Example 2 is a mixture of modified calcium carbonate and silica mixed at a weight ratio of 90:10 so that the content of the vulcanized active ingredient is 50% by weight. The improvement of compression set and slip resistance has been recognized!
  • Comparative Example 3 the vulcanization active ingredient was 1% by weight. However, since the blending amounts of silica and calcium carbonate increased, kneading with rubber became difficult.
  • Comparative Example 4 is a comparative vulcanized active ingredient treatment with a treatment amount of 1% by weight of the vulcanized active ingredient. Force S using calcium carbonate, although the slip resistance is good, the wear resistance is Remarkably reduced.
  • Comparative Example 5 contains 50% by weight of the vulcanized active ingredient, but cannot maintain a powdery form and becomes a paste, so that the processability during measurement and rubber kneading is very high. Deteriorate. Moreover, the improvement effect of abrasion resistance and slip resistance is not recognized.
  • the vulcanized active ingredient-treated calcium ash acrylate of Example 67 according to the present invention is in a powder form and is easier to measure than Comparative Example 7. Further, it is excellent in workability and workability during kneading, and can improve heat resistance and compression set without lowering the modulus when blended with rubber.
  • Comparative Example 6 is a mixture of modified calcium carbonate and silica in a weight ratio of 90:10. Force that is mixed so that the content of the vulcanized active ingredient is 50% by weight. Although heat resistance is good, no significant improvement effect has been observed in compression set.
  • the vulcanized active ingredient-treated calcium carbonate of the present invention is easy to measure and has excellent workability and workability during kneading when blended with rubber, and also has a modulus and wear resistance. It can be seen that the slip resistance and heat resistance are good.
  • the vulcanized active ingredient-treated calcium carbonate of the present invention can be expected to be applied to rubber products such as shoe soles, tires and belts.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

明 細 書
加硫活性成分処理炭酸カルシウム
技術分野
[0001] 本発明は、改質炭酸カルシウムに、常温で液体の加硫活性成分を混合した加硫活 性成分処理炭酸カルシウムに関するものである。
背景技術
[0002] 炭酸カルシウムは、従来からゴム、プラスチックス、塗料、インキ、シーリング剤、製 紙、農薬、中和剤、食品添加物、化粧品等幅広い分野で利用されている。これらの 中でも、液状製品の担体 (キャリア)として作業性の改善を図った利用方法があり、例 えば、特許文献 1及び特許文献 2に例示されている。
[0003] 上記方法によれば、シランカップリング剤等をより高濃度で、炭酸カルシウム単独、 或いは高吸液量無機充填剤と混合した粉体に担持することができるカ、例えば、ゴム に一定量のシランカップリング剤等を配合する場合、ハンドリング性は良くなるものの 、添加量が制約されるため、炭酸カルシウムの配合効果が発現しに《なる。
[0004] 一方、担持量の少ない例としては、特許文献 3等に例示されているが、同じくゴムに 配合する場合、一定量のシランカップリング剤等を配合しょうとすると、より多くの量を 配合する必要があるため、例えば補強性が低下する等の問題を生じる。
特許文献 1:国際公開 WO2006/025423号公報
特許文献 2:特開昭 56— 104950号公報
特許文献 3 :国際公開 WO2004/009711号公報
発明の開示
[0005] 本発明の目的は、ゴムに配合した場合において、加工性 (ノ、ンドリング)が良好で、 かつゴムの補強性を低下することなぐ耐スリップ性、耐発熱性など、炭酸カルシウム に起因するメリットを最大限に発現させることができる加硫活性成分処理炭酸カルシ ゥムを提供することにある。
[0006] 本発明の加硫活性成分処理炭酸カルシウムは、脂肪酸類または樹脂酸類とケィ酸 類を表面処理した、平均一次粒子径が 0. 01-0. 5 mである改質炭酸カルシウム に、常温で液体の加硫活性成分を、その含有量が 9. ;!〜 35重量%となるように混合 したことを特 ί毁としている。
[0007] 本発明における加硫活性成分は、例えば、有機シラン化合物、有機チタネート化 合物、有機アルミネート化合物等が挙げられる。
(発明の効果)
[0008] 本発明によれば、例えば、ゴムに配合した場合において、加工性 (ノ、ンドリング)が 良好で、かつゴムの補強性を低下させることなぐ耐スリップ性、耐発熱性等、炭酸力 ルシゥムに起因するメリットを最大限に発現させることができる。
発明を実施するための最良の形態
[0009] 以下、本発明について、具体的に説明する。
[0010] 改晳炭酸カルシウム
本発明において使用する改質炭酸カルシウムとしては、原料炭酸カルシムに脂肪 酸類または樹脂酸類よりなる群から選ばれる少なくとも 1種以上とケィ酸類を表面処 理したものが使用される。
[0011] 改質炭酸カルシウムは、脂肪酸類、樹脂酸類及びケィ酸類により原料炭酸カルシ ゥム粒子又は処理された炭酸カルシウム粒子の表面の全部又は一部を覆う構造のも のであればよぐ必ずしも、表面全てを連続的に覆う必要はない。また処理する順番 も限定されない。
[0012] 改質炭酸カルシウムの原料となる炭酸カルシウムとしては、公知の重質炭酸カルシ ゥム、合成(沈降性)炭酸カルシウムなどを用いることができる。
[0013] 重質炭酸カルシウムは、天然に産出する炭酸カルシウム原石を、ローラーミル、高 速回転ミル (衝撃剪断ミル)、容器駆動媒体ミル (ボールミル)、媒体撹拌ミル、遊星ボ ールミル、ジェットミルなどを用いて、乾式または湿式で粉砕する方法などにより、調 製できる。
[0014] 合成(沈降性)炭酸カルシウムは、石灰乳 炭酸ガス反応法、塩化カルシウムーソ ーダ灰反応法、石灰乳 ソーダ灰反応法等などの公知の方法により得ることができ る。具体的には、石灰乳 炭酸ガス反応法の一例として、石灰石原石を、コータスあ るいは石油系燃料 (重油、軽油)、天然ガス、 LPG等で混焼することによって生石灰 とし、この生石灰を水和して水酸化カルシウムスラリーとし、これに混焼時に発生する 炭酸ガスをパブリングして反応させることによって、炭酸カルシウムを生成する方法等 が挙げられる。炭酸ガス反応時の条件を設定することによって、所望のサブミクロンォ ーダ一の微粒子を得ることができる。
[0015] 本発明における改質炭酸カルシウムを、走査型電子顕微鏡で観察した場合、最小 単位である一次粒子の粒子形状は立方体ある!/、は球状である。本発明における改 質炭酸カルシウムの一次粒子径は、このように走査型電子顕微鏡により測定すること カでき、好ましく (ま 0. 01 -0. 5〃m程度であり、より好ましく (ま、 0. 01 -0. 1〃 m程 度である。
[0016] 本発明における改質炭酸カルシウムの一次粒子径は、粒子形状が立方体であれ ば一辺の長さを示し、球状であれば直径を示す。本発明における改質炭酸カルシゥ ムは、一次粒子が凝集して二次粒子を形成して!/、てもよレ、。
[0017] 粒子が大きすぎる場合には、十分に加硫活性成分を保持できず、またモジュラス、 耐摩耗性といった補強性を損なう恐れがあるため好ましくない。一方、小さすぎる場 合には分散性が悪くなり、ゴム成分に対する補強効果が損なわれるおそれがあるの で好ましくない。
[0018] 本発明において、改質炭酸カルシウムに使用する脂肪酸類とは、炭素数が 6〜24 程度の飽和若しくは不飽和の脂肪酸、その塩又はエステルなどが挙げられる。
[0019] 炭素数が 6〜24程度の飽和若しくは不飽和の脂肪酸としては、例えば、ステアリン 酸、パルミチン酸、ラウリン酸、ベへニン酸、ォレイン酸、エル力酸、リノール酸などを 挙げること力 Sできる。特に、ステアリン酸、ノ ルミチン酸、ラウリン酸、ォレイン酸が好ま しい。これらは 2種以上混合して用いてもよい。
[0020] 脂肪酸の塩としては、例えば、アルカリ金属塩又はアルカリ土類金属塩などが挙げ られる。
[0021] また脂肪酸のエステルとしては、例えば、炭素数が 6〜24程度の飽和もしくは不飽 和の脂肪酸と、炭素数が 6〜; 18程度の低級アルコールとのエステルなどが挙げられ
[0022] 脂肪酸類による処理方法としては、例えば、次のような方法が挙げられる。 [0023] まず、脂肪酸を NaOH水溶液、 KOH水溶液などのアルカリ金属水溶液中で加熱 しながら鹼化(Na塩、 K塩等の金属塩にすること)し、溶液状にする。次いで、シリカ 層を形成させた炭酸カルシウムの水懸濁液を、予め 30〜50°Cに加熱しておき、この 懸濁液に前述の溶液状の脂肪酸石鹼を添加し、攪拌させて、混合し、脂肪酸層を形 成させる。脂肪酸 Naなどの石鹼をそのまま使用する場合については、予め加熱した 水溶液を調整しておき、上記と同様の方法で処理を行う。
[0024] また、脂肪酸を鹼化せずに用いて処理を行うこともできる。例えば、母体炭酸カルシ ゥムを脂肪酸の融点以上に加温しながら攪拌し、これに脂肪酸を添加し、攪拌させて 、混合することにより、脂肪酸層を形成させることができる。
[0025] 本発明において使用する樹脂酸類としては、例えば、ァビエチン酸、デヒドロアビエ チン酸、ジヒドロアビエチン酸などのアビェチン酸類或いはその重合体、不均化ロジ ン、水添ロジン、重合ロジン、これらの塩(例えば、アルカリ金属塩、アルカリ土類金属 塩)又はエステルなどが挙げられる。これらの中では、ァビエチン酸及びデヒドロアビ ェチン酸が好ましい。
[0026] 樹脂酸類の処理方法としては、脂肪酸類と同様の手法をとることができる。具体的 には、樹脂酸を NaOH水溶液、 KOH水溶液などのアルカリ金属水溶液中で加熱し ながら鹼化(Na塩、 K塩等の金属塩にすること)し、溶液状にする。次いで、シリカ層 を形成させた炭酸カルシウムの水懸濁液を、予め 30〜50°Cに加熱しておき、この懸 濁液に前述の溶液状の樹脂酸石鹼を添加し、攪拌させて、混合し、樹脂酸層を形成 させる。樹脂酸 Naなどの石鹼をそのまま使用する場合については、予め加熱した水 溶液を調整しておき、上記と同様の方法で処理を行う。また、樹脂酸を鹼化せずに用 いて処理を行うこともできる。例えば、母体炭酸カルシウムを樹脂酸の融点以上に加 温しながら攪拌し、これに樹脂酸を添加し、攪拌させて、混合することにより、樹脂酸 層を形成させることができる。
[0027] 有機酸層を構成する、脂肪酸類及び樹脂酸類よりなる群から選ばれる少なくとも 1 種の有機酸の付着量は、特に限定されるものではないが、原料となる炭酸カルシウム 100重量部に対して、通常 0. 5〜20重量部程度である。より好ましくは 1〜; 15重量 部程度、さらに好ましくは 2〜 12重量部程度である。 [0028] 本発明において、改質炭酸カルシウムに使用されるケィ酸類は、公知の方法により 製造すること力 Sできる。例えば、酸分解法によるシリカヒドロゾル、例えば、ケィ酸ナトリ ゥム溶液に、塩酸、硫酸などの無機酸、硫酸アルミニウム、或いは酢酸、アクリル酸な どの有機酸、その他の炭酸ガス等の酸性物質を加えることによって生成する非晶質 シリカヒドロゾルを用いることができる。或いは、半透膜にケィ酸ナトリウムを通して生 成せしめる透析法によって生成されるシリカヒドロゾル、イオン交換樹脂を用いたィォ ン交換法によって生成されるシリカヒドロゾルを用いることもできる。
[0029] ケィ酸類による炭酸カルシウムの処理方法としては、例えば、炭酸カルシウムスラリ 一に適当濃度のケィ酸ナトリウムを加え、攪拌しながら無機酸または有機酸などの酸 性物質を滴下し、生成する活性なシリカヒドロゾルによって、炭酸カルシウム表面を処 理する手法が挙げられる。
[0030] 予め調整したシリカヒドロゾルを用いる場合は、炭酸カルシウムスラリーに、シリカヒド 口ゾルを添加し、強力に攪拌することにより、処理すること力 Sできる。
[0031] 本発明において、ケィ酸類の炭酸カルシウムに対する付着量は、特に限定されるも のではないが、原料となる炭酸カルシウム 100重量部に対して、通常 0. 5〜; 15重量 部程度であり、より好ましくは 1〜; 12重量部程度であり、さらに好ましくは 2〜; 10重量 部程度である。付着量は、付着の対象となる炭酸カルシウムの BET比表面積などに 応じて適宜調整される。
[0032] 炭酸カルシウムに対するケィ酸類の付着量が少なすぎる場合には、後述するシラン カップリング剤等の加硫活性成分を結合させるに足る反応部位が少なくなるため、所 望のゴム物性を発現できないおそれがある。一方、付着量が多すぎる場合には、炭 酸カルシウム表面に付着する以外に余剰のシリカヒドロゾル等が溶液中に存在するこ とになるので、乾燥時にシリカヒドロゾル等が炭酸カルシウムを強く凝集固化させて、 粉砕困難な粗大粒子が増大する。このような粗大粒子を含む炭酸カルシウム充填剤 は、ポリマーの引裂強さ、耐屈曲亀裂性などを低下させるおそれがある。
[0033] 本発明で使用される走査型電子顕微鏡で観察した改質炭酸カルシウムの平均粒 子径は、所期の効果を奏し得る範囲で設定できる力 0. 0;!〜 0.5 mが好ましぐ 0 . 01—0. 3〃m力より好ましく、さらに好ましくは 0. 01—0. 1〃 mである。 [0034] 粒子径が大きすぎる場合には、十分な耐摩耗性を有するゴム組成物が得られない ので好ましくない。一方、粒子径が小さすぎる場合には分散性が悪くなり、ゴム成分 に対する補強効果が損なわれるおそれがあるので好ましくない。
[0035] 改質炭酸カルシウムの BET比表面積は、 5〜120m2/g程度が好ましぐより好ま しくは 10〜 120m2/g程度であり、さらに好ましくは 60〜; 11 Om2/g程度である。
[0036] BET比表面積が 5m2/gよりも小さすぎる場合には、充分な耐摩耗性を得ることが できない点で好ましくなぐ 120m2/gより大きい場合には、飛散性が激しくなるため 、好ましくない。
[0037] 本発明において、脂肪酸類または樹脂酸類による表面処理と、ケィ酸類による表面 処理の順序は、特に限定されるものではないが、原料 (すなわち未処理)の炭酸カル シゥムに、まずケィ酸類を表面処理した後、脂肪酸類または樹脂酸類を表面処理す ることが好ましい。
[0038] カロ石 ffi†牛成, 本発明にお!/、て用いる加硫活性成分は、ゴム等における加硫を活性させることが できる成分であれば特に限定されるものではないが、例えば、有機シラン化合物、有 機チタネート化合物、有機アルミネート化合物などが挙げられる。これらの他に公知 の加硫促進剤、加硫促進助剤なども用いられる。これらは単独で用いてもよいし、 2 種類以上を混合して用いてもょレ、。
[0039] 有機シラン化合物としては、例えばシランカップリング剤として知られているものを用 いること力 Sできる。シランカップリング剤としては、ビュルトリクロルシラン、ビュルトリメト キシシラン、ビュルトリエトキシシラン、ビュルトリス(/3—メトキシエトキシ)シラン、 β - (3, 4エポキシシクロへキシノレ)ェチノレトリメトキシシラン、 γ—(2—アミノエチノレ)ァミノ シプロピノレトリメチノレジェトキシシラン、 γ—グリシドキシプロピノレトリエトキシシラン、 Ί シラン、 γ—メタクリロキシプロピルメチルジェトキシシラン、 γ—メタクリロキシプロピ ルトリエトキシシラン、 Ν— /3 (アミノエチル) γ—ァミノプロピルメチルジメトキシシラン
、 Ν— β (アミノエチル) γ—ァミノプロピルトリメトキシシラン、 Ν— β (アミノエチル) γ —ァミノプロピルトリエトキシシラン、 γ—ァミノプロピルトリメトキシシラン、 Ί—アミノプ 口ピルトリエトキシシラン、 Ν フエニル一 γ—ァミノプロビルトリメトキシシラン、 Ί—ク トリエトキシシリル〕一プロピル)一ジサルファン、ビス一 (3—〔トリエトキシシリル〕ープ 口ピル)一テトラサルファン (TESPT)などを挙げることができる。これらは単独で使用 しても良ぐ或レ、は 2種以上を併用して使用しても良!/、。
[0040] これらの中では、 Ί - (2 アミノエチル)ァミノプロピルトリメトキシシラン、 Ν— β (ァ ラン、ビス一(3—〔トリエトキシシリル〕 プロピル)ーテトラサルファンを用いるのが好 ましい。
[0041] 有機チタネート化合物としては、従来ゴム、プラスチックスに配合されている任意の チタネートカップリング剤を配合することができ、例えば、イソプロピルトリイソステア口 ィノレチタネート、イソプロピノレトリドデシノレベンゼンスノレホニノレチタネート、イソプロピノレ トリス(ジォクチルパイロホスフェート)チタネート、テトライソプロピルビス(ジォクチルホ
(2, 2—ジァリルォキシメチルー 1ーブチル)ビス(ジ一トリデシル)ホスファイトチタネ ート、ビス(ジォクチルパイロホスフェート)ォキシアセテートチタネート、ビス(ジ才クチ ノレパイ口ホスフェート)エチレンチタネート、イソプロピノレトリオクタノィノレチタネート、ィ
リルチタネート、イソプロピルトリ(ジォクチルホスフェート)チタネート、イソプロピルトリ クミノレフエニルチタネート、イソプロピルトリ(Ν アミドエチノレ 'アミノエチノレ)チタネート 、ジクミルフエニルォキシアセテートチタネート、ジイソステアロイルエチレンチタネート などを挙げること力 Sできる。これらは単独で使用しても良ぐ或いは 2種以上を併用し て使用しても良い。これらのなかでは、イソプロピルトリイソステアロイルチタネートが 好ましい。
[0042] 有機アルミネート化合物としては、アルミネートカップリング剤を使用でき、例えばァ セトアルコキシアルミニウムジイソプロピレートが挙げられる。
[0043] ケィ酸及びケィ酸塩 本発明で、改質炭酸カルシウムとは別にゴムに配合されるケィ酸及びケィ酸塩とし ては、例えば湿式シリカ、乾式シリカ、コロイダルシリカ、ゾル-ゲル法シリカ、溶融シリ 力、シリカサンド、クリストバライト、カオリンクレー、焼成クレー、セリサイト、マイ力、タ ルク、ネフエリンサイナイトなどを例示することができる。これらは単独で用いてもよい し、 2種類以上を混合して用いてもよい。
[0044] 加硫活性成分処理炭酸カルシウムの調製
本発明の加硫活性成分配合炭酸カルシウム組成物は、上記の改質炭酸カルシゥ ムと、加硫活性成分を混合することにより調製することができる。混合方法は特に限 定されるものではないが、一般には、粉末である改質炭酸カルシウムの撹拌下に、液 状の加硫活性成分を添加して混合する方法が好ましく採用される。
[0045] 加硫活性成分の含有量は、全体(改質炭酸カルシウムカルシウムと加硫活性成分 の合計量)に対して 9.;!〜 35重量%であり、好ましくは 9. ;!〜 30重量%であり、さらに 好ましくは 10〜25重量%である。
[0046] 加硫活性成分の含有量が 9. 1重量%未満であると、加硫活性成分処理炭酸カル シゥムとして多くの量をゴム等に配合する必要があるので、補強性が低下したり、ある いはスコーチ安定性が低下するおそれがある。また、逆に、加硫活性成分の含有量 が 35重量%を超えると、粉末の性状を保持できなくなる場合がある。
[0047] ゴム組成物の調製
本発明の加硫活性成分処理炭酸カルシウムは、特にゴムに配合した場合にお!/、て 、耐摩耗性を損なわず、耐スリップ性、圧縮永久歪み及び耐発熱性を改善するという 効果を得ること力できる。このようなゴムとしては、例えば、天然ゴム、合成ゴム、ェチ レン 酢酸ビュル共重合体 (EVA)等が挙げられる。
[0048] 合成ゴムとしては、架橋可能なジェン系ゴムが用いられる。合成ゴムの具体的な例 としては、例えば、シス 1 , 4 ポリイソプレン、乳化重合スチレンブタジエン共重合 体、溶液重合スチレンブタジエン共重合体、低シス 1 ,4 ポリブタジエン、高シス 1 ,4 ポリブタジエン、エチレン プロピレン ジェン共重合体、クロ口プレン、ノヽロゲ ン化ブチルゴム、アクリロニトリル一ブタジエンゴム、ブチルゴム、ウレタンゴム、シリコ ーンゴム、フッ素ゴム、クロロスルホン化ポリエチレン、ェピクロロヒドリンゴム、多硫化 ゴム等が挙げられる。
[0049] 上述したゴムの中でも、天然ゴム、シス 1 ,4 ポリイソプレン、乳化重合スチレンブ タジェン共重合体、溶液重合スチレンブタジエン共重合体、低シス 1 ,4 ポリブタ ジェン、及び高シス— 1,4—ポリブタジエン力 特に好適に用いられる。
[0050] ゴムは、上述した天然ゴム又はジェン系合成ゴムを 1種用いてもよぐまた 2種以上 混合して用いてもよい。混合比は、要求される特性などに応じて、適宜設定すること ができる。
[0051] 本発明のゴム組成物は、ゴム成分に、ケィ酸及びケィ酸塩及び上述の加硫活性成 分処理炭酸カルシウムを配合したものである。
[0052] ケィ酸及びケィ酸塩の配合量は、ゴム成分 100重量部に対して、通常 0.;!〜 100 重量部であり、好ましくは 20〜; 100重量部であり、さらに好ましくは 20〜90重量部で ある。
[0053] ケィ酸及びケィ酸塩の配合量が少なすぎる場合には、ゴム組成物の耐摩耗性が低 下するので好ましくなぐ多すぎる場合には、ゴムの粘度が上昇し、加工性が悪くなる ため、好ましくない。
[0054] 加硫活性成分処理炭酸カルシウムの配合量は、ゴム成分 100重量部に対して、加 硫活性成分が 0.;!〜 20重量部となるように配合されることが好ましぐさらに好ましく は、 0. 5〜20重量部であり、さらに好ましくは 1〜; 10重量部である。
[0055] 加硫活性成分処理炭酸カルシウムの配合量が少なすぎると、ゴム配合時の補強性 が改善できない点で好ましくなぐ多すぎるとゴム組成物のコストが高くなるため好まし くない。
[0056] また、本発明のゴム組成物には、必要に応じて、更に公知の配合剤を加えてもよい 。例えば、酸化チタン、沈降性硫酸バリウム、バライト、水酸化アルミニウム、水酸化マ グネシゥム、カーボンブラックなど他の充填剤を適宜併用して用いることができる。更 に、プロセスオイル、酸化防止剤、老化防止剤、活性剤、ステアリン酸、酸化亜鉛、ヮ ックスなどの添加剤、 DCP、硫黄、加硫促進剤などの加硫剤等も、所望に応じて配 合すること力 Sでさる。
[0057] 本発明のゴム組成物は、ゴム成分、湿式シリカ及び加硫活性成分処理炭酸カルシ ゥムと、必要に応じて選択したその他の配合剤とを、混練り、熱入れ、押出、加硫など することにより製造でさる。
[0058] 混練りの条件としては、特に制限はなぐ混練り装置への投入体積、ローターの回 転速度、ラム圧等、混練温度、混練り時間、混練り装置の種類等の諸条件について 目的に応じて適宜選択できる。混練り装置は特に制限されず、密閉式または開放式 いずれのものも用いることができ、例えば、通常ゴム組成物の混練りに用いる公知の 混練装置、具体的には、バンバリ一ミキサー(登録商標)、インターミックス(登録商標 )、ニーダー、ロール等が挙げられる。
[0059] 熱入れの条件としては、特に制限はなぐ熱入れ温度、熱入れ時間、熱入れ装置 等の諸条件について目的に応じて適宜選択できる。熱入れ装置としては、例えば、 通常ゴム組成物の熱入れに用いるロール機等が挙げられる。
[0060] 押出しの条件としては、特に制限はなぐ押出時間、押出速度、押出装置、押出温 度等の諸条件について目的に応じて適宜選択できる。押出装置としては、例えば、 通常ゴム組成物の押出しに用いる押出機等が挙げられる。押出温度は、適宜決定で きる。
[0061] 加硫をおこなう装置、方式、条件等については、特に制限はなぐ 目的に応じて適 宜選択できる。加硫をおこなう装置としては、例えば金型による成形加硫機等が挙げ られる。加硫の条件として、加硫温度は通常 100〜190°Cである。
実施例
[0062] 以下、本発明を実施例により具体的に説明するが、本発明は以下の実施例に限定 されるものではない。
[0063] 〔改質炭酸カルシウムの調製〕
BET比表面積 75m2/gの合成炭酸カルシウムスラリーを良く撹拌しながら 40°Cに 加熱した。この合成炭酸カルシウム 100重量部に対し、室温下、水で十倍に希釈し たケィ酸ナトリウム(和光純薬製)水溶液 7重量部を添加し、希塩酸を導入し、炭酸力 ルシゥム表面にシリカ層を生成させた。次にこの合成炭酸カルシウム 100重量部に対 し、 90°Cに加温撹拌させて鹼化した混合脂肪酸 (ォレイン酸、ステアリン酸、パルミチ ン酸 (和光純薬製))を 5重量部添加し、次いで、脱水、乾燥、粉砕を行い、脂肪酸層 を有する炭酸カルシウム粉末(平均一次粒子径 0. 02 !11)を得た。得られた炭酸力 ルシゥムを改質炭酸カルシウムとする。
[0064] 〔加硫活性成分処理炭酸カルシウムの調製〕
上記の改質炭酸カルシウム、並びに以下のシリカ、及び加硫活性成分としてのシラ ンカップリング剤 (TESPT)を用い、以下のようにして加硫活性成分処理炭酸カルシ ゥムを調製した。
[0065] 'シランカップリング剤:ビス一(3 〔トリエトキシシリル〕 プロピル)テトラサルフォン
(TESPT)、デグサ社製
'シリカ:ホワイトカーボン、吸油量 200ml/100g、商品名「二プシーノレ VN3」、 日 本シリカ工業 (株)製
•加硫活性成分処理炭酸カルシウム A (比較)
粉末成分である改質炭酸カルシウムをスーパーミキサー中で撹拌混合し、撹拌下 に加硫活性成分の含有量が 1重量%になるようスプレーで噴霧してさらに混合した。 得られた炭酸カルシウムを、加硫活性成分処理炭酸カルシウム Aとする。
[0066] ·加硫活性成分処理炭酸カルシウム B (本発明)
粉末成分である改質炭酸カルシウムをスーパーミキサー中で撹拌混合し、撹拌下 に加硫活性成分の含有量が 10重量%になるようスプレーで噴霧してさらに混合した 。得られた炭酸カルシウムを、加硫活性成分処理炭酸カルシウム Bとする。
[0067] ·加硫活性成分処理炭酸カルシウム C (本発明)
粉末成分である改質炭酸カルシウムをスーパーミキサー中で撹拌混合し、撹拌下 に加硫活性成分の含有量が 20重量%になるようスプレーで噴霧してさらに混合した 。得られた炭酸カルシウムを、加硫活性成分処理炭酸カルシウム Cとする。
[0068] ·加硫活性成分処理炭酸カルシウム D (本発明)
粉末成分である改質炭酸カルシウムをスーパーミキサー中で撹拌混合し、撹拌下 に加硫活性成分の含有量が 30重量%になるようスプレーで噴霧してさらに混合した 。得られた炭酸カルシウムを、加硫活性成分処理炭酸カルシウム Dとする。
[0069] ·加硫活性成分処理炭酸カルシウム +シリカ E (比較)
粉末成分である改質炭酸カルシウムとシリカを、重量比で 90 : 10になるようにスー パーミキサーに投入し、撹拌混合した。撹拌下に加硫活性成分の含有量が 50重量 %になるようスプレーで噴霧してさらに混合した。得られた炭酸カルシウムを、加硫活 性成分処理炭酸カルシウム +シリカ Eとする。
[0070] ·加硫活性成分処理炭酸カルシウム F (比較)
粉末成分である改質炭酸カルシウムをスーパーミキサー中で撹拌混合し、撹拌下 に加硫活性成分の含有量が 50重量%になるようスプレーで噴霧してさらに混合した 。得られた炭酸カルシウムを、加硫活性成分処理炭酸カルシウム Fとする。
[0071] 〔ゴム組成物の調製〕
上記の各加硫活性成分処理炭酸カルシウムを、ゴム成分に配合してゴム組成物を 調製した。ゴム成分としては、以下の NBR、 BR、 NRを用い、その他の添加剤として は酸化亜鉛、ステアリン酸、湿式シリカ、老化防止剤、 PEG、 Si69 (TESPT)、カロ硫 促進剤 DM、加硫促進剤 M、加硫促進剤 TS、及び硫黄を用いた。ゴム薬品として具 体的には以下のものを用いている。
[0072] 表 1において、加硫活性成分処理炭酸カルシウムは、ゴム 100重量部に対し TESP
Tとして 1重量部となるように添加されている。
[0073] (ゴム組成物の配合)
NBR: 10重量部
BR : 85重量部
NR : 5重量部
酸化亜鉛: 5重量部
ステアリン酸: 1重量部
PEG : 5重量部
湿式シリカ:表 1に示す通り
Si69 : l重量部
老化防止剤: 1重量部
加硫促進剤 DM: 1.5重量部
加硫促進剤 M : 0. 3重量部
加硫促進剤 TS : 0. 2重量部 硫黄: 2重量部
加硫活性成分処理炭酸カルシウム A〜E:表 1に示す通り
•NBR:中高二トリル含有量 NBR、商品名「Nipol 1042」、アクリル二トリル含有量 33%、 日本ゼオン製。
[0074] 'BR :ブタジエンゴム、商品名「BR01」、 JSR製。
[0075] 'NR : SMR-L、標準マレーシアゴム。
[0076] ·老化防止剤:商品名「BHT」、大内新興化学工業 (株)製。
[0077] ·加硫促進剤 DM :商品名「ノクセラー DM」、大内新興化学工業 (株)製。
[0078] ·加硫促進剤 M :商品名「ノクセラー M」、大内新興化学工業 (株)製。
[0079] ·加硫促進剤 TS:商品名「ノクセラー TS」、大内新興化学工業 (株)製。
[0080] -PEG:商品名「PEG4000」、和光純薬製、試薬特級。
[0081] 表 2において、加硫活性成分処理炭酸カルシウムは、ゴム 100重量部に対し TESP
Tとして 5重量部となるように添加されている。
[0082] (ゴム組成物の配合)
S— SBR: 100重量部
酸化亜鉛: 4重量部
ステアリン酸: 2重量部
PEG : 5
湿式シリカ:表 2に示す通り
Si69 : 5重量部
老化防止剤: 1重量部
加硫促進剤 D : l重量部
加硫促進剤 CZ : 1重量部
硫黄: 2重量部
加硫活性成分処理炭酸カルシウム B〜E:表 2に示す通り
•S-SBR:溶液重合 SBR、商品名「SL552」、JSR製。
[0083] ·加硫促進剤 D :商品名「ノクセラー D」、大内新興化学工業 (株)製。
[0084] ·加硫促進剤 CZ :商品名「ノクセラー CZ」、大内新興化学工業 (株)製。 [0085] .ナフテンオイノレ:商品名「NP-24」、出光興産製
ゴム成分への混合は、 8インチ 2本ロールを用いて行った。得られたゴム組成物を、 キュラストメーター(160°C)で算出した最適加硫時間 tc (90)を元にしてプレス加硫を 行い、厚さ 2mmのゴムシートを得た。
[0086] 〔ゴム組成物の評価〕
実施例 1〜7及び比較例 1〜7の各ゴム組成物から得られたゴムシートについて、以 下の方法で、引張試験、圧縮永久歪み、耐摩耗性、耐スリップ性を測定した。
[0087] 1.引張試験
JIS K 6251に規定された方法に従って、ショッパー抗張力試験機を用い、 23°C における 300%モジュラス(300%伸長時の応力を断面積で除した値)の測定を行つ た。
[0088] 2.圧縮永久歪み
JIS K 6262に規定された方法に従って、大型試験片を 25%圧縮し、 24時間こ の状態で保持した。 24時間経過後、外力を除き、さらに 30分間静置し、この時の試 験片の厚みを測定した。結果は、 JIS K 6262, 5. 5に準拠して標記した。
[0089] 3.耐摩耗性
島津製作所製のアクロン摩耗試験機を用い、荷重 61b、角度 15° の条件下で、予 備擦り 200回、本擦り 1000回で摩耗容積を調べた。
[0090] 4.耐スリップ性
PVC板に試験片(30 X 20 X 2mm)を設置し、 6gの錘を試験片の上部に取り付け た。 PVC板の傾斜角度を徐々に上げ、試験片が滑り始めた傾斜角度を滑り角とし、 耐スリップ性として評価した。
[0091] 5.耐発熱性
JIS K 6265に規定された方法に従って、フレキソメーターを用いて初期温度 40°C 力、らの発熱温度と永久歪みを測定した。試験片は直径 17. 80mm,高さ 25. 0mm の円柱状のものを使用し、静的圧縮応力 IMPaを、毎分 1800回、 4m/mのストロー クで与え、 25分間経過時の発熱温度(At)を測定した。
[0092] 評価結果を表 1、 2に示す。 加硫活性成分含有量 性状 実施例 比較例
(重量%) 実施例 1 実施例 2 実施例 3 実施例 4 実施例 5 比較例 1 比較例 2 比較例 3 比 ί例 4 比較例 5 シリカ 粉末状 [重量部〗 50 43 50 50 48.2 50 50 50 一 50 加硫活性成分処理炭酸カルシウム A 1 粉末状 [重量部] - ― - - - - 一 100 100 ― 加硫活性成分処理炭酸カルシウム B 10 粉末状 [重量部] 10 10 - - - - - ― 一 - 加硫活性成分処理炭酸カルシウム C 20 粉末状 [重量部] 一 5 - - ― - 一 加硫活性成分処理炭酸カルシウム D 30 粉末状 [重量部] - - . - 3.3 3.3 ― - ― 一 - 加硫活性成分処理炭酸カルシウム +シリカ E 50 粉末状 [重量部] 一 - 一 - - 2 - 一 加硫活性成分処理炭酸カルシウム F 50 ペースト状 [重量部] - I— - 一 - ― - ― 一 2 加硫活性成分( 100%濃度) ― 液状 [重量部] - - - 1 - - - -
160°Cプレス加硫 [min] 5 5 5 5 5 5 5」混練不可 5 5
300%モジュラス [ Pa] 13.4 10.5 1 1.0 12.1 1 1.0 10.6 11.6 7.4 1 1 圧縮永久歪み [%] 42.2 41.6 43.0 45.0 44.2 48.4 48.1 65.4 48.5 耐摩耗性 [cc] 0,02 0.04 0.03 0.02 0.02 0.03 0.02 0.21 0.03 耐スリップ性 (角度) [度] 37 ! 41 40 30 33 26 28 47 27 計量時、及び混練時の作業性 〇 ; o o 〇 O o 0
〕 D¾0093 [0094] 表 1から明らかなように、本発明に従う実施例;!〜 5の加硫活性成分処理炭酸カル シゥムは、粉末状であり、比較例 1及び比較例 5に比べ、計量が容易である。また、混 練時の作業性及び加工性に優れ、ゴムに配合した際に、モジュラス、耐摩耗性を損 なわず、耐スリップ性、圧縮永久歪みを改善することができる。
[0095] 比較例 2には、改質炭酸カルシウムとシリカを重量比で 90: 10に混合した混合物に 、加硫活性成分の含有量が 50重量%となるように混合したものであるが、圧縮永久 歪み及び耐スリップ性にぉレ、て、改善効果が認められて!/、なレ、。
[0096] 比較例 3は、加硫活性成分を 1重量%としたものであるが、シリカ及び炭酸カルシゥ ムの配合量が多くなるため、ゴムに対する混練が困難となった。
[0097] 比較例 4は、加硫活性成分の処理量が 1重量%である比較の加硫活性成分処理 炭酸カルシウムを用いている力 S、耐スリップ性は良好であるものの、耐摩耗性は著しく 低下している。
[0098] 比較例 5は、加硫活性成分を 50重量%含有したものであるが、粉末状の形態を保 持できず、ペースト状となるため、計量やゴム混練時における加工性が非常に悪くな る。また、耐摩耗性及び耐スリップ性の改善効果が認められない。
[0099] [表 2]
較例比性成含量加硫活分有
(重量〕% 1例較例実施例実施比比較例 7667
粉カ末状重量部シ []リ 2 〇
粉末状加硫性成処炭酸重量部活分ウ []理カシムル B
加硫部 ί末活性成分処炭酸重量]理カウ [シムル Dίτ
2 |性成処炭酸重量部粉末状加硫活分理カカ []ウシムシリル E + 〇
m 性成加硫分濃部重量活度) [](100<½
プ加硫° 1Cレ60ス
ジラ 300%モスュ
縮永久歪圧み
熱耐性発
ε 2 計時び量練時業混作性及の、
I
[0100] 表 2から明らかなように、本発明に従う実施例 6 7の加硫活性成分処理灰酸カル シゥムは、粉末状であり、比較例 7に比べ、計量が容易である。また、混練時の作業 性及び加工性に優れ、ゴムに配合した際にモジュラスを低下させることなぐ耐発熱 性、圧縮永久歪みを改善することができる。
[0101] 比較例 6は、改質炭酸カルシウムとシリカを重量比で 90: 10に混合した混合物に、 加硫活性成分の含有量が 50重量%となるように混合したものである力 耐発熱性は 良好なものの、圧縮永久歪みにおいて、顕著な改善効果が認められていない。
[0102] 以上のように、本発明の加硫活性成分処理炭酸カルシウムは、計量が容易で、 つゴムに配合した場合に、混練時の作業性及び加工性に優れ、さらにモジュラス、耐 摩耗性、耐スリップ性、耐発熱性が良好なことがわかる。
[0103] 本発明の加硫活性成分処理炭酸カルシウムは、靴底、タイヤ、ベルト等のゴム製品 への展開が期待できる。

Claims

請求の範囲
[1] 脂肪酸類または樹脂酸類とケィ酸類を表面処理した、平均一次粒子径が 0. 0;!〜 0. 5 mである改質炭酸カルシウムに、常温で液体の加硫活性成分を、その含有量 が 9.;!〜 35重量%となるように混合したことを特徴とする加硫活性成分処理炭酸力 ルシゥム。
[2] 加硫活性成分が、有機シラン化合物、有機チタネート化合物、及び有機アルミネー ト化合物から選ばれる少なくとも 1種であることを特徴とする請求項 1に記載の加硫活 性成分処理炭酸カルシウム。
[3] 請求項 1〜2のいずれ力、 1項に記載の加硫活性成分処理炭酸カルシウムと、ケィ酸 およびケィ酸塩とをゴムに含有させたことを特徴とするゴム組成物。
[4] ゴム成分 100重量部に対して、ケィ酸およびケィ酸塩が 0.;!〜 100重量部配合さ れていることを特徴とする請求項 3に記載のゴム組成物。
[5] ゴム成分 100重量部に対し、加硫活性成分が 0.;!〜 20重量部となるように加硫活 性成分処理炭酸カルシウムが含有されていることを特徴とする請求項 3または 4に記 載のゴム組成物。
PCT/JP2007/068610 2006-09-28 2007-09-26 Carbonate de calcium traité au moyen d'un ingrédient actif de durcissement WO2008041568A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2007800360081A CN101516985B (zh) 2006-09-28 2007-09-26 硫化活性成分处理的碳酸钙
KR1020097005906A KR101426104B1 (ko) 2006-09-28 2007-09-26 가황 활성 성분 처리 탄산칼슘
US12/311,346 US7923499B2 (en) 2006-09-28 2007-09-26 Calcium carbonate treated with curing active ingredient
EP07828383A EP2080783B1 (en) 2006-09-28 2007-09-26 Calcium carbonate treated with curing active ingredient

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006265268A JP5179740B2 (ja) 2006-09-28 2006-09-28 加硫活性成分処理炭酸カルシウム
JP2006-265268 2006-09-28

Publications (1)

Publication Number Publication Date
WO2008041568A1 true WO2008041568A1 (fr) 2008-04-10

Family

ID=39268430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/068610 WO2008041568A1 (fr) 2006-09-28 2007-09-26 Carbonate de calcium traité au moyen d'un ingrédient actif de durcissement

Country Status (7)

Country Link
US (1) US7923499B2 (ja)
EP (1) EP2080783B1 (ja)
JP (1) JP5179740B2 (ja)
KR (1) KR101426104B1 (ja)
CN (1) CN101516985B (ja)
TW (1) TWI424959B (ja)
WO (1) WO2008041568A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013057034A (ja) * 2011-09-09 2013-03-28 Shiraishi Chuo Kenkyusho:Kk 表面処理炭酸カルシウム、その製造方法及びゴム組成物

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9085668B2 (en) 2011-06-13 2015-07-21 Shiraishi Kogyo Kaisha, Ltd. Impregnated calcium carbonate, method for producing same, polymer composition, and polymer precursor composition
CN103509206B (zh) * 2013-07-03 2015-11-25 青阳县恒源化工原料有限责任公司 一种抗老化阻燃汽车轮胎用改性碳酸钙及其制备方法
CN104059391B (zh) * 2014-05-27 2015-07-01 池州凯尔特纳米科技有限公司 一种经过表面处理的改性碳酸钙及其制备方法
WO2016004325A1 (en) * 2014-07-02 2016-01-07 Imerys Pigments, Inc. Blends of fatty-acid coated carbonate with untreated carbonate for use in melt processing of carbonate-filled polymers
CN105753032B (zh) * 2016-03-26 2017-10-31 河南鑫泰钙业有限公司 一种重质纳米碳酸钙生产工艺
CN112239606A (zh) * 2020-09-04 2021-01-19 广西科技师范学院 一种具有良好触变性的纳米碳酸钙的制备方法
CN116265533A (zh) * 2023-03-06 2023-06-20 扬州砾金新材料有限公司 一种超细改性碳酸钙的制备方法及应用
CN118580627A (zh) * 2024-08-05 2024-09-03 甘肃金川恒信高分子科技有限公司 一种高强度pvc复合材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56104950A (en) 1980-01-25 1981-08-21 Shiraishi Chuo Kenkyusho:Kk Powder silane coupling agent composition
WO2004009711A1 (ja) 2002-07-19 2004-01-29 Shiraishi Kogyo Kaisha Ltd. 改質炭酸カルシウム及びこれを含むポリマー組成物並びにそれらの製造方法
JP2005048102A (ja) * 2003-07-30 2005-02-24 Shiraishi Chuo Kenkyusho:Kk 改質炭酸カルシウム含有ゴム組成物
WO2006025423A1 (ja) 2004-09-01 2006-03-09 Shiraishi Kogyo Kaisha, Ltd. 白色粉末状加硫活性成分組成物及びゴム組成物
WO2006077649A1 (ja) * 2005-01-24 2006-07-27 Shiraishi Kogyo Kaisha Ltd. 改質炭酸カルシウム含有ゴム組成物

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5625423A (en) * 1979-08-08 1981-03-11 Dainippon Printing Co Ltd Preparation of foamed sheet having harmonic embossment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56104950A (en) 1980-01-25 1981-08-21 Shiraishi Chuo Kenkyusho:Kk Powder silane coupling agent composition
WO2004009711A1 (ja) 2002-07-19 2004-01-29 Shiraishi Kogyo Kaisha Ltd. 改質炭酸カルシウム及びこれを含むポリマー組成物並びにそれらの製造方法
JP2005048102A (ja) * 2003-07-30 2005-02-24 Shiraishi Chuo Kenkyusho:Kk 改質炭酸カルシウム含有ゴム組成物
WO2006025423A1 (ja) 2004-09-01 2006-03-09 Shiraishi Kogyo Kaisha, Ltd. 白色粉末状加硫活性成分組成物及びゴム組成物
WO2006077649A1 (ja) * 2005-01-24 2006-07-27 Shiraishi Kogyo Kaisha Ltd. 改質炭酸カルシウム含有ゴム組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2080783A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013057034A (ja) * 2011-09-09 2013-03-28 Shiraishi Chuo Kenkyusho:Kk 表面処理炭酸カルシウム、その製造方法及びゴム組成物

Also Published As

Publication number Publication date
EP2080783A1 (en) 2009-07-22
TW200838802A (en) 2008-10-01
US20090234055A1 (en) 2009-09-17
EP2080783B1 (en) 2012-09-26
US7923499B2 (en) 2011-04-12
KR20090057039A (ko) 2009-06-03
JP2008081666A (ja) 2008-04-10
KR101426104B1 (ko) 2014-08-05
JP5179740B2 (ja) 2013-04-10
CN101516985B (zh) 2012-07-25
TWI424959B (zh) 2014-02-01
CN101516985A (zh) 2009-08-26
EP2080783A4 (en) 2011-02-16

Similar Documents

Publication Publication Date Title
JP3826301B2 (ja) 改質炭酸カルシウム及びこれを含むポリマー組成物並びにそれらの製造方法
WO2008041568A1 (fr) Carbonate de calcium traité au moyen d&#39;un ingrédient actif de durcissement
CN101111554B (zh) 含有改性碳酸钙的橡胶组合物
US8153717B2 (en) Rubber composition
Zhixin et al. Styrene-butadiene rubber/halloysite nanotubes composites modified by epoxidized natural rubber
JP3785541B2 (ja) 改質炭酸カルシウム含有ゴム組成物
US8003724B2 (en) Specialized silica, rubber composition containing specialized silica and products with component thereof
US20170121511A1 (en) A process to prepare high-quality natural rubber silica masterbatch by liquid phase mixing
Paul et al. Nanostructured fly ash–styrene butadiene rubber hybrid nanocomposites
JP2004051774A (ja) タイヤ用トレッドゴム組成物及びそれを用いた空気入りタイヤ
JP2013056984A (ja) ゴム組成物およびそれを用いた空気入りタイヤ
US8440750B2 (en) Specialized silica, rubber composition containing specialized silica and products with component thereof
Boonmee et al. PREPARATION AND CHARACTERIZATION OF SILICA FROM SUGARCANE BAGASSE ASH AS A FILLER IN NATURAL RUBBER.
Wan et al. Cure characteristics and mechanical properties of NR/SBR blends filled with nano-sized CaCO3
Zhang et al. Silylated kaolinite/silica core–shell nanoparticles as high performance reinforcing fillers for styrene butadiene rubber

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780036008.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07828383

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020097005906

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1713/CHENP/2009

Country of ref document: IN

Ref document number: 2007828383

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12311346

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE