WO2008041538A1 - Dispositif distributeur de poudre mÉdicamenteuse - Google Patents
Dispositif distributeur de poudre mÉdicamenteuse Download PDFInfo
- Publication number
- WO2008041538A1 WO2008041538A1 PCT/JP2007/068512 JP2007068512W WO2008041538A1 WO 2008041538 A1 WO2008041538 A1 WO 2008041538A1 JP 2007068512 W JP2007068512 W JP 2007068512W WO 2008041538 A1 WO2008041538 A1 WO 2008041538A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- powder
- angle
- trough
- groove
- degrees
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65B—MACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
- B65B1/00—Packaging fluent solid material, e.g. powders, granular or loose fibrous material, loose masses of small articles, in individual containers or receptacles, e.g. bags, sacks, boxes, cartons, cans, or jars
- B65B1/30—Devices or methods for controlling or determining the quantity or quality or the material fed or filled
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65B—MACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
- B65B37/00—Supplying or feeding fluent-solid, plastic, or liquid material, or loose masses of small articles, to be packaged
- B65B37/04—Supplying or feeding fluent-solid, plastic, or liquid material, or loose masses of small articles, to be packaged by vibratory feeders
Definitions
- the present invention relates to a powder dispensing device used for a powder divided packaging machine that divides and packs a powder into a prescribed amount.
- a disk having an outer peripheral groove having an arc-shaped cross section in the outer peripheral portion is provided so as to be able to rotate.
- the powder is supplied from the powder supply device to the outer peripheral groove of the rotating disk, and the powder supplied to the outer peripheral groove.
- a powder-split packaging machine that uses a dispensing device to unpack one package, supply it to the packaging device, and package it one by one.
- the powder supply device includes a vibration generator that applies vibration to the trough to drop the powder into the outer circumferential groove of the disk.
- Patent Documents 1 and 2 disclose this type of powder divided packaging machine. Yes.
- Patent Document 1 describes that a powder supply device force, a powder supply start force to a disk, and a stepwise increase in vibration applied to a trough from a vibration generator each time a preset time elapses. ing.
- the amount of powder supplied from the trough to the disk increases with time.
- the position where the vibration value increases concentrates at one point on the outer circumferential groove, thereby causing variations in the thickness of the powder deposited on the outer circumferential groove.
- Patent Document 2 describes that the vibration generator controls the vibration applied to the trough so that the flow rate of the powder flowing from the trough into the outer circumferential groove of the disk is constant. Specifically, a relatively strong vibration is applied from the vibration generator to the trough at the start of powder supply to the disk. Then, as the residual amount of powder in the trough and hopper decreases, the vibration applied to the trough from the vibration generator is controlled to be supplied in a quantitative manner.
- this control in the case of powder that tends to flow, a large amount of powder is supplied to the outer peripheral groove at once immediately after the start of supply, leading to uneven deposition amount. On the other hand, in the case of powder that is difficult to flow, there is a problem that it takes a long time to supply all powder to the outer circumferential groove of the disk.
- Patent Document 1 Patent No. 2809898 Specification
- Patent Document 2 Japanese Patent Application Laid-Open No. 2004-137051
- An object of the present invention is to supply powder powder uniformly and in a short time from the powder supply apparatus to the entire outer circumferential groove of the disk in the powder distribution apparatus.
- the present invention supplies powdered powder to a rotating body in which an annular groove is formed, a rotation driving device that rotates the rotating body, and a groove of the rotating plate that is rotating by the rotation driving device.
- a powder splitting device comprising a pulse counter for detecting a rotation angle of the rotating body, wherein the control device comprises: At least one preset angle set in advance is stored, and when the rotation angle detected by the angle detector reaches the set angle, control is performed to increase the amount of powder supplied from the powder feeder to the groove.
- a powder dispensing device is provided.
- the rotation angle When the rotation angle reaches a predetermined set angle, the amount of powder supplied from the medicine supply device to the groove is increased, so that which position in the circumferential direction of the groove is from the trough of the powder supply device. It is possible to predict in advance the position in the circumferential direction of the groove (deposition amount increasing position) where the powder supply speed increases when the position is in the supply position, that is, where the accumulation amount of the powder increases. Therefore, for example, when powder in a certain angle range of the groove is squeezed out by the brewing device and supplied to the powder packaging part, the powder supplied to the powder packaging part can be adjusted by adjusting the angle range of the groove part to be extracted at a time. The dose can be made uniform with high accuracy. Also, by increasing the supply amount when the rotation angle reaches the set angle, the supply amount of powder from the powder supply device to the groove of the disk is quickly increased. The time required for supplying the powder to the groove can be shortened.
- the set angle is preferably set at a position where the accumulated value is different from each other in the circumferential direction of the groove.
- the accumulation amount increasing positions do not overlap and are distributed at a plurality of circumferential positions.
- the distribution of the accumulation amount of powder in the circumferential direction in the groove is made uniform with high accuracy. Accordingly, a desired amount of powder can be accurately dispensed by the above-described brewing device and supplied to the powder packaging section, thereby realizing high-precision divided packaging.
- the set angle is an angle that is not divisible by a predetermined 360 degrees.
- it is obtained by adding or subtracting a shift value to a reference set angle which is a predetermined constant angle.
- This shift value is, for example, a quotient obtained by dividing 360 degrees by a natural number.
- the control device rotates the rotating body by an angle obtained by adding or subtracting a correction amount to the set angle. Later, the powder supply device may also increase the powder supply amount to the groove. Even if the control device executes this control, the accumulation amount increasing positions are not overlapped and distributed to a plurality of positions in the circumferential direction of the groove, and the distribution of the accumulation amount of the powder is made uniform with high accuracy.
- the powder supply device includes, for example, a hopper into which powder is charged, a trough provided at a lower portion of the hopper, and a vibration generator that applies vibration to the trough to drop the powder into the groove of the rotating plate.
- the control device increases the strength of vibration applied to the trough by the vibration generating device when the rotation angle reaches the set angle.
- the hopper of the powder supply device may be supported such that a gap at a position where the trough and the hopper face each other can be increased or decreased, and the powder supply device may further include a gap adjustment device that increases or decreases the gap.
- the control device increases the gap when the cumulative rotation angle reaches a set angle.
- the angle detection device may be an encoder or a device that counts the number of drive noises supplied to the Norse motor.
- the control device further includes an input device for manually inputting a plurality of set angles, The device checks the set angle input from the input device and prohibits the input if the input set angle overlaps.
- each time the cumulative rotation angle of the rotating body reaches a predetermined set angle the amount of supply to the powder supply device force groove portion is increased, so that the annular groove portion It is possible to predict in advance the position where the accumulation amount of powder in the circumferential direction increases (position where the accumulation amount increases). Also, by increasing the supply amount when the cumulative rotation angle reaches the set speed, the amount of powder supply from the powder supply device to the groove of the disk can be quickly increased, and the time required to supply the powder to the groove can be shortened. .
- the accumulation amount increasing positions do not overlap and are distributed at the circumferential positions of the grooves. As a result, the distribution of the amount of powder deposited in the circumferential direction of the annular groove is made uniform with high accuracy.
- powder divided packaging apparatus 1 includes powder distribution unit 2 and powder packaging unit 3.
- the powder distribution unit 2 is covered with the upper cover 4 so as to be openable.
- the first and second disks (rotating bodies) 7A, 7B, the powder supply devices 8A, 8B, and Each of the dispensing devices 9 is arranged.
- the brewing device 9 is omitted.
- the discs 7A and 7B, the powder supply devices 8A and 8B, and the control device 72 described later constitute the powder distribution device in the present invention.
- the disks 7A and 7B are driven to rotate around the shaft hole 7a by pulse motors 11A and 11B, respectively.
- Drive pulses are supplied to the individual pulse motors 11A and 11B from drive circuits 71A and 71B (see FIG. 7).
- the disks 7A and 7B are provided with an outer peripheral groove (so-called R? ⁇ ) 10 having an arcuate cross section.
- R? ⁇ outer peripheral groove
- the powder is supplied from the corresponding powder supply devices 8A and 8B to the outer peripheral groove 10. Since the first disk 7A is provided at a position slightly higher than the second disk 7B, the outer peripheral portions of both are partially overlapped in plan view.
- a cleaning device for cleaning the outer peripheral grooves 10 of the disks 7A and 7B on the table 5 This is omitted in Figures 2 and 3.
- the brewing device 9 is disposed at the center of each of the disks 7A and 7B. Each brewing device 9 draws out the powder supplied to the outer peripheral groove 10 by the powder supply devices 8A and 8B and drops it into the powder packaging part 2.
- the powder packaging unit 3 includes a transport device, a ho
- a collar member and a sealing device are provided.
- the transport device automatically transports the wrapping paper wound around the roll. Powder is supplied from the hopper member to the wrapping paper transported by the transport device. After the powder is supplied to the wrapping paper, the sealing device heats the wrapping paper.
- the powder supply device 8A is a trough to which powder is supplied from a hopper 21 and a hopper 21 into which powder is loaded on a machine base 20 disposed on a table 6 (see FIGS. 2 and 3) of the powder split packaging device 1. With 22! /
- the hopper 21 is detachably attached to a hopper support frame 23a of the hopper support 23.
- the hopper support portion 23 includes a support arm 23b extending downward from the hopper support frame 23a.
- the support arm 23b is connected to a pedestal 25 fixed on the machine base 20 through a horizontal rotating shaft 27. Therefore, the hopper 21 can swing up and down with the rotating shaft 27 as a fulcrum.
- An auxiliary arm 23c for swing driving is provided on the front side of the hopper support 23.
- a cam follower 29 is attached to the lower end side of the auxiliary arm 23c.
- an angle control motor 33 having a hopper angle adjusting cam 31 fixed to its rotating shaft 33a is fixed. Since the cam follower 29 follows the posture change of the cam 31, the angle of the hopper 21 changes around the rotation shaft 27 according to the rotation angle position of the rotation shaft 33 a of the angle control motor (gap adjusting device) 33.
- the amount of powder supply from the trough 22 to the outer circumferential groove 10 of the disc 7A (per trough 22 to the outer circumference of the disc 7A per unit time)
- the amount of powder supplied to the groove 10 can be adjusted. Specifically, if the clearance between the lower end of the regulating member 28 and the bottom of the trough 22 is widened, the amount of powder supplied from the trough 22 to the outer circumferential groove 10 increases, and the lower end of the regulating member 28 and the bottom of the trough 22 are increased. If the gap is narrowed, the amount of powder supplied from the trough 22 to the outer circumferential groove 10 decreases.
- the powder supply device 8A is provided with an angle detection device 34 for detecting the angle of the hopper 21 around the rotation shaft 27.
- the angle detection device 34 includes a detected portion 36 and a hole element 37.
- the detected part 36 is fixed to the rotating shaft 33 a of the angle control motor 33.
- a plurality of magnets 35 are attached to the outer periphery of the detected part 36 at regular intervals. By detecting the magnetic force generated by the magnet 35 by the Hall element 37, the rotational angle position of the rotating shaft 33a is detected.
- the powder supply device 8A is provided with a hopper hitting mechanism 38 for applying an impact to the hopper 21 intermittently.
- the hopper hitting mechanism 38 includes a solenoid 39 and a hopper hitting member 40.
- the proximal end side of the hopper striking member 40 is fixed to the output shaft 39 a of the solenoid 39.
- the solenoid 39 When the solenoid 39 is activated, the leading end of the hopper striking member 40 collides with the side of the hopper 21 and applies an impact.
- the trough 22 is disposed so as to extend in the horizontal direction below the hopper 21, and its tip 22a bends downward!
- the trough 22 is screwed to the trough support member 41!
- a weight member 42 is fixed to the bottom of the trough support member 41.
- the trough support member 41 is connected to the piezoelectric elements 14A and 14B.
- the other end portions of the piezoelectric elements 14A and 14B are connected to the fixed block 46.
- the fixed block 46 is fixed to the bracket 45.
- the bracket 45 is connected to the machine base 20 via four springs 44.
- the bracket 4 5 is provided with a vibration sensor 48. Further, a balancer 49 is fixed to the rear end side of the bracket 45 for balancing the back-and-forth movement of the bracket 45 when the piezoelectric elements 14A and 14B are driven.
- a gap is provided between the lower end opening 21b of the hopper 21 and the trough 22, and the powder charged into the hopper 21 from the upper end opening 21a is placed on the trough 22 from this gap. Supplied.
- the powder supplied to the trough 22 moves on the trough 22 toward the tip 22a by vibration applied to the trough 22 from the piezoelectric elements 14A and 14B, and falls from the tip 22a to the outer peripheral groove 10 of the disk 7A.
- the powder supply device 8A is provided with a reflective powder drop detection sensor 50 to detect the presence or absence of powder falling from the trough 22 to the disk 7A! /
- the control device 72 of the powder divided packaging apparatus 1 includes a storage unit 73 and a processing unit 74.
- the storage unit 73 stores information necessary for control.
- the processing unit 74 is a solenoid 39, in accordance with inputs from various sensors including the vibration sensor 48, the powder drop detection sensor 50, the angle detection device 34, and the drive circuits 71A and 71B. Controls the operation of angle control motor 33, piezoelectric elements 14A and 14B, pulse motors 11A and 11B, brewing device 9, and the like.
- the operation panel (input device) 16 can input necessary information to the storage unit 73 of the control device 72.
- the control device 72 is connected to a personal computer 75 for sending / receiving prescription data.
- the control device 72 monitors the accumulated value (accumulated rotation angle) RAac of the rotation angle up to the present time after the disk 7A driven by the pulse motor 11A starts rotating. Further, the control device 72 controls the supply amount of the powder from the powder supply device 8A to the outer peripheral groove 10 using the cumulative rotation angle RAac.
- This cumulative angle RAac can be detected by counting the number of drive noises supplied from the drive circuit 71A to the pulse motor 11A. For example, if the disk 7A rotates 30 times with 300,000 driving pulses, 10,000 driving pulses are one rotation of the disk 7A (cumulative rotation angle RAac is 360 degrees), and 15,000 driving pulses are a disk.
- the rotation angle RAac is 540 degrees
- 150,000 driving pulses are 15 rotations (cumulative rotation)
- the rotation angle RAac is 5400 degrees
- 155,000 drive pulses are 15 and 180 degrees
- cumulative rotation angle RAac is 5580 degrees
- an encoder 76 (see FIG. 7) for detecting the rotation angle of the disk 7A may be provided, and the cumulative rotation angle RAac may be detected by the encoder 76.
- the driving noise counting and the encoder 76 may be used in combination.
- the form of the angle detection device for detecting the cumulative rotation angle RAac of the disk 7A is not particularly limited, and includes at least one equipped with a pulse counter.
- control device 72 increases the voltage applied to the piezoelectric elements 14A and 14B by a certain amount each time the cumulative rotation angle RAac reaches a preset set angle RAs stored in the storage unit 73. Thereby, the strength of vibration applied to the trough 22 from the piezoelectric elements 14A and 14B is increased. As the vibration intensity increases, the amount of powder supplied from the trough 22 to the disk 8A increases.
- the tip position of the trough 22 when the cumulative rotation angle RAac reaches each set angle RAs does not overlap each other.
- the set angle RAs is set so that the tip position of the trough 22 is at least about ⁇ 2 degrees apart when the cumulative rotation angle RAac reaches the respective set angle RAs.
- the distribution of the accumulation amount of powder in the circumferential direction in the outer circumferential groove 10 is made uniform with high accuracy.
- the dispensing device 9 can accurately extract a prescribed amount of powder and supply it to the powder packaging part 2, thereby realizing high-precision divided packaging.
- by increasing the supply amount each time the cumulative rotation angle RAac reaches the set angle RAs it is possible to reduce the time of the dispensing process for dropping the powder from the powder supply device 8A to the outer peripheral groove 10 of the disk 7A. .
- the setting angle RAs for realizing this is various conceivable forces.
- the setting angle RAs are set to a predetermined angle that is not divisible by 360 degrees.
- the set angle RAs of the embodiment is shown.
- Levels 1 to 5 indicate that the change spans per time for increasing the vibration intensity with respect to the increase in the cumulative rotation angle RAac are different. Normally, the rotational speed of the disk 7 A is about 28 revolutions per minute. Since the force level 1 has a set angle RAs of 415 degrees, the vibration value must be changed every time a cumulative rotation angle RAac of 415 degrees is detected. However, since the value of the set angle RAs is 289 degrees at level 5, the vibration value is increased every time the cumulative rotation angle RAac of 289 degrees is detected.
- Level 1 when comparing the two, Level 1 has a longer interval of cumulative rotation angle RAac, so the time span for changing the vibration is also longer, and Level 5 has a shorter interval of cumulative rotation angle RAac.
- the time interval for controlling vibration with a short span is also shorter than level 1.
- Setting angles RAs from level 1 to level 5 are 415 degrees, 393 degrees, 327 degrees, 305 degrees, and 289 degrees.
- the set angle RAs is not limited to that in Table 1.
- Levels 1 to 5 may be set to 480 degrees, 420 degrees, 390 degrees, 330 degrees, and 300 degrees, for example.
- the vibration intensity is increased every time the relationship of the following formula (1) is established.
- the vibration intensity increases by a certain amount (indicated by the symbol ⁇ ) at regular intervals.
- the ratio of the increase in the vibration intensity to the increase in the cumulative rotation angle RAac is higher at level 5 than at level 1.
- Figure 10 shows the increase in vibration output from level 1 to level 5 for a wider range of cumulative rotation angles RAac. As shown in Fig. 10, the initial value of vibration intensity is set stronger from level 5 to level 1.
- the symbol ⁇ indicates the upper limit value of the vibration intensity.
- Figure 11 shows the cumulative rotation angle increase from Level 1 to Level 5 and the total amount of powder supplied to the outer peripheral groove 10 from 8 ⁇
- the PC 60 receives the weight data of the powder to be packaged from the audit system 77, and based on the received weight data, determines whether to select the level 1 to the level 5 described above, and the controller 72 follows the determined level. Powder supply device You can make 8 ⁇ supply powder! /. In this case, as shown in Table 2 below, PC60 stores the flow coefficient determined by the type of powder (an index of vibration that must be given to carry the powder) and the relationship between weight and level.
- the level is set to a larger value as the weight is heavier and the flow coefficient is larger (the powder is harder to flow).
- the flow coefficient indicates that strong vibration must be applied as the value increases. For example, if the weight is l (0g or more and 5g or less) and the flow counting force S is "l", level 1 is In contrast, if the weight is 5 (above 100 g) and the flow count is “5”, level 5 is selected. If the type of drug is unknown, the flow coefficient is the weakest! Use level 1 which indicates vibration. If there are multiple drugs, use the one with the weakest flow coefficient. In addition, if there is no weight data, use the weight 1 corresponding to the minimum amount.
- the set angle RAs can be manually input on the operation panel 16.
- the control device 72 compares the set angle RAs newly input on the operation panel 16 with the set angle RAs already input. If the newly input set angle RAs overlaps the already input set angle RAs, the control device 72 prohibits the input of the newly input set angle RAs to the storage unit 73. . In addition, the control device 72 may display the operation panel 16 with a candidate for the set angle RAs that can be input or that the input cannot be performed simply by prohibiting the input.
- the control device 72 detects the start of supply of powder from the powder supply device 8A to the outer peripheral groove 10 in the following procedure.
- the powder drop sensor 60 detects that the supply of the medicine from the powder supply device 8A to the outer peripheral groove 10 in spite of the state that the medicine is not supplied from the outer peripheral groove 10 to the outer peripheral groove 10.
- the powder drop sensor 50 continues to be in an on state (a state in which the fall of the drug from the trough is detected) continuously for a predetermined sufficient time (for example, 2 seconds). Judge that the supply of powder is started.
- the state of the powder drop detection sensor 50 changes as shown in FIG. 12, if there is an off state of 40 ms or more between the on state and the on state as indicated by the reference symbol B, the continuation time of the on state is increased. Reset. Then, it is determined that the supply of the medicine is started when the ON state continues for 2 seconds without interruption as at time t.
- powder may flow intermittently at the start of supply. Therefore, this process is limited to 60 seconds from the start of distribution, and after that, the powder fall is detected continuously for a certain time (for example, 40 ms). If the sensor 50 is turned on, it is determined that the medicine supply has been started.
- the second embodiment differs from the first embodiment only in how to determine the set angle RAs. Become. That is, in the present embodiment, various values of the shift value RAc are added to the reference set angle RA sta which is a predetermined constant angle and used as the set angle RAs. Equation (2) below shows the relationship between the set angle RAs, the reference set angle RAsta, and the shift value RAc. A value obtained by subtracting the shift value RAc from the reference set angle RAsta may be used as the set angle RAs.
- RAs RAsta + RAc
- the reference set angles RAsta from level 1 to level 5 are 300 degrees, 330 degrees, 390 degrees, 4 20 degrees, and 510 degrees, respectively.
- the shift value RAc is a natural number multiple of the quotient obtained by dividing 360 degrees by 64 (5.625 degrees).
- No. 1 to 63 vibration intensity increase from the 1st to 64th
- Displacement value RAc set value RAs
- set value RAs set value
- the shift value RAcl force is 3 ⁇ 460 degrees
- the shift value RAc2 is 180 degrees
- the shift value RAc3 is 90 degrees
- the shift value RAc2 is 270 degrees
- the shift value RAc is rotated. It is placed in a symmetrical position with respect to the center O.
- the shift values RAc9 to RAcl6 from No. 9 force to No. 16 exclude the angular position used as RAc8 from the shift value RAcl out of the 360 degrees divided into 16 angular positions.
- the shift value RAcl force and the correction value RAc9 force and RAcl6 are arranged symmetrically with respect to the rotation center O as in RAc8 (FIG. 13A). Further, referring to FIG. 13C, the shift values RAcl7 to RAc32 from No. 17 force, etc. to No. 32 are 16 angular positions (360 degrees divided into 32 and 360 degrees divided into 8 and 16 divided) Use the 16 angular positions excluding the shift value RAcl (the angular position used as RAcl6).
- Shift values R Acl7 to RAc32 are also arranged at positions symmetrical with respect to the rotation center O. Furthermore, referring to FIG. 13D, the shift values from No. 33 force, etc. to No. 63 RAc33 to RAc63 are obtained by dividing 360 degrees into 64 divisions, 360 degrees from 8 divisions, 16 divisions, and 32 divisions. 31 angular positions excluding the 32 angular positions (the angular position used as RAc32 from the shift value RAcl) are used. Shift values RAc33 to RAc34 are also arranged at positions symmetrical with respect to the rotation center O.
- the cumulative rotation angle RAac can be set to each set value RAs.
- the supply position does not overlap.
- the deposition amount of powder increases.
- the circumferential position (deposition increase position) of the outer circumferential groove 10 does not overlap, and the distribution of the circumferential powder deposition amount on the outer circumferential groove 10 is made uniform with high accuracy. Is done.
- the dispensing device 9 can accurately extract a prescribed amount of powder and supply it to the powder packaging part 2, thereby realizing high-precision divided packaging. Further, by increasing the supply amount every time the cumulative rotation angle RAac reaches the set angle RAs, it is possible to shorten the time of the dispensing step for dropping the powder from the powder supply device 8A to the outer peripheral groove 10 of the disk 7A.
- FIG 14 shows Level 1 (reference setting angle RAsta is 510 degrees) and Level 5 (reference setting angle RAsta). Is the relative value of the vibration intensity with respect to the cumulative rotation angle RAac. For both levels 1 and 5, each time the cumulative rotation angle RAac reaches the set value RAs (every time the cumulative rotation angle RAac becomes equal to the cumulative addition value of the set value RAs), a fixed amount (indicated by the symbol ⁇ ) .) Vibration intensity is increasing. The ratio of the increase in the vibration intensity to the increase in the cumulative rotation angle RAac is higher at level 5 than at level 1.
- the third embodiment differs from the first embodiment in how to determine the set angle RAs.
- the shift value RAc which is a natural number multiple of the value obtained by dividing 360 degrees into 64 (5.625 degrees), is used as the set angle RAs.
- the vibration intensity applied to the trough 22 from the piezoelectric elements 14A and 14B is varied to change the vibration with respect to the cumulative rotation angle RAac. There are five levels of strength increase.
- the voltage applied to the piezoelectric elements 14A and 14B is increased by lkV, 1.5kV, 2kV, 2.5kV, and 3kV, respectively.
- the intensity of vibration applied from the piezoelectric elements 14A, 14B to the trough 22 by changing the voltage applied to the piezoelectric elements 14A, 14B.
- the amount of powder supplied from the trough 22 to the disk 8A is changed accordingly.
- the amount of powder supplied from the hopper 22 to the trough 22 may be adjusted by changing the angle of the hopper 22 not only by the voltage applied to the piezoelectric elements 14A and 14B.
- the control device 72 controls the angle control motor 33 so that the gap between the lower end of the control member 28 of the hopper 22 and the bottom of the trough 22 is expanded every time the cumulative rotation angle RAac reaches the set angle Ra.
- the angle of the hopper 22 around the rotation shaft 27 may be changed.
- the amount of powder supplied from the trough 22 to the disk 8A increases when the hopper 21 rotates in the direction of arrow A1
- the amount of powder supplied from the trough 22 to the disk 8A increases when rotated in the direction of arrow A2. Decreases. Note that both the voltage applied to the piezoelectric elements 14A and 14B and the angle of the hopper 22 may be adjusted.
- the set angle RAs is determined so that the set angle RAs does not overlap on the outer circumferential groove 10 as much as possible.
- the position where the set angle RAs can be set to an arbitrary value on the operation panel 16 and the supply amount from the powder supply device 8A to the outer peripheral groove 10 is increased only when the set angle RAs overlaps. May be shifted.
- the control device 72 may be supplied with the disk position 7 when the cumulative rotational angle RAac reaches the set angle RAs and overlaps the supply position force S when the cumulative rotational angle RAac reaches the set angle RAs.
- the amount of powder supplied from the powder supply device 8A to the outer peripheral groove 10 is increased. Even if the control device 72 performs the control as described above, the time required to supply the powder to the outer circumferential groove 10 while making the distribution of the powder deposition amount in the circumferential direction of the outer circumferential groove 10 uniform with high accuracy. Can be shortened.
- a correction amount for example, about 5 degrees
- FIG. 1 is a perspective view showing an appearance of a powder split packaging machine according to an embodiment of the present invention.
- FIG. 2 is a perspective view showing a powder distribution part of the powder division packaging machine of FIG.
- FIG. 3 is a perspective view showing a powder distribution part of the powder division packaging machine of FIG. 1.
- FIG. 4 is a left side view showing the powder supply device.
- FIG. 5 is a front view showing the powder supply device.
- FIG. 6 is a plan view showing a powder supply device.
- FIG. 7 is a schematic diagram showing a control device and related elements of the powder split packaging machine.
- FIG. 8A A schematic plan view showing supply positions at individual set angles RAs in the first embodiment (reference set angle RAsta is 415 degrees).
- FIG. 8B A schematic plan view showing the supply position at each set angle RAs in the first embodiment (reference set angle RAsta is 289 degrees).
- FIG. 9 is a diagram showing the relationship between the cumulative rotation angle and the vibration intensity in the first embodiment.
- FIG. 10 is a diagram showing the relationship between the cumulative rotation angle and the vibration intensity in the first embodiment.
- FIG. 11 is a diagram showing the relationship between the cumulative rotation angle and the flow rate in the first embodiment.
- FIG. 12 is a diagram showing a state of the powder fall detection sensor immediately after the start of vibration application.
- FIG. 13A is a schematic plan view showing a distribution of correction values RAcl to RAc8 in the second embodiment.
- FIG. 13B is a schematic plan view showing a distribution of shift values RAc9 to RAcl6 in the second embodiment.
- FIG. 13C is a schematic plan view showing a distribution of shift values RAcl7 to RAc32 in the second embodiment.
- FIG. 13D is a schematic plan view showing a distribution of shift values RAc33 to RAc63 in the second embodiment.
- FIG. 14 is a diagram showing the relationship between the cumulative rotation angle and the vibration intensity in the second embodiment.
- Powder distribution part 2 Powder packaging part 3 Opening / closing door 5 Device body 6 Table 7A, 7B Disk 8A, 8B Powder supply device 9 Feeding device 10 Outer groove 11A, 11B Non-removable motor 14A, 14B Piezoelectric element 16 Operation panel 20 Base 21 Hopper 21a Upper end opening 21b Lower end opening 22 Trough 22a Tip 23 Hopper support 23a Hopper one support frame 23b Support arm 23c Auxiliary arm 25 Base 27 Rotating shaft 29 Cam follower 31 Cam 33 Angle control motor 33a Rotating shaft 34 Angle detector 35 magnet 36 Detected part 37 Hall element 38 Hopper impact mechanism 39 Solenoid 39a Output shaft 40 Hopper impact member 41 Trough support member 42 Weight member 44 Spring 45 Bracket 46 Fixed block 48 Vibration sensor 49 Balancer 50 Powder fall detection sensor
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Quality & Reliability (AREA)
- Basic Packing Technique (AREA)
- Supply Of Fluid Materials To The Packaging Location (AREA)
- Medical Preparation Storing Or Oral Administration Devices (AREA)
- Filling Or Emptying Of Bunkers, Hoppers, And Tanks (AREA)
Description
明 細 書
散薬分配装置
技術分野
[0001] 本発明は、散薬を規定量に分割して包装する散薬分割包装機に使用する散薬分配 装置に関する。
背景技術
[0002] 外周部に断面円弧状の外周溝が形成された円盤を回転駆動可能に設け、回転中の 円盤の外周溝に散薬供給装置から散薬を供給し、外周溝に供給した散薬を散薬搔 出装置により 1包分ずっ搔出して包装装置に供給し、 1包分ずつ包装するようにした 散薬分割包装機が知られている。散薬供給装置は、トラフに振動を与えて散薬を円 盤の外周溝に落下させる振動発生機等を備えており、例えば特許文献 1及び 2に、こ の種の散薬分割包装機が開示されている。
[0003] 特許文献 1には、散薬供給装置力 円盤への散薬の供給開始力 予め設定された 時間が経過する度に、振動発生機からトラフに印加する振動を段階的に高めることが 記載されている。この制御により、トラフから円盤へ供給される散薬の供給量(単位時 間当たりにトラフから円盤の外周溝に供給される散薬の量)は時間経過に伴って増加 する。しかし、この制御では前述の振動を高める時間間隔の設定によっては、振動値 が増加する位置が外周溝のある一点に集中し、それによつて外周溝上に堆積する散 薬の厚みにばらつきが生じる。外周溝上に堆積する散薬の厚みにばらつきがあると、 初包と最終包を除き同一間隔の角度で円盤を回転させて散薬搔出装置により搔出 す場合、堆積の厚みが厚い部分では厚み分の差だけ多く散薬が搔き出される一方、 堆積の厚みが薄い部分では散薬の搔出し量が少なくなり、分包間の誤差となる。更 に、振動値を増加する位置が外周溝のある一点に集中するとその誤差は増幅され分 包間の誤差は拡大する。
[0004] 特許文献 2には、トラフから円盤の外周溝に流入する散薬の流量速度が一定となるよ うに振動発生機はトラフに付与する振動を制御することが記載されている。具体的に は、円盤への散薬の供給開始時に、比較的強い振動を振動発生機からトラフに付与
し、トラフ及びホッパー内の散薬の残留量の減少に伴って振動発生機からトラフに付 与される振動を弱める制御することで、全体的に定量供給する。しかし、この制御で は、流れやすい散薬の場合には供給開始直後に大量の散薬が一度に外周溝に供 給されてしまい、堆積量の不均一かに繋がる。逆に、流れにくい散薬の場合には、す ベての散薬を円盤の外周溝に供給するために長時間を要する問題があった。
[0005] 特許文献 1:特許第 2809898号明細書
特許文献 2:特開 2004— 137051号公報
発明の開示
発明が解決しょうとする課題
[0006] 本発明は、散薬分配装置において、散薬供給装置から円盤の外周溝全周に対して 均一かつ短時間に散薬を供給することを課題とする。
課題を解決するための手段
[0007] 本発明は、環状の溝部が形成された回転体と、前記回転体を回転させる回転駆動装 置と、前記回転駆動装置によって回転中の前記回転板の溝部に対して、散薬を供給 する散薬供給装置と、少なくとも前記散薬供給装置の動作を制御する制御装置とを 備える散薬分割装置において、前記回転体の回転角度を検出するパルスカウンター を含む角度検出装置を備え、前記制御装置は、予め設定された少なくとも 1つの設 定角度を記憶し、かつ角度検出装置によって検出された前記回転角度が前記設定 角度に達すると散薬供給装置から溝部への散薬の供給量を増加させる制御をするこ とを特徴とする、散薬分配装置を提供する。
[0008] 回転角度が予め定められた設定角度に達すると薬供給装置から溝部への散薬の供 給量を増加させることで、溝部の周方向のどの位置が散薬供給装置のトラフからの散 薬の供給位置にあるときに散薬の供給速度が増加するか、すなわち散薬の堆積量 の増加が生じる溝部の周方向の位置 (堆積量増加位置)を予め予測できる。従って、 例えば溝部のある角度範囲にある散薬を搔出装置で搔出して散薬包装部へ供給す る場合、 1回に搔出す溝部の角度範囲を調節することで、散薬包装部へ供給する散 薬量を高精度で均一化できる。また、回転角度が設定角度に達すると供給量を増加 させることにより、散薬供給装置から円盤の溝部への散薬の供給量を速やかに上昇
させ、溝部への散薬の供給に要する時間を短縮できる。
[0009] 具体的には、前記設定角度はその累積値が溝部の周方向の互いに異なる位置に設 定されていることが好ましい。設定角度をこのように設定することで、堆積量増加位置 が重複せず、周方向の複数の位置に分散する。その結果、溝部における周方向の 散薬の堆積量の分布が高精度で均一化される。従って、前述の搔出装置により正確 に所望の量の散薬を搔き出して散薬包装部に供給し、高精度の分割包装を実現で きる。
[0010] さらに、具体的には、設定角度は、予め定められた 360度で割り切れない角度である 。代案としては、予め定められた一定角度である基準設定角度に対して、ずらし値を 加算又は減算して得られたものである。このずらし値は例えば 360度を自然数で除 算した商である。
[0011] 前記制御装置は、前記回転角度が設定角度に達したときの供給位置が重複する場 合には、前記回転体を設定角度に対して補正量を加算又は減算した角度だけ回転 させた後に、散薬供給装置力も溝部への散薬の供給量を増加させるものでもよい。 制御装置がこの制御を実行することによつても、堆積量増加位置は重複することなく 溝部の周方向の複数の位置に分散し、散薬の堆積量の分布が高精度で均一化され
[0012] 前記散薬供給装置は、例えば散薬が投入されるホッパーと、ホッパーの下部に設け たトラフと、トラフに対して振動を印加して散薬を回転板の溝部に落下させる振動発 生機とを備える。この場合、制御装置は、回転角度が設定角度に達すると振動発生 装置がトラフに印加する振動の強度を高める。
[0013] 前記散薬供給装置のホッパーは、トラフとホッパーが向き合う位置の隙間が増減可能 に支持され、前記散薬供給装置は、前記隙間を増減する隙間調整装置をさらに備え てもよい。この場合、前記制御装置は、累積回転角度が設定角度に達すると前記隙 間を増大させる。
[0014] 前記角度検出装置はエンコーダであっても、ノ ルスモータに供給される駆動ノ ルス 数を計数するものであってもよレ、。
[0015] 前記制御装置に複数の設定角度を手動入力する入力装置をさらに備え、 制御装
置は入力装置から入力された設定角度を検査し、入力された設定角度が重複してい れば、当該入力を禁止する。
発明の効果
[0016] 本発明の散薬分配装置によれば、回転体の累積回転角度が予め定められた設定角 度に達する度に散薬供給装置力 溝部への供給量を増加させることで、環状の溝部 の周方向における散薬の堆積量が増加する位置 (堆積量増加位置)を予め予測でき る。また、累積回転角度が設定速度に達すると供給量を増加させることにより、散薬 供給装置から円盤の溝部への散薬の供給量を速やかに上昇させ、溝部への散薬の 供給に要する時間を短縮できる。
[0017] 特に、設定角度に達する累積回転角度が複数個あり、設定角度に達した個々の累 積回転角度における供給位置力 S、溝部の周方向の互いに異なる位置に設定すれば
、堆積量増加位置が重複せず溝部の周方向の位置に分散する。その結果、環状の 溝部の周方向で散薬の堆積量の分布が高精度で均一化される。
発明を実施するための最良の形態
[0018] 次に、図面に示す本発明の実施形態について詳細に説明する。
[0019] (第 1実施形態) 図 1から図 3を参照すると、散薬分割包装装置 1は散薬分配部 2と 散薬包装部 3を備える。散薬分配部 2は、上部カバー 4で開放可能に覆われている 装置本体 5のテーブル 6上に、第 1及び第 2の円盤(回転体) 7A, 7B、散薬供給装置 8A, 8B、及び搔出装置 9をそれぞれ配設した構成である。図 2では搔出装置 9を省 略している。円盤 7A, 7B、散薬供給装置 8A, 8B、及び後述する制御装置 72が本 発明における散薬分配装置を構成する。
[0020] 円盤 7A, 7Bは、それぞれパルスモータ 11A, 11Bによって軸穴 7aを中心として回転 駆動される。個々のパルスモータ 11A, 11Bには駆動回路 71A, 71B (図 7参照)か ら駆動ノ^レスが供給される。円盤 7A, 7Bには断面円弧状の外周溝(いわゆる R?冓) 1 0が設けられている。円盤 7A, 7Bが回転している状態で、対応する散薬供給装置 8 A, 8Bから外周溝 10へ散薬が供給される。第 1の円盤 7Aは第 2の円盤 7Bよりも若干 高い位置に設けられているため、平面視で両者の外周部が部分的に重っている。な お、テーブル 5上には円盤 7A, 7Bの外周溝 10を清掃するためのクリーニング装置
が設けられている力 図 2及び図 3では省略している。
[0021] 搔出装置 9は、各円盤 7A, 7Bの中心部に配設されている。個々の搔出装置 9は、散 薬供給装置 8A, 8Bにより外周溝 10に供給された散薬を 1包分ずっ搔き出して散薬 包装部 2へと落下させる。
[0022] 散薬包装部 3は、搬送装置、ホ
ツバ一部材、及びシール装置を備えている。搬送装置はロールに巻回された包装紙 を自動的に搬送する。搬送装置で搬送される包装紙に対して、ホッパー部材から散 薬が供給される。散薬が包装紙に供給された後に、シール装置が包装紙をヒートシ 一ノレする。
[0023] 次に、図 4から図 6を参照して、散薬供給装置 8A, 8Bについて説明する。散薬供給 装置 8A, 8Bは同一構造であるので、特に言及しない限り散薬供給装置 8Aについ て説明する。散薬供給装置 8Aは、散薬分割包装装置 1のテーブル 6 (図 2及び図 3 参照)上に配置される機台 20上に、散薬が投入されるホッパー 21とホッパー 21から 散薬が供給されるトラフ 22を備えて!/、る。
[0024] ホッパー 21はホッパー支持部 23のホッパー支持枠 23aに着脱可能に取り付けられ ている。ホッパー支持部 23は、ホッパー支持枠 23aから下向きに延びる支持腕 23b を備えている。この支持腕 23bは機台 20上に固定された台座部 25に対して水平方 向の回動軸 27を介して連結されている。そのため、ホッパー 21は回動軸 27を支点と して上下方向に揺動可能である。
[0025] ホッパー支持部 23の前方側には揺動駆動用の補助腕 23cが設けられている。この 補助腕 23cの下端側にはカムフォロア 29が取り付けられている。一方、機台 20上に はその回転軸 33aにホッパー角度調整用のカム 31が固定されている角度制御モー タ 33が固定されている。カム 31の姿勢変化にカムフォロア 29が追従するので、角度 制御モータ(隙間調整装置) 33の回転軸 33aの回転角度位置に応じて、回動軸 27 を中心にホッパー 21の角度が変化する。
[0026] ホッパー 21が図 4において矢印 A1の方向(時計方向)に回動すると、ホッパー 21の 下端開口部 21bの前方に配置された規制部材 28の下端とトラフ 22の底部との隙間 が狭まり、トラフ 22上を移動する散薬の厚みが減少する。逆に、ホッパー 21が図 4に
お!/、て矢印 A2の方向(反時計方向)に回動すると、規制部材 28の下端とトラフ 22の 底部との隙間が広がり、トラフ 22上を移動する散薬の厚みが増大する。また、規制部 材 28の下端とトラフ 22の底部との隙間を調整することで、トラフ 22から円盤 7Aの外 周溝 10への散薬の供給量(単位時間当たりにトラフ 22から円盤 7Aの外周溝 10に供 給される散薬の量)を調節できる。具体的には、規制部材 28の下端とトラフ 22の底部 との隙間が広がればトラフ 22から外周溝 10への散薬の供給量が増加し、規制部材 2 8の下端とトラフ 22の底部との隙間が狭まればトラフ 22から外周溝 10への散薬の供 給量は減少する。
[0027] また、散薬供給装置 8Aには、回動軸 27を中心としたホッパー 21の角度を検出する ための角度検出装置 34が設けられている。角度検出装置 34は、被検出部 36とホー ル素子 37を備えている。被検出部 36は角度制御モータ 33の回転軸 33aに固定され ている。また、被検出部 36の外周には、一定間隔で複数個の磁石 35が取り付けられ ている。ホール素子 37で磁石 35の発生する磁力を検出することにより、回転軸 33a の回転角度位置が検出される。
[0028] さらに、散薬供給装置 8Aには、ホッパー 21に対して間欠的に衝撃を加えるためのホ ッパー打撃機構 38が設けられている。このホッパー打撃機構 38は、ソレノイド 39とホ ッパー打撃部材 40を備えている。ホッパー打撃部材 40の基端側は、ソレノイド 39の 出力軸 39aに固定されている。ソレノイド 39が作動するとホッパー打撃部材 40の先 端がホッパー 21の側部に衝突して衝撃を印加する。
[0029] トラフ 22はホッパー 21の下側で水平方向に延びるように配設されており、その先端 2 2aは下向きに屈曲して!/、る。トラフ 22はトラフ支持部材 41にねじ止め固定されて!/、る 。このトラフ支持部材 41の底部には錘部材 42が固定されている。トラフ支持部材 41 は圧電素子 14A, 14Bに連結されている。また、圧電素子 14A, 14Bの他端部は固 定ブロック 46に連結されている。さらに、固定ブロック 46はブラケット 45に固定されて いる。このブラケット 45は、 4個のばね 44を介して機台 20に連結されている。圧電素 子 14A, 14Bに電圧を印加して厚み方向に伸縮させると、トラフ支持部材 41を介し てトラフ 22に対して前後方向の振動が印加される。このトラフ 22に対して印加される 振動強度、すなわち圧電素子 14A, 14Bの振動出力を検出するために、ブラケット 4
5に振動センサ 48が配設されている。さらに、ブラケット 45の後端側には、圧電素子 14A, 14Bの駆動時にブラケット 45の前後移動の均衡を取るためのバランサ 49が固 定されている。
[0030] 前述のようにホッパー 21の下端開口部 21bとトラフ 22との間には隙間が設けられて おり、上端開口部 21aからホッパー 21に投入された散薬は、この隙間からトラフ 22上 に供給される。トラフ 22に供給された散薬は、圧電素子 14A, 14Bからトラフ 22に印 カロされる振動によってトラフ 22上を先端 22aへ向けて移動し、先端 22aから円盤 7A の外周溝 10に落下する。また、散薬供給装置 8Aにはトラフ 22から円盤 7Aへ落下す る散薬の有無を検出するために、反射式の散薬落下検出センサ 50が設けられて!/、
[0031] 図 7を参照すると、散薬分割包装装置 1の制御装置 72は記憶部 73と処理部 74を備 える。記憶部 73には制御に必要な情報が記憶されている。処理部 74は、記憶部 73 に記憶された情報に従って振動センサ 48、散薬落下検出センサ 50、角度検出装置 34、駆動回路 71A, 71Bを含む種々のセンサ類からの入力に応じて、ソレノイド 39、 角度制御モータ 33、圧電素子 14A, 14B、パルスモータ 11A, 11B、搔出装置 9等 の動作を制御する。操作パネル (入力装置) 16で、制御装置 72の記憶部 73に必要 な情報を入力できる。また、制御装置 72は処方データの送受信等のためのパーソナ ルコンピュータ 75と接続されて!/、る。
[0032] 以下、制御装置 72により実行される散薬供給装置 8Aから円盤 7Aの外周溝 10への 散薬の供給量の制御について詳述する。
[0033] 制御装置 72は、パルスモータ 11Aによって駆動される円盤 7Aが回転を開始した後 の現時点までの回転角度の累積値(累積回転角度) RAacを監視している。また、制 御装置 72は、この累積回転角度 RAacを使用して散薬供給装置 8Aから外周溝 10へ の散薬の供給量を制御している。この累積角度 RAacは、駆動回路 71Aからパルスモ ータ 11 Aに供給される駆動ノ ルスのノ ルス数を計数すれば検出できる。例えば、 30 万個の駆動ノ ルスで円盤 7Aが 30回転する場合、 1万個の駆動ノ ルスは円盤 7Aの 1回転(累積回転角度 RAacは 360度)、 1万 5000個の駆動パルスは円盤 7Aの 1回 転と 180度(累積回転角度 RAacは 540度) 15万個の駆動ノ ルスは 15回転(累積回
転角度 RAacは 5400度)、 15万 5000個の駆動パルスは 15回転と 180度(累積回転 角度 RAacは 5580度)となる。また、円盤 7Aの回転角度を検出するエンコーダ 76 (図 7参照)を設け、このエンコーダ 76により累積回転角度 RAacを検出してもよい。また、 駆動ノ ルスの計数とエンコーダ 76を併用してもよい。円盤 7Aの累積回転角度 RAac を検出する角度検出装置の形式は特に限定されず、少なくともパルスカウンターを備 えるものを含む。
[0034] また、制御装置 72は累積回転角度 RAacが記憶部 73に記憶されている予め設定さ れた設定角度 RAsに達する度に圧電素子 14A, 14Bに対して印加する電圧を一定 量だけ増やし、それによつて圧電素子 14A, 14Bからトラフ 22に対して印加する振動 の強度を高める。振動強度が高くなると、それに伴ってトラフ 22から円盤 8Aへの散 薬の供給量が増加する。
[0035] 設定角度 RAsは、累積回転角度 RAacが個々の設定角度 RAsに達したときの前記トラ フ 22の先端位置、すなわち散薬供給装置 8Aから外周溝 10への散薬の供給位置が 互いに重複しないように設定されている。すなわち、設定角度 RAsは、累積回転角度 RAacが個々の設定角度 RAsに達したときのトラフ 22の先端位置が少なくとも ± 2度程 度離れるように設定される。設定角度 RAsをこのように設定することで、散薬の堆積量 の増加が生じる外周溝 10の周方向の位置 (堆積量増加位置)が重複しなくなる。そ の結果、外周溝 10における周方向の散薬の堆積量の分布が高精度で均一化される 。堆積量の分布を高精度で均一化することで、搔出装置 9により正確に規定量の散 薬を搔出して散薬包装部 2に供給でき、高精度の分割包装を実現できる。また、累積 回転角度 RAacが設定角度 RAsに達する度に供給量を増加させることで、散薬供給 装置 8Aから円盤 7Aの外周溝 10へ散薬を落下させる分配工程の時間を短縮するこ と力 Sできる。
[0036] 前述のように堆積量増加位置を重複させない(可能な限り外周溝 10の周方向に分散 させる)ためには、累積回転角度 RAacが設定角度 RAsに達した際の供給位置を重複 しなレヽ((可能な限り外周溝 10の周方向に分散する)ようにする必要がある。これを実 現するための設定角度 RAsの設定は種々考えられる力 例えば本実施形態では、設 定角度 RAsを予め定められた 360度で割り切れない角度としている。下記の表 1に本
実施形態の設定角度 RAsを示す。
[0037] [表 1]
[0038] 表 1においてレベル 1からレベル 5は、累積回転角度 RAacの増加に対する振動強度 を上昇させる時間当たりの変化スパンが相違していることを表している。通常、円盤 7 Aの回転速度は、 1分間で 28回転ほどである力 レベル 1は設定角度 RAsの値が 41 5度であるため、 415度の累積回転角度 RAacを検出する毎に振動値を増加させるが 、レベル 5は設定角度 RAsの値が 289度であるため、 289度の累積回転角度 RAacを 検出する毎に振動値を増加させる。すなわち両者を比較すると、レベル 1は累積回 転角度 RAacの間隔が長いため、振動を変化させる時間的スパンも長くなつており、レ ベノレ 5は、累積回転角度 RAacの間隔が短いため、時間的スパンも短ぐ振動を制御 する時間間隔もレベル 1より短くなつている。つまり、レベル 5からレベル 1の順で累積 回転角度 RAacの増加に対する振動強度の上昇が速くなつている。レベル 1からレべ ノレ 5の設定角度 RAsである 415度、 393度、 327度、 305度、及び 289度 (ま、レ、ずれ も自然数倍した場合に可能な限り外周溝 10上の重複しないように設定している。設 定角度 RAsは表 1のものに限定されず、レベル 1からレベル 5を例えば 480度、 420 度、 390度、 330度、及び 300度としてもよい。
[0039] 本実施形態では、下記式(1)の関係が成立する度に振動強度の上昇が実行される。
[0040] [数 1]
RAa c二 N X RAs · · · ( 1 )
N : 自^数
[0041] 図 8Aにおいて、 P0は円盤 8Aの回転開始時の供給位置を示し、 P1力、ら P20はレべ ル 1 (設定角度 RAsは 415度)の時の N= 1から N = 20までの個々の設定角度 RAsに おける供給位置の変化を示す。同様に、図 8Bにおいて P1から 20はレベル 5 (設定
角度 RAsは 289度)における N= lから N = 20までの個々の設定角度 RAsにおける供 給位置の変化を示す。
[0042] 図 9はレベル 1 (設定角度 RAsは 415度)及びレベル 5 (設定角度 RAsは 289度)につ いて、累積回転角度 RAacが N = 5の設定角度 RAsに到達するまでの振動強度の相 対値を示す。レベル 1とレベル 5のいずれについても、一定間隔で一定量ずつ(符号 δで示す。)振動強度が増加している。累積回転角度 RAacの上昇に対する振動強 度の上昇の割合は、レベル 5の方がレベル 1よりも大きい。図 10は、より広範囲の累 積回転角度 RAacについてレベル 1からレベル 5の振動出力の増加を示す。図 10に 示すように、振動強度の初期値はレベル 5からレベル 1の順で強く設定している。また 、図 10において符号 αは振動強度の上限値を示す。図 11は、レベル 1からレベル 5 についての累積回転角度の増加と散薬供給装置 8Αから外周溝 10に供給された散 薬の総量
(流量)との関係を示す。
[0043] PC60が監査システム 77から分包する散薬の重量データを受信し、それに基づいて 前述のレベル 1からレベル 5のいずれを選択するかを決定し、制御装置 72は決定さ れたレベルに従って散薬供給装置 8Αに散薬の供給を実行させてもよ!/、。この場合、 下記の表 2に示すように、 PC60は散薬の種類によって決まる流れ係数 (散薬を搬送 するために与える必要のある振動の指標)及び重量とレベルの関係を記憶している。
[0044] [表 2]
[0045] 重量が重い程、かつ流れ係数が大きい程 (流れにくい散薬である程)、レベルを大き い値に設定する。流れ係数は値が大きくなるに従って強い振動を与える必要がある ことを示す。例えば、重量 l (0g以上 5g以下)で流れ計数力 S「l」の場合にはレベル 1が
選択されるのに対し、重量 5 (100gを上回る)で流れ計数が「5」の場合にはレベル 5が 選択される。薬剤の種類が不明である場合には流れ係数は最も弱!、振動を示すレ ベル 1を使用する。また、複数の薬剤が混在している場合は、それらの流れ係数のう ち最も弱いものを使用する。さらに、重量データがない場合には、最少量に対応する 重量 1を使用する。
[0046] 設定角度 RAsは操作パネル 16で手動入力可能である。制御装置 72は操作パネル 1 6で新たに入力された設定角度 RAsを既に入力されている設定角度 RAsと比較する。 制御装置 72は、新たに入力された設定角度 RAsが既に入力されている設定角度 RA sと重複していれば、当該新たに入力された設定角度 RAsの記憶部 73への入力を禁 止する。また、制御装置 72は、単に入力を禁止するだけでなぐ入力不可であること や、入力可能な設定角度 RAsの候補を操作パネル 16に表示してもよい。
[0047] 制御装置 72は、以下の手順で散薬供給装置 8Aから外周溝 10への散薬の供給開 始の検出を行う。
[0048] 例えば糖衣錠等の錠剤を潰したものを分包する場合で、殻が流れやすく潰した薬剤 は流れにくい場合、殻のみが散薬落下センサ 60で検出されることにより薬剤自体は 全くトラフ 22から外周溝 10へ供給されていない状態であるにもかかわらず、散薬供 給装置 8Aから外周溝 10への薬剤の供給が開始されていると判断するおそがある。 力、かる判断の誤りを回避するために、散薬落下センサ 50が予め定められた十分な時 間(例えば 2秒)連続してオン状態(トラフからの薬剤の落下を検出する状態)が継続 することを散薬の供給が開始されていると判断する。また、図 12のように散薬落下検 出センサ 50の状態が変化した場合、符号 Bで示すようにオン状態とオン状態の間に 40ms以上のオフ状態があればオン状態の継続時間の経時をリセットする。そして、 時刻 tのようにオン状態が途絶えることなく 2秒継続した時点で薬剤の供給が開始さ れていると判断する。ただし、散薬の種類によっては供給開始時には散薬が断続的 に流れる場合もあるので、この処理は配分開始から 60秒間に限る制御で、それ以降 はある程度の時間(例えば 40ms)連続して散薬落下検出センサ 50がオン状態とな れば、薬剤の供給が開始されていると判断する。
[0049] (第 2実施形態) 第 2実施形態は、設定角度 RAsの決め方のみが第 1実施形態と異
なる。すなわち、本実施形態では、予め定められた一定角度である基準設定角度 RA staに対して、種々の値のずらし値 RAcを加算して設定角度 RAsとして使用する。以下 の式(2)に設定角度 RAs、基準設定角度 RAsta、及びずらし値 RAcの関係を示す。な お、基準設定角度 RAstaにずらし値 RAcを減算したものを設定角度 RAsとして使用し てもよい。
[0050] RAs = RAsta + RAc
[0051] 以下、設定角度 RAsの一例を説明する。なお、振動強度の増加は第 1実施形態と同 様に一定量ずつ(符号 δ )とする。
[0052] レベル 1からレベル 5の基準設定角度 RAstaは、それぞれ 300度、 330度、 390度、 4 20度、及び 510度である。また、ずらし値 RAcは 360度を 64で除算した商(5. 625度 )の自然数倍である。下記の表 3及び表 4に、レベル 1からレベル 5の No.1から 63 (1 回目から 64回目までの振動強度上昇)につ!/、てずらし値 RAc、設定値 RAs、及び設 定値 RAsの積算値を示す。
[0053] [表 3]
(oo
0s
0 ooo.
o. s£.
分割した 8つの角度位置(0度、 45度、 90度、 135度、 180度、 225度、 270度、 315 度)を使用する。また、ずらし値 RAcl力 ¾60度であるのに対してずらし値 RAc2が 180 度であり、ずらし値 RAc3が 90度であるのに対してずらし値 RAc2が 270度であり、ずら し値 RAcを回転中心 Oに対して対称な位置に配置している。また、図 13Bを参照する と、 No. 9力、ら No. 16までのずらし値 RAc9から RAcl6は、 360度を 16分割した角度 位置のうち、ずらし値 RAclから RAc8として使用した角度位置を除いた 8つの角度位 置(22. 5度、 67. 5度、 112. 5度、 157. 5度、 202. 5度、 247. 5度、 292. 5度、及 び 337. 5度)を使用する。ずらし値 RAcl力も RAc8 (図 13A)と同様に、補正値 RAc9 力も RAcl6も回転中心 Oに対して対称な位置に配置している。さらに、図 13Cを参照 すると、 No. 17力、ら No. 32までのずらし値 RAcl7から RAc32は、 360度を 32分割し た角度位置から 360度を 8分割及び 16分割した 16つの角度位置 (ずらし値 RAclか ら RAcl6として使用した角度位置)を除いた 16個の角度位置を使用する。ずらし値 R Acl7から RAc32も回転中心 Oに対して対称な位置に配置している。さらにまた、図 13 Dを参照すると、 No. 33力、ら No. 63までのずらし値 RAc33から RAc63は、 360度を 6 4分割した角度位置から 360度を 8分割、 16分割、及び 32分割した 32個の角度位 置 (ずらし値 RAclから RAc32として使用した角度位置)を除いた 31個の角度位置を 使用する。ずらし値 RAc33から RAc34も回転中心 Oに対して対称な位置に配置してい
[0056] 以上のように、ずらし値 RAc33から RAc63を円盤 7Aの外周溝 10の周方向の位置が 重複しないように分散させて配置することで、累積回転角度 RAacが個々の設定値 RA sに達したときの供給位置も重複しなくなる。その結果、散薬の堆積量の増加が生じる 外周溝 10の周方向の位置 (堆積量増加位置)が重複せず、外周溝 10における周方 向の散薬の堆積量の分布が高精度で均一化される。堆積量の分布を高精度で均一 化することで、搔出装置 9により正確に規定量の散薬を搔出して散薬包装部 2に供給 でき、高精度の分割包装を実現できる。また、累積回転角度 RAacが設定角度 RAsに 達する度に供給量を増加させることで、散薬供給装置 8Aから円盤 7Aの外周溝 10へ 散薬を落下させる分配工程の時間を短縮することができる。
[0057] 図 14はレベル 1 (基準設定角度 RAstaは 510度)及びレベル 5 (基準設定角度 RAsta
は 300度)について、累積回転角度 RAacに対する振動強度の相対値を示す。レべ ル 1 , 5のいずれについても、累積回転角度 RAacが設定値 RAsに達する度に(累積 回転角度 RAacが設定値 RAsの累積加算値と等しくなる度に)一定量ずつ(符号 δで 示す。)振動強度が増加している。累積回転角度 RAacの上昇に対する振動強度の 上昇の割合は、レベル 5の方がレベル 1よりも大きい。より広範囲の累積回転角度 RA acについての振動出力の増カロ、及び累積回転角度の増加と散薬供給装置 8Aから 外周溝 10に供給された散薬の総量 (流量)との関係は、第 1実施形態と同様となる( 図 10及び図 11参照)。
[0058] (第 3実施形態) 第 3実施形態は、設定角度 RAsの決め方が第 1実施形態と異なる。
下記の表 5及び表 6に示すように、本実施形態では 360度を 64分割した値(5. 625 度)の自然数倍であるずらし値 RAcをそのまま設定角度 RAsとしている。また、本実施 形態では累積回転角度 RAacが設定角度 RAsに達したときの圧電素子 14A, 14Bか らトラフ 22に対して印加する振動強度の増分を異ならせることで、累積回転角度 RAa cに対する振動強度の増加割合について 5つのレベルを設けている。すなわち、レべ ノレ 1から 5のそれぞれについて累積回転角度 RAacが設定角度 RAsに達する度に、圧 電素子 14A, 14Bに対する印加電圧を lkV、 1. 5kV、 2kV、 2. 5kV、 3kVずつ増加 させる。
[0059] [表 5]
〕〔聖0060
累積回転角度 RAacに対する振動出力の増加、及び累積回転角度の増加と散薬供 給装置 8Aから外周溝 10に供給された散薬の総量 (流量)との関係は、第 1実施形態
と同様となる(図 10及び図 11参照)。
[0062] (第 4実施形態) 第 1から第 3実施形態では、圧電素子 14A, 14Bに対して印加する 電圧を変えることで、圧電素子 14A, 14Bからトラフ 22に対して印加する振動の強度 を制御し、それによつてトラフ 22から円盤 8Aへの散薬の供給量を変化させている。し かし、圧電素子 14A, 14Bに印加する電圧だけではなぐホッパー 22の角度を変更 してホッパー 22からトラフ 22へ散薬が供給される量を調整してもよい。具体的には、 制御装置 72は、累積回転角度 RAacが設定角度 Raに達する度に、ホッパー 22の規 制部材 28の下端とトラフ 22の底部との隙間が広がるように、角度制御モータ 33によ つて回動軸 27を中心とするホッパー 22の角度を変化させてもよい。前述のように、ホ ッパー 21が矢印 A1の方向に回動するとトラフ 22から円盤 8Aへの散薬の供給量が 増加し、矢印 A2方向に回動するとトラフ 22から円盤 8Aへの散薬の供給量が減少す る。なお、圧電素子 14A, 14Bへ印加する電圧とホッパー 22の角度の両方を調整し てもよい。
[0063] (第 5実施形態) 第 1から 3実施形態では可能な限り外周溝 10上で設定角度 RAsが 重ならないように設定角度 RAsを決めている。し力、し、操作パネル 16で設定角度 RAs を任意の値に設定可能として、設定角度 RAsの重複が生じた場合にのみ散薬供給装 置 8Aから外周溝 10への供給量の増加を行う位置をずらしてもよい。例えば、制御装 置 72は累積回転角度 RAacが設定角度 RAsに達したときの供給位置力 S、それ以前に 累積回転角度 RAacが設定角度 RAsに達した際の供給位置と重複する場合、円盤 7 Aを設定角度 RAsに対して補正量 (例えば 5度程度)を加算又は減算した角度だけさ らに回転させた後に、散薬供給装置 8Aから外周溝 10への散薬の供給量を増加させ る。制御装置 72が以上のような制御を行うことによつても、外周溝 10の周方向におけ る散薬堆積量の分布を高精度で均一化しつつ、外周溝 10への散薬の供給に要する 時間を短縮できる。
図面の簡単な説明
[0064] [図 1]本発明の実施形態に係る散薬分割包装機の外観を示す斜視図。
[図 2]図 1の散薬分割包装機の散薬分配部を示す斜視図。
[図 3]図 1の散薬分割包装機の散薬分配部を示す斜視図。
[図 4]散薬供給装置を示す左側面図。
[図 5]散薬供給装置を示す正面図。
[図 6]散薬供給装置を示す平面図。
[図 7]散薬分割包装機の制御装置及びそれに関連する要素を示す模式図。
[図 8A]第 1実施形態における個々の設定角度 RAsでの供給位置を示す模式的な平 面図(基準設定角度 RAstaは 415度)。
[図 8B]第 1実施形態における個々の設定角度 RAsでの供給位置を示す模式的な平 面図(基準設定角度 RAstaは 289度)。
[図 9]第 1実施形態における累積回転角度と振動強度の関係を示す線図。
[図 10]第 1実施形態における累積回転角度と振動強度の関係を示す線図。
[図 11]第 1実施形態における累積回転角度と流量の関係を示す線図。
[図 12]振動印加開始直後の散薬落下検出センサの状態を示す線図。
[図 13A]第 2実施形態における補正値 RAclから RAc8の分布を示す模式的な平面図
〇
[図 13B]第 2実施形態におけるずらし値 RAc9から RAcl6の分布を示す模式的な平面 図。
[図 13C]第 2実施形態におけるずらし値 RAcl7から RAc32の分布を示す模式的な平 面図。
[図 13D]第 2実施形態におけるずらし値 RAc33から RAc63の分布を示す模式的な平 面図。
[図 14]第 2実施形態における累積回転角度と振動強度の関係を示す線図。
符号の説明
1 散薬分配部 2 散薬包装部 3 開閉扉 5 装置本体 6 テーブル 7A, 7B 円盤 8A, 8B 散薬供給装置 9 搔出装置 10 外周溝 11A, 11B ノ^レスモ ータ 14A, 14B 圧電素子 16 操作パネノレ 20 機台 21 ホッパー 21a 上 端開口 21b 下端開口 22 トラフ 22a 先端 23 ホッパー支持部 23a ホッパ 一支持枠 23b 支持腕 23c 補助腕 25 台座部 27 回動軸 29 カムフォロ ァ 31 カム 33 角度制御モータ 33a 回転軸 34 角度検出装置 35 磁石
36 被検出部 37 ホール素子 38 ホッパー打撃機構 39 ソレノイド 39a 出力 軸 40 ホッパー打撃部材 41 トラフ支持部材 42 錘部材 44 ばね 45 ブラ ケット 46 固定ブロック 48 振動センサ 49 バランサ 50 散薬落下検出センサ
60 パーソナルコンピュータ 61 固定ブロック 71A, 71B 駆動回路 72 制御 装置 73 記憶部 74 処理部 75 入力装置 76 エンコーダ 77 監査システム
Claims
[1] 環状の溝部が形成された回転体と、 前記回転体を回転させる回転駆動装置と、 前記回転駆動装置によって回転中の前記回転板の溝部に対して、散薬を供給する 散薬供給装置と、 少なくとも前記散薬供給装置の動作を制御する制御装置と を備 える散薬分配装置において、 前記回転体の回転角度を検出するパルスカウンター を含む角度検出装置を備え、 前記制御装置は、予め設定された少なくとも 1つの設 定角度を記憶し、かつ角度検出装置によって検出された前記回転角度が前記設定 角度に達すると散薬供給装置から溝部への散薬の供給量を増加させる制御をするこ とを特徴とする、散薬分配装置。
[2] 前記設定角度はその累積値が溝部の周方向の互いに異なる位置に設定されている
、請求項 1に記載の散薬分配装置。
[3] 前記設定角度は、予め定められた 360度で割り切れない角度であることを特徴とする
、請求項 2に記載の散薬分配装置。
[4] 前記設定角度は、予め定められた一定角度である基準設定角度に対して、ずらし値 を加算又は減算して得られたものであることを特徴とする、請求項 2に記載の散薬分 配装置。
[5] 前記ずらし値は 360度を自然数で除算した商であることを特徴とする、請求項 4に記 載の散薬分配装置。
[6] 前記制御装置は、前記回転角度が設定角度に達したときの供給位置が重複する場 合には、前記回転体を設定角度に対して補正量を加算又は減算した角度だけ回転 させた後に、散薬供給装置から溝部への散薬の供給量を増加させることを特徴とす る、請求項 1に記載の散薬分配装置。
[7] 前記散薬供給装置は、 散薬が投入されるホッパーと、 ホッパーの下部に設けたト ラフと、 トラフに対して振動を印加して散薬を回転板の溝部に落下させる振動発生 機と を備え、 前記制御装置は、回転角度が設定角度に達すると振動発生装置が トラフに印加する振動の強度を高めることを特徴とする、請求項 1から請求項 6のいず れか 1項に記載の散薬分配装置。
[8] 前記散薬供給装置のホッパーは、トラフとホッパーが向き合う位置の隙間が増減可能
に支持され、 前記散薬供給装置は、前記隙間を増減する隙間調整装置をさらに備 え、 前記制御装置は、累積回転角度が設定角度に達すると前記隙間を増大させる ことを特徴とする、請求項 1から請求項 7のいずれ力、 1項に記載の散薬分配装置。
[9] 前記角度検出装置はエンコーダであることを特徴とする、請求項 1から請求項 8のい ずれか 1項に記載の散薬分配装置。
[10] 前記回転駆動装置はノ ルスモータであり、 前記回転角度検出装置はノ ルスモータ に供給される供給される駆動ノ ルス数を計数することを特徴とする、請求項 1から請 求項 8のいずれか 1項に記載の散薬分配装置。
[11] 前記制御装置に複数の設定角度を手動入力する入力装置をさらに備え、 制御装 置は入力装置から入力された設定角度を検査し、入力された設定角度が重複してい れば、当該入力を禁止することを特徴とする請求項 1から請求項 10のいずれ力、 1項 に記載の散薬分配装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006-265135 | 2006-09-28 | ||
JP2006265135A JP5055920B2 (ja) | 2006-09-28 | 2006-09-28 | 散薬分配装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008041538A1 true WO2008041538A1 (fr) | 2008-04-10 |
Family
ID=39268400
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2007/068512 WO2008041538A1 (fr) | 2006-09-28 | 2007-09-25 | Dispositif distributeur de poudre mÉdicamenteuse |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP5055920B2 (ja) |
KR (1) | KR101344617B1 (ja) |
TW (1) | TWI454409B (ja) |
WO (1) | WO2008041538A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2612817A1 (en) * | 2010-09-03 | 2013-07-10 | Takazono Technology Incorporated | Hopper and medicine feeding device provided with same |
US9561887B2 (en) | 2010-09-03 | 2017-02-07 | Takazono Technology Incorporated | Hopper and medicine supply apparatus including the same |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4903237B2 (ja) * | 2009-02-26 | 2012-03-28 | 株式会社エルクエスト | 分包機 |
CN102679740B (zh) * | 2012-06-04 | 2014-10-15 | 云南建水锰矿有限责任公司 | 布料设备、组合布料设备及其布料方法 |
CN107444696B (zh) * | 2017-08-29 | 2022-10-14 | 桂林电子科技大学 | 一种半自动单种粒料分装机 |
CN107539530B (zh) * | 2017-08-29 | 2022-10-18 | 桂林电子科技大学 | 半自动单种粒料分装机及其运行方法 |
KR102052499B1 (ko) * | 2018-08-31 | 2019-12-05 | 임현모 | 가루약 분배 장치 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0532228A (ja) * | 1991-07-23 | 1993-02-09 | Sonobe Hisatoshi | 回転式分包機への粉粒体供給方法 |
JPH08164905A (ja) * | 1994-12-14 | 1996-06-25 | Yuyama Seisakusho:Kk | 薬剤の容量分割方法と分割装置 |
JPH09299449A (ja) * | 1996-05-13 | 1997-11-25 | Yuyama Seisakusho:Kk | 散薬分割装置 |
JP2000062702A (ja) * | 1998-08-18 | 2000-02-29 | Yuyama Seisakusho:Kk | 散薬分割装置 |
-
2006
- 2006-09-28 JP JP2006265135A patent/JP5055920B2/ja active Active
-
2007
- 2007-09-20 TW TW096135211A patent/TWI454409B/zh not_active IP Right Cessation
- 2007-09-25 WO PCT/JP2007/068512 patent/WO2008041538A1/ja active Application Filing
- 2007-09-25 KR KR1020097006288A patent/KR101344617B1/ko active IP Right Grant
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0532228A (ja) * | 1991-07-23 | 1993-02-09 | Sonobe Hisatoshi | 回転式分包機への粉粒体供給方法 |
JPH08164905A (ja) * | 1994-12-14 | 1996-06-25 | Yuyama Seisakusho:Kk | 薬剤の容量分割方法と分割装置 |
JPH09299449A (ja) * | 1996-05-13 | 1997-11-25 | Yuyama Seisakusho:Kk | 散薬分割装置 |
JP2000062702A (ja) * | 1998-08-18 | 2000-02-29 | Yuyama Seisakusho:Kk | 散薬分割装置 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2612817A1 (en) * | 2010-09-03 | 2013-07-10 | Takazono Technology Incorporated | Hopper and medicine feeding device provided with same |
EP2612817A4 (en) * | 2010-09-03 | 2014-02-19 | Takazono Technology Inc | FUNNELED AND EQUIPPED METHOD OF DISPOSAL FOR MEDICINAL PRODUCTS |
US9290318B2 (en) | 2010-09-03 | 2016-03-22 | Takazono Technology Incorporated | Hopper and medicine supply apparatus including the same |
US9561887B2 (en) | 2010-09-03 | 2017-02-07 | Takazono Technology Incorporated | Hopper and medicine supply apparatus including the same |
US9902513B2 (en) | 2010-09-03 | 2018-02-27 | Takazono Technology Incorporated | Hopper and medicine supply apparatus including the same |
Also Published As
Publication number | Publication date |
---|---|
KR20090055605A (ko) | 2009-06-02 |
KR101344617B1 (ko) | 2013-12-26 |
JP5055920B2 (ja) | 2012-10-24 |
JP2008079956A (ja) | 2008-04-10 |
TW200819205A (en) | 2008-05-01 |
TWI454409B (zh) | 2014-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2008041538A1 (fr) | Dispositif distributeur de poudre mÉdicamenteuse | |
JP6135742B2 (ja) | 薬剤排出装置 | |
EP2200560B1 (en) | Dispenser of automatically distributing various shaped tablets in medicine packing machine and tablet dispensing method thereof | |
TWI730974B (zh) | 藥劑配發裝置 | |
JP4954266B2 (ja) | 薬剤自動包装機の薬剤排出装置 | |
JP4787338B2 (ja) | 薬剤分包機 | |
WO2007040091A1 (ja) | 薬剤分包装置 | |
JP2014088193A (ja) | 散薬供給装置 | |
EP2594488B1 (en) | Packaging apparatus | |
TW200925056A (en) | Medicine packaging device | |
US20170327255A1 (en) | Cassette for drug packaging | |
WO2013186868A1 (ja) | 薬剤充填装置 | |
JP2010195436A (ja) | 分包機 | |
US11864689B2 (en) | Coffee grinder with weight control device of the dose of ground coffee | |
KR200459198Y1 (ko) | 로터리형 정제공급기 | |
JP2021053437A (ja) | 薬剤払出し装置及び薬剤払出し方法 | |
JP2008079956A5 (ja) | ||
JP5723936B2 (ja) | 薬剤供給装置および薬剤供給方法 | |
JP2004137051A (ja) | 散薬供給装置 | |
JP2000344201A (ja) | 粉体投入装置 | |
KR101020620B1 (ko) | 산약공급장치 | |
JP2013010626A (ja) | 粉体排出量制御装置 | |
CN100462286C (zh) | 散药供给装置 | |
JPH10258801A (ja) | 錠剤フィーダ | |
JP7424634B2 (ja) | 薬剤フィーダ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07828329 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020097006288 Country of ref document: KR |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07828329 Country of ref document: EP Kind code of ref document: A1 |