WO2008041372A1 - Joint soudé par faisceau d'électrons avec une excellente insensibilité à la rupture fragile - Google Patents

Joint soudé par faisceau d'électrons avec une excellente insensibilité à la rupture fragile Download PDF

Info

Publication number
WO2008041372A1
WO2008041372A1 PCT/JP2007/050738 JP2007050738W WO2008041372A1 WO 2008041372 A1 WO2008041372 A1 WO 2008041372A1 JP 2007050738 W JP2007050738 W JP 2007050738W WO 2008041372 A1 WO2008041372 A1 WO 2008041372A1
Authority
WO
WIPO (PCT)
Prior art keywords
weld metal
electron beam
welded joint
weld
hardness
Prior art date
Application number
PCT/JP2007/050738
Other languages
English (en)
French (fr)
Inventor
Tadashi Ishikawa
Ryuichi Honma
Akihiko Kojima
Yuzuru Yoshida
Youichi Tanaka
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006271044A external-priority patent/JP5171007B2/ja
Priority claimed from JP2006270967A external-priority patent/JP2008087030A/ja
Priority claimed from JP2006271074A external-priority patent/JP4719118B2/ja
Priority to KR1020097005190A priority Critical patent/KR101192815B1/ko
Priority to DK07707042.3T priority patent/DK2070631T3/da
Priority to BRPI0719795-0A priority patent/BRPI0719795B1/pt
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to ES07707042.3T priority patent/ES2442867T3/es
Priority to EP07707042.3A priority patent/EP2070631B1/en
Priority to US12/442,665 priority patent/US8114528B2/en
Publication of WO2008041372A1 publication Critical patent/WO2008041372A1/ja
Priority to NO20091123A priority patent/NO336433B1/no
Priority to NO20150121A priority patent/NO339550B1/no
Priority to NO20150120A priority patent/NO339549B1/no

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/0046Welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12958Next to Fe-base component
    • Y10T428/12965Both containing 0.01-1.7% carbon [i.e., steel]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12972Containing 0.01-1.7% carbon [i.e., steel]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12986Adjacent functionally defined components

Definitions

  • the present invention relates to a welded structure, and more particularly to an electron beam welded joint excellent in brittle fracture resistance of a welded structure formed by butt welding a steel plate having a thickness of more than 50 mm.
  • Regions that are best suited for wind power generation are those that can constantly expect strong winds, and offshore wind power generation has also been realized on a global scale.
  • In order to construct a wind power tower on the ocean it is necessary to drive the foundation of the tower into the bottom of the seabed, and the foundation is sufficient to secure the height of the turbine blades of the wind power generation from the sea level. Length is necessary.
  • the foundation of the wind power tower has a tube structure with a large cross section with a plate thickness of about 100 mm and a diameter of about 4 m, and the overall height of the tower is 80 m or more. It is required to weld and assemble such a huge structure easily and efficiently on the coast near the construction site.
  • electron beam welding is used for high-density and high-energy beams. Although it is a welding method that can be welded more efficiently, it is necessary to perform welding while maintaining a high vacuum state in a vacuum chamber, and conventionally, the size of the steel plate that can be welded is limited.
  • an electron beam welding method (RPEBW: Reduced Pressured Electron Beam Weld), which can be applied under low vacuum, is a welding method that enables efficient local welding of extra-thick steel plates with a thickness of about 100 mm.
  • RPEBW Reduced Pressured Electron Beam Weld
  • reduced pressure electron beam welding has been developed and proposed at a welding laboratory in the UK (see W09 9/16 1 0 1).
  • the Ni content of the weld metal has been reduced to 0.1 to 4.5% by attaching a plate-like insert metal such as Ni to the welding surface and performing electron beam welding. It has been known in Japanese Patent Laid-Open No. 3-2480873 to improve toughness such as Charpy impact value of weld metal.
  • C The fracture toughness value ⁇ c value based on fracture mechanics, which is obtained by the T o D test, is known.
  • the welded joints obtained by welding with the conventional RPEBW method have a large variation in the toughness of the weld heat-affected zone, so it was difficult to ensure a sufficient value for the fracture toughness value c.
  • the hardness ratio of the weld metal to the base metal is controlled to be 110% or less.
  • a method for improving the fracture toughness K c at the boundary between the metal part and the base material part (hereinafter also referred to as the FL part) has been proposed in Japanese Patent Laid-Open No. 2 0 0 5 — 1 4 4 5 5 2.
  • the electron beam welding method is a method in which the base metal of the weld is once melted and re-solidified by the energy of the electron beam, and then welded. Like the high heat input arc welding method such as electrogas welding, the welding wire is used. It is difficult to easily control properties such as hardness and fracture toughness value ⁇ c of the weld metal due to the above. Disclosure of the invention
  • the present invention provides both a weld metal part in an electron beam welded joint and a boundary (FL part) between a weld metal part and a weld heat-affected part in particular where local stress increases.
  • the purpose is to provide a means to stably improve the fracture toughness of welded joints by improving the fracture toughness value of ⁇ 5 c.
  • the present inventor The properties were investigated.
  • the presence of the insert metal used to improve the toughness of the weld metal part increases the strength and hardness of the weld metal part, which is significantly higher than the strength and hardness of the base metal. It was found that the local stress increased near the boundary with the weld heat affected zone (HA Z zone) in contact with the zone, and therefore the fracture toughness value ⁇ C of the FL zone decreased.
  • the present invention has been made as a new joint design technique that embodies a welded joint that can prevent a decrease in joint toughness due to over-matching and can stably ensure excellent toughness.
  • the gist of the present invention is as follows.
  • the hardness of the weld metal part is more than 110% and less than 220% of the hardness of the base metal part 'and the width of the weld metal part is the base metal.
  • Electron beam welded joint with excellent brittle fracture resistance characterized by being 20% or less of the thickness of the joint.
  • a steel material with a P cm value of 0.1 2% or more and 0.5% or less is used, and the amount of 0 contained in the weld metal of the welded joint is 2 O ppm or more.
  • An electron beam welded joint characterized in that the amount of Ti oxide of 1 m or more and less than 2.0 m is 30 to 600 pieces Zm m 2 .
  • the weld metal of the weld joint contains 1 to 4% by mass of Ni, and 0.2% by mass than the content of the base metal.
  • the welded structure is obtained by butt welding a high-strength steel plate having a thickness of more than 50 mm. Electron beam welded joint.
  • a welded joint having a sufficiently high fracture toughness value ⁇ 5 c is formed. can do.
  • the object of the present invention can be reliably achieved according to the Ni content of the base material.
  • Figure 1 shows the effect of the hardness of the weld metal and base metal on the ⁇ 5 c values of the weld metal and HA Z and FL parts.
  • Figure 2 shows the effect of the hardness ratio of weld metal and base metal, and the grain diameter on the relationship between the HAZ softening width and the CTOD values of the HAZ and FL parts.
  • Figure 3 shows a test piece with a thickness of 70 mm, with notches in the boundary (FL) between the weld metal part (WM) and the weld heat affected zone (HAZ), and the weld heat affected zone (HAZ).
  • C TOD Chip Tip Opening Displacement
  • F EM It is a figure which shows an example of the result analyzed by the three-dimensional finite element method.
  • FIG. 5 is a diagram showing a change in the hardness of the weld joint in the same manner as in FIG.
  • Figure 6 shows the relationship between the fracture toughness value of the weld metal and the number of oxides with a grain size of 2.0 m or more.
  • FIG. 7 is a graph showing the relationship between the amount of Ni in the weld metal, the difference in the amount of Ni between the weld metal and the base metal plate, and the fracture toughness value ⁇ c.
  • Figure 8 shows the effect of the Ni content in the weld metal on the fracture toughness value ⁇ 5 c of the weld metal part and the FL and HA brim parts.
  • the inventors made a prototype of a steel plate with a yield strength of 4600 MPa class, inserted an insert metal with a Ni content of 4% into the welding groove, and performed electron beam welding. We measured and evaluated the fracture toughness value ⁇ 5 c of the weld joint obtained by the CT ⁇ D test.
  • the fracture toughness value ⁇ c of the weld metal part was 0.2 mm or more, which was a sufficiently high value, but the boundary part (FL part) between the weld metal part and the HAZ part It was found that the rupture toughness value (5 c) was extremely low, less than 0.02 mm.
  • Fig. 3 shows a specimen with a thickness of 70 mm, and has notches in the boundary (FL) between the weld metal (WM) and the weld heat affected zone (HAZ) and in the weld heat affected zone (HA Z).
  • the crack opening stress distribution at each position away from the notch tip in the crack propagation direction when CTOD (Crack Tip Opening Displacement) at the tip of the notch is 0.05 mm.
  • CTOD Cross Tip Opening Displacement
  • An example of the results of analysis by EM (3D finite element method) is shown below. From this figure, (iii) When the plate thickness exceeds 50 mm and reaches about 70 mm, the degree of restraint in the plate thickness direction (restraint force) increases remarkably, and the strength of the weld metal part (WM) increases.
  • the reason why the ⁇ 5 c value decreases is when the strength of the weld metal part (WM) is higher than that of the base metal (BM) or the weld heat affected zone (HAZ) (in the case of WM-H) In addition, it is considered that the local stress increases at the boundary (FL) between the weld metal part (WM) and the weld heat affected zone (HAZ).
  • the present inventor reduced the significant increase in local stress at the boundary (FL) between the weld metal part (WM) and the weld heat affected zone (HAZ). ⁇ 5 In order to improve the c value, it was found that the strength of the weld metal part (WM) must be as low as possible.
  • the hardness [Hv (WM)] of the weld metal part is varied, and the CT 0 D value ⁇ c of the FL part is measured.
  • Hardness [Hv (WM)] Z base metal hardness [Hv (BM)]
  • the weld metal hardness as shown in Fig. 1 "Image" If the [Hv (WM)] is suppressed to 220% or less of the base metal hardness [Hv (BM)], the fracture toughness value (5 c) can be prevented from decreasing due to an increase in local stress. I found out.
  • ⁇ c value The higher the ⁇ c value, the better.
  • Norwegian Maritime Association (DNV) and other standards require a value of about 0.1 to 0.2 mm at the design temperature.
  • the ⁇ c value is 0.15 mm or more.
  • the hardness [Hv (WM)] of the weld metal part is equal to or more than 110% of the hardness [Hv (BM)] of the base metal as indicated by a circle in FIG. It was found that the required C TOD value could be secured in the weld metal part if secured.
  • Figure 2 shows the effect of the hardness ratio of the weld metal part and the base metal and the grain diameter on the relationship between the HAZ softening width and the C T OD value of the FL part.
  • the HAZ width increases, the CTOD value of the FL section tends to improve. This is because the influence of strength matching is mitigated by softening HAZ, and the HAZ width is preferably 3 mm or more.
  • the present inventor found that the occurrence or distribution of local stress in the weld melt line (FL) in contact with the weld metal part is governed by the hardness of the weld metal part, but in the HAZ region in contact with the FL " The softening area is large In the case of a threshold, we found that the local stress of FL tends to be relaxed.
  • the HAZ softening width becomes wider, and becomes particularly noticeable when the HAZ softening width is 3 mm or more. Therefore, the HAZ softening width is preferably 3 mm or more.
  • the local stress of the FL part decreases as the hardness of the HAZ part becomes lower than the hardness of the base metal.
  • the local stress reduction effect of the FL part is clearly recognized. The case where the hardness of the HAZ part is 5% or more lower than the hardness of the base metal was obtained.
  • the width of the weld heat-affected zone which is softened to 95% or less of the hardness of the base material that is not affected by heat, to 3 mm or more.
  • the width of the weld heat affected zone is 10 mm or more, there is a concern that strain concentrates on the softened portion from the viewpoint of securing the joint strength and fatigue strength. Therefore, it is preferably 10 mm or less.
  • the unit of fracture surface when the upper basin ridge and ferai basin breaks down depends on the grain size of the austenitic small phase, so the upper austenite grain size can be reduced by reducing the old austenite grain size. And the dimensions of the ferrite It was found that the resistance to brittle fracture generation could be improved by reducing the method.
  • the hardness of the weld metal part [Hv (WM)] the hardness of the base metal [Hv (BM)] approaches 2 20% defined in the present invention.
  • the strength matching between the weld metal and the HA collar and the decrease in fracture toughness value ⁇ c due to the effect of the structure cannot be ignored.
  • the old austenite grain size of the weld heat affected zone ( ⁇ ) in contact with the weld melting line (FL) should be It is preferable to set it to OO ⁇ m or less to suppress the coarsening of the former austenite grain size (see Fig. 2).
  • the structure of the FL part may become coarse, and the fracture toughness value ⁇ c of the FL part can be secured stably. It is not preferable. ..
  • the width of the weld metal is increased in a vacuum chamber compared to a welded joint produced by electron welding (EBW welding) in a high vacuum state. Tend to.
  • the width of the weld metal part is set to 2% of the thickness of the base metal part. 0% or less.
  • the high-strength steel plate of the welded structure used in the present invention may be manufactured from a welding structural steel having a known component composition.
  • a welding structural steel having a known component composition.
  • C 0.02 to 0.20%
  • Si 0.01 to: L.0%
  • Mn 0.3 to 2.0%
  • A1 0.0 0 1 to 0.20%
  • N 0.02% or less
  • P 0.01% or less
  • S 0.01% or less
  • the balance being Fe and It is based on steel consisting of inevitable impurities, and N i, C r, Mo, Cu, W, Co, V, N depending on the required properties, such as improvement of base metal strength and joint toughness.
  • Steel containing at least one of b, Ti, Zr, Ta, Hf, REM, Y, Ca, Mg, Te, Se, B is preferred.
  • the thickness is not particularly limited, but this issue becomes apparent for high-strength steel plates with a thickness of more than 50 mm.
  • a Ni alloy or a Fe alloy containing Ni is used, but it is not limited to a specific component composition but is selected according to the component composition of the base material.
  • electron beam welding is performed under the conditions of a voltage of 1 75 V, a current of 1 20 mA, and a welding speed of about 1 25 mm / min.
  • a voltage of 1 75 V a current of 1 20 mA
  • a welding speed of about 1 25 mm / min.
  • welding is performed under a high vacuum of 10 to 3 mbar or less, but even a joint that is welded under a low vacuum level, such as a vacuum of about 1 mbar, that can be constructed with simple equipment, is within the scope of the present invention. It is.
  • Japanese Patent Laid-Open No. 6 2-6 4 4 8 6 is disclosed in Japanese Patent Laid-Open No. 2 0 0 3-2 0 1 5 3
  • the technology proposed in No. 5 is known.
  • This technology forms many fine oxide-based non-metallic inclusions in the cooling process after welding, and uses these inclusions as the core of the transformation in the transformation from austenite to ferri ⁇ , providing good toughness.
  • a weld metal with excellent toughness is obtained by forming a microstructure containing many of the fine acicular ferrite shown.
  • the microstructure of the weld metal part is utilized by using a fine oxide as described in the above patent document.
  • the fracture toughness value ⁇ c varies. That is, as a result of a detailed investigation of the fracture occurrence point in the CT ⁇ D test of an electron beam welded joint formed using a steel plate in which fine oxides are dispersed by adding Ti, it becomes the origin of fracture in the CTOD test. It was discovered that the variation of the fracture toughness value ⁇ 5 c in the CT 0 D test can be reduced by reducing the existence frequency of such oxides.
  • Ni foil was inserted into the butt, and the other was (b) welded by the RPEBW method without inserting the Ni foil.
  • Fig. 4 shows the C TOD test results
  • Fig. 5 shows the change in hardness of the welded joint.
  • the weld metal has a high hardness, and fracture occurs in the FL part.
  • the toughness value ⁇ c is reduced, but the Ni foil is not inserted (b)
  • the hardness of the weld metal part is low and the degree of over-matching of the hardness is relaxed
  • the fracture toughness value at the FL part was similar to that of the weld metal part, and the fracture toughness value ⁇ c of the weld metal part was also slightly lower than when Ni foil was inserted.
  • the state of oxide dispersion in the weld metal in the cases (a) and (b) was investigated.
  • the number of oxides uniformly dispersed and having a particle size of 2 m or more was 2 / mm 2 , and the number was small.
  • the number of inclusions is determined by obtaining the area of each oxide by image processing using an image such as a scanning electron microscope (SEM), and the diameter of the circle equivalent to each area (equivalent diameter of the circle). The number of oxides with a particle size of 2 ⁇ 111 or more per unit area was determined.
  • SEM scanning electron microscope
  • a weld metal part having a good fracture toughness value ⁇ c is obtained when the amount of Ti oxide having a particle size of 0.1 l ⁇ m or more and less than 2.0 is 30 to 600 mm 2 I understood it.
  • C must be at least 0.02% to ensure the strength of the welded structure, but if it exceeds 0.2%, solidification cracks are likely to occur.
  • Mn needs to be at least 0.8% to ensure strength and toughness, but if it exceeds 3.5%, the hardenability increases too much and the toughness decreases.
  • M n S is an element that lowers toughness, and it is necessary to make it not more than 0.0 0 25%.
  • a 1 is usually added as a deoxidizing agent in the production of steel. However, since A 1 oxide has a very low Ferai ⁇ transformation nucleation ability, in the present invention, A 1 is used for deoxidation.
  • the content of is less than 0.02%. It is more preferable if it is 0.05% or less, and it does not need to be contained in particular.
  • T i is used as a deoxidizer and is necessary for generating Ti oxides and improving fracture toughness of weld metal and HA Z part by refining the mouth structure with Ti oxides. Elements.
  • the necessary Ti oxide at least 0.01% or more is necessary, but if it exceeds 0.05%, the amount and size of the oxide will become excessive, and the origin of destruction There is a fear.
  • O is also necessary in the base material to form Ti oxide.
  • welding In order to satisfy the conditions of the particle size and number of Ti oxides in the metal, it is necessary to contain at least 20 ppm, more preferably 40 ppm or more in the weld metal.
  • the amount of oxygen in the weld metal changes not only with the steel content of the base metal, but also with the degree of vacuum in electron beam welding, so the content of the base metal ⁇ ) cannot be specified uniformly.
  • the O content is preferably 40 ppm or more for normal high-vacuum electron beam welding, and 30 ppm or more for the above-mentioned RPE BW with low vacuum.
  • the O content in the weld metal is preferably 25 Q ppm or less in order to satisfy the conditions for the particle size and number of oxides described later, so the upper limit of the O content in the base metal is also the same. The degree is preferred.
  • the hardenability of the weld metal part is ensured and the first metal is deposited in the weld metal part. It is necessary to control so as not to generate as much as possible. Therefore, the P cm value represented by the following formula (a) in the base material is set to 0.12 mass% or more. If the P cm value exceeds 0.5% by mass, the hardness of the weld metal part becomes too high, so the upper limit is set to 0.5% by mass, but 0.38% by mass or less is more preferable.
  • Ti oxide is finely dispersed and used as the core of the transformation in transformation from austenite to ferrule, and many fine needle ferrules exhibiting good toughness
  • a Miku mouth structure that contains, weld metal with excellent toughness
  • O ⁇ m or more should not exceed 10 Zmm 2 . If it exists in steel beyond that, it becomes the starting point of fracture in the CT OD test and becomes the basis of the variation of the fracture toughness value in the weld metal.
  • the particle size of the Ti oxide that functions as an intragranular transformation nucleus is not less than 0.1 ⁇ m and less than 2.
  • the amount of Ti oxide having a particle size in that range is 3
  • Some fine Ti oxides form a complex with MnS by precipitation of MnS around them. This composite is more effective as an intragranular transformation nucleus, and the Ti oxide of the present invention includes such a composite.
  • the particle size 2. quantity of oxides of more than 0 m is thereby not exceed 1 0 Bruno mm 2, the particle diameter 0. 1 m or more 2. less than 0 m of T i oxide In order to make the amount 30 to 600 mm Zmm 2 , it is better to use a steel material whose oxide size is suppressed to 2. O ⁇ m or less as the base material.
  • a 1 is usually used for deoxidation of steel, but when A 1, a strong deoxidation element, is added, the deoxidation reaction proceeds rapidly and large oxides of 2 / zm or more are generated. Therefore, a relatively small oxide is formed by deoxidizing with Ti having a smaller deoxidizing capacity than A 1. However, if a large amount of T i is added at one time, coarse oxides are likely to be formed. Therefore, the timing of T i injection is controlled so that the amount of oxygen in the molten steel decreases stepwise, or a weak deoxidizing element is used.
  • the weld metal part has high hardness and fracture toughness value 5c is 0.2 mm or more
  • the fracture toughness value 5c of the FL part was a very low value of 0.02 mm or less.
  • the insert metal made of the Fe-Ni alloy of (b) above is used, the hardness of the weld metal part is low, the degree of hardness overmatching is reduced, and the fracture toughness value 6 c Shows a sufficiently high value of 0.2 mm or more for both the weld metal and the weld.
  • the average Ni content of the weld metal As a result of measuring the average Ni content of the weld metal, it was 8.5% by mass when the insert metal of (a) above was used, and 2 when the insert metal of (b) was used. It was 5% by mass. From this value, the difference in Ni content between the base metal and the weld metal is (a) in the case of 8, 0% by mass In the case of (b), it was 2.0% by mass.
  • joint toughness is achieved by overmatching the hardness of the weld metal and base metal. It was found that the decrease in the temperature could be prevented.
  • both the WM part, FL, and HAZ parts are 0.1 mm or better, and at least one of the WM part, FL, and HAZ parts is less than that.
  • Figure 7 shows the results of plotting the difference in the amount of Ni in the weld metal and the amount of Ni in the weld metal and the base metal plate for each sample.
  • the target ⁇ c value was set to 0.15 mm or more as described above, and the ⁇ c value was classified as good or bad with this value as a boundary.
  • the Ni content is in the range of 1 to 4% by mass and is more than 0.2% by mass more than the Ni content of the base material, the required CTOD values for both the WM part, FL and HAZ parts are I found that I could secure it.
  • the hardness of the weld metal part and the base metal part of the example where the CT OD value of 0.15 mm or more was secured in both the WM part and the FL ⁇ HAZ part When the change in hardness was measured later, it was confirmed that the hardness of the weld metal part was in the range of more than 110% and less than 220% of the hardness of the base metal part.
  • electron beam welding using insert metal In the welded joint formed with T, the local stress in the FL part is relieved and the Ni content of the weld metal is 1 to 4% by mass. It was found that an increase of 0.2% by mass or more than the amount of the material was effective in securing the CT OD value.
  • the steel material used as a base material may be one manufactured from a structural steel for welding having a known component composition as described above, and may be a steel not specifically added with Ni.
  • the weld metal of the welded joint contains 1 to 4% by mass of Ni, and 0 based on the Ni content of the base metal. It is necessary to weld to contain more than 2% by mass.
  • the insert metal needs to have a composition that satisfies such conditions, but is not particularly limited to a specific component composition.
  • C 0.0 1 to 0.0 6%, S i: 0.2 to 1.0%, M n: 0.5 to 2.5%, N i: 50% or less, M o: 0 to 0.3 0%, A 1: 0 to 0.3%, M g: 0 to 0.3 0%, T i: 0. 0 2 to 0.25%, B: 0. 0 0 1 Fe alloys containing up to 5% or less
  • the Ni content can be obtained from a weld metal part having an average concentration that satisfies the above-mentioned conditions of the present invention in consideration of the chemical composition of the steel as the weld base material. Need to be selected.
  • B is contained in the weld metal at 1 O ppm or less.
  • B has the effect of suppressing the formation of grain boundary ferrite and improving the toughness of the weld metal. Taking this into consideration, it should be 10 ppm or less.
  • the addition method of B may be either from a steel material as a base material or from an insert metal.
  • the difference in hardness as described above can be attributed to the weld metal formed using the steel material and the insert metal as the base metal after the Ni content of the weld metal satisfies the conditions of the present invention. This is achieved by adjusting the balance of the component with the metal appropriately and adjusting the cooling rate after welding so that the hardness of the weld metal does not become too high.
  • Figure 8 shows the results of plotting the fracture toughness value 3c of the WM part, FL, and HA Z part against the Ni content in the weld metal based on the measured results.
  • the target (5 c value is also set to 0.15 mm or more.
  • the CTOD value 0.15 mm or more was secured.
  • the hardness of the metal part and the base metal part was measured, it was found that the hardness of the weld metal part was in the range of more than 110% to 220% or less of the hardness of the base metal part.
  • the steel material that forms the welded structure is a high-strength steel material containing 2.5 mass% or more of Ni.
  • the high-strength steel plate to be used may be one manufactured from a structural steel for welding having a known component composition.
  • C 0.0 2 to 0.20%
  • S i 0.0 1 to 1.0%
  • M n 0, 3 to 2.0%>
  • C r, Mo, Cu, W, Co, V, N b, T i, Z r, T a, H depending on required properties such as strength of base material and joint toughness Contains one or more of f, R EM, Y, C a Mg, Te, Se, and B in a total of 8% or less Steel can be used.
  • the thickness of the pure Ni foil required to achieve the target Ni content is determined. Calculate and prepare an insert metal by preparing a foil of such thickness, or by stacking multiple thin foils to the required thickness.
  • the content of Ni contained in the weld metal of the welded joint is further reduced.
  • the mass should be more than 4% and less than 8%.
  • the hardness of the weld metal is adjusted by appropriately adjusting the balance between the components of the base steel and the weld metal formed using the insert metal, and by adjusting the cooling rate after welding. It is important not to get too high.
  • the present invention will be described based on examples, but the conditions in the examples are one condition adopted to confirm the feasibility and effects of the present invention, and the present invention is limited to this example. Is not to be done.
  • the present invention As long as the object of the present invention is achieved without departing from the gist of the present invention, the present invention can employ various conditions or combinations of conditions.
  • a thick steel plate with a thickness of 50 to 100 mm containing the components shown in Table 1 and the balance Fe and unavoidable impurities is prepared, and the components shown in Table 2 are included and the balance Fe and unavoidable impurities F e— N i alloy insert ⁇ Metal was inserted into the groove or butt welded by electron beam welding with no insert metal inserted. After welding, the characteristics and performance of the welded joint were tested and investigated. .
  • Hv (BM) is an average value of the hardness in the thickness direction of the base material measured with an indentation of 10 kg.
  • Hv (WM) is a hardness value measured with an indentation of 10 kg at the central part of the thickness of the weld metal part.
  • the bead width is an average value measured at three points: the front and back surfaces of the weld metal part and the center of the plate thickness.
  • the HA Z softening width is the width when the HAZ region softened by 5% from the hardness of the base metal is measured from the weld melt line toward the base metal.
  • the former grain size of HAZ is the old austenite grain in the HAZ section that is in contact with the weld melting line, expressed as an equivalent circle diameter.
  • ⁇ 5c (mm) is the value obtained at the test temperature of 110 ° C in the above CTOD test.
  • the joint tensile strength (MPa) is a result of producing a NKU No. 1 test piece and conducting a joint tensile test, and indicates the strength at which the fracture occurred.
  • N 0.1 to 15 in the examples of the present invention have various conditions within the range defined by the present invention, and the ⁇ c value shows a sufficient value.
  • Nos. 1 to 14 are Hv (WM) / Hv (BM), and the bead width Z plate thickness and HA Z softening width are within the ranges specified in the present invention.
  • the HAZ softening width is smaller than the preferred range, so although the value is slightly lower than that of the present invention examples No. 1 to 13 but 0.1 mm or more. Is a good value.
  • Invention Example No. 15 is lower than the preferred range of Hv (WM) / Hv (BM), so that the hardenability of the weld metal part is insufficient, and the formation of proeutectoid ferrite flaws could not be suppressed.
  • the ⁇ c characteristics of the HA buttock are at a low level compared to the present invention ⁇ ⁇ .
  • Hv (WM) ZHv (BM) exceeds the range specified in the present invention.
  • the 5c value is sufficient, but the (5c value in the HAZ and FL parts is getting lower.
  • Hv (WM) ZHv (BM) is below the range specified in the present invention, so that sufficient hardenability cannot be secured, and the ⁇ c value of the weld metal part is It is low.
  • the present invention is applied to securing a ⁇ c value in a high strength steel having a thickness of 35 mmPa or more and a thickness of 50 mm or more.
  • a thick steel plate having a thickness of 50 to 100 mm containing the components shown in Table 4 and the balance Fe and unavoidable impurities was prepared, butt-welded by electron beam welding, and formed into a welded joint. The features and performance were tested and investigated.
  • Hv (BM), Hv (WM), and ⁇ c (mm) were determined in the same manner as in Example 1. The same applies to Examples 3 and 4 described later.
  • Nos. 1 to 15 of the present invention examples are the values of Hv (WM) No ⁇ ⁇ ( ⁇ ), the chemical composition of the steel material, the amount of oxygen and the amount of oxide in the weld metal. It is within the range specified by the invention, and the ⁇ 5 c value shows a sufficient value for both the weld metal part and the FL, 'HA collar part.
  • Comparative Example 16 shows that the C content and Pcm value of the steel material are not less than the specified values of the present invention, the value of Hv (WM) ZHv (BM) is larger than the range of the present invention, and the grain size is 0.1 to Since the number of oxides of 2 ⁇ m is less than the specified value of the present invention, the ⁇ c value was insufficient for both the weld metal part and the FL and HAZ parts. Since the value and Pcm of the steel material were less than the specified value of the present invention, and the number of oxides having a particle size of 2 m or more was more than the specified value of the present invention, the ⁇ c value of the weld metal part was insufficient.
  • Comparative Example 1 8 shows that the value of Hv (WM) / H v (BM) and the Pcm of the steel material are less than the specified value of the present invention, and the number of oxides having a particle size of 0.1 to 2 m is less than the specified value of the present invention. For this reason, the ⁇ c value of the weld metal part was insufficient. O / 80sAV- ⁇ v / ifcl 8poso / -oo
  • a thick steel plate with a thickness of 50 to 100 mm containing the components shown in Table 6 and the balance Fe and unavoidable impurities is prepared, and the composition shown in Table 7 is contained in the groove portion and the balance F e F e — Ni alloy alloy metal or pure Ni insert metal consisting of inevitable impurities was inserted and butt welded by electron beam welding. After welding, the characteristics and performance of the welded joint were tested and investigated.
  • the joint tensile strength (M Pa) is the result of producing a NK U No. 1 test piece and conducting a joint tensile test, and indicates the strength at which the fracture occurred.
  • Nos. 1 to 15 in the examples of the present invention have various conditions within the range defined by the present invention, and the ⁇ c value shows a sufficient value.
  • Comparative Examples 1, 1, 1, 1, 9 and 20 had a Ni content of 1% or less in the weld metal, and as a result, the weld metal (5 c was insufficient) Comparative Example 1 8, 2 1 and 2 2 have a Ni content of 4% or more in the weld metal, so HV (WM) / HV (BM) is more than 220%. As a result, ⁇ c of the weld metal was sufficient, but FL, HA FL ⁇ 5 c was insufficient.
  • Insert metal or Ni-Fe alloy. Insert metal (NB, NC) is inserted and butt welded by electron beam welding, and then the characteristics and performance of the formed welded joint are tested and investigated. did.
  • the present invention has a remarkable effect of remarkably enhancing the safety of the welded structure, and has high industrial utility value.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)
  • Joining Of Building Structures In Genera (AREA)

Description

明 細 書 耐脆性破壊発生特性に優れた電子ビーム溶接継手 技術 野
本発明は、 溶接構造体、 特に、 板厚 5 0 m m超の鋼板を突合せ溶 接して構成した溶接構造体の耐脆性破壊発生特性に優れた電子ピー ム溶接継手に関する。 背景技術
石油等の化石エネルギーから脱却し、 再生可能な自然エネルギー を利用しょうとする社会的ニーズは極めて高まっており、 大規模な 風力発電も世界的に普及しつつある。
風力発電に最も適している地域は、 絶えず強風を期待できる地域 であり、 洋上風力発電も世界的規模で実現されている。 洋上に風力 発電塔を建設するためには、 海底の地盤に塔の基礎部分を打ち込む 必要があり、 海水面から風力発電のタービン翼の高さを十分確保す るためには、 基礎部分も十分な長さが必要である。
そのため、 風力発電塔の基礎部分では、 板厚 1 0 0 m m程度、 直 径が 4 m程度の大断面を有する管構造となり、 塔の全体高さは 8 0 m以上にもなる。 そのような巨大構造物を建設現場近くの海岸にお いて、 簡易に、 しかも高能率で溶接組み立てすることが求められて いる。
そこで、 上記のように、 板厚 1 0 0 m mにもおよぶ極厚鋼板を高 能率で、 しかもオンサイ トで溶接するという、 従来にないニーズが 生じてきた。
一般に、 電子ビーム溶接方法は、 高密度 · 高エネルギービームに より効率的に溶接できる溶接方法であるが、 真空チャンバ一内で高 真空状態を維持して溶接する必要があるので、 従来は、 溶接できる 鋼板の大きさが限られていた。
これに対して、 近年、 板厚 1 0 0 mm程度の極厚鋼板を効率よく 現地獰接できる溶接方法として、 低真空下で施工が可能な電子ビー ム溶接方法 (R P E B W : Reduced Pressured Electron Beam Weld ing: 減圧電子ビーム溶接) が英国の溶接研究所で開発され、 提案 されている (W09 9 / 1 6 1 0 1参照) 。
この R P E BW法を用いることにより、 風力発電塔のような大型 構造物を溶接する場合にも、 溶接する部分だけを局所的に真空にし て、 効率的に溶接ができることが期待される。
しかし、 一方で、 この R P E BW法では、 真空チャンバ一内で溶 接する方法に比べて、 真空度が低下した状態で溶接するために、 電 子ビームで溶融され、 その後凝固する溶融金属部分 (以下、 溶接金 属部ともいう) の靭性確保が困難となるという'、 新たな課題が浮か び上がってきた。
このような課題に対し、 従来、 板状の N i などのインサートメタ ルを溶接面に張付けて電子ビーム溶接することにより、 溶接金属の N i含有量を 0. 1〜4. 5 %として、 溶接金属のシャルピー衝撃 値などの靭性を改善することが、 特開平 3— 2 4 8 7 8 3号公報な どで知られている。
しかし、 R P E B W法を用いて溶接する際に、 この方法では、 ィ ンサートメタル中の N i等の元素が溶接熱影響部まで均一に拡散せ ず、 溶接金属と溶接熱影響部 (以下、 HA Z部ともいう) の硬さの 差を増大させるため、 かえって H A Z部の靭性が大きくばらつく と いう問題が明らかになつてきた。
一般に、 溶接構造物の安全性を定量的に評価する指標として、 C T〇 D試験により求められる、 破壊力学に基づいた破壊靭性値 δ c 値が知られている。 従来の R P E B W法により溶接して得られる溶 接継手は、 上記溶接熱影響部の靭性が大きくばらつくため、 破壌靭 性値 c値を十分に確保することは困難であった。
一 、 エレク ト口ガス溶接等の大入熱溶接継手における破壊靭性 値 K cを確保するために、 溶接金属と母材の硬さ比を 1 1 0 %以下 となるように制御して、 溶接金属部と母材部の境界 (以下、 F L部 ともいう) の破壊靭性 K cを改善する方法が、 特開 2 0 0 5 — 1 4 4 5 5 2号公報で提案されている。
しかしながら、 電子ビーム溶接継手の破壊靭性値 δ cを確保する ためには、 F L部と溶接金属部の両方の破壊靭性値 δ cを満足させ る必要があり、 大入熱溶接継手と同様に母材の硬さの 1 1 0 %以下 にまで低下させると、 電子ビーム溶接継手における溶接金属部の破 壌靱性値を確保できなくないという問題が生じる。
また、 電子ビーム溶接法は、 電子ビームの持つエネルギーにより 溶接部の母材を一旦溶融し再凝固して溶接する方法であり、 エレク トロガス溶接等の大入熱アーク溶接法のように、 溶接ワイヤー等に よる溶接金属部の硬さや破壊靭性値 δ cなどの特性を、 容易にコン トロールすることは難しい。 発明の開示
以上のような従来技術に鑑みて、 本発明は、 電子ビーム溶接継手 における溶接金属部、 及び、 特に局所的な応力が増大する溶接金属 部と溶接熱影響部との境界 ( F L部) の両方の破壊靭性値 <5 cを向 上させ、 溶接継手の破壊靭性を安定的に向上する手段を提供するこ とを目的とする。
本発明者は、 上記目的を達成するため、 母材と溶接継手の機械的 性質について調査した。 その結果、 溶接金属部の靭性を向上させる ために使用したインサートメタルの存在により溶接金属部の強度や 硬さが上昇し、 母材の強度や硬さよりも著しく高くなつていること により、 溶接金属部に接している溶接熱影響部 (HA Z部) との境 界近俸で局所的な応力が増大し、 そのため、 F L部の破壊靭性値 δ Cが低下することを知見した。
そして、 この知見に基づいて、 降伏強度が 3 5 5 ΜΡ aクラス以 上で、 板厚が 5 0 mm超 (好ましくは、 5 O mm超〜 1 0 O mm程 度) の高強度厚鋼板の電子ビーム溶接において、 オーバーマツチン グによる継手靭性の低下を防止でき、 安定的に優れた靭性を確保で きる溶接継手を具現化する新たな継手設計技術として、 本発明をな した。
そのような本発明の要旨は、 以下の通りである。
( 1 ) 溶接構造体の突合せ溶接継手において、 溶接金属部の硬さが 母材部の硬さの 1 1 0 %超 2 2 0 %以下であり'、 かつ、 溶接金属部 の幅が母材部の板厚の 2 0 %以下であることを特徴とする耐脆性破 壌発生特性に優れた電子ビーム溶接継手。
( 2 ) 前記 ( 1 ) に記載の電子ビーム溶接継手において、 母材とし て、 質量%で、 C : 0. 0 2〜 0. 2 %、 M n : 0. 8〜 3. 5 %
、 S : 0. 0 0 0 5〜 0. 0 0 2 5 %、 A 1 : 0. 0 2 %未満、 T i : 0. 0 1〜 0. 0 5 %を含有し、 下記 ( a ) 式で表される P c mの値が 0. 1 2 %以上 0. 5 %以下である鋼材を用い、 溶接継手 の溶接金属中に含まれる 0の量が 2 O p p m以上であり、 同じく粒 径 2. O ^m以上の酸化物の量が 1 0個 Zmm2 以下であることを 特徴とする電子ビーム溶接継手。
P cm= C +Si/30 + Mn/20 + Cu/20-I-Ni/60 + Cr/20 + Mo/15 + V/10+5B ( a ) ( 3 ) 前記 ( 2 ) に記載の電子ビーム溶接継手において、 粒径 0.
1 m以上 2. 0 m未満の T i酸化物の量が 3 0〜 6 0 0個 Zm m2 であることを特徴とする電子ビーム溶接継手。
( 4 ) 前記 ( 1 ) に記載の電子ビーム溶接継手において、 該溶接継 手の獰接金属中に N i を 1〜 4質量%含有し、 かつ、 母材の含有量 よりも 0. 2質量%以上多く含有することを特徴とする電子ビーム 接継手。
( 5 ) 前記 ( 4 ) に記載の電子ビーム溶接継手において、 溶接金属 中に Bを 1 0 p p m以下含有することを特徴とする電子ビーム溶接 継手。
( 6 ) 前記 ( 1 ) に記載の電子ビーム溶接継手において、 前記母材 として N i を 2. 5質量%以上含有する鋼材を用い、 前記溶接継手 の溶接金属中に含まれる N i の含有量が質量%で 4 %超 8 %以下で ある'ことを特徴とする電子ビーム溶接継手。
( 7 ) 前記 ( 1 ) 〜 ( 6 ) のいずれかに記載の電子ビーム溶接継手 において、 前記溶接構造体が板厚 5 0 mm超の高強度鋼板を突合せ 溶接したものであることを特徴とする電子ビーム溶接継手。
本発明によれば、 降伏強度が 3 5 5 M P aクラスで、 板厚が 5 0 mm超の高強度鋼板を電子ビーム溶接する時、 破壊靭性値 <5 cが十 分に高い溶接継手を形成することができる。
さらに、 インサートメタルを使用しない場合でも、 また、 母材の N i含有量に応じて、 確実に本発明の目的を達成することができる
図面の簡単な説明
図 1は、 溶接金属及び HA Z、 F L部の <5 c値に及ぼす溶接金属 部と母材の硬さの影響を示す図である。 図 2は、 HAZ軟化幅と HAZ、 F L部の CTOD値との関係に 及ぼす溶接金属部と母材の硬さ比、 ァ粒経の影響を示す図である。
図 3は、 板厚 7 0mmの試験片にっき、 溶接金属部 (WM) と溶 接熱影響部 (HAZ) との境界部 (F L) 、 及び、 溶接熱影響部 ( HAZ) にノッチを設け、 ノッチ先端での C TOD (Crack Tip Op ening Displacement: 亀裂端開口変位) が 0. 0 5 mmになる場合 のノッチ先端から亀裂進展方向に離れた各位置における亀裂開口応 力分布を、 F EM ( 3次元有限要素法) で解析した結果の一例を示 す図である。
図 4は、 突合せ部に N i箔を挿入、 あるいは挿入しないで R P E BW法により溶接した場合の C TOD試験結果を示す図である。 図 5は、 図 1と同様の場合の溶接継手部の硬さ変化を示す図であ る。
図 6は、 溶接金属の破壊靭性値と粒径 2. 0 m以上の酸化物個 数との関係を示す図である。
図 7は、 溶接金属の N i量と、 溶接金属と母材鋼板の N i量の差 と、 破壊靭性値 δ cとの間の関係を表す図である。
図 8は、 溶接金属部と F L, H A Ζ部の破壊靭性値 <5 cに対する 溶接金属中の N i含有量の影響を表す図である。 発明を実施するための最良の形態
一般の電子ビーム溶接継手では、 母材部の一部を溶融し再凝固し て形成された溶接金属部において、 所要の破壊靭性 δ cを確保する ことは困難である。 このため、 従来、 電子ビーム溶接の際、 溶接開 先部にニッケル箔などのインサートメタルを挿入し、 溶接金属部の 焼入れ性を向上させ、 この相乗効果により、 破壊靭性値 5cを確保 する方法が知られている。 しかし、 本発明者らは、 この方法では、 電子ビーム溶接継手にお ける溶接熱影響部、 特に溶接金属部と溶接熱影響部との境界 (F L 部) の破壊靭性値 <5 cが大幅に低下し、 電子ビーム溶接継手の破壊 靭性値 δ cを十分に確保できないことを知見した。
そこで、 本発明者らは、 降伏強さで 4 6 0 MP aクラスの鋼板を 試作し、 N i含有量が 4 %のインサートメタルを溶接開先に挿入し て、 電子ビーム溶接を実施し、 C T〇 D試験により得られた溶接継 手の破壊靭性値 <5 cを測定し、 評価した。
上記溶接継手の C T〇 D試験の結果、 溶接金属部の破壊靭性値 δ cは 0. 2 mm以上と十分高い値を示したが、 溶接金属部と HAZ 部との境界部 (F L部) の破壌靱性値(5 cは、 0. 0 2mm以下と 極めて低い値を示すことが判明した。
次に、 上記溶接継手の C T O D試験での破壊発生点を詳細に調査 した'結果、
( i ) 破壌の発生位置は、 溶接金属部 (WM) と溶接熱影響部 ( HA Z) の境界 (溶接溶融線 [F L] ) 部であること、 及び、 上記 溶接継手の C T 0 D試験において、 破壊のドライビングフォースと なる局所応力の分布形態を 3次元有限要素法で解析した結果、
(ii) F L部の局所応力は、 隣接する溶接金属部 (WM) の硬さ の影響を著しく受けることを知見した。
図 3は、 板厚 7 0 mmの試験片にっき、 溶接金属部 (WM) と溶 接熱影響部 (HAZ) との境界部 (F L) 、 及び、 溶接熱影響部 ( HA Z) にノッチを設け、 ノッチ先端での CTOD (Crack Tip Op ening Displacement: 亀裂端開口変位) が 0. 0 5 mmになる場合 のノ ツチ先端から亀裂進展方向に離れた各位置における亀裂開口応 力分布を、 F EM (3次元有限要素法) で解析した結果の一例を示 す。 この図から、 (iii) 板厚が 5 0 mmを超え 7 0 mm程度になる と、 板厚方向での拘束度 (拘束力) が著しく増大し、 溶接金厲部 ( WM) の強度が母材 (BM) や溶接熱影響部 (HAZ) の強度より も高いと (WM— Hの場合) 、 局所応力が溶接金属部 (WM) と溶 接熱: 響部 (HAZ) との境界部 (F L) で著しく増大することが 解る (図中、 口 [WM— H] 及び匪 [WM— L] 、 参照) 。
一方、 溶接金属部 (WM) の強度が、 母材 (BM) や溶接熱影響 部 (HAZ) の強度よりも高い場合 (W1V [— Hの場合) であっても 、 溶接熱影響部 (HAZ) では、 局所的な応力は増大せず、 溶接金 属部 (WM) の強度が低い場合 (WM—Lの場合) とほぼ同じにな る。
このことから、 <5 c値が低下する理由は、 溶接金属部 (WM) の 強度が、 母材 (BM) や溶接熱影響部 (HAZ) の強度よりも高い 場合 (WM— Hの場合) に、 溶接金属部 (WM) と溶接熱影響部 ( HAZ) との境界部 (F L) で、 局所的な応力が増大するためであ ると考えられる。
即ち、 上記解析の結果、 本発明者は、' (iv) 溶接金属部 (WM) と溶接熱影響部 (HAZ) との境界部 (F L) での局所応力の著し い増大を抑制し、 <5 c値を向上させるためには、 溶接金属部 (WM ) の強度をできるだけ低くすることが必要であることを見出した。
しかしながら、 溶接金属部の硬さを低下させると、 溶接金属部 ( WM) の焼入れ性を確保することができないため粗大なフェライ ト が生成し、 その結果、 C T O D値が低下することを見出した。
ここで、 上記解析結果を基に、 溶接金属部の硬さ [Hv(WM) ] を種々変化させて、 F L部の C T 0 D値 δ cを測定し、 5c値を"溶 接金属部の硬さ [Hv(WM)] Z母材の硬さ [Hv(BM)] "に対し てプロッ トした結果、 図 1中 「像」 に示すように、 溶接金属部の硬 さ [Hv(WM)] を母材の硬さ [Hv(BM)] の 2 2 0 %以下に抑制 すれば、 局所的な応力の増大による破壊靭性値(5 cの低下を防止で きることを知見した。
δ c値は高いほど望ましいが、 ノルウェー海事協会 (DNV) 等 の規.格では、 設計温度にて 0. 1〜 0. 2mm程度の値が要求され ていることを踏まえ、' 本発明において目標とする δ c値は、 0. 1 5 mm以上とした。
.なお、 従来法による電子ビーム溶接紬手において、 破壌靭性値 <3 cを、 一 2 0 °Cで 0. 1 5 mm以上を安定的に確保することは難し かった。
このように、 溶接金属部の硬さ [Hv(WM)] を、 母材の硬さ [ Hv (B ) ] より低くすることにより、 F L部の 5 cは向上するが、 溶接金属部の硬さ [Hv(WM)] を過度に低下させると、 溶接金属 部め 値が低下し、 その結果、 電子ビーム溶接継手の破壊靭性値 δ cを確保することができない。 '
本発明者らの検討の結果、 図 1中、 〇印で示すように、 溶接金属 部の硬さ [Hv(WM)] を母材の硬さ [Hv(BM)] の 1 1 0 %以上 確保すれば、 溶接金属部において、 所要の C TOD値を確保できる ことを見出した。
H A Z軟化幅と F L部の C T OD値との関係に及ぼす溶接金属部 と母材の硬さ比、 ァ粒経の影響を図 2に示す。 HAZ幅が広くなる ほど、 F L部の CTOD値が向上する傾向を示す。 これは、 HAZ 軟化により強度マッチングの影響が緩和されているためであり、 H A Z幅は 3 mm以上が好ましい。
また、 本発明者は、 溶接金属部に接する溶接溶融線 (F L) にお ける局所応力の発生ないし分布は、 溶接金属部の硬さに支配される が、 F Lに接している H A Z領域において"軟化している領域"が大 きい場合には、 F Lの局所応力が緩和される傾向にあることを見出 した。
図 2に示す実験結果によれば、 H A Z軟化幅が広くなるほど上記 緩和現象が認められ、 3 m m以上存在した場合に、 特に顕著となる ので、 H A Z軟化幅は 3 m m以上とすることが好ましい。
H A Z部の硬さが母材の硬さより低くなる程、 原理的に F L部の 局所応力は低減するが、 本発明者の実験結果によれば、 F L部の局 所応力低減効果が明確に認められるのは、 H A Z部の硬さが、 母材 の硬さよりも 5 %以上低くなつている場合であった。
それ故、 熱影響を受けていない母材部の硬さの 9 5 %以下の硬さ に軟化している溶接熱影響部領域の幅を 3 m m以上とすることが好 ましい。
また、 溶接熱影響部領域の幅が 1 0 m m以上となると継手強度確 保や疲労強度の観点から軟化部に歪が集中する懸念があるので、 1 0 m m以下とすることが好ましい。
溶接継手において所定の C T O D値 δ cを確保するためには、 溶 接継手の最脆弱部である溶接溶融線 (F L ) において局所応力が増 大しないようにすることが肝要であることは前述したが、 同時に、 F L近傍での微視的な耐脆性破壊発生特性を向上させることも重要 である。
F L近傍で脆性破壊が発生するメカニズムを調査、 検討した結果 、 旧オーステナイ ト周辺に生成する初析フェライ トや、 旧オーステ ナイ ト内部にラス状に生成する上部べ一ナイ 卜やフェライ トサイ ド プレート等が破壊の起点となることを突き止めた。
この上部べ一ナイ 卜やフェライ 卜が璧開破壌するときの破面単位 は、 オーステナィ小相の粒径に依存するので、 旧オーステナイ ト粒 径を小さく抑制することにより、 上部べ一ナイ トやフェライ トの寸 法を小さく して、 耐脆性破壊発生特性を改善することができること を知見した。
また、 本発明者の検討の結果、 "溶接金属部の硬さ [Hv(WM)] 母材の硬さ [Hv (B M) ] "が、 本発明で規定する 2 2 0 %に近づ く と, 溶接金属と H A Ζ部との強度マッチング及び組織の影響によ る破壊靭性値 δ cの低下が無視できなくなる。
したがって、 このような条件においても、 安定して、 継ぎ手の破 壊靭性値 δ cを確保するために、 溶接溶融線 (F L) と接する溶接 熱影響 (ΗΑΖ) 部の旧オーステナイ ト粒径を l O O ^m以下とし 、 旧オーステナイ ト粒径の粗大化を抑制することが好ましい (図 2 、 参照) 。
また、 電子ビーム溶接時に電子ビームの照射領域が大きくなると 、 鋼板に与える入熱量が過大となり、 F L部の組織が粗大化してし まい、 安定して F L部の破壊靭性値 δ cを確保する上で好ましくな い。 . .
また、 R P E BW溶接を用いて電子ビーム溶接継手を作製する場 合は、 真空チャンバ一内で、 高真空状態で電子溶接 (E BW溶接) により作製した溶接継手に比べ、 溶接金属の幅が増大する傾向にあ る。
このため、 本発明では、 R P E BW溶接を用いた場合でも、 電子 ビーム溶接継手の破壊靱性値 δ cを安定して確保するために、 溶接 金属部の幅を、 母材部の板厚の 2 0 %以下とする。
本発明で用いる溶接構造体の高強度鋼板は、 公知の成分組成の溶 接用構造用鋼から製造したものでよい。 例えば、 質量%で、 C : 0 . 0 2〜 0. 2 0 %、 S i : 0. 0 1〜 : L . 0 %、 Mn : 0. 3〜 2. 0 % , A 1 : 0. 0 0 1〜 0. 2 0 %、 N : 0. 0 2 %以下、 P : 0. 0 1 %以下、 S : 0. 0 1 %以下を含有し残部が F eおよ び不可避的不純物よりなる鋼を基本とし、 母材強度や継手靭性の向 上等、 要求される性質に応じて、 N i 、 C r、 M o、 C u、 W、 C o、 V、 N b、 T i 、 Z r、 T a、 H f 、 R EM, Y、 C a、 M g 、 T e、 S e、 Bの内の 1種又は 2種以上を含有する鋼が好ましい 鋼板の板厚は特に限定されないが、 本課題が顕在化するのは、 板 厚が 5 0 mm超の高強度鋼板である。
溶接金属部の硬さと母材の硬さの比を本発明の範囲に抑えるため には、 溶接金属内に粗大なフェライ トをできるだけ生成しないよう にする必要がある。 そのため、 母材の焼入性や板厚に応じて、 イン サートメタルの使用の有無やその化学成分を調整する。
インサートメタルを使用する場合、 N i合金や N i を含有する F e合金が用いられるが、'特定の成分組成に限定されるものではなく 、 母材の成分組成などに応じて選択される。
電子ビーム溶接は、 例えば、 板厚 8 0 mmの場合、 電圧 1 7 5 V 、 電流 1 2 0 mA、 溶接速度 1 2 5 mm/分程度の条件で行なう。 通常、 1 0 - 3mbar以下の高真空下で溶接するが、 簡易的な設備で も施工できる低真空度、 例えば、 1 mbar程度の真空下で溶接した 継手であっても、 本発明の範囲内である。
次に、 インサートメタルを使用しない場合と使用する場合におい て、 溶接金属部の硬さが母材部の硬さの 1 1 0 %超 2 2 0 %以下と なる条件下で、 さらに安定して破壊靭性値 5 cを優れたものとする ための条件について検討した。
( A) インサートメタルを使用しない場合
インサートメタルを使用しない場合では、 母材の一部を溶融しそ のまま再凝固して溶接金属が形成されるため、 溶接金属部と母材部 の硬さの比を規定しただけでは、 溶接金属部において確保できる破 壊靱性値 δ cには限界が生じる。
従来、 インサートメタルを使用しないで電子ビーム溶接継手の靭 性を向上させる手段として、 例えば、 特開昭 6 2 — 6 4 4 8 6号公 報ゃ特開 2 0 0 3 - 2 0 1 5 3 5号公報などで提案されている技術 が知.られている。
この技術は、 溶接後の冷却過程において微細な酸化物系非金属介 在物を多数形成させ、 その介在物をオーステナイ トからフェライ 卜 への変態に際しその変態の核として利用し、 良好な靱性を示す微細 な針状フェライ トを多く含むミクロ組織を形成させることにより、 靭性の優れた溶接金属を得るものである。
そこで、 母材と溶接金属部の硬さのオーバ一マッチングによる継 手靭性の低下を防止する観点から、 上記特許文献に記載されている ような微細酸化物を利用して溶接金属部のミクロ組織を改善する技 術をさらに発展させて、 インサートメタルを使用しない場合におけ る溶接金属部と F L部の両方の破壊靭性値(5 c を向上させ、 溶接継 手の破壊靭性を安定的に確保できる溶接継手を具現化する技術につ いて検討した。
そして、 その過程で、 溶接金属中に、 特定の大きさの介在物が一 定頻度以上存在する場合に、 破壊靱性値 δ cのばらつきが生じるこ とを見出した。 すなわち、 T i を添加して微細酸化物を分散させた 鋼板を用いて形成した電子ビーム溶接継手の C T〇 D試験での破壊 発生点を詳細に調査した結果、 C T O D試験における破壊の起点と なるのはある大きさ以上の酸化物であり、 そのような酸化物の存在 頻度を低減することにより C T 0 D試験における破壊靱性値 <5 cの ばらつきを低減できることを知見した。
以下、 上記知見が得られた実験について説明する。
C : 0 . 0 4 % , M n : 1 . 8 %、 S : 0 . 0 0 3 % , A 1 : 0 . 0 0 6 %、 T i : 0. 0 2 %を含有する厚さ 7 0 mmの鋼板を突 合せ、 まず、 インサートメタルの有無による溶接継手の違いを調べ るために、 一方は ( a ) 突合せ部に N i 箔を揷入し、 他方は ( b ) N i 箔を挿入しないで R P E B W法により溶接した。
溶接後のそれぞれの溶接継手部において、 鋼板厚み方向 1 /4と 3 4の 2箇所の位置から試験片を採取し、 溶接金属部 (WM部) 、 溶接金属部と母材部の境界部 (F L部) 及び HA Z部にノッチを 設けて C T O D試験を行うとともに、 接継手部の硬さ変化を調べ た。
C TOD試験結果を図 4に、 溶接継手部の硬さ変化を図 5に示す 突合せ部に N i 箔を挿入した ( a ) の場合は、 溶接金属部の硬度 が高く、 F L部での破壊靱性値 δ cが低下しているのに対し、 N i 箔を挿入しない ( b ) の場合には、 溶接金属部の硬度が低く、 硬さ のオーバ一マッチングの程度が緩和されており'、 F L部での破壊靱 性値は溶接金属部と同程度の値であり、 溶接金属部の破壊靱性値 δ cの値も N i 箔を挿入した場合に比べて多少低い程度であった。 次に、 ( a ) と (b ) の場合の溶接金属部の酸化物の分散状況を 調査した。
( b ) の場合には、 粒径 0. l ^ m以上 2. 未満の T i酸 化物の量が 4 0 0個/1111112 であって、 微細な T i酸化物が溶接金 属中に均一に分散しており、 粒径が 2 m以上の酸化物の個数は、 2個/ mm2 であって、 その数は少なかった。
一方、 ( a ) の場合にも、 酸化物分散状態は ( b) の場合と同様 であり、 両者の間に特別な相違は認められなかった。 ただし、 ( a ) の場合は、 溶接金属部の硬さが、 F L部の硬さの 2 6 0 %と高か つたため、 F 1部の局所応力が増大し、 <5 cが低くなつたものと考 えられる。
以上のように、 N i 箔を揷入しない場合には、 適切な酸化物分散 状態の溶接金属を得ることによって、 溶接金属部と H A Z部の間の オーバ一マッチングの程度を緩和でき、 溶接金属部及び F L , H A Z部とも高い破壊靱性値 δ c を得られることが確認できたので、 さ らに N i 箔を挿入しない場合の溶接金属部中の酸化物と溶接金属部 及び F L部の破壊靱性値 δ c との関係を調査した。
C : 0. 0 4 %, Μ η : 1. 8 %、 S : 0. 0 0 3 %、 Α 1 : 0 . 0 0 6 %、 T i : 0. 0 2 %を含有し、 酸素含有量が 1 0〜 2 5 0 p p mと異なる、 厚さ 7 0 mmの鋼板を R P E BW法により突合 せ溶接後、 同様に、 鋼板厚み方向 1 Z 4と 3 Z 4の 2箇所の位置の 溶接金属部から試験片を採取して破壊靭性値と酸化物個数の測定を 行った。
なお、 介在物の個数は、 走査電子顕微鏡 ( S E M) などの画像を 画像処理によって酸化物個々の面積を求め'、 ぞの面積と等価となる 円の直径 (円相当直径) をその酸化物の粒径とし、 粒径が 2 ^ 111以 上の酸化物の単位面積当たり個数を求めた。
結果を図 6に示すが、 大きさが 2 以上の酸化物の個数が 1 0 個 Zmm2 以下で、 溶接金属の破壊靭性値 <5 cのばらつきが大きく 低減され、 かつ、 十分に高い値が得られることがわかる。
また、 さらに、 同様の実験により、 破壊靱性値の良好な溶接金属 の得られる T i酸化物の種類と分散条件を求めた。
その結果、 粒径 0. l ^m以上 2. 0 未満の T i酸化物の量 が 3 0〜 6 0 0個 mm 2 であると破壊靱性値 δ cの良好な溶接金 属部が得られることがわかった。
つぎに、 そのような酸化物の分散状況の得られる母材の化学組成 についてさらに検討した。 その結果、 溶接構造体を構成する母材として、 少なく とも、 質量
%で、 C : 0. 0 2〜 0. 2 %、 M n : 0. 8〜 3. 5 %、 S : 0 . 0 0 0 5〜 0. 0 0 2 5 %、 A 1 : 0. 0 2 %未満、 T i : 0. 0 1〜 0. 0 5 %を含有し、 P c mの値が 0. 1 2 %以上 0. 5 % 以下である鋼材を用いるのがよいことがわかった。
Cは、 溶接構造体としての強度を確保するために少なく とも 0. 0 2 %は必要であるが、 0. 2 %を超えると凝固割れが発生しやす くなる。
M nは、 強度および靭性を確保するために少なく とも 0. 8 %は 必要であるが、 3. 5 %を超えると焼入性が増大しすぎて靭性が低 下する。
Sは、 靭性を低下させる元素であり、 0. 0 0 2 5 %以下にする 必要がある。 しかし、 M n Sを形成させ、 酸化物と M n Sの複合体 を粒内変態核として利用するためには、 0. 0 0 0 5 %以上含有さ せることが好ましい。
A 1 は、 通常、 鋼の製造において脱酸剤として添加されるが、 A 1 酸化物はフェライ 卜変態核生成能力が極めて小さいので、 本発明 では、 T i による脱酸を行うため、 A 1 の含有量を 0. 0 2 %未満 とする。 0. 0 0 5 %以下であればさらに好ましく、 また、 特に含 有しなくてもかまわない。
T i は、 本発明では、 脱酸剤として使用するとともに、 T i酸化 物を生成させ、 T i酸化物によるミク口組織微細化により溶接金属 および HA Z部の破壊靭性を向上させる上で必須の元素である。 必 要な T i 酸化物を形成させるためには少なく とも 0. 0 1 %以上必 要であるが、 0. 0 5 %を超えると酸化物の量やサイズが過大にな り破壊の起点となる恐れがある。
〇は、 T i酸化物を形成するために母材中にも必要である。 溶接 金属中の T i酸化物の粒径や個数の条件を満たすためには、 溶接金 属中に少なく とも 2 0 p pm以上、 より好ましくは 4 0 p p m以上 含有する必要がある。 溶接金属中の酸素量は、 母材の鋼中の含有量 ばかりでなく、 電子ビーム溶接の真空度に応じて変化するため、 母 材中^)含有量を一律には規定できないが、 母材中の〇含有量は、 通 常の高真空の電子ビーム溶接では、 4 0 p p m以上とし、 また、 真 空度の低い上記 R P E BWでは 3 0 p p m以上とするのがよい。 溶 接金属中の O含有量は、 後述する酸化物の粒径や個数の条件を満た すためには、 2 5 Q p p m以下が好ましいことから、 母材中の O含 有量の上限も同程度が好ましい。
さらに、 インサートメタルを使用しないで、 溶接金属部の硬さと 母材の硬さの比を上記の範囲に抑えるためには、 溶接金属部の焼入 性を確保して、 溶接金属部に初析フェライ 卜ができるだけ生成しな いように制御する必要がある。 そのために、 母材における下記 ( a ) 式で表される P c m値を 0. 1 2質量%以上とする。 また、 P c m値が 0. 5質量%を超えると溶接金属部の硬度が高くなりすぎる ので、 上限を 0. 5質量%とするが、 0. 3 8質量%以下がより好 ましい。
P cm= C +Si/30 + Mn/20 + Cu /20 + Ni/60 + Cr/20 + Mo/15 + V/10+5B ( a ) インサートメタルを使用しない場合における電子ビーム溶接継手 の母材となる鋼材は、 上記成分の条件を満たす限りにおいて、 前述 した公知の溶接用鋼であってよい。
インサートメタルを使用しない場合では、 T i酸化物を微細に分 散させて、 オーステナイ トからフェライ 卜への変態に際しその変態 の核として利用し、 良好な靭性を示す微細な針状フェライ 卜を多く 含むミク口組織を形成させることにより、 靭性の優れた溶接金属を 得るものであるが、 その際、 図 6に示すように、 粒径 2. O ^m以 上の酸化物の量が 1 0個 Zmm2 を超えないようにすることが必要 である。 それを超えて鋼中に存在する場合には、 C T OD試験にお ける破壊の起点となり、 溶接金属部における破壌靱性値のばらつき の原园となる。
また、 粒内変態核として機能する T i酸化物の粒径は 0. l m 以上 2. 未満であり、 その範囲の粒径の T i酸化物の量が 3
0〜 6 0 0個 Zmm2 になるようすることで、 微細な針状フェライ トを多く含むミクロ組織を形成させることができる。
なお、 一部の微細な T i酸化物は、 そのまわり M n Sが析出する ことにより、 M n S と複合体を形成する。 この複合体は、 粒内変態 核としてより有効であり、 本発明の T i酸化物には、 このような複 合体を含めるものとする。
溶接金属部において、 粒径 2. 0 m以上の酸化物の量が 1 0個 ノ mm2 を超えないようにするとともに、 粒径 0. 1 m以上 2. 0 m未満の T i酸化物の量が 3 0〜 6 0 0個 Zmm2 になるよう するためには、 母材として、 酸化物のサイズが 2. O ^m以下に抑 制された鋼材を使用するのがよい。
そのためには、 母材となる鋼材の脱酸工程において注意して介在 物制御を行う必要がある。
鋼の脱酸には通常 A 1 が用いられているが、 強脱酸元素である A 1 を添加すると、 脱酸反応が急速に進み、 2 /z m以上の大きな酸化 物が生成してしまう。 そこで、 A 1 よりも脱酸能力の小さい T i で 脱酸することにより、 比較的小さな酸化物を生成させる。 しかし、 一度に多量の T i を投入すると粗大な酸化物ができやすいため、 溶 鋼中の酸素量が段階的に減少するように、 T i の投入タイミングを 制御したり、 弱脱酸元素である T i を投入した後に、 強脱酸元素で ある A l 、 C a、 M gなどを極めて少量投入したりすることで、 2 以上の粗大酸化物の生成を抑制し、 0. l〜 2 ^mの微小酸化 物を多数生成させることができる。
(B) インサートメタルを使用する場合
母材となる鋼材にはさまざまな N i含有量のものがあり、 母材の N i含有量と使用するインサートメタルの N i含有量の組み合わせ によっては、 溶接金属部の硬さと母材の硬さの比を調整するだけで は、 より良好な溶接継手の破壌靭性値 δ c を確保できない場合が生 じる。
そこで、 まず、 溶接金属の N i含有量の影響を調べるために、 降 伏強さで 3 5 5 M P aクラスの鋼板を試作し、 ( a ) 純 N i あるい は ( b ) N i含有量が 2 0質量%の F e— N i合金よりなる厚さ 0 . 3 mmのインサートメタル箔を溶接突合せ部に挿入して、 電子ビ ーム溶接を実施し、 得られた溶接継手について、 C T OD試験によ る破壊靭性値 <5 c、 硬さ変化及び N i濃度を測定した。
溶接継手の C T 0 D試験及び硬度測定の結果、 上記 ( a ) の純 N i よりなるインサートメタルを用いた場合、 溶接金属部の硬度が高 く、 破壊靭性値 5 cは 0. 2 mm以上と十分高い値を示したが、 F L部の破壊靭性値 5 cは、 0. 0 2 mm以下と極めて低い値を示し た。 一方、 上記 ( b) の F e— N i 合金よりなるインサートメタル を用いた場合は、 溶接金属部の硬度が低く、 硬さのオーバーマッチ ングの程度が緩和されており、 破壊靭性値 6 cは、 溶接金属部及び し部とも 0. 2 mm以上と十分高い値を示した。
また、 溶接金属の平均 N i含有量を測定した結果、 上記 ( a ) の インサートメタルを用いた場合は 8. 5質量%であり、 (b ) のィ ンサー卜メタルを用いた場合は 2. 5質量%であった。 この値から 、 母材と溶接金属の N i含有量の差は ( a) の場合は 8 , 0質量% であり、 (b) の場合は 2. 0質量%であった。
以上のことから、 溶接金属中の N i含有量を母材の N i含有量と の関係で適切な範囲に規制することにより、 溶接金属部と母材の硬 さのオーバ一マッチングによる継手靱性の低下を防止できることが わか た。
次に、 溶接金属中の N i含有量の適正範囲及び溶接金属と母材の N i含有量の差の適正範囲を調べるために、 上記試作した鋼板を用 い、 N i含有量が異なるインサートメタルを溶接開先に挿入して電 子ビーム溶接を実施し、 得られた溶接継手部からそれぞれ試験片を 採取し、 溶接金属部 (WM部) と F L部の HAZ側 (F L, HAZ 部) にノッチを設けて C TOD試験を実施して破壊靭性値(5 c (以 下、 単に C TOD値ともいう。 ) を測定する試験を行い、 破壊靭性 値 δ cを確保するのに必要な N i量について評価した。
ぞれぞれに試料について、 得られた 5c値に関し、 WM部及び F L , HAZ部とも 0. 1 5 mm以上の良好なもの〇と、 WM部及び F L, H A Z部の少なく とも一方がそれ未満の不良なもの ·とに分 け、 それぞれの試料につき、 溶接金属の N i量及び溶接金属と母材 鋼板の N i量の差をプロッ 卜した結果を図 7に示す。
ここで、 目標とする δ c値は、 前述のように 0. 1 5 mm以上と し、 この値を境として δ c値が良好なものと不良なものに分類した 図 7より、 溶接金属中の N i含有量が 1〜4質量%の範囲であり 、 かつ、 母材の N i含有量より 0. 2質量%以上多い場合に、 WM 部及び F L, HAZ部とも、 所要の C T O D値を確保できることが わかった。
さらに、 WM部及び F L · HAZ部とも 0. 1 5mm以上の C T OD値を確保できた例の、 溶接金属部と母材部の硬さや、 F L部前 後の硬さの変化を測定したところ、 溶接金属部の硬さが母材部の硬 さの 1 1 0 %超 2 2 0 %以下の範囲に入っていることが確認できた 以上の結果より、 インサートメタルを使用した電子ビーム溶接に よつ: T形成された溶接継手では、 F L部での局所応力を緩和すると ともに、 溶接金属の N i含有量を 1〜 4質量%とし、 かつ、 母材の 有量よりも 0. 2質量%以上多くすることが、 C T OD値の確保 にとつて有効であることがわかった。
母材となる鋼材としては、 前述したような公知の成分組成の溶接 用構造用鋼から製造したものでよく、 N i を特に添加していない鋼 であってもよい。
また、 溶接の際、 突合せ部に N i を含有するインサートメタルを 配置するが、 溶接継手の溶接金属中に N i が 1〜 4質量%含有し、 かつ、 母材の N i含有量より 0. 2質量%以上多く含有するように 溶接する必要がある。 インサートメタルと'しては、 そのような条件 を満たすような組成のものが必要であるが、 特定の成分組成に特に 限定されるものではない。
例えば、 C : 0. 0 1〜 0. 0 6 %、 S i : 0. 2〜 1. 0 %、 M n : 0. 5〜 2. 5 %、 N i : 5 0 %以下、 M o : 0〜 0. 3 0 %、 A 1 : 0〜 0. 3 %、 M g : 0〜 0. 3 0 %、 T i : 0. 0 2〜 0. 2 5 %、 B : 0. 0 0 1 %以下を含有する F e合金が例示できるが、 特に N i の含有量は、 溶接母材である鋼材の化学成分を考慮して、 平均濃度が上記本発明の条件を満たす溶接金属部が得られるように 選択する必要がある。
また、 溶接金属に N i を含有させる場合には、 溶接金属に Bを 1 O p p m以下で含有させることが好ましい。 Bは粒界フェライ トの 生成を抑制して溶接金属の靭性を向上させる作用があるが、 高温割 れなどの点を考慮して 1 0 p p m以下とする。
Bの添加方法は、 母材となる鋼材からでもインサートメタルから でもどちらでもよい。 なお、 上記のような硬度の差は、 溶接金属の N i含有量を本発明の条件を満たすようにした上で、 さらに、 母材 とな.る鋼材とインサートメタルを使用して形成した溶接金属との成 分間のバランスを適切に調整することや溶接後の冷却速度を調整す ることで、 溶接金属の硬度が高くなり過ぎないようにすることによ り達成される。
(C) インサートメタルを使用する場合 (高 N i鋼材)
ところで、 より 自然条件の厳しい場所で使用できるように、 N i を 2. 5質量%以上含有し、 より強度が高く低温での靭性が優れた 鋼材が使用されるようになってきた。
そのような N i含有量が高い鋼材を用いた溶接継手では、 溶接金 属部の硬さと母材の硬さの比を調整する手段だけでは、 より良好な 溶接継手の破壌靱性値 δ c を確保できない場合が生じた。
そこで、 溶接金属の N i含有量の影響を調べるために、 N i を 3 質量%含有する鋼板と N ί を含有しない鋼板の 2種類の鋼板を試作 し、 N i含有量が異なる複数の F e — N i合金あるいは純 N i より なるインサートメ夕ル箔をそれぞれ溶接突合せ部に挿入して、 電子 ビーム溶接を実施した。 そして、 溶接後のそれぞれの溶接継手部か ら試験片を採取し、 溶接金属部 (WM) と F L部の HA Z側 (F L , HA Z部) にノッチを設けて C T O D試験を実施して破壊靭性値 δ cを測定するとともに、 溶接金属部の N i 濃度を測定した。
得られた測定結果に基づき、 WM部と F L, HA Z部の破壊靭性 値 3 cを溶接金属中の N i含有量に対してプロッ 卜した結果を図 8 に示す。
図 8より、 N i含有量が 3 %の鋼板の場合、 溶接金属 (WM) の N i含有量が 4 %超〜 8 %の範囲にあるものは、 WM部 (〇) 及び F L , HA Z部 (拿) とも 0. 1 5 mm以上の C T〇 D値を確保で きるが、 それ以外の範囲にあるものは、 WM部あるいは F L, H A Z部のいずれかが 0. 1 5 mm未満の低い C T〇 D値しか得られな いことがわかる。
また、 N i を含有しない鋼板の場合は、 W1V [部 (△) 及び F L , HA Z部 (黒△) のいずれもが 0. 1 5 mm以上の C T〇D値を示 すものは得られなかった。
なお、 目標とする(5 c値は、 同様に 0. 1 5 mm以上とした。 さらに、 WM部及び F L , HA Z部とも 0. 1 5 mm以上の C T O D値を確保できた例の、 溶接金属部と母材部の硬さを測定したと ころ、 溶接金属部の硬さが母材部の硬さの 1 1 0 %超 2 2 0 %以下 の範囲に入っていることがわかった。
以上の結果より、 N i含有量の高い鋼材の電子ビーム溶接継手で は、 F L部での局所応力を緩和するとともに、 溶接金属の N i含有 量を 4 %超〜 8 %とすることが、 C T O D値の確保にとって有効で あることがわかった。
ここでは、 溶接構造体を形成する鋼材として N i を 2. 5質量% 以上含有する高強度鋼材を対象とする。 使用する高強度鋼板として は、 公知の成分組成の溶接用構造用鋼から製造したものでよい。 例えば、 質量%で、 C : 0. 0 2〜 0. 2 0 %、 S i : 0. 0 1 〜 1. 0 %、 M n : 0 , 3〜 2. 0 % > A 1 : 0. 0 0 1〜 0. 2 0 %、 N : 0. 0 2 %以下、 P : 0. 0 1 %以下、 S : 0. 0 1 % 以下、 N i : 2. 5 0〜 9. 0 %を基本成分とし、 母材強度や継手 靭性の向上等、 要求される性質に応じて、 C r、 M o、 C u、 W、 C o、 V、 N b、 T i 、 Z r、 T a、 H f 、 R EM、 Y、 C a M g、 T e、 S e、 Bの内の 1種又は 2種以上を合計 8 %以下で含有 する鋼が使用できる。
また、 溶接の際、 突合せ部に N i よりなるインサートメタルを配 置し、 溶接継手の溶接金属中に N i が 4 %超〜 8 % (質量%) 含有 するように溶接する必要がある。
電子ビームにより溶融した領域が再凝固した際、 その領域で結晶 粒径の粗大化や酸化物の減少が生じた場合であっても、 安定して靭 性を確保できる組織にするためには、 N i を 4 %を超えて含有させ る必要がある。 また、 N i を 8質量%を超えて含有させると溶接金 属部の硬さが増加レすぎて、 溶接金属部と母材部の硬さの比の 2 2 0 %以下を満たすことが困難になる。
インサートメタルとしては、 純 N i よりなる箔を使用するのが簡 便である。
母材となる鋼材の N i含有量、 目標とする溶接金属中の N i含有 量、'及び鋼材の寸法から、 目標の N i含有量とするのに必要な純 N i 箔の厚さを計算し、 そのような厚さの箔を準備するか、 薄い箔を 必要な厚さになるように複数枚重ねることによりインサートメタル を準備する。
溶接金属部の硬さが母材部の硬さの 1 1 0 %超 2 2 0 %以下にな るように調整したうえでさらに、 溶接継手の溶接金属中に含まれる N i の含有量を質量%で 4 %超 8 %以下になるようにする。
このためには、 母材となる鋼材とインサートメタルを使用して形 成した溶接金属との成分間のバランスを適切に調整することや溶接 後の冷却速度を調整することで、 溶接金属の硬度が高くなり過ぎな いようにすることが重要である。
以下、 本発明を実施例に基づいて説明するが、 実施例における条 件は、 本発明の実施可能性及び効果を確認するために採用した一条 件例であり、 本発明は、 この例に限定されるものではない。 本発明 の要旨を逸脱せず、 本発明の目的を達成する限りにおいて、 本発明 は、 種々の条件ないし条件の組合せを採用し得るものである。
(実施例 1 )
表 1に示す成分を含有し残部 F eおよび不可避的不純物よりなる 、 板厚 5 0〜 1 0 0mmの厚鋼板を準備し、 表 2に示す成分を含有 し残部 F eおよび不可避的不純物よりなる F e— N i合金インサー 卜メタルを開先部に挿入して、 あるいは、 インサートメタルを挿入 せずに、 電子ビーム溶接によって突合せ溶接し、 溶接後、 溶接継手 の特徴及び性能を試験、 調査した。
その結果を表 3に示す。
Hv(BM)は、 1 0 k gの圧痕により測定した母材の板厚方向に おける硬さの平均値である。 Hv(WM)は、 溶接金属部の板厚中央 部に'おいて、 1 0 k gの圧痕により測定した硬さの値である。
ビ一ド幅は、 溶接金属部の表面、 裏面、 及び、 板厚中心の 3点で 測定した平均値である。
HA Z軟化幅は、 母材の硬さより 5 %軟化した H A Z領域を、 溶 接溶融線から母材方向へ測定した時の領域の幅である。
H A Zの旧ァ粒径は、 溶接溶融線に接する H A Z部での旧オース テナイ ト粒を、 円相当径で表記したものである。
溶接継手の性能に関し、 <5c (mm) は、 前述の CTOD試験に おいて、 一 1 0 °Cの試験温度で求めた値である。
継手引張強度 (MP a) は、 NKU 1号試験片を作製して、 継手 引張試験を行った結果であり、 破断した強度を示すものである。 表 1に示すように、 本発明例の N 0. 1〜 1 5は、 各種条件が本 発明で規定する範囲内にあるものであり、 δ c値が十分な値を示し ている。 これらの発明例の中で、 No. 1〜 1 4は、 Hv(WM)/Hv(BM )、 及び、 ビード幅 Z板厚、 HA Z軟化幅が本発明で規定する範囲 内であるため、 溶接継手の H A Z部の(5 c値及び継手引張強度とも に、 十分な値を示している。
な 、 本発明例 N o. 1 4は、 H A Z軟化幅が好ましい範囲より 小さいので、 本発明例である N o . 1〜 1 3と比較して、 値は 若干低いものの、 0. 1 mm以上の良好な値である。
本発明例 N o . 1 5は、 Hv (WM) /Hv (B M)の好ましい範囲よ り低いため、 溶接金属部の焼入れ性が不足して、 初析フェライ 卜の 生成を抑制できなかったものであり、 H A Ζ部の δ c特性は、 本発 明例 Ν ο . 1〜 1 4と比較して、 低いレベルとなっている。
これに対して、 比較例 N o. 1 6、 1 8〜 2 0、 2 2は、 Hv(W M)ZHv(BM)が、 本発明で規定する範囲を超えているため、 溶接 金属部の <5 c値は十分であるが、 HAZ部、 F L部の(5 c値が低くな つている。
また、 比較例 1 7と 2 1は、 Hv(WM)ZHv(BM)が、 本発明で 規定する範囲を下回っているため、 十分な焼入れ性を確保できず、 溶接金属部の δ c値が低くなっている。
したがって、 本発明は、 Υ Ρが 3 5 5 M P a以上の高強度鋼で、 かつ、 板厚が 5 0 mm以上と厚手の領域での δ c値確保に適用され るものである。
表 1 (質量%)
Figure imgf000028_0001
hi
Figure imgf000029_0001
(%譽葛) ζ拏 eZ.0S0/Z.00idf/X3J 表 3
Figure imgf000030_0001
(実施例 2 )
表 4に示す成分を含有し残部 F eおよび不可避的不純物よりなる 、 板厚 5 0〜 1 0 0mmの厚鋼板を準備し、 電子ビーム溶接によつ て突合せ溶接した後、 形成された溶接継手の特徴及び性能を試験し 、 調査した。
その結果を表 5に示す。
表 5において、 Hv(BM)、 Hv(WM)、 δ c (mm) は、 実施例 1 と同様にして求めた。 なお、 後述の実施例 3、 4においても同様 である。
表 5に示すように、 本発明例の N o. 1〜 1 5は、 Hv (WM) ノ Ην (ΒΜ) の値、 鋼材の化学成分、 溶接金属中の酸素量と酸化 物量がいずれも本発明で規定する範囲内にあるものであり、 <5 c値 が溶接金属部及び F L,' H A Ζ部とも十分な値を示している。
なお、 本発明例 5、 6、 1 2、 1 3は、 粒径 2 ^ m以上の酸化物 個数が多めであったので、 溶接金属部の δ ' c値が低めであった。
これに対し、 比較例 1 6は、 鋼材の C量が及び Pcm値が本発明の規 定値以上で、 Hv (WM) ZHv (B M) の値が本発明の範囲より 大きく、 かつ粒径 0.1〜2 ^mの酸化物個数が本発明の規定値以下の ため、 溶接金属部及び F L, HAZ部とも δ c値は不十分であった 比較例 1 7は、 Hv (WM) ZHv ( B M) の値及び鋼材の Pcm が本発明の規定値以下で、 粒径 2 m以上の酸化物個数が本発明の 規定値以上のため、 溶接金属部の δ c値は不十分であった。
比較例 1 8は、 Hv (WM) /H v ( B M) の値及び鋼材の Pcm が本発明の規定値以下であり、 粒径 0.1~2 mの酸化物個数が本発 明の規定値以下のため、 溶接金属部の δ c値は不十分であった。 O /80sAV-εϊさv/ifcl 8poso/-oo
Figure imgf000032_0001
表 5
Figure imgf000033_0001
(実施例 3 )
表 6に示す成分を含有し残部 F eおよび不可避的不純物よりなる 板厚 5 0〜 1 0 0 mmの厚鋼板を準備し、 開先部に、 表 7に示す成 分を含有し残部 F eおよび不可避的不純物よりなる F e — N i合金 イン ートメタルあるいは純 N iインサートメタルを挿入して、 電 子ビーム溶接によって突合せ溶接し、 溶接後、 溶接継手の特徴及び 性能を試験、 調査した。
その結果を表 8に示す。 なお、 継手引張強度 (M P a ) は、 NK U 1号試験片を作製して、 継手引張試験を行った結果であり、 破断 した強度を示すものである。
表 8に示すように、 本発明例の N o . 1 〜 1 5は、 各種条件が本 発明で規定する範囲内にあるものであり、 δ c値が十分な値を示し ている。
一方、 比較例 1 6、 1 7、 1 9、 2 0は、 溶接金属中の N i含有 量が 1%以下であり、 その結果、 溶接金属の(5 cが不十分であった 比較例 1 8、 2 1 、 2 2は、 溶接金属中の N i含有量が 4%以上 のため、 H V (WM) /H V (BM) が 2 2 0 %超であり、 その結果、 溶接金属の δ cは十分であるが、 FL, H A Ζの <5 cが不十分であつ た。
表 6 (質量%)
Figure imgf000034_0001
Figure imgf000035_0001
Figure imgf000035_0002
表 8
Figure imgf000036_0001
(実施例 4 )
表 9に示す成分を含有し残部 F eおよび不可避的不純物よりなる 、 板厚 5 0〜 1 0 0 mmの厚鋼板を準備し、 開先部に、 表 1 0に示 す成分よりなる N i インサートメタル (NA) あるいは N i — F e 合金.インサートメタル (N B、 N C ) を挿入して、 電子ビ一ム溶接 によって突合せ溶接した後、 形成された溶接継手の特徴及び性能を 試験し、 調査した。
試験の結果を、 溶接継手の条件などとともに表 1 1 に示す。 なお 、 継手引張強度 (M P a ) は、 実施例 3 と同様に試験したものであ る。
表 1 1 に示すように、 本発明例の N o . 1〜 1 5は、 各種条件が 本発明で規定する範囲内にあるものであり、 c値が溶接金属部及 び F L , H A Z部とも十分な値を示している。
これに対して、 比較例 1 6〜 1 9では、 溶接金属中の N i含有量 が 8 %以上と高いため、 H v (WM) /Η V ( Β ) の値が 2 2 0 %以上となっており、 その結果、 溶接金属の δ cは十分高い値とな つている力^ F L , H A Ζ部の <5 cはきわめて低い値となっている 表 9 (質量%)
Figure imgf000037_0001
表 1 0 (質量%)
Figure imgf000037_0002
表 1 1
Figure imgf000038_0001
産業上の利用可能性
本発明によれば、 高強度でかつ板厚の大きい高強度鋼板の電子ビ ーム溶接継手において、 万一、 溶接欠陥が存在したり、 疲労亀裂が 発生、 成長しても、 脆性破壊が発生し難いので、 溶接構造体が破壊 するような致命的な損傷、 損壊を防止することができる。
よって、 本発明は、 溶接構造体の安全性を顕著に高めるという顕 著な効果を奏し、 産業上の利用価値の高い発明である。

Claims

1. 溶接構造体の突合せ溶接継手において、 溶接金属部の硬さが 母材部の硬さの 1 1 0 %超 2 2 0 %以下であり、 溶接金属部の幅が 母材.部の板厚の 2 0 %以下であることを特徴とする耐脆性破壊発生 特性に優れた電子ビーム溶接継手。
2. 請求の範囲 1 に記載の電子ビーム溶接継手において、 前記母 材部として、 質量%で、 C : 0. 0 2〜 0. 2 %、 M n : 0. 8〜 3 , 5 %、 S : 0. 0 0 0 5〜 0. 0 0 2 5 %、 A 1 : 0. 0 2 % 未満、 T i : 0. 0 1〜 0. 0 5 %を含有し、 下記 ( a) 式で表さ れる P c mの値が 0 , 1 2 %以上 0. 5 %囲以下である鋼材を用い、 溶接継手の溶接金属中に含まれる〇の量が 2 0 p p m以上であり、 同じく粒径 2. 0 m以上の酸化物の量が 1 0個 Zmm2 以下であ るごとを特徴とする電子ビーム溶接継手。
V/10+ 5B ( a )
3. 請求の範囲 2に記載の電子ビーム溶接継手において、 粒径 0
. 1 m以上 2. 0 m未満の T i酸化物の量が 3 0〜 6 0 0個ノ mm2 であることを特徴とする電子ビーム溶接継手。
. 請求の範囲 1 に記載の電子ビーム溶接継手において、 該溶接 継手の溶接金属中に N i を 1〜 4質量%含有し、 かつ、 母材の含有 量よりも 0. 2質量%以上多く含有することを特徴とする電子ビー ム溶接継手。
5. 請求の範囲 4に記載の電子ビーム溶接継手において、 溶接金 属中に Bを 1 O p p m以下含有することを特徴とする電子ビーム溶 接継手。
6. 請求の範囲 1 に記載の電子ビーム溶接継手において、 前記母 材として N i を 2. 5質量%以上含有する鋼材を用い、 前記溶接継 手の溶接金属中に含まれる N i の含有量が質量%で 4 %超 8 %以下 であることを特徴とする電子ビーム溶接継手。
7. 請求の範囲 1〜 6のいずれかに記載の電子ビーム溶接継手に おいて、 前記溶接構造体が板厚 5 0 mm超の高強度鋼板を突合せ溶 接したものであることを特徴とする電子ビーム溶接継手。
PCT/JP2007/050738 2006-10-02 2007-01-12 Joint soudé par faisceau d'électrons avec une excellente insensibilité à la rupture fragile WO2008041372A1 (fr)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US12/442,665 US8114528B2 (en) 2006-10-02 2007-01-12 Electron beam welded joint excellent in brittle fracture resistance
EP07707042.3A EP2070631B1 (en) 2006-10-02 2007-01-12 Joint welded by electron beam with excellent unsusceptibility to brittle fracture
ES07707042.3T ES2442867T3 (es) 2006-10-02 2007-01-12 Junta soldada mediante haz de electrones con excelente resistencia a la fractura frágil
DK07707042.3T DK2070631T3 (da) 2006-10-02 2007-01-12 Samling svejset med elektronstråle med særdeles ikke-følsomhed for skørhedsbrud
BRPI0719795-0A BRPI0719795B1 (pt) 2006-10-02 2007-01-12 Junta soldada por feixe de elétrons excelente em resistência à fratura frágil
KR1020097005190A KR101192815B1 (ko) 2006-10-02 2007-01-12 취성 파괴 발생 저항성이 우수한 전자빔 용접 이음부
NO20091123A NO336433B1 (no) 2006-10-02 2009-03-16 Elektronstrålesveiset skjøt (sveisesøm) med utmerket sprøbruddmotstand
NO20150121A NO339550B1 (no) 2006-10-02 2015-01-27 Elekronstrålesveiset skjøt (sveisesøm) med utmerket sprøbruddmotstand
NO20150120A NO339549B1 (no) 2006-10-02 2015-01-27 Elektronstrålesveiset skjøt (sveisesøm) med utmerket sprøbruddmotstand.

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2006271044A JP5171007B2 (ja) 2006-10-02 2006-10-02 耐脆性破壊発生特性に優れた電子ビーム溶接継手
JP2006-270967 2006-10-02
JP2006271074A JP4719118B2 (ja) 2006-10-02 2006-10-02 耐脆性破壊発生特性に優れた電子ビーム溶接継手
JP2006270967A JP2008087030A (ja) 2006-10-02 2006-10-02 耐脆性破壊発生特性に優れた電子ビーム溶接継手
JP2006-271044 2006-10-02
JP2006-271074 2006-10-02

Publications (1)

Publication Number Publication Date
WO2008041372A1 true WO2008041372A1 (fr) 2008-04-10

Family

ID=39268238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/050738 WO2008041372A1 (fr) 2006-10-02 2007-01-12 Joint soudé par faisceau d'électrons avec une excellente insensibilité à la rupture fragile

Country Status (8)

Country Link
US (1) US8114528B2 (ja)
EP (3) EP2422912B1 (ja)
KR (1) KR101192815B1 (ja)
BR (1) BRPI0719795B1 (ja)
DK (3) DK2422912T3 (ja)
ES (3) ES2442867T3 (ja)
NO (3) NO336433B1 (ja)
WO (1) WO2008041372A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9352424B2 (en) 2009-12-04 2016-05-31 Nippon Steel & Sumitomo Metal Corporation Butt welding joint using high-energy density beam

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011246804A (ja) 2010-04-30 2011-12-08 Nippon Steel Corp 電子ビーム溶接継手及び電子ビーム溶接用鋼材とその製造方法
JP5135560B2 (ja) * 2010-11-22 2013-02-06 新日鐵住金株式会社 電子ビーム溶接継手及び電子ビーム溶接用鋼材とその製造方法
KR101425761B1 (ko) * 2010-11-22 2014-08-01 신닛테츠스미킨 카부시키카이샤 전자빔 용접 조인트 및 전자빔 용접용 강재와 그 제조 방법
KR20150127304A (ko) * 2010-11-22 2015-11-16 신닛테츠스미킨 카부시키카이샤 전자 빔 용접 조인트 및 전자 빔 용접용 강재와 그의 제조 방법
EP2644731B1 (en) * 2010-11-22 2016-11-30 Nippon Steel & Sumitomo Metal Corporation Electron-beam welded joint, steel material for electron-beam welding, and manufacturing method therefor
CA2825851C (en) 2011-01-28 2019-01-15 Magna Powertrain Inc. Oil pump with selectable outlet pressure
US9274683B2 (en) * 2011-12-30 2016-03-01 Google Inc. Interactive answer boxes for user search queries
US20130266818A1 (en) 2012-04-10 2013-10-10 Hamilton Sundstrand Corporation Article including a weld joint
EP3126090B1 (en) * 2014-04-04 2018-08-22 Special Metals Corporation High strength ni-cr-mo-w-nb-ti welding product and method of welding and weld deposit using the same
CN105940398B (zh) * 2015-01-04 2019-11-01 华为技术有限公司 一种信息搜索方法及装置
JP2017108595A (ja) * 2015-12-11 2017-06-15 日本電産株式会社 振動モータ

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5861981A (ja) * 1981-10-07 1983-04-13 Toshiba Corp 異種金属の電子ビ−ム溶接方法
JPS6264486A (ja) 1985-08-22 1987-03-23 Nippon Steel Corp 溶接金属の靭性に優れた低合金高張力鋼の溶接法
JPH0285339A (ja) * 1988-08-30 1990-03-26 Hitachi Ltd 溶接部を含む構造部材、溶接部を含む構造部材の製造方法及び溶接部を含む構造部材用の低C−Cr−Mo鋼
JPH02282466A (ja) * 1988-12-19 1990-11-20 Mca Micro Crystal Ag イオン拡散により形成された超硬質の摩耗防止層または硬化層
JPH03248783A (ja) 1990-02-23 1991-11-06 Nippon Steel Corp 鋼板の電子ビーム溶接方法
WO1999016101A2 (en) 1997-09-24 1999-04-01 The Welding Institute Charged particle beam emitting assembly
JP2002003984A (ja) * 2000-06-19 2002-01-09 Nippon Steel Corp 疲労強度特性に優れたレーザーまたは電子ビーム溶接継ぎ手を備えた構造物及びそれらの製造法
JP2003201535A (ja) 2001-10-22 2003-07-18 Jfe Steel Kk 電子ビーム溶接用鋼板、鋼管および溶接金属部の低温靱性に優れたパイプライン
JP2005125393A (ja) * 2003-10-27 2005-05-19 Kawasaki Heavy Ind Ltd 高エネルギービーム溶接方法
JP2005144552A (ja) 2003-10-22 2005-06-09 Nippon Steel Corp 耐脆性破壊発生特性に優れた大入熱突合せ溶接継手

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55120493A (en) * 1979-03-07 1980-09-16 Hitachi Ltd Low magnetic permeability electron beam welding method
JPS6054287A (ja) * 1983-09-05 1985-03-28 Kobe Steel Ltd 電子ビ−ム溶接方法
FR2591517B3 (fr) * 1985-12-18 1987-12-31 Siderurgie Fse Inst Rech Procede de soudage de pieces d'acier par faisceau d'electrons
JPS63242477A (ja) * 1987-03-31 1988-10-07 Toshiba Corp 多角管溶接方法及び多角管溶接方法に使用するインサ−トメタル
JPH06670A (ja) * 1992-06-15 1994-01-11 Sumitomo Metal Ind Ltd フェライト系ステンレス鋼の溶接方法
JPH0751872A (ja) * 1993-08-19 1995-02-28 Amada Co Ltd ステンレス鋼のレーザ溶接方法およびステンレス鋼のレーザ溶接用溶加材
JPH07265941A (ja) 1994-03-30 1995-10-17 Nisshin Steel Co Ltd ロールレス造管法による加工性に優れた溶接管の製造方法
JP3351139B2 (ja) 1994-12-08 2002-11-25 住友金属工業株式会社 低合金高張力鋼の溶接方法
CA2231985C (en) * 1997-03-26 2004-05-25 Sumitomo Metal Industries, Ltd. Welded high-strength steel structures and methods of manufacturing the same
US6308882B1 (en) * 1999-09-13 2001-10-30 Dana Corporation Method for joining ductile iron and steel
JP2001287051A (ja) 2000-04-03 2001-10-16 National Institute For Materials Science 高張力鋼材の摩擦圧接継手
JP2003245787A (ja) 2001-12-18 2003-09-02 Jfe Steel Kk 溶接金属部靱性に優れた高エネルギービーム溶接継手およびその製造方法
JP4486529B2 (ja) 2004-04-22 2010-06-23 新日本製鐵株式会社 靭性に優れたエレクトロガス溶接継ぎ手

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5861981A (ja) * 1981-10-07 1983-04-13 Toshiba Corp 異種金属の電子ビ−ム溶接方法
JPS6264486A (ja) 1985-08-22 1987-03-23 Nippon Steel Corp 溶接金属の靭性に優れた低合金高張力鋼の溶接法
JPH0285339A (ja) * 1988-08-30 1990-03-26 Hitachi Ltd 溶接部を含む構造部材、溶接部を含む構造部材の製造方法及び溶接部を含む構造部材用の低C−Cr−Mo鋼
JPH02282466A (ja) * 1988-12-19 1990-11-20 Mca Micro Crystal Ag イオン拡散により形成された超硬質の摩耗防止層または硬化層
JPH03248783A (ja) 1990-02-23 1991-11-06 Nippon Steel Corp 鋼板の電子ビーム溶接方法
WO1999016101A2 (en) 1997-09-24 1999-04-01 The Welding Institute Charged particle beam emitting assembly
JP2002003984A (ja) * 2000-06-19 2002-01-09 Nippon Steel Corp 疲労強度特性に優れたレーザーまたは電子ビーム溶接継ぎ手を備えた構造物及びそれらの製造法
JP2003201535A (ja) 2001-10-22 2003-07-18 Jfe Steel Kk 電子ビーム溶接用鋼板、鋼管および溶接金属部の低温靱性に優れたパイプライン
JP2005144552A (ja) 2003-10-22 2005-06-09 Nippon Steel Corp 耐脆性破壊発生特性に優れた大入熱突合せ溶接継手
JP2005125393A (ja) * 2003-10-27 2005-05-19 Kawasaki Heavy Ind Ltd 高エネルギービーム溶接方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9352424B2 (en) 2009-12-04 2016-05-31 Nippon Steel & Sumitomo Metal Corporation Butt welding joint using high-energy density beam

Also Published As

Publication number Publication date
EP2422913A1 (en) 2012-02-29
NO336433B1 (no) 2015-08-17
ES2442867T3 (es) 2014-02-14
NO20150121L (no) 2009-04-23
NO20150120L (no) 2009-04-23
EP2422912B1 (en) 2013-12-25
EP2070631B1 (en) 2013-12-25
ES2444784T3 (es) 2014-02-26
NO339550B1 (no) 2016-12-27
EP2422913B1 (en) 2013-12-25
NO339549B1 (no) 2016-12-27
BRPI0719795A2 (pt) 2015-07-21
ES2444507T3 (es) 2014-02-25
EP2070631A4 (en) 2009-09-30
NO20091123L (no) 2009-04-23
DK2070631T3 (da) 2014-01-27
EP2422912A1 (en) 2012-02-29
BRPI0719795B1 (pt) 2018-06-26
KR20090045336A (ko) 2009-05-07
DK2422913T3 (da) 2014-01-27
EP2070631A1 (en) 2009-06-17
US8114528B2 (en) 2012-02-14
DK2422912T3 (da) 2014-01-27
KR101192815B1 (ko) 2012-10-18
US20100028717A1 (en) 2010-02-04

Similar Documents

Publication Publication Date Title
WO2008041372A1 (fr) Joint soudé par faisceau d&#39;électrons avec une excellente insensibilité à la rupture fragile
JP5171007B2 (ja) 耐脆性破壊発生特性に優れた電子ビーム溶接継手
JP5098139B2 (ja) 耐脆性破壊発生特性に優れた電子ビーム溶接継手
EP2594657B1 (en) Electron beam welded joint, steel material for use in electron beam welded joint, and manufacturing method thereof
EP2644732B1 (en) Electron-beam welded joint, steel material for electron-beam welding, and manufacturing method therefor
JP5171006B2 (ja) 耐脆性破壊発生特性に優れた溶接継手
JP2005125348A (ja) 耐脆性破壊発生特性に優れた大入熱突合せ溶接継手
JP4719118B2 (ja) 耐脆性破壊発生特性に優れた電子ビーム溶接継手
JP6515287B2 (ja) 溶接継手の製造方法
JP5472342B2 (ja) 耐脆性破壊発生特性に優れた電子ビーム溶接継手
JP2008087030A (ja) 耐脆性破壊発生特性に優れた電子ビーム溶接継手
JP5135560B2 (ja) 電子ビーム溶接継手及び電子ビーム溶接用鋼材とその製造方法
JP5273301B2 (ja) 電子ビーム溶接継手及び電子ビーム溶接用鋼材

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780037009.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07707042

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020097005190

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 12442665

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007707042

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: PI0719795

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20090402