WO2008038405A1 - Récipient d'électrolyse de sel fondu pour la fabrication de métal et procédé de fabrication de métal à l'aide de celui-ci - Google Patents

Récipient d'électrolyse de sel fondu pour la fabrication de métal et procédé de fabrication de métal à l'aide de celui-ci Download PDF

Info

Publication number
WO2008038405A1
WO2008038405A1 PCT/JP2007/000861 JP2007000861W WO2008038405A1 WO 2008038405 A1 WO2008038405 A1 WO 2008038405A1 JP 2007000861 W JP2007000861 W JP 2007000861W WO 2008038405 A1 WO2008038405 A1 WO 2008038405A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
partition
molten salt
electrolytic bath
electrolytic
Prior art date
Application number
PCT/JP2007/000861
Other languages
English (en)
Japanese (ja)
Inventor
Yuichi Ono
Masanori Yamaguchi
Original Assignee
Toho Titanium Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Titanium Co., Ltd. filed Critical Toho Titanium Co., Ltd.
Priority to JP2008536276A priority Critical patent/JPWO2008038405A1/ja
Publication of WO2008038405A1 publication Critical patent/WO2008038405A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C5/00Electrolytic production, recovery or refining of metal powders or porous metal masses
    • C25C5/04Electrolytic production, recovery or refining of metal powders or porous metal masses from melts
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/02Electrolytic production, recovery or refining of metals by electrolysis of melts of alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/26Electrolytic production, recovery or refining of metals by electrolysis of melts of titanium, zirconium, hafnium, tantalum or vanadium
    • C25C3/28Electrolytic production, recovery or refining of metals by electrolysis of melts of titanium, zirconium, hafnium, tantalum or vanadium of titanium

Definitions

  • the present invention relates to a method for producing a metal using a molten salt electrolytic cell, and more particularly to a partition wall structure constituting a molten salt electrolytic cell.
  • titanium metal has been produced by a crawl method by reducing magnesium tetrachloride with magnesium, and along with this, various manufacturing improvements have been made to reduce production costs.
  • the crawl method is a batch process, it is difficult to achieve significant cost reductions through efficiency.
  • molten metal calcium produced by molten salt electrolysis of calcium chloride is generated and accumulated inside a partition wall having a plurality of openings on the side wall of the molten salt electrolytic cell, while the outside of the partition wall And the reaction with chlorine gas generated from an anode immersed in an electrolytic bath partitioned into an electrolytic cell wall.
  • Patent Document 1 WO 9 9/0 6 4 6 3 8
  • Patent Document 2 Japanese Patent Laid-Open No. 2 0 0 3 _ 1 2 9 2 6 8
  • Patent Document 3 Japanese Patent Laid-Open No. 2 0 0 3 _ 3 0 6 7 2 5
  • Patent Document 4 US Patent No. 3 2 2 6 3 1 1
  • Patent Document 5 Japanese Unexamined Patent Publication No. 2 0 0 6 _ 1 1 1 8 9 5
  • the present invention can effectively avoid the reverse reaction between the molten metal produced at the cathode and the chlorine gas produced at the anode in an electrolytic cell for producing molten metal by electrolyzing metal chloride.
  • An object of the present invention is to provide a molten salt electrolytic cell that can be used and a metal production method using the same.
  • the present invention has a first to second arrangements in which a molten salt electrolytic cell for metal production is disposed between an electrolytic cell main body, an anode, a cathode, and the anode and the cathode.
  • 2 partition wall and electrolytic bath, where the electrolytic bath is partitioned by the first partition wall and the second partition wall (hereinafter referred to as “intermediate chamber”).
  • intermediate chamber hereinafter referred to as the “cathode chamber”.
  • the present invention relates to an electrolytic cell main body for holding an electrolytic bath, and an immersion bath disposed in the electrolytic bath.
  • a molten salt electrolytic cell for metal production having an anode and a cathode, wherein the molten salt electrolytic cell is divided into three spaces by a first partition and a second partition, and is partitioned by an electrolytic cell body and a first partition.
  • a cathode chamber including a cathode, an intermediate chamber defined by a first partition and a second partition, and an anode chamber defined by an electrolytic cell body and a second partition and including an anode are configured, and an electrolytic bath is an intermediate chamber It is configured to form a circulating flow from the cathode chamber to the cathode chamber.
  • the lower ends of the first and second partition walls arranged from the cathode side to the anode side constituting the molten salt electrolytic cell are opened.
  • a through hole is provided in the first partition wall portion in contact with the vicinity of the electrolytic bath surface.
  • an inert gas is preferably flowed upward from the bottom. According to such an embodiment, it is possible to suppress the metal produced at the cathode from being dissipated throughout the electrolytic bath, and to collect it by concentrating near the liquid surface above the electrolytic bath.
  • molten metal magnesium is melt-held on the electrolytic bath surface held in the intermediate chamber.
  • the molten metal leaking from the cathode chamber to the intermediate chamber can be trapped by dissolving in magnesium, and the generated metal can be efficiently collected by separating and collecting in a separate process. It has the effect that it can be recovered.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of a molten salt electrolysis apparatus of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing a modified example of the first partition wall of the molten salt electrolysis apparatus of the present invention.
  • FIG. 1 shows one embodiment of a cathode for carrying out the present invention.
  • Reference numeral 1 denotes an electrolytic cell body, and the electrolytic cell body 1 is filled with an electrolytic bath 11.
  • a mixed bath composed of calcium chloride and potassium chloride is used as the electrolytic bath 11 1 as the electrolytic bath, molten metal calcium is generated at the cathode, and chlorine gas is generated at the anode. I will explain.
  • An anode 2 and a cathode 3 are immersed in the electrolytic bath 11. Also, electrolytic cell The main body 1 is partitioned by the first partition wall 4 and the second partition wall 5 as shown in FIG. 1. A space surrounded by the electrolytic cell body 1 and the second partition wall 5 and including the anode 2 is referred to as an anode chamber 2 1, and a space surrounded by the first partition wall 4 and the second partition wall 5 is referred to as an intermediate chamber 22.
  • Reference numeral 10 is a molten metal calcium layer or a concentrated layer of molten metal calcium generated by molten salt electrolysis in an electrolytic bath, and reference numeral 12 leaks from the cathode chamber 20 as will be described later. It is a molten metal magnesium layer provided for molten metal calcium recovery.
  • the specific gravity of the electrolytic bath composition so that the molten metallic calcium generated by the cathode 3 floats on the surface of the electrolytic bath 11 in the cathode chamber 20.
  • molten calcium generated by molten salt electrolysis floats in the electrolytic bath and is extracted out of the system via the molten metal extraction pipe 6 introduced from the outside of the electrolytic cell body 1. be able to.
  • the lower end of the first partition 4 that divides the cathode chamber 20 and the intermediate chamber 22 is opened, and a bath circulation port 14 is provided in the vicinity of the bath surface of the first partition 4. It is preferable to leave it.
  • the anode chamber 21 is preferably defined by the electrolytic cell body 1 and the second partition wall 5, and the lower end thereof is preferably open. With such an open end, the electrolytic bath can be circulated with the intermediate chamber and the cathode chamber, and the electrolytic reaction can proceed efficiently.
  • an inert gas introduction tube 8 at the bottom of the cathode chamber 20 to introduce the inert gas from the bottom of the electrolytic bath.
  • a flow of the electrolytic bath 11 from the bottom of the cathode chamber 20 to the upper side occurs, and along with this flow, electrolysis from the bottom of the intermediate chamber 22 to the cathode chamber 20 also occurs.
  • a flow of bath 1 1 can be formed.
  • the inert gas introduced into the cathode chamber 20 is preferably configured to be continuously discharged out of the system through an inert gas discharge pipe 7 provided at the top of the cathode chamber 20.
  • the molten metal calcium has a solubility in calcium chloride constituting the electrolytic bath 11
  • the molten metal calcium generated on the surface of the cathode 3 can be quickly extracted out of the system.
  • the circulating flow by introduction of the inert gas can effectively promote the floating separation of the molten metal calcium produced at the cathode, and has an effect that the molten metal calcium can be efficiently recovered. Is.
  • a weir 13 is provided in the vicinity of the circulation port 14 provided in the first partition wall 4. By providing such a weir 13, leakage of the molten metal calcium layer 10 accumulated on the bath surface of the electrolytic bath 11 to the intermediate chamber can be effectively avoided.
  • the flow rate of the inert gas supplied to the electrolytic bath 11 held in the cathode chamber 20 is preferably matched with the flow rate of chlorine gas generated at the anode 2.
  • the gas stirring force received by the electrolytic baths held in the respective regions of the cathode chamber 20 and the anode chamber 21 is equalized, and the electrolytic reaction proceeding in the electrolytic cell body 1 is stabilized. Can do.
  • molten metal magnesium As shown in FIG. 1, it is preferable to hold molten metal magnesium on the electrolytic bath surface held in the intermediate chamber 22 surrounded by the first partition and the second partition. Since molten metallic calcium has high solubility in molten magnesium, molten metallic calcium leaking from the cathode chamber 20 can be efficiently collected.
  • Molten metal magnesium retained in the electrolytic bath surface of the intermediate chamber 22 surrounded by the first partition wall and the second partition wall 22 is recovered from the magnesium metal by distillation in a separate process (not shown). It can be recovered. Separated and recovered metallic calcium can be used as a direct reducing agent for titanium oxide. it can.
  • Chlorine gas generated in the anode 2 is concentrated in a space portion of the anode chamber 21 surrounded by the second partition wall and the electrolytic cell main body 1, and a chlorine gas discharge pipe 9 provided at the top of the anode chamber 21. More discharged outside the system.
  • the discharged chlorine gas can be used for chlorination reaction of titanium ore, for example.
  • the anode 2 used in the present embodiment is preferably made of a material that can withstand high-temperature chlorine gas.
  • the cathode 3 that produces molten metal calcium is preferably made of a material that does not react with molten metal calcium, and more specifically, is preferably made of carbon steel or stainless steel.
  • the first partition wall 4 and the second partition wall 5 are preferably composed of a material that can withstand both chlorine gas and molten metal calcium.
  • the first partition wall 4 and the second partition wall 5 are composed of a ceramic such as a nitride nitride or boron nitride. It is preferable to do.
  • the electrolytic cell body 1 is also preferably made of a ceramic such as a boron nitride or boron nitride that can withstand high-temperature chlorine gas or molten metal calcium.
  • FIG. 2 shows another preferred embodiment of the first partition wall 4.
  • a communication port 15 for communicating the space portion above the cathode chamber and the space portion above the intermediate chamber on the first partition.
  • an electrolytic bath having a composition in which the metallic calcium produced at the cathode 3 is produced in a molten state, and the produced metallic calcium is difficult to dissolve in the electrolytic bath.
  • Such an electrolytic bath can achieve the above-mentioned object efficiently by selecting the molar ratio of calcium chloride: potassium chloride in the range of 85:15 to 50:50.
  • the temperature of the electrolytic bath in the present invention is preferably maintained in the range of 85 ° to 90 ° C.
  • the temperature of the electrolytic bath in the present invention is preferably maintained in the range of 85 ° to 90 ° C.
  • molten salt electrolysis tank shown in Fig. 1 we were able to recover calcium metal by performing molten salt electrolysis of calcium chloride under the following conditions.
  • the weight of the recovered metal calcium was equivalent to 90 ⁇ 1 ⁇ 2 of the amount of metal calcium calculated from the energization amount, and high current efficiency was confirmed.
  • Atmosphere Argon gas 4. Inert gas flow rate to the cathode chamber: 0.2 NI / min
  • Metal calcium for reduction which is indispensable for the production of metallic titanium, can be produced efficiently, thereby contributing to the cost reduction of metallic titanium.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

L'invention concerne un récipient d'électrolyse pour électrolyser un chlorure métallique pour obtenir ainsi un métal fondu, apte à éviter efficacement toute réaction inverse entre le métal fondu formé sur l'électrode négative et le chlore gazeux formé sur l'électrode positive. Le récipient d'électrolyse de sel fondu pour la fabrication d'un métal est un récipient ayant un corps principal de récipient d'électrolyse pour contenir un bain électrolytique et, immergées et disposées dans le bain électrolytique, une électrode positive et une électrode négative, caractérisé par le fait que le récipient d'électrolyse de sel fondu est divisé par un premier diaphragme et un second diaphragme en trois espaces pour former ainsi un compartiment d'électrode négative séparé par le corps principal de récipient d'électrolyse et le premier diaphragme et comprenant une électrode négative, un compartiment intermédiaire séparé par les premier et second diaphragmes et un compartiment d'électrode positive séparé par le corps principal de récipient d'électrolyse et le second diaphragme et comprenant une électrode positive de telle sorte que le bain électrolytique génère un courant circulant du compartiment intermédiaire vers le compartiment d'électrode négative.
PCT/JP2007/000861 2006-09-28 2007-08-09 Récipient d'électrolyse de sel fondu pour la fabrication de métal et procédé de fabrication de métal à l'aide de celui-ci WO2008038405A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008536276A JPWO2008038405A1 (ja) 2006-09-28 2007-08-09 金属製造用溶融塩電解槽およびこれを用いた金属の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006264630 2006-09-28
JP2006-264630 2006-09-28

Publications (1)

Publication Number Publication Date
WO2008038405A1 true WO2008038405A1 (fr) 2008-04-03

Family

ID=39229851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/000861 WO2008038405A1 (fr) 2006-09-28 2007-08-09 Récipient d'électrolyse de sel fondu pour la fabrication de métal et procédé de fabrication de métal à l'aide de celui-ci

Country Status (2)

Country Link
JP (1) JPWO2008038405A1 (fr)
WO (1) WO2008038405A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021004398A (ja) * 2019-06-26 2021-01-14 東邦チタニウム株式会社 溶融塩電解槽及びこれを用いた金属の製造方法。

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5443811A (en) * 1977-09-16 1979-04-06 Asahi Glass Co Ltd Production of metallic lithium
JPS6237387A (ja) * 1985-08-12 1987-02-18 Sumitomo Light Metal Ind Ltd 高純度リチウムの製造方法
JP2005068539A (ja) * 2003-08-28 2005-03-17 Sumitomo Titanium Corp 金属製造方法及び装置
JP2005264320A (ja) * 2004-02-20 2005-09-29 Sumitomo Titanium Corp Ca還元によるTi又はTi合金の製造方法
JP2006111895A (ja) * 2004-10-12 2006-04-27 Toho Titanium Co Ltd 溶融塩電解による金属の製造方法および製造装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5443811A (en) * 1977-09-16 1979-04-06 Asahi Glass Co Ltd Production of metallic lithium
JPS6237387A (ja) * 1985-08-12 1987-02-18 Sumitomo Light Metal Ind Ltd 高純度リチウムの製造方法
JP2005068539A (ja) * 2003-08-28 2005-03-17 Sumitomo Titanium Corp 金属製造方法及び装置
JP2005264320A (ja) * 2004-02-20 2005-09-29 Sumitomo Titanium Corp Ca還元によるTi又はTi合金の製造方法
JP2006111895A (ja) * 2004-10-12 2006-04-27 Toho Titanium Co Ltd 溶融塩電解による金属の製造方法および製造装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021004398A (ja) * 2019-06-26 2021-01-14 東邦チタニウム株式会社 溶融塩電解槽及びこれを用いた金属の製造方法。
JP7206160B2 (ja) 2019-06-26 2023-01-17 東邦チタニウム株式会社 溶融塩電解槽及びこれを用いた金属の製造方法。

Also Published As

Publication number Publication date
JPWO2008038405A1 (ja) 2010-01-28

Similar Documents

Publication Publication Date Title
WO2006040978A1 (fr) Procédé de fabrication de métal et dispositif de fabrication par électrolyse du sel fondu
WO2006040979A1 (fr) Méthode de production d’un métal par électrolyse en milieu sel fondu et méthode de production de titane métallique
CZ20032555A3 (en) A method and an electrowinning cell for production of metal
JP5183498B2 (ja) ケイ素の電解製造及び精練方法
WO2007034605A1 (fr) Électrolyseur à sel fondu pour métal réducteur, son procédé d’électrolyse et processus de production d'un métal à haut point de fusion en utilisant du métal réducteur
WO2005080642A1 (fr) Procédé pour la production du titane ou un alliage de titane reduction de ca
WO2014101694A1 (fr) Procédé et dispositif de production de titane par électrolyse en sel fondu
JP2007063585A (ja) 溶融塩電解方法および電解槽並びにそれを用いたTiの製造方法
JP4395386B2 (ja) Ca源の循環によるTi又はTi合金の製造方法
WO2007034645A1 (fr) Procédé de production de titane et appareil correspondant
JP4092129B2 (ja) スポンジチタンの製造方法及び製造装置
WO2008038405A1 (fr) Récipient d'électrolyse de sel fondu pour la fabrication de métal et procédé de fabrication de métal à l'aide de celui-ci
JP2009019250A (ja) 金属製造方法および装置
JP2009197277A (ja) 溶融塩の電解方法および電解槽ならびにこれを用いたTiの製造方法
WO2006003865A1 (fr) Procédé de production de métal par électrolyse ignée
JP4934012B2 (ja) 金属カルシウムの製造方法
JPWO2009107339A1 (ja) 還元性金属の製造方法およびこれに用いる溶融塩電解装置
JP2006124813A (ja) Ca還元によるTiの製造方法及び装置
JPWO2008102520A1 (ja) 溶融塩電解による金属の製造装置およびこれを用いた金属の製造方法
JP2010504432A (ja) 溶融塩化物から金属を製造する方法及び電解セル
JP2012172194A (ja) 電解装置およびそれを用いた電解採取方法
US20090032405A1 (en) Molten Salt Electrolytic Cell and Process for Producing Metal Using the Same
JP2005171357A (ja) 溶融金属塩化物の電解装置
JP7453109B2 (ja) 溶融物送りパイプの通路区画構造、及び、金属マグネシウムの製造方法
JP5829843B2 (ja) 多結晶シリコンの製造方法及び多結晶シリコンの製造方法に用いられる還元・電解炉

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07790349

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008536276

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07790349

Country of ref document: EP

Kind code of ref document: A1