WO2008035710A1 - Procédé d'élimination d'eaux usées - Google Patents

Procédé d'élimination d'eaux usées Download PDF

Info

Publication number
WO2008035710A1
WO2008035710A1 PCT/JP2007/068182 JP2007068182W WO2008035710A1 WO 2008035710 A1 WO2008035710 A1 WO 2008035710A1 JP 2007068182 W JP2007068182 W JP 2007068182W WO 2008035710 A1 WO2008035710 A1 WO 2008035710A1
Authority
WO
WIPO (PCT)
Prior art keywords
activated sludge
bod
wastewater
load
sludge tank
Prior art date
Application number
PCT/JP2007/068182
Other languages
English (en)
French (fr)
Inventor
Daisuke Okamura
Tomotaka Hashimoto
Original Assignee
Asahi Kasei Chemicals Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corporation filed Critical Asahi Kasei Chemicals Corporation
Priority to US12/311,182 priority Critical patent/US8097161B2/en
Priority to CA2663986A priority patent/CA2663986C/en
Priority to AU2007298198A priority patent/AU2007298198B2/en
Priority to KR1020087031535A priority patent/KR101158964B1/ko
Priority to CN2007800347104A priority patent/CN101516790B/zh
Priority to EP20070807556 priority patent/EP2065343B1/en
Priority to JP2008535373A priority patent/JP5208750B2/ja
Publication of WO2008035710A1 publication Critical patent/WO2008035710A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1268Membrane bioreactor systems
    • C02F3/1273Submerged membrane bioreactors
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2203/00Apparatus and plants for the biological treatment of water, waste water or sewage
    • C02F2203/002Apparatus and plants for the biological treatment of water, waste water or sewage comprising an initial buffer container
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/08Chemical Oxygen Demand [COD]; Biological Oxygen Demand [BOD]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/20Total organic carbon [TOC]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/21Dissolved organic carbon [DOC]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/20Prevention of biofouling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to a method for treating wastewater by a submerged membrane separation activated sludge method for treating organic wastewater.
  • the membrane separation activated sludge method which is one of the wastewater treatment methods, is a method in which a membrane cartridge is immersed in an activated sludge tank and solid-liquid separation is performed between the activated sludge and the treatment liquid by filtration.
  • the active sludge concentration (MLSS: Mixed Liquor Suspended Solid) can be increased to 5,000, 20000 mg / l, and solid-liquid separation can be performed, so the volume of the activated sludge tank can be reduced. Or it has the advantage that the reaction time in an activated sludge tank can be shortened.
  • suspended solids are not mixed in the treated water because of filtration through a membrane, eliminating the need for a final sedimentation tank, reducing the site area of the treatment facility, and whether activated sludge sedimentation is good or not. Since solid-liquid separation is possible, there are many advantages such as reducing the burden of activated sludge management.
  • the membrane cartridge As the membrane cartridge, a flat membrane or a hollow fiber membrane is used.
  • the membrane-separated activated sludge method the bio-derived polymer metabolized by microorganisms in the activated sludge, the activated sludge itself, or impurities contained in the wastewater adhere to the membrane surface, thereby reducing the effective membrane area and reducing the filtration efficiency. Since the rate decreases, long-term stable filtration may not be possible. In this case, the filtration direction is this a force s performing backwashing to remove deposits in the reverse direction by ejecting a medium such as filtration water film surface.
  • Patent Document 1 discloses that a cartridge head is provided on the outer periphery of one end of a hollow fiber membrane bundle in order to cause the hollow fiber membrane to vibrate at maximum within an allowable range during aeration.
  • the skirt is liquid-tight around the other end.
  • the hollow part at the end of the hollow fiber membrane on the cartridge head side is opened, the hollow part at the end of the hollow fiber membrane on the skirt side is sealed, and a plurality of through holes are provided in the adhesive fixing layer on the skirt side.
  • a hollow fiber membrane cartridge is disclosed.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2000-157846
  • the risk of clogging is appropriately evaluated before the membrane clogs, and the necessary and sufficient measures are taken to stably and efficiently separate the solid liquid from the activated sludge and the processing liquid.
  • the aim is to provide a method that can be performed well.
  • the present inventors have found that the substance that adheres to the outer surface of the membrane and inhibits filtration is a biological polymer having a molecular weight of several hundreds of thousands to several millions mainly composed of sugar. I found. Furthermore, the present inventors have found that the difficulty of biodegradability of organic wastewater is almost equal to the biological oxygen demand (BOD) for measuring the organic matter concentration by biodegradation and the organic components contained in the organic wastewater. It has been found to depend on the ratio of total organic carbon (TOC), total oxygen demand (TOD), or chemical oxygen demand (COD) using potassium dichromate.
  • TOC total organic carbon
  • TOD total oxygen demand
  • COD chemical oxygen demand
  • the ratio of BOD to TOC, TOD or COD is obtained as a ⁇ value, and using the ⁇ value,
  • represents the average membrane filtration flux.
  • the average membrane filtration flux is the flow rate per unit membrane area per day, and is obtained by dividing the value obtained by subtracting the backwash flow rate from the filtration flow rate by the membrane area.
  • the upper limit of the BOD-sludge load can be increased by decreasing the average membrane filtration flux ⁇ . Therefore, the present inventors have also confirmed that the operation can be stably continued if the membrane filtration flux is reduced even if the sugar concentration is increased.
  • BOD sludge load per unit sludge weight (MLSS concentration X activated sludge volume) per day This is the amount of BOD component that flows into the activated sludge tank, and represents the amount of BOD component that is handled by the unit microorganisms per day.
  • the unit is (kg / day) —BOD / kg—MLSS.
  • is the total organic carbon content (TOC) [mg / L], chemical oxygen demand (COD) [mg / L], total oxygen demand (TOD) [TOD) [ selected from mg / L] 1
  • BOD indicates the biological oxygen demand [mg / L] in the organic wastewater
  • is an adjustment factor based on / 3
  • an upper limit value of BOD-sludge load is obtained based on an index indicating the total organic matter amount of the organic wastewater and a BOD value, and the BOD-sludge load in the activated sludge tank should not exceed the upper limit value.
  • a separation process for solid-liquid separation of the activated sludge by an installed separation membrane device, and a wastewater treatment method comprising:
  • an upper limit value of BOD-sludge load is determined based on the ratio of the index indicating the total organic matter amount of the organic waste water and the BOD value, and the average membrane filtration flux of the separation membrane device, Waste water treatment method for adjusting the BOD in the activated sludge tank so that the sludge load does not exceed the upper limit;
  • the BOD—sludge load of the activated sludge tank is adjusted to 0.05—0.06 ⁇ ( ⁇ -0.6) Kkg / day) —BOD / kg—MLSS] or less.
  • Wastewater treatment method characterized by
  • is the total organic carbon content (TOC) [mg / L], chemical oxygen demand (COD) [mg / L] using potassium dichromate, total oxygen demand (TOD) [ mg / L]
  • BOD is the biological oxygen demand [mg / L] in the organic wastewater
  • is an adjustment factor based on / 3
  • [delta] is the average membrane filtration flux of the separation membrane device, the unit is set to m 3 / (m 2 'da y).
  • An inflow step of flowing organic wastewater into an activated sludge tank containing activated sludge; and biological treatment of the organic wastewater with the activated sludge in the activated sludge tank; and the activated sludge tank or thereafter A separation process for solid-liquid separation of the activated sludge by a separation membrane device installed in a stage, comprising:
  • the BOD—sludge load of the activated sludge tank is 0.1—0.12 ⁇ ( ⁇ -0.6) [(kg / day) —BOD / kg—MLSS] or less.
  • the BOD—sludge load of the activated sludge tank is 0.3– 0 ⁇ 24 ⁇ ( ⁇ -0.6) [(kg / day) — BOD / kg— MLSS. ] Wastewater treatment method characterized by the following adjustment
  • the ⁇ value of the organic waste water is ⁇ ⁇ 0.6
  • the ⁇ value of the mixed organic waste water is set to ⁇ 0 ⁇ 6 by mixing a substance with a high ⁇ value into the organic waste water.
  • BOD of activated sludge tank sludge load, activated sludge concentration, activated sludge volume, activated The wastewater according to any one of the above [1] to [6], which is adjusted by increasing or decreasing one or more selected from the group consisting of the amount of organic matter flowing into the sludge tank, the average membrane filtration flux and the membrane area Processing method;
  • the activated sludge tank's BOD-sludge load exceeds the calculated upper limit of BOD-sludge load, it consists of activated sludge concentration, activated sludge volume, amount of organic matter flowing into the activated sludge tank, and membrane area. Adjust the BOD-sludge load of the activated sludge tank to be lower than the upper limit by increasing or decreasing one or more selected from the group. Relates to the wastewater treatment method described in 1. above.
  • the risk of clogging is appropriately evaluated based on the ⁇ value of organic wastewater, and the BOD—sludge load is adjusted based on this value.
  • the clogging of the film can be suppressed in advance.
  • the efficiency can be increased by utilizing the solid-liquid separation capacity without waste.
  • BOD—sludge load can be easily controlled by adjusting the MLSS concentration, activated sludge volume, the amount of organic matter flowing into the activated sludge tank, and the membrane area.
  • the amount of microorganisms can be set higher than the amount of organic matter flowing in, and the BOD-sludge load can be set lower.
  • the upper limit of BOD-sludge load can be set higher, so that the microorganisms can It is possible to increase the solid-liquid separation efficiency by setting the amount small.
  • the wastewater treatment method according to the present invention can be performed using, for example, the apparatus shown in FIG. In Fig. 1, the organic waste water 1 flowing into the membrane separation activated sludge tank 1 is temporarily stored in the flow rate adjusting tank 3 after the impurities are removed by the pretreatment equipment 2 such as a fine screen or drum screen. . Thereafter, the membrane filtration flux in the separation membrane apparatus is kept constant, and is supplied from the flow rate adjustment tank 3 to the membrane separation activated sludge tank (aeration tank) 4 at a constant flow rate.
  • the microorganism decomposes and proliferates the BOD component in the organic wastewater.
  • the present inventors conducted water quality analysis (measurement of BOD and TOC or COD or TOD) of organic wastewater flowing into the activated sludge tank.
  • is almost the same value when any of TOC, TOD, and COD is used. That
  • each ⁇ value is different and each ⁇ value belongs to a range in which different formulas are applied, those skilled in the art will be able to appropriately select which ⁇ value to adopt. Positive It is preferable to adopt the exact order of measurement, that is, the priority order of TOD, COD, and TOC.
  • Each value of BOD, TOC, TOD, COD is measured by the method described in JIS K 0102, for example.
  • the power to do is s.
  • the ⁇ value force is S0.6 or more and less than 1.5, that is, it is difficult to biodegrade, reduce the amount of sludge extracted from the activated sludge tank and increase the MLSS concentration or flow into the activated sludge tank.
  • the BOD sludge load is adjusted to 0.05—0.06 ⁇ ( ⁇ —0.6) [(kg / day) —BOD / kg—MLSS] or less. If the ⁇ value is less than 2.5, adjust the BOD sludge load to 0.1 -0.12 0.1 ( ⁇ -0.6) [(kg / day) —BOD / kg—MLSS] or less.
  • the ⁇ value is 3 ⁇ 4.5 or more, adjust the BOD sludge load to 0.3– 0.24 ⁇ ( ⁇ —0.6) [(kg / day) — ⁇ OD / kg— MLSS] or less. By doing so, solid-liquid separation by the separation membrane can be continued stably and efficiently while preventing clogging of the separation membrane and without impairing the quality of the treated water.
  • the present invention can also be applied to the case where the membrane separation activated sludge tank (aeration tank) 4 is an aerobic tank-anoxic tank for denitrification. Further, the present invention can be applied even when the separation membrane device is provided in the subsequent stage of the activated sludge tank.
  • a separation membrane device made of PVDF microfiltration hollow fiber membrane made by Asahi Kasei Chemicals Co., Ltd. with a pore size of 0.1 am is immersed in an activated sludge tank with an activated sludge volume of 10 L, and various wastewaters are separated by an activated sludge method. Processed by. For aeration for the membrane, air was fed from the bottom of the membrane module at a flow rate of 200 NL / h. The residence time of wastewater in the activated sludge tank was 18 hours. The water quality was analyzed once a day.
  • the membrane area is 0.022
  • the membrane filtration flux was set at 0.6 m / D, and chemical factory wastewater was adjusted by diluting with water so that the BOD was 300 mg / L, and this was treated by the membrane separation activated sludge method.
  • the upper limit of BOD—sludge load was 0.05 Kkg / day) —BOD / kg—MLSS].
  • the TOC at this time was 500 mg / L, and the ⁇ value was 0.6.
  • BOD—sludge load less than the calculated upper limit of 0.033 [(kg / day)-BOD / kg-MLSS] Set to.
  • the membrane filtration pressure immediately after the start of operation was 4 kPa.
  • the membrane filtration pressure on the 20th day from the start of operation was 10 kPa (Example 4).
  • the upper limit of sludge load was determined to be 0.065 [(kg / day) — BOD / kg—MLSS]. BOD sludge load value was maintained at 0.061 [(kg / day)-BOD / kg MLSS] by adjusting the membrane area
  • the initial pressure was 4 kPa and 10 kPa (Example 10).
  • the BOD sludge load was adjusted to 0.02 [(kg / day) — B by adjusting the dilution ratio of the raw water.
  • the upper limit of the BOD sludge load is 0.074. [( kg / day) —BOD / kg—MLSS]), and the initial pressure was 4 kPa, compared with 11 kPa on the 20th day (Example 11).
  • the membrane area is 0.022
  • the membrane filtration flux was set at 0.6 m / D, and the dyeing factory wastewater was adjusted by diluting with water to a BOD: 750 mg / L, and this was treated by the membrane separation activated sludge method.
  • the upper limit of B OD—sludge load was determined to be 0.1 [(kg / day) —BOD / kg—MLSS].
  • the COD at this time is 1400 mg / L, and the ⁇ value is 1.62.
  • the BOD—sludge load was set to 0.1 [(kg / day) —BOD / kg—MLSS].
  • the membrane filtration pressure immediately after the start of operation was 4 kPa.
  • the membrane filtration pressure on the 20th day from the start of operation was 11 kPa (Example 6).
  • the BOD-sludge load was set to 0.1 [(kg / day) —BOD / kg—MLSS].
  • the membrane filtration pressure immediately after the start of operation was 4 kPa.
  • the membrane filtration pressure on the 20th day from the start of operation was 9 kPa (Example 7).
  • the membrane area is 0.022
  • the membrane filtration flux was set at 0.6 m / D, and the enzyme factory wastewater (BOD: 250 0 mg / L) was treated by the membrane separation activated sludge method.
  • the upper limit of BOD—sludge load was determined to be 0.3 [(kg / day) —BOD / kg—MLSS].
  • the TOC at this time is 900 mg / L, and the ⁇ length is 2.78.
  • BOD—sludge load was set to 0.33 [(kg / day)-B OD / kg—MLSS] by rubbing MLSS at 10,000 mg / U.
  • the membrane filtration pressure immediately after the start of operation was 4 kPa.
  • the membrane filtration pressure on the 10th day from the start of operation was 30 kPa (Comparative Example 7).
  • the membrane module was washed, and on day 11 the enzyme factory wastewater was diluted with water to a BOD of 2200 mg / L and adjusted to a BOD—sludge load of 0.29 [(kg / day) — BOD / kg. — When set to MLSS The filtration pressure immediately after washing was 5 kPa, whereas the filtration pressure on the 31st day was 10 kPa (Example 8).
  • the membrane area is 0.022
  • the membrane filtration flux was set at 0.6 m / D, and the meat factory wastewater was adjusted by diluting with water so that the BOD was 2200 mg / L, and this was treated by the membrane separation activated sludge method.
  • the upper limit of B OD—sludge load was determined to be 0.3 [(kg / day) —BOD / kg—MLSS].
  • the TOC at this time is 600 mg / L, and the ⁇ value is 3.67.
  • the BOD—sludge load was set to 0.29 (kg / day) —BOD / kg—MLSS.
  • the membrane filtration pressure immediately after the start of operation was 4 kPa.
  • the membrane filtration pressure on the 20th day from the start of operation was 11 kPa (Example 9).
  • BOD—sludge load is less than 0 ⁇ 05— 0 ⁇ 06-( ⁇ -0.6) [(kg / day) — BOD / kg—MLSS], 1.5 ⁇ ⁇ ⁇ 2.5
  • BOD—sludge load is 0 ⁇ 1— 0 ⁇ 12 ⁇ ( ⁇ -0.6) [(kg / day) — BOD / kg—MLSS] or less, and when ⁇ 2.5
  • the BOD—sludge load is set to 0 ⁇ 3— 0 ⁇ 24 mm ( ⁇ -0.6) [(kg / day) — BOD / kg—MLSS] or less, the filtration pressure is kept low without causing membrane clogging. In addition, solid-liquid separation could be performed stably.
  • Example 1 1.3 0.03 0.8 5 10
  • Example 2 1.9 0.07 0.7 4 11
  • Example 3 4.4 0.12 0.65 5 11
  • Example 4 0.6 0.033 0.6 4 10
  • Example 5 1.35 0.039 0.6 5 12
  • Example 6 1.62 0.1 0.6 4 11
  • Example 7 2.27 0.1 0.6 4 9
  • Example 8 2.78 0.29 0.6 5 10
  • Example 1 3.67 0.29 0.6 4 11
  • Example 1 0 0.6 0.061 0.35 4 10
  • Example 1 1.35 0.071 0.2 4 11
  • Example 1 2 1.62 0.12 0.35 5 10
  • Example 1 3 2.27 0.12 0.35 4 10
  • Example 1 4 2.78 0.29 0.4 5 11
  • Example 1 5 3.67 0.4 0.12 5 12
  • Example 1 6 0.6 0.02 1.0 10 13
  • Example 1 7 1.35 0.03 0.8 11 14
  • Example 1 8 1.
  • a separation membrane device (membrane area: 0.015 m 2 ) with a modularized PVDF microfiltration hollow fiber membrane with a pore size of 0.1 and im is immersed in an activated sludge tank with an effective volume of 10 L, and detergent factory wastewater is separated into membranes. Processed by law. The residence time of wastewater in the activated sludge tank was 18 hours. The water quality was analyzed once a day. The membrane filtration flux was set at 0.6 m / D. In the aeration for the membrane, air was fed from the lower part of the membrane module at a flow rate of 200 L / h. The operation results are shown in Fig. 3.
  • the ⁇ value was about 1.2.
  • the power and filtration pressure began to increase.
  • the pressure reached 27 kPa and the operation was stopped.
  • the membrane module was washed and the sludge was replaced, and the MLSS of the initial input sludge was set to 15 g / L and the operation was started again. While looking at the MLSS measurement value, the amount of sludge extraction was adjusted and maintained at 15 g / L.
  • the ⁇ value was about 2 on the 16th to 30th days after operation. On the 16th day, dilute the wastewater with water and adjust the amount of organic matter flowing into the activated sludge tank. was set to 0.05 (kg / day) —BOD / kg—MLSS, and the filtration pressure did not increase for the next 6 days.
  • MLSS was maintained at 5 g / L by increasing the amount of sludge with the aim of reducing the amount of air to the activated sludge.
  • the BOD—sludge load at this time is 0.15 (kg / day) -BO D / kg—MLSS.
  • the pressure began to rise.
  • the filtration pressure reached 13 kPa. Therefore, another activated sludge tank with an effective volume of 10 L was connected to the BOD—sludge load of 0.075 (kg / day) — BOD / kg— MLSS.
  • the filtration pressure dropped to 11 kPa.
  • the method of adjusting the BOD—sludge load is to increase / decrease the activated sludge concentration, Stable solid-liquid separation without causing clogging of the membrane even if the present invention is applied by adjusting the method of increase / decrease of the product or increase / decrease of the amount of organic matter flowing into the activated sludge tank.
  • the BOD was 30 mg / L
  • the TOC was 100 mg / L
  • the ⁇ value was 0.3.
  • a separation membrane device (membrane area: 0.15 m 2 ) with a modularized PVDF microfiltration membrane with a pore size of 0.1 m is immersed in an activated sludge tank with an effective volume of 10 L, and the MLSS concentration is set to 10 g / L. And started driving.
  • BOD—sludge load is 0.027 (kg / day) -BOD / kg — MLSS.
  • the initial membrane filtration pressure was 5 kPa, but increased to 20 kPa on the 20th day of operation.
  • BOD was adjusted to 160 mg / L
  • TOC was adjusted to 150 mg / L
  • the ⁇ value was set to 1.1.
  • a separation membrane device with a membrane area of 0.03 m 2 was immersed in an activated sludge tank with an effective volume of 10 L, the MLSS concentration was set to 10 g / L, and operation was started.
  • the BOD—sludge load is 0.029 (kg / day) —BOD / kg—MLSS.
  • the initial membrane filtration pressure was 5 kPa
  • the membrane filtration pressure after 20 days was 8 kPa.
  • FIG. 1 is a block diagram showing an example of a method for treating organic wastewater according to the present invention.
  • FIG. 2 A diagram showing the relationship between the BOD-sludge load and the stable membrane filtration flux at the time when the ⁇ value is different.
  • FIG. 3 is a graph showing the change over time in transmembrane pressure difference in Example 22.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)

Description

明 細 書
廃水の処理方法
技術分野
[0001] 本発明は有機性廃水の処理をする浸漬型膜分離活性汚泥法による廃水の処理方 法に関する。
背景技術
[0002] 廃水処理方法の一つである膜分離活性汚泥法は、活性汚泥槽に膜カートリッジを 浸漬し、ろ過により活性汚泥と処理液との固液分離を行う方法である。この方法は活 性汚泥濃度(MLSS : Mixed Liquor Suspended Solid)を 5000力、ら 20000mg/lと極 めて高くして固液分離を行うことができるため、活性汚泥槽の容積を小さくできる、あ るいは活性汚泥槽内での反応時間を短縮できるという利点を有する。また、膜による ろ過のため処理水中には浮遊物質(SS : Suspended Solid)が混入しないので、最終 沈殿槽が不要となり、処理施設の敷地面積を減らすことができること、活性汚泥沈降 性の良否を問わず固液分離ができるため、活性汚泥管理の負担も軽減されることな ど多くのメリットがあり、近年急速に普及している。
[0003] 膜カートリッジとしては平膜や中空糸膜が用いられている。膜分離活性汚泥法では 、活性汚泥中の微生物が代謝する生物由来ポリマー、活性汚泥自体、または廃水に 含まれる夾雑物などが膜面に付着することによって、有効な膜面積が減少し、ろ過効 率が低下するため、長期間の安定なろ過が出来ない場合がある。このとき、ろ過方向 とは逆方向にろ過水等の媒体を噴出させて膜表面の付着物を除去する逆洗を行うこ と力 sある。
[0004] 従来、この膜表面及び膜の間への活性汚泥凝集物や夾雑物等の蓄積を避けるた めに、膜カートリッジの下部から空気等による曝気を行い、膜の振動効果と気泡の上 方への移動による撹拌効果によって、活性汚泥凝集物や夾雑物等を膜表面や膜間 力 剥離させていた。例えば特開 2000— 157846号公報(特許文献 1)には、曝気 の際、中空糸膜を許容範囲内で最大限振動振幅させるために、中空糸膜束の一方 の端部外周にはカートリッジヘッドが、他方端部外周にはスカートがそれぞれ液密に 固定され、カートリッジヘッド側の中空糸膜端部の中空部は開口し、スカート側の中 空糸膜端部の中空部は封止され、かつスカート側接着固定層に複数の貫通穴が設 けられていることを特徴とする中空糸膜カートリッジが開示されている。
[0005] しかしながら、活性汚泥槽へ流入する有機性廃水の組成によっては、活性汚泥処 理条件を適切に設定しないと、曝気や逆洗を行っても安定な固液分離ができなくな つてしまうことがある。これは、微生物が膜をつまらせる成分を多く分泌するためと考 x_られる。
[0006] 一方、活性汚泥濃度を上昇させることや活性汚泥に流入する有機物量を減少させ ることによって、あるいは膜ろ過流束を低く設定することによって、 目づまりを生じにく くすることが可能である。し力、しながら、かかる方法を過度に行うと、廃水処理の効率 が低下するという問題がある。
特許文献 1:特開 2000— 157846号公報
発明の開示
発明が解決しょうとする課題
[0007] そこで、本発明は、膜が目づまりする前に目づまりのリスクを適切に評価し、必要十 分な対策をとることによって、活性汚泥と処理液との固液分離を安定的且つ効率よく 行うことができる方法を提供することを目的とする。
課題を解決するための手段
[0008] 本発明者らは、鋭意検討の結果、膜外表面に付着してろ過を阻害する物質が、糖 を主成分とする分子量が数十万から数百万の生物由来ポリマーであることを見いだ した。さらに、本発明者らは、有機廃水の生分解性の難易は、生物分解によって有機 物濃度を測定する生物学的酸素要求量 (BOD)と、有機性廃水に含まれる有機成分 のほぼすベてを測定できる全有機炭素(TOC)、全酸素要求量 (TOD)、または重クロ ム酸カリウムを用いた化学的酸素要求量 (COD )との比に依存することを見出したこ
Cr
とから、 BODと、 TOC、 TODまたは COD との比を γ値として求め、 γ値を使用して、
Cr
膜の目づまりのリスクを適切に評価する方法を検討した。
[0009] その結果、 γ値力 以上 1.5未満という難生分解性の有機性廃水を処理するとき には、 BOD—汚泥負荷を 0·05— 0·06 Χ ( δ -0.6) [(kg/day)— BOD/kg— MLSS]以下 に設定すると、糖濃度が上昇しないことを見いだした。また、 γ値が 1.5≤ γ < 2.5の 時は、 BOD—汚泥負荷を、 0.1 -0.12 Χ ( δ -0.6) [(kg/day)— BOD/kg— MLSS]以下 に調整し、 γ値力 ¾·5以上の易生分解性の有機性廃水を処理するときには、 BOD— 汚泥負荷を 0.3— 0·24 Χ ( δ -0.6) [(kg/day)— BOD/kg— MLSS]以下に設定すれば 糖濃度は上昇せず、安定してろ過を継続できることを見出した。
[0010] ここで、 δは平均膜ろ過流束を示す。平均膜ろ過流束とは、 1日の単位膜面積当た りの流量をいい、ろ過流量から逆洗の流量を減じた値を膜面積で除すことによって求 められる。
[0011] これらの式によれば、平均膜ろ過流束 δを減少させることによって BOD—汚泥負荷 の上限値を上げることができる。したがって、本発明者らは、糖濃度が上昇しても膜ろ 過流束を減少させれば、安定的に運転を継続できることも確認した。
[0012] ここで BOD—汚泥負荷は、以下の式で表される。
[0013] BOD—汚泥負荷
= (BOD X平均膜ろ過流束 X膜面積) / (MLSS X活性汚泥容積) 式からわかるように、 BOD—汚泥負荷は、単位汚泥重量 (MLSS濃度 X活性汚泥の 容積)あたり、 1日に活性汚泥槽へ流入する BOD成分の量であり、 1日あたり単位微生 物が担当する BOD成分の量を表す。単位は(kg/day)— BOD/kg— MLSSである。
[0014] また、 γ =BOD/ X /3 )であり、
βは前記有機性廃水中の全有機炭素量 (TOC) [mg/L]、重クロム酸カリウムを用い た化学的酸素要求量(COD ) [mg/L]、全酸素要求量 (TOD) [mg/L]から選ばれる 1
Cr
つの量であり、
BODは前記有機性廃水中の生物学的酸素要求量 [mg/L]を示し、
αは /3に基づく調整係数であって、 /3に
TOCを選んだ場合は、 α = 1.0
COD を選んだ場合は、 α =0.33
Cr
TODを選んだ場合は、 α =0.33とする。
[0015] 即ち、本発明は、
[1] 活性汚泥を収容した活性汚泥槽に、有機性廃水を流入させる流入工程と、 前記活性汚泥槽にて前記有機性廃水を前記活性汚泥によって生物処理し、該活 性汚泥槽あるいはその後段に設置した分離膜装置によって該活性汚泥を固液分離 する分離工程と、を含む廃水の処理方法であって、
前記流入工程に先立って、前記有機性廃水の全有機物量を示す指標と BOD値に 基づいて BOD—汚泥負荷の上限値を求め、前記活性汚泥槽における BOD—汚泥 負荷が前記上限値を上回らな!/、よう調整する、廃水処理方法;
[2] 活性汚泥を収容した活性汚泥槽に有機性廃水を流入させる流入工程と、 前記活性汚泥槽にて前記有機性廃水を前記活性汚泥によって生物処理し、該活 性汚泥槽あるいはその後段に設置した分離膜装置によって該活性汚泥を固液分離 する分離工程と、を含む廃水の処理方法であって、
前記流入工程に先立って、前記有機性廃水の全有機物量を示す指標と BOD値と の比率、および前記分離膜装置の平均膜ろ過流束に基づいて、 BOD—汚泥負荷の 上限値を求め、前記活性汚泥槽における BOD—汚泥負荷が前記上限値を上回らな いよう調整する、廃水処理方法;
[3] 活性汚泥を収容した活性汚泥槽に有機性廃水を流入させる流入工程と、 前記活性汚泥槽にて前記有機性廃水を前記活性汚泥によって生物処理し、該活 性汚泥槽あるいはその後段に設置した分離膜装置によって該活性汚泥を固液分離 する分離工程と、を含む廃水の処理方法であって、
前記有機性廃水の γ値が 0.6≤ γ < 1.5の時、前記活性汚泥槽の BOD—汚泥負荷 を、 0.05— 0.06 Χ ( δ -0.6) Kkg/day)— BOD/kg—MLSS]以下に調整することを特徴 とする、廃水処理方法
〔ここで、 γ =BOD/ X /3 )とし、
βは前記有機性廃水中の全有機炭素量 (TOC) [mg/L]、重クロム酸カリウムを用いた 化学的酸素要求量(COD ) [mg/L]、全酸素要求量(TOD) [mg/L]から選ばれる 1つ
Cr
であり、
BODは前記有機性廃水中の生物学的酸素要求量 [mg/L]であり、
αは /3に基づく調整係数であって、 /3に
TOCを選んだ場合は、 α = 1.0 COD を選んだ場合は、 α =0.33
Cr
TODを選んだ場合は、 α =0.33とする。
また、 δは前記分離膜装置の平均膜ろ過流束とし、単位は m3/(m2' day)とする。〕; [4] 活性汚泥を収容した活性汚泥槽に有機性廃水を流入させる流入工程と、 前記活性汚泥槽にて前記有機性廃水を前記活性汚泥によって生物処理し、該活 性汚泥槽あるいはその後段に設置した分離膜装置によって該活性汚泥を固液分離 する分離工程と、を含む廃水の処理方法であって、
前記有機性廃水の γ値が 1.5≤ γ < 2.5の時、前記活性汚泥槽の BOD—汚泥負荷 を、 0.1— 0.12 Χ ( δ -0.6) [(kg/day)— BOD/kg— MLSS]以下に調整することを特徴と する、廃水処理方法〔ここで、 Ίおよび δは、上記 [3]と同様とする〕;
[5] 活性汚泥を収容した活性汚泥槽に有機性廃水を流入させる流入工程と、 前記活性汚泥槽にて前記有機性廃水を前記活性汚泥によって生物処理し、該活 性汚泥槽あるいはその後段に設置した分離膜装置によって該活性汚泥を固液分離 する分離工程と、を含む廃水の処理方法であって、
前記有機性廃水の γ値が Ύ≥ 2.5の時、前記活性汚泥槽の BOD—汚泥負荷を、 0. 3— 0·24 Χ ( δ -0.6) [(kg/day)— BOD/kg— MLSS]以下に調整することを特徴とする、 廃水処理方法
〔ここで、 γおよび δは、上記 [3]と同様とする〕;
[6] 活性汚泥を収容した活性汚泥槽に有機性廃水を流入させる流入工程と、 前記活性汚泥槽にて前記有機性廃水を前記活性汚泥によって生物処理し、該活 性汚泥槽あるいはその後段に設置した分離膜装置によって該活性汚泥を固液分離 する分離工程と、を含む廃水の処理方法であって、
前記有機性廃水の γ値が γ < 0.6の時は、 γ値が高い物質を前記有機性廃水に 混合することによって、混合後の有機性廃水の γ値を γ≥0·6とすることを特徴とする
、上記 [3]〜 [5]のいずれか 1項に記載の廃水処理方法〔ここで γは、上記 [3]と同 様とする
〕;
[7] 前記活性汚泥槽の BOD—汚泥負荷を、活性汚泥濃度、活性汚泥容積、活性 汚泥槽に流入する有機物量、平均膜ろ過流束及び膜面積からなる群より選択される 一以上を増減させることによって調整する、上記 [1]〜[6]のいずれか 1項に記載の 廃水処理方法;
[8] 前記活性汚泥槽の BOD—汚泥負荷が、算出した BOD—汚泥負荷の上限値を 上回る場合に、平均膜ろ過流束を減少させて、該 BOD—汚泥負荷の上限値が該活 性汚泥槽の BOD—汚泥負荷を上回るように調整する、上記 [3]〜 [6]の!/、ずれか 1 項に記載の廃水処理方法;及び
[9] 前記活性汚泥槽の BOD—汚泥負荷が、算出した BOD—汚泥負荷の上限値を 上回る場合に、活性汚泥濃度、活性汚泥容積、活性汚泥槽に流入する有機物量、 及び膜面積からなる群より選択される一以上を増減させることによって、該活性汚泥 槽の BOD—汚泥負荷が該上限値を下回るように調整する、上記 [3]〜 [6]の!/、ずれ 力、 1項に記載の廃水処理方法、に関する。
発明の効果
[0016] 本発明によれば、有機性廃水の γ値によって目づまりのリスクを適切に評価し、こ れに基づいて BOD—汚泥負荷を調整することにより、当該リスクが高いときには、活 性汚泥槽における膜の目づまりを未然に抑制することができる。また、当該リスクが低 い場合には、固液分離能力を無駄なく活用して効率を高めることができる。 BOD—汚 泥負荷は、 MLSS濃度、活性汚泥容積、活性汚泥槽へ流入する有機物量、膜面積を 調整することで簡単に制御すること力 Sできる。つまり、例えば、難生分解性の有機性 廃水の場合( γ値が比較的低い場合)は、活性汚泥量を増加させることにより、また は活性汚泥槽へ流入する有機物量を減少させることによって、流入する有機物量に 対して、微生物量を多く設定し、 BOD—汚泥負荷をより低く設定することができる。一 方、易生分解性の有機性廃水の場合( γ値が比較的高い場合)は、 BOD—汚泥負 荷の上限値をより高く設定することができるので、流入する有機物量に対して微生物 量を少なく設定して、固液分離効率を高めることが可能である。
[0017] また、平均膜ろ過流束 δを減少させることにより、 BOD—汚泥負荷の上限値を上げ ること力 Sできる。従って、 BOD—汚泥負荷の上限力 S、実際の BOD—汚泥負荷の値を 上回るように δを設定することによつても、膜の目づまりを未然に防ぐことができる。 [0018] 一般に、難生分解性の有機性廃水が流入して!/、る時に、易生分解性の有機性廃 水の条件で処理すれば、処理水の水質の悪化を招く可能性がある。しかしながら、 本発明の方法に従って処理条件を調整することにより、一定の良好な処理水質を確 保すること力 Sでさる。
発明を実施するための最良の形態
[0019] 以下に、本発明に係る廃水処理方法の好まし!/、実施の形態を説明する。
[0020] 本発明に係る廃水処理方法は、例えば、図 1に示される装置を用いて行うことがで きる。図 1において、膜分離活性汚泥槽内に流入する有機性廃水 1は、細目スクリー ンゃドラムスクリーンなどの前処理設備 2によって夾雑物を除去された後に、流量調 整槽 3に一旦貯留される。その後、分離膜装置における膜ろ過流束を一定に保った め、流量調整槽 3から一定の流量で膜分離活性汚泥槽 (曝気槽) 4に供給される。
[0021] 膜分離活性汚泥槽(曝気槽) 4では、微生物が有機性廃水 1中の有機物(BOD)を 分解除去する。膜分離活性汚泥槽 4における活性汚泥混合液の固液分離は槽内に 浸漬された浸漬型分離膜装置 5で行!/、、ろ過液 9は必要に応じて滅菌槽 10で消毒 後、処理水 11とされる。
[0022] 膜分離活性汚泥槽(曝気槽) 4では、微生物は有機性廃水中の BOD成分を分解し 、且つ増殖する。
[0023] 本発明者らは上述のように、活性汚泥槽へ流入する有機性廃水の水質分析 (BOD および TOCまたは COD または TODの測定)を行い、 TOC、 COD または TODのい
Cr Cr
ずれ力、を採用して W直を算出し、 γ値による BOD—汚泥負荷の上限値を求め、実際 の BOD—汚泥負荷値がその上限値以下となるように制御すれば、分離膜が目づまり するリスクを回避すること力 Sできることを見!/、だ'した。
[0024] 有機性廃水の Ί値の経時変化は、例えば数日〜数週間に 1回等、 BOD、 TOC、 T OD、 COD ィ直を定期的に測定し、 BOD/TOC、 BOD/COD または BOD/TODを求
Cr Cr
めることによって簡単に求めることができる。
[0025] 通常、 TOC、 TOD、 COD のいずれを用いた場合も、 γは略同一の値となる。それ
Cr
ぞれの γ値が異なり、異なる式が適用される範囲に各 γ値が属する場合には、当業 者は、いずれの γ値を採用するか適宜選択することができる力 全有機物量がより正 確に測定される順序、即ち TOD、 COD 、 TOCの優先順位で採用することが好ましい
Cr
[0026] 尚、 BOD、 TOC、 TOD, COD の各値は、例えば JIS K 0102に記載の方法で測定
Cr
すること力 sでさる。
[0027] γ値力 S0.6以上 1.5未満の場合、即ち、難生分解性の場合は、活性汚泥槽からの汚 泥引き抜き量を縮減し MLSS濃度を上昇させるか、活性汚泥槽へ流入する有機性廃 水量を減じたり、希釈したりすることで、 BOD 汚泥負荷を 0.05— 0.06 Χ ( δ— 0.6) [(k g/day)— BOD/kg— MLSS]以下に調整する。 γ値力 以上 2.5未満の場合は、 BOD 汚泥負荷を、 0.1 -0.12 Χ ( δ -0.6) [(kg/day)— BOD/kg— MLSS]以下に調整する 。 γ値力 ¾.5以上の場合は、 BOD 汚泥負荷を、 0.3— 0.24 Χ ( δ—0.6) [(kg/day)— Β OD/kg— MLSS]以下に調整する。こうすることによって、分離膜の目づまりを防ぎつ つ、処理水の水質を損なうことなく分離膜による固液分離を安定的に効率よく継続で きる。
[0028] また、分離膜装置の平均膜ろ過流束 δを小さくすれば、上記各式で求められる ΒΟ D 汚泥負荷の上限値を大きくできる。従って、 δの値を、実際の BOD 汚泥負荷を 超える上限値を与える範囲に設定すれことによつても、分離膜の目づまりを防ぎつつ 、処理水の水質を損なうことなく分離膜による固液分離を安定的に効率よく継続でき
[0029] なお、膜分離活性汚泥槽 (曝気槽) 4が脱窒のために好気槽ー無酸素槽である場 合にも本発明は適用できる。また、分離膜装置は活性汚泥槽の後段に設けられる場 合でも本発明を適用することができる。
実施例
[0030] 本発明の実施例を以下に説明するが、それによつて本発明が限定されることはな い。
(実施例;!〜 3、比較例 1、 2)
以下の方法により、 BOD 汚泥負荷を調整することによって、膜分離活性汚泥法に おける膜ろ過流束が変化することを確認した。
[0031] まず、製糖工場廃水( γ値: 1.9)、洗剤工場廃水( γ値: 1.3)および豆腐工場廃水( 7値: 4.4)の 3種類の有機性廃水を用いて膜分離活性汚泥実験を行い、種々の BO D—汚泥負荷における安定膜ろ過流束を評価した。分離膜装置には孔径 0.1 πιの PVDF製中空糸型精密ろ過膜を多数本束ねて膜面積を 0.015 m2とした膜モジュール を使用した。膜用の曝気は、空気を膜モジュールの下部から 200 L/hの流量で送気 した。ここで、安定膜ろ過流束とは、膜ろ過圧力が運転開始力も 20日経っても、初期 圧力からの上昇が 10 kPa以内であるときの膜ろ過流束と定義した。
[0032] 結果を図 2に示す。いずれの場合も BOD—汚泥負荷が高いときは、安定膜ろ過流 束は低くなり、逆に BOD—汚泥負荷を低く設定すると安定膜ろ過流束が高くなつた。 また、廃水の種類によって異なった曲線が描かれ、 BOD/TOC値すなわち Ί値が 1.3 の場合は、 BOD—汚泥負荷が 0.03のときに、安定膜ろ過流束は 0.8 m/Dである(実施 例 1 )力 s、 BOD—汚泥負荷が 0.06では安定膜ろ過流束は 0.3 m/Dであった(比較例 1 )。 BOD/TOC値すなわち γ値が 1.9の場合は、 BOD—汚泥負荷が 0.07のときに安定 膜ろ過流束力 m/Dである(実施例 2)が、 BOD—汚泥負荷が 0.13のときは、安定 膜ろ過流束は、 0.2 m/Dであった(比較例 2)。 BOD/TOC値すなわち γ値力 ·4の場 合は BOD—汚泥負荷が 0.12でも安定膜ろ過流束は 0.65 m/Dであった(実施例 3)。
[0033] 以上より、 BOD/TOC値(= γ値)によって、分離膜装置によって行う固液分離工程 で設定すべき BOD—汚泥負荷が異なることを確認できた。
(実施例 4〜9、比較例 3〜8)
孔径 0.1 a mの旭化成ケミカルズ (株)社製 PVDF製精密ろ過中空糸膜をモジユー ル化した分離膜装置を活性汚泥容積 10 Lの活性汚泥槽に浸漬させて、種々の廃水 を膜分離活性汚泥法により処理した。膜用の曝気は、空気を膜モジュールの下部か ら 200 NL/hの流量で送気した。活性汚泥槽における廃水の滞留時間は 18時間とし た。 1日に 1回廃水の水質分析を行った。
[0034] ( 1 )膜面積は 0.022
Figure imgf000011_0001
膜ろ過流束は 0.6 m/Dに設定し、化学工場廃水を BOD: 30 0 mg/Lになるように水で希釈して調整し、これを膜分離活性汚泥法により処理した。
BOD—汚泥負荷の上限値は 0.05 Kkg/day)— BOD/kg—MLSS]と算出された。このと きの TOCは 500 mg/Lであり、 γ値は 0.6であった。 MLSSを 12000 mg/Uこすることによ り、 BOD—汚泥負荷を算出された上限値以下の 0.033 [(kg/day) - BOD/kg - MLSS] に設定した。運転開始直後の膜ろ過圧力は 4 kPaであった。運転開始から 20日目の 膜ろ過圧力は 10 kPaであった(実施例 4)。
[0035] ろ過圧力は安定していたので、 21日目に MLSSを 6500 mg/Lに低下させ、 BOD 汚 泥負荷を上限値以上の 0.061 [(kg/day)— BOD/kg— MLSS]に設定すると、 25日目に ろ過圧力は 30 kPaに達した(比較例 3)。
[0036] その後、膜モジュールを洗浄し、膜ろ過流束を 0.35 m/Dに設定して運転した。 BOD
—汚泥負荷の上限値は 0.065 [(kg/day)— BOD/kg— MLSS]と求められた。膜面積を 調整して BOD 汚泥負荷値は 0.061 [(kg/day) - BOD/kg MLSS]に維持したところ
、初期圧力が 4 kPaに対し、 20日目では 10 kPaであった(実施例 10)。
[0037] さらに、原水の希釈倍率を調整することにより BOD 汚泥負荷を 0.02 [(kg/day)— B
OD/kg— MLSS]に、膜ろ過流束を 1.0 m/Dに設定して運転すると(BOD 汚泥負荷 の上限値は 0.026 [(kg/day)— BOD/kg— MLSS) ]、その後の 20日後の圧力は 13 kPa であった(実施例 16)。
[0038] そこで膜ろ過流束は 1.0 m/Dのまま原水の希釈倍率を調整することによって BOD— 汚泥負荷を 0.035 [(kg/day)— BOD/kg— MLSS]に上げると、それから 20日後の膜ろ 過圧力は 40 kPaであった(比較例 9)。
[0039] (2)膜面積は 0.022
Figure imgf000012_0001
膜ろ過流束は 0.6 m/Dに設定し、洗剤工場廃水を BOD: 35 0 mg/Lになるように水で希釈して調整し、これを膜分離活性汚泥法により処理した。 BOD 汚泥負荷の上限値は 0.05 [(kg/day)— BOD/kg— MLSS]と算出された。このと きの TOCは 260 mg/Lであり、 γ値は 1.34である。 MLSSを 12000 mg/Uこすることにより 、 BOD 汚泥負荷を 0.039 [(kg/day)— BOD/kg— MLSS]に設定した。運転開始直後 の膜ろ過圧力は 5 kPaであった。運転開始から 20日目の膜ろ過圧力は 12 kPaであつ た (実施例 5)。
[0040] ろ過圧力は安定していたので、 21日目に MLSSを 6500 mg/Lに低下させ、 BOD 汚 泥負荷を 0.071 [(kg/day)— BOD/kg— MLSS]に設定すると、 25日目にろ過圧力は 35 kPaに達した(比較例 4)。
[0041] その後、膜モジュールを洗浄し、膜面積を調整して BOD 汚泥負荷を維持しなが ら膜ろ過流束を 0.2 m/Dに設定して運転すると(BOD 汚泥負荷の上限値は 0.074 [( kg/day)— BOD/kg— MLSS])、初期圧力が 4 kPaに対し、 20日目では 11 kPaであった (実施例 1 1 )。
[0042] さらに原水の希釈倍率を調整することにより BOD—汚泥負荷を 0.03 [(kg/day)— BO D/kg— MLSS]に、膜ろ過流束を 0.8 m/Dに設定して運転すると(BOD—汚泥負荷の 上限値は 0.038 [(kg/day) - BOD/kg - MLSS])、その後の 20日後の圧力は 14 kPaで あった(実施例 17)。そこで膜ろ過流束は 0.8 m/Dのまま原水の希釈倍率を調整して BOD—汚泥負荷を 0.045 [(kg/day)— BOD/kg— MLSS]に上げると、その後の 20日後 の膜ろ過圧力は 35 kPaであった(比較例 10)。
[0043] (3)膜面積は 0.022
Figure imgf000013_0001
膜ろ過流束は 0.6 m/Dに設定し、染色工場廃水を BOD: 75 0 mg/Lになるように水で薄めて調整し、これを膜分離活性汚泥法により処理した。 B OD—汚泥負荷の上限値は 0.1 [(kg/day)— BOD/kg— MLSS]と求められた。このとき の COD は 1400 mg/Lであり、 γ値は 1.62である。 MLSSを 10000 mg/Uこすることによ
Cr
り、 BOD—汚泥負荷を 0.1 [(kg/day)— BOD/kg— MLSS]に設定した。運転開始直後 の膜ろ過圧力は 4 kPaであった。運転開始から 20日目の膜ろ過圧力は 11 kPaであつ た(実施例 6)。
[0044] ろ過圧力は安定していたので、 21日目に同工場廃水を BOD : 900 mg/Lになるよう に調整し、 BOD—汚泥負荷を 0.12 [(kg/day)— BOD/kg— MLSS]に設定すると、 25日 目にろ過圧力は 37 kPaに達した(比較例 5)。
[0045] その後、膜モジュールを洗浄し、膜面積を調整して BOD—汚泥負荷を維持しなが ら膜ろ過流束を 0.35 m/Dに設定して運転すると(BOD—汚泥負荷の上限値は [0.13 ( kg/day)— BOD/kg— MLSS])、初期圧力が 5 kPaに対し、 20日目では 10 kPaであった (実施例 12)。
[0046] さらに原水の希釈倍率を調整して BOD—汚泥負荷を 0.035 (kg/day)— BOD/kg— MLSSに、膜ろ過流束を 1.0 m/Dに設定して運転すると(BOD—汚泥負荷の上限値は 0.052 [(kg/day)— BOD/kg— MLSS])、その後の 20日後の圧力は 13 kPaであった(実 施例 18)。そこで膜ろ過流束は 1.0 m/Dのまま原水の希釈倍率を調整して BOD—汚 泥負荷を 0.06 (kg/day)— BOD/kg— MLSSに上げるとその後の 20日後の膜ろ過圧力 は 38 kPaであった(比較例 1 1)。 [0047] (4)膜面積は 0.022
Figure imgf000014_0001
膜ろ過流束は 0.6 m/Dに設定し、半導体工場廃水を BOD: 750 mg/Lになるように水で薄めて調整し、これを膜分離活性汚泥法により処理した。 BOD—汚泥負荷の上限値は 0.1 [(kg/day)— BOD/kg—MLSS]と求められた。このとき の COD は 1000 mg/Lであり、 γ値は 2.27である。 MLSSを 10000 mg/Uこすることによ
Cr
り、 BOD—汚泥負荷を 0.1 [(kg/day)— BOD/kg—MLSS]に設定した。運転開始直後 の膜ろ過圧力は 4 kPaであった。運転開始から 20日目の膜ろ過圧力は 9 kPaであった (実施例 7)。
[0048] ろ過圧力は安定していたので、 21日目に同工場廃水を BOD : 900 mg/Lになるよう に調整し、 BOD—汚泥負荷を 0.12 [(kg/day)— BOD/kg— MLSS]に設定すると、 25日 目にろ過圧力は 40 kPaに達した(比較例 6)。
[0049] その後、膜モジュールを洗浄し、膜面積を調整して BOD—汚泥負荷を維持しなが ら膜ろ過流束を 0.35 m/Dに設定して運転すると(BOD—汚泥負荷の上限値は 0.13 [( kg/day)— BOD/kg—MLSS])、初期圧力が 4 kPaに対し、 20日目では 10 kPaであった (実施例 13)。
[0050] さらに原水の希釈倍率を調整して BOD—汚泥負荷を 0.045 [(kg/day)— BOD/kg— MLSS]に、膜ろ過流束を 1.0 m/Dに設定して運転すると(BOD—汚泥負荷の上限値 は 0.052 [(kg/day)— BOD/kg— MLSS])、その後の 20日後の圧力は 14 kPaであった( 実施例 19)。そこで膜ろ過流束は 1.0 m/Dのまま原水の希釈倍率を調整して BOD— 汚泥負荷を 0.055 [(kg/day)— BOD/kg— MLSS]に上げるとその後の 20日後の膜ろ過 圧力は 41 kPaであった(比較例 12)。
[0051] (5)膜面積は 0.022
Figure imgf000014_0002
膜ろ過流束は 0.6 m/Dに設定し、酵素工場廃水(BOD: 250 0 mg/L)を膜分離活性汚泥法により処理した。 BOD—汚泥負荷の上限値は 0.3 [(kg/ day)— BOD/kg— MLSS]と求められた。このときの TOCは 900 mg/Lであり、 γィ直は 2.7 8である。 MLSSを 10000 mg/Uこすることにより、 BOD—汚泥負荷を 0.33 [(kg/day) - B OD/kg— MLSS]に設定した。運転開始直後の膜ろ過圧力は 4 kPaであった。運転開 始から 10日目の膜ろ過圧力は 30 kPaであった(比較例 7)。
[0052] 膜モジュールを洗浄し、 11日目に酵素工場廃水を BOD: 2200 mg/Lになるように水 で薄めて調整し、 BOD—汚泥負荷を 0.29 [(kg/day)— BOD/kg— MLSS]に設定すると 、洗浄直後のろ過圧力が 5 kPaに対し、 31日目のろ過圧力は 10 kPaであった(実施例 8)。
[0053] その後、膜モジュールを洗浄し、膜面積を調整して BOD—汚泥負荷を維持しなが ら膜ろ過流束を 0.4 m/Dに設定して運転すると(BOD—汚泥負荷の上限値は 0.348 [( kg/day)— BOD/kg— MLSS])、初期圧力が 5 kPaに対し、 20日目では 11 kPaであった (実施例 14)。
[0054] さらに原水の希釈倍率を調整して BOD—汚泥負荷を 0.18 [(kg/day)— BOD/kg— M LSS]に、膜ろ過流束を 1.0 m/Dに設定して運転すると(BOD—汚泥負荷の上限値は 0 .204 (kg/day)— BOD/kg— MLSS)その後の 20日後の圧力は 15 kPaであった(実施例 20)。そこで膜ろ過流束は 1.0 m/Dのまま原水の希釈倍率を調整して BOD—汚泥負 荷を 0.25 [(kg/day)— BOD/kg— MLSS]に上げるとその後の 20日後の膜ろ過圧力は 4 3 kPaであった(比較例 13)。
[0055] (6)膜面積は 0.022
Figure imgf000015_0001
膜ろ過流束は 0.6 m/Dに設定し、食肉工場廃水を BOD: 22 00 mg/Lになるように水で薄めて調整し、これを膜分離活性汚泥法により処理した。 B OD—汚泥負荷の上限値は 0.3 [(kg/day)— BOD/kg— MLSS]と求められた。このとき の TOCは 600 mg/Lであり、 γ値は 3.67である。 MLSSを 10000 mg/Uこすることにより、 BOD—汚泥負荷を 0.29 (kg/day)— BOD/kg— MLSSに設定した。運転開始直後の膜 ろ過圧力は 4 kPaであった。運転開始から 20日目の膜ろ過圧力は 11 kPaであった(実 施例 9)。
[0056] ろ過圧力は安定していたので、 21日目に同工場廃水を BOD : 3000 mg/Lになるよう に調整し、 BOD—汚泥負荷を 0.4 (kg/day)— BOD/kg— MLSSに設定すると、 25日目 にろ過圧力は 40 kPaに達した(比較例 8)。
[0057] その後、膜モジュールを洗浄し、膜面積を調整して BOD—汚泥負荷を維持しなが ら膜ろ過流束を 0.12 m/Dに設定して運転すると(BOD—汚泥負荷の上限値は 0.42 ( kg/day)— BOD/kg— MLSS)、初期圧力が 5 kPaに対し、 20日目では 12 kPaであった( 実施例 15)。
[0058] さらに原水の希釈倍率を調整して BOD—汚泥負荷を 0.17 (kg/day)— BOD/kg— M LSSに、膜ろ過流束を 1.0 m/Dに設定して運転すると(BOD—汚泥負荷の上限値は 0. 20 (kg/day) - BOD/kg - MLSS)、その後の 20日後の圧力は 13 kPaであった(実施例 21)。そこで膜ろ過流束は 1.0 m/Dのまま原水の希釈倍率を調整して BOD—汚泥負 荷を 0.3 (kg/day)— BOD/kg— MLSSに上げるとその後の 20日後の膜ろ過圧力は 39 k Paであった(比較例 14)。
[0059] 以上をまとめて表 1に示す。
[0060] 以上のように、 γ値が、
0.6≤ γ < 1.5の場合には、
BOD—汚泥負荷を 0·05— 0·06Χ(δ -0.6) [(kg/day)— BOD/kg— MLSS]以下に、 1.5≤ γ <2.5の場合には
BOD—汚泥負荷を 0·1— 0·12Χ(δ -0.6) [(kg/day)— BOD/kg— MLSS]以下に、 γ≥2·5の場合には
BOD—汚泥負荷を 0·3— 0·24Χ(δ -0.6) [(kg/day)— BOD/kg— MLSS]以下に設 定すれば、膜の目づまりを生じさせることなぐろ過圧力を低く維持し、安定的に固液 分離を行うことができた。
[0061] [表 1]
γ値、 BOD—汚泥負荷およびろ過圧力の関係 γ値 BOD—汚泥負荷 膜ろ過 ろ過圧力 [kPa] [(kg/day)一 BOD/kg一 MLSS] 流束 初期 20日目 実施例 1 1.3 0.03 0.8 5 10 実施例 2 1.9 0.07 0.7 4 11 実施例 3 4.4 0.12 0.65 5 11 実施例 4 0.6 0.033 0.6 4 10 実施例 5 1.35 0.039 0.6 5 12 実施例 6 1.62 0.1 0.6 4 11 実施例 7 2.27 0.1 0.6 4 9 実施例 8 2.78 0.29 0.6 5 10 実施例 9 3.67 0.29 0.6 4 11 実施例 1 0 0.6 0.061 0.35 4 10 実施例 1 1 1.35 0.071 0.2 4 11 実施例 1 2 1.62 0.12 0.35 5 10 実施例 1 3 2.27 0.12 0.35 4 10 実施例 1 4 2.78 0.29 0.4 5 11 実施例 1 5 3.67 0.4 0.12 5 12 実施例 1 6 0.6 0.02 1.0 10 13 実施例 1 7 1.35 0.03 0.8 11 14 実施例 1 8 1.62 0.035 1.0 10 13 実施例 1 9 2.27 0.045 1.0 11 14 実施例 2 0 2.78 0.18 1.0 10 15 実施例 2 1 3.67 0.17 1.0 10 13 比較例 1 1.3 0.06 03 6 13 比較例 2 1.9 0.13 0.2 5 14 比較例 3 0.6 0.061 0.6 10 >30 比較例 4 1.35 0.071 0.6 12 >35 比較例 5 1.62 0.12 0.6 11 >37 比較例 6 2.27 0.12 0.6 9 >40 比較例 7 2.78 0.33 0.6 4 >30 比較例 8 3.67 0.4 0.6 11 >40 比較例 9 0.6 0.035 1.0 13 >40 比較例 1 0 1.35 0.045 0.8 14 >35 比較例 1 1 1.62 0.06 1.0 13 >38 比較例 1 2 2.27 0.055 1.0 14 >41 比較例 1 3 2.78 0.25 1.0 15 >43 比較例 1 4 3.67 0.3 1.0 13 >39 (実施例 22)
孔径 0.1 ,i mの PVDF製精密ろ過中空糸膜をモジュール化した分離膜装置 (膜面積 : 0.015 m2)を有効容積 10 Lの活性汚泥槽に浸漬させて、洗剤工場廃水を膜分離活 性汚泥法により処理した。活性汚泥槽における廃水の滞留時間は 18時間とした。 1日 に 1回廃水の水質分析を行った。膜ろ過流束は、 0.6 m/Dに設定した。膜用の曝気は 、空気を膜モジュールの下部から 200 L/hの流量で送気した。運転結果を図 3に示す
[0062] 運転開始前に廃水の水質分析を行うと BOD: 700 mg/L、 TOC: 350 mg/L、 COD :
Cr
1100 mg/L、 TOD: 1150であった。このときの γ値は 1·8〜2·0であるので BOD—汚泥 負荷は 0.07 (kg/day)— BOD/kg— MLSSに設定して実験を開始した。初期活性汚泥 の MLSS濃度は 10 g/Lとし、汚泥引き抜き量を調整して MLSS濃度を 10も I Lに保持し た。 γ値に応じて、 BOD—汚泥負荷を適切な範囲に設定することにより、 7日目まで はろ過圧力も上昇せず、安定に運転することができた。
[0063] 7〜15日目の廃水の水質分析の結果、 γ値が約 1.2であった。運転 10日目くらい力、 らろ過圧力が上昇しはじめ、 15日目には 27 kPaに達したため運転を停止した。
[0064] 膜モジュールを洗浄して汚泥を入れ換え、初期投入汚泥の MLSSを 15 g/Lに設定 して再び運転を開始した。 MLSS測定値を見ながら、汚泥引き抜き量の調整を行い 15 g/Lに保持した。廃水の水質分析の結果、運転開始 16〜30日目は γ値が約 2であつ たので、 16日目に廃水を水で薄めて活性汚泥槽へ流入する有機物量を調整し BOD —汚泥負荷を 0.05 (kg/day)— BOD/kg— MLSSに設定したところ、その後 6日間は、ろ 過圧力は上昇しなかった。
[0065] 運転 22日目に活性汚泥への空気量を減らすことを目的に、汚泥引き抜き量を増や すことで MLSSを 5 g/Lに保持した。このときの BOD—汚泥負荷は 0.15 (kg/day) -BO D/kg— MLSSである。 MLSSを下げた直後から圧力は上昇し始め、運転 27日目にはろ 過圧力が 13 kPaに達したので、有効容積 10 Lの活性汚泥槽をもうひとつ連結させて BOD—汚泥負荷を 0.075 (kg/day)— BOD/kg— MLSSに設定した。そうすると、ろ過圧 力は 11 kPaまで低下した。
[0066] 以上のように、 BOD—汚泥負荷の調整方法は、活性汚泥濃度の増減、活性汚泥容 積の増減、または活性汚泥槽に流入する有機物量の増減のレ、ずれの方法で調整し て本発明の適用しても、膜の目づまりを生じさせることなぐ安定して固液分離を行う こと力 Sでさること力 S確言忍でさた。
(実施例 23)
化学薬品工場廃水を膜分離活性汚泥法により処理した。膜ろ過流束は、終始 0.6 m/Dに設定して運転した。膜用の曝気は、空気を膜モジュールの下部から 200 L/hの 流量で送気した。
[0067] 運転開始前に水質分析を行うと、 BOD: 30 mg/L、 TOC: 100 mg/Lであり、 γ値は 0 .3であった。孔径 0.1 mの PVDF製精密ろ過中空糸膜をモジュール化した分離膜装 置 (膜面積: 0.15 m2)を有効容積 10 Lの活性汚泥槽に浸漬させ、 MLSS濃度は 10 g/ Lに設定し、運転を開始した。このとき、 BOD—汚泥負荷は 0.027 (kg/day) -BOD/kg — MLSSである。初期膜ろ過圧力は 5 kPaであったが、運転 20日目に 20 kPaまで上昇 した。
[0068] そこで、この廃水にペプトンを溶かすことにより、 BOD: 160 mg/L, TOC: 150 mg/L に調整し、 γ値を 1.1に設定した。 0.03 m2の膜面積をもつ分離膜装置を有効容積 10 Lの活性汚泥槽に浸漬させ、 MLSS濃度は 10 g/Lに設定し、運転を開始した。このとき 、 BOD—汚泥負荷は 0.029 (kg/day)— BOD/kg— MLSSである。初期膜ろ過圧力は 5 kPaであり、 20日後の膜ろ過圧力は 8 kPaであった。
[0069] 以上のように、 γ値が 0.6未満である有機性廃水については、ペプトンという Ί値が 大きい物質を添加して、本発明を適用することにより、膜の目づまりを生じさせること なぐ安定して固液分離を行うことができることが確認できた。
図面の簡単な説明
[0070] [図 1]本発明に係る有機性廃水の処理方法の一例を示すブロック図である。
[図 2] γ値の違いにおける BOD—汚泥負荷とそのときの安定膜ろ過流束との関係を 表す図である。
[図 3]実施例 22における膜間差圧の経時変化を示す図である。
符号の説明
[0071] 1 · · ·有機性廃水、 2· · ·前処理設備、 3· · ·流量調整槽、 4· · ·膜分離活性汚泥槽 (曝気 槽)、 5···中空糸膜型分離膜装置、 6···スカート、 7···ブロワ一、 8···吸引ポンプ、 9··· ろ過液、 10···滅菌槽、 11···処理水

Claims

請求の範囲
[1] 活性汚泥を収容した活性汚泥槽に、有機性廃水を流入させる流入工程と、
前記活性汚泥槽にて前記有機性廃水を前記活性汚泥によって生物処理し、該活 性汚泥槽あるいはその後段に設置した分離膜装置によって該活性汚泥を固液分離 する分離工程と、を含む廃水の処理方法であって、
前記流入工程に先立って、前記有機性廃水の全有機物量を示す指標と BOD値に 基づいて BOD—汚泥負荷の上限値を求め、前記活性汚泥槽の BOD—汚泥負荷が 前記上限値を上回らないよう調整する、廃水処理方法。
[2] 活性汚泥を収容した活性汚泥槽に有機性廃水を流入させる流入工程と、
前記活性汚泥槽にて前記有機性廃水を前記活性汚泥によって生物処理し、該活 性汚泥槽あるいはその後段に設置した分離膜装置によって該活性汚泥を固液分離 する分離工程と、を含む廃水の処理方法であって、
前記流入工程に先立って、前記有機性廃水の全有機物量を示す指標と BOD値と の比率、および前記分離膜装置の平均膜ろ過流束に基づいて、 BOD—汚泥負荷の 上限値を求め、前記活性汚泥槽の BOD—汚泥負荷が前記上限値を上回らないよう 調整する、廃水処理方法。
[3] 活性汚泥を収容した活性汚泥槽に有機性廃水を流入させる流入工程と、
前記活性汚泥槽にて前記有機性廃水を前記活性汚泥によって生物処理し、該活 性汚泥槽あるいはその後段に設置した分離膜装置によって該活性汚泥を固液分離 する分離工程と、を含む廃水の処理方法であって、
前記有機性廃水の γ値が 0.6≤ γ < 1.5の時、前記活性汚泥槽の BOD—汚泥負荷 を、 0.05— 0.06 Χ ( δ -0.6) Kkg/day)— BOD/kg—MLSS]以下に調整することを特徴 とする、廃水処理方法。
〔ここで、
γ =BOD/( a X /3 )とし、
βは前記有機性廃水中の全有機炭素量 (TOC) [mg/L]、重クロム酸カリウムを用いた 化学的酸素要求量(COD ) [mg/L]、全酸素要求量(TOD) [mg/L]から選ばれる 1つ
Cr
であり、 BODは前記有機性廃水中の生物学的酸素要求量 [mg/L]であり、
αは /3に基づく調整係数であって、 /3に
TOCを選んだ場合は、 α = 1.0
COD を選んだ場合は、 α =0.33
Cr
TODを選んだ場合は、 α =0.33とする。
また、 δは前記分離膜装置の平均膜ろ過流束とし、単位は m3/(m2' day)とする。〕
[4] 活性汚泥を収容した活性汚泥槽に有機性廃水を流入させる流入工程と、
前記活性汚泥槽にて前記有機性廃水を前記活性汚泥によって生物処理し、該活 性汚泥槽あるいはその後段に設置した分離膜装置によって該活性汚泥を固液分離 する分離工程と、を含む廃水の処理方法であって、
前記有機性廃水の γ値が 1.5≤ γ < 2.5の時、前記活性汚泥槽の BOD—汚泥負荷 を、 0.1— 0.12 Χ ( δ -0.6) [(kg/day)— BOD/kg— MLSS]以下に調整することを特徴と する、廃水処理方法。
〔ここで、 γおよび δは、請求項 3と同様とする〕
[5] 活性汚泥を収容した活性汚泥槽に有機性廃水を流入させる流入工程と、
前記活性汚泥槽にて前記有機性廃水を前記活性汚泥によって生物処理し、該活 性汚泥槽あるいはその後段に設置した分離膜装置によって該活性汚泥を固液分離 する分離工程と、を含む廃水の処理方法であって、
前記有機性廃水の γ値が Ύ≥ 2.5の時、前記活性汚泥槽の BOD—汚泥負荷を、 0. 3— 0·24 Χ ( δ -0.6) [(kg/day)— BOD/kg— MLSS]以下に調整することを特徴とする、 廃水処理方法。
〔ここで、 γおよび δは、請求項 3と同様とする〕
[6] 活性汚泥を収容した活性汚泥槽に有機性廃水を流入させる流入工程と、
前記活性汚泥槽にて前記有機性廃水を前記活性汚泥によって生物処理し、該活 性汚泥槽あるいはその後段に設置した分離膜装置によって該活性汚泥を固液分離 する分離工程と、を含む廃水の処理方法であって、
前記有機性廃水の γ値が γ < 0.6の時は、 γ値が高い物質を前記有機性廃水に 混合することによって、混合後の有機性廃水の γ値を γ≥0·6とすることを特徴とする 、請求項 3〜5のいずれか 1項に記載の廃水処理方法。
〔ここで γは、請求項 3と同様とする〕
[7] 前記活性汚泥槽の BOD—汚泥負荷を、活性汚泥濃度、活性汚泥容積、活性汚泥 槽に流入する有機物量、平均膜ろ過流束及び膜面積からなる群より選択されるー以 上を増減させることによって調整する、上記請求項;!〜 6のいずれか 1項に記載の廃 水処理方法。
[8] 前記活性汚泥槽の BOD—汚泥負荷が、算出した BOD—汚泥負荷の上限値を上回 る場合に、平均膜ろ過流束を減少させて、該 BOD—汚泥負荷の上限値が該活性汚 泥槽の BOD—汚泥負荷を上回るように調整する、請求項 3〜6のいずれ力、 1項に記 載の廃水処理方法。
[9] 前記活性汚泥槽の BOD—汚泥負荷が、算出した BOD—汚泥負荷の上限値を上回 る場合に、活性汚泥濃度、活性汚泥容積、活性汚泥槽に流入する有機物量、及び 膜面積からなる群より選択される一以上を増減させることによって、該活性汚泥槽の Β OD—汚泥負荷が該上限値を下回るように調整する、請求項 3〜6のいずれか 1項に 記載の廃水処理方法。
PCT/JP2007/068182 2006-09-21 2007-09-19 Procédé d'élimination d'eaux usées WO2008035710A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US12/311,182 US8097161B2 (en) 2006-09-21 2007-09-19 Wastewater treatment method
CA2663986A CA2663986C (en) 2006-09-21 2007-09-19 Wastewater treatment method
AU2007298198A AU2007298198B2 (en) 2006-09-21 2007-09-19 Method of wastewater disposal
KR1020087031535A KR101158964B1 (ko) 2006-09-21 2007-09-19 폐수의 처리 방법
CN2007800347104A CN101516790B (zh) 2006-09-21 2007-09-19 废水的处理方法
EP20070807556 EP2065343B1 (en) 2006-09-21 2007-09-19 Method of wastewater disposal
JP2008535373A JP5208750B2 (ja) 2006-09-21 2007-09-19 廃水の処理方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006256326 2006-09-21
JP2006-256326 2006-09-21
JP2007215234 2007-08-21
JP2007-215234 2007-08-21

Publications (1)

Publication Number Publication Date
WO2008035710A1 true WO2008035710A1 (fr) 2008-03-27

Family

ID=39200535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/068182 WO2008035710A1 (fr) 2006-09-21 2007-09-19 Procédé d'élimination d'eaux usées

Country Status (10)

Country Link
US (1) US8097161B2 (ja)
EP (1) EP2065343B1 (ja)
JP (1) JP5208750B2 (ja)
KR (1) KR101158964B1 (ja)
CN (1) CN101516790B (ja)
AU (1) AU2007298198B2 (ja)
CA (1) CA2663986C (ja)
RU (1) RU2426697C2 (ja)
TW (1) TW200837023A (ja)
WO (1) WO2008035710A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102153250A (zh) * 2011-05-11 2011-08-17 上海膜达克环保工程有限公司 焦化废水处理系统及方法
JP2013052359A (ja) * 2011-09-05 2013-03-21 Fuji Electric Co Ltd 水処理方法及び水処理装置
WO2014034827A1 (ja) * 2012-08-31 2014-03-06 東レ株式会社 造水方法
JP5575316B1 (ja) * 2013-08-23 2014-08-20 株式会社神鋼環境ソリューション 廃水処理方法および廃水処理装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012205997A (ja) * 2011-03-29 2012-10-25 Kurita Water Ind Ltd 膜分離活性汚泥装置による有機性排水の処理方法
RU2547498C1 (ru) * 2014-02-20 2015-04-10 ООО "Экополимер" Физико-химический мембранный биореактор

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04235797A (ja) * 1991-01-14 1992-08-24 Meidensha Corp 活性汚泥処理制御方法
JP2000157846A (ja) 1998-11-26 2000-06-13 Asahi Chem Ind Co Ltd 中空糸膜カートリッジ
WO2000037369A1 (en) 1998-12-18 2000-06-29 Zenon Environmental Inc. Submerged membrane bioreactor for treatment of nitrogen containing water
JP2001276823A (ja) * 2000-03-30 2001-10-09 Sumitomo Heavy Ind Ltd 膜分離方法及び装置
JP2003053363A (ja) * 2001-08-09 2003-02-25 Kurita Water Ind Ltd 有機物含有水の処理方法及び処理装置
EP1464625A1 (en) 1997-12-19 2004-10-06 Kobelco Eco-Solutions Co., Ltd. Method for sludge reduction in a waste water treatment system
JP2005040747A (ja) * 2003-07-25 2005-02-17 Kubota Corp 汚水の処理方法および装置
JP2006212470A (ja) * 2005-02-01 2006-08-17 Toray Ind Inc 溶解性有機物含有液の処理方法および処理装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2556365B1 (fr) * 1983-12-09 1987-07-31 Transgene Sa Vecteurs de clonage et d'expression de l'interferon-g, bacteries transformees et procede de preparation de l'interferon-g
JPS6211597A (ja) 1985-07-09 1987-01-20 Kawasaki Steel Corp 水溶性有機物の生分解性評価方法および装置
US5558774A (en) * 1991-10-09 1996-09-24 Zenon Environmental Inc. Aerated hot membrane bioreactor process for treating recalcitrant compounds
US5837142A (en) * 1996-09-23 1998-11-17 Great Circle Associates Membrane process for treating sanitary wastewater
US6616843B1 (en) 1998-12-18 2003-09-09 Omnium De Traitement Et De Valorisation Submerged membrane bioreactor for treatment of nitrogen containing water
TW500698B (en) * 1999-11-19 2002-09-01 Kuraray Co Apparatus and method for waste water treatment
EP1270513B1 (en) 2001-06-26 2007-04-04 Aquafin N.V. Process and installation for treating a polluted aqueous liquid showing a COD value
JP4235797B2 (ja) * 2002-12-26 2009-03-11 旭有機材工業株式会社 ソフトシール仕切弁の弁体

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04235797A (ja) * 1991-01-14 1992-08-24 Meidensha Corp 活性汚泥処理制御方法
EP1464625A1 (en) 1997-12-19 2004-10-06 Kobelco Eco-Solutions Co., Ltd. Method for sludge reduction in a waste water treatment system
JP2000157846A (ja) 1998-11-26 2000-06-13 Asahi Chem Ind Co Ltd 中空糸膜カートリッジ
WO2000037369A1 (en) 1998-12-18 2000-06-29 Zenon Environmental Inc. Submerged membrane bioreactor for treatment of nitrogen containing water
JP2001276823A (ja) * 2000-03-30 2001-10-09 Sumitomo Heavy Ind Ltd 膜分離方法及び装置
JP2003053363A (ja) * 2001-08-09 2003-02-25 Kurita Water Ind Ltd 有機物含有水の処理方法及び処理装置
JP2005040747A (ja) * 2003-07-25 2005-02-17 Kubota Corp 汚水の処理方法および装置
JP2006212470A (ja) * 2005-02-01 2006-08-17 Toray Ind Inc 溶解性有機物含有液の処理方法および処理装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2065343A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102153250A (zh) * 2011-05-11 2011-08-17 上海膜达克环保工程有限公司 焦化废水处理系统及方法
CN102153250B (zh) * 2011-05-11 2013-06-19 上海膜达克环保工程有限公司 焦化废水处理系统及方法
JP2013052359A (ja) * 2011-09-05 2013-03-21 Fuji Electric Co Ltd 水処理方法及び水処理装置
WO2014034827A1 (ja) * 2012-08-31 2014-03-06 東レ株式会社 造水方法
JPWO2014034827A1 (ja) * 2012-08-31 2016-08-08 東レ株式会社 造水方法
JP5575316B1 (ja) * 2013-08-23 2014-08-20 株式会社神鋼環境ソリューション 廃水処理方法および廃水処理装置
JP2015039691A (ja) * 2013-08-23 2015-03-02 株式会社神鋼環境ソリューション 廃水処理方法および廃水処理装置

Also Published As

Publication number Publication date
CA2663986A1 (en) 2008-03-27
RU2009114841A (ru) 2010-10-27
EP2065343A4 (en) 2010-12-22
US8097161B2 (en) 2012-01-17
AU2007298198B2 (en) 2010-06-10
CA2663986C (en) 2013-06-25
EP2065343A1 (en) 2009-06-03
KR101158964B1 (ko) 2012-06-28
CN101516790A (zh) 2009-08-26
US20090308809A1 (en) 2009-12-17
CN101516790B (zh) 2012-07-25
RU2426697C2 (ru) 2011-08-20
KR20090018666A (ko) 2009-02-20
EP2065343B1 (en) 2013-09-04
JP5208750B2 (ja) 2013-06-12
JPWO2008035710A1 (ja) 2010-01-28
TW200837023A (en) 2008-09-16
TWI361796B (ja) 2012-04-11
AU2007298198A1 (en) 2008-03-27

Similar Documents

Publication Publication Date Title
JP2008264772A (ja) 膜分離活性汚泥装置及び有機物含有水の処理方法
WO2008035710A1 (fr) Procédé d&#39;élimination d&#39;eaux usées
KR101463987B1 (ko) 유기성 배수의 처리 방법
CN102209689A (zh) 水处理装置及水处理方法
JP6184541B2 (ja) 汚水処理装置及びこれを用いた汚水処理方法
JP4793635B2 (ja) 有機性汚水の再生方法
JP2014000495A (ja) 汚水処理装置及びこれを用いた汚水処理方法
WO2011136043A1 (ja) 廃水処理装置および廃水処理方法
JP2009061349A (ja) 膜分離活性汚泥法による汚水処理方法
JP2011177608A (ja) 油分含有廃水の処理方法
JP5120106B2 (ja) 有機アルカリ排水の処理方法及び処理装置
Gkotsis et al. Hydraulic performance and fouling characteristics of a membrane sequencing batch reactor (MSBR) for landfill leachate treatment under various operating conditions
JP5772759B2 (ja) 水処理方法および水処理装置
JP2009220020A (ja) 廃水処理システムおよびその運転方法
JP2010125366A (ja) 水処理方法および水処理装置
JP2021010889A (ja) 水回収装置
KR100348417B1 (ko) 슬러지가 안정화된 침지형 여과막 폐수처리 장치 및 방법
JP7052500B2 (ja) 含油排水処理方法
Mutamim et al. Removal of micro-pollutants from wastewater through mbr technologies: A case study on spent caustic wastewater
Ünlü et al. Real role of an ultrafiltration hollow-fibre membrane module in a submerged membrane bioreactor
JP2000288587A (ja) し尿系汚水の処理方法および処理装置
KR20160050683A (ko) 분리막을 이용하는 수 처리 장치의 막 오염 저감방법
JP6524646B2 (ja) 排水の生物処理方法及び生物処理装置
JP2021146279A (ja) 有機廃水処理方法
JP2020138110A (ja) 水処理装置、水処理装置の製造方法および水処理方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780034710.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07807556

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008535373

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020087031535

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007807556

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 976/KOLNP/2009

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2007298198

Country of ref document: AU

Ref document number: 2663986

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 12311182

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2009114841

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2007298198

Country of ref document: AU

Date of ref document: 20070919

Kind code of ref document: A