WO2008035664A1 - Matériau de dispositif électroluminescent organique, dispositif électroluminescent organique, dispositif d'affichage et d'éclairage - Google Patents

Matériau de dispositif électroluminescent organique, dispositif électroluminescent organique, dispositif d'affichage et d'éclairage Download PDF

Info

Publication number
WO2008035664A1
WO2008035664A1 PCT/JP2007/068063 JP2007068063W WO2008035664A1 WO 2008035664 A1 WO2008035664 A1 WO 2008035664A1 JP 2007068063 W JP2007068063 W JP 2007068063W WO 2008035664 A1 WO2008035664 A1 WO 2008035664A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
organic
ring
layer
light
Prior art date
Application number
PCT/JP2007/068063
Other languages
English (en)
French (fr)
Inventor
Masato Nishizeki
Noboru Sekine
Dai Ikemizu
Original Assignee
Konica Minolta Holdings, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Holdings, Inc. filed Critical Konica Minolta Holdings, Inc.
Priority to JP2008535350A priority Critical patent/JP5644050B2/ja
Publication of WO2008035664A1 publication Critical patent/WO2008035664A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0033Iridium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0086Platinum compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1074Heterocyclic compounds characterised by ligands containing more than three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1096Heterocyclic compounds characterised by ligands containing other heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/141Organic polymers or oligomers comprising aliphatic or olefinic chains, e.g. poly N-vinylcarbazol, PVC or PTFE
    • H10K85/146Organic polymers or oligomers comprising aliphatic or olefinic chains, e.g. poly N-vinylcarbazol, PVC or PTFE poly N-vinylcarbazol; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole

Definitions

  • Organic-elect mouth luminescence element material organic-elect-mouth luminescence element, display device and lighting device
  • the present invention relates to an organic electoluminescence device material, an organic electroluminescence device, a display device, and a lighting device.
  • ELD components include inorganic-electric luminescence elements and organic-electric luminescence elements (hereinafter also referred to as organic EL elements! /).
  • Inorganic electoric luminescence elements require high alternating current voltage to drive the force light-emitting elements that have been used as planar light sources.
  • An organic EL device has a structure in which a light emitting layer containing a compound that emits light is sandwiched between a cathode and an anode, and electrons and holes are injected into the light emitting layer and recombined to generate excitons.
  • a stilbene derivative, a distyrylarylene derivative or a tristyrylarylene derivative is doped with a trace amount of a phosphor to improve emission luminance and extend the lifetime of the element.
  • an element having an organic light emitting layer in which an 8-hydroxyquinoline aluminum complex is used as a host compound and a small amount of phosphor is doped to the host compound for example, JP-A 63-264692
  • an 8-hydroxyquinoline aluminum complex is used as a host
  • an element having an organic light emitting layer doped with a quinacridone dye for example, Japanese Patent Publication No. 3-255190
  • the upper limit of the internal quantum efficiency is 100%, so that in principle the luminous efficiency is four times that of the excited singlet, and almost the same performance as a cold cathode tube is obtained. It is also attracting attention as a lighting application.
  • an electron-withdrawing group such as a fluorine atom, a trifluoromethyl group, and a cyano group has been introduced into phenylpyridine as a substituent, and a picolinic acid villaza ball type as a ligand.
  • the force S which is known to introduce sub-ligands, allows the emission wavelength of the light-emitting material to be shortened to achieve blue color and achieve a highly efficient device. Since it deteriorated significantly, there was a need to improve the trade-off.
  • Patent Document 1 International Publication No. 04/085450 Pamphlet
  • Patent Document 2 JP 2005-53912 A
  • Patent Document 3 International Publication No. 05/007767 Pamphlet
  • Patent Document 4 Pamphlet of International Publication No. 06/046980
  • Patent Document 5 Japanese Patent Application Laid-Open No. 2002-332291
  • Patent Document 6 Japanese Unexamined Patent Application Publication No. 2004-67658
  • Patent Document 7 International Publication No. 04/111066 Pamphlet
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an organic EL element material having a controlled emission wavelength, high emission efficiency, and a long emission lifetime. It is. In particular, it is to provide an organic EL element material that exhibits high luminous efficiency and has a long light emission lifetime with blue to blue-green short-wave light emission. Furthermore, an organic EL element, a display device, and a lighting device using the same are provided.
  • An organic electoluminescence device material characterized by being a metal complex represented by the following general formula (1).
  • X represents R—N, 0, S, Se or Te.
  • R represents a substituted or unsubstituted alkyl group
  • Y, Y and Y are R—N
  • R represents a substituted, unsubstituted alkyl group, a cycloalkyl group, an aryl group or an aromatic heterocyclic group.
  • R is a hydrogen atom or a substituent
  • G represents a substituent, and n represents 0, 1 or 2.
  • X—L—X is a bidentate ligand
  • X and X each independently represent a carbon atom, a nitrogen atom or an oxygen atom.
  • L is X, X
  • the central metal M is in the periodic table
  • 1 represents a group 1 metal.
  • ml represents an integer of 1, 2 or 3
  • m2 represents an integer of 0, 1 or 2
  • ml + m2 is 2 or 3, which is the same number as the positive charge of the central metal.
  • X represents R—N, 0, S, Se or Te.
  • R represents a substituted, unsubstituted alkyl group
  • Y and Y represent R—N, N or R—C, and N—C ⁇ N together with imidazole ring, triazole ring, tetrazole ring
  • R represents a substituted, unsubstituted alkyl group, cycloanolalkyl group, aryl group or aromatic heterocyclic group.
  • R is a hydrogen atom or a substituent
  • G represents a substituent, and n represents 0, 1 or 2.
  • X—L —X represents a bidentate ligand
  • X and X each independently represent a carbon atom, a nitrogen atom or an oxygen atom.
  • L is X, X and
  • 1 represents a group 1 metal.
  • ml represents an integer of 1, 2 or 3
  • m2 represents an integer of 0, 1 or 2
  • ml + m2 is 2 or 3, which is the same number as the positive charge of the central metal.
  • R represents a substituted or unsubstituted alkyl group
  • R represents a substituted, unsubstituted alkyl group, cycloalkyl group, aryl group or aromatic heterocyclic group.
  • G represents a substituent, and n represents 0, 1 or 2.
  • X—L—X represents a bidentate ligand, and X and X are each
  • L is X, X and bidentate ligand
  • the central metal, M is 8 ⁇ in the periodic table; 1 Group 1 gold
  • ml represents an integer of 1, 2 or 3
  • m2 represents a force m representing an integer of 0, 1 or 2 m l + m2 is 2 or 3, which is the same number as the positive charge of the central metal.
  • R is 2,6-dimethylphenyl group, mesityl group (2,4,6-trimethylphenyl group), tetramethylphenyl group. 5.
  • the center metal M is platinum
  • An organic electoluminescence device comprising the organic electroluminescence device material according to item 1, wherein any one of 1 to 9 is used.
  • the light-emitting layer has a ring structure in which at least one carbon atom of a hydrocarbon ring constituting a force rubazole ring or a force rubazole ring of the carbazolone derivative is substituted with a nitrogen atom as a host compound. 10.
  • the organic electoluminescence device according to any one of 10 to 12 above, comprising a body.
  • a display device comprising the organic electoluminescence device according to any one of 10 to 13.
  • An illuminating device comprising the organic-electric-luminescence element according to any one of 10 to 13.
  • an organic EL element material useful for an organic EL element can be obtained.
  • the emission wavelength is controlled, the emission efficiency is high, and the emission lifetime is long.
  • FIG. 1 is an emission spectrum of the metal complex (Compound 4) of the present invention.
  • FIG. 2 is an emission spectrum of the metal complex (Compound 4) of the present invention.
  • FIG. 3 is an emission spectrum of the metal complex (Compound 14) of the present invention.
  • FIG. 4 is an emission spectrum of the metal complex (Compound 14) of the present invention.
  • FIG. 5 is an emission spectrum of the metal complex of the present invention (Compound 27).
  • FIG. 6 is an emission spectrum of the metal complex of the present invention (Compound 27).
  • FIG. 7 is a schematic view showing an example of a display device composed of organic EL elements.
  • FIG. 8 is a schematic diagram of display unit A.
  • FIG. 9 is a schematic diagram of a pixel.
  • FIG. 10 is a schematic diagram of a passive matrix type full-color display device.
  • FIG. 11 is a schematic view of a lighting device.
  • FIG. 12 is a schematic diagram of a lighting device.
  • the organic EL element material of the present invention it is possible to molecularly design a useful organic EL element material for an organic EL element by any one of claims 1 to 9, and the configuration specified in item 1. It worked. In addition, by using the organic EL element material, it was possible to provide an organic EL element, an illuminating device, and a display device that exhibit high luminous efficiency and have a long emission lifetime.
  • the inventors have found that the luminous efficiency and luminous lifetime are greatly improved.
  • the stability of the complex of the phenylazole derivative is greatly influenced by the influence of the substitution position and type of the substituent on the phenyl nucleus, which is the mother nucleus, which affects the emission lifetime. I found it to have a big impact.
  • the metal complex according to the present invention by introducing a specific partial structure into phenylazole, light is emitted only by a blue metal complex having a conventional phenylpyridine derivative as a ligand, particularly only by an electron withdrawing group. We found that the light emission lifetime, which was a problem with organic EL devices manufactured using organic EL device materials that had been controlled to have a short wavelength, was significantly improved.
  • 2-phenylimidazole derivatives 2-phenylimidazole derivatives are used, and by introducing specific substituents into nitrogen atoms that are not liganded to metals on the imidazole ring, excellent color purity is achieved. As a result, it was found that the lifetime of the blue light-emitting device could be further extended.
  • the metal complex according to the present invention is, for example, described by the above general formula (1).
  • the partial structure shown in the parenthesis having ml, or the partial structure represented by a tautomer thereof is the main ligand, m
  • a partial structure shown in parentheses having 2 or a partial structure represented by a tautomer thereof is called a subligand.
  • the metal complex is a main ligand or a tautomer thereof and a subligand or a combination of tautomers thereof.
  • m2 0, that is, all the ligands of the metal complex are composed only of a partial structure represented by the main ligand or its tautomer! /, constitution!
  • the type of ligand in the complex is preferably composed of 1 to 2 types, and more preferably 1 type.
  • the metal used for forming the metal complex represented by the general formula (1), (2) or (3) according to the present invention includes a transition metal element of group 8 to 11 of the periodic table (simply a transition).
  • a transition metal element of group 8 to 11 of the periodic table implies a transition.
  • iridium and platinum are preferable transition metal elements.
  • a light emitting layer and / or an electron blocking layer is preferred and contained in the light emitting layer.
  • it is possible to improve the external extraction quantum efficiency (increase the luminance) and prolong the light emission lifetime of the organic EL device of the present invention.
  • X represents R—N, ⁇ , S, Se or Te.
  • X is preferably R—N, 0, S in that the optical maximum wavelength is shorter.
  • X is RN in that the color purity of light emission is higher.
  • R represents a substituted, unsubstituted alkyl group, cycloalkyl group, aryl group, or aromatic complex.
  • alkyl group examples include a methyl group, an ethyl group, a propyl group, an isopropyl group, a tert butyl group, a pentyl group, a hexyl group, an octyl group, a dodecyl group, a tridecyl group, a tetradecyl group, a pentadecyl group, and the like. Is mentioned.
  • Examples of the cycloalkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and the like.
  • Examples of the aryl group include a phenyl group, a mesityl group, a tolyl group, a xylyl group, a naphthyl group, an anthryl group, an azulenyl group, an acenaphthyl group, a fluorenyl group, a phenanthryl group, an indur group, a pyrenyl group, and a biphenyl group.
  • Examples include a tolyl group.
  • aromatic heterocyclic group examples include a pyridyl group, pyrimidinyl group, furyl group, pyrrolinole group, imidazolyl group, benzimidazolyl group, pyrazolyl group, pyrazyl group, and triazolyl group.
  • substituents examples include alkyl groups (for example, methyl group, ethyl group, propyl group, isopropyl group, tert butyl group, pentyl group, hexyl group, octyl group).
  • cycloalkyl group eg, cyclopentyl group, cyclohexyl group, etc.
  • alkenyl group eg, bur group, aryl group, etc.
  • alkynyl group eg, Etul group, propargyl group, etc.
  • aromatic hydrocarbon ring group also called aromatic carbocyclic group, aryl group, etc.
  • aromatic heterocyclic groups for example, pyr
  • G represents a substituent, and n represents 0, 1 or 2.
  • substituents include R substituent examples
  • Y, Y and Y represent R—N, N, or R—C, together with C and N, an imidazole ring,
  • R represents a substituted, unsubstituted alkyl group, a cycloalkyl group, an aryl group or an aromatic heterocyclic group.
  • alkyl group, cycloalkyl group, aryl group, and aromatic heterocyclic group are the same as those exemplified as R.
  • R is preferably a methyl group, a substituted or unsubstituted aryl group, or an aromatic heterocyclic group from the viewpoint of light emission lifetime, and particularly preferably a substituted, unsubstituted aryl group, or aromatic heterocyclic group.
  • aryl groups those in which at least one methyl group is substituted at the two ortho positions of the binding site with imidazole are more preferable than the point that the emission wavelength is shortened.
  • the two ortho positions of the binding site with imidazole are both substituted with methyl groups. Specifically, it is a 2,6-dimethylphenyl group, a mesityl group (2,4,6-trimethylphenyl group), a tetramethylphenyl group or a pentamethylphenyl group.
  • An example of a substituent that may be further substituted in the 2,6-dimethylphenyl group is the same force S as the substituent for R.
  • R is a hydrogen atom! / Represents a substituent.
  • substituent the same ones as exemplified as the substituent for R can be used.
  • a hydrogen atom or a substituted or unsubstituted alkyl group, cycloalkyl group, aryl group or aromatic heterocyclic group is preferred, and a hydrogen atom or a substituted or unsubstituted aryl group is more preferred.
  • M as a central metal represents a group 8 to 11 metal in the periodic table.
  • preferred central metals include ruthenium, rhodium, palladium, silver, osmium, iridium, platinum, gold and the like. More preferred are iridium and platinum.
  • X, G, n, R, R, and M represent the same as those in the general formula (1).
  • Y is R—N in terms of high emission quantum yield.
  • Y is preferably H—C in that it is a force beam shortwave.
  • the emission lifetime is longer when both Y and Y are R–C.
  • the structures of imidazole-1, triazole-1, triazole-2 and tetrazole-1 are more preferable, and imidazolone 1 and triazole-1 are more preferable. Most preferred is the structure of imidazole-1.
  • a group of atoms forming a ligand is represented.
  • Specific examples of the bidentate ligand represented by XL-X include substituted or unsubstituted phenyl
  • Examples thereof include norepyridine, phenylpyrazonole, phenylimidazole, phenyltriazolene, phenyltetrazole, virazabol, acetylacetone, and picolinic acid.
  • m2 is preferably 0.
  • Figures 1 and 2 show the emission spectra.
  • Figures 3 and 4 show the emission spectra.
  • Figures 5 and 6 show the emission spectra.
  • the organic EL element material of the present invention for the light emitting layer or the electron blocking layer.
  • the light emitting layer it is preferably used as a light emitting dopant as described above.
  • the mixing ratio of the light-emitting dopant to the light-emitting host is preferably adjusted to a range of 0.;! To less than 30% by mass.
  • the luminescent dopant may be a mixture of two or more types of compounds.
  • the mixed partner may have a different structure, and other metal complexes or phosphorescent dopants or fluorescent dopants having other structures may also be used. Good.
  • Luminescent dopants can be broadly divided into two types: fluorescent dopants that emit fluorescence and phosphorescent dopants that emit phosphorescence.
  • fluorescent dopant include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes. And pyrylium dyes, perylene dyes, stilbene dyes, polythiophene dyes, and rare earth complex phosphors.
  • a typical example of the latter is preferably a complex compound containing a transition metal element of Group 8, 9, or 10 in the periodic table of elements, and more preferably an iridium compound. And osmium compounds, and most preferred is an iridium compound.
  • JP 2002-332291 A JP 2002-50484 A, JP 2002-33 2292 A, JP 2002-83684 A, Special Table 2002 — 540572, JP 20 02-117978, JP 2002-338588, JP 2002-170684, JP 2002-352960, WO 01/93642, JP 2002
  • JP 2002-100476 JP 2002-173674, JP 2002-359082, JP 2002-175884, JP 2002-363552, JP 2002-184582 Publication, JP 2003-7469, JP 2002-525 808, JP 2003-7471, JP 2002-525833, JP 2003
  • the host compound used in the present invention represents a compound having a phosphorescence quantum yield of phosphorescence emission of less than 0.01 at room temperature (25 ° C.) among compounds contained in the light emitting layer.
  • the luminescent host used in the present invention is not particularly limited in terms of structure, but is typically a power rubazole derivative, a triarylamine derivative, an aromatic borane derivative, a nitrogen-containing bicyclic compound, a thiophene derivative.
  • Basic bones such as furan derivatives and oligoarylene compounds
  • a derivative having a ring structure in which at least one of the carbon atoms of the hydrocarbon ring constituting the force rubazole ring of the force rubazole derivative is substituted with a nitrogen atom.
  • a canolevazole derivative or a derivative having a ring structure in which at least one of the carbon atoms of the hydrocarbon ring constituting the carbazole ring of the carbazole derivative is substituted with a nitrogen atom is preferably used.
  • a plurality of known host compounds may be used in combination as a host compound.
  • These known host compounds have a hole transporting ability and an electron transporting ability, prevent the emission of longer wavelengths, and have a high Tg of 90 ° C or higher, more preferably 100 ° C or higher.
  • Glass transition temperature) compounds are preferred.
  • the glass transition point (Tg) is a value determined by a method based on JIS-K-7121 using DSC (Differential Scanning Colorimetry).
  • the light-emitting host used in the present invention may be a low-molecular compound or a high-molecular compound having a repeating unit, and a low-molecular compound having a polymerizable group such as a bur group or an epoxy group (evaporation polymerizable light-emitting). Even the host)
  • the light emitting layer may further contain a host compound having a fluorescence maximum wavelength as a host compound.
  • a host compound having a fluorescence maximum wavelength is a compound having a high fluorescence quantum yield in a solution state.
  • the fluorescence quantum yield is preferably 10% or more, particularly preferably 30% or more.
  • host compounds having a maximum fluorescence wavelength include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes. And pyrylium dyes, perylene dyes, stilbene dyes, polythiophene dyes, and the like.
  • the fluorescence quantum yield can be measured by the method described in the third edition of Experimental Chemistry Course 7, Spectroscopy II, page 362 (1992 edition, Maruzen).
  • Preferable specific examples of the layer structure of the organic EL device of the present invention are as follows. The present invention is not limited thereto.
  • the blocking layer for example, electron blocking layer, hole blocking layer
  • the blocking layer for example, electron blocking layer, hole blocking layer
  • the organic EL device material of the present invention for a hole blocking layer, an electron blocking layer, and the like.
  • the organic EL device material of the present invention is contained in a hole blocking layer and an electron blocking layer
  • the organic EL device material of the present invention described in any one of 1 to 7 above is used as a hole. It may be contained in a state of 100% by mass as a layer constituting component such as a blocking layer or an electron blocking layer, or may be mixed with other organic compounds.
  • the thickness of the blocking layer according to the present invention is preferably 3 to 100 nm, more preferably
  • the hole blocking layer has the function of an electron transport layer and the function of transporting electrons.
  • it is made of a material having a remarkably small ability to transport holes, and the recombination probability of electrons and holes can be improved by blocking holes while transporting electrons.
  • Examples of the hole blocking layer include, for example, Japanese Patent Application Laid-Open Nos. 11 204258 and 11 204359, and “The Organic EL Element and the Forefront of Industrialization (November 30, 1998, NTT Corporation)
  • the hole blocking layer described in page 237 of “Issuance)” is applicable as the hole blocking layer according to the present invention.
  • the structure of the electron carrying layer mentioned later can be used as a hole-blocking layer concerning this invention as needed.
  • the organic EL device of the present invention has a hole blocking layer as a constituent layer, and the hole blocking layer serves as a hole blocking material and forms the carbazole ring of the force rubazole derivative or the carbazole derivative. It is preferred to contain a derivative having a ring structure in which at least one of the carbon atoms of the hydrogen ring is replaced by a nitrogen atom!
  • the electron blocking layer has a function of a hole transport layer in a broad sense, and is made of a material having a function of transporting holes and an extremely small capacity of transporting electrons. The probability of recombination of electrons and holes can be improved by blocking the children. Moreover, the structure of the positive hole transport layer mentioned later can be used as an electron blocking layer as needed.
  • the organic EL device material of the present invention for the adjacent layer adjacent to the light-emitting layer, that is, the hole blocking layer and the electron blocking layer, particularly for the electron blocking layer. It is preferable.
  • the hole transport layer includes a material having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer.
  • a single hole or multiple hole transport layers should be provided.
  • a hole transport material there is no particular limitation. Conventionally, it is commonly used as a hole charge injection / transport material in a photoconductive material, or used in a hole injection layer or a hole transport layer of an organic EL device. Any known medium force can be selected and used.
  • the hole transport material has either hole injection or transport or electron barrier properties, and may be either organic or inorganic.
  • triazole derivatives Sadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives Aniline-based copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
  • Typical examples of aromatic tertiary amine compounds and styrylamine compounds include N, N, N ', N-tetraphenenole 4, A'-diaminophenolinore; N, N-diphenylenole N, N'-bis (3-Methylphenyl) 1 [1, 1'-Biphenyl] 1, 4, 4'-Diamine (TPD); 2, 2 Bis (4 di-l-triamylaminophenyl) propane; 1, 1-bis (4 di-p-tri-noraminophenyl) cyclohexane; N, N, N ', N' —tetra-p-trinore 4, A'-diaminobiphenyl; 1,1-bis (4-di-p-tolyl) 4-aminophenyl) Hexane; bis (4-dimethylamino-2-methylphenenyl) phenylmethane; bis (4-di-p-triamylamin
  • No. 5,061,569 for example, 4, 4′-bis [ N- (1-naphthyl) N phenylamino] biphenyl (NPD), three triphenylamine units described in JP-A-4308688 are connected in a starburst type 4, 4 ', A' —Tris [N— (3-methylphenyl) N phenyla Roh] triphenyl ⁇ Min (MTD ATA) and the like.
  • these materials are introduced into the polymer chain, or these materials are combined with the polymer main chain.
  • the polymer material can also be used.
  • Inorganic compounds such as p-type Si and p-type SiC can also be used as the hole injection material and the hole transport material.
  • This hole transport layer is formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, an ink jet method, or an LB method. That power S.
  • a vacuum deposition method such as a vacuum deposition method, a spin coating method, a casting method, an ink jet method, or an LB method. That power S.
  • a vacuum deposition method such as a vacuum deposition method, a spin coating method, a casting method, an ink jet method, or an LB method. That power S.
  • a vacuum deposition method such as a vacuum deposition method, a spin coating method, a casting method, an ink jet method, or an LB method. That power S.
  • the electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer.
  • an electron injection layer and a hole blocking layer are also included in the electron transport layer.
  • a single layer or a plurality of layers are provided.
  • an electron transport material also serving as a hole blocking material used for an electron transport layer adjacent to the light emitting layer on the cathode side is as follows. The following materials are known.
  • the electron transport layer only needs to have a function of transmitting electrons injected from the cathode to the light emitting layer, and any material selected from conventionally known compounds should be used. Touch with force S.
  • electron transport materials examples include heterocyclic tetrafluoride derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, naphthalene perylene, and the like.
  • derivatives having a cyclic structure examples include heterocyclic tetrafluoride derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, naphthalene perylene, and the like.
  • a quinoxaline derivative having a quinoxaline ring can also be used as an electron transport material.
  • these materials were introduced into the polymer chain, or these materials were combined with the polymer main chain.
  • the polymer material can also be used.
  • Metal complexes of 8 quinolinol derivatives such as tris (8 quinolinol) aluminum (Alq), tris (5, 7-dichloro-l-quinolinol) aluminum, tris (5, 7-dive mouth 8 quinolinol) Aluminum, tris (2methyl-8quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), etc.
  • the central metals of these metal complexes are In, Mg, Cu, Ca Metal complexes replaced with Sn, Ga or Pb can also be used as electron transport materials.
  • metal-free or metal phthalocyanine or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transport material.
  • the distyrylvirazine derivative exemplified as the material of the light emitting layer can also be used as an electron transport material, and inorganic semiconductors such as n-type Si and n-type SiC can be used as well as the hole injection layer and the hole transport layer. It can be used as an electron transport material.
  • This electron transport layer can be formed by thinning the electron transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, an ink jet method, or an LB method. S can. Although there is no restriction
  • This electron transport layer may have a single layer structure composed of one or more of the above materials.
  • the injection layer is provided as necessary, and has an electron injection layer and a hole injection layer, and as described above, exists between the anode and the light emitting layer or hole transport layer and between the cathode and the light emitting layer or electron transport layer. May be.
  • the injection layer is a layer provided between the electrode and the organic layer in order to lower the drive voltage and improve the luminance of the light emission.
  • the organic EL element and the forefront of industrialization June 30, 1998, NTT) 2) Chapter 2 “Electrode Materials” (pages 123-166) ”of the 2nd volume of“ E.S. Co., Ltd.) ”, the hole injection layer (anode buffer layer), the electron injection layer (cathode buffer layer) There is.
  • Lid Examples include a phthalocyanine buffer layer represented by cyanine, an oxide buffer layer represented by vanadium oxide, an amorphous carbon buffer layer, and a polymer buffer layer using a conductive polymer such as polyaniline (emeraldine) or polythiophene. .
  • cathode buffer layer (electron injection layer) The details of the cathode buffer layer (electron injection layer) are described in JP-A-6-325871, JP-A-917574, JP-A-10-74586, and the like.
  • Metal buffer layer typified by aluminum, etc., alkali metal compound buffer layer typified by lithium fluoride, alkaline earth metal compound buffer layer typified by magnesium fluoride, oxide buffer typified by aluminum oxide One layer and so on.
  • the buffer layer is preferably a very thin film
  • the film thickness is preferably in the range of 0.;! To lOOnm.
  • This injection layer can be formed by thinning the above material by a known method such as a vacuum deposition method, a spin coating method, a casting method, an ink jet method, or an LB method.
  • the thickness of the injection layer is not particularly limited, but is usually about 5 to 5000 nm.
  • This injection layer may have a single layer structure composed of one or more of the above materials.
  • an electrode material made of a metal, an alloy, an electrically conductive compound or a mixture thereof having a high work function (4 eV or more) is preferably used.
  • electrode materials include metals such as Au, and conductive transparent materials such as Cul, indium tin oxide (ITO), SnO, and ZnO.
  • conductive transparent materials such as Cul, indium tin oxide (ITO), SnO, and ZnO.
  • ITO indium tin oxide
  • ZnO ZnO
  • an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used.
  • these electrode materials can be formed into a thin film by vapor deposition or sputtering, and a pattern of the desired shape can be formed by photolithography, or when pattern accuracy is not so high (about 100 m or more) ), A pattern may be formed through a mask having a desired shape when the electrode material is deposited or sputtered.
  • the transmittance greater than 10%
  • the sheet resistance as the anode is preferably several hundred ⁇ / mouth or less.
  • the film thickness depends on the material, it is usually selected from 10 to 1000 nm, preferably 10 to 200 nm.
  • the cathode a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof is used.
  • an electron injecting metal a material having a low work function (4 eV or less) metal
  • an alloy a material having a low work function (4 eV or less) metal
  • an alloy a material having a low work function (4 eV or less) metal
  • an alloy referred to as an electron injecting metal
  • an alloy an electrically conductive compound
  • a mixture thereof a mixture thereof.
  • Specific examples of such electrode materials include sodium, sodium isotropic lithium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al O) mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.
  • a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function value than this for example, a magnesium / silver mixture.
  • Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3) mixtures, lithium / aluminum mixtures, aluminum and the like are suitable.
  • the cathode can be made by forming a thin film of these electrode materials by vapor deposition or sputtering.
  • the sheet resistance as the cathode is preferably several hundred ⁇ / mouth or less.
  • the film thickness is usually 10 to 1000 nm, preferably 50 to 200 nm.
  • it is convenient that either the anode or the cathode of the organic EL element is transparent or translucent to improve the light emission luminance.
  • Substrate also referred to as substrate, substrate, support, etc.
  • the substrate of the organic EL device of the present invention is not particularly limited as long as it is transparent or transparent, and there are no particular restrictions on the type of glass, plastic, etc.
  • Examples of substrates that are preferably used include glass, Examples thereof include quartz and a light-transmitting resin film.
  • a particularly preferred substrate is a resin film that can give flexibility to the organic EL element.
  • Examples of the resin film include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethersulfone (PES), polyetherimide, polyetheroletherketone, polyphenylenesulfide, polyarylate, polyimide, polycarbonate (PC ), A film made of cellulose triacetate (TAC), cellulose acetate propionate (CAP) or the like.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PES polyethersulfone
  • PES polyetherimide
  • polyetheroletherketone polyphenylenesulfide
  • PC polycarbonate
  • a film made of cellulose triacetate (TAC), cellulose acetate propionate (CAP) or the like On the surface of the resin film, an inorganic or organic film or a hybrid film of both of them may be formed, and the water vapor transmission rate is 0.01 g / m 2 'day atm or less.
  • a film is preferred.
  • the external extraction efficiency at room temperature of light emission of the organic EL device of the present invention is preferably 1% or more, more preferably 2% or more.
  • the external extraction quantum efficiency (%) the number of photons emitted outside the organic EL element / the number of electrons X I 00 flowed to the organic EL element.
  • a hue improving filter such as a color filter may be used in combination.
  • a roughened film such as anti-glare phenolic
  • a roughened film may be used in combination in order to reduce unevenness in light emission.
  • anode / hole injection layer / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / cathode buffer layer / cathode force I will explain to you!
  • a desired electrode material for example, a thin film having a material force for an anode
  • a suitable substrate by a method such as vapor deposition or sputtering so as to have a film thickness of 111 m or less, preferably 10 to 200 nm.
  • an anode is produced.
  • a thin film containing an organic compound such as a hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, or an electron transport layer, which is an element material, is formed thereon.
  • a method of thinning a thin film containing an organic compound there are a spin coat method, a cast method, an ink jet method, a vapor deposition method, a printing method, and the like.
  • the vacuum deposition method or the spin coating method is particularly preferable because it is difficult to form. Further, different film forming methods may be applied for each layer.
  • the deposition conditions may vary due to kinds of materials used, generally boat temperature 50 to 450 ° C, vacuum degree of 10- 6 ⁇ ; 10- 2 Pa, deposition rate 0 0;! -50 nm / sec, substrate temperature 50-300 ° C., film thickness 0.1-5 m are preferably selected as appropriate.
  • a thin film made of a cathode material is formed thereon with a thickness of 1 ⁇ m or less, preferably 50
  • a desired organic EL device can be obtained by forming the film so as to have a film thickness in the range of ⁇ 200 nm by, for example, vapor deposition or sputtering, and providing a cathode.
  • the organic EL device is preferably manufactured from the hole injection layer to the cathode consistently by a single vacuum, but it may be taken out halfway and subjected to different film forming methods. At that time, it is necessary to consider that the work is performed in a dry inert gas atmosphere.
  • the display device of the present invention will be described.
  • the display device of the present invention has the organic EL element.
  • the display device of the present invention may be monochromatic or multicolor, but here, a multicolor display device will be described.
  • a shadow mask is provided only at the time of forming a light emitting layer, and a film can be formed on one surface by a vapor deposition method, a casting method, a spin coating method, an ink jet method, a printing method, or the like.
  • the method is not limited, but the vapor deposition method, the ink jet method, and the printing method are preferable.
  • patterning with a shadow mask is preferred.
  • the production order can be reversed, and the cathode, the electron transport layer, the hole blocking layer, the light emitting layer, the hole transport layer, and the anode can be produced in this order.
  • the multicolor display device can be used as a display device, a display, and various light emitting sources.
  • full-color display is possible by using three organic EL elements, blue, red, and green light emission.
  • Examples of display devices and displays include televisions, personal computers, mopile devices, AV devices, character broadcast displays, and information displays in automobiles.
  • it may be used as a display device for playing back still images and moving images
  • the drive method when used as a display device for moving image playback is either a simple matrix (passive matrix) method or an active matrix method. It may be.
  • Light emitting sources include home lighting, interior lighting, clock and liquid crystal backlights, billboard advertisements, traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, light sensors Examples include light sources, but are not limited to this!
  • the lighting device of the present invention will be described.
  • the lighting device of the present invention has the organic EL element.
  • the organic EL element having the resonator structure may be used as an organic EL element having a resonator structure in the organic EL element of the present invention.
  • Examples include a light source of an electrophotographic copying machine, a light source of an optical communication processor, a light source of an optical sensor, and the like. Moreover, you may use for the said use by making a laser oscillation.
  • the organic EL device of the present invention may be used as a kind of lamp for illumination or exposure light source, a projection device for projecting an image, a still image or a moving image directly visible It may be used as a type of display device (display).
  • the driving method may be either a simple matrix (passive matrix) method or an active matrix method.
  • a full-color display device can be manufactured by using two or more organic EL elements of the present invention having different emission colors.
  • FIG. 7 is a schematic view showing an example of a display device composed of organic EL elements.
  • FIG. 2 is a schematic diagram of a display such as a mobile phone that displays image information by light emission of an organic EL element.
  • the display 1 includes a display section A having a plurality of pixels, a control section B that performs image scanning of the display section A based on image information, and the like.
  • the control unit B is electrically connected to the display unit A, and sends a scanning signal and an image data signal to each of a plurality of pixels based on image information from the outside. Sequentially emits light according to the image data signal, scans the image, and sends the image information to the display unit A.
  • FIG. 8 is a schematic diagram of display unit A.
  • the display portion A includes a wiring portion including a plurality of scanning lines 5 and data lines 6 and a plurality of pixels on a substrate.
  • the light emitted from the pixel 3 is extracted in the direction of the white arrow (downward).
  • the scanning lines 5 and the plurality of data lines 6 in the wiring portion are each made of a conductive material, and the scanning lines 5 and the data lines 6 are orthogonal to each other in a grid pattern and are connected to the pixels 3 at the orthogonal positions (details Is not shown).
  • the pixel 9 When a scanning signal is applied from the scanning line 5, the pixel 9 receives an image data signal from the data line 6, and emits light according to the received image data.
  • Full color display is possible by arranging pixels in the red region, the green region, and the blue region as appropriate on the same substrate.
  • FIG. 9 is a schematic diagram of a pixel.
  • the pixel includes an organic EL element 10, a switching transistor 11, a driving transistor 12, a capacitor 13, and the like.
  • organic EL elements that emit red, green, and blue as the organic EL elements 10 in multiple pixels, and arranging them on the same substrate in parallel, full-color display can be achieved with power S.
  • an image data signal is applied from the control unit B to the drain of the switching transistor 11 via the data line 6.
  • a scanning signal is applied from the control unit B to the gate of the switching transistor 11 via the scanning line 5
  • the driving of the switching transistor 11 is turned on, and the image data signal applied to the drain is transferred to the capacitor 13 and the driving transistor. It is transmitted to the gate of the star 12.
  • the capacitor 13 is charged according to the potential of the image data signal.
  • Drive transistor 12 has a drain Is connected to the power supply line 7 and the source is connected to the electrode of the organic EL element 10, and current is supplied from the power supply line 7 to the organic EL element 10 according to the potential of the image data signal applied to the gate. .
  • the driving of the switching transistor 11 is turned off. However, even if the driving of the switching transistor 11 is turned off, the capacitor 13 holds the potential of the charged image data signal, so that the driving of the driving transistor 12 is kept on and the next scanning signal is applied.
  • the organic EL device 10 continues to emit light until it is seen.
  • the driving transistor 12 is driven according to the potential of the next image data signal synchronized with the scanning signal, and the organic EL element 10 emits light.
  • the organic EL element 10 emits light by providing a switching transistor 11 and a driving transistor 12 as active elements for each of the plurality of pixels.
  • Element 10 is emitting light.
  • Such a light emitting method is called an active matrix method.
  • the light emission of the organic EL element 10 may be light emission of a plurality of gradations by a multi-value image data signal having a plurality of gradation potentials.
  • the light emission amount may be on or off.
  • the potential of the capacitor 13 can be maintained until the next scanning signal is applied, or can be discharged immediately before the next scanning signal is applied! /.
  • the present invention is not limited to the above-described active matrix method, and may be a passive matrix type light emission drive in which an organic EL element emits light according to a data signal only when a scanning signal is scanned. .
  • FIG. 10 is a schematic diagram of a display device using a passive matrix method.
  • a plurality of scanning lines 5 and a plurality of image data lines 6 are provided in a lattice shape so as to face each other with the pixel 3 interposed therebetween.
  • the pixel 3 connected to the applied scanning line 5 emits light in accordance with the image data signal.
  • the noisy matrix method has no active element in pixel 3, and can reduce manufacturing costs.
  • the organic EL material of the present invention can be applied to an organic EL element that emits substantially white light as a lighting device.
  • a plurality of light emitting colors are simultaneously emitted by a plurality of light emitting materials, and white light emission is obtained by mixing colors.
  • the combination of multiple emission colors may include three emission maximum wavelengths of the three primary colors of blue, green, and blue, or the complementary colors such as blue and yellow, and blue-green and orange are used 2 It may be one containing two emission maximum wavelengths.
  • a combination of light emitting materials for obtaining a plurality of light emission colors is a combination of a plurality of phosphorescent or fluorescent materials, a light emitting material that emits fluorescence or phosphorescence, and a combination of light emitting materials. Any combination with a dye material that emits light as excitation light may be used, but in the white organic EL device according to the present invention, only a combination of a plurality of light-emitting dopants may be mixed.
  • a mask is provided only at the time of formation of the light emitting layer, hole transport layer, electron transport layer, etc.
  • an electrode film can be formed on one side by vapor deposition, casting, spin coating, ink jet, printing, etc., and productivity is improved. According to this method, unlike the white organic EL device in which light emitting elements of a plurality of colors are arranged in parallel in an array, the elements themselves emit white light.
  • the white light-emitting organic EL device is not only the display device and the display, but also a variety of light-emitting light sources and lighting devices, such as home lighting, interior lighting, and exposure light source. It is also useful for display devices such as backlights for liquid crystal display devices.
  • backlights for watches, signboard advertisements, traffic lights, optical storage media and other light sources, light sources for electronic photocopiers, light sources for optical communication processors, light sources for optical sensors, and display devices are required. And a wide range of uses such as general household appliances.
  • the transparent support substrate with this ITO transparent electrode was ultrasonically cleaned with isopropyl alcohol Then, it was dried with dry nitrogen gas, and UV ozone cleaning was performed for 5 minutes.
  • This transparent support substrate is fixed to the substrate holder of a commercially available vacuum evaporation system, while ⁇ -NPD, H4, Ir 12, BCP, and Alq are placed in five tantalum resistance heating boats, respectively. Attached to the tank).
  • lithium fluoride was put in a resistance heating boat made of tantalum, and aluminum was put in a resistance heating boat made of tungsten, respectively, and attached to the second vacuum chamber of the vacuum evaporation apparatus.
  • the heating boat containing H4 and the boat containing Ir 12 are independently energized, so that the deposition rate of H4 as a light emitting host and Ir-12 as a light emitting dopant is 100: 6.
  • the light emitting layer was provided by vapor deposition so that the film thickness was 30 nm.
  • the heating boat containing BCP was energized and heated, and a hole blocking layer having a thickness of 10 nm was provided at a deposition rate of 0.2;! To 0.2 nm / sec. Further, the heating boat containing Alq was energized and heated, and an electron transport layer having a film thickness of 20 nm was provided at a deposition rate of 0.2; /-0.2 nm / sec.
  • the organic EL devices 1-2-1 to 26 were prepared in the same manner except that the light emitting host, the light emitting dopant, and the hole blocking material were changed as shown in Table 1.
  • the non-light emitting surface of each organic EL device after fabrication was covered with a glass case, and a glass substrate having a thickness of 300 m was used as a sealing substrate.
  • the epoxy photo-curing adhesive (Latus Track LC0629B manufactured by Toagosei Co., Ltd.) is applied as a sealant around the periphery, and this is overlaid on the cathode and brought into close contact with the transparent support substrate. It was irradiated with UV light, cured, sealed, and evaluated by forming an illumination device as shown in FIGS.
  • FIG. 11 shows a schematic diagram of a lighting device, in which the organic EL element 101 is covered with a glass cover 102 (in addition, the sealing operation with the glass cover is to bring the organic EL element 101 into contact with the atmosphere.
  • a glove box under a nitrogen atmosphere under a high purity nitrogen gas atmosphere with a purity of 99.999% or more.
  • FIG. 12 shows a cross-sectional view of the lighting device.
  • 105 denotes a cathode
  • 106 denotes an organic EL layer
  • 107 denotes a glass substrate with a transparent electrode.
  • the glass cover 102 is filled with nitrogen gas 108 and a water catching agent 109 is provided.
  • the organic EL device was continuously lit at room temperature at a constant current of 2.5 mA / cm 2 and the time required to reach half the initial luminance was measured.
  • Luminous lifetime is organic EL
  • the element 1 1 is expressed as a relative value set to 100.
  • the organic EL device was visually evaluated for the luminescent color when it was lit continuously at room temperature under a constant current condition of 2.5 mA / cm2.
  • the organic EL device produced using the metal complex according to the present invention has higher emission efficiency and longer lifetime while having a short-wave emission of pure blue to blue-green compared to the organic EL device of the comparative example. It is clear that a long life can be achieved.
  • Polyburcarbazole hole transporting binder polymer
  • Ir 1 13 blue light emitting orthometalated complex
  • 4-Oxadiazole electron transport material
  • a mass patterned on this organic compound layer (A mask with a light emitting area of 5 mm x 5 mm), and depositing 0.5 nm of lithium fluoride as the cathode buffer layer and 150 nm of aluminum as the cathode in the vapor deposition system, providing the cathode, and emitting blue organic EL Element 2-1 was produced.
  • Organic EL elements 2-2 to 2-11 were prepared in the same manner as in the preparation of organic EL element 2-1, except that the luminescent dopant was changed as shown in Table 2.
  • the non-light emitting surface of each organic EL device after fabrication was covered with a glass case, and a glass substrate having a thickness of 300 m was used as the sealing substrate.
  • the epoxy-based photo-curing adhesive (Latus Track LC0629B manufactured by Toagosei Co., Ltd.) is applied as a sealant around the glass substrate, and this is overlaid on the cathode and brought into close contact with the transparent support substrate. Then, UV light was irradiated, cured, sealed, and an illumination device as shown in FIGS. 11 and 12 was formed and evaluated.
  • the organic EL device produced using the metal complex according to the present invention has high luminous efficiency and high luminance while having a short blue light emission of pure blue to blue green compared with the organic EL device of the comparative example. It is clear that can be achieved.
  • the organic EL device 1-118 of Example 1 was used as a blue light emitting device.
  • a green light-emitting device was produced in the same manner as in Example 1 except that Ir-12 was changed to Ir-1 in the organic EL device 11 of Example 1, and this was used as a green light-emitting device.
  • a red light-emitting device was produced in the same manner as in Example 1 except that Ir-12 was changed to Ir-9 in the organic EL device 1-11, and this was used as a red light-emitting device.
  • FIG. 8 shows only a schematic diagram of the display portion A of the display device thus manufactured. That is, a plurality of pixels 3 (light emission color is a red region pixel, a green region pixel, a blue region pixel, etc.) juxtaposed with a wiring portion including a plurality of scanning lines 5 and data lines 6 on the same substrate.
  • a plurality of pixels 3 light emission color is a red region pixel, a green region pixel, a blue region pixel, etc.
  • Scanning line of wiring part 5 and the plurality of data lines 6 are each made of a conductive material, and the scanning lines 5 and the data lines 6 are orthogonal to each other in a lattice shape and are connected to the pixels 3 at the orthogonal positions (details are not shown).
  • the plurality of pixels 3 are driven by switches that are organic EL elements and active elements corresponding to the respective emission colors.
  • the pixel 3 receives and receives an image data signal from the data line 6. Emits light according to the image data. In this way, a full-color display device was produced by appropriately juxtaposing red, green, and blue pixels.
  • the electrode of the transparent electrode substrate of Example 1 was patterned to 20 mm x 20 mm, and ⁇ -NPD was deposited to a thickness of 25 nm as a hole injection / transport layer on the same as in Example 1, and then H4
  • the heating boat containing, the boat containing Illustrative Compound (4), and the boat containing Ir 9 were energized independently, respectively, and CBP as the luminescent host and Illustrative Compound (4) and Ir as the luminescent dopant were respectively supplied.
  • the deposition rate of 9 was adjusted to 100: 5: 0.6, deposition was performed to a thickness of 30 nm, and a light emitting layer was provided.
  • a 10-nm BCP film was formed to provide a hole blocking layer. Furthermore, Alq was deposited at 40 nm to provide an electron transport layer.
  • Example 2 a square perforated mask having substantially the same shape as the transparent electrode made of stainless steel was placed on the electron injection layer, and lithium fluoride 0.5 nm was used as a cathode buffer layer and a cathode. Aluminum 150nm was deposited.
  • This element was provided with a sealing can having the same method and the same structure as in Example 1, and FIG.
  • the ITO transparent electrode is formed after patterning on a substrate ( ⁇ Techno Glass Co., Ltd. 45-45) made of ITO (Indium Toxide) on a lOOmmX lOOmm X l. 1mm glass substrate as an anode.
  • the transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
  • PEDOT / PSS polystyrene sulfonate
  • the substrate was transferred to a nitrogen atmosphere, and a solution of 50 mg of compound A dissolved in 10 ml of toluene was formed on the first hole transport layer by spin coating at 1000 rpm for 30 seconds. . After irradiating with ultraviolet light for 180 seconds to perform photopolymerization / crosslinking, vacuum drying was performed at 60 ° C. for 1 hour to form a second hole transport layer.
  • this substrate was fixed to the substrate holder of the vacuum evaporation apparatus, and the resistance made of molybdenum was added.
  • 200 mg of Alq was put into a heat boat and attached to a vacuum evaporation system. After pressure in the vacuum tank was reduced by 4 X 10- 4 Pa or, and heated by supplying an electric current to the boat charged with Alq, it is deposited on the electron transport layer at a deposition rate of 0. lnm / sec, further film An electron transport layer with a thickness of 40 nm was provided.
  • the substrate temperature during vapor deposition was room temperature.
  • a white light emitting organic EL device was produced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Description

明 細 書
有機エレクト口ルミネッセンス素子材料、有機エレクト口ルミネッセンス素子 、表示装置及び照明装置
技術分野
[0001] 本発明は、有機エレクト口ルミネッセンス素子材料、有機エレクト口ルミネッセンス素 子、表示装置及び照明装置に関する。
背景技術
[0002] 従来、発光型の電子ディスプレイデバイスとして、エレクト口ルミネッセンスディスプレ ィ(以下、 ELDという)がある。 ELDの構成要素としては、無機エレクト口ルミネッセン ス素子や有機エレクト口ルミネッセンス素子(以下、有機 EL素子とも!/、う)が挙げられ る。無機エレクト口ルミネッセンス素子は平面型光源として使用されてきた力 発光素 子を駆動させるためには交流の高電圧が必要である。有機 EL素子は発光する化合 物を含有する発光層を陰極と陽極で挟んだ構成を有し、発光層に電子及び正孔を 注入して、再結合させることにより励起子(エキシトン)を生成させ、このエキシトンが 失活する際の光の放出(蛍光'リン光)を利用して発光する素子であり、数 V〜数十 V 程度の電圧で発光が可能であり、さらに自己発光型であるために視野角に富み、視 認性が高ぐ薄膜型の完全固体素子であるために省スペース、携帯性等の観点から 注目されている。
[0003] しかしながら、今後の実用化に向けた有機 EL素子においては、さらに低消費電力 で効率よく高輝度に発光する有機 EL素子の開発が望まれている。
[0004] 特許第 3093796号公報では、スチルベン誘導体、ジスチリルァリーレン誘導体ま たはトリススチリルァリーレン誘導体に微量の蛍光体をドープし、発光輝度の向上、素 子の長寿命化を達成している。また、 8—ヒドロキシキノリンアルミニウム錯体をホスト 化合物として、これに微量の蛍光体をドープした有機発光層を有する素子(例えば、 特開昭 63— 264692号公報)、 8—ヒドロキシキノリンアルミユウム錯体をホスト化合物 として、これにキナクリドン系色素をドープした有機発光層を有する素子(例えば、特 開平 3— 255190号公報)等が知られている。 [0005] 以上のように、励起一重項からの発光を用いる場合、一重項励起子と三重項励起 子の生成比が 1 : 3であるため発光性励起種の生成確率が 25%であり、光の取り出し 効率が約 20%であるため、外部取り出し量子効率( 7] ext)の限界は 5%とされている
[0006] ところ力 プリンストン大より励起三重項からのリン光発光を用いる有機 EL素子の報 告(M. A. Baldo et al. , Nature, 395巻、 151〜; 154頁(1998年))力 Sされて以 来、室温でリン光を示す材料の研究が活発になってきている。
[0007] 例えば、 M. A. Baldo et al. , Nature, 403巻、 17号、 750〜753頁(2000年
)、また米国特許第 6, 097, 147号明細書等にも開示されている。
[0008] 励起三重項を使用すると、内部量子効率の上限が 100%となるため励起一重項の 場合に比べて原理的に発光効率が 4倍となり、冷陰極管とほぼ同等の性能が得られ る可能性があることから照明用途としても注目されている。
[0009] 例えば、 S. Lamansky et al. , J. Am. Chem. Soc. , 123巻、 4304頁(2001 年)等においては、多くの化合物がイリジウム錯体系等重金属錯体を中心に合成検 討されている。
[0010] また、前述の M. A. Baldo et al. , Nature, 403巻、 17号、 750〜753頁(200 0年)においては、ドーパントとしてトリス(2—フエ二ルビリジン)イリジウムを用いた検 討がされている。
[0011] その他、 M. E. Tompson等は、 The 10th International Workshop on In organic and Organic Electroluminescence (EL' 00、浜松) ίこおレヽて、ドーノ ン卜として L2Ir (acac)、例えば、(ppy) 2Ir (acac)を、また Moon— Jae Youn. 0g、 Tetsuo Tsutsui等は、やはり The 10th International Workshop on Inor ganic and Organic Electroluminescence (EL' 00、浜松) ίこおレヽて、ドーノ ン トとしてトリス(2— (ρ—トリル)ピリジン)イリジウム(Ir (ptpy) 3) , トリス(ベンゾ [h]キノリ ン)イリジウム(Ir (bzq) 3)等を用いた検討を行って!/、る(なおこれらの金属錯体は一 般にオルトメタル化イリジウム錯体と呼ばれて!/、る。 )。
[0012] また、前記 S . Lamansky et al. , J. Am. Chem. Soc. , 123巻、 4304頁(20 01年)ゃ特開 2001— 247859号公報等においても、各種イリジウム錯体を用いて素 子化する試みがされている。
[0013] また、高い発光効率を得るために、 The 10th International Workshop on Inorganic and Organic Electroluminescence (EL' 00、浜松)では、 Ikai等 はホール輸送性の化合物をリン光性化合物のホストとして用いている。また、 M. E. Tompson等は各種電子輸送性材料をリン光性化合物のホストとして、これらに新規 なイリジウム錯体をドープして用いてレ、る。
[0014] 中心金属をイリジウムの代わりに白金としたオルトメタル化錯体も注目されている。こ の種の錯体に関しては、配位子に特徴を持たせた例が多数知られて!/、る。
[0015] V、ずれの場合も発光素子とした場合の発光輝度や発光効率は、その発光する光が リン光に由来することから従来の素子に比べ大幅に改良されるものであるが、素子の 発光寿命については従来の素子よりも低いという問題点があった。このように、リン光 性の高効率の発光材料は、発光波長の短波化と素子の発光寿命の改善が難しぐ 実用に耐えうる性能を十分に達成できて!/、な!/、のが現状である。
[0016] また波長の短波化に関しては、これまでフエニルピリジンにフッ素原子、トリフルォロ メチル基、シァノ基等の電子吸引基を置換基として導入すること、配位子としてピコリ ン酸ゃビラザボール系の副配位子を導入することが知られている力 S、これらの配位子 では発光材料の発光波長が短波化して青色を達成し、高効率の素子を達成できる 一方、素子の発光寿命は大幅に劣化するため、そのトレードオフの改善が求められ ていた。
[0017] 配位子としてフエ二ル基を置換したフエ二ルビラゾールを有する金属錯体が知られ ている(例えば、特許文献 1、 2参照。)。しかし、ここで開示されているフエ二ルビラゾ ールへのフエニル基の置換様式では発光の素子寿命に改善が見られる力 まだ十 分ではなく発光効率の観点からも改良の余地が残っている。
[0018] 配位子としてフエ二ルイミダゾールを基本骨格にして、種々の置換基を導入した例 が開示されている(例えば、特許文献 3、 4参照。)が、発光寿命には大きな改善は見 られず改良の余地が残ってレ、る。
[0019] 別のアプローチとして、配位子の構造にヘテロ原子を含む三環以上の環からなる 縮環構造を導入した例が開示されている(特許文献 5、 6、 7参照。)が、開示されてい る例はいずれも発光極大が 550nm以上の黄〜赤のような長波な発光を示すものが 多ぐ青〜青緑といった短波な発光の例は少なぐ高効率かつ発光寿命の長いもの は皆無だった。
特許文献 1:国際公開第 04/085450号パンフレット
特許文献 2 :特開 2005— 53912号公報
特許文献 3:国際公開第 05/007767号パンフレット
特許文献 4:国際公開第 06/046980号パンフレット
特許文献 5 :特開 2002— 332291号公報
特許文献 6:特開 2004— 67658号公報
特許文献 7:国際公開第 04/111066号パンフレット
発明の開示
発明が解決しょうとする課題
[0020] 本発明は係る課題に鑑みてなされたものであり、本発明の目的は、発光波長が制 御され、高い発光効率を示し、かつ発光寿命の長い有機 EL素子材料を提供するこ とである。特に、青色〜青緑色の短波な発光で、高い発光効率を示し、かつ発光寿 命の長い有機 EL素子材料を提供することである。さらに、それを用いた有機 EL素子 、表示装置及び照明装置を提供することである。
課題を解決するための手段
[0021] 本発明の上記目的は、下記の構成により達成された。
[0022] 1.下記一般式(1)で表される金属錯体であることを特徴とする有機エレクト口ルミネ ッセンス素子材料。
[0023] [化 1] —殺式
Figure imgf000006_0001
[0024] (式中、 Xは R— N、 0、 S、 Seまたは Teを表す。 Rは置換、無置換のアルキル基、シ
1 1
クロアルキル基、ァリール基または芳香族複素環基を表す。 Y、 Y及び Yは R— N
1 2 3 2
、 Nまたは R— Cを表し、 C、 Nとともにイミダゾール環、トリァゾール環、テトラゾール
3
環を形成するのに必要な原子群を表す。 Rは置換、無置換のアルキル基、シクロア ルキル基、ァリール基または芳香族複素環基を表す。 Rは水素原子あるいは置換基
3
を表す。 Gは置換基を表し、 nは 0、 1または 2を表す。 X— L—Xは 2座の配位子を
1 1 2
表し、 X、 Xは各々独立に炭素原子、窒素原子または酸素原子を表す。 Lは X、 X
1 2 1 1 2 と共に 2座の配位子を形成する原子群を表す。中心金属である Mは元素周期表に
1
おける 8〜; 1 1族の金属を表す。 mlは 1、 2または 3の整数を表し、 m2は 0、 1または 2 の整数を表すが、 ml + m2は 2または 3であり、これは中心金属の正電荷と同じ数で ある。 )
2.前記一般式(1 )で表される金属錯体が下記一般式 (2)で表されることを特徴と する前記 1に記載の有機エレクト口ルミネッセンス素子材料。
[0025] [化 2] 一般式 (2}
Figure imgf000006_0002
[0026] (式中、 Xは R— N、 0、 S、 Seまたは Teを表す。 Rは置換、無置換のアルキル基、シ
1 1
クロアルキル基、ァリール基または芳香族複素環基を表す。 Y及び Yは R— N、 Nま たは R— Cを表し、 N— C = Nと共にイミダゾール環、トリァゾール環、テトラゾール環
3
を形成するのに必要な原子群を表す。 Rは置換、無置換のアルキル基、シクロアノレ キル基、ァリール基または芳香族複素環基を表す。 Rは水素原子あるいは置換基を
3
表す。 Gは置換基を表し、 nは 0、 1または 2を表す。 X— L —Xは 2座の配位子を表
1 1 2
し、 X、 Xは各々独立に炭素原子、窒素原子または酸素原子を表す。 Lは X、 Xと
1 2 1 1 2 共に 2座の配位子を形成する原子群を表す。中心金属である Mは元素周期表にお
1
ける 8〜; 1 1族の金属を表す。 mlは 1、 2または 3の整数を表し、 m2は 0、 1または 2の 整数を表すが、 ml + m2は 2または 3であり、これは中心金属の正電荷と同じ数であ る。 )
3.前記一般式 (2)で表される金属錯体が下記一般式 (3)で表されることを特徴と する前記 2に記載の有機エレクト口ルミネッセンス素子材料。
[0027] [化 3]
Figure imgf000007_0001
[0028] (式中、 Xは R— N、 0、 S、 Seまたは Teを表す。 Rは置換、無置換のアルキル基、シ
1 1
クロアルキル基、ァリール基または芳香族複素環基を表す。 Rは置換、無置換のァ ルキル基、シクロアルキル基、ァリール基または芳香族複素環基を表す。 Gは置換基 を表し、 nは 0、 1または 2を表す。 X— L—Xは 2座の配位子を表し、 X、 Xは各々
1 1 2 1 2 独立に炭素原子、窒素原子または酸素原子を表す。 Lは X、 Xと共に 2座の配位子
1 1 2
を形成する原子群を表す。中心金属である Mは元素周期表における 8〜; 1 1族の金
1
属を表す。 mlは 1、 2または 3の整数を表し、 m2は 0、 1または 2の整数を表す力 m l +m2は 2または 3であり、これは中心金属の正電荷と同じ数である。 )
4.前記一般式(3)で表される金属錯体において、 R力 Sメチル基あるいは置換、無 置換のァリール基または芳香族複素環基であることを特徴とする前記 3に記載の有 機エレクト口ルミネッセンス素子材料。
[0029] 5.前記一般式(3)で表される金属錯体において、 Rが 2, 6—ジメチルフエニル基 、メシチル基(2, 4, 6—トリメチルフエニル基)、テトラメチルフエニル基またはペンタメ チルフエニル基であることを特徴とする前記 4に記載の有機エレクト口ルミネッセンス 素子材料。
[0030] 6.前記中心金属 Mがイリジウムであることを特徴とする前記 1〜5のいずれか 1項
1
に記載の有機エレクト口ルミネッセンス素子材料。
[0031] 7.前記中心金属 Mが白金であることを特徴とする前記;!〜 5のいずれか 1項に記
1
載の有機エレクト口ルミネッセンス素子材料。
[0032] 8.前記 m2が 0であることを特徴とする前記;!〜 7のいずれか 1項に記載の有機エレ タトロルミネッセンス素子材料。
[0033] 9.第 1発光波長が 400〜500nmの範囲内であることを特徴とする前記 1〜8のい ずれか 1項に記載の有機エレクト口ルミネッセンス素子材料。
[0034] 10.前記 1〜9のいずれ力、 1項に記載の有機エレクト口ルミネッセンス素子材料を含 有することを特徴とする有機エレクト口ルミネッセンス素子。
[0035] 11.構成層として発光層を有し、該発光層が前記;!〜 9のいずれか 1項に記載の有 機エレクト口ルミネッセンス素子材料を含有することを特徴とする前記 10に記載の有 機エレクト口ルミネッセンス素子。
[0036] 12.前記発光層が、ホスト化合物として、力ルバゾール誘導体または該カルバゾー ノレ誘導体の力ルバゾール環を構成する炭化水素環の炭素原子の少なくとも一つが 窒素原子で置換されている環構造を有する誘導体を含有することを特徴とする前記 10に記載の有機エレクト口ルミネッセンス素子。
[0037] 13.構成層として正孔阻止層を有し、該正孔阻止層が、正孔阻止材料として、カル バゾール誘導体または該カルバゾール誘導体の力ルバゾール環を構成する炭化水 素環の炭素原子の少なくとも一つが窒素原子で置換されている環構造を有する誘導 体を含有することを特徴とする前記 10〜; 12のいずれか 1項に記載の有機エレクト口 ルミネッセンス素子。
[0038] 14.前記 10〜13のいずれか 1項に記載の有機エレクト口ルミネッセンス素子を有 することを特徴とする表示装置。
[0039] 15.前記 10〜13のいずれか 1項に記載の有機エレクト口ルミネッセンス素子を有 することを特徴とする照明装置。
発明の効果
[0040] 本発明により、有機 EL素子用に有用な有機 EL素子材料が得られ、該有機 EL素 子材料を用いることにより発光波長が制御され、高い発光効率を示し、かつ発光寿 命の長い有機 EL素子、照明装置及び表示装置を提供することができた。
図面の簡単な説明
[0041] [図 1]本発明の金属錯体 (化合物 4)の発光スペクトルである。
[図 2]本発明の金属錯体 (化合物 4)の発光スペクトルである。
[図 3]本発明の金属錯体 (化合物 14)の発光スペクトルである。
[図 4]本発明の金属錯体 (化合物 14)の発光スペクトルである。
[図 5]本発明の金属錯体 (化合物 27)の発光スペクトルである。
[図 6]本発明の金属錯体 (化合物 27)の発光スペクトルである。
[図 7]有機 EL素子から構成される表示装置の一例を示した模式図である。
[図 8]表示部 Aの模式図である。
[図 9]画素の模式図である。
[図 10]パッシブマトリクス方式フルカラー表示装置の模式図である。
[図 11]照明装置の概略図である。
[図 12]照明装置の模式図である。
符号の説明
[0042] 1 ディスプレイ
3 画素
5 走査線
6 データ線 7 電源ライン
10 有機 EL素子
12 駆動トランジスタ
13 コンデンサ
A 表示部
B 制御部
102 ガラスカバー
105 陰極
106 有機 EL層
107 透明電極付きガラス基板
108 窒素ガス
109 捕水剤
発明を実施するための最良の形態
[0043] 本発明の有機 EL素子材料においては、請求の範囲 1〜9のいずれ力、 1項に規定さ れる構成により、有機 EL素子用に有用な有機 EL素子材料を分子設計することに成 功した。また、該有機 EL素子材料を用いることにより高い発光効率を示し、かつ発光 寿命の長い有機 EL素子、照明装置及び表示装置を提供することができた。
[0044] 本発明者等は前記の問題点について鋭意検討を行った結果、前記一般式(1)、 (
2)または(3)で表される金属錯体を有機 EL素子材料として含む有機 EL素子により
、発光効率と発光寿命が大きく改善されるという知見を得た。
[0045] 本発明者らは鋭意検討した結果、フエニルァゾール誘導体は、母核であるフエニル ァゾールへの置換基の置換位置や種類の影響で錯体の安定性が大きく左右され、 そのことが発光寿命に大きな影響を与えることを見出した。本発明に係る金属錯体の ように、フエ二ルァゾールに特定の部分構造を導入することにより、従来のフエ二ルビ リジン誘導体を配位子とする青色用の金属錯体、特に電子吸引基によってのみ発光 波長を短波に制御してきた有機 EL素子材料を用いて作製された有機 EL素子の問 題点であった発光寿命が大幅に改善されることを見出し、高い発光効率と長い発光 寿命を両立できるに到った。また、フエニルァゾール誘導体のなかでも特に 2—フエ 二ルイミダゾール誘導体を用いること、さらに、イミダゾール環上で金属に配位子して いない窒素原子に特定の置換基を導入することで、色純度の優れた青色用発光素 子の更なる長寿命化が可能になることが分かり、有機 EL素子の発光寿命の大幅な 改善に成功した。
[0046] 以下、本発明に係る各構成要素の詳細について、順次説明する。
[0047] 《金属錯体》
本発明の有機 EL素子材料に係る金属錯体について説明する。
[0048] (配位子)
本発明に係る金属錯体は、例えば、上記一般式(1)で説明すると、 mlを有する括 弧内に示す部分構造、もしくはその互変異性体で表される部分構造を主配位子、 m 2を有する括弧内に示す部分構造、もしくはその互変異性体で表される部分構造を 副配位子と称する。
[0049] 本発明においては、一般式(1)に代表されるように、該金属錯体は主配位子もしく はその互変異性体と副配位子もしくはその互変異性体の組み合わせで構成されるか 、後述するが、 m2 = 0の場合、即ち該金属錯体の配位子の全てが主配位子または その互変異性体で表される部分構造のみで構成されて!/、てもよ!/、。
[0050] さらに、従来公知の金属錯体形成に用いられる、所謂配位子として当該業者が周 知の配位子(配位化合物とも!/、う)を必要に応じて副配位子として有して!/、てもよ!/、。
[0051] 本発明に記載の効果を好ましく得る観点からは、錯体中の配位子の種類は 1〜2種 類から構成されることが好ましぐさらに好ましくは 1種類である。
[0052] 従来公知の金属錯体に用いられる配位子としては、種々の公知の配位子があるが 、例えは、「Photochemistry and Photophysics of Coordination Compou nds」 Springer— Verlag社 H. Yersin著 1987年発行、「有機金属化学一基礎と 応用一」裳華房社 山本明夫著 1982年発行等に記載の配位子(例えば、ハロゲン 配位子(好ましくは塩素配位子)、含窒素へテロ環配位子(例えば、ビビリジル、フエ ナント口リン等)、ジケトン配位子等)が挙げられる。
[0053] (元素周期表の 8〜; 11族の遷移金属元素) 本発明に係る、一般式(1)、(2)または(3)で表される金属錯体の形成に用いられ る金属としては、元素周期表の 8〜; 11族の遷移金属元素(単に遷移金属ともいう)が 用いられるが、中でも、イリジウム、白金が好ましい遷移金属元素として挙げられる。
[0054] 本発明に係る前記一般式(1)、(2)または(3)で表される金属錯体の含有層として は、発光層及び/または電子阻止層が好ましぐまた発光層に含有する場合は、発 光層中の発光ドーパントとして用いることにより、本発明の有機 EL素子の外部取り出 し量子効率の向上(高輝度化)や発光寿命の長寿命化を達成することができる。
[0055] (一般式(1)、(2)または(3)で表される金属錯体)
ここで、本発明に係る前記一般式(1)、(2)または(3)で表される金属錯体につい て説明する。
[0056] 一般式(1)、(2)または(3)において、 Xは R— N、〇、 S、 Seまたは Teを表す。発
1
光極大波長がより短波であるという点では、 Xは R— N、 0、 Sであることが好ましぐ
1
発光の色純度がより高いという点で Xが R—Nであることがさらに好ましい。
1
[0057] Rは置換、無置換のアルキル基、シクロアルキル基、ァリール基または芳香族複素
1
環基を表す。
[0058] アルキル基としては、例えば、メチル基、ェチル基、プロピル基、イソプロピル基、 te rt ブチル基、ペンチル基、へキシル基、ォクチル基、ドデシル基、トリデシル基、テ トラデシル基、ペンタデシル基等が挙げられる。
[0059] シクロアルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペン チル基、シクロへキシル基等が挙げられる。
[0060] ァリール基としては、例えば、フエニル基、メシチル基、トリル基、キシリル基、ナフチ ル基、アントリル基、ァズレニル基、ァセナフテュル基、フルォレニル基、フエナントリ ル基、インデュル基、ピレニル基、ビフヱ二リル基等が挙げられる。
[0061] 芳香族複素環基としては、例えば、ピリジル基、ピリミジニル基、フリル基、ピロリノレ 基、イミダゾリル基、ベンゾイミダゾリル基、ピラゾリル基、ピラジュル基、トリァゾリル基 (ί列免 ίま'、 1 , 2, 4 卜リ ゾ '一ノレ 1 イノレ基、 1 , 2, 3 卜リ ゾ '一ノレ 1 イノレ基等 )、ォキサゾリル基、ベンゾォキサゾリル基、チアゾリル基、イソォキサゾリル基、イソチ ァゾリル基、フラザニル基、チェニル基、キノリル基、ベンゾフリル基、ジベンゾフリル 基、ベンゾチェ二ル基、ジベンゾチェニル基、インドリノレ基、カルバゾリル基、力ノレボリ ニル基、キノキサリニル基、ピリダジニル基、トリアジニル基、キナゾリニル基、フタラジ ニル基等が挙げられる。
これらの基はさらに置換されていてもよぐ置換基の例としては、アルキル基(例え ば、メチル基、ェチル基、プロピル基、イソプロピル基、 tert ブチル基、ペンチル基 、へキシル基、ォクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル 基等)、シクロアルキル基(例えば、シクロペンチル基、シクロへキシル基等)、ァルケ ニル基(例えば、ビュル基、ァリル基等)、アルキニル基(例えば、ェチュル基、プロパ ルギル基等)、芳香族炭化水素環基 (芳香族炭素環基、ァリール基等ともいい、例え ば、フエニル基、 p クロ口フエ二ル基、メシチル基、トリノレ基、キシリノレ基、ナフチル基 、アントリル基、ァズレニル基、ァセナフテュル基、フルォレニル基、フエナントリル基 、インデュル基、ピレニル基、ビフエ二リル基等)、芳香族複素環基 (例えば、ピリジノレ 基、ピリミジニル基、フリル基、ピロリル基、イミダゾリル基、ベンゾイミダゾリル基、ビラ ゾリル基、ピラジュル基、トリァゾリル基(例えば、 1 , 2, 4—トリァゾールー 1ーィル基、 1 , 2, 3—トリァゾールー 1 ィル基等)、ォキサゾリル基、ベンゾォキサゾリル基、チ ァゾリル基、イソォキサゾリル基、イソチアゾリル基、フラザニル基、チェニル基、キノリ ノレ基、ベンゾフリル基、ジベンゾフリル基、ベンゾチェ二ル基、ジベンゾチェニル基、 インドリノレ基、カルバゾリル基、カノレポリニノレ基、ジァザカルバゾリル基(前記カルボリ ニル基のカルボリン環を構成する炭素原子の一つが窒素原子で置き換わったものを 示す)、キノキサリニル基、ピリダジニル基、トリアジニル基、キナゾリニル基、フタラジ ニル基等)、複素環基(例えば、ピロリジノレ基、イミダゾリジノレ基、モルホリル基、ォキ サゾリジル基等)、アルコキシ基 (例えば、メトキシ基、エトキシ基、プロピルォキシ基、 ペンチルォキシ基、へキシルォキシ基、ォクチルォキシ基、ドデシルォキシ基等)、シ クロアルコキシ基(例えば、シクロペンチルォキシ基、シクロへキシルォキシ基等)、ァ リールォキシ基(例えば、フエノキシ基、ナフチルォキシ基等)、アルキルチオ基(例え ば、メチルチオ基、ェチルチオ基、プロピルチオ基、ペンチルチオ基、へキシルチオ 基、ォクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペン チルチオ基、シクロへキシルチオ基等)、ァリールチオ基(例えば、フエ二ルチオ基、 ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルォキシカルボニル基、 ェチノレ才キシカノレポ二ノレ基、ブチノレ才キシカノレポ二ノレ基、才クチノレ才キシカノレポ二ノレ 基、ドデシルォキシカルボニル基等)、ァリールォキシカルボニル基(例えば、フエ二 ルォキシカルボニル基、ナフチルォキシカルボニル基等)、スルファモイル基(例えば 、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、プチ ルアミノスルホニル基、へキシルアミノスルホニル基、シクロへキシルアミノスルホニル 基、ォクチルアミノスルホニル基、ドデシルアミノスルホニル基、フエニルアミノスルホ ニル基、ナフチルアミノスルホニル基、 2—ピリジルアミノスルホニル基等)、ァシル基( 例えば、ァセチル基、ェチルカルボニル基、プロピルカルボニル基、ペンチルカルボ 二ノレ基、シクロへキシルカルボニル基、ォクチルカルボニル基、 2—ェチルへキシノレ カルボニル基、ドデシルカルボニル基、フエニルカルボニル基、ナフチルカルボニル 基、ピリジルカルボニル基等)、ァシルォキシ基(例えば、ァセチルォキシ基、ェチル カルボニルォキシ基、ブチルカルボニルォキシ基、ォクチルカルボニルォキシ基、ド デシルカルポニルォキシ基、フエ二ルカルポニルォキシ基等)、アミド基(例えば、メチ ルカルボニルァミノ基、ェチルカルボニルァミノ基、ジメチルカルボニルァミノ基、プロ ピルカルボニルァミノ基、ペンチルカルボニルァミノ基、シクロへキシルカルボニルァ ミノ基、 2—ェチルへキシルカルボニルァミノ基、ォクチルカルポニルァミノ基、ドデシ ルカルボニルァミノ基、フエニルカルボニルァミノ基、ナフチルカルボニルァミノ基等) 、力ルバモイル基(例えば、ァミノカルボニル基、メチルァミノカルボニル基、ジメチル ァミノカルボニル基、プロピルアミノカルボニル基、ペンチルァミノカルボニル基、シク 口へキシルァミノカルボニル基、ォクチルァミノカルボニル基、 2—ェチルへキシルァ ミノカルボニル基、ドデシルァミノカルボニル基、フエニルァミノカルボニル基、ナフチ ルァミノカルボニル基、 2—ピリジルァミノカルボニル基等)、ウレイド基(例えば、メチ ルゥレイド基、ェチルウレイド基、ペンチルゥレイド基、シクロへキシルウレイド基、オタ チルウレイド基、ドデシノレウレイド基、フエニルウレイド基ナフチルウレイド基、 2—ピリ ジルアミノウレイド基等)、スルフィエル基(例えば、メチルスルフィエル基、ェチルスル フィエル基、ブチルスルフィエル基、シクロへキシルスルフィエル基、 2—ェチルへキ シルスルフィニル基、ドデシルスルフィニル基、フエニルスルフィニル基、ナフチルス ノレフィエル基、 2—ピリジルスルフィエル基等)、アルキルスルホニル基(例えば、メチ ノレスノレホニノレ基、ェチノレスノレホニノレ基、ブチノレスノレホニノレ基、シクロへキシノレスノレホ 二ノレ基、 2—ェチルへキシルスルホニル基、ドデシルスルホニル基等)、ァリールスル ホニル基またはへテロアリールスルホニル基(例えば、フエニルスルホニル基、ナフチ ルスルホニル基、 2—ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、ェチルァ ミノ基、ジメチルァミノ基、ブチルァミノ基、シクロペンチルァミノ基、 2—ェチルへキシ ノレ ミノ基、ド、デシノレ ミノ基、 二リノ基、ナフチノレアミノ基、 2—ピリジノレ ミノ基等) 、ハロゲン原子 (例えば、フッ素原子、塩素原子、臭素原子等)、フッ化炭化水素基( 例えば、フルォロメチル基、トリフルォロメチル基、ペンタフルォロェチル基、ペンタフ ルオロフェニル基等)、シァノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基(例え ば、トリメチルシリル基、トリイソプロビルシリル基、トリフエニルシリル基、フエ二ルジェ チルシリル基等)等が挙げられる。これらの置換基は上記の置換基によってさらに置 換されていてもよい。また、これらの置換基は複数が互いに結合して環を形成してい てもよい。
[0063] Gは置換基を表し、 nは 0、 1または 2を表す。置換基の例としては、 Rの置換基の例
1
として挙げたあのと同じあのを挙げること力 Sでさる。
[0064] Y、 Y及び Yは R— N、 N、または R— Cを表し、 C、 Nとともにイミダゾール環、トリ
1 2 3 2 3
ァゾール環、テトラゾール環を形成するのに必要な原子群を表す。
[0065] Rは置換、無置換のアルキル基、シクロアルキル基、ァリール基または芳香族複素 環基を表す。アルキル基、シクロアルキル基、ァリール基、芳香族複素環基の例とし ては、 Rの例として挙げたものと同じものを挙げること力 Sできる。
1
[0066] これらの基はさらに置換されていてもよぐ置換基の例としては、 Rの置換基の例と
1
して挙げたあのと同じあのを挙げること力 Sでさる。
[0067] Rとしては発光寿命の点でメチル基及び置換、無置換のァリール基、芳香族複素 環基が好ましぐとりわけ、置換、無置換のァリール基、芳香族複素環基が好ましい。
[0068] ァリール基の中では、イミダゾールとの結合部位の 2つのオルト位に少なくとも 1つ のメチル基が置換されているものは発光波長が短波化するという点で好ましぐより好 ましくは、イミダゾールとの結合部位の 2つのオルト位がともにメチル基で置換されて いるものである、具体的には、 2, 6—ジメチルフエニル基、メシチル基(2, 4, 6—トリ メチルフエニル基)、テトラメチルフエニル基またはペンタメチルフエニル基である。 2, 6—ジメチルフエニル基はさらに置換されていてもよぐ置換基の例としては Rの置換 基として挙げたあのと同じあの力 S挙げられる。
[0069] Rは水素原子ある!/、は置換基を表す。置換基の例としては、 Rの置換基の例とし て挙げたものと同じものを挙げること力できる。好ましくは、水素原子あるいは、置換、 無置換のアルキル基、シクロアルキル基、ァリール基または芳香族複素環基であり、 さらに好ましくは水素原子、あるいは置換、無置換のァリール基である。
[0070] 中心金属である Mは元素周期表における 8〜; 11族の金属を表す。好ましい中心 金属の例としてはルテニウム、ロジウム、パラジウム、銀、オスミウム、イリジウム、白金 、金等が挙げられる。より好ましくはイリジウム及び白金である。
[0071] 以下に、主配位子の構造を中心金属 Mとともに示す。
[0072] [化 4]
ィミダゾ一ル一1 イミダゾ一ル一 2
Figure imgf000017_0001
[0073] 式中、 X、 G、 n、 R、 R、 Mは上記一般式(1)におけるものと同じものを表す。
2 3 1
[0074] 発光量子収率が高いという点で、 Yは R— Nであることが好ましぐ発光極大波長
3 2
力はり短波であるという点でさらに Yは H— Cであることが好ましい。発光寿命がより長 くなるのは Y 、 Yがともに R— Cである場合である。
1 2 3
[0075] すなわち、主配位子の構造としては、上記のイミダゾール— 1、トリァゾール— 1、トリ ァゾールー 2、テトラゾールー 1の構造が好ましぐさらに好ましいのは、イミダゾーノレ ー1、トリァゾールー 1であり、最も好ましいのはイミダゾールー 1の構造である。
[0076] 一般式(1)、 (2)または(3)において、 X—L—Xは 2座の配位子を表し、 X 、 Xは
1 1 2 1 2 各々独立に炭素原子、窒素原子、または酸素原子を表す。 Lは X、 Xと共に 2座の
1 1 2
配位子を形成する原子群を表す。 [0077] X L -Xで表される 2座の配位子の具体例としては、置換または無置換のフエ二
1 1 2
ノレピリジン、フエニルピラゾーノレ、フエ二ルイミダゾ一ノレ、フエニルトリァゾーノレ、フエ二 ルテトラゾール、ビラザボール、ァセチルアセトン、ピコリン酸、等が挙げられる。 mlは
1、 2または 3の整数を表し、 m2は 0、 1または 2の整数を表す力 ml + m2は 2または
3である。中でも、 m2は 0が好ましい。
[0078] 以下、本発明に係る前記一般式(1 )、 (2)または(3)で表される金属錯体の具体例 を示すが、本発明はこれらに限定されない。
[0079] [化 5]
冒s〕008
Figure imgf000019_0001
Figure imgf000020_0001
[0081] [化 7] [8^] 800]
Figure imgf000021_0001
C90890/.00Zdf/X3d 03 1799SC0/800Z OAV
Figure imgf000022_0001
Figure imgf000023_0001
[0084] [化 10]
Figure imgf000024_0001
[0085] [化 11] 0086
Figure imgf000025_0001
Figure imgf000026_0001
[0087] [化 13] 0088
Figure imgf000027_0001
Figure imgf000028_0001
[0089] [化 15]
Figure imgf000029_0001
[0090] [化 16]
Figure imgf000030_0001
Figure imgf000031_0001
//: ε90890/-00ί1£
Figure imgf000032_0001
Figure imgf000033_0001
[0094] [化 20]
Figure imgf000034_0001
[0095] [化 21]
Figure imgf000035_0001
[0096] [化 22]
Figure imgf000036_0001
[0097] [化 23]
Figure imgf000037_0001
^§s∞60
Figure imgf000038_0001
[0099] [化 25]
Figure imgf000039_0001
[0100] [化 26]
Figure imgf000040_0001
¾001
Figure imgf000041_0001
0031
Figure imgf000042_0001
Figure imgf000043_0001
[0104] [化 30] [τε¾] [9θΐθ]
Figure imgf000044_0001
Figure imgf000045_0001
[0106] [化 32]
Figure imgf000046_0001
[0107] [化 33]
Figure imgf000047_0001
[0108] [化 34]
Figure imgf000048_0001
[0109] [化 35]
Figure imgf000049_0001
[0110] [化 36]
Figure imgf000050_0001
[0111] [化 37]
Figure imgf000051_0001
[0112] [化 38]
Figure imgf000052_0001
Figure imgf000052_0002
C90890/.00Zdf/X3d
Figure imgf000053_0001
C90890/.00Zdf/X3d 39
Figure imgf000054_0001
[0115] [化 41]
Figure imgf000055_0001
[0116] [化 42]
Figure imgf000056_0001
]
Figure imgf000057_0001
[0118] [化 44]
Figure imgf000058_0001
[0119] [化 45]
Figure imgf000059_0001
[0120] [化 46]
Figure imgf000060_0001
[0121] [化 47]
Figure imgf000061_0001
250
Figure imgf000062_0001
[0123] [化 49]
Figure imgf000063_0001
[0124] [化 50]
Figure imgf000064_0001
C90890/.00Zdf/X3d 89 1799SC0/800Z OAV
Figure imgf000065_0001
[0126] [化 52]
Figure imgf000066_0001
[0127] [化 53]
Figure imgf000067_0001
[0128] [化 54]
Figure imgf000068_0001
[0129] [化 55]
Figure imgf000069_0001
[0130] [化 56]
Figure imgf000070_0001
[0131] [化 57]
Figure imgf000071_0001
[0132] [化 58]
Figure imgf000072_0001
[0133] [化 59] 冒〕 s0314
Figure imgf000073_0001
Figure imgf000074_0001
[0135] [化 61]
Figure imgf000075_0001
[0136] [化 62]
Figure imgf000076_0001
[0137] [化 63]
Figure imgf000077_0001
[0138] [化 64]
Figure imgf000078_0001
[0139] [化 65] [99 ] [(MO]
Figure imgf000079_0001
1799SC0/800Z OAV
Figure imgf000080_0001
[0141] [化 67]
冒〕 ¾
Figure imgf000081_0001
Figure imgf000082_0001
[0143] [化 69]
Figure imgf000083_0001
[0144] [化 70]
Figure imgf000084_0001
[0145] [化 71]
Figure imgf000085_0001
[0146] [化 72]
Figure imgf000086_0001
[0147] [化 73]
Figure imgf000087_0001
[0148] [化 74]
Figure imgf000088_0001
[0149] [化 75]
Figure imgf000089_0001
[0150] [化 76]
Figure imgf000090_0001
[0151] [化 77]
Figure imgf000091_0001
[0152] [化 78]
Figure imgf000092_0001
これらの金属錯体は、例えば、 Organic Letter誌, vol 3, No. 16, 2579—258 1頁(2001)、 Inorganic Chemistry,第 30巻,第 8号, 1685〜; 1687頁(1991年 )、J. Am. Chem. Soc. , 123巻, 4304頁(2001年)、 Inorganic Chemistry, 第 40卷,第 7号, 1704〜; 171 1頁(2001年)、 Inorganic Chemistry,第 41卷, 第 12号, 3055〜3066頁(2002年)、 New Journal of Chemistry,第 26巻, 1 171頁 (2002年)、 European Journal of Organic Chemistry, ^4 , 695 〜709頁(2004年)、さらにこれらの文献中に記載の参考文献等の方法を適用する ことにより合成でさる。
[0154]
[0155] [0156]
Figure imgf000093_0001
[0157] 窒素雰囲気下で 3—〔1ー(2, 4, 6 トリメチルフエニル) 1H—イミダゾールー 2 —ィル〕 9 フエ二ルー 9H 力ルバゾール、 3· 9g (9. 1ミリモノレ)を 2 エトキシェ タノ一ノレ 30mlに溶角早した溶 ί夜に、塩ィ匕イリジウム 3水禾ロ物、 1. 06g (3. 0ミリモノレ)及 び 10mlの水を加え、窒素雰囲気下で 5時間還流した。反応液を冷却し、メタノール 5 Omlを加え、析出した結晶を濾取した。得られた結晶をさらにメタノールで洗浄し、乾 燥後 2. 72g (収率 84%)の錯体 Aを得た。
[0158] 窒素雰囲気下で錯体 A、 2. 16g (l . 0ミリモル)及び炭酸ナトリウム 2. 2gを 2 エト キシエタノール 35mlに懸濁させた。この懸濁液にァセチルアセトン 0· 4g (4. 0ミリモ ノレ)を加え、窒素雰囲気下で 2時間還流した。反応液を冷却後、減圧濾過によって炭 酸ナトリウム及び無機塩を除去した。溶媒を減圧濃縮した後に得られた固体に水 10 Omlを加えて懸濁後、固体を濾取した。得られた結晶をさらにメタノール/水 = 1/1 混合溶液で洗浄し、乾燥後 2. 10g (収率 92%)の錯体 Bを得た。
[0159] 窒素雰囲気下で錯体 B、 1. 03g (0. 9ミリモル)及び 3—〔1— (2, 4, 6 トリメチル フエ二ル)— 1H イミダゾールー 2 ィル〕—9 フエ二ルー 9H 力ルバゾール 1 · 2 8g (3. 0ミリモル)をグリセリン 40mlに懸濁させた。窒素雰囲気下で反応温度 150〜 160°Cの間で 2時間反応させ、錯体 Bの消失を確認したところで反応終了とした。反 応液を冷却し、メタノール 50mlを加え、析出した結晶を濾取した。得られた結晶をさ らにメタノールで洗浄し、乾燥後収量 0. 99g (収率 74. 7%)の粗生成物を得た。この 粗生成物を少量の塩化メチレンに溶解し、シカゲルカラムクロマトグラフィーによって 精製し (塩化メチレン) 0. 93g (収率 70. 2%)の例示化合物 4を得た。
精製した化合物 4が目的物であることを MASS、 1H— NMRにより確認した。
[0160] 1H-NMR (400MHz, THF-d8)
スペクトル帰属(ケミカルシフト δ , ピーク形状, 〔カップリング定数,〕プロトン数,構造 への帰属)
: δ = 2. 10 (s, 9H, CH3—), 2. 48 (s, 9H, CH3—), 2. 50 (s, 9H, CH3—), 6. 31 (t, J = 7. 4Hz, 3H, CH,フエ二ノレ基), 6. 54 (t, J = 7. 4Hz, 6H, CH,フ ェニノレ基), 6. 62 (s, 3H, CH,力ノレノ ゾ、一ノレ環), 6. 80 (s, 3H, CH,力ノレノ ゾ、一 ノレ環), 6. 84 (d, J = 7. 4Hz, 6H, CH,フエ二ノレ基), 6. 89 (d, J= l . 5Hz, 3H, CH,イミダゾ、一ノレ環), 6.92(d, J=l.5Hz, 6H, CH,イミダゾ、一ノレ環), 6.97 (t , J = 7.4Hz, 3H, CH,力ノレノ ヽノーノレ環), 7. ll(d, J = 7.4Hz, 3H, CH,カル バゾーノレ環), 7.14 (s, 3H, CH,メシチル基), 7.16(s, 3H, CH,メシチル基), 7.21(d, J = 7.4Hz, 3H, CH,力ノレノ ヽノーノレ環) 7.32(d, J = 7.4Hz, 3H, CH ,力ルバゾール環)
日立製作所製 F— 4500を用いて測定した例示化合物(4)の溶液における PL発光 極大波長は、 462nm(T=77K、 2—メチルテトラヒドロフラン中)、 470nm (室温、塩 化メチレン中)であった。
[0161] 図 1、図 2に発光スペクトルを示す。
[0162] (例示化合物 14の合成)
下記スキームにより合成した。
[0163] [化 80]
Figure imgf000096_0001
窒素雰囲気下で 3—〔1ー(2, 4, 6—トリメチルフエニル) 1H—イミダゾールー 2 ィル〕 9ーェチルー 9H 力ルバゾール、 3· 4g (9. 0ミリモル)を 2 エトキシエタ ノーノレ 30mlに溶角早した溶 ί夜に、塩ィ匕イリジウム 3水禾ロ物 1 · 06g (3. 0ミリモノレ)及び 1 Omlの水を加え、窒素雰囲気下で 5時間還流した。反応液を冷却し、メタノール 50ml を加え、析出した結晶を濾取した。得られた結晶をさらにメタノールで洗浄し、乾燥後 2. 54g (収率 86%)の錯体 Cを得た。
[0165] 窒素雰囲気下で錯体 C、 1. 97g (l . 0ミリモル)及び炭酸ナトリウム 2. Ogを 2—エト キシエタノール 35mlに懸濁させた。この懸濁液にァセチルアセトン 0· 4g (4. 0ミリモ ノレ)を加え、窒素雰囲気下で 2時間還流した。反応液を冷却後、減圧濾過によって炭 酸ナトリウム及び無機塩を除去した。溶媒を減圧濃縮した後に得られた固体に水 10 0mlを加えて懸濁後、固体を濾取した。得られた結晶をさらにメタノール/水 = 1/1 混合溶液で洗浄し、乾燥後 1. 91g (収率 91 %)の錯体 Dを得た。
[0166] 窒素雰囲気下で錯体 D、 0. 94g (0. 9ミリモル)及び 3—〔1— (2, 4, 6—トリメチル フエ二ル)— 1H—イミダゾールー 2—ィル〕—9—ェチル— 9H—力ルバゾール 1 · 14 g (3. 0ミリモル)をグリセリン 40mlに懸濁させた。窒素雰囲気下で反応温度 150〜1 60°Cの間で 2時間反応させ、錯体 Dの消失を確認したところで反応終了とした。反応 液を冷却し、メタノール 50mlを加え、析出した結晶を濾取した。得られた結晶をさら にメタノールで洗浄し、乾燥後収量 0. 86g (収率 72%)の粗生成物を得た。この粗生 成物を少量の塩化メチレンに溶解し、シカゲルカラムクロマトグラフィーによって精製 し (塩化メチレン) 0. 81§ (収率67. 8%)の例示化合物 14を得た。
精製した化合物 14が目的物であることを MASS、 1H— NMRにより確認した。
[0167] 1H-NMR (400MHz, THF-d8)
スペクトル帰属(ケミカルシフト δ , ピーク形状, 〔カップリング定数,〕プロトン数,構造 への帰属)
: δ =0. 91 (t, J = 6. 8Hz, 9H, CH3— ,ェチル基), 1. 81 (s, 9H, Me -) , 2. 1 6 (s, 9H, CH3-) , 2. 48 (s, 9H, CH3— ) , 3. 75 (m, 6H, — CH2— ,ェチル 基), 6. 82 (d, J= l . 5Hz, 3H, CH,イミダゾール環), 6. 84 (d, J = 7. 6Hz, 3H , CH,力ノレノ ゾ一ノレ環), 6. 92 (s, 6H, CH,メシチノレ基), 7. 06 (t, J = 7. 6Hz, 3H, CH,力ノレノ ゾ、一ノレ環), 7. 09 (d, J = 7. 6Hz, 3H, CH,力ノレノ ゾ、一ノレ環), 7 • 13 (s, 3H, CH,力ノレノ ゾ一ノレ環), 7. 20 (s, 3H, CH,メシチノレ基), 7. 27 (d, J = 7. 6Hz, 3H, CH,力ルバゾール環)
日立製作所製 F— 4500を用いて測定した例示化合物 14の溶液における PL発光 極大波長は、 461nm (T= 77K、 2—メチルテトラヒドロフラン中)、 465nm (室温、塩 化メチレン中)であった。
[0168] 図 3、図 4に発光スペクトルを示す。
[0169] (例示化合物 27の合成)
下記スキームにより合成した。
[0170] [化 81]
Figure imgf000098_0001
[0171] 窒素雰囲気下で 1ーメチルー 2—ジベンゾ [b, d]フラン 2—ィルー 1H—イミダゾ 一ノレ 2· 2g (8. 8ミリモノレ)を 2 エトキシエタノーノレ 30mlに溶角早した溶 ί夜に、塩ィ匕イリ ジゥム 3水和物、 1. 06g (3. 0ミリモル)及び 10mlの水を加え、窒素雰囲気下で 5時 間還流した。反応液を冷却し、メタノール 50mlを加え、析出した結晶を濾取した。得 られた結晶をさらにメタノールで洗浄し、乾燥後 1. 78g (収率 82%)の錯体 Eを得た。
[0172] 窒素雰囲気下で錯体 E 1. 44g (l . 0ミリモル)及び炭酸ナトリウム 2. 3gを 2 エト キシエタノール 35mlに懸濁させた。この懸濁液にァセチルアセトン 0· 4g (4. 0ミリモ ノレ)を加え、窒素雰囲気下で 2時間還流した。反応液を冷却後、減圧濾過によって炭 酸ナトリウム及び無機塩を除去した。溶媒を減圧濃縮した後に得られた固体に水 10 Omlを加えて懸濁後、固体を濾取した。得られた結晶をさらにメタノール/水 = 1/1 混合溶液で洗浄し、乾燥後 1. 40g (収率 89%)の錯体 Fを得た。
[0173] 窒素雰囲気下で錯体 F、 0. 63g (0. 8ミリモル)及び 1ーメチルー 2 ジベンゾ [b, d ]フラン一 2 ィル一 1H イミダゾール 0· 74g (3. 0ミリモノレ)をグリセリン 40mlに懸 濁させた。窒素雰囲気下で反応温度 150〜160°Cの間で 2時間反応させ、錯体 Fの 消失を確認したところで反応終了とした。反応液を冷却し、メタノール 50mlを加え、 析出した結晶を濾取した。得られた結晶をさらにメタノールで洗浄し、乾燥後収量 0. 52g (収率 69%)の粗生成物を得た。この粗生成物を少量の塩化メチレンに溶解し、 シカゲルカラムクロマトグラフィーによって精製し (塩化メチレン) 0. 48g (収率 64. 2 %)の例示化合物 27を得た。
精製した化合物 27が目的物であることを MASS、 1H— NMRにより確認した。
[0174] 1H-NMR (400MHz, THF-d8)
スペクトル帰属(ケミカルシフト δ , ピーク形状, 〔カップリング定数,〕プロトン数,構造 への帰属)
: δ = 3. 80 (s, 9H, CH3- ,メチノレ基), 6. 37 (d, J= l . 5Hz, 3H, CH, イミダゾ 一ノレ環), 6. 91 (s, 3H, CH,ジベンゾ、フラン環), 7. 13 (t, J = 7. 6 Hz, 3H, CH, ジベンゾフラン環), 7. 22 (t, J = 7. 6Hz, 3H, CH,ジベンゾフラン環), 7. 25 (d, J= l . 5Hz, 3H, CH,イミダゾール環), 7. 27 (d, J = 7. 6Hz, 3H, CH,ジベンゾ フラン環), 7. 84 (d, J = 7. 6Hz, 3H, CH,ジベンゾフラン環), 8. 16 (s, 3H, CH ,ジベンゾフラン環)
日立製作所製 F— 4500を用いて測定した例示化合物 27の溶液における PL発光 極大波長は、 453nm (T= 77K、 2—メチルテトラヒドロフラン中)、 459nm (室温、塩 化メチレン中)であった。
[0175] 図 5、図 6に発光スペクトルを示す。
[0176] 《有機 EL素子材料の有機 EL素子への適用》
本発明の有機 EL素子材料を用いて本発明の有機 EL素子を作製する場合、有機
EL素子の構成層(詳細は後述する)の中で、発光層または電子阻止層に本発明の 有機 EL素子材料を用いることが好ましい。また、発光層中では上記のように発光ドー パントとして好ましく用いられる。
[0177] (発光ホストと発光ドーパント)
発光層中の主成分であるホスト化合物である発光ホストに対する発光ドーパントとの 混合比は、好ましくは 0. ;!〜 30質量%未満の範囲に調整することである。
[0178] ただし、発光ドーパントは複数種の化合物を混合して用いてもよぐ混合する相手 は構造を異にする、その他の金属錯体やその他の構造を有するリン光性ドーパント や蛍光性ドーパントでもよい。
[0179] ここで、発光ドーパントとして用いられる金属錯体と併用してもよいドーパント(リン光 性ドーパント、蛍光性ドーパント等)について述べる。発光ドーパントは大きく分けて、 蛍光を発光する蛍光性ドーパントとリン光を発光するリン光性ドーパントの 2種類があ
[0180] 前者 (蛍光性ドーパント)の代表例としては、クマリン系色素、ピラン系色素、シァニ ン系色素、クロコニゥム系色素、スクァリウム系色素、ォキソベンツアントラセン系色素 、フルォレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチ ルベン系色素、ポリチォフェン系色素、または希土類錯体系蛍光体等が挙げられる。
[0181] 後者 (リン光性ドーパント)の代表例としては、好ましくは元素周期表で 8族、 9族、 1 0族の遷移金属元素を含有する錯体系化合物であり、さらに好ましくはイリジウム化 合物、オスミウム化合物であり、中でも最も好ましいのはイリジウム化合物である。
[0182] 具体的には以下の特許公報に記載されている化合物である。 [0183] 国際公開第 00/70655号パンフレット、特開 2002— 280178号公報、特開 2001 —18皿 6号公報、特開 2002— 280179号公報、特開 2001— 18皿 7号公報、 特開 2002— 280180号公報、特開 2001— 247859号公報、特開 2002— 299060 号公報、特開 2001— 313178号公報、特開 2002— 302671号公報、特開 2001— 345183号公報、特開 2002— 324679号公報、国際公開第 02/15645号パンフ レツ K特開 2002— 332291号公報、特開 2002— 50484号公報、特開 2002— 33 2292号公報、特開 2002— 83684号公報、特表 2002— 540572号公報、特開 20 02— 117978号公報、特開 2002— 338588号公報、特開 2002— 170684号公報 、特開 2002— 352960号公報、国際公開第 01/93642号パンフレット、特開 2002
— 50483号公報、特開 2002— 100476号公報、特開 2002— 173674号公報、特 開 2002— 359082号公報、特開 2002— 175884号公報、特開 2002— 363552号 公報、特開 2002— 184582号公報、特開 2003— 7469号公報、特表 2002— 525 808号公報、特開 2003— 7471号公報、特表 2002— 525833号公報、特開 2003
— 31366号公報、特開 2002— 226495号公報、特開 2002— 234894号公報、特 開 2002— 235076号公報、特開 2002— 241751号公報、特開 2001— 319779号 公報、特開 2001— 319780号公報、特開 2002— 62824号公報、特開 2002— 10 0474号公報、特開 2002— 203679号公報、特開 2002— 343572号公報、特開 2 002— 203678号公報等。
[0184] 以下に、具体例の一部を示す。
[0185] [化 82]
Figure imgf000102_0001
Figure imgf000102_0002
Figure imgf000102_0003
Figure imgf000103_0001
[0187] [化 84]
Figure imgf000104_0001
Figure imgf000104_0002
Figure imgf000104_0003
[0188] (発光ホスト)
本発明に用いられるホスト化合物とは、発光層に含有される化合物のうちで室温(2 5°C)においてリン光発光のリン光量子収率が、 0. 01未満の化合物を表す。
[0189] 本発明に用いられる発光ホストとしては構造的には特に制限はないが、代表的に は力ルバゾール誘導体、トリアリールァミン誘導体、芳香族ボラン誘導体、含窒素複 素環化合物、チォフェン誘導体、フラン誘導体、オリゴァリーレン化合物等の基本骨 格を有するもの、または力ルバゾール誘導体の力ルバゾール環を構成する炭化水素 環の炭素原子の少なくとも一つが窒素原子で置換されている環構造を有する誘導体 等が挙げられる。中でも、カノレバゾール誘導体または該カルバゾール誘導体のカル バゾール環を構成する炭化水素環の炭素原子の少なくとも一つが窒素原子で置換 されて!/、る環構造を有する誘導体が好ましく用いられる。
[0190] 以下に具体例を挙げる力 本発明はこれらに限定されない。これらの化合物は正孔 阻止材料として使用することも好ましい。
[0191] [化 85]
[98 ] Κ6ΐ0]
Figure imgf000106_0001
f 0/800Z OAV
£9089 /L0 Idf/I3d 901 99S
Figure imgf000107_0001
[0193] [化 87] İı9488
Figure imgf000108_0001
Figure imgf000109_0001
H27 H28
Figure imgf000109_0002
本発明に係る発光層においては、ホスト化合物として公知のホスト化合物を複数種 併用して用いてもよい。ホスト化合物を複数種用いることで、電荷の移動を調整する ことが可能であり、有機 EL素子を高効率化することができる。これらの公知のホスト化 合物としては、正孔輸送能、電子輸送能を有しつつ、かつ発光の長波長化を防ぎ、 なおかつ 90°C以上、さらに好ましくは 100°C以上の高 Tg (ガラス転移温度)化合物 が好ましい。ここで、ガラス転移点(Tg)とは、 DSC (Differential Scanning Colo rimetry:示差走査熱量法)を用いて、 JIS— K— 7121に準拠した方法により求めら れる値である。 [0196] また、本発明に用いられる発光ホストは低分子化合物でも、繰り返し単位をもつ高 分子化合物でもよぐビュル基やエポキシ基のような重合性基を有する低分子化合 物 (蒸着重合性発光ホスト)でもレ、レ、。
[0197] 発光ホストの具体例としては、以下の文献に記載されている化合物が好適である。
例えば、特開 2001— 257076号公報、特開 2002— 308855号公報、特開 2001— 313179号公報、特開 2002— 319491号公報、特開 2001— 357977号公報、特 開 2002— 334786号公報、特開 2002— 8860号公報、特開 2002— 334787号公 報、特開 2002— 15871号公報、特開 2002— 334788号公報、特開 2002— 4305 6号公報、特開 2002— 334789号公報、特開 2002— 75645号公報、特開 2002— 338579号公報、特開 2002— 105445号公報、特開 2002— 343568号公報、特 開 2002— 141173号公報、特開 2002— 352957号公報、特開 2002— 203683号 公報、特開 2002— 363227号公報、特開 2002— 231453号公報、特開 2003— 3 165号公報、特開 2002— 234888号公報、特開 2003— 27048号公報、特開 200 2— 255934号公報、特開 2002— 260861号公報、特開 2002— 280183号公報、 特開 2002— 299060号公報、特開 2002— 302516号公報、特開 2002— 305083 号公報、特開 2002— 305084号公報、特開 2002— 308837号公報等。
[0198] また、発光層はホスト化合物としてさらに蛍光極大波長を有するホスト化合物を含有 していてもよい。この場合、他のホスト化合物とリン光性化合物から蛍光性化合物へ のエネルギー移動で、有機 EL素子としての電界発光は蛍光極大波長を有する他の ホスト化合物からの発光も得られる。蛍光極大波長を有するホスト化合物として好まし いのは、溶液状態で蛍光量子収率が高いものである。ここで、蛍光量子収率は 10% 以上、特に 30%以上が好ましい。具体的な蛍光極大波長を有するホスト化合物とし ては、クマリン系色素、ピラン系色素、シァニン系色素、クロコニゥム系色素、スクァリ ゥム系色素、ォキソベンツアントラセン系色素、フルォレセイン系色素、ローダミン系 色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチォフェン系色素 等が挙げられる。蛍光量子収率は、前記第 4版実験化学講座 7の分光 IIの 362頁(1 992年版、丸善)に記載の方法により測定することができる。
[0199] 次に、代表的な有機 EL素子の構成について述べる。 [0200] 《有機 EL素子の構成層》
本発明の有機 EL素子の構成層について説明する。
[0201] 本発明の有機 EL素子の層構成の好ましい具体例を以下に示す力 本発明はこれ らに限定されない。
[0202] (i)陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極
(ii)陽極/電子阻止層/発光層/正孔阻止層/電子輸送層/陰極
(iii)陽極/正孔輸送層/電子阻止層/発光層/正孔阻止層/電子輸送層/陰 極
(iv)陽極/正孔輸送層/電子阻止層/発光層/正孔阻止層/電子輸送層/陰 極
(V)陽極/正孔輸送層/電子阻止層/発光層/正孔阻止層/電子輸送層/陰 極バッファー層/陰極
(vi)陽極/陽極バッファ一層/正孔輸送層/電子阻止層/発光層/正孔阻止層
/電子輸送層/陰極バッファー層/陰極
(vii)陽極/陽極バッファ一層/正孔輸送層/電子阻止層/発光層/正孔阻止層
/電子輸送層/陰極バッファー層/陰極
《阻止層(電子阻止層、正孔阻止層)》
本発明に係る阻止層(例えば、電子阻止層、正孔阻止層)について説明する。
[0203] 本発明においては、正孔阻止層、電子阻止層等に本発明の有機 EL素子材料を用 いること力 S好ましく、特に好ましくは正孔阻止層に用いることである。
[0204] 本発明の有機 EL素子材料を正孔阻止層、電子阻止層に含有させる場合、前記 1 〜7のいずれ力、 1項に記載されている本発明の有機 EL素子材料を、正孔阻止層や 電子阻止層等の層構成成分として 100質量%の状態で含有させてもよいし、他の有 機化合物等と混合してもよい。
[0205] 本発明に係る阻止層の膜厚としては好ましくは 3〜100nmであり、さらに好ましくは
5〜30nmで ¾)·ο。
[0206] 《正孔阻止層》
正孔阻止層とは広い意味では電子輸送層の機能を有し、電子を輸送する機能を有 しつつ正孔を輸送する能力が著しく小さい材料からなり、電子を輸送しつつ正孔を阻 止することで電子と正孔の再結合確率を向上させることができる。
[0207] 正孔阻止層としては、例えば、特開平 11 204258号公報、同 11 204359号公 報、及び「有機 EL素子とその工業化最前線(1998年 11月 30日 ェヌ'ティー'エス 社発行)」の 237頁等に記載の正孔阻止(ホールブロック)層等を本発明に係る正孔 阻止層として適用可能である。また、後述する電子輸送層の構成を必要に応じて、本 発明に係る正孔阻止層として用いることができる。
[0208] 本発明の有機 EL素子は構成層として正孔阻止層を有し、該正孔阻止層が正孔阻 止材料として、前記力ルバゾール誘導体または該カルバゾール誘導体のカルバゾー ル環を構成する炭化水素環の炭素原子の少なくとも一つが窒素原子で置換されて Vヽる環構造を有する誘導体を含有することが好まし!/ヽ。
[0209] 《電子阻止層》
一方、電子阻止層とは広い意味では正孔輸送層の機能を有し、正孔を輸送する機 能を有しつつ電子を輸送する能力が著しく小さい材料からなり、正孔を輸送しつつ電 子を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述 する正孔輸送層の構成を必要に応じて電子阻止層として用いることができる。
[0210] また本発明においては、発光層に隣接する隣接層、即ち正孔阻止層、電子阻止層 に上記の本発明の有機 EL素子材料を用いることが好ましぐ特に電子阻止層に用 いることが好ましい。
[0211] 《正孔輸送層》
正孔輸送層とは正孔を輸送する機能を有する材料を含み、広い意味で正孔注入 層、電子阻止層も正孔輸送層に含まれる。正孔輸送層は単層もしくは複数層設ける こと力 Sでさる。
[0212] 正孔輸送材料としては、特に制限はなぐ従来、光導伝材料において正孔の電荷 注入輸送材料として慣用されているものや、有機 EL素子の正孔注入層、正孔輸送 層に使用される公知のものの中力も任意のものを選択して用いることができる。
[0213] 正孔輸送材料は正孔の注入もしくは輸送、電子の障壁性のいずれかを有するもの であり、有機物、無機物のいずれであってもよい。例えば、トリァゾール誘導体、ォキ サジァゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン 誘導体及びピラゾロン誘導体、フエ二レンジァミン誘導体、ァリールァミン誘導体、アミ ノ置換カルコン誘導体、ォキサゾール誘導体、スチリルアントラセン誘導体、フルォレ ノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、ァニリン系共重 合体、また導電性高分子オリゴマー、特にチォフェンオリゴマー等が挙げられる。
[0214] 正孔輸送材料としては上記のものを使用することができる力 ポルフィリン化合物、 芳香族第三級ァミン化合物及びスチリルアミン化合物、特に芳香族第三級ァミン化 合物を用いることが好ましい。
[0215] 芳香族第三級ァミン化合物及びスチリルァミン化合物の代表例としては、 N, N, N ' , N ーテトラフエニノレー 4, A' ージァミノフエ二ノレ; N, N ージフエニノレー N, N ' —ビス(3—メチルフエ二ル)一〔1 , 1' —ビフエ二ル〕一 4, 4' —ジァミン(TPD) ; 2, 2 ビス(4 ジ一 p トリルァミノフエニル)プロパン; 1 , 1—ビス(4 ジ一 p トリ ノレアミノフエ二ノレ)シクロへキサン; N, N, N' , N' —テトラ一 p トリノレ一 4, A' - ジアミノビフエニル; 1 , 1—ビス(4—ジ一 p トリルァミノフエニル) 4—フエ二ルシク 口へキサン;ビス(4 -ジメチルァミノ一 2 メチルフエ二ノレ)フエニルメタン;ビス(4 -ジ —p トリルァミノフエ二ノレ)フエニルメタン; N, N' —ジフエ二ノレ一 N, N' —ジ(4— メトキシフエ二ル)一 4, 一ジアミノビフエ二ノレ; N, N, N' , N' —テトラフエ二ノレ 4, 4' ージアミノジフエニルエーテル; 4, 4' ビス(ジフエニルァミノ)クオ一ドリフ ェニル; N, N, N—トリ(p—トリル)ァミン; 4—(ジ—p—トリルァミノ)ー 一〔4—(ジ —p—トリルァミノ)スチリル〕スチルベン; 4— N, N ジフエニルアミノー(2 ジフエ二 ノレビニノレ)ベンゼン; 3—メトキシ一 4' — N, N ジフエ二ルアミノスチルベンゼン; N フエ二ルカルバゾール、さらには米国特許第 5, 061 , 569号明細書に記載されて いる 2個の縮合芳香族環を分子内に有するもの、例えば、 4, 4' —ビス〔N— ( 1—ナ フチル) N フエニルァミノ〕ビフヱニル(NPD)、特開平 4 308688号公報に記 載されているトリフエニルァミンユニットが 3つスターバースト型に連結された 4, 4' , A' —トリス〔N— (3—メチルフエニル) N フエニルァミノ〕トリフエニルァミン(MTD ATA)等が挙げられる。
[0216] さらにこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖と した高分子材料を用いることもできる。また、 p型 Si、 p型 SiC等の無機化合物も 正孔注入材料、正孔輸送材料として使用することができる。
[0217] この正孔輸送層は上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キ ヤスト法、インクジェット法、 LB法等の公知の方法により、薄膜化することにより形成す ること力 Sできる。正孔輸送層の膜厚については特に制限はないが、通常は 5〜5000 nm程度である。この正孔輸送層は上記材料の一種または二種以上からなる一層構 造であってもよい。
[0218] 《電子輸送層》
電子輸送層とは電子を輸送する機能を有する材料からなり、広い意味で電子注入 層、正孔阻止層も電子輸送層に含まれる。電子輸送層は単層もしくは複数層を設け ること力 Sでさる。
[0219] 従来、単層の電子輸送層、及び複数層とする場合は発光層に対して陰極側に隣 接する電子輸送層に用いられる電子輸送材料 (正孔阻止材料を兼ねる)としては、下 記の材料が知られている。
[0220] さらに、電子輸送層は陰極より注入された電子を発光層に伝達する機能を有してい ればよぐその材料としては従来公知の化合物の中から任意のものを選択して用いる こと力 Sでさる。
[0221] この電子輸送層に用いられる材料 (以下、電子輸送材料という)の例としては、ニト 口置換フルオレン誘導体、ジフヱ二ルキノン誘導体、チォピランジオキシド誘導体、ナ フタレンペリレン等の複素環テトラカルボン酸無水物、カルポジイミド、フレオレニリデ ンメタン誘導体、アントラキノジメタン及びアントロン誘導体、ォキサジァゾール誘導体 、カルボリン誘導体、または該カルボリン誘導体のカルボリン環を構成する炭化水素 環の炭素原子の少なくとも一つが窒素原子で置換されている環構造を有する誘導体 等が挙げられる。さらに上記ォキサジァゾール誘導体において、ォキサジァゾール環 の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引性基として知ら れて!/、るキノキサリン環を有するキノキサリン誘導体も電子輸送材料として用いること ができる。
[0222] さらにこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖と した高分子材料を用いることもできる。
[0223] また 8 キノリノール誘導体の金属錯体、例えば、トリス(8 キノリノール)アルミユウ ム(Alq)、トリス(5, 7—ジクロロ一 8—キノリノール)アルミニウム、トリス(5, 7—ジブ口 モー 8 キノリノール)アルミニウム、トリス(2 メチルー 8 キノリノール)アルミニウム 、トリス(5—メチル 8—キノリノール)アルミニウム、ビス(8—キノリノール)亜鉛(Znq )等、及びこれらの金属錯体の中心金属が In、 Mg、 Cu、 Ca、 Sn、 Gaまたは Pbに置 き替わった金属錯体も電子輸送材料として用いることができる。その他、メタルフリー もしくはメタルフタロシアニン、またはそれらの末端がアルキル基ゃスルホン酸基等で 置換されているものも電子輸送材料として好ましく用いることができる。また、発光層 の材料として例示したジスチリルビラジン誘導体も、電子輸送材料として用いることが できるし、正孔注入層、正孔輸送層と同様に n型 Si、 n型 SiC等の無機半導体も 電子輸送材料として用いることができる。
[0224] この電子輸送層は上記電子輸送材料を、例えば、真空蒸着法、スピンコート法、キ ヤスト法、インクジェット法、 LB法等の公知の方法により、薄膜化することにより形成す ること力 Sできる。電子輸送層の膜厚については特に制限はないが、通常は 5〜5000 nm程度である。この電子輸送層は上記材料の一種または二種以上からなる一層構 造であってもよい。
[0225] 次に、本発明の有機 EL素子の構成層として用いられる注入層について説明する。
[0226] 《注入層》:電子注入層、正孔注入層
注入層は必要に応じて設け、電子注入層と正孔注入層があり、上記のごとく陽極と 発光層または正孔輸送層の間、及び陰極と発光層または電子輸送層との間に存在 させてもよい。
[0227] 注入層とは駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる 層のことで、「有機 EL素子とその工業化最前線(1998年 11月 30日 ェヌ'ティー'ェ ス社発行)」の第 2編第 2章「電極材料」(123〜166頁)に詳細に記載されており、正 孔注入層(陽極バッファ一層)と電子注入層(陰極バッファ一層)とがある。
[0228] 陽極バッファ一層(正孔注入層)は特開平 9— 45479号公報、同 9 260062号公 報、同 8— 288069号公報等にもその詳細が記載されており、具体例として、銅フタ口 シァニンに代表されるフタロシアニンバッファ一層、酸化バナジウムに代表される酸 化物バッファ一層、アモルファスカーボンバッファ一層、ポリア二リン(ェメラルディン) やポリチォフェン等の導電性高分子を用いた高分子バッファ一層等が挙げられる。
[0229] 陰極バッファ一層(電子注入層)は特開平 6— 325871号公報、同 9 17574号公 報、同 10— 74586号公報等にもその詳細が記載されており、具体的にはストロンチ ゥムゃアルミニウム等に代表される金属バッファ一層、フッ化リチウムに代表されるァ ルカリ金属化合物バッファ一層、フッ化マグネシウムに代表されるアルカリ土類金属 化合物バッファ一層、酸化アルミニウムに代表される酸化物バッファ一層等が挙げら れる。
[0230] 上記バッファ一層(注入層)はごく薄い膜であることが望ましぐ素材にもよるがその 膜厚は 0.;!〜 lOOnmの範囲が好ましい。
[0231] この注入層は上記材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インク ジェット法、 LB法等の公知の方法により、薄膜化することにより形成することができる 。注入層の膜厚については特に制限はないが、通常は 5〜5000nm程度である。こ の注入層は上記材料の一種または二種以上からなる一層構造であってもよい。
[0232] 《陽極》
本発明の有機 EL素子に係る陽極としては、仕事関数の大きい (4eV以上)金属、 合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用い られる。このような電極物質の具体例としては、 Au等の金属、 Cul、インジウムチンォ キシド(ITO)、 SnO、 ZnO等の導電性透明材料が挙げられる。また、 IDIXO (In O — ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。陽極はこれらの 電極物質を蒸着やスパッタリング等の方法により薄膜を形成させ、フォトリソグラフィー 法で所望の形状のパターンを形成してもよぐあるいはパターン精度をあまり必要とし ない場合は(100 m以上程度)、上記電極物質の蒸着やスパッタリング時に所望の 形状のマスクを介してパターンを形成してもよい。この陽極より発光を取り出す場合に は、透過率を 10%より大きくすることが望ましぐまた陽極としてのシート抵抗は数百 Ω /口以下が好ましい。さらに膜厚は材料にもよるが通常 10〜; 1000nm、好ましくは 10〜200nmの範囲で選ばれる。 [0233] 《陰極》
一方、本発明に係る陰極としては、仕事関数の小さい (4eV以下)金属(電子注入 性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするも のが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム一力リウ ム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物 、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム /酸化アルミニウム (Al O )混合物、インジウム、リチウム/アルミニウム混合物、希 土類金属等が挙げられる。これらの中で、電子注入性及び酸化等に対する耐久性の 点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金 属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合 物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム (Al O )混合 物、リチウム/アルミニウム混合物、アルミニウム等が好適である。陰極はこれらの電 極物質を蒸着やスパッタリング等の方法により、薄膜を形成させることにより作製する こと力 Sできる。また、陰極としてのシート抵抗は数百 Ω /口以下が好ましぐ膜厚は通 常 10〜; 1000nm、好ましくは 50〜200nmの範囲で選ばれる。なお、発光を透過さ せるため、有機 EL素子の陽極または陰極のいずれか一方が、透明または半透明で あれば発光輝度が向上し好都合である。
[0234] 《基体 (基板、基材、支持体等ともいう)》
本発明の有機 EL素子に係る基体としては、ガラス、プラスチック等の種類には特に 限定はなぐまた透明のものであれば特に制限はないが、好ましく用いられる基板と しては、例えば、ガラス、石英、光透過性樹脂フィルムを挙げることができる。特に好 ましい基体は、有機 EL素子にフレキシブル性を与えることが可能な樹脂フィルムであ
[0235] 樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナ フタレート(PEN)、ポリエーテルスルホン(PES)、ポリエーテルイミド、ポリエーテノレ エーテルケトン、ポリフエ二レンスルフイド、ポリアリレート、ポリイミド、ポリカーボネート (PC) ,セルローストリアセテート(TAC)、セルロースアセテートプロピオネート(CAP )等からなるフィルム等が挙げられる。 [0236] 樹脂フィルムの表面には、無機物もしくは有機物の被膜またはその両者のハイブリ ッド被膜が形成されていてもよぐ水蒸気透過率が 0. 01g/m2' day atm以下の高 ノ リア性フィルムであることが好ましい。
[0237] 本発明の有機 EL素子の発光の室温における外部取り出し効率は 1 %以上であるこ とが好ましぐより好ましくは 2%以上である。ここに、外部取り出し量子効率(%) =有 機 EL素子外部に発光した光子数/有機 EL素子に流した電子数 X I 00である。
[0238] また、カラーフィルタ一等の色相改良フィルタ一等を併用してもよい。
[0239] 照明用途で用いる場合には、発光ムラを低減させるために粗面加工したフィルム( アンチグレアフイノレム等)を併用することもできる。
[0240] 多色表示装置として用いる場合は、少なくとも 2種類の異なる発光極大波長を有す る有機 EL素子からなるが、有機 EL素子を作製する好適な例を説明する。
[0241] 《有機 EL素子の作製方法》
本発明の有機 EL素子の作製方法の一例として、陽極/正孔注入層/正孔輸送層 /発光層/正孔阻止層/電子輸送層/陰極バッファー層/陰極力 なる有機 EL 素子の作製法につ!/、て説明する。
[0242] まず適当な基体上に所望の電極物質、例えば、陽極用物質力 なる薄膜を、 1 11 m 以下、好ましくは 10〜200nmの膜厚になるように蒸着やスパッタリング等の方法によ り形成させ、陽極を作製する。次に、この上に素子材料である正孔注入層、正孔輸送 層、発光層、正孔阻止層、電子輸送層等の有機化合物を含有する薄膜を形成させ
[0243] この有機化合物を含有する薄膜の薄膜化の方法としては、スピンコート法、キャスト 法、インクジェット法、蒸着法、印刷法等があるが、均質な膜が得られやすぐかつピ ンホールが生成しにくい等の点から、真空蒸着法またはスピンコート法が特に好まし い。さらに層ごとに異なる製膜法を適用してもよい。製膜に蒸着法を採用する場合、 その蒸着条件は、使用する化合物の種類等により異なるが、一般にボート加熱温度 50〜450°C、真空度 10— 6〜; 10— 2Pa、蒸着速度 0. 0;!〜 50nm/秒、基板温度 50 〜300°C、膜厚 0. 1〜5 mの範囲で適宜選ぶことが望ましい。
[0244] これらの層の形成後、その上に陰極用物質からなる薄膜を 1 μ m以下好ましくは 50 〜200nmの範囲の膜厚になるように、例えば、蒸着やスパッタリング等の方法により 形成させ、陰極を設けることにより所望の有機 EL素子が得られる。この有機 EL素子 の作製は一回の真空引きで一貫して正孔注入層から陰極まで作製するのが好まし いが、途中で取り出して異なる製膜法を施しても構わない。その際、作業を乾燥不活 性ガス雰囲気下で行う等の配慮が必要となる。
[0245] 《表示装置》
本発明の表示装置について説明する。本発明の表示装置は上記有機 EL素子を 有する。
[0246] 本発明の表示装置は単色でも多色でもよいが、ここでは多色表示装置について説 明する。多色表示装置の場合は発光層形成時のみシャドーマスクを設け、一面に蒸 着法、キャスト法、スピンコート法、インクジェット法、印刷法等で膜を形成できる。
[0247] 発光層のみパターユングを行う場合、その方法に限定はないが、好ましくは蒸着法 、インクジェット法、印刷法である。蒸着法を用いる場合においては、シャドーマスクを 用いたパターユングが好ましレ、。
[0248] また作製順序を逆にして、陰極、電子輸送層、正孔阻止層、発光層、正孔輸送層、 陽極の順に作製することも可能である。
[0249] このようにして得られた多色表示装置に直流電圧を印加する場合には、陽極を +、 陰極を一の極性として電圧 2〜40V程度を印加すると発光が観測できる。また、逆の 極性で電圧を印加しても電流は流れずに発光は全く生じない。さらに交流電圧を印 加する場合には、陽極が +、陰極が—の状態になったときのみ発光する。なお、印 加する交流の波形は任意でょレ、。
[0250] 多色表示装置は表示デバイス、ディスプレイ、各種発光光源として用いることができ る。表示デバイス、ディスプレイにおいて、青、赤、緑発光の 3種の有機 EL素子を用 V、ることによりフルカラーの表示が可能となる。
[0251] 表示デバイス、ディスプレイとしては、テレビ、パソコン、モパイル機器、 AV機器、文 字放送表示、 自動車内の情報表示等が挙げられる。特に静止画像や動画像を再生 する表示装置として使用してもよく、動画再生用の表示装置として使用する場合の駆 動方式は単純マトリクス(パッシブマトリクス)方式でもアクティブマトリクス方式でもどち らであよい。
[0252] 発光光源としては家庭用照明、車内照明、時計や液晶用のバックライト、看板広告 、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光 センサーの光源等が挙げられるが、これに限定するものではな!/、。
[0253] 《照明装置》
本発明の照明装置について説明する。本発明の照明装置は上記有機 EL素子を 有する。
[0254] 本発明の有機 EL素子に共振器構造を持たせた有機 EL素子として用いてもよぐこ のような共振器構造を有した有機 EL素子の使用目的としては、光記憶媒体の光源、 電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられる 1S これらに限定されない。また、レーザー発振をさせることにより上記用途に使用し てもよい。
[0255] また、本発明の有機 EL素子は照明用や露光光源のような一種のランプとして使用 してもよいし、画像を投影するタイプのプロジェクシヨン装置や、静止画像や動画像を 直接視認するタイプの表示装置(ディスプレイ)として使用してもよい。動画再生用の 表示装置として使用する場合の駆動方式は、単純マトリクス (パッシブマトリクス)方式 でもアクティブマトリクス方式でもどちらでもよい。または、異なる発光色を有する本発 明の有機 EL素子を 2種以上使用することにより、フルカラー表示装置を作製すること が可能である。
[0256] 以下、本発明の有機 EL素子を有する表示装置の一例を図面に基づいて説明する
[0257] 図 7は有機 EL素子から構成される表示装置の一例を示した模式図である。有機 E L素子の発光により画像情報の表示を行う、例えば、携帯電話等のディスプレイの模 式図である。
[0258] ディスプレイ 1は複数の画素を有する表示部 A、画像情報に基づいて表示部 Aの画 像走査を行う制御部 B等からなる。
[0259] 制御部 Bは表示部 Aと電気的に接続され、複数の画素それぞれに外部からの画像 情報に基づいて走査信号と画像データ信号を送り、走査信号により走査線毎の画素 が画像データ信号に応じて順次発光して画像走査を行って画像情報を表示部 Aに
Ik小 ^る。
[0260] 図 8は表示部 Aの模式図である。
[0261] 表示部 Aは基板上に、複数の走査線 5及びデータ線 6を含む配線部と複数の画素
3等とを有する。表示部 Aの主要な部材の説明を以下に行う。
[0262] 図においては、画素 3の発光した光が白矢印方向(下方向)へ取り出される場合を 示している。
[0263] 配線部の走査線 5及び複数のデータ線 6はそれぞれ導電材料からなり、走査線 5と データ線 6は格子状に直交して、直交する位置で画素 3に接続している(詳細は図示 していない)。
[0264] 画素 9は走査線 5から走査信号が印加されると、データ線 6から画像データ信号を 受け取り、受け取った画像データに応じて発光する。発光の色が赤領域の画素、緑 領域の画素、青領域の画素を適宜同一基板上に並置することによって、フルカラー 表示が可能となる。
[0265] 次に、画素の発光プロセスを説明する。
[0266] 図 9は画素の模式図である。
[0267] 画素は有機 EL素子 10、スイッチングトランジスタ 11、駆動トランジスタ 12、コンデン サ 13等を備えている。複数の画素に有機 EL素子 10として、赤色、緑色、青色発光 の有機 EL素子を用い、これらを同一基板上に並置することでフルカラー表示を行う こと力 Sでさる。
[0268] 図 9において、制御部 Bからデータ線 6を介してスイッチングトランジスタ 11のドレイ ンに画像データ信号が印加される。そして、制御部 Bから走査線 5を介してスィッチン グトランジスタ 11のゲートに走査信号が印加されると、スイッチングトランジスタ 11の 駆動がオンし、ドレインに印加された画像データ信号がコンデンサ 13と駆動トランジ スタ 12のゲートに伝達される。
[0269] 画像データ信号の伝達により、コンデンサ 13が画像データ信号の電位に応じて充 電さ
れるとともに、駆動トランジスタ 12の駆動がオンする。駆動トランジスタ 12は、ドレイン が電源ライン 7に接続され、ソースが有機 EL素子 10の電極に接続されており、ゲート に印加された画像データ信号の電位に応じて電源ライン 7から有機 EL素子 10に電 流が供給される。
[0270] 制御部 Bの順次走査により走査信号が次の走査線 5に移ると、スイッチングトランジ スタ 11の駆動がオフする。しかし、スイッチングトランジスタ 11の駆動がオフしてもコン デンサ 13は充電された画像データ信号の電位を保持するので、駆動トランジスタ 12 の駆動はオン状態が保たれて、次の走査信号の印加が行われるまで有機 EL素子 1 0の発光が継続する。順次走査により次に走査信号が印加されたとき、走査信号に 同期した次の画像データ信号の電位に応じて駆動トランジスタ 12が駆動して有機 E L素子 10が発光する。
[0271] 即ち、有機 EL素子 10の発光は、複数の画素それぞれの有機 EL素子 10に対して 、アクティブ素子であるスイッチングトランジスタ 11と駆動トランジスタ 12を設けて、複 数の画素 3それぞれの有機 EL素子 10の発光を行っている。このような発光方法をァ クティブマトリクス方式と呼んでいる。
[0272] ここで、有機 EL素子 10の発光は複数の階調電位を持つ多値の画像データ信号に よる複数の階調の発光でもよ!/、し、 2値の画像データ信号による所定の発光量のオン 、オフでもよい。また、コンデンサ 13の電位の保持は次の走査信号の印加まで継続 して保持してもよレ、し、次の走査信号が印加される直前に放電させてもよ!/、。
[0273] 本発明にお!/、ては、上述したアクティブマトリクス方式に限らず、走査信号が走査さ れたときのみデータ信号に応じて有機 EL素子を発光させるパッシブマトリクス方式の 発光駆動でもよい。
[0274] 図 10はパッシブマトリクス方式による表示装置の模式図である。図 10において、複 数の走査線 5と複数の画像データ線 6が画素 3を挟んで対向して格子状に設けられ ている。
[0275] 順次走査により走査線 5の走査信号が印加されたとき、印加された走査線 5に接続 してレ、る画素 3が画像データ信号に応じて発光する。
[0276] ノ ッシブマトリクス方式では画素 3にアクティブ素子が無ぐ製造コストの低減が計れ [0277] また本発明の有機 EL材料は照明装置として、実質白色の発光を生じる有機 EL素 子に適用できる。複数の発光材料により複数の発光色を同時に発光させて混色によ り白色発光を得る。複数の発光色の組み合わせとしては、青色、緑色、青色の 3原色 の 3つの発光極大波長を含有させたものでもよいし、青色と黄色、青緑と橙色等の補 色の関係を利用した 2つの発光極大波長を含有したものでもよい。
[0278] また複数の発光色を得るための発光材料の組み合わせは、複数のリン光または蛍 光で発光する材料を複数組み合わせたもの、蛍光またはリン光で発光する発光材料 と、発光材料からの光を励起光として発光する色素材料との組み合わせたもののい ずれでもよいが、本発明に係る白色有機 EL素子においては、発光ドーパントを複数 組み合わせ混合するだけでよい。発光層もしくは正孔輸送層あるいは電子輸送層等 の形成時のみマスクを設け、マスクにより塗り分ける等単純に配置するだけでよぐ他 層は共通であるのでマスク等のパターユングは不要であり、一面に蒸着法、キャスト 法、スピンコート法、インクジェット法、印刷法等で例えば電極膜を形成でき、生産性 も向上する。この方法によれば、複数色の発光素子をアレー状に並列配置した白色 有機 EL装置と異なり、素子自体が発光白色である。
[0279] 発光層に用いる発光材料としては特に制限はなぐ例えば、液晶表示素子におけ るバックライトであれば、 CF (カラーフィルター)特性に対応した波長範囲に適合する ように、本発明に係る金属錯体、また公知の発光材料の中から任意のものを選択して 組み合わせて白色化すればよ!/、。
[0280] このように、本発明に係る白色発光有機 EL素子は、前記表示デバイス、ディスプレ ィに加えて、各種発光光源、照明装置として、家庭用照明、車内照明、また露光光源 のような一種のランプとして、また液晶表示装置のバックライト等、表示装置にも有用 に用いられる。
[0281] その他、時計等のバックライト、看板広告、信号機、光記憶媒体等の光源、電子写 真複写機の光源、光通信処理機の光源、光センサーの光源等、さらには表示装置を 必要とする一般の家庭用電気器具等広い範囲の用途が挙げられる。
実施例
[0282] 以下、実施例により本発明を説明するが、本発明はこれらに限定されない。なお、 実施例において「%」の表示を用いる力 S、特に断りがない限り「質量%」を表す。
[0283] 実施例 1
《有機 EL素子 1 1の作製》
陽極としてガラス上に ITOを 150nm成膜した基板(NHテクノグラス社製: NA— 45 )にパターユングを行った後、この ITO透明電極を設けた透明支持基板を iso プロ ピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行 つた。この透明支持基板を市販の真空蒸着装置の基板ホルダーに固定し、一方 5つ のタンタル製抵抗加熱ボートに α— NPD、 H4、 Ir 12、 BCP、 Alqをそれぞれ 入れ、真空蒸着装置 (第 1真空槽)に取り付けた。
[0284] さらに、タンタル製抵抗加熱ボートにフッ化リチウムを、タングステン製抵抗加熱ボ ートにアルミニウムをそれぞれ入れ、真空蒸着装置の第 2真空槽に取り付けた。
[0285] まず、第 1の真空槽を 4 X 10— 4Paまで減圧した後、 α NPDの入った前記加熱ボ ートに通電して加熱し、蒸着速度 0. ;!〜 0. 2nm/秒で透明支持基板に膜厚 20nm の厚さになるように蒸着し、正孔注入/輸送層を設けた。
[0286] さらに、 H4の入った前記加熱ボートと Ir 12の入ったボートをそれぞれ独立に通 電して、発光ホストである H4と発光ドーパントである Ir— 12の蒸着速度が 100: 6にな るように調節し、膜厚 30nmの厚さになるように蒸着し、発光層を設けた。
[0287] 次いで、 BCPの入った前記加熱ボートに通電して加熱し、蒸着速度 0. ;!〜 0. 2n m/秒で厚さ 10nmの正孔阻止層を設けた。さらに Alqの入った前記加熱ボートを 通電して加熱し、蒸着速度 0. ;!〜 0. 2nm/秒で膜厚 20nmの電子輸送層を設けた
[0288] 次に、電子輸送層まで成膜した素子を真空のまま第 2真空槽に移した後、電子輸 送層の上にステンレス鋼製の長方形穴あきマスクが配置されるように装置外部からリ モートコントロールして設置した。
[0289] 第 2真空槽を 2 X 10— 4Paまで減圧した後、フッ化リチウム入りのボートに通電して蒸 着速度 0. 01—0. 02nm/秒で膜厚 0. 5nmの陰極バッファ一層を設け、次いでァ ノレミニゥムの入ったボートに通電して、蒸着速度 l〜2nm/秒で膜厚 150nmの陰極 をつけ、有機 EL素子 1—1を作製した。 [0290] 《有機 EL素子 1 2〜;!一 26の作製》
有機 EL素子 1—1の作製において、表 1に記載のように発光ホスト、発光ドーパント 及び正孔阻止材料を変更した以外は同様にして、有機 EL素子 1— 2〜1— 26を作
; ^^し/
[0291] [化 89] '一 PD
Figure imgf000125_0001
[0292] [化 90]
Figure imgf000126_0001
Figure imgf000126_0002
[0293] 《有機 EL素子の評価》
得られた有機 EL素子 1— 1〜1—26を評価するに際しては、作製後の各有機 EL 素子の非発光面をガラスケースで覆い、厚み 300 mのガラス基板を封止用基板と して用いて、周囲にシール材として、エポキシ系光硬化型接着剤(東亞合成社製ラッ タストラック LC0629B)を適用し、これを上記陰極上に重ねて前記透明支持基板と 密着させ、ガラス基板側から UV光を照射して、硬化させて、封止して、図 11、図 12 に示すような照明装置を形成して評価した。
[0294] 図 11は照明装置の概略図を示し、有機 EL素子 101はガラスカバー 102で覆われ ている(なお、ガラスカバーでの封止作業は、有機 EL素子 101を大気に接触させるこ となく窒素雰囲気下のグローブボックス(純度 99. 999%以上の高純度窒素ガスの雰 囲気下)で行った)。図 12は照明装置の断面図を示し、図 12において、 105は陰極 、 106は有機 EL層、 107は透明電極付きガラス基板を示す。なお、ガラスカバー 10 2内には窒素ガス 108が充填され、捕水剤 109が設けられている。
[0295] (外部取り出し量子効率)
有機 EL素子を室温(約 23〜25°C)、 2. 5mA/cm2の定電流条件下による点灯を 行い、点灯開始直後の発光輝度 (L) [cd/m2]を測定することにより、外部取り出し 量子効率( 7] )を算出した。ここで、発光輝度の測定は CS— 1000 (コニカミノルタセ ンシング製)を用いた。外部取り出し量子効率は有機 EL素子 1 1を 100とする相対 ィ直で表した。
[0296] (発光寿命)
有機 EL素子を室温下、 2. 5mA/cm2の定電流条件下による連続点灯を行い、初 期輝度の半分の輝度になるのに要する時間(て )を測定した。発光寿命は有機 EL
1/2
素子 1 1を 100と設定する相対値で表した。
[0297] (発光色)
有機 EL素子を室温下、 2. 5mA/cm2の定電流条件下による連続点灯を行った際 の発光色を目視で評価した。
[0298] 得られた結果を表 1に示す。
[0299] [表 1]
有機^ ¾子 発光 正孔隨.止 外部取出し
発光寿命 発光色 備考
Nひ. ホス卜 ド一パント 材料 量子効率:
― 1 H~ 4 ir-12 ecp 100 100 氷色 比翻
1 ― 2 Hi— 4 比較 1 103 93 オレンジ 比較例 -- 3 H— 4 比較 2 8CP 110 33 ォレンジ 比較例 卜 4 比較 3 BCP 108 76 * •比較例
1一 5 H― 4 BCP 162 765 麵 本発明
1 ― 6 H - 4 1 BCP 156 743 啬 本発明
1 - ? トト 4 27 BCP 640 黉 本発明
1 - 8 H― 93 8CP 159 726 :ぉ 本発明
1 ― H-4 56 H - 5 162 734 青 本発明
1 -10 H - 4 63 H— 5 1 S 540 本発明
1 -11 H― 4 1:02 H― 5 155 654 本発明
';、 "12 H- 4 184 H— 5 9 G74 青 本翻
\ —13 H— - 6 75 BCP ΐδδ 668 青 本発明 —14 H一 6 4 8CP 163 726 純育 本発明
1 -ΐ5 H- 6 1 7 BCP 152 548 純青 · 本発明
1 -16 H— 6 208 ec 151 645 n 本発明
1 —17 H- 6 127 H - 5 146 7U 本発明
Ί -18 H— 6 157 H - 5 163 6S3 純青 本発明
1 — Ϊ9 H— β 165 H - 5 158 649 本翻
1 —20 H— 8 174 H - 5 5 582 青 本発明
1 —21 H~30 220 BCP 162 687 青 本発明
= -22 H—30 ZZA 153 565 青 本発明
] -23 H -30 233 acp 55 673 本発明
H -.30 247 1 8 534 is録 本発明
1 -25 H -30 272 H « 5 138 63 ΐ 本発明: 1 -26 H— 30 273 H-25 1 0 594 本発明
[0300] 表 1から、本発明に係る金属錯体を用いて作製した有機 EL素子は、比較例の有機 EL素子に比べ、純青〜青緑色の短波な発光を持ちながら高い発光効率と発光寿命 の長寿命化が達成できることが明らかである。
[0301] 実施例 2
《有機 EL素子 2— 1の作製》
25mm X 25mm XO. 5mmのガラス支持基板上に直流電源を用い、スパッタ法に てインジウム錫酸化物(ITO、インジウム/錫 = 95/5モル比)の陽極を形成した(厚 み 200nm)。この陽極の表面抵抗は 10 Ω /口であった。これにポリビュルカルバゾ ール(正孔輸送性バインダーポリマー) /Ir一 13 (青発光性オルトメタル化錯体) /2 一(4ービフエ二リル)ー5—(4一 t—ブチルフエニル)一 1, 3, 4—ォキサジァゾ一ル( 電子輸送材) =200/2/50質量比を溶解したジクロロエタン溶液をスピンコ一ター で塗布し、 lOOnmの発光層を得た。この有機化合物層の上にパターユングしたマス ク (発光面積が 5mm X 5mmとなるマスク)を設置し、蒸着装置内で陰極バッファ一層 としてフッ化リチウム 0. 5nm及び陰極としてアルミニウム 150nmを蒸着して陰極を設 けて、青色発光の有機 EL素子 2— 1を作製した。
[0302] 《有機 EL素子 2— 2〜2— 11の作製》
有機 EL素子 2—1の作製において、表 2に記載のように発光ドーパントを変更した 以外は同様にして、有機 EL素子 2— 2〜2— 11を作製した。
[0303] 《有機 EL素子の評価》
得られた有機 EL素子 2—;!〜 2— 11を評価するに際しては、作製後の各有機 EL 素子の非発光面をガラスケースで覆い、厚み 300 mのガラス基板を封止用基板と して用いて、周囲にシール材として、エポキシ系光硬化型接着剤(東亞合成社製ラッ タストラック LC0629B)を適用し、これを上記陰極上に重ねて前記透明支持基板と 密着させ、ガラス基板側から UV光を照射して、硬化させて、封止して、図 11、図 12 に示すような照明装置を形成して評価した。
[0304] 次いで、下記のようにして発光輝度及び発光効率を測定した。
[0305] (発光輝度、発光効率)
東洋テク二力製ソースメジャーユニット 2400型を用いて、直流電圧を有機 EL素子 に印加して発光させ、 10Vの直流電圧を印加した時の発光輝度(cd/m2)と 2. 5m A/cm2の電流を通じた時の発光効率 (lm/W)を測定した。得られた結果を表 2に 示す。有機 EL素子 2—1を 100とする相対値で表した。
[0306] [表 2]
発光輝度 発光効率
有機 EL素子 発光
発. 色
Ho, ドーパント (■cd/V) (Im/W) 備考
(相対値) (相対値)
2― 1 fr-13 100 100 者 比較例
2一 2 比鲛 2 110 M2 才レ、ノジ 比較例
■2— 3 比較 3 Π2 "5 緣 比较例
2 - 4 4 146 143 青緑 本発明
2 '― 5 14 2 142 本発明
2 - 6 56 36 140 本発明
2 - 7 114 1 3 150 純青 本発明
2— 8 !47 1 6 1 6 ¾青 本発明
Z - 9 157 ί50 144 純-裏 本発明
2— 'ίθ 165 J48 1 3 本発明
2— !1 184 !37 142 本発明
[0307] 表 2から、本発明に係る金属錯体を用いて作製した有機 EL素子は、比較例の有機 EL素子に比べ、純青〜青緑色の短波な発光を持ちながら高い発光効率と高い輝度 が達成できることが明らかである。
[0308] 実施例 3
《フルカラー表示装置の作製》
(青色発光素子の作製)
実施例 1の有機 EL素子 1一 18を青色発光素子として用いた。
[0309] (緑色発光素子の作製)
実施例 1の有機 EL素子 1一 1において、 Ir— 12を Ir一 1に変更した以外は同様にし て、緑色発光素子を作製し、これを緑色発光素子として用いた。
[0310] (赤色発光素子の作製)
実施例 1の有機 EL素子 1一 1にお!/、て、 Ir— 12を Ir一 9に変更した以外は同様にし て、赤色発光素子を作製し、これを赤色発光素子として用いた。
[0311] 上記で作製した赤色、緑色、青色発光有機 EL素子を同一基板上に並置し、図 7に 記載のような形態を有するアクティブマトリクス方式フルカラー表示装置を作製した。 図 8には、作製した前記表示装置の表示部 Aの模式図のみを示した。即ち、同一基 板上に複数の走査線 5及びデータ線 6を含む配線部と並置した複数の画素 3(発光 の色が赤領域の画素、緑領域の画素、青領域の画素等)とを有し、配線部の走査線 5及び複数のデータ線 6はそれぞれ導電材料からなり、走査線 5とデータ線 6は格子 状に直交して、直交する位置で画素 3に接続している(詳細は図示せず)。前記複数 画素 3は、それぞれの発光色に対応した有機 EL素子、アクティブ素子であるスィッチ 駆動されており、走査線 5から走査信号が印加されるとデータ線 6から画像データ信 号を受け取り、受け取った画像データに応じて発光する。このように赤、緑、青の画素 を適宜、並置することによって、フルカラー表示装置を作製した。
[0312] このフルカラー表示装置は駆動することにより、輝度が高ぐ高耐久性を有し、かつ 鮮明なフルカラー動画表示が得られることが分かった。
[0313] 実施例 4
《白色発光素子及び白色照明装置の作製 1》
実施例 1の透明電極基板の電極を 20mm X 20mmにパターユングし、その上に実 施例 1と同様に正孔注入/輸送層として α— NPDを 25nmの厚さで成膜し、さらに H4の入った前記加熱ボートと例示化合物(4)の入ったボート及び Ir 9の入ったボ ートをそれぞれ独立に通電して、発光ホストである CBPと発光ドーパントである例示 化合物(4)及び Ir— 9の蒸着速度が 100 : 5 : 0. 6になるように調節し、膜厚 30nmの 厚さになるように蒸着し、発光層を設けた。
[0314] 次いで、 BCPを 10nm成膜して正孔阻止層を設けた。さらに、 Alqを 40nmで成膜 し電子輸送層を設けた。
[0315] 次に、実施例 1と同様に電子注入層の上にステンレス鋼製の透明電極とほぼ同じ 形状の正方形穴あきマスクを設置し、陰極バッファ一層としてフッ化リチウム 0. 5nm 及び陰極としてアルミニウム 150nmを蒸着成膜した。
[0316] この素子を実施例 1と同様な方法及び同様な構造の封止缶を具備させ、図 11、図
12に示すような平面ランプを作製した。この平面ランプに通電したところほぼ白色の 光が得られ、照明装置として使用できることが分かった。例示の他の化合物に置き換 えても同様に白色の発光が得られることが分かった。
[0317] [化 91] CBP
Figure imgf000132_0001
[0318] 実施例 5
《白色発光素子及び白色照明装置の作製 2》
陽極として lOOmmX lOOmm X l . 1mmのガラス基板上に ITO (インジウムチンォ キシド)を lOOnm製膜した基板(ΝΗテクノグラス社製 ΝΑ— 45)にパターユングを行 つた後、この ITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音 波洗浄し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行った。
[0319] この透明支持基板上に、ポリ(3, 4 エチレンジォキシチォフェン) ポリスチレンス ルホネート(PEDOT/PSS、: Bayer社製、 Baytron P A1 4083)を純水で 70% に希釈した溶液を 3000rpm、 30秒でスピンコート法により製膜した後、 200°Cにて 1 時間乾燥し、膜厚 30nmの第 1正孔輸送層を設けた。
[0320] この基板を窒素雰囲気下に移し、第 1正孔輸送層上に、 50mgの化合物 Aを 10ml のトルエンに溶解した溶液を 1000rpm、 30秒の条件下、スピンコート法により製膜し た。 180秒間紫外光を照射し、光重合 ·架橋を行った後、 60°Cで 1時間真空乾燥し 第 2正孔輸送層とした。
[0321] 次に、化合物 B (60mg)、化合物 Ir 14 (3. Omg)、化合物 Ir 15 (3. Omg)をト ルェン 6mlに溶解した溶液を用い、 1000rpm、 30秒の条件下、スピンコート法により 製膜した。 15秒間紫外光を照射し、光重合 ·架橋を行わせ、さらに真空中 150°Cで 1 時間加熱を行い、発光層とした。
[0322] さらに、化合物 C (20mg)をトルエン 6mlに溶解した溶液を用い、 lOOOrpm, 30秒 の条件下、スピンコート法により製膜した。 15秒間紫外光を照射し、光重合'架橋を 行わせ、さらに真空中 80°Cで 1時間加熱を行い、正孔阻止層とした。
[0323] 続いて、この基板を真空蒸着装置の基板ホルダーに固定し、モリブデン製抵抗加 熱ボートに Alqを 200mg入れ、真空蒸着装置に取り付けた。真空槽を 4 X 10— 4Paま で減圧した後、 Alqの入った前記加熱ボートに通電して加熱し、蒸着速度 0. lnm/ 秒で前記電子輸送層の上に蒸着して、さらに膜厚 40nmの電子輸送層を設けた。
[0324] なお、蒸着時の基板温度は室温であった。
[0325] 引き続き、フッ化リチウム 0. 5nm及びアルミニウム 11 Onmを蒸着して陰極を形成し
、白色発光有機 EL素子を作製した。
[0326] この素子に通電したところほぼ白色の光が得られ、照明装置として使用できることが 分かった。
[0327] [化 92]
Figure imgf000134_0001
lr— 15《本発明の化合物》
Figure imgf000134_0002

Claims

請求の範囲
下記一般式(1 )で表される金属錯体であることを特徴とする有機エレクト口ルミネッ センス素子材料。
[化 1コ 一般式 (1》
Figure imgf000135_0001
(式中、 Xは R— N、 0、 S、 Seまたは Teを表す。 Rは置換、無置換のアルキル基、シ
1 1
クロアルキル基、ァリール基または芳香族複素環基を表す。 Y、 Y及び Yは R— N
1 2 3 2
、 Nまたは R— Cを表し、 C、 Nとともにイミダゾール環、トリァゾール環、テトラゾール
3
環を形成するのに必要な原子群を表す。 Rは置換、無置換のアルキル基、シクロア ルキル基、ァリール基または芳香族複素環基を表す。 Rは水素原子あるいは置換基
3
を表す。 Gは置換基を表し、 nは 0、 1または 2を表す。 X— L—Xは 2座の配位子を
1 1 2
表し、 X、 Xは各々独立に炭素原子、窒素原子または酸素原子を表す。 Lは X、 X
1 2 1 1 2 と共に 2座の配位子を形成する原子群を表す。中心金属である Mは元素周期表に
1
おける 8〜; 1 1族の金属を表す。 mlは 1、 2または 3の整数を表し、 m2は 0、 1または 2 の整数を表すが、 ml + m2は 2または 3であり、これは中心金属の正電荷と同じ数で ある。 )
前記一般式(1 )で表される金属錯体が下記一般式 (2)で表されることを特徴とする請 求の範囲第 1項に記載の有機エレクト口ルミネッセンス素子材料。
[化 2] —殺式 )
Figure imgf000136_0001
(式中、 Xは R— N、 0、 S、 Seまたは Teを表す。 Rは置換、無置換のアルキル基、シ
1 1
クロアルキル基、ァリール基または芳香族複素環基を表す。 Y及び Yは R— N、 Nま たは R— Cを表し、 N— C = Nと共にイミダゾール環、トリァゾール環、テトラゾール環
3
を形成するのに必要な原子群を表す。 Rは置換、無置換のアルキル基、シクロアノレ キル基、ァリール基または芳香族複素環基を表す。 Rは水素原子あるいは置換基を
3
表す。 Gは置換基を表し、 nは 0、 1または 2を表す。 X— L —Xは 2座の配位子を表
1 1 2
し、 X、 Xは各々独立に炭素原子、窒素原子または酸素原子を表す。 Lは X、 Xと
1 2 1 1 2 共に 2座の配位子を形成する原子群を表す。中心金属である Mは元素周期表にお
1
ける 8〜; 1 1族の金属を表す。 mlは 1、 2または 3の整数を表し、 m2は 0、 1または 2の 整数を表すが、 ml + m2は 2または 3であり、これは中心金属の正電荷と同じ数であ る。 )
前記一般式 (2)で表される金属錯体が下記一般式 (3)で表されることを特徴とする請 求の範囲第 2項に記載の有機エレクト口ルミネッセンス素子材料。
[化 3] 一般式《3}
Figure imgf000136_0002
(式中、 Xは R— N、 0、 S、 Seまたは Teを表す。 Rは置換、無置換のアルキル基、シ
1 1
クロアルキル基、ァリール基または芳香族複素環基を表す。 Rは置換、無置換のァ ルキル基、シクロアルキル基、ァリール基または芳香族複素環基を表す。 Gは置換基 を表し、 nは 0、 1または 2を表す。 X— L—Xは 2座の配位子を表し、 X、 Xは各々
1 1 2 1 2 独立に炭素原子、窒素原子または酸素原子を表す。 Lは X、 Xと共に 2座の配位子
1 1 2
を形成する原子群を表す。中心金属である Mは元素周期表における 8〜; 11族の金
1
属を表す。 mlは 1、 2または 3の整数を表し、 m2は 0、 1または 2の整数を表す力 m l +m2は 2または 3であり、これは中心金属の正電荷と同じ数である。 )
[4] 前記一般式(3)で表される金属錯体において、 R力 Sメチル基あるいは置換、無置換 のァリール基または芳香族複素環基であることを特徴とする請求の範囲第 3項に記 載の有機エレクト口ルミネッセンス素子材料。
[5] 前記一般式(3)で表される金属錯体において、 Rが 2, 6—ジメチルフエニル基、メシ チル基(2, 4, 6—トリメチルフエニル基)、テトラメチルフエニル基またはペンタメチル フエニル基であることを特徴とする請求の範囲第 4項に記載の有機エレクト口ルミネッ センス素子材料。
[6] 前記中心金属 M力 Sイリジウムであることを特徴とする請求の範囲第 1項〜第 5項のい
1
ずれか 1項に記載の有機エレクト口ルミネッセンス素子材料。
[7] 前記中心金属 Mが白金であることを特徴とする請求の範囲第 1項〜第 5項のいずれ
1
力、 1項に記載の有機エレクト口ルミネッセンス素子材料。
[8] 前記 m2が 0であることを特徴とする請求の範囲第 1項〜第 7項のいずれか 1項に記 載の有機エレクト口ルミネッセンス素子材料。
[9] 第 1発光波長が 400〜500nmの範囲内であることを特徴とする請求の範囲第 1項〜 第 8項のいずれか 1項に記載の有機エレクト口ルミネッセンス素子材料。
[10] 請求の範囲第 1項〜第 9項のいずれ力、 1項に記載の有機エレクト口ルミネッセンス素 子材料を含有することを特徴とする有機エレクト口ルミネッセンス素子。
[11] 構成層として発光層を有し、該発光層が請求の範囲第 1項〜第 9項のいずれか 1項 に記載の有機エレクト口ルミネッセンス素子材料を含有することを特徴とする請求の 範囲第 10項に記載の有機エレクト口ルミネッセンス素子。
[12] 前記発光層が、ホスト化合物として、力ルバゾール誘導体または該カルバゾール誘 導体の力ルバゾール環を構成する炭化水素環の炭素原子の少なくとも一つが窒素 原子で置換されている環構造を有する誘導体を含有することを特徴とする請求の範 囲第 10項に記載の有機エレクト口ルミネッセンス素子。
[13] 構成層として正孔阻止層を有し、該正孔阻止層が、正孔阻止材料として、カルバゾ ール誘導体または該カルバゾール誘導体の力ルバゾール環を構成する炭化水素環 の炭素原子の少なくとも一つが窒素原子で置換されている環構造を有する誘導体を 含有することを特徴とする請求の範囲第 10項〜第 12項のいずれか 1項に記載の有 機エレクト口ルミネッセンス素子。
[14] 請求の範囲第 10項〜第 13項のいずれ力、 1項に記載の有機エレクト口ルミネッセンス 素子を有することを特徴とする表示装置。
[15] 請求の範囲第 10項〜第 13項のいずれ力、 1項に記載の有機エレクト口ルミネッセンス 素子を有することを特徴とする照明装置。
PCT/JP2007/068063 2006-09-20 2007-09-18 Matériau de dispositif électroluminescent organique, dispositif électroluminescent organique, dispositif d'affichage et d'éclairage WO2008035664A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008535350A JP5644050B2 (ja) 2006-09-20 2007-09-18 有機エレクトロルミネッセンス素子材料

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-254129 2006-09-20
JP2006254129 2006-09-20

Publications (1)

Publication Number Publication Date
WO2008035664A1 true WO2008035664A1 (fr) 2008-03-27

Family

ID=39200490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/068063 WO2008035664A1 (fr) 2006-09-20 2007-09-18 Matériau de dispositif électroluminescent organique, dispositif électroluminescent organique, dispositif d'affichage et d'éclairage

Country Status (2)

Country Link
JP (1) JP5644050B2 (ja)
WO (1) WO2008035664A1 (ja)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008035571A1 (ja) * 2006-09-20 2010-01-28 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子
JP2013010752A (ja) * 2011-06-03 2013-01-17 Semiconductor Energy Lab Co Ltd 有機金属錯体、有機発光素子、発光装置、電子機器、及び照明装置
WO2013027633A1 (ja) * 2011-08-19 2013-02-28 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、照明装置及び表示装置
EP2565249A1 (en) * 2011-08-31 2013-03-06 Universal Display Corporation Cyclometallated tetradentate Pt (II) complexes
WO2013038929A1 (ja) 2011-09-12 2013-03-21 新日鉄住金化学株式会社 含ケイ素四員環構造を有する有機電界発光素子用材料及び有機電界発光素子
WO2013038843A1 (ja) 2011-09-12 2013-03-21 新日鉄住金化学株式会社 有機電界発光素子
WO2013038804A1 (ja) 2011-09-12 2013-03-21 新日鉄住金化学株式会社 有機電界発光素子
WO2013088934A1 (ja) 2011-12-12 2013-06-20 新日鉄住金化学株式会社 有機電界発光素子用材料及びそれを用いた有機電界発光素子
KR20130084615A (ko) * 2012-01-17 2013-07-25 유니버셜 디스플레이 코포레이션 신규한 헤테로렙틱 이리듐 착물
WO2013137162A1 (ja) * 2012-03-15 2013-09-19 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、照明装置及び表示装置
WO2013137001A1 (ja) 2012-03-12 2013-09-19 新日鉄住金化学株式会社 有機電界発光素子
WO2014002629A1 (ja) 2012-06-28 2014-01-03 新日鉄住金化学株式会社 有機電界発光素子用材料及び有機電界発光素子
WO2014013936A1 (ja) 2012-07-19 2014-01-23 新日鉄住金化学株式会社 有機電界発光素子
WO2014050904A1 (ja) 2012-09-28 2014-04-03 新日鉄住金化学株式会社 有機電界発光素子用化合物及び有機電界発光素子
KR20140070412A (ko) 2012-11-30 2014-06-10 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 발광 장치, 전자 기기, 및 조명 장치
WO2014097813A1 (ja) 2012-12-17 2014-06-26 新日鉄住金化学株式会社 有機電界発光素子
KR20140109270A (ko) 2013-03-01 2014-09-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 유기 금속 착체, 발광 소자, 발광 장치, 전자 기기, 및 조명 장치
US8889858B2 (en) 2012-04-20 2014-11-18 Semiconductor Energy Laboratory Co., Ltd. Phosphorescent organometallic iridium complex, light-emitting element, light-emitting device, electronic device, and lighting device
US9127032B2 (en) 2011-12-23 2015-09-08 Semiconductor Energy Laboratory Co., Ltd. Organometallic complex, light-emitting element, light-emitting device, electronic device, and lighting device
US9260463B2 (en) 2011-11-30 2016-02-16 Semiconductor Energy Laboratory Co., Ltd. Substituted pyrimidinato iridium complexes and substituted pyrazinato iridium complexes having an alicyclic diketone ligand
KR20160019926A (ko) 2013-06-14 2016-02-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 유기 금속 이리듐 착체, 발광 소자, 발광 장치, 및 조명 장치
US9273079B2 (en) 2011-06-29 2016-03-01 Semiconductor Energy Laboratory Co., Ltd. Organometallic complex, light-emitting element, light-emitting device, electronic device, and lighting device
US9276222B2 (en) 2013-06-28 2016-03-01 Semiconductor Energy Laboratory Co., Ltd. Organometallic iridium complex, light-emitting element, light-emitting device, electronic device, and lighting device
US9412956B2 (en) 2013-09-12 2016-08-09 Semiconductor Energy Laboratory Co., Ltd. Organometallic iridium complex, light-emitting element, light-emitting device, electronic device, and lighting device
JP2016186082A (ja) * 2010-11-26 2016-10-27 株式会社半導体エネルギー研究所 発光材料、発光素子、発光装置、電子機器、照明装置
US9741946B2 (en) 2012-12-20 2017-08-22 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element containing organic iridium exhibits blue-green to blue light emission
JP2018050056A (ja) * 2009-11-02 2018-03-29 株式会社半導体エネルギー研究所 発光素子、表示装置、電子機器、及び照明装置
US9978962B2 (en) 2014-05-30 2018-05-22 Semiconductor Energy Laboratory Co., Ltd. Organometallic iridium complex, light-emitting element, light-emitting device, electronic device, and lighting device
US10388891B2 (en) 2015-04-01 2019-08-20 Semiconductor Energy Laboratory Co., Ltd. Organometallic complex, light-emitting element, light-emitting device, electronic device, and lighting device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004067658A (ja) * 2002-06-10 2004-03-04 Mitsubishi Chemicals Corp 有機金属錯体、およびこれを用いた有機電界発光素子
WO2006009024A1 (ja) * 2004-07-23 2006-01-26 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2007029461A1 (ja) * 2005-09-02 2007-03-15 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、その製造方法、該有機エレクトロルミネッセンス素子を有する表示装置及び照明装置
WO2007108327A1 (ja) * 2006-03-17 2007-09-27 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2007108459A1 (ja) * 2006-03-23 2007-09-27 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2007108362A1 (ja) * 2006-03-17 2007-09-27 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、表示装置および照明装置
JP2007262135A (ja) * 2006-03-27 2007-10-11 Showa Denko Kk 高分子発光材料、有機エレクトロルミネッセンス素子および表示装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4427947B2 (ja) * 2002-11-18 2010-03-10 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子及び表示装置
WO2005007767A2 (ja) * 2003-07-22 2005-01-27 Idemitsu Kosan Co 金属錯体化合物及びそれを用いた有機エレクトロルミネッセンス素子
JP4337475B2 (ja) * 2003-08-27 2009-09-30 三菱化学株式会社 有機金属錯体、発光材料、および有機電界発光素子
JP2006074176A (ja) * 2004-08-31 2006-03-16 Mitsubishi Materials Corp 通信機器
JP4894513B2 (ja) * 2004-06-17 2012-03-14 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5151001B2 (ja) * 2004-07-15 2013-02-27 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP5040077B2 (ja) * 2004-07-23 2012-10-03 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子
JP2006074177A (ja) * 2004-08-31 2006-03-16 Toshiba Corp 電子機器
JP4285754B2 (ja) * 2004-09-09 2009-06-24 近畿車輌株式会社 鉄道車両用灯具
JP4961664B2 (ja) * 2004-10-22 2012-06-27 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、表示装置及び照明装置
EP2080796A1 (en) * 2004-12-23 2009-07-22 Ciba Holding Inc. Electroluminescent metal complexes with nucleophilic carbene ligands
JP2006254127A (ja) * 2005-03-10 2006-09-21 Ricoh Co Ltd 画像記録装置および画像表示方法
JP3845106B2 (ja) * 2005-03-14 2006-11-15 株式会社エヌ・ティ・ティ・ドコモ 携帯端末、及び、認証方法
WO2008035595A1 (fr) * 2006-09-19 2008-03-27 Konica Minolta Holdings, Inc. Dispositifs électroluminescents organiques
JP5556014B2 (ja) * 2006-09-20 2014-07-23 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004067658A (ja) * 2002-06-10 2004-03-04 Mitsubishi Chemicals Corp 有機金属錯体、およびこれを用いた有機電界発光素子
WO2006009024A1 (ja) * 2004-07-23 2006-01-26 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2007029461A1 (ja) * 2005-09-02 2007-03-15 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、その製造方法、該有機エレクトロルミネッセンス素子を有する表示装置及び照明装置
WO2007108327A1 (ja) * 2006-03-17 2007-09-27 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2007108362A1 (ja) * 2006-03-17 2007-09-27 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、表示装置および照明装置
WO2007108459A1 (ja) * 2006-03-23 2007-09-27 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2007262135A (ja) * 2006-03-27 2007-10-11 Showa Denko Kk 高分子発光材料、有機エレクトロルミネッセンス素子および表示装置

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5556014B2 (ja) * 2006-09-20 2014-07-23 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子
JPWO2008035571A1 (ja) * 2006-09-20 2010-01-28 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子
JP2018050056A (ja) * 2009-11-02 2018-03-29 株式会社半導体エネルギー研究所 発光素子、表示装置、電子機器、及び照明装置
US10424745B2 (en) 2009-11-02 2019-09-24 Semiconductor Energy Laboratory Co., Ltd. Organometallic complex, light-emitting element, display device, electronic device, and lighting device
JP2016186082A (ja) * 2010-11-26 2016-10-27 株式会社半導体エネルギー研究所 発光材料、発光素子、発光装置、電子機器、照明装置
JP2013010752A (ja) * 2011-06-03 2013-01-17 Semiconductor Energy Lab Co Ltd 有機金属錯体、有機発光素子、発光装置、電子機器、及び照明装置
US9406894B2 (en) 2011-06-03 2016-08-02 Semiconductor Energy Laboratory Co., Ltd. Organometallic complex, organic light-emitting element, light-emitting device, electronic device, and lighting device
US9273079B2 (en) 2011-06-29 2016-03-01 Semiconductor Energy Laboratory Co., Ltd. Organometallic complex, light-emitting element, light-emitting device, electronic device, and lighting device
WO2013027633A1 (ja) * 2011-08-19 2013-02-28 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、照明装置及び表示装置
JPWO2013027633A1 (ja) * 2011-08-19 2015-03-19 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、照明装置及び表示装置
EP2565249A1 (en) * 2011-08-31 2013-03-06 Universal Display Corporation Cyclometallated tetradentate Pt (II) complexes
US9493698B2 (en) 2011-08-31 2016-11-15 Universal Display Corporation Organic electroluminescent materials and devices
JP2013053149A (ja) * 2011-08-31 2013-03-21 Universal Display Corp シクロメタル化四座配位Pt(II)錯体
WO2013038804A1 (ja) 2011-09-12 2013-03-21 新日鉄住金化学株式会社 有機電界発光素子
WO2013038929A1 (ja) 2011-09-12 2013-03-21 新日鉄住金化学株式会社 含ケイ素四員環構造を有する有機電界発光素子用材料及び有機電界発光素子
WO2013038843A1 (ja) 2011-09-12 2013-03-21 新日鉄住金化学株式会社 有機電界発光素子
US9260463B2 (en) 2011-11-30 2016-02-16 Semiconductor Energy Laboratory Co., Ltd. Substituted pyrimidinato iridium complexes and substituted pyrazinato iridium complexes having an alicyclic diketone ligand
WO2013088934A1 (ja) 2011-12-12 2013-06-20 新日鉄住金化学株式会社 有機電界発光素子用材料及びそれを用いた有機電界発光素子
KR20220018068A (ko) 2011-12-23 2022-02-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 발광 장치, 조명 장치, 및 전자 기기
US10998509B2 (en) 2011-12-23 2021-05-04 Semiconductor Energy Laboratory Co., Ltd. Organometallic complex, light-emitting element, light-emitting device, electronic device, and lighting device
KR20200040926A (ko) 2011-12-23 2020-04-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 발광 장치, 조명 장치, 및 전자 기기
KR20230058192A (ko) 2011-12-23 2023-05-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 발광 장치, 조명 장치, 및 전자 기기
US9843003B2 (en) 2011-12-23 2017-12-12 Semiconductor Energy Laboratory Co., Ltd. Organometallic complex, light-emitting element, light-emitting device, electronic device, and lighting device
US9534006B2 (en) 2011-12-23 2017-01-03 Semiconductor Energy Laboratory Co., Ltd. Organometallic complex, light-emitting element, light-emitting device, electronic device, and lighting device
US9127032B2 (en) 2011-12-23 2015-09-08 Semiconductor Energy Laboratory Co., Ltd. Organometallic complex, light-emitting element, light-emitting device, electronic device, and lighting device
KR20210013341A (ko) 2011-12-23 2021-02-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 발광 장치, 조명 장치, 및 전자 기기
KR20190018047A (ko) 2011-12-23 2019-02-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 유기금속 착물, 발광 소자, 발광 장치, 전자 장치, 및 조명 장치
KR20190077612A (ko) 2011-12-23 2019-07-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 유기금속 착물, 발광 소자, 발광 장치, 전자 장치, 및 조명 장치
US10693085B2 (en) 2011-12-23 2020-06-23 Semiconductor Energy Laboratory Co., Ltd. Organometallic complex, light-emitting element, light-emitting device, electronic device, and lighting device
US10211413B2 (en) 2012-01-17 2019-02-19 Universal Display Corporation Organic electroluminescent materials and devices
KR101982337B1 (ko) * 2012-01-17 2019-05-24 유니버셜 디스플레이 코포레이션 신규한 헤테로렙틱 이리듐 착물
KR20130084615A (ko) * 2012-01-17 2013-07-25 유니버셜 디스플레이 코포레이션 신규한 헤테로렙틱 이리듐 착물
JP2013147497A (ja) * 2012-01-17 2013-08-01 Universal Display Corp 新規なヘテロレプティックイリジウム錯体
JP2017114908A (ja) * 2012-01-17 2017-06-29 ユニバーサル ディスプレイ コーポレイション 新規なヘテロレプティックイリジウム錯体
CN107098938A (zh) * 2012-01-17 2017-08-29 通用显示公司 新的杂配位铱配合物
KR102133124B1 (ko) * 2012-01-17 2020-07-13 유니버셜 디스플레이 코포레이션 신규한 헤테로렙틱 이리듐 착물
JP2019178345A (ja) * 2012-01-17 2019-10-17 ユニバーサル ディスプレイ コーポレイション 新規なヘテロレプティックイリジウム錯体
KR20190057044A (ko) * 2012-01-17 2019-05-27 유니버셜 디스플레이 코포레이션 신규한 헤테로렙틱 이리듐 착물
WO2013137001A1 (ja) 2012-03-12 2013-09-19 新日鉄住金化学株式会社 有機電界発光素子
JPWO2013137162A1 (ja) * 2012-03-15 2015-08-03 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、照明装置及び表示装置
WO2013137162A1 (ja) * 2012-03-15 2013-09-19 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、照明装置及び表示装置
US9059414B2 (en) 2012-04-20 2015-06-16 Semiconductor Energy Laboratory Co., Ltd. Phosphorescent organometallic iridium complex, light-emitting element, light-emitting device, electronic device, and lighting device
US8889858B2 (en) 2012-04-20 2014-11-18 Semiconductor Energy Laboratory Co., Ltd. Phosphorescent organometallic iridium complex, light-emitting element, light-emitting device, electronic device, and lighting device
WO2014002629A1 (ja) 2012-06-28 2014-01-03 新日鉄住金化学株式会社 有機電界発光素子用材料及び有機電界発光素子
WO2014013936A1 (ja) 2012-07-19 2014-01-23 新日鉄住金化学株式会社 有機電界発光素子
WO2014050904A1 (ja) 2012-09-28 2014-04-03 新日鉄住金化学株式会社 有機電界発光素子用化合物及び有機電界発光素子
KR20140070412A (ko) 2012-11-30 2014-06-10 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 발광 장치, 전자 기기, 및 조명 장치
US9929356B2 (en) 2012-11-30 2018-03-27 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic appliance, and lighting device
WO2014097813A1 (ja) 2012-12-17 2014-06-26 新日鉄住金化学株式会社 有機電界発光素子
US9741946B2 (en) 2012-12-20 2017-08-22 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element containing organic iridium exhibits blue-green to blue light emission
KR20140109270A (ko) 2013-03-01 2014-09-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 유기 금속 착체, 발광 소자, 발광 장치, 전자 기기, 및 조명 장치
KR20210008109A (ko) 2013-03-01 2021-01-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 유기 금속 착체, 발광 소자, 발광 장치, 전자 기기, 및 조명 장치
US10431752B2 (en) 2013-06-14 2019-10-01 Semiconductor Energy Laboratory Co., Ltd. Organometallic iridium complex, light-emitting element, light-emitting device, and lighting device
US9978960B2 (en) 2013-06-14 2018-05-22 Semiconductor Energy Laboratory Co., Ltd. Organometallic iridium complex, light-emitting element, light-emitting device, and lighting device
KR20160019926A (ko) 2013-06-14 2016-02-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 유기 금속 이리듐 착체, 발광 소자, 발광 장치, 및 조명 장치
US9276222B2 (en) 2013-06-28 2016-03-01 Semiconductor Energy Laboratory Co., Ltd. Organometallic iridium complex, light-emitting element, light-emitting device, electronic device, and lighting device
US9412956B2 (en) 2013-09-12 2016-08-09 Semiconductor Energy Laboratory Co., Ltd. Organometallic iridium complex, light-emitting element, light-emitting device, electronic device, and lighting device
US9978962B2 (en) 2014-05-30 2018-05-22 Semiconductor Energy Laboratory Co., Ltd. Organometallic iridium complex, light-emitting element, light-emitting device, electronic device, and lighting device
US10388891B2 (en) 2015-04-01 2019-08-20 Semiconductor Energy Laboratory Co., Ltd. Organometallic complex, light-emitting element, light-emitting device, electronic device, and lighting device

Also Published As

Publication number Publication date
JPWO2008035664A1 (ja) 2010-01-28
JP5644050B2 (ja) 2014-12-24

Similar Documents

Publication Publication Date Title
JP5594384B2 (ja) 有機エレクトロルミネッセンス素子、表示装置および照明装置
JP5011908B2 (ja) 有機エレクトロルミネッセンス素子、表示装置および照明装置
JP5181448B2 (ja) 有機エレクトロルミネッセンス素子材料
JP5679017B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5765223B2 (ja) 有機エレクトロルミネッセンス素子の製造方法、並びに有機エレクトロルミネッセンス素子を備えた照明装置及び表示装置
JP5724204B2 (ja) 有機エレクトロルミネッセンス素子、表示装置、及び照明装置
JP5531446B2 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子材料、表示装置および照明装置
JP5577650B2 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子材料、表示装置及び照明装置
WO2008035664A1 (fr) Matériau de dispositif électroluminescent organique, dispositif électroluminescent organique, dispositif d'affichage et d'éclairage
JP5601036B2 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子材料、表示装置及び照明装置
JP4961664B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JPWO2006100888A1 (ja) 有機el素子用材料、有機el素子、表示装置及び照明装置
JP2008074921A (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5482313B2 (ja) 有機エレクトロルミネッセンス素子、表示装置、及び照明装置
JPWO2006100925A1 (ja) 有機el素子用材料、有機el素子、表示装置及び照明装置
JP2007099961A (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5493358B2 (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5488053B2 (ja) 有機エレクトロルミネッセンス素子、表示装置、照明装置及び有機エレクトロルミネッセンス素子材料
JP5272608B2 (ja) 有機エレクトロルミネッセンス素子、表示装置、及び照明装置
JP5472430B2 (ja) 有機エレクトロルミネッセンス素子材料
JP2006083353A (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5087815B2 (ja) 有機el素子
JP2006173307A (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子の作製方法、表示装置及び照明装置
JP2006152101A (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2012117069A (ja) 有機エレクトロルミネッセンス素子材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07807464

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008535350

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07807464

Country of ref document: EP

Kind code of ref document: A1