WO2008029716A1 - Procédé de réglage de conditions filmogènes, convertisseur photoélectrique et procédé de fabrication, appareil de fabrication et procédé d'inspection pour celui-ci - Google Patents

Procédé de réglage de conditions filmogènes, convertisseur photoélectrique et procédé de fabrication, appareil de fabrication et procédé d'inspection pour celui-ci Download PDF

Info

Publication number
WO2008029716A1
WO2008029716A1 PCT/JP2007/066944 JP2007066944W WO2008029716A1 WO 2008029716 A1 WO2008029716 A1 WO 2008029716A1 JP 2007066944 W JP2007066944 W JP 2007066944W WO 2008029716 A1 WO2008029716 A1 WO 2008029716A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
raman
ratio
microcrystalline silicon
substrate
Prior art date
Application number
PCT/JP2007/066944
Other languages
English (en)
French (fr)
Inventor
Saneyuki Goya
Youji Nakano
Kouji Satake
Original Assignee
Mitsubishi Heavy Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries, Ltd. filed Critical Mitsubishi Heavy Industries, Ltd.
Priority to EP07806421A priority Critical patent/EP2061090A1/en
Priority to AU2007292560A priority patent/AU2007292560A1/en
Priority to CN2007800221962A priority patent/CN101467264B/zh
Priority to US12/308,866 priority patent/US8633378B2/en
Publication of WO2008029716A1 publication Critical patent/WO2008029716A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • H01L31/182Special manufacturing methods for polycrystalline Si, e.g. Si ribbon, poly Si ingots, thin films of polycrystalline Si
    • H01L31/1824Special manufacturing methods for microcrystalline Si, uc-Si
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/545Microcrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a film forming condition setting method for a microcrystalline silicon photoelectric conversion layer comprising a layer mainly containing microcrystalline silicon, a photoelectric conversion device having a microcrystalline silicon photoelectric conversion layer on a substrate, and a manufacturing method and manufacturing thereof
  • the present invention relates to an apparatus and an inspection method.
  • silicon-based thin film photoelectric conversion devices are known as photoelectric conversion devices such as solar cells.
  • this photoelectric conversion device is obtained by sequentially laminating a first transparent electrode, a silicon-based semiconductor layer (photoelectric conversion layer), a second transparent electrode, and a metal electrode film on a substrate.
  • the structure of a photoelectric conversion device with one photoelectric conversion layer is called a single structure.
  • a photoelectric conversion device using a plurality of stacked photoelectric conversion layers in this way is called a multi-junction photoelectric conversion device.
  • the structure in which two layers of photoelectric conversion layers with different absorption wavelength bands are stacked is a tandem structure, and three layers are stacked. This structure is called a triple structure.
  • a tandem photoelectric conversion device amorphous silicon that absorbs short-wavelength light is used as the top cell, which is the photoelectric conversion layer on the sunlight incident side, and light that has not been absorbed by the top cell is used.
  • microcrystalline silicon which absorbs light of a long wavelength can be used as the bottom cell which is the other photoelectric conversion layer.
  • the film formation conditions for microcrystalline silicon are greatly different from the film formation conditions for amorphous silicon conventionally used as a photoelectric conversion layer.
  • the power generation efficiency conversion efficiency
  • the photoelectric conversion layer made of a silicon-based semiconductor thin film is formed by a plasma CVD method or the like.
  • Patent Document 1 and Patent Document 2 include Conditions for forming a photoelectric conversion layer made of crystalline silicon at a film forming speed of 1 ⁇ m / h (about 0.28 nm / s) or higher by the CVD method are disclosed.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2000-174310
  • Patent Document 2 Japanese Patent Laid-Open No. 2001-237189
  • the film forming speed remains at about lnm / s, and further speedup is required.
  • the film quality of the formed thin film is deteriorated due to generation of higher order silane and increase of ion bombardment, and the photoelectric conversion efficiency is lowered. That is, in general, there is a trade-off relationship between the film forming speed and the conversion efficiency, and there is a problem that the process area where high conversion efficiency can be obtained in the high speed film forming area is narrow. For this reason, conditions for maintaining the conversion efficiency of the obtained photoelectric conversion device while improving the film forming speed of the microcrystalline silicon photoelectric conversion layer have been demanded.
  • the present invention has been made in view of such circumstances, and a method for setting the film forming conditions of a microcrystalline silicon photoelectric conversion layer for stably manufacturing a photoelectric conversion device having high conversion efficiency. It is an object of the present invention to provide a photoelectric conversion device using the same, a manufacturing method thereof, a manufacturing device, and an inspection method.
  • a method for setting film formation conditions for a microcrystalline silicon photoelectric conversion layer of the present invention, a photoelectric conversion device using the same, a manufacturing method, a manufacturing device, and an inspection method include the following means: adopt.
  • the film forming condition setting method of the present invention includes a film forming condition of the microcrystalline silicon photoelectric conversion layer in a photoelectric conversion device having a microcrystalline silicon photoelectric conversion layer mainly composed of microcrystalline silicon on a substrate.
  • a film forming condition setting method to be set wherein a microcrystalline silicon layer composed mainly of microcrystalline silicon is formed on a condition setting substrate under a predetermined condition, and the condition setting in the microcrystalline silicon layer is set.
  • the peak intensity la (1) of the amorphous silicon phase in the obtained Raman spectrum First Raman spectroscopic measurement to determine the first Raman peak ratio Ic (l) / la (1), which is the ratio of the peak intensity Ic (l) of the crystalline silicon phase, and the condition setting in the microcrystalline silicon layer
  • the measurement light is irradiated to the part opposite to the substrate, and the ratio of the peak intensity Ic (2) of the crystalline silicon phase to the peak intensity la (2) of the amorphous silicon phase in the obtained Raman spectrum is the second.
  • the condition setting step for performing the second Raman spectroscopic measurement to obtain the Raman peak ratio Ic (2) / la (2) is performed at least once, based on the first Raman peak ratio and the second Raman peak ratio.
  • the film forming conditions for the microcrystalline silicon photoelectric conversion layer are set.
  • the film forming condition of the microcrystalline silicon photoelectric conversion layer for stably manufacturing a photoelectric conversion device having high conversion efficiency can be set in advance by using the force S. Monkey.
  • the film-forming condition setting method of the present invention includes a film-forming condition for the microcrystalline silicon photoelectric conversion layer in a photoelectric conversion device having a microcrystalline silicon photoelectric conversion layer formed of a layer mainly containing microcrystalline silicon on a substrate. Forming a microcrystalline silicon layer composed mainly of microcrystalline silicon on a condition setting substrate under a predetermined condition, and setting the conditions in the microcrystalline silicon layer The ratio of the peak intensity Ic (2) of the crystalline silicon phase to the peak intensity la (2) of the amorphous silicon phase in the Raman spectrum obtained by irradiating the measurement light to the part opposite to the substrate for measurement.
  • the portion of the microcrystalline silicon layer opposite to the condition setting substrate is irradiated with measurement light, and the crystalline silicon phase corresponding to the peak intensity la (1) of the amorphous silicon phase in the obtained Raman spectrum is obtained.
  • the first Raman peak ratio Ic (l) / la (1) which is the ratio of the peak intensities Ic (l) of
  • the first Raman spectroscopic measurement condition setting step is performed at least once, and the film formation conditions for the microcrystalline silicon photoelectric conversion layer are set based on the first Raman peak ratio and the second Raman peak ratio. Even if it's a way to do it.
  • the film forming condition setting method of the present invention includes a film forming condition of the microcrystalline silicon photoelectric conversion layer in a photoelectric conversion device having a microcrystalline silicon photoelectric conversion layer including a layer mainly including microcrystalline silicon on a substrate.
  • the first Raman peak ratio Ic (l) / la (1) which is the ratio of 1), the portion irradiated with the first measurement light in the microcrystalline silicon layer, and Same side part Irradiation with a second measurement light having a wavelength different from the wavelength of the first measurement light, the peak intensity Ic of the crystalline silicon phase with respect to the peak intensity la (2) of the amorphous silicon phase in the obtained Raman spectrum ( 2)
  • the second Raman peak ratio Ic (2) / la (2) that is the ratio of the second Raman spectroscopic measurement to obtain the second Raman peak ratio Ic (2) / la (2) is performed at least once.
  • the film forming conditions are conditions that affect the film quality (crystallinity) of the microcrystalline silicon layer.
  • the pressure, the substrate temperature, the silane concentration in the reaction gas, the plasma power, the plasma frequency, and the distance between the electrode substrates There is at least one condition selected from the distance.
  • the method for producing a photoelectric conversion device of the present invention is a method for producing a photoelectric conversion device having a microcrystalline silicon photoelectric conversion layer formed on a substrate, the layer mainly comprising microcrystalline silicon, wherein the film forming condition setting is performed as described above.
  • a microcrystalline silicon photoelectric conversion layer is formed on a substrate under the film forming conditions set by the method.
  • This manufacturing method is suitably employed when the film formation rate of the microcrystalline silicon photoelectric conversion layer is 2 nm / s.
  • the photoelectric conversion device manufacturing apparatus of the present invention is a layer mainly containing microcrystalline silicon.
  • a photoelectric conversion apparatus having high conversion efficiency can be stably produced even when a microcrystalline silicon photoelectric conversion layer is formed at a high speed.
  • the photoelectric conversion device of the present invention is a photoelectric conversion device having a microcrystalline silicon photoelectric conversion layer composed mainly of microcrystalline silicon on a substrate, and the substrate in the microcrystalline silicon photoelectric conversion layer.
  • the ratio of the peak intensity Ic (1) of the crystalline silicon phase to the peak intensity la (1) of the amorphous silicon phase in the Raman spectrum obtained by irradiating the measurement light to the side portion is the first Raman peak ratio Ic (1 ) / la (1) and the peak intensity la (2) of the amorphous silicon phase in the Raman spectrum obtained by irradiating the measurement light to the portion of the microcrystalline silicon photoelectric conversion layer opposite to the substrate.
  • the ratio of the peak intensity I c (2) of the crystalline silicon phase is the second Raman peak ratio Ic (2) / la (2)
  • the second Raman peak ratio with respect to the first Raman peak ratio is Ratio [Ic (2) / la (2)] / [Ic (l) / la (l )] Is 3 or less.
  • the entire microcrystalline silicon photoelectric conversion layer has an appropriate crystallization rate, and has a stable and high conversion efficiency.
  • the first Raman peak ratio and the second Raman peak ratio are both 2 or more and 8 or less. It is particularly preferable that the first Raman peak ratio is 2 or more and 6.5 or less and the second Raman peak ratio is 3.5 or more and 8 or less!
  • the photoelectric conversion device of the present invention is a photoelectric conversion device having a microcrystalline silicon photoelectric conversion layer comprising a layer mainly containing microcrystalline silicon on a substrate, wherein the microcrystalline silicon photoelectric conversion layer includes the microcrystalline silicon photoelectric conversion layer.
  • the ratio of the peak intensity Ic (1) of the crystalline silicon phase to the peak intensity la (1) of the amorphous silicon phase in the Raman spectrum obtained by irradiating the first measurement light with a wavelength of 700 nm on the part opposite to the substrate Is the first Raman peak ratio Ic (1) / la (1), and the second measurement light having a wavelength of 532 ⁇ m is applied to the portion of the microcrystalline silicon photoelectric conversion layer opposite to the substrate.
  • the ratio of the peak intensity Ic (2) of the crystalline silicon phase to the peak intensity la (2) of the second phase is the second Raman peak ratio Ic (2) / la (2)
  • the first Raman peak ratio The ratio of the second Raman peak ratio to [Ic (2) / la (2)] / [Ic (l) / la (l)] is 2 or less, preferably 1.5 or less. May be.
  • the first Raman peak ratio is 3 or more and 6 or less
  • the second Raman peak ratio is 3.5 or more and 8 or less.
  • a method for inspecting a photoelectric conversion device of the present invention is a method for inspecting a photoelectric conversion device having a microcrystalline silicon photoelectric conversion layer formed on a substrate, the layer mainly including microcrystalline silicon, The ratio of the peak intensity Ic (1) of the crystalline silicon phase to the peak intensity la (1) of the amorphous silicon phase in the Raman spectrum obtained by irradiating the substrate side portion in the conversion layer with measurement light.
  • the Raman peak ratio Ic (1) / la (1) of 1 is obtained by irradiating the measurement light to the first Raman spectroscopic measurement and the portion of the microcrystalline silicon photoelectric conversion layer opposite to the substrate.
  • the second Raman peak ratio Ic (2) / la (2) which is the ratio of the peak intensity Ic (2) of the crystalline silicon phase to the peak intensity la (2) of the amorphous silicon phase in the obtained Raman spectrum, is obtained.
  • the inspection method for a photoelectric conversion device of the present invention is an inspection method for a photoelectric conversion device having a microcrystalline silicon photoelectric conversion layer composed of a layer mainly containing microcrystalline silicon on a substrate.
  • the ratio of the peak intensity Ic (2) of the crystalline silicon phase to the peak intensity I a (2) of the amorphous silicon phase in the Raman spectrum obtained by irradiating the portion of the conversion layer opposite to the substrate with measurement light.
  • the partially removed microcrystalline silicon photoelectric conversion layer is irradiated with measurement light on the opposite side of the substrate, and the resulting Raman vector has a peak intensity la (1) of the amorphous silicon phase.
  • the first Raman spectroscopic measurement to obtain the first Raman peak ratio Ic (1) / la (1) which is the ratio of the peak intensity Ic (1) of the crystalline silicon phase, and the first Raman peak ratio and Based on the second Raman peak ratio V, or a method for evaluating the microcrystalline silicon photoelectric conversion layer! /.
  • the photoelectric conversion device inspection method of the present invention is a photoelectric conversion device inspection method having a microcrystalline silicon photoelectric conversion layer mainly composed of microcrystalline silicon on a substrate, the microcrystalline silicon photoelectric Irradiation of the first measurement light to the substrate side part or the part opposite to the substrate in the conversion layer, the peak intensity of the crystalline silicon phase relative to the peak intensity la (1) of the amorphous silicon phase in the obtained Raman spectrum
  • the second measurement light having a wavelength different from the wavelength of the first measurement light is irradiated to the same side as the portion irradiated with, the peak intensity la (of the amorphous silicon phase in the obtained Raman spectrum against 2)
  • the second Raman spectroscopic measurement to obtain the second Raman peak ratio Ic (2) / la (2), which is the ratio of the
  • the photoelectric conversion device can be inspected by evaluating the film quality of the entire microcrystalline silicon photoelectric conversion layer by Raman spectroscopic analysis.
  • a film forming condition setting method for a microcrystalline silicon photoelectric conversion layer, a photoelectric conversion device using the same, and a method for manufacturing the same for stably manufacturing a photoelectric conversion device having high conversion efficiency A manufacturing apparatus and an inspection method can be provided.
  • FIG. 1 is a schematic partial cross-sectional view showing an example of a single structure photoelectric conversion device.
  • FIG. 2 is a schematic partial cross-sectional view showing an example of a tandem photoelectric conversion device.
  • FIG. 3 is a graph showing the relationship between the Raman peak ratio on the film surface side of the microcrystalline silicon photoelectric conversion layer and the power generation efficiency.
  • FIG. 4 is a graph showing the relationship between the film thickness of the microcrystalline silicon photoelectric conversion layer and the Raman peak ratio.
  • FIG. 5 is a schematic partial sectional view showing an example of a specimen in a method for obtaining a first Raman peak ratio and a second Raman peak ratio.
  • FIG. 6 is a schematic view showing an example of a plasma CVD apparatus.
  • 7] A graph showing the relationship between the Raman peak ratio at the initial stage of film growth and the power generation efficiency of the photoelectric conversion device in the photoelectric conversion layer of Reference Example 1.
  • FIG. 11 is a graph showing Raman peak ratios at various film thicknesses of the photoelectric conversion layer of Reference Example 3. Explanation of symbols
  • FIG. 1 is a schematic partial cross-sectional view illustrating an example of a single-structure photoelectric conversion device
  • FIG. 2 is a schematic partial cross-sectional view illustrating an example of a tandem-structure photoelectric conversion device.
  • a single photoelectric conversion device shown in FIG. 1 includes a first transparent conductive film 2 made of S ⁇ or the like on a transparent insulating substrate 1 such as a glass substrate, a photoelectric conversion layer 4 mainly including microcrystalline silicon,
  • the tandem photoelectric conversion device shown in FIG. 2 has a first transparent conductive film 2 made of SnO or GZO on a transparent insulating substrate 1 such as a glass substrate, and a short wavelength such as amorphous silicon.
  • the second photoelectric conversion layer (bottom cell) 6 mainly containing microcrystalline silicon, SnO, GZO, ITO, etc.
  • a second transparent conductive film 8 and a back electrode 9 made of Ag or the like are sequentially laminated.
  • each photoelectric conversion layer has a pin junction or a nip junction, and the V and misalignment photoelectric conversion layers are also formed by the plasma CVD method.
  • Raman spectroscopy is used as a guideline for evaluating the film quality of the photoelectric conversion layer mainly containing microcrystalline silicon.
  • FIG. 3 is obtained by irradiating measurement light from the opposite side (film surface side) of the photoelectric conversion layer 4 to the insulating substrate 1 of the single type photoelectric conversion device as shown in FIG.
  • the ratio of the peak intensity Ic of the crystalline silicon phase to the peak intensity la of the amorphous silicon phase in the Raman spectrum Ic / Ia hereinafter also referred to as the “Raman peak ratio”
  • the Raman peak ratio is an index that is an index of the crystallization rate, and the conversion efficiency of the photoelectric conversion device including the photoelectric conversion layer 4 having microcrystalline silicon is maximized at the appropriate Raman peak ratio. It can be seen that the conversion efficiency decreases if the value is too high or too low. In other words, it is considered that microcrystalline silicon is effective to electrically inactivate defects on the grain boundary of the crystalline silicon phase.
  • the Raman peak ratio is measured with respect to photoelectric conversion layers 4 having different film thicknesses including microcrystalline silicon, the relationship between the film thickness and the Raman peak ratio is as shown in the graph in FIG. In Fig.
  • curve A is an example of the Raman peak ratio when the photoelectric conversion layer 4 is formed at a high film formation speed of 1.5 nm / s or more
  • curve B is a film formation speed of lnm / s or less. This is an example of the Raman peak ratio when the photoelectric conversion layer 4 is formed.
  • the measurement light is irradiated to the substrate side portion in the microcrystalline silicon layer formed on the substrate, and the peak intensity la (1) of the amorphous silicon phase in the Raman spectrum.
  • the first Raman peak ratio Ic (1) / la (1) which is the ratio of the peak intensity Ic (l) of the crystalline silicon phase to the crystal silicon phase, is obtained, and the opposite side of the microcrystalline silicon layer to the substrate (film surface)
  • the second Raman peak ratio Ic (2) which is the ratio of the peak intensity Ic (2) of the crystalline silicon phase to the peak intensity la (2) of the amorphous silicon phase in the Raman spectrum. / la (2) is obtained, and the film quality (crystallization rate) of the entire microcrystalline silicon layer is evaluated based on the first Raman peak ratio and the second Raman peak ratio.
  • the film forming condition setting method of the present invention is a method in which a microcrystalline silicon layer formed in advance is evaluated by the above method, and the film forming condition of the microcrystalline silicon photoelectric conversion layer is set based on the result. is there.
  • the manufacturing method and manufacturing apparatus of the photoelectric conversion device of the present invention are a method and an apparatus for manufacturing a photoelectric conversion device based on the film forming conditions set by the film forming condition setting method.
  • the photoelectric conversion device of the present invention is a photoelectric conversion device in which the first Raman peak ratio and the second Raman peak ratio are in a specific range in the microcrystalline silicon photoelectric conversion layer.
  • the inspection method of the present invention is a method for inspecting a photoelectric conversion device by evaluating the microcrystalline silicon photoelectric conversion layer of the photoelectric conversion device by the above-described method.
  • FIG. 5 is a schematic partial cross-sectional view showing a specimen in which a first transparent conductive film 2 and a photoelectric conversion layer 4 mainly containing microcrystalline silicon are sequentially laminated on a transparent insulating substrate 1.
  • the first Raman peak ratio and the second Raman peak ratio in the specimen can be measured in the state where the film is formed up to the photoelectric conversion layer 4 (the state shown in FIG. 5).
  • the back electrode 9 of the photoelectric conversion device is dissolved and removed with a solvent such as hydrogen peroxide solution to obtain a specimen.
  • the Raman peak of the second transparent conductive film 8 can be subtracted as the background, the second transparent conductive film 8 does not have to be removed, but is dissolved and removed with a solvent such as dilute hydrochloric acid. May be.
  • first, measurement light is irradiated from the film surface side of the photoelectric conversion layer (microcrystalline silicon layer) 4.
  • the measurement light laser monochromatic light is used, and for example, a double wave (wavelength: 532 nm) of YAG laser light is preferably used.
  • a double wave of YAG laser light is preferably used.
  • Raman scattering is observed, but part of the measurement light and scattered light is absorbed in the photoelectric conversion layer 4. The Therefore, for example, when a double wave of YAG laser light is used as measurement light, information from the incident surface to a depth of about lOOnm can be obtained.
  • the Raman spectrum obtained by spectroscopic analysis of the emitted Raman scattered light is the ratio of the peak intensity Ic (1) of the crystalline silicon phase to the peak intensity la (1) of the amorphous silicon phase.
  • the Raman peak ratio Ic (l) / la (1) is obtained.
  • the “peak intensity of the amorphous silicon phase” is the peak intensity near the frequency ASOcnT 1
  • the “peak intensity of the crystalline silicon phase” is the peak intensity near the frequency SZOcnT 1.
  • the second Raman peak ratio In order to measure the second Raman peak ratio, first, measurement light irradiated from the insulating substrate 1 side is incident on the surface of the photoelectric conversion layer (microcrystalline silicon layer) 4 on the insulating substrate 1 side. Note that the Raman scattered light and light emission of the insulating substrate 1 and the first transparent conductive film 2 can be subtracted as the background, so no pretreatment is necessary to eliminate these effects.
  • laser monochromatic light for example, a second harmonic wave (wavelength: 532 nm) of YAG laser light is preferably used. Similar to the measurement of the first Raman peak ratio, for example, when a double wave of one YAG laser beam is used as measurement light, information from the incident surface to a depth of about lOOnm can be obtained.
  • the second Raman peak ratio may be measured by a method other than the above.
  • the photoelectric conversion device is a tandem type, and an amorphous silicon layer or the like is interposed between the first transparent conductive film 2 and the photoelectric conversion layer (microcrystalline silicon layer) 4.
  • a back electrode 9 made of a metal thin film such as Ag is formed!
  • the film surface side is left leaving the insulating substrate 1 side of the photoelectric conversion layer (microcrystalline silicon layer) 4 at lOOnm or more and 400nm or less, preferably 200nm or more and 300nm or less. Even if the second Raman peak ratio is measured by removing measurement by dry etching or wet etching, the measurement light is irradiated from the film surface side of the remaining microcrystalline silicon and the Raman scattered light is spectrally analyzed. Good.
  • the microcrystalline silicon film can be etched by being immersed in an etching solution such as an aqueous calcium hydroxide solution.
  • an etching solution such as an aqueous calcium hydroxide solution.
  • dry etching is desirable as a method used in the present invention in which it is difficult to control the reaction rate and detect the end point in such wet etching.
  • Sputtering occurs when a rare gas such as Ar is accelerated by an electric field and implanted perpendicularly to the substrate.
  • Downflow type chemical dry etching is a microwave discharge of mixed gas of CF and O
  • etching is performed by causing radicals generated in step 1 to flow into the etching chamber.
  • Etztin The speed is usually about 100 nm / min. This method may be employed for etching used in the present invention.
  • Chemical dry etching can be achieved even if parallel plate electrodes are used, the substrate is placed on the ground electrode side, and the gas pressure is relatively high, such as 10 to lOOPa. On the other hand, if the substrate is placed on the RF electrode side and the gas pressure is reduced from 1 to several tens of Pa, ions are accelerated and incident perpendicularly on the substrate. This method is called reactive ion etching and is widely used for anisotropic etching. The etching used in the present invention does not require anisotropy. In addition, since it is desirable that the ion influence S be small, ordinary chemical dry etching is useful.
  • the gas used for etching is CF
  • the second Raman peak ratio is measured using the Raman spectrum obtained by irradiating the monochromatic light (eg, HeNe laser light (wavelength: 633 nm)) or Ti sapphire laser to the film surface as measurement light. May be.
  • the monochromatic light eg, HeNe laser light (wavelength: 633 nm)
  • Ti sapphire laser titanium sapphire laser
  • the 700 nm wavelength of the Ti sapphire laser when the 700 nm wavelength of the Ti sapphire laser is selected, information can be obtained up to a depth of about 1400 nm (the center wavelength of the Ti sapphire laser is 800 ⁇ m, but the wavelength from 690 to lOOOnm is variable. Therefore, it is possible to oscillate at 700nm, but the output of the laser is lower than the center wavelength.
  • the YAG laser is used as a light source
  • parametric oscillation technology using a nonlinear optical crystal such as 0-barium borate is used.
  • 700nm laser oscillation is possible.
  • a fixed wavelength laser such as a 785 nm semiconductor laser is useful. ).
  • the microcrystalline silicon photoelectric conversion layer in the photoelectric conversion device can be set to manufacture a photoelectric conversion device.
  • FIG. 6 shows an example of a plasma CVD apparatus for manufacturing a photoelectric conversion device in this embodiment.
  • the plasma CVD apparatus 20 includes a reaction vessel 11, an ultrahigh frequency power source 17, and a raw material gas supply unit 18. Although not shown, a turbo molecular pump and a rotary pump for evacuating the reaction vessel 11 and a dry pump for exhausting the source gas are provided. Furthermore, although not shown in the drawings, the plasma CVD apparatus 20 that forms a film on each of the p, i, and n layers is different, and each plasma CVD apparatus 20 can transport a substrate in a vacuum via a transfer chamber. It becomes a proper structure.
  • the ultrahigh frequency power supply 17 supplies ultrahigh frequency (plasma excitation frequency, for example, 40 to 150 MHz) power having desired characteristics to an electrode for discharge (described later) in the reaction vessel 11.
  • ultrahigh frequency plasma excitation frequency, for example, 40 to 150 MHz
  • the source gas supply unit 18 supplies the source gas 19 having a desired flow rate and flow rate ratio from the gas storage unit 16 via the gas flow rate control device 15 into the reaction vessel 11.
  • the gas storage unit 16 is exemplified by gas cylinders of a plurality of types of gases (SiH, H, BH, PH, etc.). Gas flow control device
  • the device 15 is exemplified by a mass flow meter provided corresponding to each of the plurality of gas cylinders.
  • reaction vessel 11 a film that forms each layer of the photoelectric conversion device is formed on the substrate 1 by the supplied ultrahigh-frequency power and the supplied one or more kinds of gases.
  • the reaction vessel 11 includes an anode (holding portion) 12, a discharge electrode (cathode) 13, and a source gas introduction portion 14.
  • the anode 12 includes the function of a heater that heats the substrate 1, holds the substrate 1, and is grounded.
  • the discharge electrode 13 is supplied with desired power from the ultrahigh frequency power source 17 and generates plasma of the source gas 19 supplied between the anode 12 and the discharge electrode 13.
  • the discharge electrode 13 is opposed to the anode 12 with a predetermined gap length from the substrate 1.
  • the shape of the discharge electrode 13 is not particularly limited, but a parallel plate electrode can be adopted.
  • the raw material gas introduction unit 14 introduces the raw material gas 19 into the space where the plasma is formed (between the positive electrode 12 and the discharge electrode 13) through the gap between the discharge electrodes 13.
  • the discharge electrode 13 and the source gas introduction part 14 may be integrated, and one of them may include the other function.
  • a photoelectric conversion layer 4 mainly composed of microcrystalline silicon was formed on a glass substrate (insulating substrate 1) by plasma CVD using parallel plate electrodes, and FIG. A photoelectric conversion device having a single structure as shown in FIG.
  • Plasma power 1 ⁇ 3 to 2 ⁇ OW / cm 2
  • FIG. 7 shows the Raman peak ratio at the initial stage of film growth (first Raman peak ratio Ic (1) / la (1)) in the photoelectric conversion layer 4 formed under the process condition group A, 3 is a graph showing the relationship with the power generation efficiency of a photoelectric conversion device having the photoelectric conversion layer 4;
  • the Raman spectrum was measured by irradiating a second harmonic (wavelength: 532 nm) of YAG laser light from the substrate surface side. From the graph of FIG. 7, the Raman peak ratio at the initial stage of film growth was in the range of 2 to 6.5 in the range where the power generation efficiency of the photoelectric conversion device was 8.5% or more.
  • FIG. 8 shows the Raman peak ratio after the film growth (second Raman peak ratio Ic (2) / la (2)) in the photoelectric conversion layer 4 formed under the process condition group A, 3 is a graph showing a relationship with the power generation efficiency of a photoelectric conversion device having the photoelectric conversion layer 4;
  • the Raman spectrum was measured by irradiating a second harmonic (wavelength: 532 nm) of YAG laser light from the side opposite to the insulating substrate 1 (film surface side).
  • the Raman peak ratio after film growth was in the range of 3.5 to 8 in the range where the power generation efficiency of the photoelectric conversion device was 8.5% or more.
  • Photoelectric conversion layer 4 mainly containing microcrystalline silicon was formed on a glass substrate (insulating substrate 1) by plasma CVD using parallel plate electrodes under the following process condition group B, as shown in Fig. 1. A single-structure photoelectric conversion device was manufactured.
  • Plasma power 1.7 W / cm 2
  • the SiH / H flow ratio is set so that the Raman peak ratio on the film surface side is within the range of 5 to 6.
  • FIG. 9 shows the SiH flow rate (SiH / H ratio is almost the same in the film formation by the process condition group B.
  • the Raman peak ratio at the initial stage of film growth in the formed photoelectric conversion layer 4 (first Raman peak ratio Ic (l) / Ia (l);
  • the film surface Raman ratio / substrate surface Raman ratio decreases.
  • the temporal change in the SiH / H ratio is said to be severe not only when the flow force is small but also when the plasma power is large or when the gas decomposition is relatively severe.
  • the temporal change in the SiH / H ratio is a phenomenon that is particularly problematic in high-speed film formation.
  • FIG. 10 shows the film surface Raman ratio / substrate surface Raman ratio of this reference example and the power generation efficiency of the photoelectric conversion device.
  • the film surface Raman ratio / substrate surface Raman ratio is preferably 3 or less, and more preferably 2 or less.
  • SiH flow rate (total flow rate) / H flow rate is 1 for film formation by process condition group B in Reference Example 2.
  • Photoelectric conversion devices fabricated as 4 sccm / 2000 sccm and 8 sccm / 450 sccm were used as samples.
  • the back electrode 9 and the transparent conductive film 8 (Ag / GZO) of these samples were removed by wet etching using hydrogen peroxide solution and hydrochloric acid.
  • the photoelectric conversion layer 4 mainly containing microcrystalline silicon was subjected to chemical dry etching using CF gas. Film thickness is 100nm, 50
  • the sample was taken out from the chemical dry etching apparatus, and the Raman spectrum was measured by irradiating the second harmonic of the YAG laser beam (wavelength: 532 nm) from the film surface side.
  • Figure 11 shows the Raman peak ratio for each film thickness.
  • the crystallinity in the film growth direction is uniform from the photoelectric conversion layer 4 of SCC m / 450 sc C m.
  • the power generation efficiency of the photoelectric conversion device was 8.6 ⁇ 0.2% and 8.2 ⁇ 0.5%, respectively. It can be seen that the photoelectric conversion device with more uniform crystallinity in the film growth direction has a higher average value of power generation efficiency and less variation.
  • the present invention is particularly preferably employed in the case of high-speed film formation with a photoelectric conversion layer of 2 nm / s or more in the photoelectric conversion device.
  • Data obtained by Raman spectrum measurement is data from the laser light irradiation surface of the sample to a certain depth (Raman collection depth).
  • a photoelectric conversion device manufactured as sccm was used as a sample.
  • the photoelectric conversion layer 4 was not etched, and the Raman spectrum was measured by irradiating three types of laser light! /, Either from the film surface side.
  • Table 1 shows the Raman peak ratio when each laser beam is used.
  • the Raman collection depth of the HeNe laser was referred to the following document.
  • the photoelectric conversion layer 4 having a SiH / H flow ratio of 14/2000 has a SiH / H flow ratio of 8/4.
  • the Raman peak ratios measured by each laser are close to each other. This is because the uniformity in the film growth direction increases as the SiH flow rate increases.
  • the photoelectric conversion device with more uniform crystallinity in the film growth direction has a higher variation in the average value of power generation efficiency.
  • film formation with a supply gas flow rate ratio of SiH / H 14 sccm / 2000 sccm is high.
  • the present invention is particularly preferably employed in the case of high-speed film formation with a film forming speed force of 3 nm / s or more of the photoelectric conversion layer in the photoelectric conversion device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Chemical Vapour Deposition (AREA)

Description

明 細 書
製膜条件設定方法、光電変換装置並びにその製造方法、製造装置及び 検查方法
技術分野
[0001] 本発明は、微結晶シリコンを主として有する層からなる微結晶シリコン光電変換層 の製膜条件設定方法、微結晶シリコン光電変換層を基板上に有する光電変換装置 、並びにその製造方法、製造装置及び検査方法に関する。
背景技術
[0002] 従来より、太陽電池等の光電変換装置として、シリコン系薄膜光電変換装置が知ら れている。この光電変換装置は、一般に、基板上に、第 1透明電極、シリコン系半導 体層(光電変換層)、第 2透明電極および金属電極膜を順次積層したものである。こ のように、光電変換層が 1層の光電変換装置の構造は、シングル構造と呼ばれてい る。また、光電変換装置の光電変換効率を高めるために、バンドギャップの異なる半 導体からなる光電変換層を複数重ねて用いる方法がある。このように複数の光電変 換層を重ねて用いた光電変換装置は多接合型光電変換装置と呼ばれ、吸収波長帯 域が異なる光電変換層を 2段重ねた構造はタンデム構造、 3段重ねた構造はトリプル 構造と呼ばれている。タンデム構造の光電変換装置を例にとると、太陽光入射側の 光電変換層であるトップセルとしては短波長の光を吸収するアモルファスシリコンが 用いられ、また、トップセルで吸収されなかった光を吸収するために、他方の光電変 換層であるボトムセルとしては長波長の光を吸収する微結晶シリコンを用いることがで きる。
[0003] この微結晶シリコンの製膜条件は、従来から光電変換層として用いられているァモ ルファスシリコンの製膜条件と大きく異なっている。発電効率(変換効率)の向上のた めには、製膜される微結晶シリコン膜の膜質を向上することが必要不可欠である。 一方、シリコン系半導体薄膜からなる上記光電変換層は、プラズマ CVD法等で製 膜されるが、光電変換装置の製造コストを削減するために、光電変換層の製膜速度 を高速化することが望まれている。例えば、特許文献 1及び特許文献 2には、プラズ マ CVD法により製膜速度 1 μ m/h (約 0. 28nm/s)以上で結晶質シリコンからなる 光電変換層を製膜するための条件が開示されている。
[0004] 特許文献 1:特開 2000— 174310号公報
特許文献 2 :特開 2001— 237189号公報
発明の開示
[0005] 上記特許文献 1及び特許文献 2に開示された製膜条件では、製膜速度は約 lnm /s程度に留まっており、さらなる高速化が求められている。プラズマ CVD法におけ る製膜速度を向上させるためには、プラズマ CVD装置の放電電極に供給される超高 周波電力を大きくすることが考えられる。し力、しながら、この場合、高次シランの発生 やイオン衝撃の増大などにより、製膜された薄膜の膜質が低下してしまい、光電変換 効率が低下するという問題点があった。つまり、一般的に、製膜速度と変換効率とは トレードオフの関係にあり、高速製膜領域において高い変換効率が得られるプロセス 領域が狭いという問題があった。このため、微結晶シリコン光電変換層の製膜速度を 向上しつつ、得られる光電変換装置の変換効率を維持するための条件が求められて いた。
[0006] 本発明は、このような事情に鑑みてなされたものであって、高い変換効率を有する 光電変換装置を安定的に製造するための、微結晶シリコン光電変換層の製膜条件 設定方法、これを利用した光電変換装置並びにその製造方法、製造装置及び検査 方法を提供することを目的とする。
[0007] 上記課題を解決するために、本発明の微結晶シリコン光電変換層の製膜条件設定 方法、これを利用した光電変換装置並びにその製造方法、製造装置及び検査方法 は、以下の手段を採用する。
[0008] 本発明の製膜条件設定方法は、微結晶シリコンを主として有する層からなる微結晶 シリコン光電変換層を基板上に有する光電変換装置における前記微結晶シリコン光 電変換層の製膜条件を設定する製膜条件設定方法であって、条件設定用基板上に 所定の条件で微結晶シリコンを主として有する層からなる微結晶シリコン層を製膜し、 前記微結晶シリコン層中の前記条件設定用基板側部分に測定用光を照射して、得 られたラマンスペクトルにおけるアモルファスシリコン相のピーク強度 la (1)に対する 結晶シリコン相のピーク強度 Ic (l)の比である第 1のラマンピーク比 Ic (l) /la (1)を 求める第 1のラマン分光測定と、前記微結晶シリコン層中の前記条件設定用基板と 反対側の部分に測定用光を照射して、得られたラマンスペクトルにおけるァモルファ スシリコン相のピーク強度 la (2)に対する結晶シリコン相のピーク強度 Ic (2)の比であ る第 2のラマンピーク比 Ic (2) /la (2)を求める第 2のラマン分光測定とを行う条件設 定工程を少なくとも 1回行い、前記第 1のラマンピーク比及び第 2のラマンピーク比に 基づいて前記微結晶シリコン光電変換層の製膜条件を設定する。
この製膜条件設定方法によれば、高い変換効率を有する光電変換装置を安定的 に製造するための、微結晶シリコン光電変換層の製膜条件を、製造前に予め設定す ること力 Sでさる。
[0009] 高い変換効率を有する光電変換装置を安定的に製造するためには、前記第 1のラ マンピーク比に対する前記第 2のラマンピーク比の比 [Ic (2) /la (2) ] / [Ic (l) /la (1) ]が 3以下となる製膜条件を設定することが望ましい。前記第 1のラマンピーク比 及び前記第 2のラマンピーク比がいずれも 2以上 8以下となる製膜条件はさらに好ま しい。また、前記第 1のラマンピーク比が 2以上 6. 5以下となり、かつ前記第 2のラマ ンピーク比が 3. 5以上 8以下となる製膜条件は特に好ましい。
[0010] あるいは本発明の製膜条件設定方法は、微結晶シリコンを主として有する層からな る微結晶シリコン光電変換層を基板上に有する光電変換装置における前記微結晶 シリコン光電変換層の製膜条件を設定する製膜条件設定方法であって、条件設定 用基板上に所定の条件で微結晶シリコンを主として有する層からなる微結晶シリコン 層を製膜し、前記微結晶シリコン層中の前記条件設定用基板と反対側の部分に測 定用光を照射して、得られたラマンスペクトルにおけるアモルファスシリコン相のピー ク強度 la (2)に対する結晶シリコン相のピーク強度 Ic (2)の比である第 2のラマンピー ク比 Ic (2) /la (2)を求める第 2のラマン分光測定と、前記微結晶シリコン層を、前記 条件設定用基板と反対側から一部除去するエッチングと、前記一部除去された微結 晶シリコン層中の前記条件設定用基板と反対側の部分に測定用光を照射して、得ら れたラマンスペクトルにおけるアモルファスシリコン相のピーク強度 la (1)に対する結 晶シリコン相のピーク強度 Ic (l)の比である第 1のラマンピーク比 Ic (l) /la (1)を求 める第 1のラマン分光測定とを行う条件設定工程を少なくとも 1回行い、前記第 1のラ マンピーク比及び第 2のラマンピーク比に基づいて前記微結晶シリコン光電変換層 の製膜条件を設定する方法であってもよレ、。
[0011] あるいは本発明の製膜条件設定方法は、微結晶シリコンを主として有する層からな る微結晶シリコン光電変換層を基板上に有する光電変換装置における前記微結晶 シリコン光電変換層の製膜条件を設定する製膜条件設定方法であって、条件設定 用基板上に所定の条件で微結晶シリコンを主として有する層からなる微結晶シリコン 層を製膜し、前記微結晶シリコン層中の前記条件設定用基板側部分または基板と反 対側の部分に第 1の測定用光を照射して、得られたラマンスペクトルにおけるァモル ファスシリコン相のピーク強度 la (1)に対する結晶シリコン相のピーク強度 Ic (1)の比 である第 1のラマンピーク比 Ic (l ) /la (1)を求める第 1のラマン分光測定と、前記微 結晶シリコン層中の前記第 1の測定用光を照射した部分と同じ側の部分に前記第 1 の測定用光の波長と異なる波長を有する第 2の測定用光を照射して、得られたラマン スペクトルにおけるアモルファスシリコン相のピーク強度 la (2)に対する結晶シリコン 相のピーク強度 Ic (2)の比である第 2のラマンピーク比 Ic (2) /la (2)を求める第 2の ラマン分光測定とを行う条件設定工程を少なくとも 1回行い、前記第 1のラマンピーク 比及び第 2のラマンピーク比に基づいて前記微結晶シリコン光電変換層の製膜条件 を設定する方法であってもよレ、。
[0012] 前記製膜条件とは、微結晶シリコン層の膜質 (結晶性)に影響を及ぼす条件であり 、圧力、基板温度、反応ガス中のシラン濃度、プラズマ電力、プラズマ周波数、及び 電極基板間距離から選ばれる少なくとも 1つの条件が挙げられる。
[0013] 本発明の光電変換装置の製造方法は、微結晶シリコンを主として有する層からなる 微結晶シリコン光電変換層を基板上に有する光電変換装置の製造方法であって、前 記製膜条件設定方法により設定された製膜条件により基板上に微結晶シリコン光電 変換層を製膜する方法である。
この製造方法は、前記微結晶シリコン光電変換層の製膜速度が 2nm/sである場 合に好適に採用される。
また、本発明の光電変換装置の製造装置は、微結晶シリコンを主として有する層か らなる微結晶シリコン光電変換層を基板上に製膜する光電変換装置の製造装置で あって、前記製膜条件設定方法により設定された製膜条件により基板上に微結晶シ リコン光電変換層を製膜する装置である。
上記光電変換層の製造方法及び製造装置によれば、微結晶シリコン光電変換層 を高速で製膜する場合であっても、高い変換効率を有する光電変換装置を安定的 に製造することカできる。
[0014] 本発明の光電変換装置は、微結晶シリコンを主として有する層からなる微結晶シリ コン光電変換層を基板上に有する光電変換装置であって、前記微結晶シリコン光電 変換層中の前記基板側部分に測定用光を照射して得られるラマンスペクトルにおけ るアモルファスシリコン相のピーク強度 la (1)に対する結晶シリコン相のピーク強度 Ic (1)の比を第 1のラマンピーク比 Ic (1) /la (1)とし、前記微結晶シリコン光電変換層 中の前記基板と反対側の部分に測定用光を照射して得られるラマンスペクトルにお けるアモルファスシリコン相のピーク強度 la (2)に対する結晶シリコン相のピーク強度 I c (2)の比を第 2のラマンピーク比 Ic (2) /la (2)とした場合に、前記第 1のラマンピー ク比に対する前記第 2のラマンピーク比の比 [Ic (2) /la (2) ] / [Ic (l) /la (l) ]が 3 以下であることを特徴とする。
この光電変換装置は、微結晶シリコン光電変換層全体が適度の結晶化率を有した ものとなり、安定した高い変換効率を有する。
[0015] 前記第 1のラマンピーク比及び前記第 2のラマンピーク比はいずれも 2以上 8以下で あること力 S好ましい。前記第 1のラマンピーク比が 2以上 6. 5以下であり、かつ前記第 2のラマンピーク比が 3. 5以上 8以下であることが特に好まし!/、。
[0016] あるいは本発明の光電変換装置は、微結晶シリコンを主として有する層からなる微 結晶シリコン光電変換層を基板上に有する光電変換装置であって、前記微結晶シリ コン光電変換層中の前記基板と反対側の部分に波長 700nmの第 1の測定用光を照 射して得られるラマンスペクトルにおけるアモルファスシリコン相のピーク強度 la (1)に 対する結晶シリコン相のピーク強度 Ic (1)の比を第 1のラマンピーク比 Ic (1) /la (1) とし、前記微結晶シリコン光電変換層層中の前記基板と反対側の部分に波長 532η mの第 2の測定用光を照射して得られるラマンスペクトルにおけるアモルファスシリコ ン相のピーク強度 la (2)に対する結晶シリコン相のピーク強度 Ic (2)の比を第 2のラマ ンピーク比 Ic (2) /la (2)とした場合に、前記第 1のラマンピーク比に対する前記第 2 のラマンピーク比の比 [Ic (2) /la (2) ] / [Ic (l) /la (l) ]が 2以下より好ましくは 1 · 5以下である光電変換装置であってもよい。この光電変換装置は、前記第 1のラマン ピーク比が 3以上 6以下であり、かつ前記第 2のラマンピーク比が 3. 5以上 8以下であ ることが好ましい。
[0017] 本発明の光電変換装置の検査方法は、微結晶シリコンを主として有する層からなる 微結晶シリコン光電変換層を基板上に有する光電変換装置の検査方法であって、前 記微結晶シリコン光電変換層中の前記基板側部分に測定用光を照射して、得られた ラマンスペクトルにおけるアモルファスシリコン相のピーク強度 la (1)に対する結晶シ リコン相のピーク強度 Ic (1)の比である第 1のラマンピーク比 Ic (1) /la (1)を求める 第 1のラマン分光測定と、前記微結晶シリコン光電変換層中の前記基板と反対側の 部分に測定用光を照射して、得られたラマンスペクトルにおけるアモルファスシリコン 相のピーク強度 la (2)に対する結晶シリコン相のピーク強度 Ic (2)の比である第 2のラ マンピーク比 Ic (2) /la (2)を求める第 2のラマン分光測定とを行!/、、前記第 1のラマ ンピーク比及び第 2のラマンピーク比に基づいて前記微結晶シリコン光電変換層の 評価を行う方法である。
[0018] あるいは本発明の光電変換装置の検査方法は、微結晶シリコンを主として有する 層からなる微結晶シリコン光電変換層を基板上に有する光電変換装置の検査方法 であって、前記微結晶シリコン光電変換層中の前記基板と反対側の部分に測定用光 を照射して、得られたラマンスペクトルにおけるアモルファスシリコン相のピーク強度 I a (2)に対する結晶シリコン相のピーク強度 Ic (2)の比である第 2のラマンピーク比 Ic ( 2) /la (2)を求める第 2のラマン分光測定と、前記微結晶シリコン光電変換層を、前 記基板と反対側から一部除去するエッチングと、前記一部除去された微結晶シリコン 光電変換層中の前記基板と反対側の部分に測定用光を照射して、得られたラマンス ベクトルにおけるアモルファスシリコン相のピーク強度 la (1)に対する結晶シリコン相 のピーク強度 Ic (1)の比である第 1のラマンピーク比 Ic (1) /la (1)を求める第 1のラ マン分光測定とを行い、前記第 1のラマンピーク比及び第 2のラマンピーク比に基づ V、て前記微結晶シリコン光電変換層の評価を行う方法であってもよ!/、。
[0019] あるいは本発明の光電変換装置の検査方法は、微結晶シリコンを主として有する 層からなる微結晶シリコン光電変換層を基板上に有する光電変換装置の検査方法 であって、前記微結晶シリコン光電変換層中の前記基板側部分または基板と反対側 の部分に第 1の測定用光を照射して、得られたラマンスペクトルにおけるアモルファス シリコン相のピーク強度 la (1)に対する結晶シリコン相のピーク強度 Ic (l)の比である 第 1のラマンピーク比 Ic (l) /la (1)を求める第 1のラマン分光測定と、前記微結晶シ リコン光電変換層中の前記第 1の測定用光を照射した部分と同じ側の部分に前記第 1の測定用光の波長と異なる波長を有する第 2の測定用光を照射して、得られたラマ ンスペクトルにおけるアモルファスシリコン相のピーク強度 la (2)に対する結晶シリコ ン相のピーク強度 Ic (2)の比である第 2のラマンピーク比 Ic (2) /la (2)を求める第 2 のラマン分光測定とを行い、前記第 1のラマンピーク比及び第 2のラマンピーク比に 基づ!/、て前記微結晶シリコン光電変換層の評価を行う方法であってもよ!/、。
前記!/、ずれかの光電変換装置の検査方法によれば、ラマン分光分析により微結晶 シリコン光電変換層全体の膜質を評価し、光電変換装置を検査することができる。
[0020] 本発明によれば、高い変換効率を有する光電変換装置を安定的に製造するため の、微結晶シリコン光電変換層の製膜条件設定方法、これを利用した光電変換装置 並びにその製造方法、製造装置及び検査方法を提供することができる。
図面の簡単な説明
[0021] [図 1]シングル構造の光電変換装置の一例を示す概略部分断面図である。
[図 2]タンデム構造の光電変換装置の一例を示す概略部分断面図である。
[図 3]微結晶シリコン光電変換層の膜面側のラマンピーク比と発電効率の関係を示す グラフである。
[図 4]微結晶シリコン光電変換層の膜厚とラマンピーク比との関係を示すグラフである
[図 5]第 1のラマンピーク比及び第 2のラマンピーク比を求める方法における供試体の 一例を示す概略部分断面図である。
[図 6]プラズマ CVD装置の一例を示す概略図である。 園 7]参考例 1の光電変換層における、膜の成長初期のラマンピーク比と光電変換装 置の発電効率との関係を示すグラフである。
園 8]参考例 1の光電変換層における、膜の成長後のラマンピーク比と光電変換装置
Figure imgf000010_0001
園 9]参考例 2の光電変換層の製膜における SiH流量と、製膜された光電変換層に
4
おける基板面ラマン比/膜面ラマン比との関係を示すグラフである。
園 10]参考例 2における膜面ラマン比/基板面ラマン比と光電変換装置の発電効率
Figure imgf000010_0002
[図 11]参考例 3の光電変換層の各膜厚におけるラマンピーク比を示すグラフである。 符号の説明
1 絶縁基板
2 第 1の透明導電膜
4 光電変換層
5 第 1の光電変換層(トップセル)
6 第 2の光電変換層(ボトムセル)
8 第 2の透明導電膜
9 裏面電極
11 心容
12 陽極 (保持部)
13 放電用電極(陰極)
14 原料ガス導入部
15 ガス流量制御装置
16 ガス蓄積部
17 超高周波電源
18 原料ガス供給部
19 原料ガス
20 プラズマ CVD装置
発明を実施するための最良の形態 [0023] 以下に、本発明の実施形態について、図面を参照して説明する。
本発明の製膜条件設定方法並びに光電変換装置及びその製造方法、製造装置 並びに検査方法は、シングル構造の光電変換装置又は多接合型光電変換装置に 適用される。図 1はシングル構造の光電変換装置の一例を示す概略部分断面図で あり、図 2は、タンデム構造の光電変換装置の一例を示す概略部分断面図である。 図 1に示したシングル型光電変換装置は、ガラス基板等の透明の絶縁基板 1上に S ηθ等からなる第 1の透明導電膜 2、微結晶シリコンを主として有する光電変換層 4、
2
SnO等からなる第 2の透明導電膜 8、及び Ag等の金属薄膜力 なる裏面電極 9を順
2
次積層して形成されている。
また、図 2に示したタンデム型光電変換装置は、ガラス基板等の透明の絶縁基板 1 上に SnOや GZO等からなる第 1の透明導電膜 2、アモルファスシリコン等の短波長
2
の光を吸収する半導体を主として有する第 1の光電変換層(トップセル) 5、微結晶シ リコンを主として有する第 2の光電変換層(ボトムセル) 6、 SnOや GZO、 ITO等から
2
なる第 2の透明導電膜 8、及び Ag等からなる裏面電極 9を順次積層して形成されて いる。
図 1及び図 2に示した光電変換装置において、各光電変換層は pin接合又は nip接 合を有し、 V、ずれの光電変換層もプラズマ CVD法によって製膜される。
[0024] 本発明においては、微結晶シリコンを主として有する光電変換層の膜質を評価する 指針として、ラマン分光法が利用される。図 3は、図 1に示したようなシングル型光電 変換装置にお!/、て、光電変換層 4の絶縁基板 1とは反対側(膜面側)から測定用光を 照射して得られたラマンスペクトルにおけるアモルファスシリコン相のピーク強度 laに 対する結晶シリコン相のピーク強度 Icの比 Ic/Ia (以下、「ラマンピーク比」ともいう)と
、光電変換装置の発電効率の関係を示したグラフである。
ラマンピーク比は結晶化率の目安となる指標である力 S、適度なラマンピーク比にお いて微結晶シリコンを有する光電変換層 4を備えた光電変換装置の変換効率は最大 となり、ラマンピーク比が高すぎても低すぎても変換効率は低下することがわかる。す なわち、微結晶シリコンにおいて、適度なアモルファス相の存在力 結晶シリコン相の 粒界上の欠陥を電気的に不活性化するのに有効であると考えられる。 [0025] 一方、上記ラマンピーク比を、微結晶シリコンを有する異なる膜厚の光電変換層 4 に関して測定すると、膜厚とラマンピーク比の関係は図 4に示したグラフのようになる。 図 4において、曲線 Aは 1. 5nm/s以上の高速の製膜速度で光電変換層 4を製膜し た場合のラマンピーク比の例であり、曲線 Bは lnm/s以下の製膜速度で光電変換 層 4を製膜した場合のラマンピーク比の例である。
図 4のグラフから、微結晶シリコンを有する光電変換層 4では膜成長とともに結晶化 率およびラマンピーク比が増加することが分かる。特に、高速製膜においては、膜成 長初期と後期において結晶化率の著しい変化が生じている。この場合、結晶化率が 成長初期に適正でも、後期が高すぎたり、後期が適正でも、初期が低すぎたりという こと力 S起こり得る。すなわち、膜全体として適正な結晶化率を得ることが困難である。 その結果として高い変換効率を有する光電変換層 4となる微結晶シリコン層を製膜す るためのプロセス領域は狭くなる傾向にある。
[0026] そこで、本発明においては、基板上に形成された微結晶シリコン層中の前記基板 側部分に測定用光を照射して、ラマンスペクトルにおけるアモルファスシリコン相のピ ーク強度 la (1)に対する結晶シリコン相のピーク強度 Ic (l)の比である第 1のラマンピ ーク比 Ic (1) /la (1)を求め、また前記微結晶シリコン層中の前記基板と反対側(膜 面側)部分に測定用光を照射して、ラマンスペクトルにおけるアモルファスシリコン相 のピーク強度 la (2)に対する結晶シリコン相のピーク強度 Ic (2)の比である第 2のラマ ンピーク比 Ic (2) /la (2)を求め、前記第 1のラマンピーク比及び第 2のラマンピーク 比に基づいて、微結晶シリコン層全体の膜質 (結晶化率)を評価することとしている。
[0027] 本発明の製膜条件設定方法は、予め製膜した微結晶シリコン層を上記の方法で評 価し、その結果に基づいて微結晶シリコン光電変換層の製膜条件を設定する方法で ある。本発明の光電変換装置の製造方法及び製造装置は、前記製膜条件設定方法 で設定された製膜条件に基づいて光電変換装置を製造する方法及び装置である。 本発明の光電変換装置は、その微結晶シリコン光電変換層において前記第 1のラマ ンピーク比及び第 2のラマンピーク比が特定の範囲にある光電変換装置である。また 、本発明の検査方法は、光電変換装置の微結晶シリコン光電変換層を上記の方法 で評価することにより光電変換装置を検査する方法である。 [0028] 次に、図 5を用いて、上記第 1のラマンピーク比及び第 2のラマンピーク比を求める 方法の例について説明する。図 5は、透明の絶縁基板 1上に第 1の透明導電膜 2及 び微結晶シリコンを主として有する光電変換層 4を順次積層した供試体を示す概略 部分断面図である。
本発明の製膜条件設定方法においては、光電変換層 4まで製膜した状態(図 5の 状態)で供試体における第 1のラマンピーク比及び第 2のラマンピーク比を測定するこ とができる。一方、本発明の光電変換装置の検査方法においては、光電変換装置の 裏面電極 9を過酸化水素水等の溶剤で溶解除去して供試体とされる。なお、この場 合、第 2の透明導電膜 8のラマンピークはバックグラウンドとして差し引くことができる ので、第 2の透明導電膜 8は除去しなくてもよいが、希塩酸等の溶剤により溶解除去 してもよい。
[0029] 第 1のラマンピーク比を測定するには、まず、光電変換層(微結晶シリコン層) 4の膜 面側から測定用光を照射する。測定用光としてはレーザー単色光が用いられ、例え ば YAGレーザー光の 2倍波(波長 532nm)が好適に用いられる。光電変換層(微結 晶シリコン層) 4の膜面側から測定用光を入射すると、ラマン散乱が観測されるが、測 定用光及び散乱光の一部は光電変換層 4中で吸収される。従って、例えば YAGレ 一ザ一光の 2倍波を測定用光として用いた場合は、入射面から約 lOOnmの深さまで の情報を得ることが出来る。
放出されたラマン散乱光の分光分析により得られたラマンスペクトルにおレ、て、ァモ ルファスシリコン相のピーク強度 la (1)に対する結晶シリコン相のピーク強度 Ic (1)の 比である第 1のラマンピーク比 Ic (l) /la (1)が求められる。ここで、典型的には、「ァ モルファスシリコン相のピーク強度」は周波数 ASOcnT1付近におけるピーク強度であ り、「結晶シリコン相のピーク強度」は周波数 SZOcnT1付近におけるピーク強度であ
[0030] 第 2のラマンピーク比を測定するには、まず、絶縁基板 1側から照射された測定用 光を光電変換層(微結晶シリコン層) 4の絶縁基板 1側の面に入射させる。なお、絶縁 基板 1及び第 1の透明導電膜 2のラマン散乱光および発光はバックグラウンドとして差 し引くことができるので、これらの影響を排除するための前処理は必要ない。測定用 光としてはレーザー単色光が用いられ、例えば YAGレーザー光の 2倍波(波長 532 nm)が好適に用いられる。第 1のラマンピーク比の測定と同様に、例えば YAGレー ザ一光の 2倍波を測定用光として用いた場合は、入射面から約 lOOnmの深さまでの 情報を得ることが出来る。
第 1のラマンピーク比の測定と同様に、放出されたラマン散乱光の分光分析により 得られたラマンスペクトルにおいて、アモルファスシリコン相のピーク強度 la (2)に対 する結晶シリコン相のピーク強度 Ic (2)の比である第 2のラマンピーク比 Ic (2) /la (2 )が求められる。
[0031] 第 2のラマンピーク比の測定において、測定用光の照射部と光電変換層(微結晶シ リコン層) 4との間に、測定用光を遮断する構成要素がある場合には、上記とは別の 方法で第 2のラマンピーク比の測定を行ってもよい。このような場合とは、例えば、光 電変換装置がタンデム型であって、第 1の透明導電膜 2と光電変換層(微結晶シリコ ン層) 4との間にアモルファスシリコン層等の他の光電変換層が含まれる場合や、光 電変換装置が絶縁性基板 1と反対側から太陽光が入射するサブストレート型光電変 換装置であって、絶縁性基板 1と第 1の透明導電膜 2との間に Ag等の金属薄膜から なる裏面電極 9が形成されて!/、る場合である。
[0032] 前記のような場合にお!/、ては、光電変換層(微結晶シリコン層) 4の絶縁基板 1側を lOOnm以上 400nm以下、好適には 200nm以上 300nm以下程度残して膜面側を ドライエッチング又はウエットエッチングで除去してから、残った微結晶シリコンの膜面 側から測定用光を照射してラマン散乱光を分光分析することにより、第 2のラマンピー ク比を測定してもよい。
微結晶シリコン膜は水酸化カルシウム水溶液のようなエッチング液に浸すことにより エッチングすることが出来る。しかし、このようなウエットエッチングでは反応速度を制 御し、終点を検出することが難しぐ本発明で使用する方法としてはドライエッチング が望ましい。
Ar等の希ガスを電界で加速し、基板に垂直に打ち込めばスパッタリングが起こる。 ダウンフロー型のケミカルドライエッチングは CFと Oの混合ガスのマイクロ波放電
4 2
で生じたラジカルをエッチング室に流すことでエッチングを行う方法である。エツチン グの速度は通常 100nm/min程度である。この方法を本発明で利用するエッチング に採用しても良い。
平行平板電極を用い、基板を接地電極側に設置し、ガス圧を 10から lOOPaのよう に比較的高くしてもケミカルドライエッチングが実現される。一方、基板を RF電極側 に置き、ガス圧を 1から数十 Paと小さくすると、イオンが加速され、基板に垂直に入射 する。この方法は反応性イオンエッチングと呼ばれ、異方性エッチングに広く用いら れる。本発明で利用するエッチングでは特に異方性は要しない。また、イオンの影響 力 S小さいことが望ましいため通常のケミカルドライエッチングが有用である。
エッチングに用いるガスは CF
4、 SF CFと Hとの混合ガス、 CHF
6、 4 2 3、 CFと Oの
4 2 混合ガス、 HBr, CI、 C1と HBrおよび Oの混合ガス、 HBrと SFおよび Oの混合ガ
2 2 2 6 2 ス等である。
[0033] あるいは、上記のように光電変換層(微結晶シリコン層) 4の膜面側の除去は行わず に、 YAGレーザー光より長波長で、より深い深さまでの情報を得ることができるレー ザ一単色光(例えば HeNeレーザー光(波長 633nm) )あるいは Tiサファイアレーザ 一を測定用光として該膜面側に照射して得られたラマンスペクトルを用いて、第 2のラ マンピーク比を測定してもよい。この場合、 HeNeレーザー光(波長 633nm)を測定 用光として用いた場合は、入射面から約 500nmの深さまでの情報を得ることが出来 る。また、 Tiサファイアレーザーの 700nmの波長を選択した場合は約 1400nmの深 さまでの情報を得ることが出来る(Tiサファイアレーザーの発振の中心波長は 800η mであるが、 690から lOOOnmまでは波長可変であるため、 700nmの発振は可能で ある。ただしレーザーの出力は中心波長よりも低下する。 YAGレーザーを光源として も 0 -ホウ酸バリウム等の非線形光学結晶を用いたパラメトリック発振技術を用いれば
700nmのレーザー発振は可能である。 785nmの半導体レーザーにょうな固定波長 のレーザーが有用である。)。
[0034] 上記のようにして求めた第 1のラマンピーク比及び第 2のラマンピーク比が所定の値 となったときの製膜条件に基づいて、光電変換装置における微結晶シリコン光電変 換層の製膜条件を設定し、光電変換装置を製造することができる。
図 6は、本実施形態で光電変換装置を製造するプラズマ CVD装置の一例を示す 概略図である。プラズマ CVD装置 20は、反応容器 11と、超高周波電源 17と、原料 ガス供給部 18とを具備する。また、図示していないが、反応容器 11を真空排気する ターボ分子ポンプやロータリーポンプ、並びに原料ガスを排気するドライポンプを具 備する。さらに、図示していないが、 p、 i、 n各層に対して製膜を行なうプラズマ CVD 装置 20はそれぞれ異なり、各プラズマ CVD装置 20は、搬送室を経由して真空中で 基板が輸送できるような構成となってレ、る。
[0035] 超高周波電源 17は、所望の特性の超高周波(プラズマ励起周波数、例示: 40〜1 50MHz)電力を反応容器 11内の放電用の電極(後述)へ供給する。
原料ガス供給部 18は、ガス蓄積部 16から、ガス流量制御装置 15を介して所望の 流量、流量比の原料ガス 19を反応容器 11内へ供給する。ガス蓄積部 16は、複数の 種類のガス(SiH 、 H 、 B H 、 PH等)のガスボンベに例示される。ガス流量制御装
4 2 2 6 3
置 15は、複数のガスボンベの各々に対応して設けられたマスフローメータに例示さ れる。
[0036] 反応容器 11では、供給される超高周波電力、及び、供給される一つ又は複数の種 類のガスにより、光電変換装置の各層となる膜が基板 1上に製膜される。
反応容器 11は、陽極 (保持部) 12と、放電用電極(陰極) 13と、原料ガス導入部 14 とを備える。陽極 12は、基板 1を加熱するヒーターの機能を含むもので、基板 1を保 持し、接地されている。放電用電極 13は、超高周波電源 17から所望の電力を供給さ れ、陽極 12との間で供給された原料ガス 19のプラズマを生成する。放電用電極 13 は、基板 1との距離が所定のギャップ長だけ離れて、陽極 12に対向している。放電用 電極 13の形状は特に限定されないが、平行平板型電極を採用することができる。原 料ガス導入部 14は、放電用電極 13の隙間を通して、プラズマの形成される空間(陽 極 12と放電用電極 13との間)へ原料ガス 19を導入する。ただし、放電用電極 13と原 料ガス導入部 14とが一体となり、いずれか一方が他方の機能を含んでいても良い。
[0037] 次に、参考例により本発明をさらに説明する。
(参考例 1)
以下のプロセス条件群 Aで、平行平板電極を用いたプラズマ CVD法により、微結 晶シリコンを主として有する光電変換層 4をガラス基板 (絶縁基板 1)上に製膜し、図 1 に示したようなシングル構造の光電変換装置を作製した。
[0038] プロセス条件群 A:
圧力: 2130Pa
基板温度: 190°C
プラズマ周波数: 60MHz
プラズマ電力: 1 · 3〜2· OW/cm2
電極基板間距離: 3. 5mm〜7. 5mm
[0039] 図 7は、上記プロセス条件群 Aにより製膜された光電変換層 4における、膜の成長 初期のラマンピーク比(第 1のラマンピーク比 Ic (1 ) /la (1) )と、この光電変換層 4を 有する光電変換装置の発電効率との関係を示すグラフである。ラマンスペクトルの測 定は、基板面側から YAGレーザー光の 2倍波(波長 532nm)を照射して行った。 図 7のグラフから、光電変換装置の発電効率 8. 5%以上が得られている範囲にお いて、膜成長初期のラマンピーク比は 2以上 6. 5以下の範囲であった。
なお、ガラス基板面からラマンスペクトルを測定した場合、スペクトルにバックグラウ ンドが乗る場合がある。これは、ガラスのみを測定しても得られるものであり、ガラスの 発光によるものとされている。 (Droz et al. Solar Energy Material & Sola r Cells 81 (2004) 61— 71)。ラマンピーク比を求める場合には、このバックグラ ゥンドは差し引かなければならない。
[0040] 図 8は、上記プロセス条件群 Aにより製膜された光電変換層 4における、膜の成長 後のラマンピーク比(第 2のラマンピーク比 Ic (2) /la (2) )と、この光電変換層 4を有 する光電変換装置の発電効率との関係を示すグラフである。ラマンスペクトルの測定 は、絶縁基板 1と反対側(膜面側)から YAGレーザー光の 2倍波(波長 532nm)を照 射して fiつた。
図 8のグラフから、光電変換装置の発電効率 8. 5%以上が得られている範囲にお いて、膜成長後のラマンピーク比は 3. 5以上 8以下の範囲であった。
また、図 7及び図 8のグラフから得られた結果から、膜成長初期から膜成長後にか けてのラマンピーク比は、 2以上 8以下が好まし!/、ことが分かる。
[0041] (参考例 2) 以下のプロセス条件群 Bで、平行平板電極を用いたプラズマ CVD法により、微結 晶シリコンを主として有する光電変換層 4をガラス基板 (絶縁基板 1)上に製膜し、図 1 に示したようなシングル構造の光電変換装置を作製した。
[0042] プロセス条件群 B :
圧力: 2133Pa
基板温度: 190°C
プラズマ周波数: 60MHz
プラズマ電力: 1. 7W/cm2
電極基板間距離: 5mm
[0043] なお、膜面側のラマンピーク比が 5から 6の範囲内になるように、 SiH /H流量比
4 2 を制御した。
上記プロセス条件群 Bにより製膜された光電変換層 4について、参考例 1と同様に 図 9は、上記プロセス条件群 Bによる製膜において、 SiH流量(SiH /H比はほぼ
4 4 2 同一としている)と、製膜された光電変換層 4における膜の成長初期のラマンピーク比 (第 1のラマンピーク比 Ic (l) /Ia (l);以下、「基板面ラマン比」ともいう)に対する膜 の成長後のラマンピーク比(第 2のラマンピーク比 Ic (2) /la (2);以下、「膜面ラマン 比」ともいう)の比 [IC (2) /la (2) ]/[IC (l) /la (l) ]との関係を示すグラフである。 図 9において、 SiH流量が増加するに従い、膜面ラマン比/基板面ラマン比が低
4
下している。すなわち、成長方向の結晶性が均一化している。
[0044] 製膜チャンバ一内では SiH
4、 Hは分解されるため、供給ガス中の SiH /H比(初 2 4 2 期状態)とプラズマ発生後の定常状態での SiH /H比が異なる。供給ガスの流量が
4 2
小さい場合、初期状態と定常状態での SiH /H比の変化が大きぐこれが成長方
4 2
向の結晶性の変化に影響を与えることが知られている(巿川、佐々木、堤井、「ブラズ マ半導体プロセス工学」、内田老鶴圃、 2003年、 § 4. 1、第 103頁)。
一般的には、流量力小さい場合だけでなくプラズマ電力が大きい場合や、相対的 にガスの分解が激しい場合にも、 SiH /H比の時間的変化が激しいとされている。し
4 2
たがって、 SiH /H比の時間的変化は、高速製膜において特に問題とされる現象で
4 2
ある。 [0045] 図 10は、本参考例の膜面ラマン比/基板面ラマン比と光電変換装置の発電効率と
Figure imgf000019_0001
図 10より、膜面ラマン比/基板面ラマン比が小さいほど平均発電効率が高ぐ発電 効率のばらつきが小さいことが分かる。図 10より、膜面ラマン比/基板面ラマン比は 3以下が望ましぐさらに 2以下であることが望ましい。
(参考例 3)
参考例 2のプロセス条件群 Bによる製膜において SiH流量 (全流量) / H流量を 1
4 2
4sccm/2000sccm及び 8sccm/450sccmとして作製された光電変換装置をサン プルとして用いた。
これらサンプルの裏面電極 9及び透明導電膜 8 (Ag/GZO)を過酸化水素水と塩 酸を用いてウエットエッチングし、除去した。つぎに、微結晶シリコンを主として有する 光電変換層 4を CFガスを用いて、ケミカルドライエッチングした。膜厚が 100nm、 50
4
0nm、 1000nm、 1500nm、及び 2000nmとなったところでサンプルをケミカルドライ エッチング装置から取り出し、膜面側より YAGレーザー光の 2倍波(波長 532nm)を 照射してラマンスペクトルを測定した。各膜厚におけるラマンピーク比を図 11に示す
[0047] 図 11から SiH /H = 14sccm/2000sccmの光電変換層 4では、 SiH / = 8
4 2 4 2
SCCm/450scCmの光電変換層 4より膜成長方向の結晶性が均一であることが分か る。光電変換装置の発電効率はそれぞれ、 8. 6 ± 0. 2%及び 8. 2 ± 0. 5%であつ た。膜成長方向の結晶性がより均一な光電変換装置ほど発電効率の平均値が高ぐ ばらつきが小さレ、ことが分かる。
すなわち、 SiH /H = 14sccm/2000sccmの供給ガス流量比による製膜は、高
4 2
速製膜に対応するが、本発明は光電変換装置における光電変換層の製膜速度が 2 nm/s以上の高速製膜の場合に、特に好適に採用される。
[0048] (参考例 4)
ラマンスペクトル測定により得られるデータは、サンプルにおけるレーザー光の照射 面から一定深さ(ラマン収集深さ)までのデータである。
[0049] 本参考例 4では、前記参考例 3と同様に、参考例 2のプロセス条件群 Bによる製膜 において SiH流量(全流量)/ H流量を 14sccm/2000sccm及び 8sccm/450
4 2
sccmとして作製された光電変換装置をサンプルとして用いた。
本参考例では光電変換層 4のエッチングは行わずに、 3種類のレーザー光の!/、ず れかを膜面側より照射してラマンスペクトルを測定した。各レーザー光を用いた場合 におけるラマンピーク比を表 1に示す。
[0050] [表 1]
Figure imgf000020_0001
[0051] なお、 HeNeレーザーのラマン収集深さについては下記文献を参考とした。
C. Droz et al. , Solar Energy Material & Soler Cells 8丄 (2004) 61 - 71
[0052] SiH /H流量比が 14/2000の光電変換層 4の方が、 SiH /H流量比が 8/4
4 2 4 2
50の光電変換層 4より、各レーザーで測定した場合のラマンピーク比が互いに近い。 これは SiH流量が増加するに従い、膜成長方向での均一性が高くなるためと考えら
4
れる。また、膜成長方向の結晶性がより均一な光電変換装置ほど発電効率の平均値 が高ぐばらつきが小さいことが分かる。
すなわち、 SiH /H = 14sccm/2000sccmの供給ガス流量比による製膜は、高 速製膜に対応するが、本発明は光電変換装置における光電変換層の製膜速度力 ¾ nm/s以上の高速製膜の場合に、特に好適に採用される。

Claims

請求の範囲
[1] 微結晶シリコンを主として有する層からなる微結晶シリコン光電変換層を基板上に 有する光電変換装置における前記微結晶シリコン光電変換層の製膜条件を設定す る製膜条件設定方法であって、
条件設定用基板上に所定の条件で微結晶シリコンを主として有する層からなる微 結晶シリコン層を製膜し、
前記微結晶シリコン層中の前記条件設定用基板側部分に測定用光を照射して、得 られたラマンスペクトルにおけるアモルファスシリコン相のピーク強度 la (1)に対する 結晶シリコン相のピーク強度 Ic (l)の比である第 1のラマンピーク比 Ic (l) /la (1)を 求める第 1のラマン分光測定と、
前記微結晶シリコン層中の前記条件設定用基板と反対側の部分に測定用光を照 射して、得られたラマンスペクトルにおけるアモルファスシリコン相のピーク強度 la (2) に対する結晶シリコン相のピーク強度 Ic (2)の比である第 2のラマンピーク比 Ic (2) / la (2)を求める第 2のラマン分光測定とを行う条件設定工程を少なくとも 1回行い、 前記第 1のラマンピーク比及び第 2のラマンピーク比に基づいて前記微結晶シリコ ン光電変換層の製膜条件を設定する製膜条件設定方法。
[2] 前記製膜条件が、前記第 1のラマンピーク比に対する前記第 2のラマンピーク比の 比 (2) /1& (2) ] / [ (1) /1£1 (1) ]カ¾以下となる製膜条件でぁる、請求項1に記 載の製膜条件設定方法。
[3] 前記製膜条件が、前記第 1のラマンピーク比及び前記第 2のラマンピーク比がいず れも 2以上 8以下となる製膜条件である、請求項 1に記載の製膜条件設定方法。
[4] 前記製膜条件が、前記第 1のラマンピーク比が 2以上 6. 5以下となり、かつ前記第 2 のラマンピーク比が 3. 5以上 8以下となる製膜条件である、請求項 1に記載の製膜条 件設定方法。
[5] 微結晶シリコンを主として有する層からなる微結晶シリコン光電変換層を基板上に 有する光電変換装置における前記微結晶シリコン光電変換層の製膜条件を設定す る製膜条件設定方法であって、
条件設定用基板上に所定の条件で微結晶シリコンを主として有する層からなる微 結晶シリコン層を製膜し、
前記微結晶シリコン層中の前記条件設定用基板と反対側の部分に測定用光を照 射して、得られたラマンスペクトルにおけるアモルファスシリコン相のピーク強度 la (2) に対する結晶シリコン相のピーク強度 Ic (2)の比である第 2のラマンピーク比 Ic (2) / la (2)を求める第 2のラマン分光測定と、
前記微結晶シリコン層を、前記条件設定用基板と反対側から lOOnm以上 400nm 以下だけ残して除去するエッチングと、
前記一部除去された微結晶シリコン層中の前記条件設定用基板と反対側の部分 に測定用光を照射して、得られたラマンスペクトルにおけるアモルファスシリコン相の ピーク強度 la (1)に対する結晶シリコン相のピーク強度 Ic (l)の比である第 1のラマン ピーク比 Ic (1) /la (1)を求める第 1のラマン分光測定とを行う条件設定工程を少なく とも 1回行い、
前記第 1のラマンピーク比及び第 2のラマンピーク比に基づいて前記微結晶シリコ ン光電変換層の製膜条件を設定する製膜条件設定方法。
[6] 前記エッチングにおレ、て、前記微結晶シリコン層を、前記条件設定用基板と反対側 力も 200nm以上 300nm以下だけ残して除去する、請求項 5に記載の製膜条件設定 方法。
[7] 前記製膜条件が、前記第 1のラマンピーク比に対する前記第 2のラマンピーク比の 比 [Ic (2) /la (2) ] / [Ic (1) /la (1) ]が 3以下となる製膜条件である、請求項 5また は請求項 6に記載の製膜条件設定方法。
[8] 前記製膜条件が、前記第 1のラマンピーク比及び前記第 2のラマンピーク比がいず れも 2以上 8以下となる製膜条件である、請求項 5または請求項 6に記載の製膜条件 設定方法。
[9] 前記製膜条件が、前記第 1のラマンピーク比が 2以上 6. 5以下となり、かつ前記第 2 のラマンピーク比が 3. 5以上 8以下となる製膜条件である、請求項 5または請求項 6 に記載の製膜条件設定方法。
[10] 微結晶シリコンを主として有する層からなる微結晶シリコン光電変換層を基板上に 有する光電変換装置における前記微結晶シリコン光電変換層の製膜条件を設定す る製膜条件設定方法であって、
条件設定用基板上に所定の条件で微結晶シリコンを主として有する層からなる微 結晶シリコン層を製膜し、
前記微結晶シリコン層中の前記条件設定用基板側部分または基板と反対側の部 分に第 1の測定用光を照射して、得られたラマンスペクトルにおけるアモルファスシリ コン相のピーク強度 la (1)に対する結晶シリコン相のピーク強度 Ic (1)の比である第 1 のラマンピーク比 Ic (1) /la (1)を求める第 1のラマン分光測定と、
前記微結晶シリコン層中の前記第 1の測定用光を照射した部分と同じ側の部分に 前記第 1の測定用光の波長と異なる波長を有する第 2の測定用光を照射して、得ら れたラマンスペクトルにおけるアモルファスシリコン相のピーク強度 la (2)に対する結 晶シリコン相のピーク強度 Ic (2)の比である第 2のラマンピーク比 Ic (2) /la (2)を求 める第 2のラマン分光測定とを行う条件設定工程を少なくとも 1回行い、
前記第 1のラマンピーク比及び第 2のラマンピーク比に基づいて前記微結晶シリコ ン光電変換層の製膜条件を設定する製膜条件設定方法。
[11] 前記製膜条件が、圧力、基板温度、反応ガス中のシラン濃度、プラズマ電力、ブラ ズマ周波数、及び電極基板間距離力も選ばれる少なくとも 1つの条件である、請求項 1から請求項 10のいずれかに記載の製膜条件設定方法。
[12] 微結晶シリコンを主として有する層からなる微結晶シリコン光電変換層を基板上に 有する光電変換装置の製造方法であって、
請求項 1から請求項 11のいずれかに記載の製膜条件設定方法により設定された 製膜条件により基板上に微結晶シリコン光電変換層を製膜する光電変換装置の製 造方法。
[13] 前記微結晶シリコン光電変換層の製膜速度が 1. 5nm/s以上である、請求項 12 に記載の光電変換装置の製造方法。
[14] 微結晶シリコンを主として有する層からなる微結晶シリコン光電変換層を基板上に 製膜する光電変換装置の製造装置であって、
請求項 1から請求項 11のいずれかに記載の製膜条件設定方法により設定された 製膜条件により基板上に微結晶シリコン光電変換層を製膜する光電変換装置の製 造装置。
[15] 微結晶シリコンを主として有する層からなる微結晶シリコン光電変換層を基板上に 有する光電変換装置であって、
前記微結晶シリコン光電変換層中の前記基板側部分に測定用光を照射して得ら れるラマンスペクトルにおけるアモルファスシリコン相のピーク強度 la (1)に対する結 晶シリコン相のピーク強度 Ic (1)の比を第 1のラマンピーク比 Ic (1) /la (1)とし、前記 微結晶シリコン光電変換層中の前記基板と反対側の部分に測定用光を照射して得 られるラマンスペクトルにおけるアモルファスシリコン相のピーク強度 la (2)に対する 結晶シリコン相のピーク強度 Ic (2)の比を第 2のラマンピーク比 Ic (2) /la (2)とした 場合に、前記第 1のラマンピーク比に対する前記第 2のラマンピーク比の比 [Ic (2) / la (2) ] / [Ic (l ) /la (l) ]が 3以下である光電変換装置。
[16] 前記第 1のラマンピーク比及び前記第 2のラマンピーク比がいずれも 2以上 8. 5以 下である、請求項 15に記載の光電変換装置。
[17] 前記第 1のラマンピーク比が 2以上 6. 5以下であり、かつ前記第 2のラマンピーク比 が 3. 5以上 8以下である、請求項 15に記載の光電変換装置。
[18] 微結晶シリコンを主として有する層からなる微結晶シリコン光電変換層を基板上に 有する光電変換装置であって、
前記微結晶シリコン光電変換層中の前記基板と反対側の部分に波長 700nmの第 1の測定用光を照射して得られるラマンスペクトルにおけるアモルファスシリコン相の ピーク強度 la (1)に対する結晶シリコン相のピーク強度 Ic (l)の比を第 1のラマンピー ク比 Ic ( 1 ) /la ( 1 )とし、前記微結晶シリコン光電変換層層中の前記基板と反対側の 部分に波長 532nmの第 2の測定用光を照射して得られるラマンスペクトルにおける アモルファスシリコン相のピーク強度 la (2)に対する結晶シリコン相のピーク強度 Ic (2 )の比を第 2のラマンピーク比 Ic (2) /la (2)とした場合に、前記第 1のラマンピーク比 に対する前記第 2のラマンピーク比の比 [Ic (2) /la (2) ] / [Ic (l) /la (l) ]が 2以 下である光電変換装置。
[19] 前記第 1のラマンピーク比に対する前記第 2のラマンピーク比の比 [Ic (2) /la (2) ] / [Ic ( 1 ) /la ( 1 ) ]が 1. 5以下である請求項 18に記載の光電変換装置。
[20] 前記第 1のラマンピーク比が 3以上 6以下であり、かつ前記第 2のラマンピーク比が 3 . 5以上 8以下である、請求項 18または請求項 19に記載の光電変換装置。
[21] 微結晶シリコンを主として有する層からなる微結晶シリコン光電変換層を基板上に 有する光電変換装置の検査方法であって、
前記微結晶シリコン光電変換層中の前記基板側部分に測定用光を照射して、得ら れたラマンスペクトルにおけるアモルファスシリコン相のピーク強度 la (1)に対する結 晶シリコン相のピーク強度 Ic (l)の比である第 1のラマンピーク比 Ic (l) /la (1)を求 める第 1のラマン分光測定と、
前記微結晶シリコン光電変換層中の前記基板と反対側の部分に測定用光を照射 して、得られたラマンスペクトルにおけるアモルファスシリコン相のピーク強度 la (2)に 対する結晶シリコン相のピーク強度 Ic (2)の比である第 2のラマンピーク比 Ic (2) /la (2)を求める第 2のラマン分光測定とを行!/、、
前記第 1のラマンピーク比及び第 2のラマンピーク比に基づいて前記微結晶シリコ ン光電変換層の評価を行う光電変換装置の検査方法。
[22] 微結晶シリコンを主として有する層からなる微結晶シリコン光電変換層を基板上に 有する光電変換装置の検査方法であって、
前記微結晶シリコン光電変換層中の前記基板と反対側の部分に測定用光を照射 して、得られたラマンスペクトルにおけるアモルファスシリコン相のピーク強度 la (2)に 対する結晶シリコン相のピーク強度 Ic (2)の比である第 2のラマンピーク比 Ic (2) /la (2)を求める第 2のラマン分光測定と、
前記微結晶シリコン光電変換層を、前記基板と反対側から lOOnm以上 400nm以 下だけ残して除去するエッチングと、
前記一部除去された微結晶シリコン光電変換層中の前記基板と反対側の部分に 測定用光を照射して、得られたラマンスペクトルにおけるアモルファスシリコン相のピ ーク強度 la (1)に対する結晶シリコン相のピーク強度 Ic (l)の比である第 1のラマンピ ーク比 Ic (1) /la (1)を求める第 1のラマン分光測定とを行い、
前記第 1のラマンピーク比及び第 2のラマンピーク比に基づいて前記微結晶シリコ ン光電変換層の評価を行う光電変換装置の検査方法。
[23] 前記エッチングにお!/、て、前記微結晶シリコン光電変換層を、前記基板と反対側か ら 200nm以上 300nm以下だけ残して除去する、請求項 22に記載の光電変換装置 の検査方法。
[24] 微結晶シリコンを主として有する層からなる微結晶シリコン光電変換層を基板上に 有する光電変換装置の検査方法であって、
前記微結晶シリコン光電変換層中の前記基板側部分または基板と反対側の部分 に第 1の測定用光を照射して、得られたラマンスペクトルにおけるアモルファスシリコ ン相のピーク強度 la (1)に対する結晶シリコン相のピーク強度 Ic (1)の比である第 1 のラマンピーク比 Ic (1) /la (1)を求める第 1のラマン分光測定と、
前記微結晶シリコン光電変換層中の前記第 1の測定用光を照射した部分と同じ側 の部分に前記第 1の測定用光の波長と異なる波長を有する第 2の測定用光を照射し て、得られたラマンスペクトルにおけるアモルファスシリコン相のピーク強度 la (2)に対 する結晶シリコン相のピーク強度 Ic (2)の比である第 2のラマンピーク比 Ic (2) /la (2 )を求める第 2のラマン分光測定とを行!/、、
前記第 1のラマンピーク比及び第 2のラマンピーク比に基づいて前記微結晶シリコ ン光電変換層の評価を行う光電変換装置の検査方法。
PCT/JP2007/066944 2006-09-04 2007-08-30 Procédé de réglage de conditions filmogènes, convertisseur photoélectrique et procédé de fabrication, appareil de fabrication et procédé d'inspection pour celui-ci WO2008029716A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP07806421A EP2061090A1 (en) 2006-09-04 2007-08-30 Film forming condition setting method, photoelectric converter, and manufacturing method, manufacturing apparatus and inspection method for the same
AU2007292560A AU2007292560A1 (en) 2006-09-04 2007-08-30 Method of setting conditions for film deposition, photovoltaic device, and production process, production apparatus and test method for same
CN2007800221962A CN101467264B (zh) 2006-09-04 2007-08-30 制膜条件设定方法、光电转换装置及其制造方法、制造装置和检查方法
US12/308,866 US8633378B2 (en) 2006-09-04 2007-08-30 Method of setting conditions for film deposition, photovoltaic device, and production process, production apparatus and test method for same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006239608A JP5473187B2 (ja) 2006-09-04 2006-09-04 製膜条件設定方法、光電変換装置の製造方法及び検査方法
JP2006-239608 2006-09-04

Publications (1)

Publication Number Publication Date
WO2008029716A1 true WO2008029716A1 (fr) 2008-03-13

Family

ID=39157148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/066944 WO2008029716A1 (fr) 2006-09-04 2007-08-30 Procédé de réglage de conditions filmogènes, convertisseur photoélectrique et procédé de fabrication, appareil de fabrication et procédé d'inspection pour celui-ci

Country Status (6)

Country Link
US (1) US8633378B2 (ja)
EP (1) EP2061090A1 (ja)
JP (1) JP5473187B2 (ja)
CN (1) CN101467264B (ja)
AU (1) AU2007292560A1 (ja)
WO (1) WO2008029716A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009119124A1 (ja) * 2008-03-28 2009-10-01 三菱重工業株式会社 光電変換装置
CN102047439B (zh) * 2008-10-30 2013-10-16 三菱重工业株式会社 光电转换装置和光电转换装置的制造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5084784B2 (ja) * 2009-05-22 2012-11-28 三菱電機株式会社 微結晶シリコン膜の製造装置および微結晶シリコン膜の製造方法
JP4902779B2 (ja) * 2009-11-30 2012-03-21 三洋電機株式会社 光電変換装置及びその製造方法
JP2011155026A (ja) 2009-12-11 2011-08-11 Mitsubishi Heavy Ind Ltd 光電変換装置の製造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59181581A (ja) * 1983-03-31 1984-10-16 Agency Of Ind Science & Technol 光電変換装置
JPH05275726A (ja) * 1992-06-26 1993-10-22 Semiconductor Energy Lab Co Ltd 光電変換装置
JPH11102947A (ja) * 1997-09-29 1999-04-13 Shinichiro Uekusa 結晶性評価方法
JP2000174310A (ja) 1998-12-09 2000-06-23 Kanegafuchi Chem Ind Co Ltd シリコン系薄膜光電変換装置の製造方法
JP2001237189A (ja) 2000-02-24 2001-08-31 Kanegafuchi Chem Ind Co Ltd 結晶質シリコン系半導体薄膜の製造方法
JP2002026348A (ja) * 2000-07-05 2002-01-25 Mitsubishi Heavy Ind Ltd シリコン系薄膜光起電力素子及びその製造方法
JP2002329878A (ja) * 2001-04-27 2002-11-15 Sharp Corp 薄膜太陽電池および薄膜太陽電池の作製方法
JP2004087933A (ja) * 2002-08-28 2004-03-18 Mitsubishi Heavy Ind Ltd プラズマcvd装置並びに光起電力素子の製造方法及び光起電力素子
JP2006032800A (ja) * 2004-07-20 2006-02-02 Mitsubishi Heavy Ind Ltd プラズマ処理装置、太陽電池及び太陽電池の製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0697070A (ja) * 1992-09-11 1994-04-08 Sanyo Electric Co Ltd 多結晶シリコン膜の製造方法
JPH1154773A (ja) * 1997-08-01 1999-02-26 Canon Inc 光起電力素子及びその製造方法
US6222117B1 (en) * 1998-01-05 2001-04-24 Canon Kabushiki Kaisha Photovoltaic device, manufacturing method of photovoltaic device, photovoltaic device integrated with building material and power-generating apparatus
JPH11233801A (ja) * 1998-02-17 1999-08-27 Canon Inc 微結晶シリコン膜の形成方法、および光起電力素子
JP2001156311A (ja) * 1999-11-30 2001-06-08 Sharp Corp 薄膜太陽電池およびその製造方法
JP2001267611A (ja) * 2000-01-13 2001-09-28 Sharp Corp 薄膜太陽電池及びその製造方法
JP2001332749A (ja) * 2000-05-23 2001-11-30 Canon Inc 半導体薄膜の形成方法およびアモルファスシリコン太陽電池素子
JP2002110550A (ja) * 2000-09-27 2002-04-12 Sharp Corp 微結晶半導体薄膜および薄膜太陽電池
JP2002134769A (ja) * 2000-10-19 2002-05-10 Mitsubishi Heavy Ind Ltd 結晶系太陽電池及びその製造方法
JP4674956B2 (ja) * 2000-11-13 2011-04-20 シャープ株式会社 薄膜太陽電池およびその製造方法
DE10248504B4 (de) 2002-10-13 2008-01-10 Hahn-Meitner-Institut Berlin Gmbh Zerstörungsfreies Analyseverfahren zur Güteermittlung einer Solarzelle auf Chalkopyritbasis
JP2005031130A (ja) 2003-07-07 2005-02-03 Konica Minolta Business Technologies Inc 画像形成装置及びその感光体製造方法
JP4183688B2 (ja) 2005-02-07 2008-11-19 三菱重工業株式会社 光電変換装置の製造方法および光電変換装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59181581A (ja) * 1983-03-31 1984-10-16 Agency Of Ind Science & Technol 光電変換装置
JPH05275726A (ja) * 1992-06-26 1993-10-22 Semiconductor Energy Lab Co Ltd 光電変換装置
JPH11102947A (ja) * 1997-09-29 1999-04-13 Shinichiro Uekusa 結晶性評価方法
JP2000174310A (ja) 1998-12-09 2000-06-23 Kanegafuchi Chem Ind Co Ltd シリコン系薄膜光電変換装置の製造方法
JP2001237189A (ja) 2000-02-24 2001-08-31 Kanegafuchi Chem Ind Co Ltd 結晶質シリコン系半導体薄膜の製造方法
JP2002026348A (ja) * 2000-07-05 2002-01-25 Mitsubishi Heavy Ind Ltd シリコン系薄膜光起電力素子及びその製造方法
JP2002329878A (ja) * 2001-04-27 2002-11-15 Sharp Corp 薄膜太陽電池および薄膜太陽電池の作製方法
JP2004087933A (ja) * 2002-08-28 2004-03-18 Mitsubishi Heavy Ind Ltd プラズマcvd装置並びに光起電力素子の製造方法及び光起電力素子
JP2006032800A (ja) * 2004-07-20 2006-02-02 Mitsubishi Heavy Ind Ltd プラズマ処理装置、太陽電池及び太陽電池の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DROZ ET AL., SOLAR ENERGY MATERIAL & SOLAR CELLS, vol. 81, 2004, pages 61 - 71
ICHIKAWA; SASAKI; TEII: "Purazuma Handotai Purosesu Kogaku (Plasma Process Technology for a Semiconductor", 2003, UCHIDA ROKAKUHO PUBLISHING, pages: 103

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009119124A1 (ja) * 2008-03-28 2009-10-01 三菱重工業株式会社 光電変換装置
JP2009246029A (ja) * 2008-03-28 2009-10-22 Mitsubishi Heavy Ind Ltd 光電変換装置
US8481848B2 (en) 2008-03-28 2013-07-09 Mitsubishi Heavy Industries, Ltd. Photovoltaic device
TWI405346B (zh) * 2008-03-28 2013-08-11 Mitsubishi Heavy Ind Ltd Photoelectric conversion device
CN102047439B (zh) * 2008-10-30 2013-10-16 三菱重工业株式会社 光电转换装置和光电转换装置的制造方法

Also Published As

Publication number Publication date
CN101467264A (zh) 2009-06-24
US8633378B2 (en) 2014-01-21
JP2008066343A (ja) 2008-03-21
US20090183775A1 (en) 2009-07-23
AU2007292560A1 (en) 2008-03-13
EP2061090A1 (en) 2009-05-20
JP5473187B2 (ja) 2014-04-16
CN101467264B (zh) 2011-04-13

Similar Documents

Publication Publication Date Title
JP4553891B2 (ja) 半導体層製造方法
Saitoh et al. Role of the hydrogen plasma treatment in layer-by-layer deposition of microcrystalline silicon
JP5379801B2 (ja) 薄膜光電変換装置およびその製造方法
Huang et al. Rapid and scalable production of high-quality phosphorene by plasma–liquid technology
WO2008029716A1 (fr) Procédé de réglage de conditions filmogènes, convertisseur photoélectrique et procédé de fabrication, appareil de fabrication et procédé d'inspection pour celui-ci
Kondo et al. Novel aspects in thin film silicon solar cells–amorphous, microcrystalline and nanocrystalline silicon
Das Micro-Raman and ultraviolet ellipsometry studies on μc-Si: H films prepared by H 2 dilution to the Ar-assisted SiH 4 plasma in radio frequency glow discharge
Schicho Amorphous and microcrystalline silicon applied in very thin tandem solar cells
Lien et al. Deposition and characterization of high-efficiency silicon thin-film solar cells by HF-PECVD and OES technology
Sahu et al. Plasma engineering of silicon quantum dots and their properties through energy deposition and chemistry
Rotshteyn et al. On the question of the possibility of using nanocrystalline porous silicon in silicon-based solar cells
Wang et al. In situ optical emission spectroscopy diagnostics of glow discharges in SiH 4/GeH 4/H 2
Sharma et al. Investigation on sub nano-crystalline silicon thin films grown using pulsed PECVD process
Miyajima et al. Effect of plasma power on structure of hydrogenated nanocrystalline cubic silicon carbide films deposited by very high frequency plasma-enhanced chemical vapor deposition at a low substrate temperature
Peng et al. Microstructure and blue photoluminescence of hydrogenated silicon carbonitride thin films
Hsieh et al. Improved process stability on an extremely thin amorphous/crystalline silicon interface passivation layer by using predeposition on the chamber wall
Chen et al. High growth rate of microcrystalline silicon films prepared by ICP-CVD with internal low inductance antennas
JP2005259853A (ja) 薄膜形成装置、光電変換装置、及び薄膜製造方法
Rahman Nanocrystalline Silicon Solar Cells Deposited via Pulsed PECVD at 150 C Substrate Temperature
CN113659017B (zh) 一种砷化镓晶片及其制备方法
Palmans et al. Nucleation of microcrystalline silicon: on the effect of the substrate surface nature and nano-imprint topography
Kirner Development of wide band gap materials for thin film silicon solar cells
Jin Advanced polycrystalline silicon thin film solar cells using high rate plasma enhanced chemical vapour deposited amorphous silicon on textured glass
Sönmez et al. Growth, structural and vibrational properties of hydrogenated nanocrystalline silicon thin films prepared by radiofrequency magnetron sputtering technique at room temperature
Soman et al. Raman spectroscopy study of Hydrogen Plasma Treatment effect on a single layer Graphene/MoS2 hybrid structure

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780022196.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07806421

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007806421

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007292560

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 12308866

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2007292560

Country of ref document: AU

Date of ref document: 20070830

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE