WO2008026675A1 - Filtre céramique en nid d'abeilles - Google Patents

Filtre céramique en nid d'abeilles Download PDF

Info

Publication number
WO2008026675A1
WO2008026675A1 PCT/JP2007/066856 JP2007066856W WO2008026675A1 WO 2008026675 A1 WO2008026675 A1 WO 2008026675A1 JP 2007066856 W JP2007066856 W JP 2007066856W WO 2008026675 A1 WO2008026675 A1 WO 2008026675A1
Authority
WO
WIPO (PCT)
Prior art keywords
honeycomb filter
flow path
loss
partition wall
pressure loss
Prior art date
Application number
PCT/JP2007/066856
Other languages
English (en)
French (fr)
Inventor
Toshitaka Ishizawa
Kenichiro Sekiguchi
Masakazu Konomi
Original Assignee
Hitachi Metals, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39135957&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2008026675(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hitachi Metals, Ltd. filed Critical Hitachi Metals, Ltd.
Priority to JP2008532105A priority Critical patent/JP5218056B2/ja
Priority to US12/281,432 priority patent/US8435320B2/en
Priority to EP07806333.6A priority patent/EP2058042B2/en
Priority to KR20087021094A priority patent/KR101480811B1/ko
Priority to CN2007800067989A priority patent/CN101389392B/zh
Publication of WO2008026675A1 publication Critical patent/WO2008026675A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2455Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the whole honeycomb or segments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/2429Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material of the honeycomb walls or cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/247Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2474Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the walls along the length of the honeycomb
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2482Thickness, height, width, length or diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2484Cell density, area or aspect ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • C04B38/0009Honeycomb structures characterised by features relating to the cell walls, e.g. wall thickness or distribution of pores in the walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2498The honeycomb filter being defined by mathematical relationships
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/30Honeycomb supports characterised by their structural details
    • F01N2330/48Honeycomb supports characterised by their structural details characterised by the number of flow passages, e.g. cell density
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2340/00Dimensional characteristics of the exhaust system, e.g. length, diameter or volume of the apparatus; Spatial arrangements of exhaust apparatuses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a ceramic honeycomb filter used for purifying exhaust gas containing particulate matter discharged from a diesel engine or the like.
  • Diesel engine exhaust gas contains particulates (particulate matter), which are mainly composed of carbon (eg, soot) and high-boiling hydrocarbons. May cause adverse effects. For this reason, it has been the conventional practice to install a ceramic honeycomb filter (hereinafter referred to as “no, two-cam filter”) to remove particulates and purify exhaust gas in the middle of the exhaust pipe of a diesel engine. /! As shown in FIG. 8 (a) and FIG.
  • the conventional honeycomb filter 20 includes a ceramic honeycomb structure including a porous partition wall 2 and a peripheral wall 1 forming a large number of flow paths 3 and 4, and It consists of sealing parts 6a and 6b that alternately seal both end faces 8, 9 of channels 3 and 4 in a checkered pattern.
  • the outer peripheral wall 1 of the honeycomb filter is fixed by a holding member (not shown) formed of a metal mesh or a ceramic mat or the like, and is placed in a metal storage container (not shown).
  • the exhaust gas flows in from the outflow side sealing flow path 3 that is open to the exhaust gas inflow side end face 8 as indicated by a dotted arrow.
  • the fine particles contained in the exhaust gas are collected when passing through the pores formed in the partition wall 2 and are purified from the inflow side sealing flow path 4 that opens to the exhaust gas outflow side end face 9. Exhaust gas will flow out. If fine particles continue to be collected in the partition wall 2, the pores of the partition wall become clogged, increasing the pressure loss.
  • the honeycomb filter can be regenerated by burning the deposited fine particles with a burner or heater. However, since the energy is consumed to burn the fine particles, it is preferable to make the interval between regeneration processes as long as possible. For this purpose, it is required that the initial pressure loss of the honeycomb filter is small and that the pressure loss of the honeycomb filter does not rapidly increase even after collecting the fine particles.
  • the pressure loss of the honeycomb filter consists of the inlet loss when exhaust gas flows from the inflow side end face 8 (P1), and the outlet loss when the exhaust gas flows out from the outflow side end face 9 (P2).
  • This is considered to be the sum of the partition wall loss (P3) when passing through the partition wall 2 and the flow path loss (P4) due to friction with the partition walls when flowing through the channel 3 and 4!
  • the bulkhead loss (P3) is considered to account for the majority of the pressure loss of the finolators, and techniques to reduce this are being investigated!
  • the increase in pressure loss after collecting fine particles contributes significantly to the partition wall loss (P3).
  • JP 2003-40687 discloses a honeycomb filter having a porosity of 55 to 65%, an average pore diameter of 15 to 30 m, and a total area of pores exposed on the partition wall surface relative to the partition wall area of 35% or more. It discloses that it is possible to achieve both high collection efficiency of fine particles and low pressure force loss by defining the porosity of the partition walls. Furthermore, it is described that the permeability (permeability) of the partition wall which affects the magnitude of the partition wall loss (P3) is preferably 1.5 to 6 m 2 .
  • Japanese Patent Application Laid-Open No. 2003-40687 describes a technique for reducing the partition wall loss (P3)! / However, the flow path loss (P4) can be reduced by defining the length and cross-sectional area of the flow path. It does not describe the technology to be reduced.
  • Japanese Patent Application Laid-Open No. 2002-239322 describes a partition wall thickness force of .1 to 0.3 mm, a partition wall pitch force of .4 to 3 mm, a cross-sectional area of the flow path of 1.3 mm 2 or more, and the length of one side of the flow path.
  • a porous ceramic honeycomb structure with a filter surface area of 1.15 mm or more and a filter surface area of 7 cm 2 m 3 or more per unit volume is disclosed. It can be lowered.
  • Japanese Patent Application Laid-Open No. 2002-239322 also states that if the partition wall pitch is too small, the inlet loss (P1) when the exhaust gas flows from the inflow side end face 8 increases.
  • WO2003 / 074848 the length l (mm) of the longest side of the cross section of the flow path and the length L (mm) of the flow path satisfy the relationship of 60 ⁇ L / 1 ⁇ 500, A honeycomb filter having a road wall surface roughness Ra of 100 m or less is disclosed.
  • the cross sectional area of the flow path when the length of the flow path is excessively long or the area of the cross section perpendicular to the length direction of the flow path (hereinafter also simply referred to as the cross sectional area of the flow path) is excessively small (that is, the partition wall If the partition wall pitch is small if the thickness is the same), state that the flow path loss (P4) will increase.
  • the flow path is long!
  • Japanese Translation of PCT International Publication No. 20 03-515023 has a bulk density of at least about 0.50 gm 3 and has a length with respect to the diameter.
  • a ceramic filter with a ratio not exceeding about 0.9 is disclosed.
  • Special Table 2003-515023 shows the relationship between the total thickness of honeycomb filter and the pressure loss when the partition wall thickness, partition wall pitch, and honeycomb filter volume are constant. (At this time, since the volume is constant, the cross-sectional area in the vertical direction of the flow path increases! /), The pressure loss of the honeycomb filter is reduced.
  • the partition wall loss (P3) does not change because the total partition area is constant, but the total pressure loss decreases because the channel loss (P4) decreases as the channel length decreases. If the total length (flow path length) is changed with a constant cross-sectional area of the honeycomb filter, the flow path loss (P4) decreases and the partition wall loss (P3) increases. It is not known from the statement in Special Table 2003-515023 how the loss will be.
  • the ratio L / d between the diameter d and the length L is in the range of 0.4 to 1.3, the partition wall thickness is 0.1 mm or less, and the number of flow paths is S100.
  • the honeycomb structure that is m 2 or more is described. This honeycomb structure also has a sporty structure while maintaining high exhaust gas purification performance. However, it is not intended to reduce pressure loss. Accordingly, Japanese Patent Application Laid-Open No. 9-29981 1 cannot provide a guide on how to set the pitch of the partition walls and the length of the flow path in order to reduce the pressure loss of the honeycomb filter. Yes.
  • an object of the present invention is to obtain a honeycomb filter that reduces pressure loss and hardly causes melting damage.
  • the present inventors reduced pressure loss by defining the relationship between the thickness of the partition wall and the air permeability, and the relationship between the cross-sectional area and the length of the flow path. As a result, the inventors have found that a honeycomb filter in which melting damage is less likely to occur can be obtained, and the present invention has been conceived.
  • the ceramic honeycomb filter of the present invention is alternately provided on the honeycomb structure having a large number of flow paths partitioned by porous partition walls and on the exhaust gas inflow side or the exhaust gas outflow side of the flow paths.
  • a honeycomb honeycomb filter having a sealing portion, the partition wall thickness W (mm), the partition wall permeability ⁇ (m 2 ), the flow path length L (mm), and the flow path The cross-sectional area A (mm 2 ) of the flow path in a plane perpendicular to the length direction of
  • the air permeability ⁇ m 2 ) is preferably 2 or more.
  • the cross-sectional area S (mm 2 ) of the honeycomb filter in a plane perpendicular to the length direction of L and the flow path preferably satisfies 0.75 ⁇ L / S ° 5 ⁇ 1 ⁇ 2! / ⁇ .
  • the length L is preferably 140 mm or more.
  • the distance between the outflow side end surface of the inflow side sealing portion and the inflow side end surface of the outflow side sealing portion is preferably 120 mm or more.
  • FIG. 1 (a) is a schematic cross-sectional view showing an example of a ceramic honeycomb filter of the present invention perpendicular to a flow path.
  • FIG. 1 (b) is a schematic cross-sectional view showing an example of the ceramic honeycomb filter of the present invention parallel to the flow path.
  • FIG. 2 is a diagram schematically showing each loss of P1 to P4 constituting the pressure loss.
  • FIG. 3 ( a ) is a graph showing an example of the relationship between L / A ° ′ 5 and pressure loss.
  • FIG. 3 (b) is a graph showing another example of the relationship between L / A ° 5 and pressure loss.
  • FIG. 3 (c) is a graph showing yet another example of the relationship between L / A ° 5 and pressure loss.
  • FIG. 4 is a graph showing an example of the relationship between L / A ° 5 and pressure loss before and after particulate collection.
  • FIG. 5 is a graph showing the relationship between L / A ° 5 and the maximum temperature of the outlet end face of the honeycomb filter during particulate combustion.
  • FIG. 8 (a) is a schematic cross-sectional view showing a conventional ceramic honeycomb filter perpendicular to the flow path.
  • FIG. 8 (b) is a schematic cross-sectional view showing a conventional ceramic honeycomb filter parallel to the flow path.
  • the honeycomb filter 10 of the present invention has a large number of outflow side seals partitioned by an outer peripheral wall 1 and partition walls 2 orthogonal to the inner side of the outer peripheral wall 1, respectively.
  • Porous ceramic honeycomb structure having stop flow path 3 and inflow side sealing flow path 4, and inflow side sealing that seals exhaust gas inflow end face 8 and exhaust gas outflow end face 9 alternately in a checkered pattern
  • the portion 6a and the outflow side sealing portion 6b are combined with force.
  • the thickness W (mm) of the partition wall 2 is 0.1 mm to 0.5 mm.
  • W partition wall loss
  • P1 the inlet loss
  • P2 the outlet loss
  • P3 the partition wall loss
  • P1 the inlet loss
  • P2 the outlet loss
  • W the strength of the honeycomb filter will be low and not suitable for practical use.
  • Equation (1) is the viscosity of air at room temperature (MPa 's), W is the thickness of the partition wall (mm), Q is the flow rate of gas through the partition wall (m 3 / s), and E is the gas passage Partition area (m 2 ), P3 is the pressure difference in the thickness direction of the partition [partition loss] (MPa).
  • a method for measuring the air permeability is described in, for example, Japanese Translation of PCT International Publication No. 2003-5 34229. From equation (1), partition wall loss (P3) is
  • the partition wall loss ( ⁇ ⁇ ⁇ ⁇ 3) of the honeycomb filter is inversely proportional to ⁇ / W.
  • the larger ⁇ / W the smaller the partition wall loss ( ⁇ 3).
  • the partition wall 2 preferably has an air permeability ⁇ of 2, 1 m 2 or more! /.
  • the air permeability ⁇ force is less than 3 ⁇ 4 ⁇ m 2 , the partition wall loss (P3) is large, so that the pressure loss of the honeycomb filter increases. More preferably the permeability ⁇ of the partition wall 2 is 4 ⁇ m 2 or more.
  • the air permeability ⁇ is preferably 10 m 2 or less. More preferably, it is 8 ⁇ m 2 or less.
  • the air permeability ⁇ is adjusted by the porosity and pore diameter of the partition walls. Specifically, it can be adjusted by increasing or decreasing the amount of pore-forming agent such as foamed resin added to the clay.
  • the partition wall loss (P3) of the honeycomb filter is inversely proportional to the partition wall area E.
  • the partition area E is proportional to the flow path length L (the total length of the honeycomb filter) and inversely proportional to the partition pitch P.
  • the partition pitch P is proportional to the square root of the cross-sectional area A of the flow path
  • the partition wall area E is proportional to L / A ° 5 and therefore the partition wall loss (P3) is inversely proportional to L / A ° ' 5 .
  • the larger the total area of the partition walls the smaller the amount of particulates collected per unit area of the partition wall, so the increase in pressure loss [partition wall loss (P3)] after particulate collection is reduced.
  • the flow path loss (P4) increases as the length L of the flow path becomes longer! /, And as the cross-sectional area A of the flow path decreases! /, The smaller the partition wall pitch P is, the larger the loss is. Is approximately proportional to L / A ° ' 5 .
  • Bulkhead loss (P3), flow path loss (P4), and bulkhead loss (P3) plus flow path loss (P4) when ⁇ / W is constant and L / A ° ' 5 is changed in the figure Figure 3 (a) shows an example of the change in the total and display).
  • ⁇ / W is a value that satisfies 8 ⁇ ⁇ / W ⁇ 26.7.
  • Fig. 3 (b) shows the relationship between L / A ° ' 5 and pressure loss when ⁇ / W is smaller than that in Fig. 3 (a).
  • the partition wall loss (P3) increases, so the pressure loss [total of partition wall loss (P3) and flow path loss (P4)] of the honeycomb filter increases. Therefore, when ⁇ / W is excessively small, the pressure loss of the honeycomb filter becomes so large that it is not suitable for practical use. Therefore, an increase in pressure loss of the honeycomb filter can be prevented by setting ⁇ / W to 8 or more.
  • Fig. 3 (c) shows the relationship between L / A ° 5 and pressure loss when ⁇ / W is larger than that in Fig. 3 (a).
  • the partition wall loss (P3) decreases, so the pressure loss of the honeycomb filter [total of wall loss (P3) and flow path loss (P4)] also decreases. Therefore, in order to reduce the pressure loss of the honeycomb filter, the larger ⁇ / W is preferable.
  • the porosity and / or flatness of the septum Increasing the uniform pore diameter to increase the air permeability ⁇ or reducing the partition wall thickness W decreases the strength of the honeycomb filter. Therefore, if the design is made to increase ⁇ / W excessively, the strength of the honeycomb filter is lowered and it is not suitable for practical use.
  • ⁇ / W is less than 26.7.
  • the ratio L / A ° 5 with the square root of the length of the channel L (mm) and the flow path cross-sectional area A (mm 2) is, 125 ⁇ L / A ° - is a value that satisfies 5 ⁇ 3 60.
  • L / A ° 5 is greater than 360, the pressure loss of the honeycomb filter increases and melting damage occurs during regeneration of the honeycomb filter.
  • Regeneration of the honeycomb filter is performed by burning fine particles deposited on the surface of the partition wall by high-temperature air flowing into the filter.
  • the length L of the flow path and the cross-sectional area A of the flow path are determined as follows. Affects filter temperature during regeneration.
  • FIG. 5 shows that after collecting a certain amount of fine particles in various nonicum filters having different flow path lengths L, air at 550 ° C. was introduced from the inflow side end face 8 to burn the fine particles. Shows the relationship between the value of L / A ° 5 and the maximum temperature of the exhaust gas outlet end face. As the value of L / A ° ' 5 increases, the maximum temperature at the exhaust gas outlet side end surface increases rapidly. In other words, the longer the flow path length L is, the higher the filter temperature becomes, and the more easily the melting damage occurs. In addition, if the cross-sectional area A of the flow path is reduced, the total area of the partition walls increases, and the amount of particulates deposited per unit area of the partition walls decreases. For this reason, the contact area with air increases, and fine particles burn efficiently. As a result, a rapid temperature rise occurs and the honeycomb filter is likely to be melted.
  • the pressure loss of the honeycomb filter can be reduced when the above K / W force is not less than the above and L / A ° 5 is not more than 360. If it is less than ⁇ / W force, the partition wall loss (P3) is high.To reduce the pressure loss, the flow path length L is increased or the partition wall pitch is decreased to reduce ⁇ ° 5. It is necessary to do. If the length L of the flow path is increased, the above-mentioned problem of melting occurs, and if the partition pitch is decreased, the bulk density increases as will be described later.
  • the weight and volume of the honeycomb filter are undesirably increased.
  • the pressure loss of the honeycomb filter is undesirably increased.
  • S increases, the diameter of the container for storing the honeycomb filter increases. Since the gas flowing through the exhaust pipe expands and contracts before and after passing through the honeycomb filter, the gas expands when the diameter of the container increases. This is because the amount of contraction increases and the pressure loss increases.
  • 0.75 ⁇ L / S ° 5 is preferable because it can prevent an increase in the pressure loss of the honeycomb filter and also prevent an increase in the volume and weight of the honeycomb filter. It is preferable that 0.87 ⁇ L / S ° 5 is more preferable. 0.98 ⁇ L / S 0 5 is more preferable. When L / S ° 5 is less than 0.98, L / A ° 5 is preferably 210 or less because the pressure loss of the honeycomb filter can be reduced.
  • the honeycomb filter of the present invention preferably has a bulk density [honeycomb filter mass (g) / honeycomb filter volume (cm 3 )] of less than 0.5 gm 3 .
  • a bulk density is 0.5 gm 3 or more, the heat capacity increases, so in the case of a catalyst-supported honeycomb filter (which burns and purifies particulates collected by the action of the supported catalyst substance), a high-temperature exhaust gas is required. It takes time to activate a catalytic substance whose temperature rises slowly by heating means such as gas and unburned fuel. Therefore, the regeneration of the honeycomb filter cannot be performed in a short time.
  • the bulk density of the honeycomb filter is less than 0.4 gm 3 .
  • the bulk density of the honeycomb filter becomes smaller as the cross-sectional area of the flow paths 3 and 4 is larger, the partition wall thickness W is thinner, and the partition wall porosity is larger. If designed, the strength of the honeycomb filter is so weak that it is not suitable for practical use. On the other hand, if the bulk density is too small, the temperature rises too much when the honeycomb filter is regenerated, so that melting damage occurs or a large temperature difference occurs between the parts and cracks occur.
  • the bulk density of the honeycomb filter is more preferably at 0.1 g N m 3 or more at which m 3 or N preferably fixture 0.3 g of.
  • the porosity of the outer peripheral wall 1 is preferably 30% or more, and more preferably 35% or more. If the porosity of the outer peripheral wall 1 is extremely large, the strength decreases and it is not suitable for practical use. Therefore, it is preferably 80% or less, more preferably 60% or less.
  • the outer peripheral wall 1 can be integrally formed simultaneously with the formation of the partition wall 2 during extrusion molding, or can be formed later on the outer periphery of the extruded ceramic honeycomb structure. In the latter case, the partition wall 2 and the outer peripheral wall 1 can have different porosities.
  • the opening ratio at the exhaust gas inflow side end face 8 is preferably 30% or more! /. Opening ratio is 30% If it is less than 1, the inlet loss (PI) becomes small, and the pressure loss of the honeycomb filter becomes large.
  • the aperture ratio is more preferably 34% or more.
  • the opening ratio is the ratio of the total opening area of the outflow side sealed flow path 3 to the area of the exhaust gas inflow side end face 8.
  • the flow path length L (mm) is preferably 140 mm or more.
  • the inventors of the present invention have found that the magnitude of the pressure loss after collecting the fine particles on the honeycomb filter and the length L of the 1S channel changes greatly with 140 mm as a boundary.
  • Figure 6 shows a graph conceptually showing the relationship between the length of the flow path and the magnitude of the pressure loss after collection of fine particles. When the value of L is less than 140 mm, the pressure loss after collecting the particulates becomes remarkably large.
  • the distance X (mm) between the outflow side end surface 7a of the inflow side sealing portion 6a and the inflow side end surface 7b of the outflow side sealing portion 6b is set to 120 mm or more, so that sealing is performed. Even when the length of the stoppers 6a, 6b in the flow path direction is as long as 10 mm or more, or even when the inflow side sealing portion 6a is arranged away from the end face 8 of the exhaust gas inflow side, the particulate collection A honeycomb filter with a small pressure loss later can be obtained more reliably.
  • the air permeability ⁇ of the partition wall on which the catalyst is supported is preferably 1 or more, and particularly preferably 2 or more.
  • the air permeability ⁇ can be increased to 1 or more even when the catalyst is supported.
  • the supported amount of the catalyst is preferably 6 g or less, preferably 4 g or less per liter of the honeycomb filter volume.
  • the porosity of the partition walls before catalyst loading is preferably 60% or more and the air permeability ⁇ is 3 or more.
  • the ceramic honeycomb filter of the present invention is mainly used for the purpose of removing fine particles in the exhaust gas of a diesel engine, it is resistant as a material constituting the partition walls and the sealing portion.
  • cordierite as the main crystal is most preferred because of its low cost, excellent heat resistance and corrosion resistance, and low thermal expansion! /.
  • the material constituting the partition and the material constituting the sealing part may be different! /, But the same material may be used to reduce the stress caused by the difference in thermal expansion coefficient between the partition and the sealing part. Is preferably used.
  • the raw material powder was produced. To this were added methylcellulose and hydroxypropynolemethylcellulose as binders, foamed resin as a lubricant and pore-forming agent, and after thoroughly mixing in a dry process, water was added and kneaded thoroughly to prepare a plasticized ceramic clay. This kneaded material was extruded and cut to obtain a formed body having a honeycomb structure. The formed body was dried and fired to obtain a cordierite ceramic honeycomb structure. Sealing portions 6a and 6b are provided at one end of each flow path 3 and 4 of this honeycomb structure, and an outer peripheral wall 1 is provided.
  • the overall length (L) is 360 mm, the outer diameter (2r) is 300 mm, and the partition wall thickness (
  • the honeycomb filter 10 shown in Fig. 1 having W) 0.3 mm, partition wall pitch (P) 1.5 mm, and porosity of 60% was obtained.
  • the obtained honeycomb filter had an air permeability K of 4.6 ⁇ m 2 and a bulk density of 0.4 g.
  • the air permeability ⁇ can be adjusted by increasing or decreasing the amount of foamed resin, which is a pore-forming agent, added to the clay.
  • a honeycomb filter was manufactured in the same manner as in Example 1 except that the flow path length L was changed as shown in Table 1.
  • Carbon powder (particle size: 0.042 m) from the fine particle generator was added at 0.4 g / min (air flow rate: 1 Nm 3 / min) from the exhaust gas inflow end face 8 side of each honeycomb filter for 1 hour. Thereafter, 20 ° C air was passed through these honeycomb filters at a flow rate of 10 Nm 3 / min, and the differential pressure (pressure loss) between the upstream side and the downstream side was measured with a pressure loss measuring device.
  • the above carbon powder was further added at 1.6 g / min for 1 hour, and the carbon powder was dissolved by burning the carbon powder with 550 ° C air.
  • the loss was evaluated according to the following criteria.
  • the air permeability was measured using test pieces cut out from the partition walls of the honeycomb filters manufactured under the same conditions as the honeycomb filters of Examples 1 to 9. The air permeability was measured in accordance with the method described in JP 20 03-534229.
  • Table 1 shows the evaluation of pressure loss, melting loss, and air permeability.
  • the value of pressure loss is shown as a relative value with the value of Example 3 as 100.
  • Example 1 except that the partition wall thickness W, air permeability ⁇ , channel length, honeycomb filter cross-sectional area S, partition wall pitch P and channel cross-sectional area A were changed as shown in Table 1.
  • honeycomb filters of Examples 10 to 18 were produced.
  • the measurement of the bulk density, volume and pressure loss of these honeycomb filters, and the evaluation of the melting loss were performed in the same manner as the honeycomb filter of Example 1. The results are shown in Table 1.
  • Partition wall thickness W is 0.2, and platinum metal is supported on the partition walls of the honeycomb filter (3 per liter of filter)
  • a honeycomb filter was produced in the same manner as in Example 3 except that the air permeability ⁇ was set to 2.0. Measurement of the bulk density, volume and pressure loss of these honeycomb filters, and evaluation of melting loss were performed in the same manner as the honeycomb filter of Example 1. The results are shown in Table 1.
  • a honeycomb filter was produced in the same manner as in Example 13 except that the total length L of the filter was shortened as shown in Table 1.
  • a honeycomb filter was produced in the same manner as in Example 13 except that the air permeability ⁇ , the total length L of the filter, and the partition pitch ⁇ were changed as shown in Table 1.
  • a honeycomb filter was produced in the same manner as in Example 3 except that the partition wall thickness W was changed as shown in Table 1.
  • a honeycomb filter was produced in the same manner as in Example 3 except that the partition wall thickness W and air permeability ⁇ were changed as shown in Table 1.
  • the strength of the honeycomb filter of Comparative Example 4 was about 50%.
  • the honeycomb filter of the present invention (Examples 1 to 19) has a partition wall thickness of 0.1 to 0.5 mm, and 125 ⁇ 8 ° ' 5 ⁇ 360 and 8 ⁇ Since ⁇ / W ⁇ 26.7 was satisfied, the pressure loss force S was 140 or less. Among them, the air permeability of the partition walls ⁇ force 3 ⁇ 4.0 01
  • the honeycomb filters of Examples 1 to 16 and 19 having 2 or more had low values of pressure loss force or less.
  • the honeycomb filters of Examples 2 to 7 and 14 satisfy the relationship of 0.75 ⁇ L / S ° 5 ⁇ 1.2, and thus have a particularly excellent shape with small pressure loss and volume.
  • the honeycomb filter of Comparative Example 1 having a smaller value force of L / A ° 5 has a large pressure loss of 222.
  • the honeycomb filter of Comparative Example 2 in which the value of L / A ° 5 is larger than 360.
  • the filter was found to have a large melting loss with a pressure loss of 142.
  • the pressure loss is also as large as 157 because it is less than / ⁇ 0.0.
  • the honeycomb filter of Comparative Example 3 was confirmed to have a force S in which no erosion damage was observed and a burning residue of fine particles. This is presumed to be due to the high bulk density of 0.7 g / cm 3 .
  • Comparative Example 4 with / W greater than 26.7 is suitable for practical use because of its low isostatic strength as described above!
  • Example 1 300.0 15.3 1.35 104 120 0.4 ⁇
  • Example 2 266.7 15.3 1.20 102 107 0.4 ⁇
  • Example 3 250.0 15.3 1.13 100 100 0.4 ⁇
  • Example 4 233.3 15.3 1.05 98 93 0.4 ⁇
  • Example 5 2 16.7 15.3 0.98 97 87 0.4 ⁇
  • Example 6 191.7 15.3 0.87 98 77 0.4 ⁇
  • Example 7 166.7 15.3 0.75 99 67 0.4 ⁇
  • Example 8 133.3 15.3 0.60 110 53 0.4.
  • Example 9 125.0 15.3 0.56 117 50 0.4 ⁇
  • Example 10 360.0 15.3 1.35 122 120 0.4 ⁇
  • Example 11 250.0 15.3 1.30 130 75 0.4 ⁇
  • Example 12 140.0 15.3 0.53 138 47 0.4 ⁇
  • Example 13 300.0 8.0 1.35 137 120 0.5 ⁇
  • Example 14 230.0 26.7 0.87 102 77 0.5 ⁇
  • Example 15 216.7 15.3 0.73
  • 94 154 0.4 ⁇
  • Example 17 215.4 8.0 1.05 139 93 0.3 ⁇
  • Example 18 311.1 10.0 1.05 140 93 0.2 ⁇
  • Example 19 230.8 10.0 1.13 116 100 0.3 ⁇
  • Comparative example 1 100.0 8.0 0.45 222 40 0.5 ⁇ Comparative Example 2 370.0 9.3 1.39 142 123 0.4 X Comparative Example 3 333.3 7, 7 1.13 157 100 0.7 ⁇ Comparative Example 4 214.3 32.0 1.13
  • a honeycomb filter was prepared in the same manner as in Example 8 except that the partition pitch P and the filter outer diameter were changed to 1.4 mm and 190 mm, respectively, and the flow path length L was changed to the values shown in Table 2.
  • a honeycomb filter was produced in the same manner as in Example 20 except that the flow path length L was changed.
  • Fig. 7 shows the relationship between the length L of the honeycomb filters of Examples 20 to 23 and Comparative Examples 5 to 7 and the pressure loss after collecting the fine particles. From Table 2 and Fig. 7, when the total length L of the honeycomb filter is 140 mm or more, the magnitude of the pressure loss after particulate collection is hardly affected by the size of L, but the total length L of the honeycomb filter is In the case of less than 140 mm, the pressure loss after the collection of particles increased rapidly as the L force S decreased.
  • X is the distance between the outflow side end face of the inflow side sealing part and the inflow side end face of the outflow side sealing part.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Geometry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Filtering Materials (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Description

明 細 書
セラミックハニカムフイノレタ
技術分野
[0001] 本発明は、ディーゼルエンジン等から排出される粒子状物質を含む排気ガスを浄 化するのに使用されるセラミックハニカムフィルタに関する。
背景技術
[0002] ディーゼルエンジンの排気ガス中には、炭素 (煤等)及び高沸点炭化水素を主成分 とする微粒子 (Particulate Matter)が含まれており、これが大気中に放出されると人体 や環境に悪影響を与えるおそれがある。このため、ディーゼルエンジンの排気管の 途中に、微粒子を除去し排気ガスを浄化するためのセラミックハニカムフィルタ (以下「 ノ、二カムフィルタ」とも!/、う)を装着することが従来力も行われて!/、る。図 8(a)及び図 8(b) に示すように、従来のハニカムフィルタ 20は、多数の流路 3,4を形成する多孔質隔壁 2 と外周壁 1とからなるセラミックハニカム構造体と、流路 3,4の両端面 8,9を市松模様に 交互に封止する封止部 6a,6bとからなる。ハニカムフィルタの外周壁 1は、金属メッシュ 又はセラミックス製のマット等で形成された把持部材 (図示せず)で固定され、金属製 収納容器 (図示せず)内に配置されて!/、る。
[0003] ハニカムフィルタ 20において、排気ガスは点線矢印で示すように、排気ガス流入側 端面 8に開口している流出側封止流路 3から流入する。排気ガス中に含まれる微粒子 は、隔壁 2に形成された細孔を通過する際に捕集され、排気ガス流出側端面 9に開口 して!/、る流入側封止流路 4から浄化された排気ガスが流出する。隔壁 2に微粒子が捕 集され続けると隔壁の細孔が目詰まりし、圧力損失を増加させる。堆積した微粒子を バーナーやヒーター等により燃焼させることで、ハニカムフィルタを再生することがで きる。しかし、微粒子を燃焼させるにはエネルギーを消費するため、できるだけ再生 処理の間隔を長くするのが好ましい。そのためには、ハニカムフィルタの初期圧損が 小さいこととともに、微粒子を捕集した後もハニカムフィルタの圧力損失が急激に大き くならないことが要求される。
[0004] ハニカムフィルタには、微粒子の高い捕集効率を維持しつつ圧力損失が小さいこと が要求される。ハニカムフィルタの圧力損失は、図 2に模式的に示すように、排気ガス が流入側端面 8から流入する際の入口損失 (P1)、流出側端面 9から流出する際の出 口損失 (P2)、隔壁 2を通過する際の隔壁損失 (P3)、流路 3,4を流れる際の隔壁との摩 擦による流路損失 (P4)の合計であると考えられて!/、る。中でも隔壁損失 (P3)がフィノレ タの圧力損失の大部分を占めると考えられているため、これを低減する技術が検討さ れて!/、る。特に微粒子を捕集した後の圧力損失の上昇は隔壁損失 (P3)の寄与が非 常に大きい。
[0005] 特開 2003-40687号は、気孔率が 55〜65%、平均細孔径が 15〜30 m及び隔壁の 面積に対する隔壁表面に露出した気孔の総面積が 35%以上であるハニカムフィルタ を開示しており、隔壁の気孔率等を規定することにより、微粒子の高捕集効率と低圧 力損失との両立が可能であると記載している。さらに隔壁損失 (P3)の大きさに影響を 与える隔壁の通気度 (パーミアビリティー)は 1.5〜6 m2が好ましいと記載している。し かし特開 2003-40687号は、隔壁損失 (P3)を低減する技術に関して記載して!/、るが、 流路の長さ及び断面積を規定することで流路損失 (P4)を低減する技術に関して記載 していない。
[0006] 特開 2002-239322号は、隔壁の厚さ力 .1〜0.3 mm、隔壁ピッチ力 .4〜3 mm、流 路の断面積が 1.3 mm2以上、流路の一辺の長さが 1.15 mm以上、及び単位体積当た りのフィルタ表面積が 7 cm2ん m3以上である多孔質セラミックハニカム構造体を開示し ており、これらの規定により微粒子を高効率に捕集するとともに圧力損失を低くできる と記載されている。さらに特開 2002-239322号は、隔壁ピッチが小さすぎると、排気ガ スが流入側端面 8から流入する際の入口損失 (P1)が大きくなることも記載して!/、る。こ の記載から出口損失 (P2)も大きくなることは容易に想像できる。し力もながら特開 2002 -239322号は、隔壁ピッチを 3 mm以下と小さくした場合に、隔壁損失 (P3)が小さくなる 一方で、入口損失 (P1)と出口損失 (P2)が大きくなつた結果、ハニカムフィルタのトータ ルの圧力損失がどのようになるかについて記載していない。さらに流路損失 (P4)に関 しては検討されていないので、例えば隔壁ピッチを一定として流路の長さを長くした 場合には、隔壁 2の総面積が大きくなるので隔壁損失 (P3)は小さくなる力 一方で流 路損失 (P4)は大きくなると予想され、その結果ハニカムフィルタのトータルの圧力損失 がどのようになるかは特開 2002-239322号の記載からは判らない。
[0007] WO2003/074848号は、流路の断面の最長辺の長さ l(mm)と、流路の長さ L(mm)とが 、 60≤L/1≤500の関係を満たし、流路内壁の表面粗さ Raが 100 m以下であるハニカ ムフィルタを開示している。 WO2003/074848号は、流路の長さが過度に長い場合や 、流路の長さ方向に垂直な断面の面積 (以下、単に流路の断面積ともいう)が過度に 小さい (すなわち隔壁の厚さが同じならば隔壁ピッチが小さい)場合には、流路損失 (P 4)が大きくなると記載して!/、る。し力もながら流路が長!/、場合や隔壁ピッチが小さ!/、場 合は、流路損失 (P4)が大きくなる一方で隔壁の総面積が大きくなるために隔壁損失( P3)が小さくなることは検討されていない。すなわち流路損失 (P4)が大きくなり隔壁損 失 (P3)が小さくなつた結果、ハニカムフィルタのトータルの圧力損失がどのようになる か WO2003/074848号の記載からは判らない。
[0008] 流路の長さとハニカムフィルタの圧力損失との関係を示す公知文献として、特表 20 03-515023号は、少なくとも約 0.50 gん m3の嵩密度を有し、直径に対する長さの比が 約 0.9を超えないセラミックフィルタを開示している。特表 2003-515023号は、隔壁の 厚さ、隔壁のピッチ、及びハニカムフィルタの体積を一定にしたときのハニカムフィノレ タの全長と圧力損失との関係を示しており、全長が短くなるに従って (このとき、体積 は一定であるから流路垂直方向断面積は増加して!/、る)、ハニカムフィルタの圧力損 失が減少すると記載している。つまり隔壁の総面積が一定であるから隔壁損失 (P3)は 変わらないが、流路の長さが短くなる分、流路損失 (P4)は減少するためトータルの圧 力損失は減少する。し力、し仮にハニカムフィルタの断面積を一定として全長(流路長 さ)を変更した場合には、流路損失 (P4)は減少し隔壁損失 (P3)は増加するため、トー タルの圧力損失がどのようになるか特表 2003-515023号の記載からは判らない。
[0009] 以上のように隔壁のピッチと流路の長さにより、 P1〜P4の 4つの損失がそれぞれ大 きくなる力 vj、さくなるかは推定できるものの、 4つの損失を合計したハニカムフィルタの 圧力損失がどのようになるのかは容易には判らない。
[0010] 特開平 9-299811号は、直径 dと長さ Lとの比 L/dが 0.4〜1.3の範囲にあり、隔壁の厚 さが 0.1 mm以下であり、流路の数力 S100個ん m2以上であるハニカム構造体を記載し ている。し力もこのハニカム構造体は、高い排気ガス浄化性能を維持しつつスポーリ ング強度を高めたものであり、圧力損失を低減することを目的としたものではない。従 つて、特開平 9-29981 1号からはハニカムフィルタの圧力損失を低減するために、隔 壁のピッチ及び流路の長さをどのように設定すればよいかの指針を得ることができな い。
[001 1] 以上のように隔壁のピッチと流路の長さにより、 P1〜P4の 4つの損失がそれぞれ大 きくなる力 vj、さくなるかは推定できるものの、 4つの損失を合計したハニカムフィルタの 圧力損失がどのようになるのかは容易には判らない。このためハニカムフィルタの開 発は、実際に何種類ものハニカムフィルタを製作して特性を測定し、これを繰り返す ことによってより好まし!/、ものを得ると!/、つた方法で行われて!/、る。
[0012] また隔壁のピッチ及び流路の長さは、ハニカムフィルタの再生 (微粒子の燃焼)時 の温度上昇に影響を与え、流路が長!/、ほど排気ガス流出側端面 9近傍の温度が高く なり、溶損が発生しやすくなるという問題もあった。
発明の開示
発明が解決しょうとする課題
[0013] 従って、本発明の目的は、圧力損失を低減し、溶損の発生しにくいハニカムフィル タを得ることである。
課題を解決するための手段
[0014] 上記目的に鑑み鋭意研究の結果、本発明者らは、隔壁の厚さと通気度との関係、 及び流路の断面積と長さの関係を規定することで、圧力損失を低減し、溶損の発生 しにくいハニカムフィルタが得られることを見出し、本発明に想到した。
[0015] すなわち、本発明のセラミックハニカムフィルタは、多孔質の隔壁で仕切られた多数 の流路を有するハニカム構造体と、前記流路の排気ガス流入側又は排気ガス流出 側に交互に設けられた封止部とを有するセラミックハニカムフィルタであって、前記隔 壁の厚さ W(mm)、前記隔壁の通気度 κ ( m2)、前記流路の長さ L(mm)及び前記流路 の長さ方向に垂直な面における前記流路の断面積 A(mm2)が、
0. 1≤W≤0.5 ,
8≤ K /W≤26.7 ,及び
125≤L/A0 5≤360 を満たすことを特徴とする。
[0016] 前記通気度 κ m2)は 2以上であるのが好ましい。
[0017] 前記 L及び前記流路の長さ方向に垂直な面における前記ハニカムフィルタの断面 積 S(mm2)は、 0.75≤ L/S° 5≤ 1 · 2を満たすのが好まし!/ヽ。
[0018] 前記長さ Lは 140 mm以上であるのが好ましい。
[0019] 前記流入側封止部の流出側端面と、前記流出側封止部の流入側端面との距離は 120 mm以上であるのが好ましい。
発明の効果
[0020] セラミックハニカムフィルタの隔壁の厚さと通気度、及び流路の断面積と長さの関係 を規定することで、圧力損失を低減し、かつ溶損の発生しにくいハニカムフィルタを 得ること力 Sできる。さらにこれらの関係から、圧力損失が最も低くなる構成のセラミック ハニカムフィルタの形状パラメータを決めることができる。
図面の簡単な説明
[0021] [図 1(a)]本発明のセラミックハニカムフィルタの一例を流路に垂直に示す模式断面図 である。
[図 1(b)]本発明のセラミックハニカムフィルタの一例を流路に平行に示す模式断面図 である。
[図 2]圧力損失を構成する P1〜P4の各損失を模式的に表す図である。
[図 3(a)]L/A°'5と圧力損失との関係の一例を示すグラフである。
[図 3(b)]L/A° 5と圧力損失との関係の他の例を示すグラフである。
[図 3(c)]L/A° 5と圧力損失との関係のさらに他の例を示すグラフである。
[図 4]L/A° 5と微粒子捕集前後の圧力損失との関係の一例を示すグラフである。
[図 5]L/A° 5と微粒子燃焼時のハニカムフィルタの流出側端面の最高温度との関係を 園 6]流路の長さと圧力損失との関係を示すグラフである。
園 7]実施例 20〜23及び比較例 5〜7において、流路の長さと微粒子捕集後の圧力
Figure imgf000007_0001
[図 8(a)]従来のセラミックハニカムフィルタを流路に垂直に示す模式断面図である。 [図 8(b)]従来のセラミックハニカムフィルタを流路に平行に示す模式断面図である。 発明を実施するための最良の形態
[0022] [1]本発明の作用効果
本発明のハニカムフィルタ 10は、図 1(a)及び図 1(b)に示すように、外周壁 1と、この外 周壁 1の内側に各々直交する隔壁 2で仕切られた多数の流出側封止流路 3と流入側 封止流路 4とを有する多孔質セラミックハニカム構造体と、排気ガス流入側端面 8と排 気ガス流出側端面 9を市松模様に交互に封止する流入側封止部 6aと流出側封止部 6 bと力、らなる。
[0023] (1)隔壁の厚さ W
隔壁 2の厚さ W(mm)は 0· 1〜0·5 mmである。 Wが 0.5 mmより大きいと隔壁損失 (P3)が 増大するとともに入口損失 (P1)と出口損失 (P2)が増加し、ハニカムフィルタの圧力損 失が増加する。 Wが 0.1 mmより小さいとハニカムフィルタの強度が低くなり実用に適さ ない。
[0024] (2)通気度 κ
通気度 κ ( H m2)は、式 (1)により表される。
κ = 1 X 10— 3 ] . Q 'W/(E' P3) · ' · (1)
式 (1)において、 は室温における空気の粘度 (MPa' s)、 Wは隔壁の厚さ (mm)、 Qは 隔壁を通過するガスの流量 (m3/s)、 Eはガスが通過する隔壁の面積 (m2)、 P3は隔壁の 厚さ方向の圧力差 [隔壁損失] (MPa)である。通気度の測定方法は例えば特表 2003-5 34229号に記載されている。式 (1)より、隔壁損失 (P3)は、
Ρ3 = (1 Χ 10— 3 ] Q/E) 'W/ K · ' · (2)
となるので、ハニカムフィルタの隔壁損失 (Ρ3)は κ /Wに反比例することが分かる。つ まり κ /Wが大きいほど隔壁損失 (Ρ3)は小さくなる。
[0025] 隔壁 2の通気度 κは 2 ,1 m2以上であるのが好まし!/、。通気度 κ力 ¾ μ m2未満の場合 、隔壁損失 (P3)が大きいためハニカムフィルタの圧力損失が大きくなる。隔壁 2の通気 度 Κは 4〃 m2以上であるのがさらに好ましい。また、通気度 κ力 S 10〃 m2を超えると微 粒子の捕集率が悪化すので、通気度 κは 10 m2以下であるのが好ましい。さらに好 ましくは 8 ^ m2以下である。通気度 κは隔壁の気孔率及び気孔径によって調節する。 具体的には、発泡樹脂等の造孔剤の坏土への添加量を増減することで調整すること ができる。
[0026] 式 (1)より、ハニカムフィルタの隔壁損失 (P3)は隔壁の面積 Eに反比例することが分 かる。つまり隔壁の面積が大きいほど隔壁損失 (P3)は小さくなる。隔壁の面積 Eは、流 路の長さ L (ハニカムフィルタの全長)に比例し、隔壁ピッチ Pに反比例する。ここで隔 壁ピッチ Pは流路の断面積 Aの平方根に比例するので、隔壁の面積 Eは L/A° 5に比例 し、従って隔壁損失 (P3)は L/A°'5に反比例する。さらに隔壁の総面積が大きいほど隔 壁単位面積当たりに捕集される微粒子の量が低減するため、微粒子を捕集した後の 圧力損失 [隔壁損失 (P3)]の上昇は小さくなる。
[0027] 一方、流路損失 (P4)は、流路の長さ Lが長!/、ほど、また流路の断面積 Aが小さ!/、ほ ど(隔壁ピッチ Pが小さいほど)大きくなり、ほぼ L/A°'5に比例する。 κ /Wが一定で L/A °'5を変化させたときの隔壁損失 (P3)、流路損失 (P4)、及び隔壁損失 (P3)と流路損失 (P 4)の合計 (図では計と表示)の変化の一例を図 3(a)に示す。ハニカムフィルタの圧力損 失 [隔壁損失 (P3)と流路損失 (P4)の合計]が極小となる L/A°'5が存在し、単に隔壁ピッ チ Pを小さくし隔壁の面積を大きくするほど、又は流路長さ Lを短くするほどハニカムフ ィルタの圧力損失が小さくなるわけではないことが理解できる。過度に L/A° 5が大きい 場合にもハニカムフィルタの圧力損失は上昇する。
[0028] (3)通気度と隔壁の厚さの比: κ /W
κ /Wは、 8≤ κ /W≤ 26.7を満たす値である。 κ /Wが図 3(a)の場合よりも小さい場 合の L/A°'5と圧力損失の関係を図 3(b)に示す。 κ /Wが小さくなると隔壁損失 (P3)が大 きくなるため、ハニカムフィルタの圧力損失 [隔壁損失 (P3)と流路損失 (P4)の合計]が 大きくなる。従って過度に κ /Wが小さい場合にはハニカムフィルタの圧力損失が著 しく大きくなり実用に適さない。従って κ /Wを 8以上にすることでハニカムフィルタの 圧力損失の上昇を防止できる。
[0029] κ /Wが図 3(a)の場合よりも大きい場合の L/A° 5と圧力損失の関係を図 3(c)に示す。
κ /Wが大きくなると隔壁損失 (P3)が小さくなるため、ハニカムフィルタの圧力損失 [隔 壁損失 (P3)と流路損失 (P4)の合計]も小さくなる。従ってハニカムフィルタの圧力損失 を低減するためには κ /Wは大きいほど好ましい。しかし隔壁の気孔率及び/又は平 均気孔径を大きくして通気度 κを大きくしたり、隔壁の厚さ Wを薄くしたりするとハニカ ムフィルタの強度は小さくなつてしまう。従って過度に κ /Wを大きくするような設計を 行うとハニカムフィルタの強度が低下し実用に適さない。例えば、 κ = 8 012 (気孔率 を 70%程度)の隔壁を、厚さ W = 0.3 mmより小さくするとハニカムフィルタの強度は低 くなりすぎて実用に適さなくなる。従って κ /Wは 26.7以下である。
[0030] (4)流路の長さと (流路の断面積 )°·5の比: L/A° 5
流路の長さ L(mm)と流路の断面積 A(mm2)の平方根との比 L/A° 5は、 125≤L/A°-5≤3 60を満たす値である。 L/A° 5が 360より大きな値になるとハニカムフィルタの圧力損失 が上昇するとともに、ハニカムフィルタの再生時に溶損が発生する。ハニカムフィルタ の再生は、フィルタに流入させた高温の空気によって隔壁の表面に堆積した微粒子 を燃焼させることによって行うが、流路の長さ L及び流路の断面積 Aは、ノ、二カムフィ ルタ再生時のフィルタの温度に影響を与える。
[0031] 図 5は、流路の長さ Lのみが異なる各種ノヽニカムフィルタに一定量の微粒子を捕集 させた後、流入側端面 8より 550°Cの空気を流入させ微粒子を燃焼させたときの、 L/A °·5の値と排気ガス流出側端面の最高温度との関係を示す。 L/A°'5の値が大きくなると 急激に排気ガス流出側端面の最高温度が上昇する。つまり流路の長さ Lが長!/、ほど フィルタ温度が高くなり、溶損が発生しやすくなる。また流路の断面積 Aを小さくすると 隔壁の総面積が大きくなり、隔壁の単位面積当たりの微粒子の堆積量が減少する。 このため空気との接触面積が増加し、微粒子が効率よく燃焼するようになる。その結 果、急激な温度上昇が起こり、ハニカムフィルタに溶損が発生しやすくなる。
[0032] 本発明にお!/、て上記の K /W力 以上で、かつ L/A° 5が 360以下である場合にハニ カムフィルタの圧力損失を低減することができる。 κ /W力 未満であると隔壁損失 (P3 )が高いため、圧力損失を低減するためには流路の長さ Lを長くしたり、隔壁のピッチ を小さくして Α°·5を小さくしたりする必要がある。し力も流路の長さ Lを長くすると上記溶 損の問題が生じ、隔壁ピッチを小さくすると後述するように嵩密度が増大する。
[0033] 図 3(a)に示すように、 L/A° 5が 125以下になるとハニカムフィルタの圧力損失が急激 に大きくなる。しかし図 3(c)に示すように、 κ /Wの値の大きいハニカムフィルタを使用 した場合、隔壁損失 (P3)と流路損失 (P4)の合計が極小となる L/A°'5は小さくなる。従つ て、ハニカムフィルタの強度を満足する範囲内で κ /Wを大きくすることによりハニカム フィルタの全長 Lを短くしても十分に圧力損失を小さくできる。し力、しながら、 L/A° 5が 小さ!/、(ノヽ二カムフィルタの全長 Lが短!/、及び/又は隔壁ピッチ Pが大き!/、)、すなわ ち隔壁の総面積が小さいときには、図 4に示すように、微粒子を捕集するに伴って隔 壁単位面積当たりの微粒子の堆積量が急激に増加し、ハニカムフィルタの圧力損失 が上昇する。従って L/A° 5の値の下限は微粒子捕集時の圧力損失により制限され、 1 25≤L/A° 5とすることで、微粒子捕集時のハニカムフィルタの圧力損失が急激に上昇 することを防ぐこと力 Sできる。そして L/A° 5を大きくすることによって、例えハニカムフィ ルタの初期圧損が増加する場合であっても、微粒子捕集時の圧力損失の上昇を低 減すること力できる。よって 133.3≤L/A° 5であるのが好ましぐ 166≤L/A° 5であるのが より好ましぐ 175≤L/A°'5であるのが最も好ましい。
[0034] なお、本発明においては全ての流路が 125≤L/A°'5≤ 360の式を満たす必要はなく 、半数以上の流路がこの式を満たせばよい。さらに好ましくは 80%以上の流路がこの 式を満たせばよい。
[0035] (5)流路の長さと (フィルタ断面積 )°·5の比: L/S° 5
流路の長さ L(mm)方向に垂直な面におけるハニカムフィルタの断面積を S(mm2)とし たとき、 Lと Sとの関係が 0.75≤L/S° 5≤1.2を満足するのが好ましい。流路の断面積 A が一定である場合、ハニカムフィルタの断面積 Sが減少すると、流路 3,4の数が減少し ハニカムフィルタの圧力損失が大きくなるので、圧力損失を低減するためには Sは大 きい方が好ましい。また流路の長さ Lが大きくなると、ハニカムフィルタの体積が大きく なり、車両への搭載スペースを大きくとるため好ましくない。従って L/S° 5≤1.2とするこ とでハニカムフィルタの圧力損失の増大を防止するとともに、ハニカムフィルタの体積 の増大を防止できる。なお、 Lと次元をあわせるため S° 5としている。
[0036] 流路の長さ Lに対してハニカムフィルタの断面積 Sが大きくなると、ハニカムフィルタ の重量と体積が大きくなり好ましくない。またハニカムフィルタの断面積 Sが大きくなる と、ハニカムフィルタの圧力損失が増大し好ましくない。 Sが大きくなるとハニカムフィ ルタを収納する容器の直径が大きくなる。排気管を流れるガスがハニカムフィルタを 通過する前後で膨張 ·収縮するため、この収納容器の直径が大きくなるとガスの膨張 収縮量が大きくなり、圧力損失が大きくなるためである。従って 0.75≤L/S° 5とすること で、ハニカムフィルタの圧力損失の増大を防止すると同時に、ハニカムフィルタの体 積と重量の増大を防止でき好ましい。 0.87≤L/S° 5であるのが好ましぐ 0.98≤L/S0 5 であるのがさらに好ましい。 L/S° 5が 0.98未満の場合には L/A° 5は 210以下であるのが ハニカムフィルタの圧力損失が低減できるので好ましい。
[0037] (6)嵩密度
本発明のハニカムフィルタは、嵩密度 [ハニカムフィルタの質量 (g)/ハニカムフィル タの体積 (cm3)]を 0.5 gん m3未満にするのが好ましい。嵩密度が 0.5 gん m3以上である と熱容量が大きくなるため、特に触媒担持型 (担持した触媒物質の作用により捕集し た微粒子を燃焼浄化する)ハニカムフィルタの場合には、高温の排気ガスや未燃燃 料等の加熱手段による温度の上昇が遅ぐ触媒物質が活性化されるのに時間がかか る。そのためハニカムフィルタの再生を短時間で行うことができない。また高温の排気 ガスや未燃燃料等の加熱手段を大量に供給しなければならず燃費が悪くなる。ハニ カムフィルタの嵩密度は 0.4 gん m3未満であるのがさらに好ましい。一方、ハニカムフ ィルタの嵩密度は、流路 3,4の断面積が大きいほど、また隔壁の厚さ Wが薄いほど、ま た隔壁の気孔率が大きいほど小さくなるため、極端に嵩密度の小さな設計にした場 合はハニカムフィルタの強度が弱く実用に適さなくなる。また過度に嵩密度が小さい と、ハニカムフィルタの再生時に温度が上昇しすぎるため、溶損が発生したり、部位ご とに大きな温度差が生じて割れが発生したりする。従ってハニカムフィルタの嵩密度 は 0.1 gん m3以上であるのが好ましぐ 0.3 gん m3以上であるのがさらに好ましい。
[0038] ハニカムフィルタの嵩密度を小さくするために、外周壁 1の気孔率は 30%以上であ るのが好ましく、 35%以上であるのがより好ましい。外周壁 1の気孔率は極端に大きい と強度が低下し実用に適さなくなるため、 80%以下であるのが好ましぐ 60%以下で あるのがさらに好ましい。外周壁 1は、押出成形時に隔壁 2の成形と同時に一体成形 することもできるし、押出成形セラミックハニカム構造体の外周に後から形成すること もできる。後者の場合は、隔壁 2と外周壁 1とを異なった気孔率にすることができる。
[0039] (7)開口率
排気ガス流入側端面 8での開口率は 30%以上であるのが好まし!/、。開口率は 30% 未満であると入口損失 (PI)が小さくなり、ハニカムフィルタの圧力損失が大きくなつて しまう。開口率は 34%以上がより好ましい。上記開口率とは、排気ガス流入側端面 8 の面積に対する流出側封止流路 3の開口面積の総和の割合である。
[0040] (8)流路の長さ L
本発明のハニカムフィルタは、流路の長さ L(mm)が 140 mm以上であるのが好ましい 。本発明者らは、ハニカムフィルタに微粒子を捕集した後における圧力損失の大きさ 1S 流路の長さ Lが 140 mmを境として大きく変化することを見出した。流路の長さしと 微粒子捕集後の圧力損失の大きさとの関係を概念的に表したグラフを図 6に示す。 L の値が 140 mmより小さい値であるときに、微粒子捕集後における圧力損失が著しく 大きくなる。
[0041] (9)流入側封止部の流出側端面と流出側封止部の流入側端面との距離 X
さらに、図 1に示すように流入側封止部 6aの流出側端面 7aと、流出側封止部 6bの流 入側端面 7bとの距離 X(mm)を 120 mm以上にすることで、封止部 6a、 6bの流路方向の 長さが 10 mm以上と長い場合や、流入側封止部 6aが排気ガス流入側端面 8より離れ て配置されている場合であっても、微粒子捕集後における圧力損失が小さいハニカ ムフィルタをより確実に得ることができる。
[0042] (10)酸化触媒
排気ガスの温度が低い場合でも、効率よく微粒子を燃焼させるために、隔壁の表面 及び細孔内に酸化触媒を担持させるのが好ましい。酸化触媒としては、白金族金属 触媒が特に好ましい。触媒が担持された隔壁の通気度 κは 1以上であるのが好ましく 、 2以上であるのが特に好ましい。触媒担持後の隔壁の気孔率を 50%以上とすること で、触媒担持した場合でも通気度 κを 1以上にすること力 Sできる。通気度 κを大きく するためには、触媒の担持量をハニカムフィルタ体積 1リットル当り 6 g以下、好ましく は 4 g以下とするのが好ましい。この時、触媒担持前の隔壁の気孔率は 60%以上、通 気度 κを 3以上とするのが好ましい。
[0043] [2]セラミックハニカムフィルタ
本発明のセラミックハニカムフィルタは主にディーゼルエンジンの排気ガス中の微 粒子を除去する目的で使用されるため、隔壁及び封止部を構成する材料としては耐 熱性に優れたものが好ましぐコーディエライト、アルミナ、ムライト、窒化珪素、炭化 珪素、チタン酸アルミニウム、窒化アルミニウム及び LASからなる群から選ばれた少な くとも一種を主結晶とするセラミック材料を用いるのが好ましい。中でも、コージエライト を主結晶とする材料は、安価で耐熱性及び耐食性に優れ、低熱膨張であることから 最も好まし!/、。隔壁を構成する材料と封止部を構成する材料は異なって!/、ても構わ ないが、隔壁と封止部との熱膨張係数の違いによって発生する応力を低減するため に、同一の材料を用いるのが好ましい。
[0044] 本発明を以下の実施例によりさらに詳細に説明する力 本発明はこれらに限定され るものではない。
[0045] 実施例 1
カオリン、タノレク、シリカ、ァノレミナ、水酸化アルミニウムの粉末を、 50質量0 /0の SiO、 35質量%の A1 0、及び 15質量%の MgOの組成となるように配合し、コーディエライト
2 3
生成原料粉末とした。これにバインダーとしてメチルセルロース及びヒドロキシプロピ ノレメチルセルロース、潤滑材及び造孔剤として発泡樹脂を添加し、乾式で十分混合 した後、水を添加して十分に混練し、可塑化セラミック坏土を作製した。この坏土を押 出し成形し、切断して、ハニカム構造を有する成形体とした。この成形体を乾燥及び 焼成し、コーディエライト質セラミックハニカム構造体を得た。このハニカム構造体の 各流路 3,4の一端に封止部 6a,6bを設け、さらに外周壁 1を設け、全長 (L)360 mm、外 径 (2r)300 mm、隔壁の厚さ (W)0.3 mm、隔壁ピッチ (P)1.5 mm及び気孔率 60%の図 1 に示すハニカムフィルタ 10を得た。得られたハニカムフィルタの通気度 Kは 4.6 μ m2、 嵩密度は 0.4 gん であった。通気度 κは造孔剤である発泡樹脂の坏土への添加量 を増減することで調整すること力できる。排気ガス流入側端面 8での開口率は、 [(隔壁 ピッチ Ρ—隔壁厚さ W)2/ (隔壁ピッチ Ρ)2] Χ 0·5で表され、 1.22/1.52 0.5 = 32%でぁっ た。
[0046] 実施例 2〜9
流路の長さ Lを表 1に示すように変更した以外は実施例 1と同様にしてハニカムフィ ルタを作製した。
[0047] 実施例 1〜9のハニカムフィルタの、 L/A° 5の値、 K /W、 L/S° 5の値、体積及び嵩密 度を表 1に示す。なお体積は実施例 3のハニカムフィルタを 100とした相対値で示した
[0048] 圧力損失の測定
各ハニカムフィルタの排気ガス流入側端面 8側より、微粒子発生器からのカーボン 粉 (粒径 0.042 m)を 0.4 g/min (空気流量 1 Nm3/min)で 1時間投入した。その後これ らのハ二カムフィルタに 20°Cの空気を 10 Nm3/minの流量で通過させ、上流側と下流 側との差圧 (圧力損失)を圧力損失測定装置で測定した。
[0049] 溶損の評価
圧力損失の測定を行った後の各ハニカムフィルタに、さらに上記のカーボン粉を 1.6 g/minで 1時間投入し、 550°Cの空気でカーボン粉を燃焼させた後のハニカムフィノレ タの溶損を以下の基準で評価した。
溶損が確認されな力 たもの · · ·〇
溶損が確認されたが、実用上問題のないもの · · ·△
溶損が確認されたもの · ' · Χ
[0050] 通気度の測定
実施例 1〜9のハニカムフィルタとそれぞれ同一条件で製造したハニカムフィルタの 隔壁より切り出したテストピースを用いて通気度を測定した。通気度の測定は特表 20 03-534229号に記載の方法に倣って行った。
[0051] 圧力損失、溶損の評価及び通気度を表 1に示す。なお、圧力損失の値は実施例 3 の値を 100とした相対値で示した。
[0052] 実施例 10〜18
隔壁の厚さ W、通気度 κ、流路の長さし、ハニカムフィルタの断面積 S、隔壁ピッチ P 及び流路の断面積 Aを表 1に示すように変更した以外は実施例 1と同様にして、実施 例 10〜18のハニカムフィルタを作製した。これらのハニカムフィルタの嵩密度、体積 及び圧力損失の測定、並びに溶損の評価を実施例 1のハニカムフィルタと同様に行 つた。結果を表 1に示す。
[0053] 実施例 19
隔壁の厚さ Wを 0.2、ハニカムフィルタの隔壁に白金金属を担持(フィルタ 1Lあたり 3 g)して通気度 κを 2.0とした以外は実施例 3と同様にして、ハニカムフィルタを作製し た。これらのハニカムフィルタの嵩密度、体積及び圧力損失の測定、並びに溶損の 評価を実施例 1のハニカムフィルタと同様に行った。結果を表 1に示す。
[0054] 比較例 1
フィルタの全長 Lを表 1に示すように短縮した以外は実施例 13と同様にしてハニカム フィルタを作製した。
[0055] 比較例 2
通気度 κ、フィルタの全長 L及び隔壁ピッチ Ρを表 1に示すように変更した以外は実 施例 13と同様にしてハニカムフィルタを作製した。
[0056] 比較例 3
隔壁の厚さ Wを表 1に示すように変更した以外は実施例 3と同様にしてハニカムフィ ルタを作製した。
[0057] 比較例 4
隔壁厚さ W及び通気度 κを表 1に示すように変更した以外は実施例 3と同様にして ハニカムフィルタを作製した。
[0058] 比較例 1〜4のハニカムフィルタの嵩密度、圧力損失及び通気度の測定、並びに溶 損の評価を実施例 1のハニカムフィルタと同様に行った。結果を表 1に示す。
[0059] また実施例 3と比較例 4のハニカムフィルタのァイソスタティック強度を測定した結果
、実施例 3のハニカムフィルタに対して比較例 4のハニカムフィルタの強度は約 50%で あった。
[0060] 本発明のハニカムフィルタ(実施例 1〜19)は、表はり分かるように、隔壁の厚さが 0. l〜0.5 mmであり、 125≤し/八°'5≤360及び8≤ κ /W≤26.7を満足しているため、圧力 損失力 S 140以下と低い値であった。中でも隔壁の通気度 κ力 ¾.0 012以上の実施例 1 〜16及び 19のハニカムフィルタは、圧力損失力 以下と低い値であった。また実施 例 2〜7及び 14のハニカムフィルタは、 0.75≤L/S° 5≤1.2の関係を満足しているため、 圧力損失、体積が小さく特に優れた形状である。
[0061] 本発明の実施例に比較して、 L/A° 5の値力 より小さい比較例 1のハニカムフィル タは圧力損失が 222と大きい。また L/A° 5の値が 360よりも大きい比較例 2のハニカムフ ィルタは圧力損失が 142と大きぐ溶損が確認された。隔壁厚さ Wが 0.5より大きい比較 例 3は、 /\¥カ .0より小さいため圧力損失も 157と大きい。比較例 3のハニカムフィル タには溶損は確認されなかった力 S、微粒子の燃焼のこりが確認された。これは嵩密度 が 0.7 g/cm3と高いことが原因と推定される。 /Wが 26.7より大きい比較例 4は、前述 のようにアイソスタテイク強度が小さレ、ため実用に適さな!/、。
[表 1]
Figure imgf000017_0001
表 1 (続き) 圧力損失 *
L/A0 5 κ /W L/S0 5 体積 * 嵩密度 溶損
(微粒子捕集後)
実施例 1 300.0 15.3 1.35 104 120 0.4 〇 実施例 2 266.7 15.3 1.20 102 107 0.4 〇 実施例 3 250.0 15.3 1.13 100 100 0.4 〇 実施例 4 233.3 15.3 1.05 98 93 0.4 〇 実施例 5 2 16.7 15.3 0.98 97 87 0.4 〇 実施例 6 191.7 15.3 0.87 98 77 0.4 〇 実施例 7 166.7 15.3 0.75 99 67 0.4 〇 実施例 8 133.3 15.3 0.60 110 53 0.4 . 〇 実施例 9 125.0 15.3 0.56 117 50 0.4 〇 実施例 10 360.0 15.3 1.35 122 120 0.4 〇 実施例 11 250.0 15.3 1.30 130 75 0.4 〇 実施例 12 140.0 15.3 0.53 138 47 0.4 〇 実施例 13 300.0 8.0 1.35 137 120 0.5 〇 実施例 14 230.0 26.7 0.87 102 77 0.5 〇 実施例 15 216.7 15.3 0.73 94 154 0.4 〇 実施例 16 276.9 10.0 1.35 117 120 0.3 〇 実施例 17 215.4 8.0 1.05 139 93 0.3 〇 実施例 18 311.1 10.0 1.05 140 93 0.2 〇 実施例 19 230.8 10.0 1.13 116 100 0.3 〇 比較例 1 100.0 8.0 0.45 222 40 0.5 〇 比較例 2 370.0 9.3 1.39 142 123 0.4 X 比較例 3 333.3 7, 7 1.13 157 100 0.7 〇 比較例 4 214.3 32.0 1.13 81 100 0.1 Δ 注 *:体積及び圧力損失の値はそれぞれ実施例 3の値を 100とした相対値で示した。
[0064] 実施例 20 23
隔壁のピッチ P及びフィルタの外径をそれぞれ 1.4 mm及び 190 mmに変更し、流路 の長さ Lを表 2に示す値に変更した以外は実施例 8と同様にしてハニカムフィルタを作
; ^^し/
[0065] 実施例 20 23のハニカムフィルタの排気ガス流入側端面 8側より、微粒子発生器か らのカーボン粉(粒径 0.042 m)を 0.3 g/min (空気流量 1 Nm3/min)で 1時間投入した 。その後これらのハニカムフィルタに 20°Cの空気を 10 Nm3/minの流量で通過させ、上 流側と下流側との差圧 (圧力損失)を圧力損失測定装置で測定した。結果を表 2に示 す。なお圧力損失の値は実施例 20の値を 100とした相対値で示した。
[0066] 比較例 5 7
流路の長さ Lを変更した以外は実施例 20と同様にしてハニカムフィルタを作製した。
[0067] 比較例 5 7のハニカムフィルタの圧力損失を、実施例 20 23と同様にして測定し た。結果を表 2に示す。なお圧力損失の値は実施例 20の値を 100とした相対値で示し た。
[0068] 実施例 20〜23及び比較例 5〜7のハニカムフィルタの長さ Lと微粒子捕集後の圧力 損失の関係を図 7に示す。表 2及び図 7より、ハニカムフィルタの全長 Lが 140 mm以上 の場合には、微粒子捕集後の圧力損失の大きさは Lの大きさにほとんど影響されな いが、ハニカムフィルタの全長 Lが 140 mmより小さい場合には、 L力 S小さくなるに従い 急激に微粒子捕集後の圧力損失が増加した。
[0069] [表 2]
Figure imgf000019_0001
注 *: Xは流入側封止部の流出側端面と流出側封止部の流入側端面との距離である
注 **:圧力損失の値は実施例 20の値を 100とした相対値で示した。

Claims

請求の範囲
[1] 多孔質の隔壁で仕切られた多数の流路を有するハニカム構造体と、前記流路の排 気ガス流入側又は排気ガス流出側に交互に設けられた封止部とを有するセラミック ハニカムフィルタであって、前記隔壁の厚さ W(mm)、前記隔壁の通気度 κ ( m2)、前 記流路の長さ L(mm)及び前記流路の長さ方向に垂直な面における前記流路の断面 積 A mm2)が、
0.1≤W≤0.5,
8≤ K /W≤26.7 ,及び
125≤L/A0 5≤360
を満たすことを特徴とするセラミックハニカムフィルタ。
[2] 請求項 1に記載のセラミックハニカムフィルタにおいて、前記通気度 κ m2)が 2以 上であることを特徴とするセラミックハニカムフィルタ。
[3] 請求項 1又は 2に記載のセラミックハニカムフィルタにおいて、前記 L及び前記流路 の長さ方向に垂直な面における前記ハニカムフィルタの断面積 S(mm2)が、
0.75≤L/S0 5≤1.2
を満たすことを特徴とするセラミックハニカムフィルタ。
[4] 請求項 1〜3のいずれかに記載のセラミックハニカムフィルタにおいて、前記長さしが
140 mm以上であることを特徴とするセラミックハニカムフィルタ。
[5] 請求項 1〜4のいずれかに記載のセラミックハニカムフィルタにおいて、前記流入側 封止部の流出側端面と、前記流出側封止部の流入側端面との距離が 120 mm以上 であることを特徴とするセラミックハニカムフィルタ。
PCT/JP2007/066856 2006-08-30 2007-08-30 Filtre céramique en nid d'abeilles WO2008026675A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008532105A JP5218056B2 (ja) 2006-08-30 2007-08-30 セラミックハニカムフィルタ
US12/281,432 US8435320B2 (en) 2006-08-30 2007-08-30 Ceramic honeycomb filter
EP07806333.6A EP2058042B2 (en) 2006-08-30 2007-08-30 Ceramic honeycomb filter
KR20087021094A KR101480811B1 (ko) 2006-08-30 2007-08-30 세라믹 허니컴 필터
CN2007800067989A CN101389392B (zh) 2006-08-30 2007-08-30 陶瓷蜂窝式过滤器

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-232936 2006-08-30
JP2006232936 2006-08-30
JP2007-060188 2007-03-09
JP2007060188 2007-03-09

Publications (1)

Publication Number Publication Date
WO2008026675A1 true WO2008026675A1 (fr) 2008-03-06

Family

ID=39135957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/066856 WO2008026675A1 (fr) 2006-08-30 2007-08-30 Filtre céramique en nid d'abeilles

Country Status (6)

Country Link
US (1) US8435320B2 (ja)
EP (1) EP2058042B2 (ja)
JP (1) JP5218056B2 (ja)
KR (1) KR101480811B1 (ja)
CN (1) CN101389392B (ja)
WO (1) WO2008026675A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015128765A (ja) * 2009-01-21 2015-07-16 コーニング インコーポレイテッド 微粒子フィルタおよび微粒子フィルタの再生方法
WO2016111287A1 (ja) * 2015-01-09 2016-07-14 株式会社デンソー 排ガスフィルタ
JP2017075595A (ja) * 2015-01-09 2017-04-20 株式会社デンソー 排ガスフィルタ

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8591820B2 (en) 2011-03-11 2013-11-26 Corning Incorporated Honeycomb filters for reducing NOx and particulate matter in diesel engine exhaust
CN103443574B (zh) * 2011-03-29 2016-11-09 日本碍子株式会社 热交换部件以及热交换器
CN107075995B (zh) 2014-09-03 2019-09-10 康宁股份有限公司 具有分层塞子的蜂窝体及其制造方法
KR102219204B1 (ko) 2020-08-25 2021-02-23 범성근 세라믹 허니컴 항균필터 및 그 제조방법, 제조시스템
KR102204973B1 (ko) 2020-08-25 2021-01-19 최우석 세라믹 허니컴필터 모듈 및 이를 이용한 환기시스템
SE2251494A1 (en) * 2022-12-19 2024-06-20 Scania Cv Ab Exhaust treatment system, method for treatment of an exhaust stream and control system therefore
KR102646518B1 (ko) 2023-06-21 2024-03-12 (주)에스앤에스 세척 재사용이 가능한 세라믹 허니컴 미세먼지 필터, 그 제조 공정 시스템 및 제조방법

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09299811A (ja) 1996-05-17 1997-11-25 Ngk Insulators Ltd ハニカム構造体
JP2002239322A (ja) 2001-02-15 2002-08-27 Hitachi Metals Ltd 多孔質セラミックハニカム構造体
JP2003040687A (ja) 2000-06-30 2003-02-13 Ngk Insulators Ltd ハニカムセラミックス構造体とその製造方法
JP2003515023A (ja) 1999-10-15 2003-04-22 コーニング インコーポレイテッド 低アスペクトレシオディーゼル排気フィルタ
JP2003236322A (ja) * 2001-12-03 2003-08-26 Hitachi Metals Ltd セラミックハニカムフィルタ
WO2003074848A1 (fr) 2002-03-04 2003-09-12 Ibiden Co., Ltd. Filtre en nid d'abeilles pour la decontamination des gaz d'echappement et appareil de decontamination de gaz d'echappement
JP2003534229A (ja) 2000-06-01 2003-11-18 コーニング インコーポレイテッド コージェライト体
JP2005511294A (ja) * 2001-12-13 2005-04-28 コーニング インコーポレイテッド 複合コージェライトフィルタ
JP2006096634A (ja) * 2004-09-30 2006-04-13 Hitachi Metals Ltd 多孔質セラミック体

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7052532B1 (en) * 2000-03-09 2006-05-30 3M Innovative Properties Company High temperature nanofilter, system and method
DE60222225T2 (de) 2001-12-03 2008-06-12 Hitachi Metals, Ltd. Keramischer Wabenfilter
WO2004011386A1 (en) * 2002-07-31 2004-02-05 Corning Incorporated Aluminum titanate-based ceramic article
US6864198B2 (en) * 2003-01-30 2005-03-08 Corning Incorporated Cordierite ceramic body and method
JP4369141B2 (ja) * 2003-02-18 2009-11-18 日本碍子株式会社 ハニカムフィルタ及び排ガス浄化システム
JP2004315346A (ja) * 2003-03-28 2004-11-11 Ngk Insulators Ltd ハニカム構造体
US7179316B2 (en) * 2003-06-25 2007-02-20 Corning Incorporated Cordierite filters with reduced pressure drop
JP2005270755A (ja) 2004-03-24 2005-10-06 Ngk Insulators Ltd ハニカム構造体及びその製造方法
JP2005349269A (ja) 2004-06-09 2005-12-22 Ngk Insulators Ltd 目封止ハニカム構造体及びその製造方法
US20080092499A1 (en) 2004-09-14 2008-04-24 Ngk Insulators Ltd Porous Honeycomb Filter
JP5142532B2 (ja) 2004-11-26 2013-02-13 イビデン株式会社 ハニカム構造体
JP2006232936A (ja) 2005-02-23 2006-09-07 Ricoh Co Ltd 有機半導体用高分子材料の精製方法、有機半導体用高分子材料及び有機半導体デバイス
US7384442B2 (en) * 2005-02-28 2008-06-10 Corning Incorporated Ceramic wall-flow filter including heat absorbing elements and methods of manufacturing same
JP4456543B2 (ja) 2005-08-24 2010-04-28 日本電信電話株式会社 Vpnリソース管理装置
US7754160B2 (en) * 2005-08-31 2010-07-13 Ngk Insulators Honeycomb catalytic body and process for manufacturing honeycomb catalytic body
US7867598B2 (en) 2005-08-31 2011-01-11 Ngk Insulators, Ltd. Honeycomb structure and honeycomb catalytic body

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09299811A (ja) 1996-05-17 1997-11-25 Ngk Insulators Ltd ハニカム構造体
JP2003515023A (ja) 1999-10-15 2003-04-22 コーニング インコーポレイテッド 低アスペクトレシオディーゼル排気フィルタ
JP2003534229A (ja) 2000-06-01 2003-11-18 コーニング インコーポレイテッド コージェライト体
JP2003040687A (ja) 2000-06-30 2003-02-13 Ngk Insulators Ltd ハニカムセラミックス構造体とその製造方法
JP2002239322A (ja) 2001-02-15 2002-08-27 Hitachi Metals Ltd 多孔質セラミックハニカム構造体
JP2003236322A (ja) * 2001-12-03 2003-08-26 Hitachi Metals Ltd セラミックハニカムフィルタ
JP2005511294A (ja) * 2001-12-13 2005-04-28 コーニング インコーポレイテッド 複合コージェライトフィルタ
WO2003074848A1 (fr) 2002-03-04 2003-09-12 Ibiden Co., Ltd. Filtre en nid d'abeilles pour la decontamination des gaz d'echappement et appareil de decontamination de gaz d'echappement
JP2006096634A (ja) * 2004-09-30 2006-04-13 Hitachi Metals Ltd 多孔質セラミック体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2058042A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015128765A (ja) * 2009-01-21 2015-07-16 コーニング インコーポレイテッド 微粒子フィルタおよび微粒子フィルタの再生方法
WO2016111287A1 (ja) * 2015-01-09 2016-07-14 株式会社デンソー 排ガスフィルタ
JP2017075595A (ja) * 2015-01-09 2017-04-20 株式会社デンソー 排ガスフィルタ

Also Published As

Publication number Publication date
US8435320B2 (en) 2013-05-07
KR20090047385A (ko) 2009-05-12
KR101480811B1 (ko) 2015-01-09
JPWO2008026675A1 (ja) 2010-01-21
CN101389392A (zh) 2009-03-18
EP2058042A1 (en) 2009-05-13
EP2058042A4 (en) 2012-05-09
EP2058042B2 (en) 2017-05-03
US20090025349A1 (en) 2009-01-29
EP2058042B1 (en) 2013-10-09
CN101389392B (zh) 2011-04-13
JP5218056B2 (ja) 2013-06-26

Similar Documents

Publication Publication Date Title
JP5218056B2 (ja) セラミックハニカムフィルタ
JP4969103B2 (ja) ハニカム構造体
JP4439236B2 (ja) ハニカム構造体
JP5444716B2 (ja) セラミックハニカムフィルタ及びその製造方法
JP5897242B2 (ja) 多孔質セラミックハニカム体
JP5419505B2 (ja) ハニカム構造体の製造方法及びハニカム触媒体の製造方法
JP2011179501A (ja) ハニカム構造体
JP5270879B2 (ja) ハニカム構造体
JP6279368B2 (ja) 排ガス浄化装置
KR100747088B1 (ko) 열내구성이 개선된 디젤엔진 매연여과장치용 촉매식 dpf
WO2005037406A1 (ja) ハニカム構造体
WO2004076027A1 (ja) セラミックハニカム構造体
WO2006041174A1 (ja) セラミックハニカム構造体
WO2008044269A1 (fr) Structure en nid d'abeilles
JP5997026B2 (ja) ハニカム触媒体
JPWO2008078716A1 (ja) セラミックハニカムフィルタ、及びその製造方法
JP4991778B2 (ja) ハニカム構造体
JPWO2007094499A1 (ja) セラミックハニカムフィルタ及び排気ガス浄化装置
JP6231910B2 (ja) 目封止ハニカム構造体
JP2005095884A (ja) セラミックハニカム構造体及びセラミックハニカム構造体押出成形用坏土
JP2014148924A (ja) 排ガス浄化装置
JP5749940B2 (ja) 排ガス浄化装置
JP2006334459A (ja) セラミックハニカムフィルタ
JP2010248996A (ja) パティキュレートフィルタ
JP2009019634A (ja) 排気ガス浄化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07806333

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008532105

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 200780006798.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2007806333

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12281432

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU