WO2008026395A1 - Procédé de formation de film carbone - Google Patents

Procédé de formation de film carbone Download PDF

Info

Publication number
WO2008026395A1
WO2008026395A1 PCT/JP2007/064176 JP2007064176W WO2008026395A1 WO 2008026395 A1 WO2008026395 A1 WO 2008026395A1 JP 2007064176 W JP2007064176 W JP 2007064176W WO 2008026395 A1 WO2008026395 A1 WO 2008026395A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon film
film forming
carbon
plasma
substrate
Prior art date
Application number
PCT/JP2007/064176
Other languages
English (en)
French (fr)
Inventor
Masayoshi Umeno
Yashichi Kawahara
Haruhisa Ohta
Original Assignee
Nippon Oil Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corporation filed Critical Nippon Oil Corporation
Publication of WO2008026395A1 publication Critical patent/WO2008026395A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/503Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using dc or ac discharges

Definitions

  • the present invention relates to a carbon film forming method.
  • DLC diamond-like carbon
  • CVD chemical vapor deposition
  • Patent Document 1 listed below includes carbon atoms when producing a carbon material containing diamond by a CVD method. A method of using a specific adamantane compound as a material is disclosed.
  • Patent Document 1 Japanese Patent Laid-Open No. 5-43393
  • the present invention has been made in view of the above circumstances, and the carbon film formed by the plasma CVD method has been developed.
  • An object of the present invention is to provide a carbon film forming method capable of improving the film forming speed in forming.
  • the present inventors have used adamantane compound as a raw material for a carbon film and applied a plasma CVD method based on a specific discharge format. The inventors have found that the deposition rate of the carbon film can be dramatically increased, and have completed the present invention.
  • the carbon film forming method of the present invention is a method of forming a carbon film on a substrate by a plasma CVD method, and a gas containing an adamantane compound is plasmatized by direct current discharge to form on the substrate. A carbon film is formed.
  • the carbon film forming method of the present invention it is possible to form a carbon film even when the gas pressure is increased by forming plasma by direct current discharge using an adamantane compound as a raw material.
  • the deposition rate of carbon films containing diamond structures such as DLC films can be increased sufficiently.
  • the carbon film forming apparatus can be simplified, and the carbon film can be formed at a lower cost.
  • the base material on which the carbon film is to be formed is disposed in or near a plasma forming region formed by direct current discharge.
  • the adamantane compound is also supplied with a solid adamantane compound force disposed in or near a plasma forming region formed by direct current discharge.
  • the adamantane compound as a raw material can be efficiently and effectively used.
  • the gas further contains a halogen compound from the viewpoint of further improving the film forming rate of the carbon film and improving the film quality of the carbon film.
  • the halogen compound is preferably iodine.
  • the carbon of the present invention Inconveniences such as corrosion of parts of the carbon film forming apparatus in which the film forming method is performed can be sufficiently reduced, and the film forming rate of the carbon film can be further increased. Further, according to the above method, a carbon film doped with iodine can be formed. This makes it possible to increase the amorphous structure in the carbon film, adjust the band gap of the carbon film, and improve the conductivity.
  • the adamantane compound is supplied from an adamantane compound disposed on a support made of a ceramic force, and the base material is Further, it is preferably disposed on a support having a ceramic force.
  • a more stable plasma state can be obtained even when a substrate on which a carbon film is to be formed and an adamantane compound as a raw material containing carbon atoms are disposed in or near the plasma formation region formed by DC discharge.
  • a high-quality carbon film can be formed on the substrate at a higher film formation rate.
  • the inventors presume that such an effect is obtained as follows.
  • the cause of destabilization of the plasma state is thought to be the occurrence of abnormal discharge and impurity ions generated in the reaction system.
  • a conductor such as metal is supported on the support. It is considered that the above effect was obtained because the generation of abnormal discharge and impurity ions can be reduced as compared to the case of using as the above.
  • the present invention it is possible to provide a carbon film forming method capable of improving the film forming speed in forming a carbon film by plasma CVD. Moreover, according to the powerful carbon film formation method, a high-quality carbon film having a desired band gap can be formed on the substrate at a high speed. A solar cell having durability and excellent electrical characteristics can be provided at a lower cost. In addition, according to the carbon film forming method of the present invention, diamond having the highest band gap among carbon-based materials. Can also be manufactured.
  • FIG. 1 is a schematic configuration diagram showing an example of a carbon film forming apparatus for carrying out the carbon film forming method of the present invention.
  • FIG. 2 is a graph showing a Raman spectrum of the carbon film formed in Example 1.
  • FIG. 3 is a graph showing a Raman spectrum of the carbon film formed in Example 2.
  • [0021] 1 ... carbon film forming device, 10 ⁇ reaction chamber, 12 ⁇ force sword electrode, 13 ⁇ power supply, 14 ⁇ anode electrode, 16, 18 ⁇ cooling water introduction device, 20 ⁇ ⁇ Substrate, 22... support, 24 ⁇ “Thermocouple, 30 ⁇ ” Raw material, 32 ⁇ , Support, 40 ⁇ Rotary pump for exhaust, 42 ⁇ Exhaust valve, 50 ⁇ Hydrogen Gas introduction device, 52 ⁇ Hydrogen supply source, 54... Mass flow controller, 56, 58 ⁇ Hydrogen gas introduction valve, 60... Plasma formation region.
  • examples of the adamantane compound contained in the gas that is converted into plasma by direct current discharge include adamantane and derivatives thereof.
  • examples of adamantane derivatives include diamantane (C H) and triamantane (C H).
  • a halogen compound is further included in the gas that is converted into plasma by direct current discharge.
  • the halogen compound include fluorine, chlorine, and iodine. Of these, iodine is more preferred.
  • iodine is more preferred.
  • a carbon film doped with iodine can be formed, and the amorphous structure in the carbon film can be increased, the band gap of the carbon film can be adjusted, and the conductivity can be improved.
  • iodine is doped, a carbon film having the characteristics of a P-type semiconductor can be obtained.
  • FIG. 1 is a schematic configuration diagram showing an embodiment of a carbon film forming apparatus for carrying out the carbon film forming method of the present invention.
  • a carbon film forming apparatus 1 shown in FIG. 1 includes a reaction chamber 10 and a pair of electrodes (a force sword electrode 12 and an anode electrode 14) provided in the reaction chamber 10 for cooling the force sword electrode 12.
  • Cooling water introduction device 16 cooling water introduction device 18 for cooling anode electrode 14, support 22 on which substrate 20 on which a carbon film is formed is disposed, thermocouple 24 for measuring the temperature of substrate 20 And a support 32 on which the raw material 30 is arranged.
  • the carbon film forming apparatus 1 is a cold cathode type DC discharge type.
  • the carbon film forming apparatus 1 includes a hydrogen introduction device 50 including a hydrogen supply source 52 for supplying hydrogen as a plasma source gas to the reaction chamber 10, a mass flow controller 54, and hydrogen gas introduction valves 56, 58, a reaction chamber 10 is provided with an exhaust rotary pump 40 connected to 10 through an exhaust valve 42. As a result, the gas pressure in the reaction chamber 10 can be adjusted.
  • the force sword electrode 12 and the anode electrode 14 are made of a material force such as tungsten or molybdenum. In the carbon film forming apparatus of the present embodiment, it is preferable that the force sword electrode 12 and the anode electrode 14 have a molybdenum force from the viewpoint of heat resistance.
  • the support 22 is located below the plasma formation region 60 between the force sword electrode 12 and the anode electrode 14, and the substrate 20 is subjected to plasma. It can be arranged in the formation region 60 or in the vicinity thereof.
  • the support 32 is located below the force sword electrode 12.
  • the supports 22 and 32 are also configured as flat plate members.
  • the member to be applied is also configured with an insulating material force, and among them, a ceramic force is more preferable. This makes it possible to maintain a more stable plasma state even when the base material 20 and the raw material 30 on which the carbon film is to be formed are arranged in or near the plasma forming region 60 formed by direct current discharge. Therefore, a high-quality carbon film can be formed on the substrate at a higher deposition rate.
  • the adamantane compound having a sublimation property is arranged on the support 32.
  • the adamantane compound is a ceramic squirrel container. Fill in the inside, and this force should also supply a gaseous adamantane compound.
  • the substrate 20 is appropriately selected according to the purpose of forming the carbon film.
  • a semiconductor, quartz, metal, or the like is used.
  • a carbon film having excellent adhesion can be formed even on the surface of an insulating material such as quartz.
  • the force sword electrode 12 and the anode electrode 14 are not limited to the shapes shown in FIG. 1, and can be appropriately changed according to conditions such as the area of the base material on which the carbon film is formed, the gas pressure, and the gas flow rate. is there.
  • the size of the substrate 20 is, for example, 20 mm X 20 mm (area: 400 mm 2 ) and thickness lmm
  • the distance L between the force sword electrode 12 and the anode electrode 14 is set in the range of 10 to 30 mm. It is preferable to set the distance D between the anode electrode 14 and the base material 20 in the range of 20 to 40 mm.
  • the distance D between the force sword electrode 12 and the raw material 30 is set to 10 to 30 m.
  • L is 20mm
  • D is 30mm
  • D is 20mm
  • the gas pressure in the reaction chamber 10 is preferably set in the range of 30 to 70 Torr when the carbon film is formed. From the standpoint of achieving high-speed film formation, it is preferable to set the gas pressure in the range of 50 to 200 Torr while maintaining the film formation speed, while maintaining a large area and forming a carbon film with good film quality. From U, it is preferable to set the gas pressure to 50: LOOTorr range.
  • the present invention is not limited to the following examples.
  • a carbon film was formed on a predetermined substrate using the carbon film forming apparatus 1 described above.
  • Raw material 30 is adamantane
  • force sword electrode 12 and anode electrode 14 are electrodes made of molybdenum having the same shape as shown in Fig. 1, ceramic plates as supports 22 and 32 (size: 30mm x 30mm x 3mm ) And a carbon film was formed on a quartz (SiO 2) base material (size: 2 cm ⁇ 2 cm ⁇ 2 mm) under the following conditions.
  • Substrate temperature 150 ° C
  • Anode electrode-base distance D 25mm
  • Deposition time (starting discharge is defined as starting time): 3 minutes
  • the carbon film of Example 1 formed by the above method was a uniform thin film in a range of 2 cm x 2 cm. Furthermore, the film thickness and band gap of the carbon film of Example 1 were determined by the following method.
  • the film thickness of the carbon film was measured by measuring the reflectance of the sample with respect to 200 to 2000 nm using an ultraviolet-visible spectrometer (manufactured by JASCO Corporation, rjASCO V-570).
  • the film thickness d (nm) was calculated by (1).
  • the film thickness of the carbon film of Example 1 was 120 nm.
  • n the refractive index of the substrate
  • 0 the incident angle (°) to the sample
  • Rl R2 represents the light wavelength (nm) indicating the reflectance peak of the sample.
  • the absorption coefficient ⁇ of the material having the film thickness d can be expressed by the following formula (2).
  • the definition of the band gap Eg of an amorphous semiconductor can be expressed by the following formula (3).
  • the carbon film thus obtained was measured for transmittance T and reflectance R of the carbon film with respect to 200 to 2000 nm using an ultraviolet-visible spectroscope (manufactured by JASCO Corporation, rjASCO V-5570). And the film thickness d calculated above are obtained from the relationship of the above formula (2) and the above formula (3).
  • the optical band gap Eg was determined and used as the band gap of the carbon film.
  • the band gap of the carbon film of Example 1 was 2.85 eV.
  • FIG. 2 is a graph showing the Raman spectrum of the carbon film of Example 1.
  • G Graphite
  • D Diamond
  • D (Disorder) peaks may be observed near 1380 [cm _1 ] and 162 0 [cm- 1 ] in addition to the Raman band of 1580 [cm _1 ]. become.
  • the structural disorder increases, the relative intensity of these peaks to the 1580 [cm _1 ] peak increases, and a broad band shape is formed as a whole. In other words, a broad peak spectrum is obtained with amorphous carbon and DLC thin films.
  • the relative intensity ratio of the two peaks, D peak and G peak is used in the evaluation of graph eye toy intensity.
  • the peak of the Raman spectrum of the carbon film of Example 1 is a diamond.
  • the sp 2 bond is a graphite.
  • the broad peak around 1580cm _1 due to is relatively large. For this reason, in Example 1, it is considered that a carbon film close to DLC was formed.
  • a ceramic plate (size: 30 mm x 30 mm x 3 mm) is used as 22 and 32, and quartz (SiO 2) base material (size: 2 cm x 2 cm)
  • a carbon film was formed on each of X 2 mm).
  • Anode electrode-base distance D 30mm
  • Deposition time (starting discharge is defined as starting time): 3 minutes 30 seconds [0045] It was confirmed that the carbon film of Example 2 formed by the above method was a uniform thin film in a range of 2 cm x 2 cm. Further, the film thickness and band gap of the carbon film of Example 2 were determined in the same manner as described above. As a result, the film thickness of the carbon film of Example 2 was 140 ⁇ m. In addition, the band gap of the carbon film of Example 2 is 1.3 eV, which is close to 1.5 eV, which is a band gap value suitable for photoelectric conversion of a PN junction of a solar cell, and has a value. It was done. This is thought to be because the band gap of the carbon film is reduced by doping iodine into the carbon film.
  • thermoelectromotive force effect was measured for the carbon film of Example 2, the thermoelectromotive force at 120 to 200 ° C. was 0.24 to 0.4 mVZK, which was positive with respect to the temperature difference. It showed electromotive force, and its value increased with increasing temperature. It was confirmed that the carbon film formed by these things has P-type characteristics.
  • Raman spectroscopic analysis was performed on the carbon film of Example 2 to examine the film quality.
  • 2 g of adamantane was used as the raw material 30 instead of the above mixture, the gas pressure was changed to 40 to 48 (Torr), and the substrate temperature was changed to 30 ° C.
  • a Raman spectroscopic analysis was also performed on the carbon film of Reference Example 1 fabricated as described above. Figure 3 shows the Raman spectra of these carbon films.
  • the peak of the Raman spectrum of the carbon film of Example 2 is caused by sp 2 bond, which is a graphite, in addition to the peak near 1330 cm _1 due to sp 3 bond, which is diamond.
  • broad peak 1580cm around _1 is relatively large summer.
  • the peak near 1 330 cm _1 is broader than that of the Raman spectrum of the carbon film of Reference Example 1. This indicates that a carbon film closer to DLC is formed in Example 2 using iodine. It is thought that it has shown that.
  • a good carbon film can be formed in a short time even when the pressure of the gas as the plasma source is set high. It is possible to improve the deposition rate in the formation of the carbon film by the Zuma CVD method.
  • a DLC film suitable as a photoelectric conversion material for a solar cell can be formed at a sufficiently high film formation rate, so that a resource-rich carbon material is used. This makes it possible to effectively manufacture the solar cell.
  • the present invention can be variously modified without being limited to the above-described embodiments and examples.
  • the carbon film forming method closer to DLC has been described. However, it is necessary to increase the gas pressure in the system, the substrate temperature, the applied voltage, etc. By increasing the energy, a carbon film close to diamond (with a band gap close to 5 eV) can be formed. In addition, a diamond (with a band cap close to 5.5 eV) can be produced by further increasing the input energy.
  • the present invention it is possible to provide a carbon film forming method capable of improving the film forming speed in forming a carbon film by plasma CVD. Moreover, according to the powerful carbon film formation method, a high-quality carbon film having a desired band gap can be formed on the substrate at a high speed. A solar cell having durability and excellent electrical characteristics can be provided at a lower cost. Further, according to the carbon film forming method of the present invention, it is possible to produce diamond having the highest band gap among carbon-based materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Plasma & Fusion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

明 細 書
炭素膜形成方法
技術分野
[0001] 本発明は、炭素膜形成方法に関する。
背景技術
[0002] 近年のエネルギー、地球環境問題への社会的要請の高まりから、クリーンなェネル ギーである太陽エネルギーを直接電力に変換できる太陽電池に大きな期待が寄せら れて 、る。現在実用化されて 、る太陽電池はシリコン系太陽電池が主流であるが、 今後、太陽電池の生産や普及が進むとシリコンの材料不足が予想されることから、資 源的に豊富な材料を用いた太陽電池の作製が切望されている。
[0003] 最近、シリコンに変わる半導体材料として、ダイヤモンド構造を含む炭素材料である ダイヤモンドライクカーボン (以下、「DLC」と略称する)が注目されている。炭素膜を 所定の基材上に成膜する場合、化学的気相成長 (CVD)法が一般に広く用いられて いるが、中でも、より低温で緻密な膜を形成できることからプラズマ CVD法が太陽電 池や半導体デバイスの製造に適していると考えられている。しかし、プラズマ CVD法 によって DLCのような炭素膜を成膜する技術は十分に確立されておらず、炭素系太 陽電池の実用化を促進するうえで成膜速度の向上が課題となっている。
[0004] ところで、炭素膜の成膜速度を高めるための検討は従来よりなされており、例えば、 下記特許文献 1には、 CVD法によりダイヤモンドを含む炭素材料を作製する際に、 炭素原子を含む材料として特定のァダマンタンィ匕合物を用いる方法が開示されてい る。
[0005] 特許文献 1 :特開平 5— 43393号公報
発明の開示
発明が解決しょうとする課題
[0006] しかしながら、上記特許文献 1に記載の方法であっても、炭素膜の成膜速度は未だ 十分とはいえず、更に高速の成膜速度を達成するには更なる改善の余地がある。
[0007] 本発明は、上記事情に鑑みてなされたものであり、プラズマ CVD法による炭素膜の 形成における成膜速度の向上を可能とする炭素膜形成方法を提供することを目的と する。
課題を解決するための手段
[0008] 本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、炭素膜の原料とし てァダマンタンィ匕合物を用い、特定の放電形式によるプラズマ CVD法を適用するこ とにより、炭素膜の成膜速度を飛躍的に高めることができることを見出し、本発明を完 成させた。
[0009] すなわち、本発明の炭素膜形成方法は、プラズマ CVD法により基材上に炭素膜を 形成する方法であって、ァダマンタン化合物が含まれるガスを直流放電によりプラズ マ化して基材上に炭素膜を形成することを特徴とする。
[0010] 本発明の炭素膜形成方法によれば、原料としてァダマンタンィ匕合物を用いて直流 放電によりプラズマを形成させることにより、ガス圧力を高めた場合であっても炭素膜 の形成が可能となり、 DLC膜などのダイヤモンド構造を含む炭素膜の成膜速度を十 分高めることができる。
[0011] また、本発明の炭素膜形成方法によれば、基材に対する密着性に優れた高品質の 炭素膜を形成することができる。
[0012] 更に、本発明の炭素膜形成方法によれば、直流放電を用いることから炭素膜形成 装置の簡素化を図ることが可能であり、より安価で炭素膜を形成することができる。
[0013] 本発明の炭素膜形成方法において、炭素膜を形成すべき基材は直流放電により 形成されるプラズマ形成領域或いはその近傍に配されることが好まし 、。
[0014] 本発明の炭素膜形成方法において、上記ァダマンタン化合物が、直流放電により 形成されるプラズマ形成領域或いはその近傍に配された固体のァダマンタンィ匕合物 力も供給されるものであることが好ましい。この場合、原料としてのァダマンタンィ匕合 物を効率よく有効に利用することができる。
[0015] 本発明の炭素膜形成方法においては、炭素膜の成膜速度を更に向上させ、炭素 膜の膜質を改善する見地から、上記ガスがハロゲンィ匕合物を更に含むことが好まし い。
[0016] また、上記ハロゲンィ匕合物がヨウ素であることが好ましい。この場合、本発明の炭素 膜形成方法が実施される炭素膜形成装置の部品が腐食されるなどの不都合を十分 少なくできるとともに、炭素膜の成膜速度を更に高めることが可能となる。また、上記 の方法によれば、ヨウ素がドープされた炭素膜を形成することができる。これにより、 炭素膜におけるアモルファス構造の増加や炭素膜のバンドギャップの調整及び電導 度の向上が可能となる。
[0017] また、ハロゲンィ匕合物としてヨウ素を用いる上記の方法によれば、太陽電池として好 適なエネルギーギャップ及び P型半導体の特性を有する炭素膜を高い成膜速度で 形成することが可能となる。これにより、太陽電池を構成する P型半導体層として好適 な炭素膜を高 、成膜速度で形成することができる。
[0018] 本発明の炭素膜形成方法においては、上記ァダマンタンィ匕合物が、セラミックス力 らなる支持体上に配されたァダマンタンィ匕合物から供給されるものであり、且つ、上 記基材が、セラミックス力もなる支持体上に配されていることが好ましい。これにより、 炭素膜を形成すべき基材及び炭素原子を含む原料材料としてのァダマンタン化合 物を直流放電により形成されるプラズマ形成領域或いはその近傍に配した場合であ つても、より安定したプラズマ状態を維持することが可能となり、高品質の炭素膜を更 に高い成膜速度で基材上に形成することができる。このような効果が得られる理由と しては以下の通り本発明者らは推察する。すなわち、プラズマ状態を不安定化させる 要因は、異常放電の発生や反応系内で発生する不純物イオンにあると考えられ、セ ラミックスからなる支持体を使用することにより金属などの導体を支持体として使用す る場合に比べて異常放電や不純物イオンの発生を低減できることから、上記の効果 が得られたものと考えられる。
発明の効果
[0019] 本発明よれば、プラズマ CVD法による炭素膜の形成における成膜速度の向上を可 能とする炭素膜形成方法を提供することができる。また、力かる炭素膜形成方法によ れば、所望のバンドギャップを有する高品質の炭素膜を基材上に高速で成膜できる ことから、従来のシリコン系太陽電池に比べ、耐摩耗性、耐久性を有し、電気的特性 に優れた太陽電池をより安価に提供することも可能となる。また、本発明の炭素膜形 成方法によれば、カーボン系材料の中で最高のバンドギャップを有するダイヤモンド の製造も可能となる。
図面の簡単な説明
[0020] [図 1]本発明の炭素膜形成方法を実施するための炭素膜形成装置の一例を示す概 略構成図である。
[図 2]実施例 1で形成された炭素膜のラマンスペクトルを示すグラフである。
[図 3]実施例 2で形成された炭素膜のラマンスペクトルを示すグラフである。
符号の説明
[0021] 1…炭素膜形成装置、 10· ··反応室、 12· ··力ソード電極、 13· ··電源、 14…アノード 電極、 16, 18· ··冷却水導入装置、 20· ··基材、 22…支持体、 24· "熱電対、 30· "原 料、 32· ··支持体、 40· ··排気用ロータジ一ポンプ、 42· ··排気バルブ、 50· ··水素ガス 導入装置、 52· ··水素供給源、 54…マスフローコントローラー、 56, 58· ··水素ガス導 入バルブ、 60…プラズマ形成領域。
発明を実施するための最良の形態
[0022] 以下、添付図面を参照しながら、本発明の好適な実施形態について詳細に説明す る。なお、図面の説明において、同一または相当要素には同一の符号を付し、重複 する説明は省略する。また、各図面の寸法比率は、必ずしも実際の寸法比率とは一 致していない。
[0023] 本発明の炭素膜形成方法において、直流放電によりプラズマ化されるガスに含ま れるァダマンタンィ匕合物としては、ァダマンタン、及びその誘導体が挙げられる。ァダ マンタンの誘導体としては、例えば、ジアマンタン(C H )、トリアマンタン(C H )
14 20 18 24 などの昇華性を有して 、る化合物が好ま 、。
[0024] 直流放電によりプラズマ化されるガスにはハロゲンィ匕合物が更に含まれることが好 ましぐハロゲンィ匕合物としては、フッ素、塩素、ヨウ素などが挙げられる。これらのうち 、ヨウ素がより好ましい。プラズマ化されるガスにヨウ素が含まれることにより、本発明 の炭素膜形成方法が実施される炭素膜形成装置の部品が腐食されるなどの不都合 を十分少なくできるとともに、炭素膜の成膜速度を更に高めることが可能となる。また 、この場合、ヨウ素がドープされた炭素膜を形成することができ、炭素膜におけるァモ ルファス構造の増加や炭素膜のバンドギャップの調整及び電導度の向上が可能とな る。更に、ヨウ素がドープされること〖こより、 P型半導体の特性を有する炭素膜を得るこ とが可能となる。
[0025] 次に、本発明の炭素膜形成方法を実施するための炭素膜形成装置について説明 する。図 1は、本発明の炭素膜形成方法を実施するための炭素膜形成装置の一実 施形態を示す概略構成図である。図 1に示される炭素膜形成装置 1は、反応室 10と 、この反応室 10内に設けられた、一対の電極 (力ソード電極 12及びアノード電極 14) 、力ソード電極 12を冷却するための冷却水導入装置 16、アノード電極 14を冷却する ための冷却水導入装置 18、炭素膜が形成される基材 20が配される支持体 22、基材 20の温度を測定するための熱電対 24、及び、原料 30が配される支持体 32と、を備 えて構成されている。炭素膜形成装置 1においては、アノード電極 14が可変の直流 電源 13に接続されており、力ソード電極 12が炭素膜形成装置の金属部分に接続さ れアースされている。これにより、力ソード電極 12及びアノード電極 14間には直流電 圧が印加される。このように炭素膜形成装置 1は冷陰極型の直流放電形式となって いる。さらに、炭素膜形成装置 1は、反応室 10にプラズマ源ガスとしての水素を供給 するための水素供給源 52、マスフローコントローラー 54及び水素ガス導入バルブ 56 , 58からなる水素導入装置 50と、反応室 10に排気バルブ 42を介して接続された排 気用ロータリーポンプ 40とを備えている。これらにより、反応室 10内のガス圧力が調 整可能となっている。
[0026] 力ソード電極 12及びアノード電極 14は、タングステン、モリブデンなどの材質力 構 成される。本実施形態の炭素膜形成装置においては、耐熱性の観点から、力ソード 電極 12及びアノード電極 14がモリブデン力も構成されていることが好ましい。
[0027] 図 1に示す炭素膜形成装置 1においては、支持体 22が、力ソード電極 12及びァノ ード電極 14間のプラズマ形成領域 60の下方に位置しており、基材 20をプラズマ形 成領域 60或いはその近傍に配置させることが可能となっている。一方、支持体 32は 、力ソード電極 12の下方に位置している。この支持体 32上に原料 30として昇華性を 有するァダマンタンィ匕合物を配することにより、プラズマ源ガス中にァダマンタンィ匕合 物を供給することができる。すなわち、反応室 10内の圧力が下げられると支持体 32 上の固体状のァダマンタンィ匕合物が昇華し、気体となったァダマンタンィ匕合物がプラ ズマ形成領域 60に供給される。
[0028] 支持体 22, 32は、平板状の部材カも構成されている。本実施形態の炭素膜形成 装置においては、力かる部材は絶縁性の材料力も構成されていることが好ましぐそ の中でもセラミックス力も構成されていることがより好ましい。これにより、炭素膜を形 成すべき基材 20及び原料 30を直流放電により形成されるプラズマ形成領域 60或い はその近傍に配した場合であっても、より安定したプラズマ状態を維持することが可 能となり、高品質の炭素膜を更に高い成膜速度で基材上に形成することができる。
[0029] 図 1に示す炭素膜形成装置 1にお 、ては、昇華性を有するァダマンタン化合物が 支持体 32上に配されるようになっている力 例えば、ァダマンタンィ匕合物をセラミック スカ なる容器内に充填し、ここ力も気体のァダマンタンィ匕合物を供給するようにして ちょい。
[0030] 基材 20は、炭素膜形成の目的に応じて適宜選択されるものであるが、例えば、半 導体、石英、金属などが使用される。本発明によれば、石英のような絶縁性材料の表 面であっても、密着性に優れた炭素膜を形成することができる。
[0031] 力ソード電極 12及びアノード電極 14は、図 1の形状に限定されず、炭素膜を形成 する基材の面積、ガス圧力、ガス流量等の条件に応じて適宜変更することが可能で ある。基材 20の大きさが、例えば、 20mm X 20mm (面積: 400mm2)、厚み lmmで ある場合には、力ソード電極 12とアノード電極 14との電極間距離 Lを 10〜30mmの 範囲に設定することが好ましぐアノード電極 14と基材 20との距離 Dを 20〜40mm の範囲に設定することが好ましぐ力ソード電極 12と原料 30との距離 Dを 10〜30m
2
mの範囲に設定することが好ましい。特に、 Lを 20mm、 Dを 30mm、 Dを 20mmに
1 2 設定することにより良質な炭素膜を形成することができることから、これらの値の関係 に基づいて、基材の面積に応じた L、 D、及び Dを適宜設定することが好ましい。
1 2
[0032] 炭素膜形成装置 1においては、炭素膜形成時、反応室 10内のガス圧力が 30〜70 Torrの範囲に設定されることが好ましい。高速成膜を達成する見地からは、ガス圧力 を 50〜200Torrの範囲に設定することが好ましぐ成膜速度を維持しつつ大面積ィ匕 を図り且つ膜質の良好な炭素膜を形成する見地からは、ガス圧力を 50〜: LOOTorr の範囲に設定することが好ま U、。 [0033] 次に、本発明の炭素膜形成方法の実施形態について説明する。なお、本発明は、 以下の実施例に限定されるものではない。
[0034] (実施例)
<炭素膜の形成 >
上述した炭素膜形成装置 1を用いて所定の基材上に炭素膜の形成を行った。
[0035] (実施例 1)
原料 30としてァダマンタン、力ソード電極 12及びアノード電極 14として図 1に示さ れるものと同様の形状を有するモリブデンから作製した電極、支持体 22, 32として陶 製のプレート(サイズ: 30mm X 30mm X 3mm)を用い、下記に示す条件で、石英( SiO )製の基材 (サイズ: 2cm X 2cm X 2mm)上に炭素膜を形成した。
2
ガス圧力: 40〜42 (Torr)
基材温度: 150°C
印加電圧: 1000V
電極間距離 L : 20mm
アノード電極—基材間距離 D : 25mm
力ソード電極一原料間距離 D : 25mm
2
ァダマンタン量: 2. 5g
水素ガス流量:約 50sccm
成膜時間 (放電開始時を成膜開始時とした): 3分
[0036] 上記の方法により形成された実施例 1の炭素膜は、 2cm X 2cmの範囲で均一な薄 膜となっていることが確認された。更に、実施例 1の炭素膜について、以下の方法に より膜厚及びバンドギャップを求めた。
[0037] [膜厚]
炭素膜の膜厚は、紫外可視分光装置(日本分光社製、 rjASCO V— 570」)によ り 200〜2000nmに対する試料の反射率を測定し、反射率ピークを示す光波長の値 力も下記式(1)により膜厚 d (nm)を算出して求めた。その結果、実施例 1の炭素膜の 膜厚は 120nmであった。
[数 1]
Figure imgf000010_0001
式(1)中、 nは基材の屈折率を示し、 0は試料への入射角(° )を示し、 λ 及びえ
Rl R2 はそれぞれ、試料の反射率ピークを示す光波長 (nm)を表わす。本実施例において は、 n=2.417、 Θ =5とした。
[0038] [バンドギャップ]
膜厚 dの物質の吸収係数 αは、下記式(2)で表わすことができる。
a =-(l/d)ln[T/(l-R)2] -(2)
(式中、 dは物質の膜厚を、 Tは物質の透過率を、 Rは物質の反射率をそれぞれ示す o )
[0039] 一方、アモルファス半導体のバンドギャップ Egの定義は、下記式(3)で表わすこと ができる。
ah °c (h —Eg)' ··· (3)
(式中、 aは物質の吸収係数を、 hはプランク定数を、 Vは入射光振動数をそれぞれ 示す。)
[0040] 得られた炭素膜にっ 、て、紫外可視分光装置(日本分光社製、 rjASCO V— 57 0」)により 200〜2000nmに対する炭素膜の透過率 T及び反射率 Rを測定し、これら の値、上記で算出された膜厚 dを用い、上記式(2)及び上記式(3)の関係から求めら れる、
[数 2]
Figure imgf000010_0002
から光学的バンドギャップ Egを求め、これを炭素膜のバンドギャップとした。その結果 、実施例 1の炭素膜のバンドギャップは 2. 85eVであった。
また、実施例 1の炭素膜についてラマン分光分析を行い、膜質を調べた。図 2は、 実施例 1の炭素膜のラマンスペクトルを示すグラフである。ところで、完全な構造を持 つグラフアイトは、ラマンスペクトルにおいて、一般に 1580[cm_1]に比較的シャープ な G (Graphite)ピークが観察され、ダイヤモンドでは、 520cm_1付近と 1333cm_1 付近に単一でシャープな D (Diamond)ピークが観察される。グラフアイト構造が乱れ る(結晶性がよくない)と、 1580[cm_1]のラマンバンドの他に 1380[cm_1]及び 162 0 [cm—1]付近に D (Disorder)ピークが見られるようになる。そして構造の乱れが大き くなるとともに、これらのピークの 1580[cm_1]ピークに対する相対強度が増し、全体 的にブロードなバンド形状となっていく。つまり、アモルファスカーボンや DLCの薄膜 ではブロードなピークのスペクトルが得られる。 Dピーク及び Gピークの二つのピーク の相対強度比はグラフアイトイ匕度の評価などで用いられる。
[0042] 図 2に示されるように、実施例 1の炭素膜のラマンスペクトルのピークはいずれもダイ ャモンドである sp3結合に起因する 1330cm_1付近のピークの他にグラフアイトである sp2結合に起因する 1580cm_1付近のブロードなピークが相対的に大きくなつている 。このため、実施例 1では、 DLCに近い炭素膜が形成されたものと考えられる。
[0043] 以上のことから、実施例 1の炭素膜形成方法によれば、比較的高いガス圧力条件 であっても DLC膜を短時間で広範囲にわたって形成できることが確認された。
[0044] (実施例 2)
原料 30としてァダマンタンとヨウ素とを質量比 1: 1で混合した混合物を用い、カソー ド電極 12及びアノード電極 14として図 1に示されるものと同様の形状を有するモリブ デンから作製した電極、支持体 22, 32として陶製のプレート(サイズ: 30mm X 30m m X 3mm)を用い、下記に示す条件で、石英(SiO )製の基材(サイズ: 2cm X 2cm
2
X 2mm)上に炭素膜をそれぞれ形成した。
ガス圧力: 40〜53 (Torr)
基材温度: 160°C
印加電圧: 1000V
電極間距離 L : 20mm
アノード電極—基材間距離 D : 30mm
力ソード電極一原料間距離 D : 20mm
2
混合物量: 2g (ァダマンタン lg、ヨウ素 lg)
水素ガス流量:約 50sccm
成膜時間 (放電開始時を成膜開始時とした): 3分 30秒 [0045] 上記の方法により形成された実施例 2の炭素膜は、 2cm X 2cmの範囲で均一な薄 膜となっていることが確認された。更に、実施例 2の炭素膜について、上記と同様にし て膜厚及びバンドギャップを求めた。その結果、実施例 2の炭素膜の膜厚は、 140η mであった。また、実施例 2の炭素膜のバンドギャップは 1. 3eVであり、太陽電池の P N接合の光電変換に適したバンドギャップ値である 1. 5eVに近 、値を有して 、ること が確認された。これは、ヨウ素が炭素膜中にドーピングされたことにより、炭素膜のバ ンドギャップが小さくなつたものと考えられる。
[0046] また、実施例 2の炭素膜にっ 、て、熱起電力効果を測定したところ、 120〜200°C での熱起電力は 0. 24〜0. 4mVZKと温度差に対し正の起電力を示し、さらに温度 が高くなるとともにその値は増加した。これらのことにより形成された炭素膜は P型の 特性を有して 、ることが確認された。
[0047] 更に、実施例 2の炭素膜についてラマン分光分析を行い、膜質を調べた。なお、膜 質の比較のため、原料 30として上記混合物の代わりにァダマンタン 2gを用い、ガス 圧力を 40〜48 (Torr)、基材温度を 30°Cに変更したこと以外は実施例 2と同様にし て作製した参考例 1の炭素膜についてのラマン分光分析も行った。図 3に、これらの 炭素膜のラマンスペクトルを示す。
[0048] 図 3に示されるように、実施例 2の炭素膜のラマンスペクトルのピークはダイヤモンド である sp3結合に起因する 1330cm_1付近のピークの他にグラフアイトである sp2結合 に起因する 1580cm_1付近のブロードなピークが相対的に大きくなつている。また、 1 330cm_1付近のピークは、参考例 1の炭素膜のラマンスペクトルのそれに比べてより ブロードになっており、このことは、ヨウ素を用いた実施例 2では DLCにより近い炭素 膜が形成されたことを示していると考えられる。
[0049] 以上述べたように、本発明の炭素膜形成方法によれば、プラズマ源であるガスの圧 力を高く設定した場合であっても良好な炭素膜を短時間で形成できることから、ブラ ズマ CVD法による炭素膜の形成における成膜速度の向上を図ることができる。
[0050] また、本発明の炭素膜形成方法によれば、太陽電池の光電変換材料として好適な DLC膜を十分高い成膜速度で形成することができることから、資源的に豊富な炭素 材料を用いた太陽電池の作製が有効に実現可能となる。 [0051] なお、本発明は上記した実施形態及び実施例に限定されることなぐ種々の変更が 可能である。例えば、上記した実施例では、 DLCにより近い炭素膜の形成方法につ いて説明したが、系内のガス圧力を上げる、基材温度を上げる、印加電圧を上げるな どして、各条件における投入エネルギーを増加することにより、ダイヤモンドに近い炭 素膜 (バンドギャップが 5eVに近いもの)を形成することが可能となる。また、ダイヤモ ンド(バンドキャップ 5. 5eVに近いもの)を作製するには、上記の投入エネルギーを 更に増加することにより可能となる。
産業上の利用可能性
[0052] 本発明よれば、プラズマ CVD法による炭素膜の形成における成膜速度の向上を可 能とする炭素膜形成方法を提供することができる。また、力かる炭素膜形成方法によ れば、所望のバンドギャップを有する高品質の炭素膜を基材上に高速で成膜できる ことから、従来のシリコン系太陽電池に比べ、耐摩耗性、耐久性を有し、電気的特性 に優れた太陽電池をより安価に提供することも可能となる。また、本発明の炭素膜形 成方法によれば、カーボン系材料の中で最高のバンドギャップを有するダイヤモンド の製造も可能となる。

Claims

請求の範囲
[1] プラズマ CVD法により基材上に炭素膜を形成する方法であって、
ァダマンタンィ匕合物が含まれるガスを直流放電によりプラズマ化して前記基材上に 炭素膜を形成することを特徴とする炭素膜形成方法。
[2] 前記ガスがハロゲンィ匕合物を更に含むことを特徴とする請求項 1に記載の炭素膜 形成方法。
[3] 前記ハロゲン化合物がヨウ素であることを特徴とする請求項 2に記載の炭素膜形成 方法。
[4] 前記ァダマンタンィ匕合物力 セラミックス力もなる支持体上に配されたァダマンタン 化合物から供給されるものであり、且つ、前記基材が、セラミックス力 なる支持体上 に配されていることを特徴とする請求項 1〜3のいずれか一項に記載の炭素膜形成 方法。
PCT/JP2007/064176 2006-08-29 2007-07-18 Procédé de formation de film carbone WO2008026395A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006232577A JP2008056955A (ja) 2006-08-29 2006-08-29 炭素膜形成方法
JP2006-232577 2006-08-29

Publications (1)

Publication Number Publication Date
WO2008026395A1 true WO2008026395A1 (fr) 2008-03-06

Family

ID=39135682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/064176 WO2008026395A1 (fr) 2006-08-29 2007-07-18 Procédé de formation de film carbone

Country Status (2)

Country Link
JP (1) JP2008056955A (ja)
WO (1) WO2008026395A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008201982A (ja) * 2007-02-22 2008-09-04 Idemitsu Kosan Co Ltd 多環脂環式化合物を前駆体物質とする薄膜、及びその製造方法
JP4987525B2 (ja) * 2007-03-19 2012-07-25 三菱樹脂株式会社 ダイヤモンドライクカーボン膜コーティングガスバリア性フィルム
JP2009280876A (ja) * 2008-05-23 2009-12-03 Masayoshi Umeno 炭素膜形成方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62103367A (ja) * 1985-10-28 1987-05-13 Nippon Telegr & Teleph Corp <Ntt> 炭素膜の合成方法
JPH0226894A (ja) * 1988-07-13 1990-01-29 Fujitsu Ltd ダイヤモンドの気相合成方法および装置
JPH02138469A (ja) * 1988-11-16 1990-05-28 Hitachi Ltd ダイアモンド表面を有する真空用材料、この真空用材料の表面処理法、ダイアモンド膜表面の作製法、真空用材料を用いた真空容器とその部品,真空内駆動機構,電子放出源,真空内ヒータおよび蒸着源容器
JPH0437616A (ja) * 1990-06-01 1992-02-07 Canon Inc 光学素子成形用型及びその製造方法
JPH06157193A (ja) * 1992-11-25 1994-06-03 Semiconductor Energy Lab Co Ltd 炭素膜形成方法
JPH10501302A (ja) * 1994-06-03 1998-02-03 モービル・オイル・コーポレーション 高濃度の四面体配位炭素を含む炭素被覆遮断フィルム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62103367A (ja) * 1985-10-28 1987-05-13 Nippon Telegr & Teleph Corp <Ntt> 炭素膜の合成方法
JPH0226894A (ja) * 1988-07-13 1990-01-29 Fujitsu Ltd ダイヤモンドの気相合成方法および装置
JPH02138469A (ja) * 1988-11-16 1990-05-28 Hitachi Ltd ダイアモンド表面を有する真空用材料、この真空用材料の表面処理法、ダイアモンド膜表面の作製法、真空用材料を用いた真空容器とその部品,真空内駆動機構,電子放出源,真空内ヒータおよび蒸着源容器
JPH0437616A (ja) * 1990-06-01 1992-02-07 Canon Inc 光学素子成形用型及びその製造方法
JPH06157193A (ja) * 1992-11-25 1994-06-03 Semiconductor Energy Lab Co Ltd 炭素膜形成方法
JPH10501302A (ja) * 1994-06-03 1998-02-03 モービル・オイル・コーポレーション 高濃度の四面体配位炭素を含む炭素被覆遮断フィルム

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ALLON-ALALUF M. ET AL.: "Electricial measurements of iodine doped amorphous diamond-like films grown on silicon substrates", APPL. PHYS. LETT., vol. 69, no. 19, 4 October 1996 (1996-10-04), pages 2932 - 2934, XP000644022 *
OMER A.M.M. ET AL.: "Effects of iodine doping on optoelectronic properties of diamond-like carbon thin films deposited by microwave surface wave plasma CVD", DIAMOND RELAT. MATER., vol. 13, November 2004 (2004-11-01), pages 2136 - 2139, XP004614846 *

Also Published As

Publication number Publication date
JP2008056955A (ja) 2008-03-13

Similar Documents

Publication Publication Date Title
US7648892B2 (en) Methods and apparatus for depositing a microcrystalline silicon film for photovoltaic device
KR101120590B1 (ko) 성막장치 및 성막방법
US20100024872A1 (en) Semiconductor layer manufacturing method, semiconductor layer manufacturing apparatus, and semiconductor device manufactured using such method and apparatus
JP2010521800A (ja) ダイヤモンドライクカーボン多層ドーピング成長の方法及びデバイス
RU2008134311A (ru) Способ производства кремниевой пленки на поверхности субстата осаждением паров
US20100163100A1 (en) Photovoltaic Device and Process for Producing Same
WO2003083953A1 (en) Solar cell and method of manufacturing the same
JP4183688B2 (ja) 光電変換装置の製造方法および光電変換装置
TW201126732A (en) Thin-film silicon tandem solar cell and method for manufacturing the same
JP2001332749A (ja) 半導体薄膜の形成方法およびアモルファスシリコン太陽電池素子
WO2008026395A1 (fr) Procédé de formation de film carbone
JPH04225571A (ja) 薄膜トランジスタ
JP5053595B2 (ja) Dlc膜の形成方法及びdlc膜の製造装置
JP2006216624A (ja) 太陽電池及び太陽電池の製造方法
Yan et al. Highly doped p-type nanocrystalline silicon thin films fabricated by low-frequency inductively coupled plasma without H2 dilution
KR100925123B1 (ko) 태양 전지 및 이의 제조 방법
JP5083957B2 (ja) 太陽電池の製造方法
JPH0918038A (ja) 光電変換素子
JP2009280876A (ja) 炭素膜形成方法
Das et al. Development of highly conducting p-type μc-Si: H films from minor diborane doping in highly hydrogenated SiH4 plasma
Yoshinaga et al. Fabrication of silicon and carbon based wide-gap semiconductor thin films for high conversion efficiency
TWI511309B (zh) 具有雙層電池結構之串聯式薄膜矽太陽能電池
JP2003142705A (ja) 光起電力素子
TWI451578B (zh) 具有異質接面之矽基太陽能電池及其製造方法
Lee et al. Characterization of microcrystalline silicon thin film solar cells prepared by high working pressure plasma-enhanced chemical vapor deposition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07790930

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07790930

Country of ref document: EP

Kind code of ref document: A1