WO2008018519A1 - Method for determination of molecular weight of hyaluronic acid - Google Patents

Method for determination of molecular weight of hyaluronic acid Download PDF

Info

Publication number
WO2008018519A1
WO2008018519A1 PCT/JP2007/065558 JP2007065558W WO2008018519A1 WO 2008018519 A1 WO2008018519 A1 WO 2008018519A1 JP 2007065558 W JP2007065558 W JP 2007065558W WO 2008018519 A1 WO2008018519 A1 WO 2008018519A1
Authority
WO
WIPO (PCT)
Prior art keywords
hyaluronic acid
sample
concentration
molecular weight
amount
Prior art date
Application number
PCT/JP2007/065558
Other languages
English (en)
French (fr)
Inventor
Hiroshi Fujita
Original Assignee
Seikagaku Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seikagaku Corporation filed Critical Seikagaku Corporation
Priority to JP2008528862A priority Critical patent/JP5466405B2/ja
Priority to US12/376,921 priority patent/US8163498B2/en
Priority to EP07792223A priority patent/EP2058659A4/en
Priority to CA002660455A priority patent/CA2660455A1/en
Publication of WO2008018519A1 publication Critical patent/WO2008018519A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/66Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood sugars, e.g. galactose
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2400/00Assays, e.g. immunoassays or enzyme assays, involving carbohydrates
    • G01N2400/10Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • G01N2400/38Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence, e.g. gluco- or galactomannans, Konjac gum, Locust bean gum or Guar gum
    • G01N2400/40Glycosaminoglycans, i.e. GAG or mucopolysaccharides, e.g. chondroitin sulfate, dermatan sulfate, hyaluronic acid, heparin, heparan sulfate, and related sulfated polysaccharides

Definitions

  • the present invention relates to a method for measuring the molecular weight of hyaluronic acid. More specifically, the present invention relates to a method for measuring the molecular weight of aluronic acid, which can measure the molecular weight of hyaluronic acid in a small amount of sample in a short time for a large number of samples.
  • HA—BSA HA—BSA conjugate
  • HABP HA binding protein
  • Biotin HABP Biotin-labeled hyaluronic acid binding protein
  • HRP avidin horseradish peroxidase-labeled streptavidin
  • OPD Frozen O Phenylylenediamine Frozen
  • TMB BLUE N, N, N, N tetramethylbenzidine blue
  • PBS Sodium phosphate buffered saline
  • TCA Triclo oral acetic acid
  • EDTA ethylenediamine tetraacetic acid
  • HA is a naturally occurring linear high-molecular polysaccharide composed of disaccharide units in which N-acetylyldarcosamine and glucuronic acid are linked by / 3 1 ⁇ 4.
  • HA's molecular weight-specific physiological activity and the presence of HA with a specific molecular weight in the body can indicate the presence of a disease. Important in the field.
  • the molecular weight of HA is usually measured by a method using intrinsic viscosity measurement or GPC. These methods utilize the fact that the viscosity of an aqueous solution with the same concentration increases as the molecular weight of HA increases, and that the HA having a higher molecular weight passes faster through a carrier having a network structure.
  • HA about 1 mg or more is required to perform the measurement.
  • the number of samples that can be measured simultaneously is around 5, and preparations such as drying the viscosity tube are required for each measurement.
  • other similar glycosaminodarlicans have similar viscosities, so when they coexist, measurement specific to HA cannot be performed.
  • other coexisting substances also affect the viscosity of the solution, so in principle it can be measured only with purified, pure water solutions.
  • HA In the measurement method using GPC, about 10 g or more of HA is required to perform the measurement. In addition, at least one hour is required to stabilize the measurement system, and an independent measurement cycle is required for each sample including the molecular weight standard sample. Usually, around 5 types are used as standard samples. In principle, measurement is required for each analysis batch. Furthermore, the time required for one measurement cycle is a minimum of 30 minutes, and one test sample requires 4 hours or more, and 10 samples require 9 hours or more.
  • the method using ultraviolet absorption is the most sensitive at present, but when using ultraviolet absorption, other similar glycosaminodas are used. Rican is also detected in the same way.
  • the currently used method for measuring the molecular weight of HA requires a sample of at least about 10 g to 1 mg, takes time, is complicated, and the number of samples that can be measured simultaneously is also large. Limited.
  • Patent Documents 1 and 2 methods for measuring HA using proteins that bind to HA have been proposed (Patent Documents 1 and 2), but both are quantitative methods, and methods for directly measuring molecular weight are not known.
  • Patent Document 1 Japanese Patent Publication No. 6-41952
  • Patent Document 2 Patent No. 2698563
  • the molecular weight of HA in a small amount of sample can be measured in a short time for a large number of samples, and the molecular weight of HA can be measured even for samples in which similar substances and other substances coexist. It is an object of the present invention to provide a method for measuring the molecular weight of HA. Means for solving the problem
  • HA binding protein HA binding protein
  • the present invention comprises at least a step of reacting HA in a sample containing HA with HABP and measuring the amount of HABP bound to HA in the sample or a value reflecting the amount of HABP. Provide a measuring method.
  • the reactivity of HABP to HA changes in a certain direction depending on the molecular weight of HA. Therefore, the amount of HABP that binds to HA changes depending on the molecular weight of HA. Therefore, we measure the molecular weight of HA by measuring the amount of HABP bound to HA or a value that reflects that amount.
  • the measurement method of the present invention includes, for example,
  • step (1) Obtained in step (1) above based on the relationship between the molecular weight of HA obtained from a standard HA sample with known concentration and molecular weight and the amount of HABP bound to HA or a value reflecting that amount.
  • the process involves determining the hyaluronic acid concentration in the sample, the amount of HA ABP bound to HA in the sample obtained in step (2) above, or the value reflecting the amount, and the step of determining the molecular weight of HA in the sample. I ’ll do that.
  • the step (2) includes, for example,
  • step (iii) there can be exemplified a step of measuring the amount of labeled HABP bound to HA or a value reflecting the amount of HABP, and a step comprising force.
  • HABP labeled substance of HABP used in step (iii) above
  • biotin, avidin, enzyme, isotope, fluorescent dye, chemiluminescent substance, etc. can be used.
  • avidin is preferred!
  • step (3) The relationship between the molecular weight of HA obtained from a standard HA sample of known concentration and molecular weight used in the above step (3) and the amount of HABP that binds to HA or a value that reflects that amount is, for example, the concentration Then, perform step (2) using an HA standard solution with a known molecular weight as the sample, and obtain the standard curve with the force S.
  • the HA concentration in the sample obtained in step (1) is used as an index for diluting the sample, or HABP that binds to the HA of the standard HA sample at the concentration. It can be used to calculate the amount of or the value that reflects that amount.
  • the reactivity of the labeled HABP with respect to HA is such that when HA BP is bound to HA, additives such as a protein denaturant, acidic polysaccharide, and surfactant are present.
  • additives such as a protein denaturant, acidic polysaccharide, and surfactant are present.
  • the amount it can be adjusted while maintaining the characteristic of HA molecular weight-dependent reactivity change.
  • the HABP bound to the HA measured in step (iv) The amount that reflects the amount or the amount that reflects the amount of HABP immobilized in step (i) or the amount of HABP that is reacted in step (iii) can also be referred to as a change in reactivity dependent on the HA molecular weight. It can be adjusted while maintaining the characteristics.
  • step (iv) for example, when the amount of HABP is measured by absorbance using a labeled HABP and a coloring substance associated therewith, an appropriate type and amount of the above additives are used. And / or by adjusting the amount of HABP used in each step, the absorbance to be measured can be adjusted to be in a range suitable for actual measurement.
  • the additive examples include protein denaturing agents such as guanidine hydrochloride and urea, acidic polysaccharides such as CS-C, and surfactants such as SDS.
  • the amount of HABP to be immobilized is, for example, 3 ng / mL or more, preferably 10 ng / mL or more, and usually 30000 ng as the concentration of the HABP solution used for the immobilization. / mL or less, preferably 10000 ng / mL or less, more preferably 1000 ng / mL or less.
  • the amount of labeled HABP to be reacted in step (iii) is the amount of reaction when biotin is used as the labeling substance.
  • the concentration of the biotin HABP solution to be used is, for example, 10 ng / mL or more, preferably 100 ng / mL or more, more preferably 200 ng / mL or more, usually 30000 ng / mL or less, preferably 3200 ng / mL or less. It is.
  • the concentration of guanidine hydrochloride in the HA standard solution and / or the sample is a final concentration, for example, 0 to 3.6 M, preferably 0 to 2.
  • the concentration of guanidine hydrochloride in the biotin HABP solution is, for example, 0 to 1.6 M, preferably about 0 to 1.2 M.
  • kits for measuring the molecular weight of HA, including HABP are provided.
  • the kit of the present invention can be used for carrying out the measurement method of the present invention.
  • the kit of the present invention includes the above additives, a buffer containing the above additives, a HA standard sample having a known molecular weight, and the like.
  • the molecular weight of HA in a small amount of sample can be reduced in a short time for many samples.
  • a method for measuring the molecular weight of HA that can be measured is provided, which is extremely useful in medical diagnosis, pharmaceutical development, and other biochemical studies. According to this method, it is possible to measure the molecular weight of HA in a small amount of sample as compared with the conventional method for measuring the molecular weight of HA, and it is possible to measure a large number of samples in a short time. It is particularly useful in the development of medicines.
  • FIG. 1 is a diagram showing HA reaction curves of various molecular weights in the concentration measurement of an HA sample.
  • FIG. 2 is a diagram showing HA reaction curves of various molecular weights when HA sample concentration measurement is carried out under different buffer conditions.
  • FIG. 3 is a diagram showing HA reaction curves of various molecular weights when HA sample concentration measurement is carried out under different buffer conditions.
  • FIG. 4 is a diagram showing the results of reaction with labeled HABP by changing the color-developing substance.
  • FIG. 5 is a graph showing the results of a test on the conditions of guanidine hydrochloride with respect to the reactivity of biotin HABP.
  • FIG. 6 is a diagram showing the results of tests on the effects of various additives on the reactivity of biotin HABP.
  • FIG. 7 is a diagram showing the results of a test conducted to test a suitable range of biotin HABP use concentration.
  • FIG. 8 is a diagram showing the results of all tests for using additives in the HA standard solution.
  • FIG. 9 is a diagram showing the results of a test on buffer conditions when HABP is immobilized.
  • FIG. 10 is a diagram showing the results of a test on HABP concentration when HABP is immobilized.
  • FIG. 11 is a diagram showing the results of a test on HABP concentration when HABP is immobilized.
  • FIG. 12 is a diagram showing the results of tests for combinations of various conditions.
  • FIG. 13 is a diagram showing a reaction curve (A) of a standard solution for measuring the concentration of HA in a sample and a standard curve (B) for determining the concentration of HA obtained therefrom.
  • FIG. 14 is a diagram showing a reaction curve (A) of a standard solution for measuring the molecular weight of HA in a sample and a standard curve (B) for determining the molecular weight of HA obtained therefrom.
  • FIG. 16 is a reaction curve (A) of a standard solution for measuring the molecular weight of HA in a sample and a diagram (B) showing them together with an approximate expression expressed by a logarithmic function.
  • FIG. 17 A diagram showing a standard curve for measuring the molecular weight of HA in a sample together with an approximate expression.
  • FIG. 18 is a diagram showing the results of a test to confirm that the pretreatment reagent has no influence on the measurement process (1)!
  • FIG. 19 is a diagram showing the results of a test to confirm that the pretreatment reagent has no influence on the measurement process (2)!
  • FIG. 20 is a diagram showing the results of a test for confirming that the pretreatment reagent has no influence on the measurement step (2).
  • the method for measuring the molecular weight of HA of the present invention comprises a step of reacting HA in a sample containing HA with HABP and measuring the amount of HABP bound to HA in the sample or a value reflecting the amount. It is characterized by including.
  • HABP's reactivity to HA changes in a certain direction depending on the molecular weight of HA, and thus the amount of HABP bound to HA changes depending on the molecular weight of HA.
  • the molecular weight of HA can be measured by measuring the amount of HABP bound to HA or a value reflecting the amount.
  • a sample containing HA contains other substances such as proteins, nuclear acids, lipids, and other inorganic compounds, the molecular weight of HA is not affected by them. Can be measured. Therefore, a sample containing HA is not necessarily purified for HA! /, And even a sample containing a substance other than HA, such as a biological sample, can be used as it is in the measurement method of the present invention.
  • Specific examples of the subject to be measured by the measurement method of the present invention include HA solution, cell culture solution, organ culture solution, body fluid, tissue and the like.
  • body fluids include blood, serum, plasma, urine, saliva, joint fluid, pleural effusion, ascites, bone marrow fluid, spinal fluid, and vitreous humor
  • tissues include cartilage, synovium, skin, and colon.
  • Cell culture fluid, organ culture fluid, joint Fluid, cartilage, synovium, skin, and the like are particularly preferable as the subject.
  • Pretreatment methods include extraction with a salt such as urea, guanidine hydrochloride, sodium chloride, proteolytic treatment with a proteolytic enzyme such as pronase or lactinase, and protein removal and neutralization with a protein denaturing agent such as TCA.
  • a salt such as urea, guanidine hydrochloride, sodium chloride
  • proteolytic treatment with a proteolytic enzyme such as pronase or lactinase
  • protein removal and neutralization with a protein denaturing agent such as TCA.
  • the method power by protease treatment is preferable in terms of simplicity. This method can be carried out in more detail by sequentially performing the pretreatment steps shown in 1) 2) 4) or 1) 2) 3) 4) below.
  • composition of the solvent (substance other than HA) that is finally obtained by the combination of the above pretreatment steps varies depending on the treatment conditions performed. Confirmed! /, As far as possible! /, Not particularly limited.
  • step 2 of molecular weight measurement the reactivity changes in a certain direction as the HA molecular weight increases.
  • Protein denaturants such as guanidine hydrochloride, urea, ammonium sulfate, etc.
  • the following various reagents can be used as specific inhibitors.
  • Chelating agents eg EDTA, EGTA
  • Reducing agent eg, odoacetic acid
  • Serin Protease inhibitors eg TPCK TLCK, soybean trypsin inhibitor
  • commercial protease inhibitor cocktail e.g, TPCK TLCK, soybean trypsin inhibitor
  • the molecular weight of HA to which the measurement method of the present invention can be applied is not particularly limited as long as the characteristic that HABP reactivity to HA changes in a certain direction depending on the molecular weight of HA is maintained.
  • the above can be applied to HA having a molecular weight range of preferably 10 kDa or more, more preferably 20 kDa or more, for example 3000 kDa or less, and preferably 10 kDa or less.
  • HAs of various origins HAs obtained by lowering them by alkali treatment, enzyme treatment, and the like can be measured by the measurement method of the present invention.
  • HA salts can also be measured by the measurement method of the present invention.
  • HA-binding proteodaricans eg, cartilage proteoglycan, trypsin digest of cartilage proteoglycan, chondroitinase-8 of cartilage proteoglycan, BC digest (Patent No. 2732718)
  • proteodalycan core tamper Protein for example, cartilage proteodarican core protein
  • link protein for example, cartilage proteodarican core protein
  • CD44 partial protein containing the HA binding site of these proteins, or a fusion protein of the partial protein and another protein
  • Examples include antibodies that recognize HA (Japanese Patent Publication No. 9-12600).
  • HA bin As for the trypsin digest of proteodalycan from nasal cartilage, “HA bin”
  • Aggrecan's HA binding site (HABR), (2) Aggrecan's HA binding site (HABR) with a KS chain-containing domain remaining, (3) a mixture containing link protein) sold by Seikagaku Corporation And can be preferably used.
  • the measurement method of the present invention comprises the following steps:
  • the step (1) is a step of measuring the HA concentration in the sample by quantitative measurement independent of the HA molecular weight.
  • the method for carrying out this step is not particularly limited as long as it can measure the HA concentration in the sample! /, But, for example, a general colorimetric method such as force rubazole sulfate method, HA is specifically used. Examples include a quantification method that combines HPLC or capillary electrophoresis with a degrading enzyme, and a competitive inhibition method that uses a solid phase on which HA is immobilized and HABP. Among these, competitive inhibition power using HABP and a solid phase on which HA is immobilized is most preferable because simultaneous measurement of multiple samples is possible and measurement sensitivity is good.
  • a competitive inhibition method using a solid phase on which HA is immobilized and HABP can be carried out by a known method, and if it is arranged, JP-A-63-150669 Koyuki I JP-2000- This can be done by the method described in No. 97940 Koyuki.
  • the soot, solid phase and label used can be the same as those used in step (2) described below.
  • a competitive inhibition method using a solid phase on which HA is immobilized and HABP is, for example, a force that can be performed by the following specific procedure, but is not limited thereto.
  • the step (2) is a step of measuring the reactivity of HABP, which varies depending on the molecular weight of HA, to HA as the amount of HABP bound to HA or a value reflecting the amount.
  • the method for measuring the amount of HABP that binds to HA is not limited as long as the purpose of this step is achieved. It is preferable to carry out the sandwich method using HABP labeled with a labeling substance.
  • the step (iii) can be carried out by measuring the amount of labeled HABP bound to HA or a value reflecting the amount.
  • the measurement of HABP by the sandwich method can be performed according to a known method. For example, it is possible to refer to the measurement of HABP in the HA measurement method described in JP-B-6-41952.
  • the solid phase used in the step (i) is not limited in shape and material as long as it is a water-insoluble solid phase capable of immobilizing HABP.
  • polystyrene, polypropylene, nylon, polyacrylamide examples of the plate (for example, a microplate well), a tube, a bead, a membrane, a gel, and a latex.
  • a polystyrene microwell is preferably used.
  • a general method for preparing an immobilized enzyme such as a physical adsorption method, a covalent bond method, and an entrapment method (immobilized enzyme, 1975, Kodansha) Line, see pages 9-75).
  • the physical adsorption method is preferred because it is easy and frequently used for operation!
  • HABP is dissolved in a buffer solution of about pH 6-9 (for example, phosphate buffer solution, PBS, carbonate buffer solution, etc.) and added to a solid phase at 4 ° C.
  • a buffer solution of about pH 6-9 for example, phosphate buffer solution, PBS, carbonate buffer solution, etc.
  • blocking substances include serum anolebumin such as BSA, casein, skim milk, gelatin, and the like, and commercially available blocking substances can also be used.
  • a solid phase on which HABP is immobilized can be produced by the method as described above.
  • the production of the solid phase can be carried out for each test by preparing or using a dry plate that can be stored.
  • the step (ii) is performed by bringing the analyte to be measured as described above into contact with the solid phase on which the HABP produced as described above is fixed.
  • the test can be performed by adding the analyte to a solid phase on which HABP is immobilized and incubating at 0 to 45 ° C., preferably about 37 ° C., for 30 minutes to 1 hour.
  • the surface of the solid phase is preferably washed with a washing solution.
  • a washing solution for example, it is preferable to use a buffer solution (for example, PBS, Tris-HCl buffer solution, etc.) to which a nonionic surfactant such as a Tween surfactant is added.
  • step (iii) can be carried out by the same method and reaction conditions as in step (ii).
  • the labeled HABP labeling substance used in the above step (iii) for example, biotin, avidin, enzyme, isotope, fluorescent dye, chemiluminescent substance, etc. can be used. Biotin and avidin are preferred because the amount is accurately reflected. It is also possible to detect HABP by preparing an antibody of HABP, labeling it with a labeling substance as described above, and reacting it with HABP.
  • the step (iv) can be performed according to a known method depending on the label used.
  • a known method depending on the label used.
  • an enzyme eg, peroxidase conjugated with avidin
  • avidin an enzyme conjugated with avidin
  • streptavidin or the like is bound at! /.
  • a method of measuring the degree of color development of the product by the enzyme reaction by changing the absorbance, and the like.
  • a fluorescent substance or a chemiluminescent substance a method of measuring fluorescence or luminescence of the solution after the reaction can be mentioned.
  • an HRP-avidin solution is added to the solid phase after the reaction in the above step (iii) and reacted at 37 ° C for 1 hour, for example. After washing, add O-phenylenediamine solution, react for 30 minutes at room temperature with light shielding, for example, and then measure the absorbance of the reaction solution at an absorption wavelength of 492 nm and a control wavelength of 630 nm. .
  • the reactivity of HABP with respect to HA is a protein denaturant, acidic polysaccharide,
  • an additive such as a surfactant and adjusting the amount, it can be adjusted while maintaining the property that the reactivity changes depending on the HA molecular weight.
  • protein denaturing agents such as guanidine hydrochloride and urea, acidic polysaccharides such as CS-C, surfactants such as SDS and the like can be used, and guanidine hydrochloride is particularly preferred.
  • the above-mentioned HA standard solution and / or guanidine in the sample is used.
  • the concentration of hydrochloric acid is, for example, 0 to 3.6 M, preferably 0 to 2.4 M
  • the concentration of guanidine hydrochloride in the biotin HABP solution is, for example, 0 to 1.6 M.
  • it is about 0 to 1.2 M (see Examples below), but is not limited thereto.
  • the amount of HABP bound to HA measured in step (iv) or a value reflecting the amount is the amount of HABP immobilized in step (i) or the amount of HA ABP reacted in step (iii).
  • the amount By changing the amount, it can be adjusted while maintaining the characteristic that the reactivity changes depending on the HA molecular weight. Therefore, it is preferable to obtain reactivity and reaction amount suitable for measurement by appropriately setting these various conditions.
  • the specific amount of HABP immobilized in step (i) is as follows: from the viewpoint of obtaining a good HA molecular weight and concentration-dependent reactivity, the concentration of the HABP solution used for solid-phase immobilization is For example, a force S of 3 ng / mL or more, preferably 10 ng / mL or more, usually 30000 ng / mL or less, preferably 10000 ng / mL or less, more preferably 1000 ng / mL or less (Examples described later) However, it is not limited to these.
  • the specific amount of labeled HABP to be reacted in step (iii) is used in the reaction when biotin is used as the labeling substance from the viewpoint of obtaining a good HA molecular weight and concentration-dependent reactivity.
  • the concentration of the biotin HABP solution is, for example, 10 ng / mL or more, preferably 100 ng / mL or more, more preferably 200 ng / mL or more, usually 30000 ng / mL or less, preferably 3200 ng / mL or less ( However, the present invention is not limited to these examples.
  • step (3) the relationship between the molecular weight of HA obtained from a standard HA sample having a known concentration and molecular weight and the amount of HABP that binds to HA or a value that reflects the amount of the HABP is combined with the step (1).
  • the molecular weight of HA in the sample is obtained from the HA concentration in the sample obtained in step 1 and the amount of HABP bound to HA in the sample obtained in step (2) above.
  • step (3) The relationship between the molecular weight of HA obtained from the standard HA sample of known concentration and molecular weight used in the above step (3) and the amount of HABP bound to HA or a value reflecting the amount is as follows: Perform step (2) using an HA standard solution of known concentration and molecular weight as a sample and obtain a standard curve.
  • step (2) is performed using a plurality of standard HA samples of known concentrations and molecular weights, and the value reflecting the amount of labeled HABP bound to HA in the reaction by each sample, for example, A standard curve is obtained by measuring the absorbance of the reaction solution obtained by the color reaction performed using the label and plotting them against the molecular weight of each standard HA sample. The molecular weight of HA in the test sample is determined by applying the value obtained in step (2) to the test sample in the standard curve obtained.
  • the concentration of the sample to be measured is the HA concentration of the test sample measured in step (1) as an index.
  • the concentration obtained by diluting the sample the measurement in step (2) and the measurement for creating the standard curve are performed at the same HA concentration.
  • the HA concentration of the test sample and the test sample If the value that reflects the amount is measurable under the measurement conditions set for the standard sample in each step, based on the reaction curve of the standard sample of each molecular weight determined in step (2), A standard curve of an arbitrary concentration can be obtained by conversion, and this can be used to obtain the HA molecular weight of the test sample (see Example 17 below).
  • a standard curve for measuring the concentration of HA in the sample of step (1) and a standard curve representing the relationship between the molecular weight of HA and the amount of HABP that binds to HA or a value that reflects that amount. If the reproducibility is sufficiently guaranteed, if they are prepared in advance, perform steps (1) and (2) only for the test sample, and use the obtained values for the step (3 ), The molecular weight of HA in the test sample can be determined, and a small amount of test sample force can be applied to many test samples in a short time.
  • the standard curve is calculated from the values obtained for a standard HA sample! /, And the molecular weight is a value that reflects the amount of the labeled HABP bound to HA, for example, absorbance or its logarithm, and optionally H
  • the molecular weight of sample HA can be obtained by applying the absorbance or its logarithmic value obtained for the sample to the function, expressed as a first-order, second-order or higher-order function of A concentration or its logarithmic value. it can.
  • the standard curve can be measured more quickly and accurately by preparing multiple standard curves corresponding to the HA concentration and molecular weight predicted for the test sample.
  • steps (2) and (3) include the acquisition of the relationship between the molecular weight of HA used in step (3) and the amount of HA BP bound to HA or a value reflecting that amount.
  • the following can be done by hand J jet.
  • the present invention further provides an HAB for use in the above-described method for measuring the molecular weight of HA of the present invention.
  • a kit for measuring the molecular weight of HA containing P is provided.
  • the kit of the present invention includes, in addition to HABP, an additive for adjusting the reactivity of HABP to HA, a buffer containing or not containing the additive, a HA standard sample having a known molecular weight for preparing a standard curve, and the like. As a thing.
  • HA (Arzampuru, derived from chicken crown, manufactured by Seikagaku Corporation)
  • HABP Hydrophilic acid binding protein
  • Biotin HABP (manufactured by Seikagaku Corporation)
  • TMB BLUE manufactured by DAKO
  • PBS prepared by dissolving 8 g of sodium chloride, 0.2 g of potassium chloride, 2.9 g of disodium hydrogen phosphate, and 0.2 g of potassium dihydrogen phosphate in 1 L of purified water.
  • Washing solution prepared by adding 0.5 mL of Tween-20 (manufactured by Wako Pure Chemical Industries, Ltd. to 1 L of PBS) and dissolving with stirring.)
  • ELISA basic buffer prepared by adding 10 g of BSA to 1 L of the washing solution, stirring and dissolving, and then filtering with a filter filter having a pore size of 0.2 am
  • sample A The above-mentioned chicken crown-derived HA (referred to as sample A) was treated with alkaline conditions ( ⁇ 10 ⁇ 5) or with Higgige testicular hyalurinidase to reduce the molecular weight, and purified by ethanol precipitation to prepare the following samples ⁇ to J.
  • Each molecular weight described is a value measured by the GPC method of Example 1 described later. It is.
  • Sample A 2289 kDa (hereinafter also referred to as “HA-2289”)
  • Sample B 964 kDa (hereinafter also referred to as “HA-964”)
  • Sample C 821 kDa (hereinafter also referred to as “HA—821”)
  • Sample D 606 kDa (hereinafter also referred to as “HA-606”)
  • Sample E 323 kDa (hereinafter also referred to as “HA-323”)
  • Sample F 248 kDa (hereinafter also referred to as “HA-248”)
  • Sample G 182 kDa (hereinafter also referred to as “HA-182”)
  • Sample H 112 kDa (hereinafter also referred to as “HA-112”)
  • Sample I 61 kDa (hereinafter also referred to as “HA-61”)
  • Example 1 Measurement of HA molecular weight by GPC method
  • Each of the above 9 kinds of GPC standard products and 10 kinds of test samples was prepared to a concentration of about 100 g / mL using 0.2 M NaCl and analyzed under the following conditions.
  • a standard curve was created by plotting the molecular weight of the standard product on the X-axis and the elution time at the elution peak position on the Y-axis, and using these, the peak molecular weight was calculated from the elution peak position of the test sample.
  • UV-1575 manufactured by JASCO
  • Example 2 Determination of HA concentration by HPLC method
  • Example 1 samples A to J, whose molecular weights were measured by the GPC method, were quantitatively measured by the HPLC method described below.
  • HA unsaturated disaccharide standard product (Seikagaku Corporation) was dissolved in purified water, and ultraviolet absorption at a wavelength of 232 nm was measured with a calibrated spectrophotometer (U-530DS; manufactured by JASCO Corporation). The concentration was determined based on the molecular extinction coefficient 5.7 of the substance, and was accurately diluted using a calibrated electronic balance (AT-250; manufactured by Mettler) to prepare a standard solution for HPLC quantification having a concentration of 211 g / mL. ,measuring device
  • Fluorescence detector FP-2059 (manufactured by JASCO)
  • Sample B (HA-964), E (HA-323), 3 ⁇ 4 ⁇ 1 8-112), in which molecular weight was measured by GPC method in Example 1 and HA concentration was measured by HPLC method in Example 2.
  • ( ⁇ 1 8-22) was prepared at concentrations of 0, 6.25, 1 2.5, 25, 50, 100, 200, and 400 ng / mL, and a HA quantitative test was performed by competitive ELISA according to the following procedure.
  • ⁇ 1-8-83 with a concentration of 100; ⁇ / 1 ⁇ 2? This was dissolved in 83, and lOO L was added to each well of the 96 well plate and allowed to stand at 4 ° C for solidification. After that, each well is washed 3 times with 300 ⁇ L of PBS to obtain 1% 83 8? After 83 solutions were added for 200 hours and allowed to stand at room temperature for 2 hours for blocking, each well was washed 3 times with 300 washing solution. To each well, add 50 ⁇ L of the dilution series of each sample HA prepared in the above-mentioned ELISA basic buffer or HA-free solution, and then add 50 ⁇ L of biotin solution prepared in the ELISA basic buffer.
  • each well was washed 3 times with 300 washing solution.
  • 100 L each of HRP avidin solution diluted with ELISA basic buffer was added and reacted at 37 ° C. for 1 hour, and then each well was washed 5 times with 300 L washing solution.
  • 100 L of OPD solution adjusted to a concentration of 0.25 mg / mL with OPD buffer, shield from light and react at room temperature for 30 minutes, add 100 1M HC1 solution, and add ELISA plate.
  • an absorptiometer (SK_603, manufactured by Seikagaku Corporation) at an absorption wavelength of 492 nm and a control wavelength of 630 nm Absorbance was measured. The measurement results are shown in Table 3, and the graph plotting the results is shown in Fig. 1.
  • HA can be easily quantified without being affected by the molecular weight of HA having a molecular weight of about 20 kDa to about 960 kDa. It became clear power.
  • the HA quantitative test was conducted in the same manner as in Example 3. However, the solution of biotin HABP was used as an ELISA basic buffer containing 0.4 M and 1.2 M guanidine hydrochloride. The measurement results are shown in Table 4 and Table 5, and the graphs plotting the results are shown in FIGS. 2 and 3, respectively.
  • the buffer conditions and the like do not affect the quantitative measurement of HA of various molecular weights. Real It can be applied. In other words, it is an additive that can change the reactivity in step (2) described later! / In terms of measurement sensitivity, measurement accuracy, stability, operability, etc. In addition, it was confirmed that the measurement results were not affected even if the step (1) was performed using the same conditions. Therefore, the conditions of the measurement method of the present invention can be further simplified, such as using the same buffer in steps (1) and (2), and a simpler measurement kit of the present invention can be constructed. .
  • Example 5 Measurement of labeled HABP binding to HA (step (2))
  • the labeled HABP binding to HA was measured by the following procedure.
  • the buffer conditions during the reaction, and the additive conditions the amount of HABP immobilized on the solid phase was varied, and the HA standard solution and biotin HABP The following five types of ELISA buffers were used for the buffer solution for dissolving lysine.
  • HABP was dissolved in PBS at concentrations of 300 and 3000 ng / mL, added to each well of a 96 well plate, and allowed to stand at 4 ° C for solid phase immobilization. After that, each well was washed 3 times with 300 ⁇ L of PBS, and 1% 83? After 83 solutions were added for 200 hours and allowed to stand at room temperature for 2 hours for blocking, each well was washed with 300 washing solution three times. To each well, 1000 of sample J (HA-22) or sample B (HA-964) prepared in each of the above-mentioned ELISA buffers was added. After adding 100 liquids without ⁇ 1 and reacting at 37 ° C for 1 hour, each well was washed 3 times with 300 washings.
  • HA molecular weight dependence The degree of reactivity difference depending on the HA molecular weight (hereinafter referred to as HA molecular weight dependence) can be adjusted by the degree and the composition of the buffer used in each step.
  • Biotin HABP concentration 200 and 800 ng / mL
  • sample B (HA-964) was used, and the reaction and measurement were performed in the same manner as in Example 5 except for the following conditions. The results are shown in Fig. 4.
  • Biotin HABP concentration 200 and 800 ng / mL
  • Example 8 Additive conditions for reactivity of biotin HABP! /, Test 2
  • Biotin HABP concentration 200 ng / mL
  • chromogenic substrate concentration for TMB (+) indicates the amount of reagent added (ju I)
  • Example 9 As in the case of this Example, the chromogenic intensity was examined in advance in the same manner as in Example 7. Each test was conducted after selecting appropriate conditions for.
  • Example 9 Test on additive conditions for reactivity of biotin HABP 3
  • Buffers in which HA standards are dissolved ELISA basic buffer
  • urea, SDS, CS-C and the like can be used in addition to guanidine hydrochloride as an additive to the biotin-HABP solution.
  • Samples B (HA-9 64), E (HA-323), ⁇ 1 8-112) and] 8-22) were used to test the appropriate concentration of biotin HABP.
  • the reaction and measurement were conducted in the same manner as in Example 5 except for the following conditions.
  • Table 12 shows the reaction conditions
  • FIG. 7 shows the results
  • Table 13 shows the ratio between the absorbances obtained from the respective samples calculated from the results.
  • Biotin HABP concentration 200, 400, 800, 1600 and 3200 ng / mL
  • the chromogenic substrate concentration for TMB (+) indicates the amount of reagent added (I)
  • biotin HABP is applicable to a range of at least 200 to 3200 ng / mL.
  • concentration of guanidine hydrochloride added to the biotin HABP solution was relatively high, the dependence on molecular weight decreased as the concentration of biotin HABP increased. From this example, it was found that the molecular weight dependency can be adjusted also by the concentration of biotin HABP used.
  • Example 1 1 Use of additives in HA standard solution!
  • HABP solid phase concentration 30, 300, 3000 ng / mL
  • Biotin HABP concentration 200 ng / mL
  • HRP avidin concentration 100 and 500 ng / mL
  • the results show that the molecular weight dependence becomes more pronounced as the concentration of guanidine hydrochloride added to the standard solution and the test sample solution increases. It was. From this example, the buffer solution for dissolving the standard solution and the test sample was used. It was found that the molecular weight dependence can also be adjusted by the concentration of guanidine hydrochloride.
  • Example 12 Test on buffer solution conditions when HABP is immobilized
  • Sample B (HA-964 E (HA-323 H (HA-1 12) and 01-8-22) was used to test the buffer conditions when HABP was immobilized.
  • the reaction and measurement were performed in the same manner as in Example 5.
  • the reaction conditions are shown in Table 16, the results are shown in Fig. 9, and the ratio between the absorbances obtained from the respective samples calculated from the results is shown in Table 17.
  • Biotin HABP concentration 200 ng / mL
  • chromogenic substrate concentration for TMB (+) indicates the amount of reagent added ( W l)
  • the buffer used to immobilize HABP on the plate is not limited to specific conditions. At least all of the buffer conditions shown in this example are applicable. It was shown that there is.
  • Example 13 Test of HABP concentration at the time of HABP immobilization 1
  • Sample B (HA-964), E (HA-323), H (HA-112) and] 01-8-22) were used to test the HABP concentration when HABP was immobilized. The others were reacted and measured in the same manner as in Example 5.
  • Table 18 shows the reaction conditions
  • Fig. 10 shows the results
  • Table 19 shows the ratio between the absorbances obtained from each sample calculated from the results.
  • HABP solid phase concentration 10, 30, 100, 300, 1000, 3000, 10000, 30000 ng / mL
  • Biotin HABP concentration 200 ng / mL
  • the chromogenic substrate concentration for TMB (+) indicates the amount of reagent added (I)
  • a HABP solid-phase concentration of at least 10 to 30 000 ng / mL is applicable.
  • the HABP solid-phase concentration is lower than 300 ng / mL at which saturation is reached! /, And in the range, the molecular weight dependence becomes more conspicuous as the HABP concentration decreases. Fruit was obtained. From this example, it was found that the molecular weight dependency can be adjusted also by the concentration of immobilized HABP.
  • Example 14 Test 2 on HABP concentration when HABP is immobilized
  • Sample B (HA-964), E (HA-323), H (HA-1 12) and] 01-8-22) were used to test the HABP concentration when HABP was immobilized. The others were reacted and measured in the same manner as in Example 13.
  • Table 20 shows the reaction conditions
  • Fig. 11 shows the results
  • Table 21 shows the ratio between the absorbances obtained from each sample calculated from the results.
  • HABP solid phase concentration 30, 60, 120, 240 ng / mL
  • Example 15 Combination of conditions!
  • the degree of molecular weight dependency in step (2) of the measurement method of the present invention can be freely adjusted by optimizing the combination of a plurality of conditions.
  • Example 2 As test samples, three types of HA whose molecular weights were measured in Example 1, Samples D (HA-6 06), G (HA-182), and I (HA-61) were added to Dulbecco's modified Eagle medium. A sample was used. Sample J (HA-22) itself was used as the standard sample in step (1). Sample B (HA-964), E (HA-323), ⁇ 1 8 ⁇ 112) and ⁇ 8 ⁇ 22 as standard samples for step (2)
  • step (1) was first performed according to the method described in Example 3.
  • the results of absorbance measurement are shown in Table 24 below for the standard samples, Table 25 for the values converted into logarithms together with the concentration values, and Table 26 for the test samples.
  • each test sample was diluted to a concentration of 400 ng / mL, and step (2) was performed by applying the condition E of Example 15.
  • the obtained absorbance results are shown in Table 28 below.
  • the same operation was performed for each concentration standard sample.
  • the results of absorbance obtained are shown in Table 27 below.
  • the response curve for each standard sample obtained from these values is shown in FIG. 14A.
  • a standard curve obtained from the results obtained at a concentration of 400 ng / mL is shown in FIG. 14B.
  • HA As test samples, three types of HA whose molecular weights were measured in Example 1, Samples D (HA-6 06), F (HA-248), and I (HA-61) were added to Dulbecco's modified Eagle medium. A sample was used. Sample J (HA-22) itself was used as the standard sample in step (1). Samples B (HA-964), E (HA-323), H (HA-112 3 ⁇ 4O «J (HA-22) are standard samples for step (2).
  • step (1) was performed according to the method described in Example 3. In parallel with this, condition A of Example 14 was applied, and step (2) was performed.
  • Table 29 below shows the results of the absorbance measurement of the standard sample for the step (1) performed
  • Table 30 shows the results of the absorbance measurement of the test sample together with the values converted into logarithms thereof and the values converted into logarithms. Are shown in Table 31.
  • FIG. 15A A calibration curve prepared based on the absorbance data in the standard solution is shown in FIG. 15A, and an approximate expression of the calibration curve in which absorbance and concentration are expressed as logarithmic values is shown in FIG. 15B. Using this, the HA concentration in the sample was determined. The results are shown in Table 31.
  • the absorbance results of the standard samples obtained in step (2) are obtained from these values in Table 32 below.
  • the reaction curve showing the absorbance with respect to the HA concentration for each standard sample obtained is shown in FIG. 16A, and the absorbance results for the test sample are shown in Table 34.
  • Fig. 16B shows an equation that approximates the reaction curve of each HA molecular weight standard sample obtained in step (2) with a logarithmic function.
  • the HA of each test sample was obtained.
  • a calibration curve for molecular weight measurement at concentration can be created.
  • Figure 17 shows the approximate expression of the calibration curve for measuring the molecular weight at each concentration.
  • the HA molecular weight of the test sample can be obtained by substituting the absorbance value of the test sample obtained in step (2) for X in the formula corresponding to the concentration of each test sample. it can.
  • the molecular weights thus obtained are shown in Table 34.
  • steps (1) and (2) are carried out independently without performing operations such as selecting the reaction conditions of step (2) based on the results of step (1), as in this example However, if the absorbance value obtained in each step for the test sample is within each measurement range, the HA molecular weight of the test sample can be determined.
  • A Absorbance of each HA molecular weight standard solution
  • B Absorbance of each HA molecular weight standard solution (blank subtraction value)
  • Example 18 Confirmation of proteaase deactivation effect when performing pretreatment steps 2) and 3)
  • Lactinase AF was dissolved in 0.135M NaCl-lOmM Tris.HCK PH8.0) at a concentration of 2% or 6% to prepare a test sample solution. A part of this solution was taken and boiled for 10 minutes to inactivate it, which was used as control solution A. Further, a buffer solution containing no lactinase was used as a control solution B. After each solution is ice-cooled, add 1/4 volume of 40%, 12%, or 4% TCA solution that has been ice-cooled in advance. Add and mix and hold on ice for 15 minutes, then divide each solution into two equal parts, keep one on ice, and the other using a small refrigerated centrifuge at 4 ° C for 5 minutes, lOOOOr. The supernatant was collected by centrifugation at pm.
  • 2M Tris solution that had been ice-cooled in advance was added to each solution to adjust the pH to 8.0.
  • the volume of 2M Tris required to adjust to pH 8.0 was determined by prior examination.
  • lactinase AF powder was dissolved in purified water to prepare a 6% solution, and a dilution series of 12.5-500 g / mL was prepared using this solution as a standard solution.
  • Collect 50 L of the above test sample and standard solution add 250 L of 1.25% sodium caseinate (Wako Pure Chemical Industries) solution, react at 55 ° C for 30 minutes, add HOmM TCA250 L, and add protein. And centrifuged at 10000 X g for 10 minutes to collect 60 L of the supernatant. Add 150 mL of 500 mM Na carbonate solution to this solution, add 30 L of 4-fold diluted phenol reagent (Wako Pure Chemical Industries), stir and mix, react at 37 ° C for 30 minutes, and then 630 ⁇ wavelength The absorbance of m was measured.
  • a calibration curve was prepared from the concentration and absorbance of the standard solution, and the remaining protease activity in the test sample was calculated and evaluated as a concentration equivalent of standard lactinase AF.
  • Example 19 Evaluation of retention rate of HA molecular weight when the pretreatment steps 2) and 3) were carried out 0.135M NaCl-lOmM Tris.HCl (pH 8.0) was prepared as a sample buffer solution.
  • Three types of molecular weight HA (Example 1, HA-MWSTD-1, 2, and 3 in Table 1) were added to a final concentration of 5 g / mL, and this was used as a test sample.
  • Example 20 Evaluation of retention rate of HA molecular weight when pretreatment steps 1), 2) and 3) were carried out 0.135M NaCl-lOmM Tris.HCl (pH 8.0) was prepared as a sample buffer, In this, lactinase AF was dissolved to prepare 6% concentration solution (A) and 2% solution (B). In addition, a sample buffer solution (C) containing no protease was prepared. To each of the above solutions, three types of molecular weight HA (Example 1, HA in Table 1—MWSTD-1, 2, and 3) were added to a final concentration of 5 g / mL, and this was added to the test sample. did.
  • Each prepared solution was desalted using a PD-10 column (GE Healthcare Bioscience), concentrated to dryness without heating with a centrifugal evaporator, and redissolved by adding 380 L of 0.2 M NaCl.
  • GPC analysis was performed in the same manner as in Example 1 to measure the HA molecular weight, and the HA molecular weight after the above pretreatment was compared with the molecular weight of untreated HA. The HA molecular weight retention rate in the pretreatment process was evaluated. The results are shown in Table 38.
  • the retention rate when treated at 37 ° C for 24 hours at a lactase concentration of 2%, when evaluated by peak molecular weight, is HA— MWSTD-1 (molecular weight: 2310 kDa), HA— MWSTD-2 (molecular weight: 1410 kDa), HA For each sample of —MWSTD-3 (molecular weight: 993 kDa), they were 89%, 91%, and 96%, respectively.
  • the retention rate when treated at 42 ° C for 24 hours at a lactase concentration of 6% is 74%, 80%, 89 for each of the HA-MWSTD-1, 2, and 3 samples when evaluated by peak molecular weight. %Met.
  • Example 21 Pretreatment steps 2), 3), 4) Confirmation of the effect of the solvent composition on the measurement step (1)
  • Example 22 Pretreatment step 2) 3) 4) Confirmation of the effect of the solvent composition on the measurement step (2)
  • Example 1 sample in Table 1—B E H J.
  • HABP solid phase concentration 30 100 ng / mL
  • HABP solid-phase plate Create and use a dry plate with 3 types of blocking reagents
  • Biotin HABP concentration 200 ng / mL
  • Table 41 shows the reaction conditions at an HABP solid phase concentration of 30 ng / mL
  • Fig. 19 shows the results
  • Table 42 shows the ratio between the absorbances obtained from each sample calculated from the results.
  • HABP solid phase The reaction conditions at a concentration of lOOng / mL are shown in Table 43, the results are shown in FIG. 20, and the ratio between the absorbances obtained for each sample calculated from the results is shown in Table 44.
  • HABP immobilized plate blocking agent 1 Applie Block; 2 1% BSA—2% sucrose; 3 Immunoassay stabilizer
  • Blocking agent for HABP solid phase plate 1 Applie Block; 2 1% BSA-2% sucrose: 3 Immunoassay stabilizer
  • Example 23 Measurement result of HA concentration in various biological samples when the conditions determined from the results of Example 18 22 are applied (HPLC method)
  • Example 24 Measurement results of HA molecular weight in various biological samples when conditions determined from the results of Examples 18 to 22 are applied (GPC method)
  • Example 23 The redissolved solution obtained after desalting and concentration obtained in Example 23 was subjected to GPC analysis in the same manner as in Example 1 to measure the HA molecular weight.
  • Example 25 Measurement results of HA concentration in various biological samples when the conditions determined from the results of Examples 18 to 22 were applied (ELISA method (measurement step (1)))
  • Example 21 30 L of the 2M Tris neutralizing solution obtained in Example 23 was collected, and 48.3 L of the ELISA correction solution shown in Example 21 was added thereto to prepare a test sample solution.
  • the standard concentration of soot is Prepared in the same manner as in Example 21.
  • Example 26 Measurement results of HA molecular weight in various biological samples when conditions determined from the results of Examples 18 to 22 are applied (ELISA method (measurement process (2), (3)))
  • Example 25 Each test sample solution prepared in Example 25 is diluted with the simulated pretreatment solution A prepared in Example 21 based on the results in Example 25, and the HA concentration is adjusted to 100 ng / mL. Was used as a test sample.
  • the HA molecular weight standard was prepared in the same manner as in Example 21. The above standard solution and test sample were measured by the same method as in Example 16, and the HA molecular weight was calculated.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Hematology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Food Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Diabetes (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Description

明 細 書
ヒアルロン酸の分子量の測定方法
技術分野
[0001] 本発明は、ヒアルロン酸の分子量の測定方法に関する。より詳細には、微量の試 中のヒアルロン酸の分子量を、多数の試料について短時間で測定することができ アルロン酸の分子量の測定方法に関する。
背景技術
[0002] 本明細書にお!/、て用いる略号は下記の意味を有する。
HA :ヒアルロン酸
BSA:ゥシ血清アルブミン
CS - C :コンドロイチン 酸 C
HA— BSA : HA—BSAコンジュゲート
HABP: HA結合性タンパク質
ビォチン HABP:ビォチン標識ヒアルロン酸結合性タンパク質
HRP アビジン:ホースラディッシュペルォキシダーゼ標識ストレプトアビジン
OPD凝: O フエ二レンジアミン凝
ABTS錠: 2, 2'—アジノビス(3 ェチルベンゾチアゾリン一 6— 0 スルホン酸)
TMB ( + ): N, N, N, N テトラメチルベンチジン(+ )
TMB BLUE : N, N, N, N テトラメチルベンチジンブルー
PBS:食塩添加リン酸ナトリウム緩衝液
GPC:ゲル浸透クロマトグラフィー
SDS:ドデシル硫酸ナトリウム
TCA :トリクロ口酢酸
EDTA:エチレンジァミン四酢酸
K J ΓΑ: thylene glycol-bis(2-aminoethylether)-N,N,N ,Ν - tetraacetic acid TLCK: N a -p-Tosyl-lysine chloromethyl ketone
TPCK: N_p_Tosyト phenylalanine chloromethyl ketone [0003] HAは N—ァセチルダルコサミンとグルクロン酸が /3 1→4結合した 2糖単位からなる 自然界に存在する直鎖高分子多糖である。近年、 HAの分子量特異的な生理活性 や、特定の分子量の HAの生体内における存在が疾患の存在を示唆し得ることなど が指摘されており、 HAの分子量の測定方法は医薬、医療などの分野において重要 である。
[0004] HAの分子量測定は通常、極限粘度測定や GPCを利用する方法により行われて いる。これらの方法は、 HAの分子量が大きくなるに従って同一濃度の水溶液の粘度 が高くなること、分子量が大きい HAほど網目構造を有する担体中をより早く通過する ことをそれぞれ利用している。
[0005] しかしながら、極限粘度測定を利用した測定方法では、測定を実施するためには 約 lmg以上の HAが必要である。また、汎用の自動装置を用いた場合でも、同時測定 できる試料数は 5前後であり、 1回の測定毎に、粘度管の乾燥等の準備が必要となる 。さらに、他の類似のグリコサミノダリカンも同様な粘度を示すため、これらが共存する 場合には HAに特異的な測定ができない。またその他の共存物質も溶液の粘度に影 響を及ぼすため、原則的には精製した純品の水溶液等でなければ測定できない。
[0006] また GPCを利用した測定方法では、測定を実施するためには、約 10 g以上の HA が必要である。また、測定系の安定化のために最短でも 1時間が必要であり、分子量 標準試料を含め各々の試料に対して独立した測定サイクルが必要となる。標準試料 としては通常 5種類前後を用い、原則的には分析バッチごとに測定が必要となる。さ らに、 1回の測定サイクルの所要時間は、最短で 30分間であり、被験試料 1つでも 4 時間以上、 10試料では 9時間以上が必要となる。また、この測定方法においてクロマ トグラムを検出する汎用的な方法としては、紫外部吸収を利用する方法が現時点で 最も高感度であるが、紫外部吸収を利用する場合、他の類似のグリコサミノダリカンも 同様に検出される。従って、これらが共存する場合、 HAのクロマトグラムと重なり、 H Aに特異的な測定ができない。同様に紫外部に吸収を持つような不純物が含まれる 場合も HAのクロマトグラムに重なり、 目的とする測定ができない。多くの生体試料の 場合、タンパク質 ·核酸 ·二重結合を有する脂質などが共存する場合が殆どであるが 、これらはいずれも紫外部に吸収を示し、試料中の HAを本方法により測定する場合 は、これらの不純物を除去する前処理操作が必要となる。
[0007] 上記の通り、現在使用されている HAの分子量の測定方法は、少なくとも 10 gから lmg程度の試料を必要とし、また時間がかかり、操作も煩雑であり、同時に測定でき る試料数も限定される。
[0008] 一方、 HAに結合するタンパク質を利用した HAの測定方法は提案されているが( 特許文献 1及び 2)、いずれも定量方法であり、直接分子量を測定する方法は知られ ていない。
特許文献 1 :特公平 6— 41952号公報
特許文献 2:特許第 2698563号
発明の開示
発明が解決しょうとする課題
[0009] 本発明は、微量の試料中の HAの分子量を、多数の試料について短時間で測定 することができ、類似物質及びその他の物質が共存する試料であっても HAの分子 量を測定することができる HAの分子量の測定方法を提供することを課題とする。 課題を解決するための手段
[0010] 本発明者は上記課題を解決するため鋭意検討した結果、 HAに結合するタンパク 質(HA結合性タンパク質(HABP) )の HAに対する反応性が、 HAの分子量に比例 して一定方向に変化し得ることを見出し、 HAの分子量測定に利用できることを確認 し、本発明を完成した。
[0011] すなわち本発明は、 HAを含む試料中の HAを HABPと反応させ、試料中の HAに 結合した HABPの量又はその量を反映する値を測定する工程を少なくとも含む、 H Aの分子量の測定方法を提供する。
上記 HABPの HAに対する反応性は、 HAの分子量に依存して一定方向に変化し 、従って HAの分子量により HAに結合する HABPの量が変化する。従って、 HAに 結合する HABPの量又はその量を反映する値を測定することにより、 HAの分子量を 測定すること力でさる。
[0012] 上記本発明測定方法は、例えば、
(1) 試料中の HA濃度を測定する工程、 (2) 試料中の HAを HABPと反応させ、試料中の HAに結合した HABPの量又はそ の量を反映する値を測定する工程、及び
(3) 濃度及び分子量既知の標準 HA試料から得られた HAの分子量と HAに結合す る HABPの量又はその量を反映する値との関係に基づいて、上記工程(1)で得られ た試料中のヒアルロン酸濃度と、上記工程 (2)で得られた試料中の HAに結合した H ABPの量又はその量を反映する値力、ら試料中の HAの分子量を求める工程 により fiうことカでさる。
[0013] 上記工程 (2)は、例えば、
(0 HABPを固相に固定する工程、
(ii) 固相に固定した HABPに試料中の HAを反応させる工程、
(iii) 固相に固定した HABPに結合した HAに、標識した HABPをさらに反応させる 工程、及び
(iv) 工程 (iii)にお!/、て HAに結合した標識 HABPの量又はその量を反映する値を測 定する工程、力 構成される工程が例示できる。
[0014] 上記工程 (iii)にお!/、て使用する標識した HABPの標識物質としては、例えば、ビォ チン、アビジン、酵素、アイソトープ、蛍光色素、化学発光物質等が使用でき、ビォチ ン及びアビジンが好まし!/、。
[0015] 上記工程 (3)において使用する、濃度及び分子量既知の標準 HA試料から得られ た HAの分子量と HAに結合する HABP又はその量を反映する値の量との関係は、 例えば、濃度及び分子量既知の HA標準液を試料として工程 (2)を行い、標準曲線と して得ること力 Sでさる。
[0016] 上記工程(3)において、工程(1)で得られた試料中の HA濃度は、試料を希釈するた めの指標として、又は、当該濃度における、標準 HA試料の HAに結合する HABPの 量又はその量を反映する値の算出に用いることができる。
[0017] 上記標識 HABPの HAに対する反応性、すなわち HAに結合する量は、 HAに HA BPを結合させる際に、タンパク質変性剤、酸性多糖、界面活性剤などの添加剤を存 在させ、その量を調節することにより、 HA分子量依存的な反応性変化という特性を 維持しながら調整できる。また、工程 (iv)において測定する HAに結合した HABPの 量又はその量を反映する値は、工程 (i)において固定する HABPの量、あるいは工程 (iii)において反応させる HABPの量を変化させることによつても、 HA分子量依存的 な反応性変化という特性を維持しながら調整できる。
[0018] 従って、工程 (iv)において、例えば標識された HABPとそれに関連付けられた発色 物質を使用して吸光度により HABPの量を測定する場合、適当な種類及び量の上 記添加剤を使用すること及び/又は各工程で使用する HABPの量を調整することに より、測定すべき吸光度を実際の測定に適した範囲となるように調整することができる
上記添加剤としては、グァニジン塩酸、尿素などのタンパク質変性剤、 CS— Cなど の酸性多糖類、 SDSなどの界面活性剤などが使用できる。
[0019] 具体的には、固相化する HABPの量は、固相化に使用する HABP溶液の濃度とし て、例えば、 3 ng/mL以上、好ましくは 10 ng/mL以上で、通常 30000 ng/mL以下、好 ましくは 10000 ng/mL以下、より好ましくは 1000 ng/mL以下であり、工程 (iii)において 反応させる標識 HABPの量としては、標識物質としてビォチンを使用する場合、反応 に使用するビォチン一 HABP溶液の濃度として、例えば 10 ng/mL以上、好ましくは 1 00 ng/mL以上、より好ましくは 200 ng/mL以上で、通常 30000 ng/mL以下、好ましく は 3200 ng/mL以下である。添加剤については、グァニジン塩酸を使用する場合、上 記 HA標準液中及び/又は試料のグァニジン塩酸の濃度としては、終濃度で、例え ば 0〜3·6 Mであり、好ましくは 0〜2·4 Μであり、ビォチン HABP溶液中のグァニジ ン塩酸の濃度としては、終濃度で、例えば 0〜1.6 Mであり、好ましくは 0〜1.2 M程度 である。
[0020] また本発明の別の形態として、 HABPを含む、 HAの分子量の測定用のキットが提 供される。本発明のキットは、上記本発明測定方法を実施するために使用することが できる。
本発明キットは、 HABPの他、上記添加剤、上記添加剤を含むバッファー、分子量 既知の HA標準試料などを含むものとしてもょレ、。
発明の効果
[0021] 本発明によれば、微量の試料中の HAの分子量を、多数の試料について短時間で 測定することができる HAの分子量の測定方法が提供され、医療における診断、医薬 の開発、その他の生化学的研究などにおいて極めて有用である。該方法によれば、 従来の HAの分子量の測定方法よりも微量の試料中の HAの分子量を測定すること ができ、多数の試料について短時間で測定することができるので、医療における診 断及び医薬の開発において特に有用である。
図面の簡単な説明
[図 1]HA試料の濃度測定における各種分子量の HAの反応曲線を示す図である。
[図 2]緩衝液条件を変えて HA試料濃度測定を実施した場合の各種分子量の HAの 反応曲線を示す図である。
[図 3]緩衝液条件を変えて HA試料濃度測定を実施した場合の各種分子量の HAの 反応曲線を示す図である。
[図 4]発色物質を変えて標識 HABPとの反応を行った結果を示す図である。
[図 5]ビォチン HABPの反応性に対するグァニジン塩酸の条件についての試験の 結果を示す図である。
[図 6]ビォチン HABPの反応性に対する種々の添加剤の影響についての試験の 結果を示す図である。
[図 7]ビォチン HABPの使用濃度の適当な範囲について試験するために行った試 験の結果を示す図である。
[図 8]HA標準溶液における添加剤使用につ!/、ての試験の結果を示す図である。
[図 9]HABP固相化時の緩衝液条件についての試験の結果を示す図である。
[図 10]HABP固相化時の HABP濃度についての試験の結果を示す図である。
[図 11]HABP固相化時の HABP濃度についての試験の結果を示す図である。
[図 12]各種条件の組合せについての試験の結果を示す図である。
[図 13]試料中の HAの濃度を測定するための、標準液の反応曲線 (A)及びそれから 得られた HAの濃度を決定するための標準曲線 (B)を示す図である。
[図 14]試料中の HAの分子量を測定するための、標準液の反応曲線 (A)及びそれか ら得られた HAの分子量を決定するための標準曲線 (B)を示す図である。
[図 15]試料中の HAの濃度を測定するための、標準液の反応曲線 (A)及びそれから 得られた HAの濃度を決定するための標準曲線 (B)を近似式とともに示す図である。
[図 16]試料中の HAの分子量を測定するための標準液の反応曲線 (A)及びそれらを 対数関数により表した近似式とともに示す図(B)である。
[図 17]試料中の HAの分子量を測定するための標準曲線を近似式とともに示す図で ある。
[図 18]測定工程 (1)への前処理用試薬の影響がな!/、ことを確認する試験の結果を示 す図である。
[図 19]測定工程 (2)への前処理用試薬の影響がな!/、ことを確認する試験の結果を示 す図である。
[図 20]測定工程 (2)への前処理用試薬の影響がないことを確認する試験の結果を示 す図である。
発明を実施するための最良の形態
[0023] 本発明の HAの分子量の測定方法は、 HAを含む試料中の HAを HABPと反応さ せ、試料中の HAに結合した HABPの量又はその量を反映する値を測定する工程を 含むことを特徴とする。
上記工程にぉレ、て、 HABPは HAに対する反応性が HAの分子量に依存して一定 方向に変化し、従って HAの分子量により HAに結合する HABPの量が変化する。こ れにより HAに結合する HABPの量又はその量を反映する値を測定することによって 、 HAの分子量を測定することができるものである。
[0024] 本発明の測定方法によれば、 HAを含む試料が他の物質、例えばタンパク質、核 酸、脂質、その他の無機化合物などを含んでいてもそれらに影響されることなく HA の分子量を測定することができる。従って HAを含む試料は、必ずしも HAについて 精製されて!/、る必要はなぐ生体試料などの HA以外の物質を含む試料であっても そのまま本発明の測定方法に使用することができる。
[0025] 本発明の測定方法の測定対象となる被検体として具体的には、 HA溶液、細胞培 養液、器官培養液、体液、組織等が例示される。体液としては、血液、血清、血漿、 尿、唾液、関節液、胸水、腹水、骨髄液、脊髄液、硝子体液等が例示され、組織とし ては軟骨、滑膜、皮膚、結腸などが例示されるが、細胞培養液、器官培養液、関節 液、軟骨、滑膜、皮膚等が被検体として特に好ましい。
[0026] 本発明測定方法を、血清、尿、関節液、軟骨 ·滑膜'皮膚等の組織、培養細胞の培 養液等の各種生体成分中に存在する HAの分子量の測定に適用する場合には、必 要に応じて被検体に前処理を適用することができる。前処理方法としては、尿素、グ ァニジン塩酸、塩化ナトリウム等の塩による抽出、プロナーゼ、ァクチナーゼ等のタン ノ ク質分解酵素によるタンパク分解処理、 TCA等のタンパク質変性剤によるタンパク 質の除去と中和、脱塩カラムあるいは透析等による脱塩、イオン交換カラム等による イオン交換分離、エタノール沈殿、セチルピリジニゥムクロリド (CPC)やセチルトリメチ ルアンモニゥムブロミド (CETAB)等の 4級アンモニゥム塩による沈殿等の方法を単独 で、あるいは組み合わせて使用することができる。これらの前処理については、適用 する前処理によって HA分子量が低下せず、かつ前処理後の溶媒組成が工程 (1)お よび工程 (2)の反応に影響を与えないことを、予備実験によって確認する必要がある。 またこれらの条件を満足する方法であれば、前処理の方法は上記の方法に限定され るものではない。
[0027] 上記各種前処理方法のうち、プロテアーゼ処理による方法力 簡便性の点で好まし い。本方法は、更に詳細には下記 1) 2) 4)あるいは 1) 2) 3) 4)で示される前処理工程 を順次行なうことで実施することが出来る。
1) HA分子量が低下しない条件下で、プロテアーゼ処理による共存タンパク質を分 解する工程。
2) HA分子量が低下しない条件下で、 1)の処理液にタンパク質沈殿剤、変性剤、あ るいは特異的阻害剤によりプロテアーゼを失活させる工程。
3) HA分子量が低下しない条件下で、 2)の各試薬を中和あるいは除去する工程。
4) 2)あるいは 3)液に対して、分子量測定工程 1および工程 2を実施するために必要 な特定の成分を加える調整工程。
[0028] 上記のプロテアーゼ処理による方法における各工程の組み合わせとしては、例え ば、表 35に記載した各種組み合わせが使用できる。
[0029] 上記前処理工程の組み合わせにより最終的に得られる溶媒 (HA以外の物質)の 組成は、実施した処理条件により異なる力 以下に示す 2つの条件を満たすことが予 め確認されて!/、る限りにお!/、て特に限定されるものではなレ、。
1.分子量測定の工程 1において HA分子量に影響されず同一の反応性を示すこと。
2.分子量測定の工程 2において HA分子量の増加とともに一定方向の反応性の変 化を示すこと。
[0030] 上記前処理工程 1)においては、例えば下記に示すような各種プロテアーゼが使用 できる。
(1)菌体由来のプロテアーゼ
(例: Pronase E、 Proteinase (SIGMA社)、 Actinase E、 Actinase AF (科研製薬)、 Disp
(2)菌体由来のコラゲナーゼ
({¾: Collagenase A, Collagenase P (ロシュダイノグノスアイツク社) )
(3)脊椎動物由来の Cystein Proteinase
(例: Papain)
(4)脊椎動物由来の Serine Proteinase
(例: Chimotrypsin, ry sin)
[0031] 上記前処理工程 2)においては、以下に示す各種試薬が沈殿剤/変性剤として使 用できる。
a) TCA、過塩素酸などの徐タンパク試薬
b) pH2.0以下の酸性緩衝液
c)グァニジン塩酸、尿素、硫酸アンモニゥムなどのタンパク変性剤
本工程においては、必要に応じて、変性 '沈殿したプロテアーゼを除去する操作を加 えること力 Sできる。具体的には、以下に示す操作が利用できる。
a)遠心分離
b)フィルターろ過
[0032] 同様に上記前処理工程 2)においては、例えば以下に示す各種試薬が特異的阻害 剤として使用できる。
a)キレート剤(例: EDTA, EGTA)
b)還元剤(例:ョード酢酸) c) Serin Protease阻害剤(例: TPCK TLCK、大豆トリプシンインヒビター) d)巿販プロテアーゼインヒビターカクテル
[0033] 上記前処理工程 3)で中和処理を実施する場合は、以下に示す方法が利用できる
1) Tris Bis-Tris, MOPS等の Goodの緩衝液成分で作成した塩基性溶液
2)ホウ酸 Na,リン酸 Na糖の無機塩で作成した塩基性溶液
[0034] 上記前処理工程 3)で除去処理を実施する場合は、以下に示す方法が利用できる
1 )脱塩用カラムを用レ、た脱塩
2)透析膜 ·透析カセット等を用レ、た透析
また、必要に応じて試料を濃縮するために、下記方法が使用できる。
1)遠心エバポレータ
2)凍結乾燥
[0035] 本発明の測定方法が適用できる HAの分子量は、 HAに対する HABPの反応性が HAの分子量に依存して一定方向に変化する特性が維持される限り特に限定されな いが、例えば 3kDa以上、好ましくは lOkDa以上、より好ましくは 20kDa以上で、例 えば 3000kDa以下、好ましくは lOOOkDa以下の分子量範囲の HAに適用できる。
[0036] 従って、種々の由来の天然 HA、それらをアルカリ処理、酵素処理などにより低分 子化した HAなどが本発明の測定方法の測定対象となり得る。また HAの塩も本発明 の測定方法の測定対象となり得る。
[0037] 本発明の測定方法に使用する「HABP」とは、 HAに結合する性質を有するタンパ ク質を意味する。具体的には、 HA結合性のプロテオダリカン (例えば、軟骨プロテオ ダリカン、軟骨プロテオグリカンのトリプシン消化物、軟骨プロテオグリカンのコンドロイ チナーゼ八、 B C消化物(特許第 2732718号)など)、プロテオダリカンのコアタンパ ク質(例えば、軟骨プロテオダリカンのコアタンパク質など)、リンクプロテイン、ヒアル ロネクチン、 CD44、これらのタンパク質の HA結合部位を含む部分タンパク質、ある いは該部分タンパク質と他のタンパク質との融合タンパク質、 HAを認識する抗体(特 開平 9— 12600号公報)などが挙げられる。これらは天然物から分離精製したもので あってもよく、遺伝子組換え技術により調製したものでもよい。特に軟骨プロテオダリ カンのトリプシン消化物、さらにはゥシ鼻軟骨のプロテオダリカンのトリプシン消化物が 好ましい。また、当該トリプシン消化物中の各成分を分離精製して使用することもでき る。なお、ゥシ鼻軟骨のプロテオダリカンのトリプシン消化物については、「HAバイン
Aggrecanの HA結合部位 (HABR)、(2)Aggrecanの HA結合部位 (HABR)に KS鎖含 有ドメインが残存したもの、(3)リンクプロテインを含む混合物)として生化学工業株式 会社から販売されており、好ましく使用できる。
[0038] 上記本発明の測定方法は、下記の工程、
(1) 試料中の HA濃度を測定する工程、
(2) 試料中の HAを HABPと反応させ、試料中の HAに結合した HABPの量又はそ の量を反映する値を測定する工程、及び
(3) 濃度及び分子量既知の標準 HA試料から得られた HAの分子量と HAに結合す る HABPの量又はその量を反映する値との関係と、上記工程(1)で得られた試料中 の HA濃度と、上記工程 (2)で得られた試料中の HAに結合した HABPの量又はその 量を反映する値から試料中の HAの分子量を求める工程
により好ましく fiうことができる。
[0039] 上記工程 (1)は、 HA分子量に依存しない定量測定によって試料中の HA濃度を測 定する工程である。本工程を実施する方法は、試料中の HA濃度を測定し得る方法 であれば特に限定されな!/、が、例えば、力ルバゾール硫酸法等の汎用的な比色法、 HAを特異的に分解する酵素と HPLCあるいはキヤピラリー電気泳動を組み合わせた 定量方法、 HAを固定化した固相と HABPとを利用した競合的阻害法などが挙げら れる。これらのうち、 HAを固定化した固相と HABPとを利用した競合的阻害法力 多 検体の同時測定が可能であること、測定感度がよいことから最も好ましい。
[0040] HAを固定化した固相と HABPとを利用した競合的阻害法は、公知の方法により行 うことカでき、 ί列えば、特開日召 63— 150669号公幸 I特開 2000— 97940号公幸 に記 載された方法などにより行うことができる。使用する ΗΑΒΡ、固相、標識などは下記に 説明する工程 (2)で使用されるものと同様のものを使用することができる。 HAを固定化した固相と HABPとを利用した競合的阻害法は、例えば以下のような 具体的手順により行うことができる力、これに限定されるものではない。
1) BSAに共有結合させた HAを ELISAプレートの各ゥエルに固相化する。
Figure imgf000014_0001
3) HA標準試料 (特定の分子量 1種のみ、濃度ポイントは 6点前後)及び適時希釈し た被検試料を各ゥエルに添加する。
4) 被検試料にビォチン HABP溶液を添加し、所定時間反応させる。
5) 未反応 HA及びビォチン HABPを除去した後、 HRP アビジン溶液を添加し 、所定時間反応させる。
6) 発色基質溶液 (例えばオルトフエ二レンジァミン)を添加し、所定時間反応させる。
7) 停止液を添加し、マイクロプレート吸光度計を用いて所定の測定波長にて吸光度 を測定する。
8) 標準試料について得られた吸光度から標準曲線を作成し、これと被検試料につ いて得られた吸光度から被検試料中の HA濃度を決定する。
[0042] 上記工程 (2)は、 HAの分子量に依存して変化する HABPの HAに対する反応性を 、 HAに結合する HABPの量又はその量を反映する値として測定する工程である。
[0043] 本工程にお!/、て、 HAに結合する HABPの量を測定する方法は上記本工程の目 的が達成される限り限定されないが、 HABPを固定化した固相と、任意の標識物質 で標識した HABPとを用いたサンドイッチ法で行うことが好ましぐ例えば、
(0 HABPを固相に固定する工程、
(ii) 固相に固定した HABPに試料中の HAを反応させる工程、
(iii) 固相に固定した HABPに結合した HAに、さらに標識した HABPを反応させる 工程、及び
(iv) 工程 (iii)にお!/、て HAに結合した標識 HABPの量又はその量を反映する値を測 定する工程により行うことができる。
[0044] 上記サンドイッチ法による HABPの測定は公知の方法に従って行うことができ、例 えば特公平 6— 41952号公報に記載された HAの測定方法における HABPの測定 を参照、すること力できる。 [0045] 上記工程 (i)において使用される固相は、 HABPを固定できる水不溶性の固相であ れば、形状、材料などは限定されないが、例えば、ポリスチレン、ポリプロピレン、ナイ ロン、ポリアクリルアミドなどの材料からなるプレート(例えばマイクロプレートのゥエル) 、チューブ、ビーズ、メンブレン、ゲル、ラテックスなどが挙げられる。ポリスチレン製の マイクロプレートのゥエルを好ましく使用できる。
[0046] これらの固相に HABPを固定する方法としては、物理的吸着法、共有結合法、包 括法等固定化酵素の調製法として一般的な方法(固定化酵素、 1975年、講談社発 行、第 9〜75頁参照)を応用することができる。これらの中でも、物理的吸着法が、操 作が簡便かつ頻用されてレ、ること力、ら好まし!/、。
[0047] 物理的吸着法として具体的には、 HABPを pH6〜9程度の緩衝液 (例えばリン酸緩 衝液、 PBS、炭酸緩衝液等)に溶解して固相に加え、 4°Cでー晚静置して固着させる 方法が挙げられ、好ましく使用すること力 Sできる。
[0048] なお、この後にブロッキング物質を固相に添加して、 HABPが固着していない部分 を被覆しておくことが好ましい。このようなブロッキング物質としては、 BSAなどの血清 ァノレブミン、カゼイン、スキムミルク、ゼラチン等が挙げられ、またブロッキング物質とし て市販されてレ、るものを使用することもできる。
[0049] 上記のような方法により、 HABPが固定された固相を製造することができる。固相の 製造は、試験毎に実施しても良ぐあるいは保存可能な乾燥プレートを調製して用い ることあでさる。
[0050] 上記工程 (ii)は、上記のようにして製造された HABPが固定された固相に上記のよう な測定対象となる被検体を接触させることにより行う。具体的には、被検体を HABP が固定された固相に加え、例えば 0〜45°C、好ましくは約 37°Cで、 30分〜 1時間ィ ンキュペートすることにより行うことができる。
[0051] 反応後、固相の表面を洗浄液で洗浄することが好ましい。この洗浄は、固相に固着 した HABP及びこれに結合した HAが遊離しない条件で行う。洗浄液としては、例え ば、トウィーン (Tween)系界面活性剤等の非イオン性界面活性剤を添加した緩衝液( 例えば PBS、トリス塩酸緩衝液等)を用いることが好ましい。
[0052] 上記工程 (iii)は、工程 (ii)と同様の方法、反応条件により行うことができる。 上記工程 (iii)において使用する標識した HABPの標識物質としては、例えば、ビォ チン、アビジン、酵素、アイソトープ、蛍光色素、化学発光物質等が使用でき、取り扱 V、やすさや標識対象物質の量が正確に反映されることなどから、ビォチン及びアビジ ンが好ましい。また、 HABPの抗体を作製し、これを上記のような標識物質で標識し、 これを HABPと反応させることにより HABPを検出することもできる。
[0053] 上記工程 (iii)の反応後の固相についても、上記工程 (ii)と同様に固相の表面を洗浄 液で洗浄することが好ましレ、。
[0054] 上記工程 (iv)は、用いた標識により公知の方法に従って行うことができる。例えば、 標識物質にビォチンを使用した場合には、アビジンを結合させた酵素(例えばペル ォキシダーゼ等)を添加してビォチンとアビジンとを結合させ、次!/、でストレプトァビジ ン等を結合させた酵素の基質や発色基質等を加え、酵素反応による生成物の発色 の度合いを吸光度の変化で測定する方法等を挙げることができる。また、蛍光物質 や化学発光物質を使用する場合には、反応後の溶液の蛍光や発光を測定する方法 等が挙げられる。
[0055] より具体的には、標識物質としてビォチンを使用した場合には、上記工程 (iii)の反 応後の固相に HRP—アビジン溶液を加え、例えば 37°Cで 1時間反応させた後洗浄 し、 O—フエ二レンジァミン溶液を加え、例えば遮光して室温にて 30分間反応させた 後、反応溶液の吸光度を吸収波長 492nm、対照波長 630nmで測定することにより行う こと力 Sでさる。
[0056] さらに、上記 HABPの HAに対する反応性、すなわち上記工程 (iii)において結合す る HABPの量又はその量を反映する値は、工程 (iii)の反応時に、タンパク質変性剤、 酸性多糖、界面活性剤などの添加剤を存在させ、その量を調節することにより、 HA 分子量依存的に反応性が変化するという特性を維持しながら調整できる。
上記添加剤としては、グァニジン塩酸、尿素などのタンパク質変性剤、 CS— Cなど の酸性多糖類、 SDSなどの界面活性剤などが使用でき、グァニジン塩酸が特に好ま しい。
[0057] 添加剤の量については、グァニジン塩酸の場合、良好な HA分子量及び濃度依存 的な反応性を得るとレ、う観点から、上記 HA標準液及び/又は試料中のグァニジン 塩酸の濃度としては、終濃度で、例えば 0〜3.6 Mであり、好ましくは 0〜2.4 Mであり、 ビォチン HABP溶液中のグァニジン塩酸の濃度としては、終濃度で、例えば 0〜1. 6 Mであり、好ましくは 0〜1.2 M程度であるが(後記実施例参照)、これらに限定され るものではない。
[0058] また、工程 (iv)において測定する HAに結合した HABPの量又はその量を反映する 値は、工程 (i)において固定する HABPの量、あるいは工程 (iii)において反応させる H ABPの量を変化させることによつても、 HA分子量依存的に反応性が変化するという 特性を維持しながら調整できる。従って、これらの諸条件を適切に設定することにより 、測定に適した反応性及び反応量を得ることが好ましい。また、 目的とする分子量範 囲において分子量が大きいほど反応性が高くなるように反応性を制御した方法を用 いるのが好ましい。
[0059] 工程 (i)において固定する HABPの具体的な量としては、良好な HA分子量及び濃 度依存的な反応性を得るという観点から、固相化に使用する HABP溶液の濃度とし て、例えば、 3 ng/mL以上、好ましくは 10 ng/mL以上で、通常 30000 ng/mL以下、好 ましくは 10000 ng/mL以下、より好ましくは 1000 ng/mL以下である力 S (後記実施例参 照)、これらに限定されるものではない。
[0060] 工程 (iii)において反応させる標識 HABPの具体的な量としては、良好な HA分子量 及び濃度依存的な反応性を得るという観点から、標識物質としてビォチンを使用する 場合、反応に使用するビォチン HABP溶液の濃度として、例えば 10 ng/mL以上、 好ましくは 100 ng/mL以上、より好ましくは 200 ng/mL以上で、通常 30000 ng/mL以下 、好ましくは 3200 ng/mL以下であるが(後記実施例参照)、これらに限定されるもので はない。
[0061] 上記工程 (3)は、濃度及び分子量既知の標準 HA試料から得られた HAの分子量と HAに結合する HABPの量又はその量を反映する値との関係と、上記工程(1)で得 られた試料中の HA濃度と、上記工程 (2)で得られた試料中の HAに結合した HABP の量から試料中の HAの分子量を求める工程である。
[0062] 上記工程 (3)において使用する、濃度及び分子量既知の標準 HA試料から得られ た HAの分子量と HAに結合する HABPの量又はその量を反映する値との関係は、 濃度及び分子量既知の HA標準液を試料として工程 (2)を行い、標準曲線として得る こと力 Sでさる。
[0063] すなわち、濃度及び分子量既知の複数の標準 HA試料を使用して工程 (2)を行い、 それぞれの試料による反応において HAに結合した標識 HABPの量を反映する値と して、例えば、標識を利用して行われる発色反応で得られる反応液の吸光度を測定 し、それらを各標準 HA試料の分子量に対してプロットすることにより標準曲線を得る 。そして得られた標準曲線に工程 (2)の測定で被験試料につ!/、て得られた値を当て はめることにより被験試料中の HAの分子量を決定する。
[0064] 標準 HA試料につ!/、て測定を行う際の濃度としては、工程 (1)で測定した被検試料 の HA濃度を指標とし、被検試料そのままの濃度あるいは被検試料を適当に希釈し て得られる濃度を使用して、工程 (2)の測定と標準曲線作成のための測定を同一の H A濃度で行い、工程 (2)の測定で得られた値をそのまま標準曲線に当てはめることで 求めること力 Sできる。この場合は、工程 (1)と (2)を段階的に実施し、初めに被験試料の HA濃度を求めておく必要がある。 (後記実施例 16参照)。
[0065] あるいは、標準試料及び被検試料の両方について同時に工程 (1)及び (2)を行っても 、被験試料の HA濃度及び被験試料につ!/、ての HAに結合した HABP又はその量 を反映する値が、各工程で標準試料につ!/、て設定した測定条件下で測定可能であ れば、工程 (2)において求めた各分子量の標準試料の反応曲線を元に、任意の濃度 の標準曲線を換算で求め、これを用いて被験試料の HA分子量を求めることができる (後記実施例 17参照)。
[0066] 更に、工程 (1)の試料中の HAの濃度の測定のための標準曲線と、 HAの分子量と HAに結合する HABPの量又はその量を反映する値との関係を表す標準曲線の再 現性が十分に保証されている場合は、これらを予め用意しておけば、被検試料のみ について工程 (1)及び (2)を行い、得られた値を使用して工程 (3)を行うことにより被検 試料中の HAの分子量を決定でき、微量の被検試料力も短時間で多数の被検試料 につ!/、て HAの分子量を容易に決定すること力 Sできる。
[0067] 標準曲線は、標準 HA試料につ!/、て得られた値から、分子量を、 HAに結合した標 識 HABPの量を反映する値、例えば吸光度あるいはその対数値、及び場合により H A濃度あるいはその対数値の一次、二次あるいはそれ以上の高次の関数として表し 、試料について得られた吸光度あるいはその対数値などの値を該関数に当てはめる ことにより試料 HAの分子量を求めることができる。いずれの場合も標準曲線につい ては、被検試料に予測される HA濃度、分子量に対応するように複数の標準曲線を 用意しておくことにより、より迅速で正確な測定が可能となる。
[0068] 以上より、工程 (2)及び (3)は、工程 (3)で使用する HAの分子量と HAに結合する HA BPの量又はその量を反映する値との関係の取得を含めて、例えば、下記のような手 J噴により fiうことができる。
9) HABPを ELISAプレートの各ゥエルに固相化する。
10) BSAを用いて各ゥエルをブロッキングする。
11) 標準試料 (特定の分子量 3種以上、濃度ポイントは同一 1点のみ)及び被検試料 をそれぞれ各ゥエルに添加し、所定時間反応させる。
12) ビォチン HABP溶液を添加し、所定時間反応させる。
13) HRP アビジン溶液を添加し、所定時間反応させる。
14) 発色基質溶液 (例えばオルトフエ二レンジァミン)を添加し、所定時間反応させる
15) 停止液を添加し、マイクロプレート吸光度計を用いて所定の測定波長にて吸光 度を測定する。
16) 標準試料について得られた吸光度を使用し、分子量に対して吸光度をプロット することにより標準曲線を作成し、これと被検試料について得られた吸光度から被検 試料中の分子量を決定する。
[0069] 本発明はさらに、上記本発明の HAの分子量の測定方法に使用するための、 HAB
Pを含む、 HAの分子量の測定用のキットを提供する。
上記本発明のキットは、 HABPの他、 HABPの HAに対する反応性を調節するた めの添加剤、該添加剤を含む又は含まないバッファー、標準曲線作成用の分子量 既知の HA標準試料などを含むものとしてもょレ、。
[0070] なお、本明細書中、特に断らない限り、「分子量」、「平均分子量」は「重量平均分子 量」を意味する。 実施例
[0071] 以下、実施例により本発明をより具体的に説明するが、本発明は下記実施例に限 定されるものではない。
[0072] 材料
以下の実施例においては下記の材料を使用した。
ELI S A用 96ゥエルプレ一ト(Maxisorp、ナルジェヌンク社製)
BSA (オリエンタル酵母社製)
HA (アルツァンプル、鶏冠由来、生化学工業社製)
CS— C (サメ軟骨由来、生化学工業社製)
HA— BSA (生化学工業社製)
HABP (「ヒアルロン酸バインディングプロテイン」、生化学工業社製)
ビォチン HABP (生化学工業社製)
HRP アビジン(PIERCE社製)
OPD錠(SIGMA社製)
ABTS錠(SIGMA社製)
OPD(o-フエ二レンジァミン)用緩衝液(特殊免疫研究所社製)
TMB ( + ) (DAKO社製)
TMB BLUE (DAKO社製)
PBS (塩化ナトリウム 8g、塩化カリウム 0.2g、リン酸水素ニナトリウム 2.9g、リン酸二水素 カリウム 0.2gを精製水 1Lに溶解して調製した。 )
洗浄液 (PBS 1Lに Tween-20 (和光純薬社製) 0.5mLを添加し、攪拌溶解して調製し た。)
ELISA基本緩衝液(洗浄液 1Lに BSA 10gを添加し、攪拌溶解した後、ポアサイズ 0.2 a mのろ過フィルターでろ過して調製した。 )
[0073] 各稀分子量の HAの調製
上記鶏冠由来 HA (試料 Aとした)をアルカリ条件下(ρΗ10·5)あるいはヒッジ睾丸ヒ アル口ニダーゼで処理して低分子化し、エタノール沈殿処理により精製し下記試料 Β 〜Jを調製した。記載した各分子量は、後述する実施例 1の GPC法により測定した値 である。これらの試料を実施例 2以降の試験に被験試料として使用した。
試料 A: 2289 kDa (以下「HA—2289」とも記載する)
試料 B: 964 kDa (以下「HA— 964」とも記載する)
試料 C: 821 kDa (以下「HA— 821」とも記載する)
試料 D: 606 kDa (以下「HA— 606」とも記載する)
試料 E: 323 kDa (以下「HA— 323」とも記載する)
試料 F: 248 kDa (以下「HA— 248」とも記載する)
試料 G: 182 kDa (以下「HA— 182」とも記載する)
試料 H: 112 kDa (以下「HA— 112」とも記載する)
試料 I: 61 kDa (以下「HA— 61」とも記載する)
試料】: 22 kDa (以下「HA— 22」とも記載する)
[0074] 実施例 1 : GPC法による HA分子量の測定
GPC用 HA標準品として鶏冠由来 HAを前述の方法によって低分子化し、エタノー ル沈殿によって精製し、 9種の標準品 (HA—MWSTD— ;!〜 9)を得た。これらの分 子量を公知の方法である光散乱法によって決定した。
上記 9種の GPC用標準品、及び 10種の被検試料のそれぞれを、 0.2M NaClを用い て約 lOO ^ g/mLの濃度に調製し、下記条件で分析した。標準品の分子量を X軸に、 溶出ピーク位置の溶出時間を Y軸に、それぞれプロットして標準曲線を作成し、これ を用いて被検試料の溶出ピーク位置からそれらのピーク分子量を算出した。
[0075] ,測定装置
カラムオーブン: CO-8025 (東ソ一社製)
ポンプ: PU-920 (日本分光社製)
紫外部吸収検出器: UV-1575 (日本分光社製)
カラム: TSK- GEL G-6000PWXL (東ソ一社製)
•測定条件
溶媒: 0.2M NaCl
温度: 40°C
流速: 0.5mL/ min. 検出条件:波長 215nmでの紫外吸収
[0076] 試験は 2回行!/、(試験 1及び 2)、 9種の GPC用標準品及び試料 B、 H、 Jにつ!/、ては 試験 1及び 2で測定を行い、試料 A、 E〜G、 Iについては試験 1で測定を行い、試料 C及び Dについては試験 2で測定を行った。各試験において、 GPC用分子量標準品 はすべて n=3で、各被検試料はすべて n=2で測定した。結果を表 1に示す。
[0077] [表 1]
標準品 保持時間 分子量
(分) CV (kDa)
HA-MWSTD-1 14.8 0.7% 2310
HA-MWSTD-2 15.3 0.1 % 1410
HA-MWSTD-3 16.3 0.3% 993
HA-MWSTD-4 16.5 0.2% 847
HA-MWSTD-5 17.5 0.3% 637
HA-MWSTD-6 18.2 0.2% 460
HA-MWSTD-7 20.9 0.1 % 104
HA-MWSTD-8 21.8 0.0% 64
HA-MWSTD-9 23.2 0.1 % 18.9
被験試料 保持時間 分子量測定値
(分) CV (kDa)
A 14.6 0.7% 2289
B 16.4 0.0% 964
E 18.9 0.3% 323
F 19.5 0.1% 248
G 20.1 0.0% 182
H 20.9 0.1 % 1 12
I 21.8 0.3% 61
J 23.1 0.1 % 22
試験 2
標準品 保持時間 分子量
(分) CV (kDa)
HA-MWSTD-1 14.9 0.3% 2310
HA- WSTD-2 15.3 0.2% 1410
HA-MWSTD-3 16.2 0.3% 993
HA-MWSTD-4 16.5 0.1 % 847
HA- WSTD-5 17.4 0.1 % 637
HA-MWSTD-6 18.3 0.3% 460
HA-MWSTD-7 20.9 0.1 % 104
HA-MWSTD-8 21.8 0.2% 64
HA-MWSTD-9 23.2 0.1 % 18.9
被験試料 保持時間 分子量測定値
(分) CV (kDa)
C 16.7 0.2% 821
D 17.4 0.2% 606
B (再現性確認) 16.4 0.2% 956
H (再現性確認) 20.9 0.1 % 1 15
J (再現性確認) 23.0 0.0% 23 表 1中、標準品について示した分子量は光散乱法により測定した分子量である。 本実施例における測定所要時間は、試験 1では 47時間、試験 2では 37時間であつ た。このように、既存の方法のひとつである GPC法では 1サイクルで 1試料しか分析で きないため、長時間が必要となる。また、 40 g以上(100 g/mL溶液が 400 L)の H A量が必要である。
[0079] 実施例 2 : HPLC法による HA濃度の定量
実施例 1におレ、て GPC法で分子量を測定した試料 A〜Jにつ!/、て、以下に記載し た HPLC法によって HA濃度を定量測定した。
•標準品
HA不飽和 2糖標準品(生化学工業社製)を精製水に溶解し、波長 232nmでの紫外 部吸収を校正された分光光度計 (U-530DS ;日本分光社製)により測定し、同物質の 分子吸光係数 5.7に基づき濃度を決定し、校正された電子天秤 (AT-250 ;メトラー社 製)を用いて正確に希釈して濃度 211 g/mLの HPLC定量用標準液を作成した。 ,測定装置
ポンプ: PU-2080 (日本分光社製)
グラジェントユニット: (日本分光社製)
オートサンプラー: AS-2050 (日本分光社製)
加熱反応槽: DB-5 (島村計器社製)
蛍光検出器: FP-2059 (日本分光社製)
カラム: YMC- GEL PA120-S05 (ヮイエムシ一社製)
•測定条件
溶媒: 0〜 200mM Na SOグラジェント
2 4
温度:室温
流速: 0.5 mL/min.
標識温度: 145°C
検出条件:励起波長 346nm、吸収波長 410nm
[0080] HA濃度測定方法
被検試料を採取し、ヒアルロニダーゼ SD (生化学工業社製)を終濃度 lOOmUとなる ように加え、酢酸 Na緩衝液を終濃度 25mUとなるように加え、 37°Cで 2時間反応させ、 HA不飽和 2糖に完全に分解した。得られた被検試料の消化液及び HA不飽和 2糖 標準液を HPLCを用いて上記条件で分析した。標準液のピーク面積値と被検試料消 化液の面積値との比を元に、被検試料である各種分子量の HA濃度を算出した。 結果を表 2に示す。
[0081] [表 2]
Figure imgf000025_0001
[0082] 実施例 3:試料の HA濃度測定(工程 (1))
実施例 1で GPC法により分子量を測定し、実施例 2で HPLC法により HA濃度を測 定した試料 B(HA-964)、 E(HA-323)、:¾^1八-112)及び】(^1八-22)を、濃度 0、 6.25, 1 2.5、 25、 50、 100、 200、 400 ng/mLに調製し、下記の手順による競合 ELISA法により H A定量試験を行った。
^1八ー83八を濃度100 ;^/½しで?83に溶解し、これを 96ゥエルプレートの各ゥエル に lOO Lずつ加え、 4°Cでー晚静置して固相化した。その後、各ゥエルを PBS 300 〃Lで 3回洗浄し、 1 %83八の?83溶液を200 しずっ加ぇ、室温で 2時間静置して ブロッキングした後、各ゥエルを洗浄液 300 しで 3回洗浄した。この各ゥエルに、前述 の ELISA基本緩衝液で調製した各試料 HAの希釈系列あるいは HA不含液を 50 μ L ずつ加え、次いで、 ELISA基本緩衝液で調製したビォチン ΗΑΒΡ溶液を 50 しず つ加え、 37°Cで 1時間反応させた後、各ゥエルを洗浄液 300 しで 3回洗浄した。この 各ゥエルに、 ELISA基本緩衝液で希釈した HRP アビジン溶液を 100 Lずつ加え、 37°Cで 1時間反応させた後、各ゥヱルを洗浄液 300 Lで 5回洗浄した。この各ゥヱル に、 OPD用緩衝液で濃度 0.25mg/mLに調製した OPD溶液を 100 Lずつ加え、遮 光して室温にて 30分間反応させた後、 1M HC1溶液を 100 し加え、 ELISAプレート吸 光度計(SK_603、生化学工業社製)を用いて吸収波長 492nm、対照波長 630nmにて 吸光度を測定した。測定結果を表 3に、結果をプロットしたグラフを図 1に示す。
[0083] [表 3]
Figure imgf000026_0001
[0084] 上記結果から明らかなように、本実施例で記載したような競合 ELISA法を使用すれ ば、少なくとも分子量 20kDaから 960kDa程度の HAについて分子量の影響を受けず に簡便に HAを定量できることが明ら力、となった。
[0085] 実施例 4
実施例 3と同様の方法で HA定量試験を行った。但し、ビォチン HABPの溶解液 を 0.4Mおよび 1.2Mグァニジン塩酸を含む ELISA基本緩衝液とした。測定結果を表 4 および表 5に、結果をプロットしたグラフを図 2および図 3に、それぞれ示す。
[0086] [表 4] 試料 J H E B
HA
分子量 22 1 12 323 964
(nkDa)
HA
吸光度 (492nm)
0 1.894 1.935 1.975 1.851
6.25 1.696 1.649 1.621 1.625
12.5 1.478 1.450 1.438 1.383
25 1.183 1.174 1.197 1.129
50 0.889 0.859 0.869 0.839
100 0.653 0.648 0.638 0.641
200 0.453 0.454 0.441 0.429
400 0.300 0.289 0.292 0.293
[0087] [表 5]
Figure imgf000027_0001
[0088] 実施例 3及び 4の結果から明らかなように、工程 (1)に競合 ELISA法を適用する場合 、緩衝液条件等は各種分子量の HAの定量測定に影響を与えず、種々の条件で実 施し得るものである。すなわち、後述する工程 (2)における反応性を変化させ得る添加 剤につ!/、て測定感度 ·測定精度 ·安定性 ·操作性などの点にお!/、て最適な条件を適 時選択し、同一の条件を使用して工程 (1)を行っても測定結果に影響がないことが確 認された。従って、工程 (1)および (2)において同一の緩衝液を使用するなど、本発明 の測定方法の条件をより簡略化でき、またより簡略な本発明の測定キットを構築する こと力 Sでさる。
[0089] 実施例 5: HAに結合する標識された HABPの測定(工程 (2))
下記のような手順により HAに結合する標識された HABPの測定を行った。 本実施例では、固相に固定する HABPの量、反応時の緩衝条件、添加剤の条件 を検討するため、固相に固定する HABPの量を変化させ、また HA標準液及びビォ チン HABPを溶解する緩衝液に関して、下記 5通りの ELISA緩衝液を用いた。
1) ELISA基本緩衝液
2) ELISA基本緩衝液に 1M NaClを添カロ
3) ELISA基本緩衝液に 3M NaClを添カロ
4) ELISA基本緩衝液に 0.4Mグァニジン塩酸を添カロ
5) ELISA基本緩衝液に 1.2Mグァニジン塩酸を添カロ
[0090] HABPを濃度 300及び 3000ng/mLで PBSに溶解し、これを 96ゥエルプレートの各ゥ エルに 100 しずつ加え、 4°Cでー晚静置して固相化した。その後、各ゥエルを PBS 3 00〃 Lで 3回洗浄し、 1 %83八の?83溶液を200 しずっ加ぇ、室温で 2時間静置し てブロッキングした後、各ゥエルを洗浄液 300 しで 3回洗浄した。この各ゥエルに、前 述の各 ELISA緩衝液で調製した試料 J(HA— 22)あるいは試料 B(HA— 964)の 1000
Figure imgf000028_0001
は^1八不含液を100 しずっ加ぇ、 37°Cで 1時間反応させた後、各 ゥエルを洗浄液 300 しで 3回洗浄した。この各ゥエルに、前述の各 ELISA緩衝液で調 製したビォチン HABPの 200及び 800ng/mL溶液を 100 Lずつ加え、 37°Cで 1時 間反応させた後、各ゥヱルを洗浄液 300 しで 3回洗浄した。この各ゥヱルに、 ELISA 基本緩衝液で調製した HRP アビジンの 500ng/mL溶液を 100 Lずつ加え、 37°C で 1時間反応させた後、各ゥエルを洗浄液 300 しで 5回洗浄した。この各ゥエルに、 OPD用緩衝液で濃度 0.25mg/mLに調製した OPD溶液を 100 Lずつ加え、遮光し て室温にて 30分間反応させた後、 1M HC1溶液を 100 し加え、 ELISAプレート吸光度 計(SK_603、生化学工業社製)を用いて吸収波長 492nm、対照波長 630nmにて吸光 度を測定した。結果を表 6及び 7に示す。
[表 6]
反応条件
Figure imgf000030_0001
ビォチン- HABP溶液については添加剤は添加せず拭験しだ 子 の HAの 比
Figure imgf000030_0002
* ブランク吸光度を差し引いた値を用いて算出した
表 7]
Figure imgf000031_0002
Figure imgf000031_0001
Figure imgf000031_0003
上記結果から、固相化した HABPと液相のピオチン HABPとで HAを挟み込ん で検出するサンドイッチ法を行った場合、 HAの分子量によりビォチン HABPとの 反応性は一様ではないこと、固相化する HABPあるいはビォチン HABPの使用濃 度及び各ステップにおいて用いる緩衝液の組成によって、 HA分子量に依存する反 応性の差異の程度(以下、 HA分子量依存性と表記する)を調整可能であることが明 らカ、となった。
[0094] 実施例 6:ビォチン HABPの反応性に対する添加剤条件につ!/、ての試験 1
ビォチン HABPの反応性に対する添加剤条件につ!/、て試験するため、試料 B( HA— 964)及び J(HA— 22)を使用し、下記の条件で、その他は実施例 5と同様に反 応及び測定を行った。結果を表 8及び 9に示す。
•HABP固相化濃度: 300及び 3000 ng/mL
•HABP固相化時の緩衝液: PBS
• HA標準品を溶解した緩衝液: ELISA基本緩衝液
•ビォチン HABPの使用濃度: 200及び 800 ng/mL
•ビォチン HABP溶液へのグァニジン塩酸の添加濃度: 0、 0.4、 0.6、 0.8、 1.0、 1.2 及び 1.4 M
• HRP アビジンの使用濃度: 500 ng/mL
•発色液: 0.25 mg/mL OPD
[0095] [表 8]
反応条件
Figure imgf000033_0001
Figure imgf000033_0002
HA棟準液については添加剤は添加せず K験した
の HAの 比率
Figure imgf000033_0003
* ブランク吸光度を差し引いた値を用いて算出した
Figure imgf000034_0001
上記の結果から HABPを溶解する緩衝液にグァニジン塩酸を 加え、この濃度 )て、 HA分子量依存性を調節可能であることが 判明した。 [0098] 実施例 7 :発色強度の調整についての試験
発色物質による発色強度の調整について試験するため、試料 B(HA— 964)を使 用し、下記の条件で、その他は実施例 5と同様に反応及び測定を行った。結果を図 4 に示す。
•HABP固相化濃度: 300 ng/mL
•HABP固相化時の緩衝液: PBS
• HA標準品を溶解した緩衝液: ELISA基本緩衝液
•ビォチン HABPの使用濃度: 200及び 800 ng/mL
•ビォチン HABP溶液へのグァニジン塩酸の添加濃度: 0.4、 0.6、 0.8、 1.0、 1.2及 び 1.4 M
• HRP アビジンの使用濃度: 500ng/mL
•発色液: 0.25mg/mL OPD、 0.5mg/mL
OPD及び TMB(+) (試薬量として 100 μ 1)
[0099] この結果、実施例 6で比較検討した各条件における最大吸光度は、 HRP ァビジ ン使用濃度及び発色基質の種類と濃度を変化させることで調整可能であることが確 認された。
[0100] 実施例 8:ビォチン HABPの反応性に対する添加剤条件につ!/、ての試験 2
ビォチン HABPの反応性に対する添加剤条件につ!/、て試験するため、試料 B( HA— 964)、 H(HA— 1 12)及び】01八—22)を使用し、下記の条件で、その他は実 施例 5と同様に反応及び測定を行った。反応条件を表 10に、結果を図 5に示す。 •HABP固相化濃度: 300及び 3000 ng/mL
•HABP固相化時の緩衝液: PBS
• HA標準品を溶解した緩衝液: ELISA基本緩衝液
•ビォチン HABPの使用濃度: 200 ng/mL
•ビォチン HABP溶液へのグァニジン塩酸の添加濃度: 0、 0.4、 0.8、及び 1.2 M
• HRP アビジンの使用濃度: 500ng/mL
•発色液: 0.25mg/mL OPD、 0.5mg/mL
OPD及び TMB ( + ) (試薬量として 100 1) [0101] [表 10]
反応条件
Figure imgf000036_0001
TMB(+)についての発色基質濃度の数値は試薬の添加量( ju I)を示す
[0102] この結果、グァニジン塩酸濃度が高くなるに従って分子量依存性が顕著になる結 果が得られ、実施例 6で得られた傾向と一致した。本実施例のように、実施例 6で見 い出したビォチン標識 HABP溶解液に添加するグァニジン塩酸濃度の調節と、実施 例 7で実施した発色条件の最適化を組み合わせることにより、最大吸光度 0·5〜3.0の 実用的な範囲で、様々な分子量依存性を示す反応系を構築可能であることが判明し た。
[0103] なお、実施例 9以降においても、本実施例の場合と同様に必要に応じて予め実施 例 7と同様も発色強度検討を実施し、 HRP アビジンの使用濃度及び発色基質の 種類と濃度について適切な条件を選択した上で、各試験を実施した。
[0104] 実施例 9 :ビォチン HABPの反応性に対する添加剤条件についての試験 3
ピオチン HABPの反応性に対する添加剤条件にっレ、て試験するため、試料 B( HA 964)、 E(HA— 323)、 H(HA— 112)及び】01八—22)を使用し、下記の条件で 、その他は実施例 5と同様に反応及び測定を行った。反応条件を表 11に、結果を図 6に不す。
•HABP固相化濃度: 300 ng/mL
. HABP固相化時の緩衝液: PBS
. HA標準品を溶解した緩衝液: ELISA基本緩衝液
'ビォチン HABPの使用濃度: 200 ng/mL
•ビォチン HABP溶液へ加えた添加剤の種類及び濃度
1)尿素: 2.67M、 5.33M及び 8.0M
2) CS -C : 0.2mg/mL, 1.0mg/mL及び 10mg/mL 3) SDS : 0.025%、 0.05%及び 0.1%
• HRP アビジンの使用濃度: 500ng/mL
•発色液: 0.25mg/mL OPD、 0.5mg/mL OPD及び TMB ( + ) (試薬量として 100 1)
[0105] [表 11]
反応条件
Figure imgf000037_0001
[0106] この結果、ビォチン— HABP溶解液への添加剤としては、グァニジン塩酸以外にも 、尿素、 SDS、 CS— Cなどが利用可能であることが判明した。
[0107] 実施例 10:ビォチン HABPの使用濃度につ!/、ての試験
ビォチン HABPの使用濃度の適当な範囲につ!/、て試験するため、試料 B(HA-9 64)、 E(HA—323)、 ^1 八ー112)及び】 八ー22)を使用し、下記の条件で、その 他は実施例 5と同様に反応及び測定を行った。反応条件を表 12に、結果を図 7に、 結果から計算した各試料で得られた吸光度間の比を表 13にそれぞれ示す。
•HABP固相化濃度: 300 ng/mL
•HABP固相化時の緩衝液: PBS
• HA標準品を溶解した緩衝液: ELISA基本緩衝液
•ビォチン HABPの使用濃度: 200、 400、 800、 1600及び 3200 ng/mL
•ビォチン HABP溶液へのグァニジン塩酸の添加濃度: 0.4、 0.8及び 1.2 M •HRP アビジンの使用濃度: 100及び 500 ng/mL
•発色液の種類と使用濃度:
1) ABTS : 0.4 mg/mL
2) OPD : 0.2、 0.25,及び 0.5 mg/mL
3) TMB -BLUE (試薬量として 100 μ 1)
[0108] [表 12] 応
Figure imgf000038_0001
TMB(+)についての発色基質濃度の数値は試薬の添加量( I)を示す
子量の HAの 比
Figure imgf000039_0001
* ブランク吸光度を差し引いた値を用いて算出した
[0110] この結果から、ビォチン HABPの使用濃度としては、少なくとも 200から 3200ng/m Lの範囲が適用可能であることが示された。また、特にビォチン HABP溶液へのグ ァニジン塩酸の添加濃度が比較的高濃度である場合には、ビォチン HABPの使 用濃度が高くなるに従って、分子量依存性は減ずる結果が得られた。本実施例から 、ビォチン HABPの使用濃度によっても分子量依存性を調節可能であることが判 明した。
[0111] 実施例 1 1: HA標準溶液における添加剤使用につ!/、ての試験
HA標準溶液におレ、てグァニジン塩酸を使用した場合の影響につ!/、て試験するた め、試料 B(HA—964)、 E(HA—323)、:¾^1八ー1 12)及び】01八ー22)を使用し、下 記の条件で、その他は実施例 5と同様に反応及び測定を行った。反応条件を表 14 に、結果を図 8に、結果から計算した各試料で得られた吸光度間の比を表 15にそれ ぞれ示す。
. HABP固相化濃度: 30、 300、 3000 ng/mL
•HABP固相化時の緩衝液: PBS
•HA標準品溶液へのグァニジン塩酸の添加濃度: 0、 0.8、 1.2、 1.6及び 2.4 M
•ビォチン HABPの使用濃度: 200 ng/mL
•ビォチン HABP溶液へのグァニジン塩酸の添加: なし
•HRP アビジンの使用濃度: 100及び 500 ng/mL
•発色液の種類と使用濃度:
1) OPD : 0.25、 0.32及び 0.5 mg/mL
2) TMB ( + ) (試薬量として 100 1)
[0112] [表 14] 反応
Figure imgf000041_0001
TMB(+)についての発色基質濃度の数値は試薬の添加 I)を示す
表 15」
Figure imgf000042_0001
特に HABP固相化濃度が飽和となる 300ng/mLよりも低!/、範囲で、標準凇及び被 検試料溶解液へ添加したグァニジン塩酸濃度が高くなるほど分子量依存性は顕著 になる結果が得られた。本実施例から、標準液及び被検試料を溶解する緩衝液への グァニジン塩酸濃度によっても分子量依存性を調節可能であることが判明した。
[0115] 実施例 12 : HABP固相化時の緩衝液条件についての試験
HABP固相化時の緩衝液条件について試験するため、試料 B(HA— 964 E(H A— 323 H(HA— 1 12)及び】01八—22)を使用し、下記の条件で、その他は実施 例 5と同様に反応及び測定を行った。反応条件を表 16に、結果を図 9に、結果から 計算した各試料で得られた吸光度間の比を表 17にそれぞれ示す。
•HABP固相化濃度: 300 ng/mL
•HABP固相化時の緩衝液: PBS 3M NaCl PBS及び 3.6M NaCl- PBS
• HA標準品を溶解した緩衝液: ELISA基本緩衝液
•ビォチン HABPの使用濃度: 200 ng/mL
•ビォチン HABP溶液へのグァニジン塩酸の添加濃度: 0.4 0.8及び 1.2 M
• HRP アビジンの使用濃度: 500ng/mL
• 発色液の濃度と使用濃度:
1 ) OPD : 0.25mg/mL
2) OPD: 0.5mg/mL及び TMB ( + ) (試薬量として 100 μ 1)
[0116] [表 16]
反応条件
Figure imgf000043_0001
TMB(+)についての発色基質濃度の数値は試薬の添加量(W l)を示す
[0117] [表 17] 分子量の HAの反応比率
Figure imgf000044_0001
* 各吸光度値をそのまま用いて算出した
[0118] これらの結果から、 HABPをプレートに固相化する際に使用する緩衝液は、特定の 条件に限定されるものではなぐ少なくとも本実施例で示した緩衝液条件はすべて適 用可能であることが示された。
[01 19] 実施例 13: HABP固相化時の HABP濃度にっレ、ての試験 1
HABP固相化時の HABP濃度について試験するため、試料 B(HA— 964)、 E(H A— 323)、 H(HA— 1 12)及び】01八—22)を使用し、下記の条件で、その他は実施 例 5と同様に反応及び測定を行った。反応条件を表 18に、結果を図 10に、結果から 計算した各試料で得られた吸光度間の比を表 19にそれぞれ示す。
•HABP固相化濃度: 10、 30、 100、 300、 1000、 3000、 10000、 30000 ng/mL
. HABP固相化時の緩衝液: PBS
• HA標準品を溶解した緩衝液: ELISA基本緩衝液
•ビォチン HABPの使用濃度: 200 ng/mL
'ビォチン HABP溶液へのグァニジン塩酸の添加濃度: 0.4及び 1.2 M
• HRP アビジンの使用濃度: 500 ng/mL
•発色液の種類と使用濃度:
1) OPD : 0.25及び 0.5 mg/mL
2) TMB ( + )及び TMB BLUE (試薬量として 100〃 1)
[0120] [表 18] 反応条件
Figure imgf000045_0001
TMB(+)についての発色基質濃度の数値は試薬の添加量( I)を示す
Figure imgf000046_0001
これらの結果から、 HABP固相化濃度としては、少なくとも 10から 30 000ng/mLの範 固が適用可能であることが示された。また、 HABP固相化濃度が飽和に達する 300ng /mLよりも低!/、範囲では、 HABP濃度が低くなるほど分子量依存性は顕著となる結 果が得られた。本実施例より、 HABPの固相化濃度によっても分子量依存性を調節 可能であることが判明した。
[0123] 実施例 14 : HABP固相化時の HABP濃度についての試験 2
HABP固相化時の HABP濃度について試験するため、試料 B(HA— 964)、 E(H A— 323)、 H(HA— 1 12)及び】01八—22)を使用し、下記の条件で、その他は実施 例 13と同様に反応及び測定を行った。反応条件を表 20に、結果を図 1 1に、結果か ら計算した各試料で得られた吸光度間の比を表 21にそれぞれ示す。
. HABP固相化濃度: 30、 60、 120、 240 ng/mL
•ビォチン HABP溶液へのグァニジン塩酸の添加濃度: 0.4及び 0.8 M
• HRP アビジンの使用濃度: 500 ng/mL
•発色液の種類と使用濃度:
1 ) OPD : 0.25及び 0.5 mg/mL
[0124] [表 20]
反応条件
Figure imgf000047_0001
[0125] [表 21]
各種分子量の HAの反応比率
Figure imgf000047_0002
* ブランク吸光度を差し引いた値を用いて算出した
[0126] 実施例 13と一致する結果が得られた。 [0127] 実施例 15:条件の組合せにつ!/、ての試験
上記実施例で検討した各種の条件の組合せにより分子量依存性の程度を調整で きるかを試験するため、試料 B(HA—964)、 E(HA—323)、 H(HA— 1 12)及び J(H A— 22)を使用し、下記の条件で、その他は実施例 5と同様に反応及び測定を行った 。反応条件を表 22に、結果を図 12に、結果から計算した各試料で得られた吸光度 間の比を表 23にそれぞれ示す。
•HABP固相化濃度: 100 ng/mL
•HABP固相化時の緩衝液: PBS
•HA標準品溶液へのグァニジン塩酸の添加濃度: 0、 0.8及び 1.6
'ビォチン HABPの使用濃度: 200 ng/mL
'ビォチン HABP溶液へのグァニジン塩酸の添加: 0、 0.4及び 0.8 M
• HRP アビジンの使用濃度: 500 ng/mL
•発色液の種類と使用濃度:
1 ) OPD : 0.25、 0.32及び 0.5 mg/mL
[0128] [表 22]
反応 件
Figure imgf000048_0001
[0129] [表 23] 分子量の HAの反応比率
Figure imgf000049_0001
* ブランク吸光度を差し引いた値を用いて算出した
[0130] 本実施例から明らかなように、本発明の測定方法の工程 (2)における分子量依存性 の程度は、複数の条件の組合せを最適化することで自在に調節できる。実際には、 測定方法の条件を設定し、測定キットを構築する上で、測定感度'測定精度'安定性 •操作性等を考慮し、最適な形態となる条件を適時選択することができる。
[0131] 実施例 16 :検体についての測定 1
以下に被検試料の分子量の測定の具体例を示す。
被検試料としては、実施例 1において分子量を測定した 3種の HA、試料 D(HA— 6 06)、 G(HA— 182)、 I(HA— 61)を、ダルベッコ改変イーグル培地に添加した試料を 用いた。工程 (1)の標準試料としては試料 J(HA— 22)そのものを使用した。工程 (2)の 標準試料としては試料 B(HA— 964)、 E(HA—323)、 ^1 八ー112)及び】 八ー22
)を使用した。
これらの試料をそれぞれ適宜希釈し、まず実施例 3に記載した方法に従って工程 (1 )を実施した。吸光度測定の結果を、標準試料については下記表 24に、それらを濃 度値とともに対数に換算した値を表 25に、被検試料については表 26に示す。
[0132] [表 24] 標準液の吸光度
Figure imgf000050_0001
標準液データの対数換算値
HA濃度 吸光度
対数値 対数値
8.740 7.604
9.433 7.467
10.127 7.264
10.820 6.990
1 1.513 6.680
12.206 6.299
12.899 5.883 [0134] [表 26]
Figure imgf000051_0001
* 図 13Bの相関式を用いて Xに被験試料の吸光度の対数値を代入して計算した。
[0135] 標準液での吸光度データ (図 13A)を元に図 13Bに示した検量線を作成し、これを 利用して試料中の HA濃度を求めた。結果は表 26に示す。
この結果に基づき、各被検試料を 400ng/mLの濃度に希釈し、実施例 15の条件 E を適用して、工程 (2)を実施した。得られた吸光度の結果を下記表 28に示す。また各 濃度の標準試料にっレ、て同様に操作を行った。得られた吸光度の結果を下記表 27 に示す。これらの値から得られた各標準試料についての反応曲線を図 14Aに示す。 またこれらの結果のうち 400ng/mLの濃度で得られた結果から得られた標準曲線を図 14Bに示す。
400ng/mLの濃度の各試料の吸光度値と図 14Bの標準曲線から、各被検試料の H Aの分子量を求めた(工程 (3))。結果を表 28に示す。
[0136] [表 27]
分子量測定用標準液の吸光度
Figure imgf000051_0002
Figure imgf000051_0003
[0137] [表 28] の吸光度と HA分子量湖定値
Figure imgf000052_0001
* 図 14Bの相関式の Xにそれぞれの吸光度 (ブランク差引値)を代入して計算した。
[0138] 実施例 17 :検体についての測定 2
以下に被検試料の分子量の測定の別の具体例を示す。
被検試料としては、実施例 1において分子量を測定した 3種の HA、試料 D(HA— 6 06)、 F(HA— 248)、 I(HA— 61)を、ダルベッコ改変イーグル培地に添加した試料を 用いた。工程 (1)の標準試料としては試料 J(HA— 22)そのものを使用した。工程 (2)の 標準試料としては試料 B(HA— 964)、 E(HA—323)、 H(HA—112 ¾O«J(HA—22
)を使用した。
[0139] これらの試料をそれぞれ適宜希釈し、実施例 3に記載した方法に従って工程 (1)を 実施するとともに、これと並行して実施例 14の条件 Aを適用して、工程 (2)を実施した 工程 (1)について、標準試料の吸光度測定の結果を下記表 29に、それらの対数に 換算した値を濃度を対数に換算した値とともに表 30に、被検試料の吸光度測定の結 果を表 31に示す。
[0140] [表 29]
標準液の吸光度
Figure imgf000053_0001
標準液データの対
Figure imgf000054_0001
[表 31] 被験試料の吸光度と HA濃度測定値
Figure imgf000054_0002
標準液での吸光度データを元に作成した検量線を図 15Aに、吸光度及び濃度を 対数値で表した前記検量線の近似式を図 15Bに示す。これを利用して試料中の HA 濃度を求めた。結果は表 31に合わせて示す。
また、工程 (2)で得られた標準試料の吸光度の結果を下記表 32に、これら値から得 られた各標準試料についての HA濃度に対する吸光度を示す反応曲線を図 16Aに 、被検試料の吸光度の結果を表 34に示す。
[0144] 最後に、工程 (1)および工程 (2)で得られた結果を元に、工程 (3)である分子量算出を 実施した。まず、工程 (2)で得られた各々の HA分子量標準試料の反応曲線について 対数関数により近似した式を図 16Bに示す。これらの近似式の Xに、工程 (1)で求めた 各被験試料の HA濃度を代入することにより、各被験試料の HA濃度での各分子量 標準試料の吸光度値を計算により求めることができる。この操作により求めた値を表 3 3に示す。
[0145] さらに、各被験試料の HA濃度で求めた表 33の吸光度値を X軸に、 HA分子量を y 軸にプロットし、得られた曲線の近似式を求めることにより、各被験試料の HA濃度で の分子量測定用検量線を作成することができる。これにより得られた各濃度おける分 子量測定用検量線の近似式を図 17に示す。これらの近似式中、各被験試料の濃度 に対応する式の Xに、工程 (2)で求めた当該被験試料の吸光度値を代入することによ り、当該被験試料の HA分子量を求めることができる。これにより得られた分子量を表 34に示す。
本実施例のように、工程 (1)および (2)を、工程 (1)の結果に基づいて工程 (2)の反応 条件等を選択する等の操作を行うことなく独立して実施した場合でも、被験試料につ いて各工程で得られた吸光度値が各々の測定範囲内であれば、被験試料の HA分 子量を求めることができる。
[0146] [表 32]
A:各 HA分子量檁準液の吸光度 B:各 HA分子量標準液の吸光度(ブランク差引値)
Figure imgf000055_0001
Figure imgf000055_0002
[0147] [表 33] 所定 HA濃度での各 HA分子量標準液の吸光度計算値
Figure imgf000056_0001
[0148] [表 34] 被験試料の分子量測定糸;
Figure imgf000056_0002
[0149] [表 35]
前処理工程の組み合わせ例
Figure imgf000056_0003
[0150] 実施例 18:前処理工程 2)と 3)を行った際のプロテア一ゼ失活効果の確認
ァクチナーゼ AFを、濃度 2%あるいは 6%となるように 0.135M NaCl- lOmM Tris.HCK PH8.0)に溶解し、被験試料液とした。この溶液の一部を分取し、 10分間煮沸して失 活させ、対照液 Aとした。また、ァクチナーゼを含まない緩衝液を対照液 Bとした。 各液を氷冷後、予め氷冷しておいた 40%、 12%、あるいは 4%TCA溶液を 1/4容量添 加して混合して氷上に 15分間保持した後、各液を 2等分し、一方はそのまま氷上に維 持し、もう一方は小型冷却遠心機を用いて 4°Cで 5分間、 lOOOOr.p.m.で遠心分離し、 上清を採取した。
各液に対して予め氷冷しておいた 2M Tris溶液を添加し、 pH8.0に調整した。尚、 p H8.0に調整する為に要する 2M Trisの容量は、事前検討により決定した。
中和後の各液を 20 L採取し、試験開始時のァクチナーゼ濃度 2%の試料につい ては精製水 180 Lを、ァクチナーゼ濃度 6%の試料については精製水 580 Lを、 それぞれ添加して希釈して氷上に保持し、残存プロテアーゼ活性測定の被験試料と した。
プロテアーゼ活性測定の標準品として、ァクチナーゼ AF粉末を精製水に溶解して 6 %溶液を調整し、これを用いて 12.5— 500 g/mLの希釈系列を作成し、標準液とし た。
上記の被験試料および標準液を 50 Lずつ採取し、 1.25%カゼインナトリウム(和光 純薬)溶液を 250 L添加し、 55°Cで 30分間反応させた後、 HOmM TCA250 Lを添 加してタンパク質を沈殿させ、 10000 X gで 10分間遠心分離して上清 60 Lを採取し た。この溶液に 500mM炭酸 Na溶液を 150 し添カロし、更に 4倍希釈したフエノール試 薬 (和光純薬)を 30 L添加し、攪拌混合後、 37°Cで 30分間反応させた後、波長 630η mの吸光度を測定した。
標準液の濃度と吸光度から検量線を作成し、これを用いて被験試料中の残存プロ テアーゼ活性を、標準ァクチナーゼ AFの濃度当量として算出して評価した。
その結果を表 36に示した。ァクチナーゼ濃度 2%溶液、 6%溶液ともに、 TCA処理を終 濃度 8%および 2.4%で実施し、沈殿を遠心分離除去後に上清を中和する方法を実施 した場合、残存プロテアーゼ活性をほぼ完全に失活できることが確認できた。
[表 36] 前処理操作におけるプロテア一ゼ失活の確認
Figure imgf000058_0001
実施例 19:前処理工程 2)と 3)を実施した場合の HA分子量の保持率の評価 試料用緩衝液として 0. 135M NaCl - lOmM Tris.HCl(pH8.0)を調製し、これに、 3種 の分子量の HA (実施例 1、表 1の HA— MWSTD— 1、 2、および 3)を終濃度 5 g/ mLとなるように添カロし、これを被験試料とした。
各被験試料を 6mLずつ 3本に分注し氷冷後、予め氷冷してお!/、た 3種濃度の TCA 溶液 (A : 40%、 B : 12%、 C : 4%)を 1.5mL添加して混合して氷上に 15分間保持した後、冷 却遠心機を用いて 4°Cで 5分間、 3000r.p.m.で遠心分離し、上清 9.6mLを採取した。 上記各液に対して、氷冷した 2M Tris溶液を、 Aについては 2.50mL、 Bについては 0.75mL、 Cについては 0.27mL添加して pH8.0に調整した。続いて氷冷した精製水を、 Aについては非添カロ、 Bについては 1.75mL、 Cについては 2.24mL添加して、最終容 量を揃えた。これらの液を 9.6mL採取し、 PD- 10カラム(GEヘルスケアバイオサイェン ス)を用いて脱塩後、遠心エバポレーターで加温せずに濃縮乾固し、 0.2M NaCl 380 11 Lを加えて再溶解した。
この溶液にっレ、て、実施例 1と同様の方法で GPC分析を実施して HA分子量を測定 し、上記の前処理実施後の HA分子量と未処理の HAの分子量とを比較して、前処 理工程での HA分子量保持率を評価した。
その結果を表 37に示した。 TCAを終濃度 8%で処理した場合、 HA— MWSTD— 1 (分子量:231(¾0&)、^1八ー^ [\¥3丁0— 2 (分子量:141(¾0&)、^1八ー^ [\¥3丁0— 0 3 (分子量: 993kDa)の各試料につ!/、て、ピーク分子量で評価した保持率はそれぞれ 100%、 96%、 103 %であった。 TCAを終濃度 2.4%で処理した場合、 HA分子量 HA— MWSTD— 1、同一 2、同一 3の各試料について、ピーク分子量で評価した保持率 はそれぞれ 101%、 99%、 102 %であった。 TCAを終濃度 0.8%で処理した場合、 HA— MWSTD— 1、同一 2、同一 3の各試料について、ピーク分子量で評価した保持率 はそれぞれ 97%、 95%、 104%であった。
[表 37]
前処理操作におけるヒアルロン酸分子量の保持率の検証 1
Figure imgf000059_0001
実施例 20:前処理工程 1 )、 2)、 3)を実施した場合の HA分子量の保持率の評価 試料用緩衝液として 0. 135M NaCl - lOmM Tris.HCl(pH8.0)を調製し、これにァクチ ナーゼ AFを溶解して、濃度 6%溶液 (A)および 2%溶液 (B)を調製した。また、ァクチナ ーゼを含まない試料用緩衝液(C)を用意した。上記各液に、 3種の分子量の HA (実 施例 1、表 1の HA— MWSTD— 1、 2、および 3)を終濃度 5 g/mLとなるように添加 し、これを被験試料とした。
各被験試料を 37°C湯浴中で 24時間処理した後、 6mLを採取して氷冷後、予め氷冷 してお!/、た 40%TCA溶液を 1.5mL添加して混合し、氷上に 15分間保持した後、冷却 遠心機を用いて 4°Cで 5分間、 3000r.p.m.で遠心分離し、上清 9.6mLを採取した。 上記各液に対して、氷冷した 2M Tris溶液を 2.65mL添加して pH8.0に調整した。調 製後の各液を PD- 10カラム(GEヘルスケアバイオサイエンス)を用いて脱塩後、遠心 エバポレーターで加温せずに濃縮乾固し、 0.2M NaCl 380 Lを加えて再溶解した。 この溶液にっレ、て、実施例 1と同様の方法で GPC分析を実施して HA分子量を測定 し、上記の前処理実施後の HA分子量と未処理の HAの分子量とを比較して、前処 理工程での HA分子量保持率を評価した。 その結果を表 38に示した。ァクチナーゼ濃度 2%で 37°C ' 24時間処理した場合の保 持率は、ピーク分子量で評価した場合、 HA— MWSTD— 1 (分子量: 2310kDa)、 H A— MWSTD— 2 (分子量: 1410kDa)、 HA—MWSTD— 3 (分子量: 993kDa)の各 試料について、それぞれ 89%、 91%、 96 %であった。ァクチナーゼ濃度 6%で 42°C ' 24時 間処理した場合の保持率は、ピーク分子量で評価した場合 HA— MWSTD— 1、同 2、同一 3の各試料について、それぞれ 74%、 80%、 89 %であった。
[表 38]
前処理操作におけるヒアルロン酸分子 Sの保持率の検証 2
Figure imgf000060_0001
実施例 21:前処理工程 2)、 3)、 4)実施後の溶媒組成が、測定工程 (1)に及ぼす影 響の確認
3種濃度の TCA溶液、 2M Tris溶液、 ELISA用補正液、 D .W.を、表 39の比率で混 合し、模擬前処理液 A、 B、 Cを調製した。この処理液を用いて、 4種の分子量の HA ( 実施例 1、表 1の試料- B、 E、 H、 J)について、濃度 800、 400、 200、 100、 50、 25、 12.5η g/mLの希釈列を作成した。これを、実施例 3と同様の方法で測定工程 ( 1)を実施した 測定結果を表 40に、結果をプロットしたグラフを図 18に、それぞれに示した。模擬 処理液 A、 B、 Cいずれを用いた場合も、 HAの分子量によらず同一の反応性を示す ことが確認された。このことから、被験試料溶液に前処理工程で添加したプロテア一 ゼ失活用試薬および中和試薬が含まれたままの状態でも、標準品の溶媒を被験試 料の溶媒と同一組成に合わせて使用すれば、測定工程 (1)が実施可能であることが 確認された。 [0157] [表 39]
Figure imgf000061_0001
[0158] [表 40]
前処理液組成が測定工程 1へ及ぼす影響の確認
Figure imgf000062_0001
実施例 22:前処理工程 2) 3) 4)実施後の溶媒組成が、測定工程 (2)に及ぼす影 響の確認
実施例 21で調製した模擬前処理液 A B Cを用いて、 4種の分子量の HA (実施例 1 、表 1の試料- B E H J)について、濃度 1000 300 100 30ng/mLの希釈列を作成 した。これを下記の条件で、その他は実施例 5と同様に反応及び測定を行った。 •HABP固相化濃度: 30 100 ng/mL
•HABP固相化時の緩衝液: PBS
•HABP固相化プレート: 3種ブロッキング試薬を用いて乾燥プレートを作成して使用
• HA標準品を溶解した緩衝液: ELISA基本緩衝液
•ビォチン HABPの使用濃度: 200 ng/mL
•ビォチン HABP溶液へのグァニジン塩酸の添加濃度: 0.4及び 0.8 M
• HRP アビジンの使用濃度: 500 ng/mL
•発色液の種類と使用濃度: OPD : 0.5 mg/mL
HABP固相化濃度 30ng/mLでの反応条件を表 41に、結果を図 19に、結果から計算 した各試料で得られた吸光度間の比を表 42にそれぞれ示す。また、 HABP固相化 濃度 lOOng/mLでの反応条件を表 43に、結果を図 20に、結果から計算した各試料で 得られた吸光度間の比を表 44にそれぞれ示す。
模擬処理液 A、 B、 Cいずれを用いた場合も、 HAの分子量に比例した反応強度を 示すことが確認された。このことから、被験試料溶液に前処理工程で添加したプロテ ァーゼ失活用試薬および中和試薬が含まれたままの状態でも、標準品の溶媒を被 験試料の溶媒と同一組成に合わせて使用すれば、測定工程 (2)が実施可能であるこ とが確認された。
[表 41]
反応条件
Figure imgf000064_0001
HABP固相化プレートのブロッキング剤: ① Applie Block; ② 1 % BSA— 2%スクロース; ③ Immunoassay stabilizer
各種分子量の HAの反応比率
Figure imgf000065_0001
* ブランク吸光度を差し引いた値を用いて算出した
反応条件
Figure imgf000066_0001
HABP固相化プレートのブロッキング剤: ① Applie Block; ② 1% BSA-2%スクロース: ③ Immunoassay stabilizer
Figure imgf000067_0001
実施例 23:実施例 18 22の結果から確定した条件を適用した場合の、各種生体試 料中 HA濃度の測定結果(HPLC法)
lOmM Tris.HCl(pH8.0)にァクチナーゼ AFを溶解して、 2%溶液を調製し、これをブ タ軟骨種組織試料 400mgに 4mL添加し、これを被験試料 1とした。
同様に 10mM Tris.HCl(pH8.0)にァクチナーゼ AFを溶解して、 10%溶液を調製し、こ れをヒト滑膜細胞株培養上清 4mL ίこ lmL添加し、これを被験試料 2とした。
各被験試料を 37°C湯浴中で 24時間処理した後、 3mLを採取して氷冷後、予め水冷 しておレ、た40%TCA溶液を 0.75mL添加して混合し、氷上に 15分間保持した後、冷却 遠心機を用いて 4°Cで 5分間、 3000Γ·ρ·πι·で遠心分離し、上清 4.8mLを採取した。 上記各液に対して、氷冷した 2M Tris溶液を 1.33mL添力□して pH8.0に調整した。調 製後の各液を PD-10カラム(GEヘルスケアバイオサイエンス)を用いて脱塩後、遠心 エバポレーターで加温せずに濃縮乾固し、 o.2M NaClを加えて再溶解した。
この溶液にっレ、て、実施例 2と同様の方法で HPLC分析を実施して HA濃度を測定 した。
その結果を表 45に示した。
[0165] [表 45]
Figure imgf000068_0001
[0166] 実施例 24 :実施例 18〜22の結果から確定した条件を適用した場合の、各種生体試 料中 HA分子量の測定結果(GPC法)
実施例 23で得た、脱塩濃縮後の再溶解液について、実施例 1と同様の方法で GP C分析を実施して HA分子量を測定した。
その結果を表 45に示した。
[0167] 実施例 25 :実施例 18〜22の結果から確定した条件を適用した場合の、各種生体 試料中 HA濃度の測定結果 (ELISA法 (測定工程( 1 ) )
実施例 23で得た、各検体の 2M Tris中和液を 30 L採取し、これに実施例 21に示 した ELISA用補正液を 48.3 L添加し、被験試料溶液を作成した。 ΗΑ濃度標準品は 実施例 21と同様の方法で調製した。
上記の標準液および被験試料溶液を、実施例 16と同様の方法で測定し、 HA濃度 を測定した。
その結果を表 45に示した。本方法での測定値と、実施例 23で得られた HPLC法で の値との間で、良好な一致が得られた。
実施例 26:実施例 18〜22の結果から確定した条件を適用した場合の、各種生体 試料中 HA分子量の測定結果 (ELISA法 (測定工程 (2)、(3) ) )
実施例 25で作成した各被験試料溶液について、実施例 25での結果を元に、実施 例 21で作成した模擬前処理液 Aを用いて希釈し、 HA濃度を 100ng/mLにあわせ、こ れを被験試料とした。 HA分子量標準品は実施例 21と同様の方法で調製した。 上記の標準液および被験試料を、実施例 16と同様の方法で測定し、 HA分子量を 算出した。
その結果を表 45に示した。本方法での測定値と、実施例 24で得られた GPC法での 値との間で、良好な一致が得られた。

Claims

請求の範囲 [1] ヒアルロン酸を含む試料中のヒアルロン酸をヒアルロン酸結合性タンパク質と反応さ せ、試料中のヒアルロン酸に結合したヒアルロン酸結合性タンパク質の量又はその量 を反映する値を測定する工程を少なくとも含む、ヒアルロン酸の分子量の測定方法。 [2] 下記の工程(1)〜(3)を少なくとも含む、請求項 1に記載の測定方法。
(1) 試料中のヒアルロン酸濃度を測定する工程、
(2) 試料中のヒアルロン酸をヒアルロン酸結合性タンパク質と反応させ、試料中のヒア ルロン酸に結合したヒアルロン酸結合性タンパク質の量又はその量を反映する値を 測定する工程、及び、
(3) 濃度及び分子量既知の標準ヒアルロン酸試料から得られたヒアルロン酸の分子 量とヒアルロン酸に結合するヒアルロン酸結合性タンパク質の量又はその量を反映す る値との関係と、上記工程(1)で得られた試料中のヒアルロン酸濃度と、上記工程 (2) で得られた試料中のヒアルロン酸に結合したヒアルロン酸結合性タンパク質の量又は その量を反映する値から試料中のヒアルロン酸の分子量を求める工程。
[3] 上記工程 (2)が下記工程 (i)〜(iv)により構成される、請求項 2に記載の測定方法。
(0 ヒアルロン酸結合性タンパク質を固相に固定する工程、
(ii) 固相に固定したヒアルロン酸結合性タンパク質に試料中のヒアルロン酸を反応さ せる工程、
(iii) 固相に固定したヒアルロン酸結合性タンパク質に結合したヒアルロン酸に、標識 したヒアルロン酸結合性タンパク質をさらに反応させる工程、及び
(iv) 工程 (iii)にお!/、てヒアルロン酸に結合した標識ヒアルロン酸結合性タンパク質の 量又はその量を反映する値を測定する工程。
[4] 工程 (iii)にお!/、て使用する標識したヒアルロン酸結合性タンパク質の標識物質が、 ビォチン、アビジン、酵素、アイソトープ、蛍光色素、及び化学発光物質からなる群か ら選択される、請求項 3に記載の測定方法。
[5] 工程 (iii)にお!/、て使用する標識したヒアルロン酸結合性タンパク質の標識物質が、 ビォチン又はアビジンである、請求項 3又は 4に記載の測定方法。
[6] 工程 (3)において使用する、濃度及び分子量既知の標準ヒアルロン酸試料から得ら れたヒアルロン酸の分子量とヒアルロン酸に結合するヒアルロン酸結合性タンパク質 又はその量を反映する値の量との関係が、濃度及び分子量既知のヒアルロン酸標準 液を試料として工程 (2)を行うことにより得られた標準曲線で表されることを特徴とする 、請求項 2〜5のいずれか 1項に記載の測定方法。
[7] 工程(3)において、工程(1 )で得られた試料中のヒアルロン酸濃度は、試料を希釈す るための指標として、又は、当該濃度における、標準ヒアルロン酸試料のヒアルロン酸 に結合するヒアルロン酸結合性タンパク質の量又はその量を反映する値の算出に用 いられることを特徴とする、請求項 2〜6のいずれか 1項に記載の測定方法。
[8] ヒアルロン酸にヒアルロン酸結合性タンパク質を反応させる際に、タンパク質変性剤 、酸性多糖、及び界面活性剤から選択される添加剤を共存させ、その添加剤の量を 調節することによりヒアルロン酸結合性タンパク質とヒアルロン酸とが結合する量を調 整することを特徴とする、請求項 3〜7のいずれか 1項に記載の測定方法。
[9] 工程 (iv)にお!/、て測定するヒアルロン酸に結合したヒアルロン酸結合性タンパク質の 量又はその量を反映する値を、工程 (i)における固定するヒアルロン酸結合性タンパク 質の量、あるいは工程 (iii)における反応させるヒアルロン酸結合性タンパク質の量を 変化させることにより調整することを特徴とする、請求項 3〜8のいずれ力、 1項に記載 の測定方法。
[10] 添加剤が、グァニジン塩酸である、請求項 8に記載の測定方法。
[11] 固相化するヒアルロン酸結合性タンパク質の量力 固相化に使用するヒアルロン酸 結合性タンパク質溶液の濃度として、 3〜30000 ng/mLである、請求項 3〜; 10のいず れか 1項に記載の測定方法。
[12] 工程 (iii)にお!/、て反応させる標識ヒアルロン酸結合性タンパク質がビォチン標識ヒ アルロン酸結合性タンパク質であり、ビォチン標識ヒアルロン酸結合性タンパク質溶 液の濃度が 10〜30000 ng/mLである、請求項 3〜; 1 1のいずれか 1項に記載の測定方 法。
[13] ヒアルロン酸標準液及び/又は試料中のグァニジン塩酸の濃度が終濃度で 0〜3.6
Mである、請求項 10に記載の測定方法。
[14] ビォチン標識ヒアルロン酸結合性タンパク質溶液中のグァニジン塩酸の濃度が終 濃度で 0〜 1.6 Mである、請求項 10に記載の測定方法。
[15] ヒアルロン酸結合性タンパク質を少なくとも含む、ヒアルロン酸の分子量の測定用の キット。
[16] 請求項 1〜; 14のいずれ力、 1項に記載の測定方法を用いることを特徴とする、請求項 15に記載のキット。
PCT/JP2007/065558 2006-08-08 2007-08-08 Method for determination of molecular weight of hyaluronic acid WO2008018519A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008528862A JP5466405B2 (ja) 2006-08-08 2007-08-08 ヒアルロン酸の分子量の測定方法
US12/376,921 US8163498B2 (en) 2006-08-08 2007-08-08 Method for determination of molecular weight of hyaluronic acid
EP07792223A EP2058659A4 (en) 2006-08-08 2007-08-08 PROCESS FOR DETERMINING THE MOLECULAR WEIGHT OF HYALURONIC ACID
CA002660455A CA2660455A1 (en) 2006-08-08 2007-08-08 Method for determination of molecular weight of hyaluronic acid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-215773 2006-08-08
JP2006215773 2006-08-08

Publications (1)

Publication Number Publication Date
WO2008018519A1 true WO2008018519A1 (en) 2008-02-14

Family

ID=39033049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/065558 WO2008018519A1 (en) 2006-08-08 2007-08-08 Method for determination of molecular weight of hyaluronic acid

Country Status (5)

Country Link
US (1) US8163498B2 (ja)
EP (1) EP2058659A4 (ja)
JP (1) JP5466405B2 (ja)
CA (1) CA2660455A1 (ja)
WO (1) WO2008018519A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114354790A (zh) * 2021-12-28 2022-04-15 舟山市食品药品检验检测研究院 一种检测水产品中7种卤代咔唑类化合物的方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110267977A (zh) 2016-08-10 2019-09-20 亚洲大学校产学协力团 细胞因子免疫球蛋白Fc融合异二聚体和包含其的药物组合物
JP2022505871A (ja) 2018-10-23 2022-01-14 ドラゴンフライ セラピューティクス, インコーポレイテッド ヘテロ二量体fc融合タンパク質
EP4138778A1 (en) 2020-04-22 2023-03-01 Dragonfly Therapeutics, Inc. Formulation, dosage regimen, and manufacturing process for heterodimeric fc-fused proteins
CN111551513B (zh) * 2020-06-16 2023-07-04 华熙生物科技股份有限公司 一种快速测定发酵液中透明质酸含量的方法
CN117664885B (zh) * 2023-11-28 2024-05-07 中国计量科学研究院 一种织物中透明质酸含量的定量检测方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63150669A (ja) 1986-12-08 1988-06-23 フアーマシア・アンド・アツプジヨン・アクチエボラーグ ヒアルロン酸の測定法
JPH0641952B2 (ja) 1987-03-03 1994-06-01 中外製薬株式会社 高分子ヒアルロン酸の測定方法および測定キット
JPH0912600A (ja) 1995-06-22 1997-01-14 Shiseido Co Ltd ヒアルロン酸ナトリウムに対するモノクローナル抗体及びその製造方法
JPH09229930A (ja) * 1996-02-20 1997-09-05 Seikagaku Kogyo Co Ltd ヒアルロン酸の測定方法及び測定用キット
JP2698563B2 (ja) 1995-11-14 1998-01-19 卓生 行本 表面自然石、背面コンクリート打設構造物の施工法
JP2732718B2 (ja) 1991-02-15 1998-03-30 生化学工業株式会社 ヒアルロン酸の定量用キット及び定量方法
JP2000065837A (ja) * 1998-08-24 2000-03-03 Seikagaku Kogyo Co Ltd グリコサミノグリカン又はグリコサミノグリカン結合性分子の測定方法及びその測定用キット
JP2000097940A (ja) 1998-09-22 2000-04-07 Seikagaku Kogyo Co Ltd グリコサミノグリカンの測定方法及び測定キット
JP2005024336A (ja) * 2003-06-30 2005-01-27 Japan Science & Technology Corp 酸性多糖類の分析方法および酸性多糖類分析用キット

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO173355C (no) 1987-03-03 1993-12-01 Chugai Pharmaceutical Co Ltd Fremgangsm}te og selektiv bestemmelse av en h!ymolekylvekts hyaluronsyre og reagenssett for utf!relse av fremgangsm}ten

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63150669A (ja) 1986-12-08 1988-06-23 フアーマシア・アンド・アツプジヨン・アクチエボラーグ ヒアルロン酸の測定法
JPH0641952B2 (ja) 1987-03-03 1994-06-01 中外製薬株式会社 高分子ヒアルロン酸の測定方法および測定キット
JP2732718B2 (ja) 1991-02-15 1998-03-30 生化学工業株式会社 ヒアルロン酸の定量用キット及び定量方法
JPH0912600A (ja) 1995-06-22 1997-01-14 Shiseido Co Ltd ヒアルロン酸ナトリウムに対するモノクローナル抗体及びその製造方法
JP2698563B2 (ja) 1995-11-14 1998-01-19 卓生 行本 表面自然石、背面コンクリート打設構造物の施工法
JPH09229930A (ja) * 1996-02-20 1997-09-05 Seikagaku Kogyo Co Ltd ヒアルロン酸の測定方法及び測定用キット
JP2000065837A (ja) * 1998-08-24 2000-03-03 Seikagaku Kogyo Co Ltd グリコサミノグリカン又はグリコサミノグリカン結合性分子の測定方法及びその測定用キット
JP2000097940A (ja) 1998-09-22 2000-04-07 Seikagaku Kogyo Co Ltd グリコサミノグリカンの測定方法及び測定キット
JP2005024336A (ja) * 2003-06-30 2005-01-27 Japan Science & Technology Corp 酸性多糖類の分析方法および酸性多糖類分析用キット

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Immobilized enzyme", 1975, KODANSHA LTD., pages: 9 - 75
See also references of EP2058659A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114354790A (zh) * 2021-12-28 2022-04-15 舟山市食品药品检验检测研究院 一种检测水产品中7种卤代咔唑类化合物的方法
CN114354790B (zh) * 2021-12-28 2024-05-10 舟山市食品药品检验检测研究院 一种检测水产品中7种卤代咔唑类化合物的方法

Also Published As

Publication number Publication date
US8163498B2 (en) 2012-04-24
EP2058659A1 (en) 2009-05-13
JPWO2008018519A1 (ja) 2010-01-07
CA2660455A1 (en) 2008-02-14
EP2058659A4 (en) 2009-10-21
US20100041071A1 (en) 2010-02-18
JP5466405B2 (ja) 2014-04-09

Similar Documents

Publication Publication Date Title
US11746348B2 (en) Euglobulin-based method for determining the biological activity of defibrotide
CN109596843B (zh) 一种血清淀粉样蛋白a的测定试剂盒
WO2008018519A1 (en) Method for determination of molecular weight of hyaluronic acid
JPH03220456A (ja) リムラス変形細胞溶解産物および発色原基質を用いたエンドトキシン反応速度論的アッセイ
CN106568978A (zh) 血清淀粉样蛋白a检测方法及试剂
JPH06258326A (ja) エンドトキシン特異的測定剤
CN102421799B (zh) 用于高分子脂联素分析的新型单克隆抗体及其应用
CN106872718A (zh) 一种尿微量白蛋白检测试剂盒及其制备方法
CN105988001A (zh) 一种测定非对称二甲基精氨酸浓度的试剂盒及方法
AU2004223553B2 (en) Latex reagent for adiponectin analysis and method of adiponectin analysis
CN105510572A (zh) 一种甘氨酰脯氨酸二肽氨基肽酶检测试剂盒
US20190011451A1 (en) Methods and compositions for assaying blood levels of legumain
AU608731B2 (en) Reagent and method for detecting rheumatoid factor
AU2001241744B2 (en) Biosynthetic carbohydrate-deficient transferrin references
AU2001241744A1 (en) Biosynthetic carbohydrate-deficient transferrin references
CN108107203A (zh) 一种庆大霉素免疫检测试剂及其制备和检测方法
CN107607724A (zh) 一种用于补体c3测定试剂盒的复合稳定剂及其应用
CN116718776A (zh) 一种检测ɑ2巨球蛋白的试剂盒
CN107976537B (zh) 一种用于前白蛋白测定试剂盒的稳定剂及其制备方法
JP2000111553A (ja) 正常アグリカン測定法とその応用
CN110850107A (zh) 一种检测脂蛋白(a)分子浓度的试剂盒及其应用
CN114487407A (zh) 一种血管紧张素转化酶2的检测试剂盒
JP2003265196A (ja) ムコ多糖症のスクリーニング方法
Poncelet et al. Immunoassay by particle counting for coagulation testing: application to the determination of protein C
COTTER et al. The May 1975 Issue

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07792223

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2660455

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 12376921

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2007792223

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007792223

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU