WO2008001717A1 - Depôt d'aluminium obtenu par placage, élément métallique et procédé de fabrication correspondant - Google Patents

Depôt d'aluminium obtenu par placage, élément métallique et procédé de fabrication correspondant Download PDF

Info

Publication number
WO2008001717A1
WO2008001717A1 PCT/JP2007/062686 JP2007062686W WO2008001717A1 WO 2008001717 A1 WO2008001717 A1 WO 2008001717A1 JP 2007062686 W JP2007062686 W JP 2007062686W WO 2008001717 A1 WO2008001717 A1 WO 2008001717A1
Authority
WO
WIPO (PCT)
Prior art keywords
plating
aluminum
film
plating film
current density
Prior art date
Application number
PCT/JP2007/062686
Other languages
English (en)
French (fr)
Inventor
Hiroyuki Hoshi
Atsushi Okamoto
Setsuo Andou
Original Assignee
Hitachi Metals, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals, Ltd. filed Critical Hitachi Metals, Ltd.
Priority to US12/308,684 priority Critical patent/US8262893B2/en
Priority to EP07767493A priority patent/EP2037007A4/en
Publication of WO2008001717A1 publication Critical patent/WO2008001717A1/ja
Priority to US13/567,402 priority patent/US8586196B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/16Pretreatment, e.g. desmutting
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/42Electroplating: Baths therefor from solutions of light metals
    • C25D3/44Aluminium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/66Electroplating: Baths therefor from melts
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/66Electroplating: Baths therefor from melts
    • C25D3/665Electroplating: Baths therefor from melts from ionic liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12583Component contains compound of adjacent metal
    • Y10T428/1259Oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12993Surface feature [e.g., rough, mirror]

Definitions

  • the present invention relates to a hard aluminum plating film produced by an electrolytic aluminum plating method and a method for producing the same.
  • the electroaluminum plating method is known as one of plating methods capable of responding to an increase in environmental awareness because it does not contain heavy metals that affect the environment and the human body in the plating solution and plating film. Since the surface of the film formed of aluminum is anodized to form a film having excellent wear resistance, corrosion resistance, colorability, etc., many studies have been made for practical use. As a method for forming an aluminum plating film, fusion bonding is generally known. Hot-dip aluminum plating is a method of obtaining a film by melting aluminum at a high temperature close to 700 ° C and immersing a sample in the aluminum.
  • the melting point of magnesium material is 648. 8 ° C, so it cannot dissolve because it dissolves in molten aluminum.
  • the film thickness can be controlled by the amount of electricity, and it is possible to perform plating at a low temperature of 200 ° C. or less. Since the standard electrode potential for aluminum electrodeposition is 1.71 V, which is lower than the potential for hydrogen generation, plating from aqueous solution is very difficult. Therefore, electroaluminum plating is limited to plating from non-aqueous solvents and molten salts.
  • Another non-aqueous solvent bath is the well known aluminum chloride-lithium aluminum hydride jetyl ether bath (Hydride bath bath) reported by Brenner et al. In 1952. Yes.
  • a bath using a tetrahydrofuran solvent with improved liquid stability has been reported and has been put into practical use.
  • lithium aluminum hydride and lithium hydride which are used as additives, are very active substances and are currently used because of the danger of explosion.
  • the plating solution used here is mainly salty-aluminum, salty-sodium, salty-potassium, and a small amount of manganese chloride is added.
  • a reagent mainly containing chloride since a reagent mainly containing chloride is used, the apparatus is corroded by long-term use.
  • Patent Documents 2 and 3 show that aluminum can be electrodeposited in a bath using a dialkyl sulfone represented by dimethyl sulfone.
  • a dialkyl sulfone represented by dimethyl sulfone.
  • this mixture is heated to about 110 ° C. to melt the anhydrous metal salt, thereby forming a plating bath.
  • metal complex ions coordinated with dimethylsulfone are generated.
  • electroplating is performed, the metal contained in the metal complex ions is reduced and deposited on the surface of the force sword (covered object), resulting in a plating film. It is formed.
  • Patent Document 1 Japanese Patent No. 2755111
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-76031 (Claims, FIGS. 1 and 2)
  • Patent Document 3 Japanese Unexamined Patent Publication No. 2006-161154
  • the electroaluminum plating film obtained by the above-described conventional technique is soft before the anodized film, and is easily damaged when handling an object to be covered. there were.
  • the inactive particles are uniformly dispersed in the adhesive film, and the functionality based on the characteristics of the inert particles can be imparted to the adhesive film. It is not always easy.
  • an object of the present invention is to provide an electroaluminum plating film which is hard to be damaged during handling because the plating film before being anodized is sufficiently hard, and a method for producing the same.
  • the above problem can be achieved by uniformly containing a specific impurity in the aluminum plating film.
  • the first invention of the present application is an aluminum plating film having an aluminum content of 98 wt.% Or less and a Vickers hardness force of S250 or more, preferably an aluminum content of 97 wt.% Or less and a Vickers hardness
  • the aluminum plating film is characterized by having a thickness of 300 or more.
  • the film can be hardened by containing oxygen, carbon, sulfur and chlorine as impurities.
  • the second invention of the present application is characterized in that an aluminum halide is dissolved in an alkylsulfone, so that a covering object is immersed in a bath, and a current density of 0.25 to 6 AZdm 2 is applied. It is a manufacturing method of a film
  • the third invention of the present application is a bath in which an aluminum halide is dissolved in an alkylsulfone.
  • This is a method for producing an aluminum plating film characterized by immersing an object to be plated in a plating bath maintained at a temperature of 60 to 140 ° C. and energizing it.
  • an aluminum halide is dissolved in an alkylsulfone, so that a barrel containing the object to be covered is immersed in a bath, and the current is rotated while rotating the barrel in the bath.
  • This is a method for producing an aluminum plating film by a barrel plating method characterized by energizing at a density of 0.25 to 6 AZdm 2 .
  • an aluminum halide is dissolved in an alkylsulfone and a barrel containing the covering object is immersed in a plating bath maintained at a bath temperature of 60 to 140 ° C. It is a manufacturing method of the aluminum plating film by the barrel fitting method characterized by energizing while rotating the barrel.
  • anhydrous salts such as aluminum chloride and aluminum bromide can be used.
  • alkyl sulfone dimethyl sulfone, dimethyl sulfone, dipropyl sulfone and the like can be used.
  • the aluminum concentration in the plating solution is preferably 1.5 to 4. Omol with respect to alkylsulfone lOmol. Particularly preferred is 2.0 to 3. Omol. If this aluminum concentration is less than 1.5 mol, a bamboo (a side reaction product that often appears black due to lack of complex ions or excess of aluminum) is likely to occur, and the clinging efficiency decreases. On the other hand, if the aluminum concentration exceeds 4.
  • the treatment temperature is preferably 60 to 140 ° C.
  • the hardness of the plating film largely depends on the contained impurities, it is considered that the impurities in the plating film in the present invention are taken in by a side reaction between the plating film and the plating solution. Therefore, when the temperature is less than 60 ° C, the viscosity increases and the side reaction rate decreases, so that the amount of impurities incorporated into the plating film decreases. Furthermore, there is a tendency to cause cracks due to insufficient supply of ions. On the other hand, if it exceeds 140 ° C, the side reaction is activated.
  • the structure of the complex formed by the aluminum halide and the alkyl sulfone changes, and a film with poor adhesion is formed.
  • the current density is 0.25 to 6 AZdm 2, and preferably 0.25 to 4 AZdm 2 . Particularly preferably l ⁇ 4AZdm 2.
  • the current density is less than 0.25 AZdm 2 , the side reaction is dominant and no cling film is formed.
  • 4 AZdm 2 the amount of impurities taken up decreases and the excess of electrons causes the coating to break. Becomes prominent.
  • 6AZdm 2 the amount of impurities taken up further decreases, making it difficult to obtain a film with sufficiently high hardness.
  • Figure 1 shows an outline of the plating equipment used.
  • a sample 3 serving as a cathode and an A1 plate 4 serving as an anode are immersed in a plating solution 2 and energized.
  • the temperature of the plating solution 2 is controlled by the heat source 5. Since A1C1 contained in the plating solution is highly hygroscopic,
  • the experiment was conducted with care to prevent the liquid from taking up moisture in the atmosphere.
  • a separable flask (2 liters) 6 with a lid was used to maintain airtightness, and 5 LZmin of dry nitrogen was continuously flowed during plating.
  • Heating was performed with a silicon rubber heater in heat source 5, and the temperature was adjusted with a voltage regulator and temperature controller.
  • Stirrer 7 has a heating function.
  • the anode 4 was an aluminum plate (70mm x 70mm x 2mmt) with a purity of 99.99%.
  • a copper plate (70 mm X 70 mm X O. 2 mmt) as a sample was used.
  • the electroplating aluminum plating solution uses dimethyl sulfone (CH 2 SO 2 CH: DMSO) as a solvent.
  • FIG. 2 shows the bathing process
  • DMSO and A1C1 mono kb repulsive force 5 1 sample quantity (DMSO: 2300g, A1C1: 650g
  • the mixture was mixed in a beaker and preheated at 50 ° C. and 80 ° C. for 2 hours. Then, the temperature was raised to 110 ° C, slightly higher than the melting point of DMSO (109 ° C), and the reagent was completely dissolved.
  • Hardness was evaluated by Vickers hardness. A plating film with a thickness of 50 m or more was generated on a smooth material and used as a sample.
  • the equipment used was a micro hardness tester (model: MVK-G2, manufactured by Akashi Seisakusho). In the measurement of the Vickers hardness of the plating film, it is said that if the film thickness is thin, it is affected by the hardness of the material, but if the plating film thickness is 1.5 times the diameter of the indentation, it is said to be a reliable value. (ISO06507-1).
  • the degree of crystal orientation was evaluated by the ratio of the peak intensity of each reflection to the (111) peak intensity and the half width.
  • the instrument used for the measurement is an X-ray diffractometer RINT1500 manufactured by Rigaku Corporation.
  • CoKa rays were used for the X-ray source to eliminate the influence of substrate excitation.
  • the average crystal grain size of the plating film was determined by the number of crystal grain boundaries intersecting with the unit length line segment.
  • ED X analysis by FE-SEM model: S-2300
  • analysis by EPMA were performed.
  • GD-OES analysis was performed to qualitatively examine the change in the amount of impurities in the plating film.
  • the main impurity elements contained in the coating were chlorine, sulfur, carbon, and oxygen.
  • impurities in the plating film increased and the crystal grains became finer.
  • the stirring speed was lowered, the impurity concentration decreased slightly.
  • the changes in crystal grain size and impurity concentration due to the measurement time were investigated using SEM and GD—OES (Chromium Discharge Optical Emission Spectrometry).
  • Figure 4 shows.
  • a glow discharge is a phenomenon that occurs when a voltage of several hundred volts is applied between electrodes in an argon gas atmosphere at a pressure of several hundred Pa.
  • the cathode (sample) is sputtered by argon ions and emitted atoms. Emits light when excited by discharged electrons.
  • a concentration profile in the vertical direction can be obtained. From Fig. 3, the crystal grain size changes greatly with increasing plating thickness. It can be seen that the crystal grain size varies in the thickness direction of the film, and is small on the interface side with the substrate and large on the surface side.
  • the results of composition analysis in the depth direction by GD-OES in Fig. 4 no change in the emission intensity of impurities (S, C1) relative to aluminum was observed. Therefore, it is considered that the impurities are uniformly contained in the grains, not the grain boundaries.
  • Fig. 5 shows the change in impurity concentration when the temperature and current density were changed using a 200 ml beaker with a stirring speed of 600 rpm.
  • the edge of the sample generated at a high current density was ignored, and the impurity concentration at the center of the sample was measured.
  • the plating temperature is fixed, the higher the current density, the lower the impurity concentration.
  • the temperature is lowered, the isotherm in the figure shifts to a lower impurity concentration side.
  • FIG. 6 shows the relationship between the temperature and the impurity concentration at the maximum current density.
  • the figure also shows the results of a similar measurement performed at a stirring speed of 80 Orpm in a 2 L beaker. It can be seen that with either apparatus, the film purity increases as the temperature decreases. It was also found that the larger the plating solution capacity, the higher the impurity concentration. This is presumably because the larger the plating solution volume, the slower the flow of the solution by stirring, so that a plating reaction occurs and a side reaction tends to occur. Therefore, the volume of the fitting solution is preferably 2 L (2000 ml) or more in order to obtain a high hardness aluminum plating film. Table 1 summarizes the relationship between each condition, impurities, and crystal grain size.
  • the plating solution composition has been 16.7 mol% aluminum chloride.
  • Plating solution properties Although it is difficult to accurately measure the freezing point, it solidifies at about 90 ° C.
  • the aluminum chloride concentration is increased to 28.6 mol%, the freezing point decreases, and it is possible to squeeze even at 60 ° C.
  • the concentration is further increased, the freezing point rises again, and the freezing point decreases again around 50 mol%.
  • Figure 7 shows the results of measuring the relationship between the current density and the impurity concentration by changing the ratio of dimethylsulfone to salt-aluminum. The effect on the impurity concentration in the plating film produced even when the plating solution concentration is changed is significant. Absent.
  • FIG. 7 shows that the adhesive film composition does not depend on the concentration of the liquid, but it is necessary to consider variations in the adhesive film composition due to the bathing method.
  • the impurity concentration for both sulfur and chlorine concentrations greatly depends on the current density.
  • the ratio of sulfur and chlorine is constant regardless of the film thickness.
  • Figure 8 shows the relationship between sulfur and chlorine analyzed for several types of samples. From the figure, the ratio of the concentration of sulfur and chlorine contained in the aluminum plating film is 1.35: 1.00, and the concentration of sulfur is within 1.35 times ⁇ 30% of chlorine. There is almost no variation between samples. It can be seen that these impurities are compounds having a certain composition.
  • the force showing the data of the composition ratio of the nail solution is shown in FIG. 8. From this result in FIG. 8, this ratio force was not greatly deviated.
  • Fig. 9 shows the analysis results of the surface of the aluminum plating film when the sample was immersed in the squeeze solution for 10 to 300 seconds after aluminum plating. Since the reaction layer when not energized easily flows down by washing with water, after reacting the plating solution with the plating film, the reaction layer is confined between the plating films by further aluminum plating, and GD-OES The emission intensity of sulfur was measured.
  • Fig. 9 shows the relationship between the luminescence intensity in the reaction layer, the reaction time, and the reaction temperature. Here, the value obtained by standardizing the emission intensity of sulfur (S) with the emission intensity of A1 is shown. As the reaction time becomes longer, the emission intensity increases, and it is clear that the reaction between the aluminum plating film and the plating solution is progressing.
  • the lower the current density (that is, the slower the growth rate) the more the amount of impurities increases.
  • these side reactions proceed simultaneously, whereby impurities are taken into the plating film. It is thought that
  • the peak intensity ratio was measured by X-ray diffraction.
  • Figure 10 shows the results when the film thickness is changed, and
  • Fig. 11 shows the results when the current density is changed.
  • the vertical axis shows the ratio to the (111) peak intensity.
  • the solid line in the figure is the peak intensity ratio of an aluminum standard card. From Fig. 10, it can be considered that the (111) orientation is weakened by the thick film because all the peak intensity ratios are larger than the standard when the film thickness is thicker.
  • the (311) peak intensity ratio is remarkably strong, it is considered that the (311) orientation is strengthened by the thick film. Even with the current density change in Fig. 11, all the peaks exceed the standard value, indicating that the (111) orientation is weak. Further, the (220) orientation tends to be strong and the (311) orientation tends to be weak due to the increase in current density.
  • Fig. 12 shows the results of the shear adhesion test of aluminum plating films on various materials.
  • the vertical axis shows the electrical resistivity (measured value) of the material.
  • the material with lower resistivity has better adhesion. This is probably because electrons are difficult to move in materials with high resistance on the surface, so it is difficult to form nuclei for electrodeposition on the substrate surface.
  • the adhesion decreased in the order of SUS304, Fe-50at% Ni alloy, and Ni plate, which almost agreed with the results of the examples.
  • a preferable material is a metal having a resistivity of 50 Q cm or less, particularly preferably 1 / z Q cm or less.
  • the aluminum plating of the present invention is electroplated, a current density distribution is generated in the plane even if the sample is a flat plate. Therefore, in hardness measurement using a microhardness meter, film quality evaluation corresponding to the measurement location is important. Therefore, when measuring the hardness, the film thickness was measured from the sample cross-sectional force, the local current density at the measurement point was determined, and the impurity concentration near the measurement point was compared.
  • Figure 14 shows the relationship between local current density and film hardness. Here, the current efficiency is assumed to be 100%.
  • the film hardness decreased as the current density increased. From Fig. 14, the local current density required to obtain a film hardness of 300 Hv or more is 4 (A / dm 2 ) or less.
  • the local current density required to obtain a film hardness of 250 Hv or more is 6 (A / dm 2 ) or less.
  • Fig. 15 shows the composition analysis results in the vicinity of the hardness measurement point.
  • concentration of each impurity oxygen, carbon, sulfur, chlorine
  • the hardness of the coating also increases, and it is thought that the film is cured by these impurities.
  • the hardness of the aluminum plating film can be controlled by the current density and the temperature of the solution.
  • the impurity concentration required to obtain a film hardness of 250 Hv or more is oxygen 1.2 wt.% Or more, carbon 0.35 wt.% Or more, sulfur 0.2 wt.% Or more, chlorine 0.15 wt.% Or more.
  • the impurity concentration required to obtain a film hardness of 300 Hv or more is oxygen 1.6 wt.% Or more, carbon 0.45 wt.% Or more, sulfur 0.35 wt.% Or more, and chlorine 0.3 wt.% Or more. .
  • Fig. 16 shows the relationship between the distance from the Z-material interface and the hardness. Plating film As the film thickness increases, the impurity concentration does not change, the crystal grain size increases, and the (311) crystal orientation becomes stronger as described above. I can't. Therefore, it is considered that changes in orientation and crystal grain size do not affect the hardness.
  • Fig. 17 is a force that compares the hardness data of the main metallic materials and the electroplated aluminum film of the present invention. Showed.
  • the strength of the alumite film is a force of 250 to 600 Hv.
  • the plated film of the present invention already has the same hardness as the alumite film before the anodic acid film.
  • FIG. 18 shows the relationship between the purity and hardness of the aluminum plating film.
  • the aluminum content (purity) is 98 wt.% Or less, a Vickers hardness of 250 or more can be obtained, and when the purity is about 97 wt.% Or less, a Vickers hardness of 300 or more can be obtained.
  • the impurity content can be controlled by the current density and the temperature of the solution.
  • a hard plating film can be deposited by setting the plating conditions so that the impurity content is 2 wt.% Or more, preferably 3 wt.% Or more, so plating that requires scratch resistance such as barrel fitting is required.
  • the aluminum plating film of the present invention is also effective for the system.
  • Figure 19 shows an outline of the device.
  • a large number of objects 14 are placed in the barrel 13 having the liquid passage hole 15 and the rotating shaft 16.
  • An anode (not shown) is immersed in the fitting solution and a force sword (not shown) is provided in the barrel.
  • the aluminum plating film is formed while the covering objects 14 collide with each other.
  • the aluminum plating film of the present invention is hard to be scratched because it is hard even if measures such as reducing the size of the object and reducing the barrel rotation speed are taken.
  • Figure 20 shows the appearance and cross-sectional photograph of the plating film produced.
  • the present invention can be used in an electric aluminum plated film that is sufficiently hard in the state immediately after plating and hardly damaged during handling, and a method for manufacturing the same.
  • FIG. 19 is a schematic diagram of a barrel fitting device.
  • FIG. 20 Appearance and cross-sectional photograph of plating film produced by barrel fitting. Explanation of symbols 1 Plating equipment 2, 11 Plating solution 3 Cathode

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)

Description

明 細 書
アルミニウムめっき膜および金属部材並びにその製造方法
技術分野
[0001] 本発明は、電気アルミニウムめっき法により作製する硬いアルミニウムめっき膜およ びその製造方法に関する。
背景技術
[0002] 電気アルミニウムめっき方法は、めっき液やめつき膜に環境および人体に影響を与 える重金属を含まな 、ことから環境意識の高まりに応え得るめっき方法の一つとして 知られている。アルミニウムによって形成された被膜の表面は陽極酸ィ匕することにより 耐摩耗性、耐食性、着色性等に優れた被膜となるため実用化に向けて多くの研究が なされている。アルミニウムめっき膜を形成する方法としては、溶融めつきが一般的に 知られている。溶融アルミニウムめっきは、 700°C近い高温でアルミニウムを溶融させ 、その中に試料を浸漬することで被膜を得る方法である。そのため、容易に被膜を得 ることができるが、膜厚のコントロールが困難であり、ピンホールゃボイドが発生しや すいという欠点がある。また、例えばマグネシウム素材の融点は 648. 8°Cであり、ァ ルミ-ゥムの溶湯の中では溶解するためめつきが不可能である。
[0003] これに対して電気アルミニウムめっきでは、電気量により膜厚を制御することができ 、 200°C以下の低温でめっきすることが可能である。アルミニウム電析の標準電極電 位が 1. 71Vであり水素発生の電位よりも卑であるため、水溶液からのめっきは非 常に困難である。従って、電気アルミニウムめっきは、非水溶媒や溶融塩からのめつ きに限定される。
[0004] 非水有機溶媒浴としては 1956年に Zieglerと Lehmkuhlによるトルエン系溶媒の めっき浴が報告され、 Sigal Process (商品名)として実用化されている。このめつき 浴の主成分は、トリェチルアルミニウム—フッ化ナトリウム—トルエンである力 溶質の トリェチルアルミニウムは禁水性および自然発火性が非常に強 、ため、防爆型のめ つき装置が必要になる。また、めっき後の洗浄、洗浄液等の廃棄も容易ではなぐそ れらに関する検討も必要である。 [0005] 他の非水溶媒系めつき浴としては 1952年に Brennerらによって報告された塩化ァ ルミ-ゥム—水素化リチウムアルミニウム ジェチルエーテル浴(Hydride型めつき 浴)がよく知られている。また、液安定性を改善したテトラヒドロフラン溶媒を用いため つき浴も報告され実用ィ匕もされていた。ところが、添加物として使用する水素化リチウ ムアルミニウムや水素化リチウムが非常に活性な物質であり、爆発の危険性を伴うた め現在は使用されて ヽな ヽ。
[0006] 一方、溶融塩めつきは様々な合金系のものが報告されて 、るが、実用化レベルま で至ったものはマンガン -アルミニウム合金めつきを除いて他にない。ここで使用する めっき液は、主に塩ィ匕アルミニウム、塩ィ匕ナトリウム、塩ィ匕カリウム力もなり、少量の塩 化マンガンが加えられている。この溶融塩めつきでは、主に塩化物を含有する試薬を 使用するため、長期間の使用により装置が腐食する。アルキルピリジ-ゥムハロゲン 化物、四級アンモニゥムハロゲン化物、アルキルイミダゾリゥムハロゲン化物、ォニゥ ムハロゲン化物とアルミニウムハロゲン化物を 100°C前後の温度で溶融し、通電して めっき膜が得られたとの報告もある (特許文献 1)。ところが、試薬が非常に高価であり 、建浴工程が複雑であることから、実用には不向きである。
[0007] このような中で、特許文献 2、 3ではジメチルスルホンに代表されるようなジアルキル スルホンを用いた浴でアルミニウムが電析可能であることを示して 、る。特許文献 2、 3によれば、ジメチルスルホンにめっき皮膜を形成させるべき金属の無水の塩を混合 した後、この混合物を 110°C程度まで加熱して前記金属無水塩を溶融させてめっき 浴を製造する。めっき浴中にはジメチルスルホンを配位した金属錯イオンが生成され 、電気めつきを行うと力ソード (被めつき物)の表面に金属錯イオンに含まれる金属が 還元析出してめっき皮膜が形成される。このめつき浴中には水が存在しないので水 の電気分解は生じず還元電位の低い金属のめっき皮膜を形成することができる。ジ メチルスルホンは空気との接触により爆発する虡はな 、ため安全性が高 、として 、る 。このめつき浴に使用されているジメチルスルホンには現在のところ環境に対する規 制値がなぐ他の有機溶媒のような毒性も報告されていない。また、ジメチルスルホン の融点が 102〜109°Cであるので、溶融塩めつきの中では処理温度を比較的低く設 定できるという利点がある。 特許文献 1:特許第 2755111号公報
特許文献 2 :特開 2004— 76031号公報 (特許請求の範囲、図 1、図 2)
特許文献 3:特開 2006— 161154号公報
発明の開示
発明が解決しょうとする課題
[0008] しかし、上記従来技術により得られる電気アルミニウムめっき膜は陽極酸ィ匕する前 の膜が柔らかぐ被めつき物の取り扱い中に傷付きやすい等の理由力 用途展開が 制限されることがあった。特許文献 1のめつき方法ではめつき皮膜中に不活性微粒子 を均一に分散させることにより不活性微粒子の特性に基づく機能性をめつき皮膜に 与えることができるとしている力 微粒子を均一に分散させることは必ずしも容易では ない。
[0009] したがって本発明の目的は、陽極酸化する前のめっき膜が十分に硬ぐ取り扱い中 に傷付きにくい電気アルミニウムめっき膜およびその製造方法を提供することにある 課題を解決するための手段
[0010] 上記の課題はアルミニウムめっき膜に特定の不純物を均一に含有させることで達成 することができる。
[0011] 即ち、本願第一の発明はアルミニウムの含有率が 98wt. %以下でビッカース硬さ 力 S250以上であるアルミニウムめっき膜であり、好ましくはアルミニウムの含有率が 97 wt.%以下でビッカース硬さが 300以上であることを特徴とするアルミニウムめっき膜 である。不純物として酸素、炭素、硫黄および塩素を含有することにより膜を硬くする ことができる。
[0012] 基体に第一の発明のアルミニウムめっき膜を設けることにより 300Hv以上の硬さの アルミニウム膜で被覆された金属部材を得ることができる。
[0013] 本願第二の発明は、アルキルスルホンにアルミニウムハロゲン化物が溶解しためつ き浴に被めつき物を浸漬し、電流密度 0. 25〜6AZdm2で通電することを特徴とする アルミニウムめっき膜の製造方法である。
[0014] 本願第三の発明は、アルキルスルホンにアルミニウムハロゲン化物を溶解させて浴 温度 60〜140°Cに保持しためっき浴に被めつき物を浸漬し、通電することを特徴と するアルミニウムめっき膜の製造方法である。
[0015] 本願第四の発明は、アルキルスルホンにアルミニウムハロゲン化物が溶解しためつ き浴に被めつき物を収容したバレルを浸漬し、前記めつき浴中で前記バレルを回転さ せながら電流密度 0. 25〜6AZdm2で通電することを特徴とするバレルめつき法に よるアルミニウムめっき膜の製造方法である。
[0016] 本願第五の発明は、アルキルスルホンにアルミニウムハロゲン化物を溶解させて浴 温度 60〜140°Cに保持しためっき浴に被めつき物を収容したバレルを浸漬し、前記 めっき浴中で前記バレルを回転させながら通電することを特徴とするバレルめつき法 によるアルミニウムめっき膜の製造方法である。
[0017] アルミニウム源となるアルミニウムハロゲン化物としては、塩化アルミニウム、臭化ァ ルミ-ゥム等の無水塩が使用できる。アルキルスルホンとしてはジメチルスルホン、ジ ェチルスルホン、ジプロピルスルホン等が使用できる。めっき液中のアルミニウム濃度 は、アルキルスルホン lOmolに対して、 1. 5〜4. Omolが好ましい。特に好ましくは 2 . 0〜3. Omolである。このアルミニウム濃度が 1. 5molを下回るとャケ(アルミニウム の錯イオンの不足または電子過剰により生じ、黒色を呈することの多い副反応生成 物)が発生しやすくなりめつき効率が低下する。一方、このアルミニウム濃度が 4. Om olを上回るとャケゃ無めつき等の欠陥は少なくなるが、液抵抗が高くなり発熱する。 処理温度は 60〜140°Cが好ましい。めっき膜の硬度は含有する不純物に大きく依存 するが、本発明においてめつき膜中の不純物は、めっき膜とめっき液とによる副反応 によって取り込まれると考えられる。従って、温度が 60°C未満になると、粘度が高くな ると共に副反応速度が低下し、めっき膜中への不純物取り込み量が減少する。更に イオンの供給不足のためャケが生じやすくなる。一方、 140°Cを超えると副反応は活 性化する力 アルミニウムハロゲン化物とアルキルスルホンとによって形成される錯体 の構造が変化し、密着性の悪い皮膜が生成する。電流密度は 0. 25〜6AZdm2とし 、 0. 25〜4AZdm2が好ましい。特に好ましくは l〜4AZdm2である。電流密度が 0 . 25AZdm2未満になると副反応が支配的となりめつき膜が生成しなくなる。一方、 4 AZdm2を超えると不純物取り込み量が減少すると共に、電子過剰により被膜のャケ が顕著となる。 6AZdm2を超えると不純物取り込み量が更に減少し十分に高い硬度 の膜を得ることが困難となる。
発明の効果
[0018] 上述のように、本発明によれば、陽極酸化する前の膜の硬さが十分に高ぐ取り扱 Vヽ中に傷がつき難 、電気アルミニウムめっき皮膜を実現することができる。
発明を実施するための最良の形態
[0019] 次に本発明を実施例によって具体的に説明するが、これら実施例により本発明が 限定されるものではない。
[0020] まず初めに本発明のアルミニウムめっき膜の特性について説明する。
[めっき装置]
使用しためっき装置の概略を図 1に示す。このめつき装置 1においては、めっき液 2 中に陰極となる試料 3、陽極となる A1板 4が浸漬され、通電される。めっき液 2の温度 は熱源 5によって制御される。めっき液に含まれる A1C1は吸湿性が強いため、めっき
3
液が大気中の水分を取り込まないように注意しながら実験を行った。気密性保持のた め、蓋付きのセパラブルフラスコ(2リットル) 6が使用され、めっき中は 5LZminの乾 燥窒素を流しつづけた。加熱は熱源 5におけるシリコンラバーヒータで行い、電圧調 節器と温度調節器により温度を調節した。スターラー 7には加熱機能が設けられてい る。陽極 4には純度 99. 99%のアルミニウム板(70mm X 70mm X 2mmt)を使用し た。陰極 3には試料となる銅板(70mm X 70mm X O. 2mmt)を使用した。
[0021] [めっき液の建浴]
電気アルミニウムめっき液は、ジメチルスルホン(CH SO CH: DMSO )を溶媒と
3 2 3 2 し、無水塩ィ匕アルミニウム (III) (A1C1 )を溶質として作製した。建浴工程を図 2に示す
3
。 DMSOと A1C1のモノ kb匕力 5 : 1となるように样量(DMSO : 2300g, A1C1 : 650g
2 3 2 3
)し、ビーカー内で混合させ、 50°C、 80°Cで 2時間の予備加熱を行った。その後、 D MSOの融点(109°C)より僅かに高い 110°Cまで昇温し、試薬を完全に溶解させた
2
。図 1に示されるように陰極 3、陽極 4を設置し、 1時間放置して電極の温度が安定し てからめつきを開始した。
[0022] [めっき条件] めっき温度:温度を 100〜 130°C
電流密度: 0. 25〜14AZdm2
[0023] [硬さ測定]
硬さはビッカース硬さにより評価した。平滑な素材に 50 m以上の厚さのめっき膜 を生成して試料とした。使用した装置は微小硬度計 (型式: MVK— G2、明石製作所 製)である。尚、めっき膜のビッカース硬さ測定では、膜厚が薄くなると素材の硬さの 影響を受けるが、めっき膜厚が圧痕の径の 1. 5倍以上になれば信頼できる値となる と言われて ヽる(ISO06507— 1)。
[0024] [結晶配向度評価]
結晶配向度評価用試料には銅板に種々の条件でめっきしたものを使用した。結晶 配向度は(111)ピーク強度に対する各反射のピーク強度比及び、半価幅により評価 した。尚、測定に使用した装置は理学電機製 X線回折装置 RINT1500である。また 、 X線源には基板の励起の影響をなくすため CoK a線を用いた。
[0025] [結晶粒径測定]
めっき膜の平均結晶粒径は単位長さの線分と交差する結晶粒界の数力 求めた。
[0026] [不純物濃度測定]
めっき膜中の不純物濃度を測定するため、 FE— SEM (型式: S— 2300)による ED X分析、及び EPMAによる分析を行った。また、めっき膜中の不純物量の変化を定 性的に調べるため GD - OESによる分析を行った。
[0027] 被膜成分分析の結果、被膜中に含まれる主な不純物元素は塩素、硫黄、炭素、酸 素であった。電流密度が低下するとめつき膜中の不純物が増加し、結晶粒は微細化 した。更に攪拌速度を遅くした場合にも僅かではあるが不純物濃度は低下した。めつ き時間(膜厚に相当)による結晶粒径と不純物濃度の変化を SEM及び GD— OES ( クロ ~~放電発光分析法、 Glow Discharge Optical Emission Spectrometry )を用いて調べた結果を図 3及び図 4に示す。グロ一放電とは圧力数百 Paのアルゴン ガス雰囲気下で電極間に数百 Vの電圧を印加したときに生じる現象であり、このとき 陰極 (試料)はアルゴンイオンによりスパッタリングされ、放出された原子が放電した電 子により励起し発光する。スパッタリングと発光強度測定を連続して行うことにより、深 さ方向の濃度プロファイルを得ることができる。図 3より、めっき膜厚を厚くすると結晶 粒径が大きく変化している。膜の厚さ方向で結晶粒径が異なり、基体との界面側で小 さく表面側で大きいことが分かる。一方、図 4の GD— OESによる深さ方向の組成分 析結果では、アルミニウムに対する不純物(S、 C1)の発光強度の変化は認められな い。従って、不純物は粒界ではなく粒内に均一に含まれていると考えられる。
[0028] 電流密度の上昇はャケ (JIS— H0400— 8011)の発生を招き、高純度のめっき膜 の生成には限界がある。図 5は 200mlビーカーを用 、て攪拌速度 600rpmの条件で 温度と電流密度を変化させた際の不純物濃度の変化を示している。ここでは、高電 流密度で発生する試料端のャケは無視し、試料中央での不純物濃度を測定した。め つき温度を固定した場合は電流密度が高いほど不純物濃度は低くなる。一方、温度 が低くなると図中の等温線は不純物濃度が低い側にシフトする。各温度におけるャ ケの発生しない限界の電流密度 (最大電流密度と定義)での値を參で示した。温度と 最大電流密度での不純物濃度の関係を図 6に示す。図には 2Lビーカーにおいて 80 Orpmの攪拌速度で同様な測定を行った結果も併せて図示した。何れの装置を用い ても、低温ほどめつき膜純度が上昇することがわかる。また、めっき液の容量が大きい ほど不純物濃度が高くなることが明らかになった。これは、めっき液の容量が大きい ほど攪拌による液の流れが遅くなるため、めっき反応が生じに《なり、副反応が生じ やすくなるためと考えられる。したがって高硬度のアルミニウムめっき膜を得るにはめ つき液の容量は 2L (2000ml)以上とすることが好ましい。表 1に各条件と不純物、結 晶粒径の関係を纏めた。
[0029] [表 1] めっき条件と不純物濃度、 結晶粒径の関係
Figure imgf000009_0001
[0030] これまでめっき液組成は、塩化アルミニウム 16. 7mol%としてきた。めっき液の性 質上、凝固点の正確な測定は困難であるが、約 90°Cで凝固する。塩化アルミニウム 濃度を 28. 6mol%まで高くすると凝固点は低下し、 60°Cでもめつきは可能となる。 更に濃度を高くすると凝固点は再び上昇し、更に 50mol%付近で再度凝固点は低 下する。図 7は電流密度と不純物濃度の関係をジメチルスルホンと塩ィ匕アルミニウム の比率を変えて測定した結果であるが、めっき液濃度が変化しても生成するめつき膜 中の不純物濃度に大きな影響はない。
[0031] 図 7はめつき膜組成が液の濃度に因らないことを示しているが、建浴方法によるめ つき膜組成のバラツキを考慮する必要がある。図 5では、硫黄濃度、塩素濃度共に不 純物濃度は電流密度に大きく依存し、図 4では硫黄と塩素の比率は膜厚に関係なく 一定となっていた。そこで、数種類の試料について分析した硫黄と塩素の関係を図 8 に示す。図よりアルミニウムめっき膜中に含まれる硫黄と塩素の濃度の比率は 1. 35 : 1. 00であり硫黄は塩素の 1. 35倍 ± 30%以内の範囲の濃度である。試料間でのバ ラツキは殆どない。これらの不純物は一定の組成を持つ化合物であることがわかる。 ここではめつき液組成比の異なるデータを參で示した力 図 8の結果より、この場合も この比率力 大きく外れては 、なかった。
[0032] 図 9はアルミニウムめっき後に試料をめつき液中に 10〜300s間浸漬した際のアルミ ニゥムめっき膜表面の分析結果である。無通電時の反応層は水洗により容易に流れ 落ちるため、ここではめつき液とめっき膜を反応させた後、更にアルミニウムめっきす ることによって反応層をめつき膜間に閉じ込め、 GD-OESにより硫黄の発光強度を 測定した。図 9は反応層における発光強度と反応時間、反応温度の関係を表した結 果である。ここで、硫黄 (S)の発行強度を A1の発光強度で規格化した値が示されて いる。反応時間が長くなるにつれて発光強度は増大し、アルミニウムめっき膜とめっき 液との反応が進行していることが明らかである。また、反応温度が高いほど発光強度 が増大し、反応が活性化される。本発明のアルミニウムめっき膜は低電流密度 (即ち 、成長速度が遅い)ほど不純物量が増大する力 めっき反応に加えてこれらの副反 応が同時に進行し、それによつて不純物がめっき膜中に取り込まれたものと考えられ る。
[0033] [めっき膜の結晶配向測定結果] ジメチルスルホンを溶媒としためつき液から生成しためっき膜は結晶性であることが 分力つている力 その配向がめっき条件等によりどのように変化するかを調べるため、
X線回折によるピーク強度比の測定を行った。膜厚を変化させたときの結果を図 10 に、電流密度を変化させたときの結果を図 11に示す。縦軸は(111)ピーク強度との 比を示している。図中の実線はアルミニウムの標準カードにおけるピーク強度比であ る。図 10より、膜厚が厚くなると総てのピーク強度比が標準より大きくなつていることか ら、厚膜ィ匕により(111)配向が弱くなると考えられる。また、(311)ピーク強度比が著 しく強くなつていることから、厚膜ィ匕により(311)配向が強くなると考えられる。図 11の 電流密度変化にぉ 、ても総てのピークが標準値を上回っており、 (111)配向が弱 ヽ ことが判る。また、電流密度の増大により(220)配向が強くなり、(311)配向が弱くな る傾向にある。
[0034] [密着性評価]
各種素材上のアルミニウムめっき膜の剪断密着度試験結果を図 12に示す。縦軸は 素材の電気抵抗率 (実測値)であるが、抵抗率が小さな素材ほど密着性が良好であ る。表面での抵抗が大きい素材では電子が移動し難いため、基板表面で電析するた めの核が形成し難いことが原因と考えられる。表 2に示す碁盤目試験結果力 判るよ うに SUS304、 Fe— 50at%Ni合金、 Ni板の順に密着性は悪くなつており、実施例 の結果とほぼ合致した。好ましい素材としては抵抗率 50 Q cm以下、特に好ましく は 1 /z Q cm以下の金属である。
[0035] [表 2] 各種素材における碁盤目試験結果
(被膜残存率、 単位: %)
Figure imgf000011_0001
[0036] [電流密度 (不純物)の影響] めっき膜中の不純物濃度と耐食性の関係を調べるため、電流密度((a) 2. OA/d m2、 (b) 3. OA/dm2, (c) 4. OA/dm2)と耐食性の違いを検討した。尚、膜厚は 40 mに固定した。素材にアルミニウムめっき後、表面を熱水酸ィ匕させて力も塩水噴霧 試験を行った。熱水酸ィ匕処理は 90°Cの純水に 1時間浸漬して行った。図 13にその 結果を示す。試験開始後 1500時間までは優位差は認められな力つた力 2000時 間で各試料において白鲭が認められた。白鲭の発生した面積を比較すると、( に おいて最もその面積が大きぐ被膜純度の高い高電流密度ほど多く発生した。従つ て、不純物の存在は塩水噴霧試験にぉ 、てめつき膜の耐食性を改善すると判断した 。低電流密度ほど耐食性が良好となった原因としては、低電流密度で結晶粒が小さ く緻密な膜を形成したためと考えられる。
[0037] [硬さ測定]
本発明のアルミニウムめっきは電気めつきであるので、試料が平板でも面内に電流 密度分布を生じる。従って、微小硬度計を用いた硬さ測定では、測定場所と対応した 膜質評価が重要となる。そこで硬さの測定の際は試料断面力ゝら膜厚を実測し、測定 点における局所的な電流密度を求め、測定点近傍における不純物濃度との比較を 行った。図 14に局所的電流密度と膜の硬さとの関係を示す。尚、ここでは電流効率 を 100%として計算した。電流密度が大きくなるにつれて膜の硬さは低下した。図 14 より膜硬さ 300Hv以上を得るのに必要な局所的電流密度は 4 (A/dm2)以下である 。膜硬さ 250Hv以上を得るのに必要な局所的電流密度は 6 (A/dm2)以下である。
[0038] 硬さの測定点近傍における組成分析結果を図 15に示す。各不純物(酸素、炭素、 硫黄、塩素)濃度が増加するにつれて被膜硬さも増カロしており、これらの不純物によ つて膜が硬化して ヽると考えられる。図 5からも分力ゝる通り電流密度やめつき液温度に よってアルミニウムめっき膜の硬さを制御することが可能である。また、図 15から膜硬 さ 250Hv以上を得るのに必要な不純物濃度は酸素 1. 2wt. %以上、炭素 0. 35wt . %以上、硫黄 0. 2wt. %以上、塩素 0. 15wt. %以上であり、膜硬さ 300Hv以上 を得るのに必要な不純物濃度は酸素 1. 6wt. %以上、炭素 0. 45wt. %以上、硫黄 0. 35wt. %以上、塩素 0. 3wt. %以上である。
[0039] 図 16はめつき膜 Z素材界面からの距離と硬さの関係を示したものである。めっき膜 が厚くなると不純物濃度は変化せず、結晶粒径は大きくなり、(311)結晶配向が強く なることは既に述べた通りである力 図 16によれば膜厚により膜の硬さに変化は認め られない。従って、配向、及び結晶粒径の変化は硬さに影響しないと考えられる。
[0040] 図 17は主な金属材料と本発明の電気アルミニウムめっき膜との硬さデータの比較 である力 本発明の電気アルミニウムめっき膜では不純物が少ない条件においても 生成する膜は 250Hv以上の硬さを示した。アルマイト膜 (アルミニウムの陽極酸ィ匕膜 )の硬さは 250〜600Hvである力 本発明のめっき膜は陽極酸ィ匕前の状態で既にァ ルマイト膜並みの硬さを有して 、る。
[0041] 図 18にアルミニウムめっき膜の純度と硬さの関係を示した。アルミニウムの含有率( 純度)が 98wt.%以下でビッカース硬さが 250以上を得ることができ、約 97wt.%以下 の純度のときビッカース硬さ 300以上を得ることができる。これまで示した通り不純物 の含有量は電流密度やめつき液温度によって制御することができる。不純物の含有 率が 2wt.%以上、好ましくは 3wt.%以上となるようにめつき条件を設定することで硬い めっき膜を析出させることができるので、バレルめつき等の耐傷性が求められるめっき 方式にも本発明のアルミニウムめっき膜は有効である。
[0042] 大量な被めつき物へのコーティングにバレル式処理が使用されることは良く知られ ている。しかし、従来のアルミニウムコーティング膜は柔らかぐ回転中に被めつき物 同士が衝突して被膜に傷が付き易い。それに比べて本発明のアルミニウムめっき膜 は非常に硬ぐ
バレルめつきに適用することができる。図 19にその装置の概略を示す。めっき槽 12 にめつき液 11を満たしバレル 13を浸漬する。通液孔 15と回転軸 16を備えたバレル 1 3中には多数の被めつき物 14が装入される。アノード(図示せず)はめつき液に浸漬 され力ソード(図示せず)はバレル内に設けられる。めっき条件を設定し被めつき物 1 4に通電しながらバレルを回転させる。被めつき物 14は互いに衝突しながらアルミ- ゥムめっき膜が形成される。被めつき物を小さくしたりバレル回転速度を小さくするな どの対策を行うまでもなぐ本発明のアルミニウムめっき膜は硬いため傷がつきにくい 。図 20に生成しためっき膜外観と断面写真を示す。 9mm X 5mmtの希土類磁石 にめつきした結果であるが、傷や治具跡等は無く均一なめっき膜が生成している。 [0043] なお、以上ではアルミニウム源となるアルミニウムハロゲン化物として、無水塩化アル ミニゥムを用いた場合につき説明した力 他のハロゲンィ匕合物、例えば臭化アルミ- ゥム等を用いた場合でも同様である。この場合は、上記の塩素が臭素に置換された 結果となった。
産業上の利用可能性
[0044] 本発明は、めっき直後の状態で十分に硬ぐ取り扱い中に傷がつき難い電気アルミ ニゥムめっき膜およびその製造方法に利用することができる。
図面の簡単な説明
[0045] [図 1]A1めっき実験装置の概略図
[図 2]アルミニウムめっき液の建浴工程
[図 3]めっき膜厚と表面の結晶粒径の関係
[図 4]アルミニウムめっき膜の GD— OES結果
[図 5]電流密度、めっき温度と不純物濃度の関係
[図 6]最大電流密度における不純物濃度と温度の関係
[図 7]めっき液組成、電流密度と不純物濃度の関係
[図 8]めっき膜中の塩素と硫黄の比率
[図 9]アルミニウムめっき膜とめっき液との反応
[図 10]めっき膜の結晶配向度と膜厚の関係
[図 11]めっき膜の結晶配向度と電流密度の関係
[図 12]各素材に対するアルミニウムめっき膜の密着性
[図 13]電流密度と耐食性の関係
[図 14]電流密度とアルミニウムめっき膜の硬さの関係
[図 15]不純物濃度とアルミニウムめっき膜の硬さの関係
[図 16]アルミニウムめっき膜の厚さと硬さの関係
[図 17]本発明のアルミニウムめっき膜と各種材料との硬さの比較
[図 18]アルミニウムめっき膜の純度と硬さの関係。
[図 19]バレルめつき装置の概略図。
[図 20]バレルめつきにより生成しためっき膜外観及び断面写真。 符号の説明 1 めっき装置 2、 11 めっき液 3 陰極
4 陽極
5 熱源
6 セパラブノレフラスコ 7 スターラー
11 めっき液
12 めっき槽
13 ノ レ /レ
14 被めつき物 15 通液孔
16 回転軸

Claims

請求の範囲
[1] アルミニウムの含有率が 98wt. %以下でビッカース硬さが 250以上であることを特 徴とするアルミニウムめっき膜。
[2] 酸素、炭素、硫黄およびハロゲン元素を含む請求項 1に記載のアルミニウムめっき 膜。
[3] 基体に請求項 1または 2に記載のアルミニウムめっき膜を設けたことを特徴とする金 属部材。
[4] アルキルスルホンにアルミニウムハロゲン化物が溶解しためっき浴に被めつき物を 浸漬し、電流密度 0. 25〜6AZdm2で通電することを特徴とするアルミニウムめっき 膜の製造方法。
[5] アルキルスルホンにアルミニウムハロゲン化物を溶解させて浴温度 60〜140°Cに 保持しためっき浴に被めつき物を浸漬し、通電することを特徴とするアルミニウムめつ き膜の製造方法。
[6] アルキルスルホンにアルミニウムハロゲン化物が溶解しためっき浴に被めつき物を 収容したバレルを浸漬し、前記めつき浴中で前記バレルを回転させながら電流密度 0 . 25〜6A/dm2で通電することを特徴とするバレルめつき法によるアルミニウムめつ き膜の製造方法。
[7] アルキルスルホンにアルミニウムハロゲン化物を溶解させて浴温度 60〜140°Cに 保持しためっき浴に被めつき物を収容したバレルを浸漬し、前記めつき浴中で前記 バレルを回転させながら通電することを特徴とするバレルめつき法によるアルミニウム めっき膜の製造方法。
PCT/JP2007/062686 2006-06-29 2007-06-25 Depôt d'aluminium obtenu par placage, élément métallique et procédé de fabrication correspondant WO2008001717A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/308,684 US8262893B2 (en) 2006-06-29 2007-06-25 Aluminum plated film, metallic member, and its fabrication method
EP07767493A EP2037007A4 (en) 2006-06-29 2007-06-25 GALVANIC DEPOSITION SHAPED ALUMINUM DEPOSIT, METAL ELEMENT AND METHOD OF MANUFACTURING THEREOF
US13/567,402 US8586196B2 (en) 2006-06-29 2012-08-06 Aluminum plated film and metallic member

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-180289 2006-06-29
JP2006180289 2006-06-29
JP2007102353A JP4609777B2 (ja) 2006-06-29 2007-04-10 アルミニウムめっき層および金属部材並びにその製造方法
JP2007-102353 2007-04-10

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/308,684 A-371-Of-International US8262893B2 (en) 2006-06-29 2007-06-25 Aluminum plated film, metallic member, and its fabrication method
US13/567,402 Division US8586196B2 (en) 2006-06-29 2012-08-06 Aluminum plated film and metallic member

Publications (1)

Publication Number Publication Date
WO2008001717A1 true WO2008001717A1 (fr) 2008-01-03

Family

ID=38845481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/062686 WO2008001717A1 (fr) 2006-06-29 2007-06-25 Depôt d'aluminium obtenu par placage, élément métallique et procédé de fabrication correspondant

Country Status (4)

Country Link
US (2) US8262893B2 (ja)
EP (1) EP2037007A4 (ja)
JP (1) JP4609777B2 (ja)
WO (1) WO2008001717A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011001932A1 (ja) 2009-06-29 2011-01-06 日立金属株式会社 アルミニウム箔の製造方法
JP5581523B2 (ja) 2009-10-19 2014-09-03 ディップソール株式会社 アルミニウムまたはアルミニウム合金バレル電気めっき方法
JP5527328B2 (ja) 2009-11-11 2014-06-18 日立金属株式会社 炭素性粒子が分散担持されてなるアルミニウム箔
WO2011118663A1 (ja) * 2010-03-25 2011-09-29 株式会社Ihi 耐酸化コーティング層の形成方法
EP2639341B1 (en) 2010-11-11 2020-01-22 Hitachi Metals, Ltd. Method for producing aluminium foil
JP5704456B2 (ja) * 2011-05-31 2015-04-22 日立金属株式会社 電解アルミニウム箔製造装置
KR101951069B1 (ko) 2012-02-29 2019-02-21 히타치 긴조쿠 가부시키가이샤 저융점의 전기 알루미늄 도금용 도금액의 조제 방법, 전기 알루미늄 도금용 도금액, 알루미늄박의 제조 방법, 및 전기 알루미늄 도금용 도금액의 융점을 저하시키는 방법
DE102012103834A1 (de) * 2012-05-02 2013-11-07 Hydro Aluminium Rolled Products Gmbh Texturierte Stromableiterfolie
JP2016000838A (ja) * 2012-10-15 2016-01-07 住友電気工業株式会社 アルミニウム膜、アルミニウム膜形成体、及びアルミニウム膜の製造方法
WO2015081077A1 (en) * 2013-11-26 2015-06-04 Arizona Board Of Regents On Behalf Of Arizona State University Solar cells formed via aluminum electroplating
CN104213157A (zh) * 2014-09-17 2014-12-17 朱忠良 一种水相容性电镀铝液以及铝镀膜的形成方法及形成的铝镀物品
WO2017011761A1 (en) * 2015-07-16 2017-01-19 Battelle Energy Alliance, Llc Methods and systems for aluminum electroplating
JP6919247B2 (ja) * 2017-03-21 2021-08-18 日立金属株式会社 アルミニウム箔の製造方法
US11746434B2 (en) 2021-07-21 2023-09-05 Battelle Energy Alliance, Llc Methods of forming a metal coated article

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4257854A (en) 1978-12-12 1981-03-24 U.S. Philips Corporation Method of producing objects with a supersmooth aluminum surface
JPH10144159A (ja) * 1996-11-14 1998-05-29 Totoku Electric Co Ltd 細径セミリジッド同軸ケーブルの製造方法
JPH11343555A (ja) 1998-05-30 1999-12-14 Nkk Corp 耐クラック性に優れた溶融Al−Zn系合金めっき鋼板
JP2001040496A (ja) * 1999-07-29 2001-02-13 Kawasaki Steel Corp Feめっき鋼材
JP2004076031A (ja) 2002-08-09 2004-03-11 Ishikawajima Harima Heavy Ind Co Ltd 電解めっき用めっき浴及び複合めっき用めっき浴並びにこれらの製造方法
JP2004346372A (ja) 2003-05-22 2004-12-09 Ishikawajima Harima Heavy Ind Co Ltd アルミナ皮膜による表面改質部品及びその製造方法
JP2005031485A (ja) * 2003-07-08 2005-02-03 Canon Electronics Inc 定着ベルト
EP1591551A1 (en) 2003-01-24 2005-11-02 Research Institute for Applied Sciences ALUMINUM MATERIAL HAVING AlN REGION ON THE SURFACE THEREOF AND METHOD FOR PRODUCTION THEREOF
JP2006161154A (ja) 2004-11-09 2006-06-22 Hitachi Metals Ltd 電解アルミニウムめっき液

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4257854A (en) 1978-12-12 1981-03-24 U.S. Philips Corporation Method of producing objects with a supersmooth aluminum surface
JPH10144159A (ja) * 1996-11-14 1998-05-29 Totoku Electric Co Ltd 細径セミリジッド同軸ケーブルの製造方法
JPH11343555A (ja) 1998-05-30 1999-12-14 Nkk Corp 耐クラック性に優れた溶融Al−Zn系合金めっき鋼板
JP2001040496A (ja) * 1999-07-29 2001-02-13 Kawasaki Steel Corp Feめっき鋼材
JP2004076031A (ja) 2002-08-09 2004-03-11 Ishikawajima Harima Heavy Ind Co Ltd 電解めっき用めっき浴及び複合めっき用めっき浴並びにこれらの製造方法
EP1591551A1 (en) 2003-01-24 2005-11-02 Research Institute for Applied Sciences ALUMINUM MATERIAL HAVING AlN REGION ON THE SURFACE THEREOF AND METHOD FOR PRODUCTION THEREOF
JP2004346372A (ja) 2003-05-22 2004-12-09 Ishikawajima Harima Heavy Ind Co Ltd アルミナ皮膜による表面改質部品及びその製造方法
JP2005031485A (ja) * 2003-07-08 2005-02-03 Canon Electronics Inc 定着ベルト
JP2006161154A (ja) 2004-11-09 2006-06-22 Hitachi Metals Ltd 電解アルミニウムめっき液

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
S. BIRKLE, ERLANGEN: "Metalloberflache", CARL HANSER VERLAG, article "Elektrochemische Al-Abscheidung"
See also references of EP2037007A4

Also Published As

Publication number Publication date
JP2008031551A (ja) 2008-02-14
JP4609777B2 (ja) 2011-01-12
EP2037007A4 (en) 2012-10-17
EP2037007A1 (en) 2009-03-18
US20120298514A1 (en) 2012-11-29
US8262893B2 (en) 2012-09-11
US20090301886A1 (en) 2009-12-10
US8586196B2 (en) 2013-11-19

Similar Documents

Publication Publication Date Title
WO2008001717A1 (fr) Depôt d'aluminium obtenu par placage, élément métallique et procédé de fabrication correspondant
Kumar et al. Factor effecting electro-deposition process
Ranjith et al. Ni–Co–TiO2 nanocomposite coating prepared by pulse and pulse reversal methods using acetate bath
Yue et al. A promising method for electrodeposition of aluminium on stainless steel in ionic liquid
Fashu et al. Electrodeposition, morphology, composition, and corrosion performance of Zn-Mn coatings from a deep eutectic solvent
Silkin et al. Electrodeposition of nanocrystalline Co-W coatings from citrate electrolytes under controlled hydrodynamic conditions part 3: The micro-and macrodistribution of the deposition rates, the structure, and the mechanical properties
Liu et al. Electrodeposition of Al on AZ31 magnesium alloy in TMPAC-AlCl3 ionic liquids
EP0099927A1 (en) Method of coating steel strip with nickel alloy
Abood et al. Morphology of electrodeposited aluminium metal from aluminium chloride-urea room temperature ionic liquid (RTIL) at variable parameters
JP2013189660A (ja) マグネシウムまたはマグネシウム合金成形体とその製造方法
Danilov et al. Electrodeposition of nanocrystalline chromium coatings from Cr (III)-based electrolyte using pulsed current
AU2018278343B2 (en) Methods and compositions for electrochemical deposition of metal rich layers in aqueous solutions
CN108441912B (zh) 铝合金表面Al3C4-Al2O3-ZrO2耐磨复合涂层的制备方法
Quan et al. Surface pretreatment of Mg alloys prior to Al electroplating in TMPAC-AlCl3 ionic liquids
Anicai et al. Studies regarding the nickel electrodeposition from choline chloride based ionic liquids
Tikhonov Metallization of aluminum alloys with electrodeposition by rubbing
Danil’chuk et al. Electrodeposition of Fe–W coatings from a citric bath with use of divided electrolytic cell
Menzies et al. The Electrodeposition of Copper from Non-Aqueous Solutions: I. General Review and Preliminary Studies
RU2169798C1 (ru) Способ получения композиционных покрытий на основе цинка
Yu et al. 2024 Aluminum Oxide Films Prepared By The Innovative And Environment-Friendly Oxidation Technology
El Abedin Coating of mild steel by aluminium in the ionic liquid [EMIm] Tf2N and its corrosion performance
RU2496924C1 (ru) Способ модифицирования поверхности титана и его сплавов
Kamada et al. Fabrication of metal oxide–diamond composite films by electrophoretic deposition and anodic dissolution
Boiadjieva-Scherzer Effect of PPG-PEG-PPG Co-Polymer on Zn-Cr Alloy Electrodeposition
JP2015025154A (ja) めっき液の分析方法及び金属体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07767493

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2007767493

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007767493

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWE Wipo information: entry into national phase

Ref document number: 12308684

Country of ref document: US