WO2007142350A1 - パターン形成方法及びパターン形成装置、露光方法及び露光装置、並びにデバイス製造方法 - Google Patents

パターン形成方法及びパターン形成装置、露光方法及び露光装置、並びにデバイス製造方法 Download PDF

Info

Publication number
WO2007142350A1
WO2007142350A1 PCT/JP2007/061709 JP2007061709W WO2007142350A1 WO 2007142350 A1 WO2007142350 A1 WO 2007142350A1 JP 2007061709 W JP2007061709 W JP 2007061709W WO 2007142350 A1 WO2007142350 A1 WO 2007142350A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
information
variable shaping
exposure
patterns
Prior art date
Application number
PCT/JP2007/061709
Other languages
English (en)
French (fr)
Inventor
Shigeru Hirukawa
Soichi Owa
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to JP2008520645A priority Critical patent/JPWO2007142350A1/ja
Priority to EP07815072A priority patent/EP2037488A4/en
Publication of WO2007142350A1 publication Critical patent/WO2007142350A1/ja
Priority to US12/330,870 priority patent/US8405816B2/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • G03F7/70433Layout for increasing efficiency or for compensating imaging errors, e.g. layout of exposure fields for reducing focus errors; Use of mask features for increasing efficiency or for compensating imaging errors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70283Mask effects on the imaging process
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70283Mask effects on the imaging process
    • G03F7/70291Addressable masks, e.g. spatial light modulators [SLMs], digital micro-mirror devices [DMDs] or liquid crystal display [LCD] patterning devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • G03F7/70433Layout for increasing efficiency or for compensating imaging errors, e.g. layout of exposure fields for reducing focus errors; Use of mask features for increasing efficiency or for compensating imaging errors
    • G03F7/70441Optical proximity correction [OPC]
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/70508Data handling in all parts of the microlithographic apparatus, e.g. handling pattern data for addressable masks or data transfer to or from different components within the exposure apparatus
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70625Dimensions, e.g. line width, critical dimension [CD], profile, sidewall angle or edge roughness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • H01L21/0275Photolithographic processes using lasers

Definitions

  • Pattern forming method and pattern forming apparatus exposure method and exposure apparatus, and device manufacturing method
  • the present invention relates to a pattern forming method, a pattern forming apparatus, an exposure method and an exposure apparatus, and a device manufacturing method. More specifically, the present invention relates to a pattern forming method and pattern forming apparatus for forming a pattern on an object, and illumination light. The present invention relates to an exposure method and an exposure apparatus for exposing an object with the above, and a device manufacturing method using the pattern forming method, the exposure method or the exposure apparatus.
  • a pattern formed on a mask is transferred to a resist or the like via a projection optical system.
  • Step-and-repeat projection exposure equipment (stepper) or step-and-scan projection exposure equipment (scanner) that transfers onto a plate (glass plate, wafer, etc.) coated with a photosensitizer ) Etc. are used.
  • the maskless type exposure apparatus capable of forming a device without using an expensive mask, that is, without using a mask that is a fixed pattern original, the amplitude of illumination light
  • a variable shaping mask also called an active mask or an image generator
  • a desired pattern is changed to a substrate stage by changing a pattern generated in a variable pattern generation device (variable molding mask) in synchronization with scanning of the substrate stage.
  • a variable pattern generation device variable molding mask
  • the size and position of the modulation element (for example, a mirror or the like) can be changed in a variable pattern not only in the case of the transmissive type but also in the case of the reflective type. Since it is fixed on the generator, it has recently been found that it is difficult to obtain a pattern with a size (for example, line width) that is not an integral multiple of the size corresponding to the size of the modulation element, in a desired position. did.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-327660
  • the inventors have conducted various simulations on the premise that a DMD (digital 'micromirror device) having a mirror element (micromirror), for example, is used as a variable shaping mask as a modulation element.
  • a DMD digital 'micromirror device
  • micromirror mirror element
  • a sensitive agent resist
  • the present invention is two-dimensionally arranged at an incident position of illumination light and spatially individually modulates at least one of the amplitude, phase, and polarization state of the illumination light.
  • the information about the target pattern is acquired, and the target pattern is formed on the object based on the information about the target pattern, and contributes to the image formation of the pattern by the illumination light irradiation.
  • the plurality of modulation elements of the variable shaping mask are controlled so that at least one of the number and position of the plurality of modulation elements on the variable shaping mask is changed.
  • a plurality of combinations of a plurality of modulation elements that contribute to pattern imaging by irradiation of illumination light and that differ in at least one of the number and position on the variable shaping mask are generated.
  • a pattern image corresponding to the combination of these modulation elements is formed on the object in a superimposed manner.
  • a pattern with a desired line width can be determined by determining, for example, experiments or simulations, the combination of a plurality of modulation elements that contribute to pattern image formation by illumination light irradiation and combinations of the combinations. Can be accurately formed at a desired position on the object.
  • the present invention includes a step of forming a pattern on an object using the pattern forming method of the present invention; and a step of developing the object on which the pattern is formed.
  • 1 is a device manufacturing method.
  • the present invention is an exposure method for exposing an object with illumination light through a variable shaped mask in which a plurality of modulation elements are two-dimensionally arranged, and at least partly In order to form a pattern on the object having a size that is a non-integer multiple of the modulation element, at least one of the number and position of modulation elements in the variable shaping mask that contributes to generation of the pattern during the exposure.
  • an exposure method including changing.
  • the modulation element in the variable shaping mask contributes to the generation of the pattern during exposure in order to form a pattern on the object that is a non-integer multiple of the modulation element at least in part. Since at least one of the number and the position is changed, the object is exposed by being superposed by the illumination light corresponding to the number and the position of the modulation element. Therefore, a pattern with a desired line width can be accurately formed at a desired position on the object.
  • the present invention is a second device manufacturing method including exposing an object using the exposure method of the present invention and developing the exposed object.
  • the present invention provides a pattern forming apparatus for forming a pattern on an object, an illumination system for emitting illumination light; and two-dimensionally arranged at the incident position of the illumination light
  • a variable shaping mask that has a plurality of modulation elements that spatially individually modulate at least one of the amplitude, phase, and polarization state of the illumination light, and that generates a pattern composed of a bright area and a dark area;
  • An optical system that projects a pattern generated on the variable shaping mask onto the object; and the pattern is formed by irradiating the illumination light while forming the target pattern on the object based on information about the target pattern. So that at least one of the number and position of the plurality of modulation elements contributing to the imaging of the variable shaping mask is changed.
  • a control device that controls a plurality of modulation elements of the variable shaping mask.
  • the control device contributes to the pattern image formation by irradiating the illumination light from the illumination system while the target pattern is formed on the object based on the information on the target pattern.
  • the plurality of modulation elements of the variable shaping mask are controlled such that at least one of the number and position of the modulation elements on the variable shaping mask is changed.
  • multiple types of combinations of multiple modulation elements that differ in at least one of the number and position of the variable shaping mask that contribute to pattern imaging by irradiation of illumination light are generated.
  • a corresponding pattern image is formed on the object by the optical system.
  • a pattern with a desired line width can be determined by determining the combination of a plurality of modulation elements that contribute to pattern imaging by irradiation of illumination light and how to combine the combinations based on, for example, experiments or simulations. Can be accurately formed at a desired position on the object.
  • an exposure apparatus that exposes an object with an energy beam to form a predetermined pattern on the object, wherein the pattern forming apparatus of the present invention is used as the pattern forming apparatus.
  • 1 is a first exposure apparatus including an apparatus.
  • an exposure apparatus that exposes an object with illumination light, and a variable shaping mask in which a plurality of modulation elements are arranged two-dimensionally; In order to form a pattern on the object that is a non-integer multiple of the modulation element, at least one of the number and position of the modulation elements in the variable shaping mask contributing to generation of the pattern is changed during the exposure.
  • a second exposure apparatus comprising:
  • the control device uses a variable shaping mask that contributes to generation of a pattern during exposure in order to form a pattern on the object that is at least partially a size that is a non-integer multiple of the modulation element. At least one of the number and position of the modulation elements is changed. For this reason, the object is superimposed and exposed with illumination light according to the number and position of the modulation elements, and as a result, a pattern with a desired line width can be accurately formed at a desired position on the object. .
  • the pattern is shaped And a step of developing the formed object.
  • FIG. 1 is a drawing schematically showing a configuration of an exposure apparatus according to a first embodiment.
  • FIG. 2 is a diagram for explaining a two-dimensional pixel virtually set on a plate.
  • FIG. 3 is a diagram for explaining the arrangement of micromirrors according to the first embodiment.
  • FIG. 4 is a diagram for explaining a line and space pattern.
  • FIG. 5 is a diagram for explaining an example of a line and space pattern.
  • FIG. 6 is a diagram for explaining an example of superimposition information suitable for the line and space pattern of FIG.
  • FIG. 7 is a diagram for explaining an example of a basic pattern.
  • FIG. 8 is a diagram for explaining a line width error ( ⁇ CD) and a position error ( ⁇ Pos) of a pattern formed using the superposition information of FIG.
  • FIG. 9 is a diagram for explaining another example of the line and space pattern.
  • FIG. 10 is a diagram for explaining an example of superposition information suitable for the line and space pattern of FIG. 9.
  • FIG. 11 is a diagram for explaining a line width error ( ⁇ CD) and a position error ( ⁇ Pos) of a pattern formed by using the superposition information of FIG.
  • FIG. 12 is a drawing schematically showing a configuration of an exposure apparatus according to a second embodiment.
  • FIG. 13 is a diagram for explaining two-dimensional pixels virtually set on a plate.
  • FIG. 14 is a diagram for explaining the arrangement of micromirrors according to a second embodiment.
  • FIG. 15 is a diagram for explaining an example of a pattern formed on a plate.
  • FIG. 16 is a flowchart for explaining a method of manufacturing a semiconductor device as a micro device.
  • FIG. 17 is a flowchart for explaining a method of manufacturing a liquid crystal display element as a microdevice.
  • FIGS. Figure 1 shows the first A configuration of an exposure apparatus 100 according to the embodiment is schematically shown.
  • the exposure apparatus 100 includes an illumination system 10, a pattern generation apparatus 12, a projection optical system PL, a stage apparatus 16, and a control system that controls these.
  • the exposure apparatus 100 projects a pattern image generated by the pattern generation apparatus 12 on a plate (sensitive substrate) P placed on a stage ST that constitutes a part of the stage apparatus 16 by using a projection optical system PL.
  • the exposure process is performed by projecting through.
  • the exposure apparatus 100 is a scanning exposure apparatus that forms a pattern on the plate P by synchronizing the switching (change) of the generated pattern by the pattern generating apparatus 12 and the movement of the plate P.
  • the direction parallel to the optical axis AX of the projection optical system PL is the Z-axis direction
  • the direction in which the plate P is scanned relative to the projection optical system PL in a plane perpendicular to the optical axis AX is the Y-axis direction
  • the direction perpendicular to the Z-axis and Y-axis is described as the X-axis direction.
  • the rotation (tilt) directions around the X, Y, and Z axes are the ⁇ ⁇ , ⁇ y, and ⁇ ⁇ directions, respectively.
  • the control system includes a microcomputer and controls the entire apparatus in an integrated manner.
  • the control system is connected via an interface 32 to a host device 50 composed of a work station and the like.
  • the interface 32 is a communication interface that controls communication with the host device 50.
  • the illumination system 10 performs uniform illumination of a later-described variable shaping mask VM constituting a part of the pattern generation device 12 with illumination light (exposure light) IL, and includes a light source and a light source control system.
  • System collimating lens, optical cannula integrator, illumination condition setting mechanism that can change the light quantity distribution of illumination light on the pupil plane of the illumination optical system, field stop, relay lens, prism 26, etc. Etc. (both not shown).
  • a DFB semiconductor laser or fiber laser For example, single-wavelength laser light having a wavelength of 1.5544-1.553 111 oscillated from a single-wavelength laser such as yttenolebium-doped fiber laser is used, for example, erbium (or erbium (Er) and ytterbium (Yb )) Is output with ultraviolet light (pulse light), which is amplified with a doped fiber amplifier and converted into a wavelength using a nonlinear optical crystal, which is an 8th harmonic within the range of 193 to 194 nm.
  • wave A generator is used.
  • the illumination condition setting mechanism is, for example, an diffractive optical element, a movable prism, a zoom optical system, a polarizing member, and the like that are arranged on the incident side of the optical integrator in the illumination optical system.
  • the illumination light IL intensity distribution (secondary light source shape and / or on the pupil plane of the illumination optical system by, for example, replacement or movement of at least one optical element, including a shaping optical system having a plurality of optical elements including Size), that is, change the lighting conditions of the variable shaped mask VM.
  • the optical integrator for example, a fly-eye lens, a rod-type integrator, or a diffraction element can be used.
  • the prism 26 actually constitutes a part of the illumination optical system as described above. However, for convenience of explanation, the prism 26 is shown outside the illumination system 10 in FIG. In the following description, the prism 26 is assumed to be outside the illumination system.
  • the prism 26 reflects (deflects) the illumination light IL from the illumination system 10 toward the variable shaping mask VM.
  • the pattern generation device 12 is an electronic mask 'system that generates a variable pattern to be projected onto the plate P placed on the stage ST, and a holder that holds the variable molding mask VM and the variable molding mask VM. 28, a drive system (controller) 30 for controlling the operation state of the variable forming mask VM, a memory 33, and the like.
  • variable shaping mask VM is disposed above (+ Z side) the projection optical system PL, and the illumination light IL deflected by the prism 26 is incident thereon.
  • this variable shaped mask VM is a non-light-emitting image display element (also called Spatial Light Modulator (SLM)), which is a oDMD (Digital Micro-mirror Device, Derormable Micro-mirror Device).
  • SLM Spatial Light Modulator
  • oDMD Digital Micro-mirror Device, Derormable Micro-mirror Device
  • variable shaped mask VM On the surface of the variable shaped mask VM, a plurality of micromirrors (mirror elements) that are modulation elements are arranged in a two-dimensional matrix, and each micromirror receives incident light on the micromirror.
  • a drive mechanism actuator
  • DMD cover There is formed of synthetic quartz.
  • the drive system 30 is necessary for forming a pattern image from the host device 50 via the interface 32.
  • Acquire pattern design data for example, CAD data
  • the drive system 30 refers to various types of information stored in the memory 33 (hereinafter referred to as “signal generation information”), and based on the acquired design data, signals for driving the micromirrors of the variable shaping mask VM. Is generated.
  • a signal for driving each micromirror is supplied to the driving mechanism of each micromirror.
  • each micromirror operates in a binary manner between an ON state and an OFF state, and generates a desired reflection pattern for the entire variable shaping mask VM.
  • each micromirror enters the projection optical system PL with the first-order diffracted light IL, the second-order diffracted light IL, and the third-order diffracted light IL of the illumination light IL from the reflection pattern generated by the variable shaping mask VM.
  • Binary operation is performed between the OFF state leading to the non-exposure light path off the system PL, and the desired reflection pattern is generated as a whole.
  • the 0th-order diffracted light IL is guided to the non-exposure optical path that is off the projection optical system PL as shown in FIG.
  • each micromirror In the ON state of each micromirror, the second-order diffracted light IL is guided in a direction parallel to the optical axis AX of the projection optical system PL.
  • the drive system 30 can change the pattern to be generated by the variable shaping mask VM based on the acquired design data. Thereby, the pattern generated by the variable shaping mask VM can be appropriately changed in synchronization with the movement of the plate P placed on the stage ST.
  • the attitude of the micromirror when it is in the ON state where the reflected light is incident on the projection optical system PL is “on attitude”, and the attitude of the micromirror when it is in the OFF state that guides the reflected light to the non-exposure optical path. Also called “off posture”. Details of the operation of the drive system 30 will be described later.
  • Projection optical system PL has a plurality of optical elements (lens elements, etc.) arranged in a predetermined positional relationship inside the lens barrel and arranged along optical axis AX parallel to the Z-axis direction.
  • the projection optical system PL is an image-side telecentric optical system, and projects the pattern generated by the pattern generator 12 (variable molding mask VM) onto the plate P placed on the exposure surface. 3 is reduced and projected, for example, 1/400).
  • the projection optical system PL is provided with an imaging characteristic correction device 38 that drives a specific lens element inside the optical axis AX to incline with respect to the optical axis AX direction and the XY plane orthogonal to the optical axis AX.
  • the imaging characteristic correction device 38 Adjusts the imaging state of the pattern image generated on the plate P via the shadow optical system PL (imaging characteristics of the projection optical system PL), but instead of the method of driving the optical elements of the projection optical system PL, Alternatively, another method may be used in combination with the method, for example, a method of controlling the light source system to adjust the wavelength characteristics (center wavelength, outer width, etc.) of the illumination light IL.
  • the stage device 16 includes a stage ST that is movable while holding a plate (for example, a glass substrate, a semiconductor wafer, etc.) P that is an object to be exposed, and an operation of the stage ST in accordance with a command from the main controller 20. It is equipped with a stage drive system 40 that controls the state (movement, etc.)!
  • the stage ST is movable in the X-axis, Y-axis, and Z-axis directions and is rotatable in the ⁇ ⁇ , ⁇ y, and ⁇ z directions, and the projection optical system PL for the pattern generated by the variable shaping mask VM
  • the plate P can be aligned with 6 degrees of freedom for the image by.
  • the stage ST is arranged in a predetermined scanning direction in the XY plane (for example, in the left-right direction in FIG. 1).
  • the plate P is moved at a desired speed in a certain Y-axis direction, and the plate P is moved in synchronization with the change of the pattern (display image) generated by the variable shaping mask VM.
  • the position information (including rotation information) of the stage ST includes a position measurement system (not shown) (for example, a laser interferometer and / or an encoder) and, if necessary, a focus sensor (not shown). )) And is supplied to the main controller 20. Based on this position information, main controller 20 drives the motor and the like of stage drive system 40 to move and position plate P.
  • a position measurement system for example, a laser interferometer and / or an encoder
  • a focus sensor not shown
  • the main control device 20 controls the operations of the illumination system 10, the pattern generation device 12, the stage device 16 and the like, and sequentially generates the pattern generated by the variable shaping mask VM on the plate P via the projection optical system PL. Form an image.
  • the main controller 20 moves the plate P at an appropriate speed and, in synchronization with this, scrolls the pattern generated by the variable molding mask VM via the drive system 30 to thereby scan the plate P. Exposure.
  • the display speed V2 in the scanning direction of the pattern displayed by the variable forming mask VM is VI
  • V2 Vl / / 3
  • the projection magnification / 3 of the projection optical system PL is 1/400, it is acceptable.
  • the display speed V2 in the scanning direction of the pattern of the deformable mask VM is 400 times the speed V1 of the stage ST.
  • the image of the pattern image on the plate P is irradiated with a plurality of diffracted lights of different orders, specifically, as shown in FIG.
  • the three-beam interference of the first-order diffracted light IL, the second-order diffracted light IL, and the third-order diffracted light IL from the pattern generated by the variable shaped mask VM of the illuminating light IL is used.
  • a two-dimensional pixel composed of a plurality of pixels arranged in a matrix along the X-axis direction and the Y-axis direction is virtually provided. It shall be set.
  • pg in FIG. 2 is the pixel size (pixel pitch) in the X-axis direction and the Y-axis direction.
  • the number of pixels in the X-axis direction is nx
  • the number of pixels in the Y-axis direction is ny
  • the + X direction is the increasing direction of i
  • the + Y direction is the increasing direction of j.
  • variable shaping mask VM disposed at the incident position of the illumination light IL
  • a plurality of micromirrors, a direction corresponding to the X-axis direction on the plate P referred to as mx direction
  • a direction corresponding to the Y-axis direction on the plate P It is arranged two-dimensionally along the (my direction).
  • the number of micromirrors in the mx direction is nx
  • the number of micromirrors in the my direction is ny
  • m corresponds to G
  • m corresponds to G
  • m corresponds to G.
  • a so-called line and space in which a plurality of line patterns 250 having a line width d and a length L are arranged along the X-axis direction at a pitch pp.
  • a pattern (L / S pattern) is a target pattern, and an image of the line and space pattern (hereinafter also referred to as “LS pattern image” for convenience) is formed on the plate P.
  • the duty ratio is 50% (the width of the line portion is equal to the width of the space portion), but the line portion and the space portion are alternately repeated at a constant cycle.
  • These patterns are collectively referred to as line and space patterns.
  • the pixel size (pixel pitch) pg 30 nm, and the number of laser nozzles required to form an LS pattern image on the plate P is 50 pulses.
  • the drive system 30 determines the line width d, length L, pitch pp, and each line pattern on the two-dimensional pixel based on the design data sent from the host device 50.
  • the position (for example, the center position) is obtained as target pattern information.
  • the position of the center line of each line pattern is coincident with the center line of the central pixel column! /.
  • the drive system 30 Next, based on the target pattern information from the signal generation information stored in the memory 33, the drive system 30 generates superimposition information on the basic pattern corresponding to the target pattern.
  • the basic pattern 90CE is 34 pulses
  • the basic pattern 90LE is 8 pulses
  • the basic pattern 90RI is 8 pulses (see Fig. 6).
  • the memory 33 stores, as part of the signal generation information, a basic pattern suitable for forming the target pattern for each target pattern information (or target pattern design data).
  • This combination information (superimposition information of the basic pattern) is smaller than the size error and position error force s of the pattern formed on the plate P, and the pixel size of the two-dimensional pixel virtually set on the plate p. It was obtained in advance by experiments, simulations, theoretical calculations, etc. so as to be smaller than each allowable value.
  • this combination information includes correction of both the line width error and the position error of the pattern due to the optical proximity effect (OPE) and / or one of the errors (that is, optical proximity effect correction (OPE)
  • the above combination information may not include the correction information.
  • the basic pattern 90LE is a pattern obtained by shifting the basic pattern 90CE to the mx side by one micromirror.
  • the distribution states of the bright region (corresponding to the on posture) and the heel region (corresponding to the off posture) are different from each other.
  • the off posture (corresponding to the heel region) is indicated by “0” and the on posture (corresponding to the bright region) force S “1”.
  • the drive system 30 generates a signal for driving each micromirror based on the acquired combination information (superimposition information of the basic pattern) and supplies it to the drive mechanism of each micromirror.
  • a signal to drive each micromirror is supplied so that the basic pattern 90CE is generated by the variable shaping mask VM in the first 34 pulses, and the basic pattern 90LE is generated by the variable shaping mask VM in the next 8 pulses.
  • a signal for driving each micromirror is supplied so as to be generated.
  • a signal for driving each micromirror is supplied so that the basic pattern 90RI is generated by the variable shaping mask VM.
  • each basic pattern is not limited to this, and as a result, 34 out of 50 pulses.
  • the basic pattern 90CE is generated by the pulse
  • the basic pattern 90LE is generated by the 8 pulses
  • the basic pattern 90RI is generated by the 8 pulses.
  • one (one type) pattern is used to form an LS pattern image.
  • a plurality of basic patterns having different distribution states of the bright region and the dark region are different from each other.
  • the above-mentioned basic pattern 90CE is targeted on the plate P according to the pattern combination of 34 pulses, the basic pattern 90LE force pulse, and the basic pattern 90RI of 8 pulses.
  • the line width error ( ⁇ -CD) and position error ( ⁇ -Pos) of the formed LS pattern image are shown as an example in FIG. It became as to be.
  • the line width error ( ⁇ CD) is 0.2 nm or less and the position error ( ⁇ Pos) is 0.4 nm or less.
  • the basic pattern superposition information (combination information) corresponding to target pattern information other than 180nm (some! / Is the target pattern design data) will be explained using FIG. 6 and FIG.
  • the drive system 30 obtains a combination of basic patterns of 8 pulses for the basic pattern 90RI, 13 patterns for the basic pattern 120LE force, and 13 pulses for the basic pattern 120RI.
  • the basic pattern 120LE is a combination of four consecutive off postures followed by three consecutive on postures, and mx of the continuous off posture in the basic pattern 90CE. This is a pattern in which the ON posture on the side is changed to the OFF posture.
  • the basic pattern 120RI is a set of four consecutive off postures followed by three consecutive on postures, and the on posture on the + mx side of the continuous off posture in the basic pattern 90CE is changed to the off posture. It is a pattern.
  • the drive system 30 acquires a combination of the basic patterns, that is, the basic pattern 90CE is 44 pulses, the basic pattern 120LE force is no-less, and the basic pattern 120RI is 3 pulses. .
  • the basic pattern 90CE has 21 pulses
  • the basic pattern 12 OLE has 11 pulses
  • the basic pattern 120RI has 11 pulses
  • the basic pattern 150CE has 7 pulses. Obtained by.
  • the basic pattern 150CE is a pattern in which the mx- side ON posture and the + mx- side ON posture of the continuous off posture in the basic pattern 90CE are changed to the off posture, respectively.
  • the basic pattern 90CE is 20 pulses
  • basic pattern 12 OLE force pulse
  • basic pattern 120RI is 4 pulses
  • basic pattern 150CE force 2 pulses Is done.
  • basic pattern 90CE is 2 pulses
  • basic pattern 90L E force pulse basic pattern 90RI is 2 pulses
  • basic pattern 120LE force pulse basic pattern 120RI is 16 pulses
  • basic pattern 150CE force pulse A combination of basic patterns is acquired by the drive system 30.
  • the driving system 30 acquires a combination of basic patterns, that is, the basic pattern 90CE is 27 nodes and the basic pattern 150CE is 3 ⁇ 43 pulses.
  • the line width error ( ⁇ CD) of the LS pattern image formed on the plate P is 0 as shown in FIG. 8 as an example.
  • the position error ( ⁇ -Pos) was 0.4 nm or less.
  • Basic pattern combination information (superimposition information) is used.
  • the combination information (superimposition information) of the basic pattern as shown in FIG. ) Is used.
  • the drive system 30 acquires a combination of basic patterns such that the basic pattern 90CE is 29 nodes, the basic pattern 90LE force S 19 pulses, and the basic pattern 90RI is 2 panels.
  • the line width error ( ⁇ CD) of the pattern image formed on the plate P is 0.2 nm or less.
  • the position error ( ⁇ Pos) was 0.4 nm or less.
  • the line width error ( ⁇ CD) of the pattern image formed on the plate P is 0.
  • the position error ( ⁇ Pos) was 2 nm or less and 0.4 nm or less.
  • the combination information (superimposition information) of the basic pattern according to the shift amount is used.
  • the target pattern can be formed on the plate P while suppressing the line width error ( ⁇ CD) to 0.2 nm or less and the position error ( ⁇ Pos) to 0.4 nm or less.
  • the drive system 30 is based on the pattern design data sent from the host apparatus 50! /, And the target pattern information (above The line width d, length L, pitch pp, and the position (for example, the center position) of each line pattern on the two-dimensional pixel are obtained, and the signal stored in the memory 33 is generated based on the target pattern information.
  • the basic pattern superimposition information corresponding to the target pattern is acquired as information on the target pattern, where the basic pattern superimposition information includes a plurality of types of different distribution states of the bright region and the dark region. This information includes the basic pattern and the number of pulses in the pulsed light for each type of basic pattern.
  • the turn superimposition information (the basic pattern superimposition information that is optimal for accurately forming the target pattern) is acquired by the drive system 30 as information about the target pattern.
  • the drive system 30 drives each micromirror in the variable shaping mask VM to either the on posture or the off posture according to the acquired superposition information.
  • a plurality of basic patterns are generated according to the number of pulses by the variable shaping mask VM, and are imaged by being superimposed on the plate P via the projection optical system PL.
  • a plurality of basic patterns are superimposed to form a pattern according to the design data, so that the resolution (resolution) is higher than the pixel size (pixel pitch).
  • a pattern with an arbitrary line width can be accurately formed at an arbitrary position on the plate P.
  • the exposure apparatus 100 according to the present embodiment sufficiently reduces the line width error and the position error of the pattern to be formed.
  • the exposure apparatus 100 of the present embodiment when an area (illumination area) on the plate P that can be exposed at once with the variable shaping mask VM is virtually divided into a plurality of pixels, You can increase the size to some extent. In other words, an arbitrary pattern can be accurately formed at an arbitrary position on the plate P even if the total number of pixels is small. Therefore, it is possible to accurately form a desired pattern on an object without changing the number of micromirrors to be controlled according to the required dimensional accuracy and position accuracy. Costing can be suppressed.
  • the drive system 30 drives each micromirror in the variable shaping mask VM to either the on posture or the off posture.
  • the processing algorithm in the drive system 30 can be simplified, and the processing speed can be increased. Furthermore, the cost increase of the drive system 30 can be suppressed.
  • the position force of the center line of each line pattern is the force taken up when the center of the pixel row is shifted in the + X direction or the X direction.
  • the center of each line pattern is the center pixel. Even if it is shifted in the + Y direction or the Y direction from the center of the column, by using the pattern combination information according to the shift amount, a line width error of 0.2 nm or less (page 0) and 0.4 nm
  • the following position error ( ⁇ Pos) can be realized.
  • the force described in the case where the number of laser pulses necessary for forming a pattern according to the design data is 50 is not limited to this.
  • the number of pulses in the pattern combination information may be doubled as compared to the first embodiment.
  • the force described in the case where the pixel size is 30 nm ⁇ 30 nm is, of course, not limited to this.
  • the force S described in the case of forming a line and space pattern which is a kind of dense pattern on the plate P is not limited to this, and the dot pattern and other dense patterns are of course not limited to this.
  • the present invention is also suitable for forming an isolated pattern.
  • the force exposure apparatus 100 that scans and exposes the plate P by scrolling the pattern generated by the variable shaping mask VM while scanning the projection optical system PL in the Y-axis direction.
  • the plate P is moved stepwise in the X-axis direction, and the plate P is scanned and exposed by scrolling the pattern generated by the variable molding mask VM while scanning the plate P in the Y-axis direction again.
  • the 'and' stitch method step-and-scan method
  • the step-and-repeat method step-and-scan method
  • the step-and-repeat method each of a plurality of partitioned areas (shot areas) on the plate P Patterns can be formed.
  • the width of the pattern image projection area by the projection optical system PL is smaller than the width of one shot area on the plate P in the X-axis direction. Because of this plate In order to form a pattern on the entire surface of one shot area on P, the plate P must be stepped in the X-axis direction, and the Y-axis direction reciprocating scan must be repeated. Therefore, for example, a plurality of shot areas arranged in the Y-axis direction on the plate P are regarded as one large shot area, and one scanning range of the plate P in the Y-axis direction is the same as the width of the large shot area. It may be set to a degree. That is, scanning exposure of a plurality of shot areas may be performed by one scanning. In this case, since the number of reciprocating scans of the plate P can be reduced as compared with the case where scanning exposure is performed for each shot area, it is possible to improve the throughput of the exposure apparatus.
  • an exposure apparatus 100 ′ includes two illumination systems 10a, 10b (prisms 26a, 26b) configured in the same manner as the illumination system 10 described above. And two variable molding masks VM1 and VM2 configured in the same way as the above-mentioned variable molding mask VM, respectively illuminated by illumination lights IL1 and IL2 from the illumination systems 10a and 10b, and variable molding Holders 28a and 28b for holding the masks VM1 and VM2 are provided.
  • the prisms 26a and 26b are actually shown in FIG. 12 as being taken out of the illumination systems 10a and 10b for convenience of explanation. .
  • the prisms 26a and 26b are outside the illumination systems 10a and 10b.
  • the prisms 26a and 26b deflect the illumination lights IL1 and IL2 from the illumination systems 10a and 10b, respectively, and enter the variable shaping masks VM1 and VM2.
  • the structure of other parts is the same as that of the exposure apparatus 100 of the first embodiment described above. In the following description, differences from the exposure apparatus 100 according to the first embodiment will be mainly described.
  • the exposure apparatus 100 ′ according to the second embodiment is suitable for simultaneously forming different types of patterns in different regions on the plate P.
  • variable two-dimensional pixels GA1 and GA2 are set in different regions on the plate P.
  • the variable shaping mask VM2 corresponds to the two-dimensional pixel GA2 and corresponds to the two-dimensional pixel GA1.
  • the pixel sizes of the two-dimensional pixels GA1 and GA2 are both 30 nm ⁇ 30 nm, which is the same as that in the first embodiment described above.
  • the force S in which the two-dimensional pixels GA1 and GA2 are virtually set on the plate P, corresponding to the micromirrors on the variable shaping masks VM1 and VM2, respectively.
  • micro mirrors of variable shaping masks VM1 and VM2 are arranged corresponding to virtual two-dimensional pixels GA1 and GA2, respectively!
  • pattern A a plurality of line patterns
  • pattern B a plurality of rectangular patterns
  • the drive system 30 obtains the target pattern information of the pattern A and the target pattern information of the pattern B based on the design data sent from the host device 50.
  • the drive system 30 superimposes the basic pattern optimal for forming the pattern A from the signal generation information stored in the memory 33 in the same manner as in the first embodiment.
  • Information hereinafter referred to as “superimposition information A”
  • superimposition information B superimposition information of the basic pattern that is most suitable for forming pattern B as information related to each target pattern.
  • the superimposition information is obtained in advance by experiments, simulations, theoretical calculations, etc. so that the dimensional error and the position error of each pattern formed on the plate P are within the error range described above. It is.
  • the superimposition information takes into account the correction of both the line width error and the position error of the pattern due to the optical proximity effect (OPE) and / or the deviation (ie, the optical proximity effect correction (OPC)).
  • OPE optical proximity effect
  • OPC optical proximity effect correction
  • Information For example, in a target pattern that does not require OPC, the superimposition information does not have to include the correction information.
  • the drive system 30 is a signal for driving each micromirror of the variable shaping mask VM1 based on the superimposition information A (hereinafter referred to as “drive signal A”) in the same manner as in the first embodiment.
  • driving signal B a signal for driving each micromirror of the variable shaping mask VM2 (hereinafter referred to as “driving signal B”) is generated.
  • driving signal B supplies the drive signal B to each drive mechanism of the variable shaping mask VM2 in parallel with supplying the drive signal A to each drive mechanism of the variable shape mask VM1.
  • the basic pattern generated by the variable shaping mask VM1 is imaged on the area where the two-dimensional pixel GA1 on the plate P is set via the projection optical system PL.
  • the basic pattern generated by the variable shaping mask VM2 is imaged on the area where the two-dimensional pixel GA2 on the plate P is set via the projection optical system PL.
  • the two-beam interference between the first-order diffracted light and the second-order diffracted light of the illumination light IL1 generated by the basic pattern force generated by the variable shaping mask VM1.
  • the basic pattern image is formed by the two-beam interference between the first-order diffracted light and the second-order diffracted light of the illumination light IL2 generated from the basic pattern generated by the variable shaped mask VM2. Is done.
  • a plurality of basic patterns according to the superimposition information A are generated according to the number of pulses, and are superimposed on the plate P via the projection optical system PL, resulting in an image formation.
  • the pattern A is accurately formed in the area where the two-dimensional pixel GA1 is set on the plate P
  • a plurality of basic patterns according to the superimposition information B are generated according to the number of pulses.
  • the image is superimposed on the plate P via the system PL, and as a result, the pattern B is accurately formed in the region where the two-dimensional pixel GA2 is set on the plate P.
  • the exposure apparatus 100 ′ according to the second embodiment when simultaneously forming different types of patterns in different regions on the plate P, it is the same as the first embodiment. You can get fruit.
  • the force S, the pattern A, and the pattern described in the case where the line width of both the pattern A and the pattern B force is not an integral multiple of the pixel size are described.
  • the drive system 30 uses the superposition information A described above as information about the target pattern for the pattern A.
  • the on / off posture of each micromirror of the variable forming mask VM1 is controlled based on the superimposition information A for the A pattern, and the pattern design for the pattern B is the same as before.
  • the on and off positions of each micromirror of the variable shaping mask VM2 may be controlled.
  • the illumination light IL1 from the basic pattern generated in the variable shaping mask VM1 based on the superimposition information is irradiated to the area where the two-dimensional pixel GA1 on the plate P is set, and on the plate P
  • the illumination light IL2 from the pattern generated by the variable shaped mask VM1 is irradiated on the area where the two-dimensional pixel GA2 is set based on the design information about the pattern B. Each pattern is formed.
  • the pixel size in the two-dimensional pixel GA1 and the pixel size in the two-dimensional pixel GA2 may be the same size or different sizes. It may be.
  • the force described in the case where two types of patterns are simultaneously formed on the plate P using the two variable forming masks VM1 and VM2, is not limited to this, and the variable forming is not limited thereto.
  • Three or more masks may be provided, and three or more types of patterns may be simultaneously formed in different areas on the sensitive object.
  • a single variable shaping mask is used, and a plurality of modulation elements on the variable shaping mask are grouped into a plurality of modulation element groups, and different patterns are formed on the sensitive object by each group of modulation element groups. It may be formed in different regions.
  • the same pattern may be simultaneously formed in different regions on the plate using a plurality of variable molding masks. In this case, it is possible to improve the throughput as compared with the first embodiment.
  • the plurality of patterns may be other dense patterns or isolated patterns other than the line and space pattern.
  • the plurality of variable shaping masks VM1 and VM2 are illuminated using the illumination lights ILl and IL2 from the plurality of illumination systems 10a and 10b individually.
  • the illumination conditions of the illumination systems 10a and 10b may be varied depending on the type of pattern. For example, yes Target pattern force formed using deformable mask VM1 It is a dense pattern such as S-line and space pattern, and if the target pattern formed by variable mold mask VM2 is an isolated pattern such as an isolated line or contact hole, illumination For system 10a, a dipole illumination condition may be set using the illumination condition setting mechanism, and for the illumination system 10b, a so-called small ⁇ illumination condition may be set using the illumination condition setting mechanism.
  • a plurality of variable shaping masks may be illuminated with illumination light from a single illumination system.
  • the case where there is one projection optical system has been described. However, for example, it is arranged side by side in the non-scanning direction (X-axis direction) corresponding to a plurality of variable shaping masks.
  • a plurality of projection optical systems may be provided.
  • a method in which a plurality of shot areas arranged in the same direction on the plate are collectively scanned and exposed may be employed.
  • the force projection optical system PL is designed to simultaneously form the same or different patterns in different regions on the plate using a plurality of variable shaping masks.
  • a plurality of variable shaping mask pattern image projection areas (corresponding to the above-mentioned two-dimensional pixels) are arranged close to each other or at least partially overlapped with respect to the axial direction, and differ in the same area on the plate P. Multiple exposures that form patterns almost simultaneously or simultaneously may be performed.
  • the two illumination systems 10a and 10b are each provided with a light source.
  • a light source for example, only one light source is provided, and the illumination light from the light source is branched. It may be guided to two illumination systems.
  • scanning exposure of a plate using a plurality of variable shaping masks is performed non-simultaneously using illumination light from a common light source, for example, with a slightly shifted start timing, for example, at least one of the plurality of variable shaping masks. It is preferable to shift the generation timing of the pattern.
  • the force S that the line width of the entire pattern formed on the plate is a non-integer multiple of the pixel size, and the line width of the part of the pattern is the pixel size. It may be an integer multiple of.
  • the pitch may be an integer multiple of the pixel size and the line width may be a non-integer multiple of the pixel size, or vice versa. Also good.
  • the plurality of basic patterns described above may differ only in size or only in position.
  • the number of pulses may be the same for some or all of the plurality of basic patterns described above.
  • the illumination optical system is provided with a field stop.
  • the illumination light irradiation area on the plate is substantially determined by the on / off orientation of each micromirror of the variable shaping mask. You may make it prescribe
  • a harmonic generator that generates harmonics (wavelengths 193 to 194 nm) of single-wavelength laser light oscillated from a single-wavelength laser is used as the light source.
  • the present invention is not limited to this.
  • a harmonic generator of a YAG laser may be used.
  • Ar F excimer laser may be used if the repetition frequency of laser oscillation is not so required!
  • the illumination light intensity is S pulse light
  • the present invention is not limited to this, and continuous light may be used as illumination light.
  • a plurality of basic patterns having different distribution states of bright areas and dark areas and illumination light irradiated to the variable shaping mask for each basic pattern It is sufficient to use information including the irradiation time. In short, it must be an integer multiple of the size of a two-dimensional pixel virtually set on an object (in the above embodiment, a plate corresponds to this) corresponding to the arrangement of a plurality of modulation elements!
  • a plurality of basic patterns having different distribution states of the bright area and the ridge area, and information on the integrated amount of illumination light irradiated to the variable shaping mask for each basic pattern, according to the target pattern Superimposition information may be used. Note that the superimposition information does not necessarily include information regarding the integrated light quantity.
  • a non-light-emitting image display element described below is used instead of the force DMD described in the case of using a variable shaping mask including DMD which is a non-light-emitting image display element. Also good.
  • the non-light emitting image display element is also called a spatial light modulator (SLM), which spatially modulates the amplitude (intensity), phase, or polarization state of light traveling in a predetermined direction.
  • SLM spatial light modulator
  • a transmissive spatial light modulator in addition to a transmissive liquid crystal display element (LCD), an electoric chromatic display (ECD) isotropic S example can be cited.
  • the reflective spatial light modulator includes a reflective mirror array, a reflective liquid crystal display element, an electrophoretic display (EPD), electronic paper (or electronic ink), and light diffraction.
  • An example is a Grating Light Valve.
  • a pattern generation device including a self-luminous image display element may be provided instead of the variable shaping mask including the non-luminous image display element. In this case, an illumination system is unnecessary.
  • the projection optical system may be a catadioptric system or a reflective system in addition to the above-described refractive system.
  • a variable shaping mask including a transmissive non-light-emitting image display element may be used in combination with a catadioptric system, a reflective system, or a refractive projection optical system.
  • the optical system provided in the exposure apparatus of the present invention is not limited to the reduction system, and may be an equal magnification system or an enlargement system.
  • JP-A-10-163099 and JP-A-10-214783 (corresponding US Pat. No. 6,590,634), JP 2000-505958 (corresponding US Pat. No. 5,969,441), As disclosed in US Pat. No. 6,208,407
  • the present invention can be applied to a multi-stage type exposure apparatus having a plurality of stages.
  • each is generated with a plurality of variable molding masks.
  • an illumination optical system and a projection optical system each composed of a plurality of optical elements are incorporated into an exposure apparatus body for optical adjustment, and the above-described variable molding mask (pattern generation apparatus) and a number of machines
  • the exposure apparatus of each of the above embodiments can be manufactured by attaching a stage composed of parts to the exposure apparatus body, connecting wiring and piping, and further performing general adjustment (electrical adjustment, operation check, etc.). It is desirable to manufacture the exposure apparatus in a clean room in which the temperature and the degree of talin are controlled.
  • the present invention is not limited to application to a semiconductor device manufacturing process, for example, a manufacturing process of a display device such as a liquid crystal display element or a plasma display, an imaging element (CCD, etc.), a micromachine, It can be widely applied to manufacturing processes for various devices such as MEMS (Micro Electro Mechanical Systems), thin film magnetic heads using ceramic wafers as substrates, and DNA chips. Furthermore, the present invention can also be applied to a manufacturing process when manufacturing a mask (photomask, reticle, etc.) on which mask patterns of various devices are formed using a photolithographic process.
  • a mask photomask, reticle, etc.
  • the present invention may be other objects such as a wafer, a ceramic substrate, a film member, or mask blanks, and the shape of the object (plate) to be exposed is not limited to a glass plate. It is not limited to a rectangle.
  • FIG. 16 is a flowchart for explaining a method of manufacturing a semiconductor device as a microdevice. Here, we will explain the case where processing is performed in units of lots of Ueno and (plate).
  • step 102 a metal film is deposited on one lot of Ueno (plate).
  • step 104 a photoresist is applied on the metal film on the one lot of Ueno (plate).
  • step 106 information on the target pattern determined based on the design data by the exposure apparatus of each of the above embodiments (virtually set on the plate corresponding to the arrangement of the plurality of modulation elements 2 (Including the superimposition information of the basic pattern described above regarding the target pattern of the size) and the image of the pattern generated by the variable shaping mask via the projection optical system PL Then, it is sequentially projected onto each shot area on the wafer (plate) of that lot.
  • step 108 the photoresist on the lot (the plate) is developed, and in step 110, the resist pattern is used as a mask on the wafer (plate) in the lot. Etching is performed. Thereby, a circuit pattern force corresponding to the design data is formed in each shot area on each wafer (plate).
  • a device pattern such as a semiconductor element is manufactured by forming an upper layer circuit pattern and the like. Therefore, a pattern with a desired line width can be formed at a desired position with high accuracy, and as a result, devices such as semiconductor elements can be manufactured with high yield.
  • a liquid crystal display element as a micro device may be obtained by forming a predetermined pattern (circuit pattern, electrode pattern, etc.) on a plate (glass substrate). it can.
  • FIG. 17 is a flowchart for explaining a method of manufacturing a liquid crystal display element as a micro device by forming a predetermined pattern on a plate using the exposure apparatus of each of the above embodiments.
  • step 202 information on the target pattern determined based on the design data by the exposure apparatus of each of the above embodiments (virtually set on the plate corresponding to the arrangement of the plurality of modulation elements) Is not an integral multiple of the size of the 2D pixel being
  • the image of the pattern generated by the variable forming mask is transferred to the photosensitive substrate (glass coated with resist) via the projection optical system PL.
  • the so-called optical lithography process which is sequentially formed on a substrate or the like, is performed.
  • a predetermined pattern including a large number of electrodes and the like is formed on the photosensitive substrate.
  • the exposed substrate is subjected to various processes such as a development process, an etching process, and a resist stripping process, whereby a predetermined pattern is formed on the substrate.
  • step 204 a group of three dots corresponding to R (Red), G (Green), and B (B1 ue) are arranged in a matrix or R, A color filter is formed by arranging a set of three stripe filters G and B in the horizontal scanning line direction. Then, after the color filter forming step (step 204), the cell assembling step of step 206 is executed. In the cell assembly process of step 206, a liquid crystal panel (liquid crystal cell) is assembled using the substrate having the predetermined pattern obtained in the pattern formation process, the color filter obtained in the color filter formation process, and the like.
  • a liquid crystal panel liquid crystal cell
  • liquid crystal is injected between the substrate having the predetermined pattern obtained in the pattern formation process and the color filter obtained in the color filter formation process, and the liquid crystal Manufactures panels (liquid crystal cells). Thereafter, in the module assembling process of step 208, each part such as an electric circuit and a backlight for performing display operation of the assembled liquid crystal panel (liquid crystal cell) is attached to complete the liquid crystal display element.
  • liquid crystal display element As described above, in the pattern formation process of the manufacturing method of the microdevice (liquid crystal display element), a pattern image having a desired line width can be accurately formed at a desired position. In addition, liquid crystal display elements can be manufactured with high yield.
  • the pattern forming method and the pattern forming apparatus of the present invention are suitable for forming a pattern on an object.
  • the exposure method and exposure apparatus of the present invention are suitable for forming a pattern on an object such as a photosensitive substrate.
  • the device manufacturing method of the present invention is suitable for manufacturing micro devices!

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

 駆動系(30)により、パターンの設計データとメモリ(33)に格納されているパターン組み合わせ情報とに基づいて、基本パターンの組み合わせ(発生させる基本パターンの種類と各基本パターンのパルス数)が決定される。そして、その決定結果に基づいて、複数の基本パターンがそれぞれのパルス数に応じて順次生成されるように可変成形マスク(VM)の各マイクロミラーが個別に制御され、可変成形マスク(VM)で生成された各基本パターンは、投影光学系(PL)を介して、プレート(P)上に順次結像される。これにより、設計データに対応した所望の線幅のパターンが物体上の所望の位置に精度良く形成される。

Description

明 細 書
パターン形成方法及びパターン形成装置、露光方法及び露光装置、並 びにデバイス製造方法
技術分野
[0001] 本発明は、パターン形成方法及びパターン形成装置、露光方法及び露光装置、並 びにデバイス製造方法に係り、更に詳しくは、物体上にパターンを形成するパターン 形成方法及びパターン形成装置、照明光で物体を露光する露光方法及び露光装置 、並びに前記パターン形成方法、露光方法又は露光装置を用いるデバイス製造方 法に関する。
背景技術
[0002] 従来、半導体素子又は液晶表示素子等の電子デバイス(マイクロデバイス)を製造 するリソグラフイエ程では、マスク(レチクル、フォトマスク等)に形成されたパターンを 、投影光学系を介してレジスト等の感光剤が塗布されたプレート(ガラスプレート、ゥ ェハ等)上に転写するステップ'アンド'リピート方式の投影露光装置 (ステツパ)、又 はステップ ·アンド ' ·スキャン方式の投影露光装置 (スキャナ)などが用いられている。
[0003] ところで、近年になって、高価なマスクを用いることなくデバイスを形成することが可 能なマスクレスタイプの露光装置、すなわち固定のパターン原版であるマスクを用い ず、照明光の振幅、位相及び偏光の状態の少なくとも 1つを空間的に個別に変調す る複数の変調素子を有する可変成形マスク(アクティブマスクあるいはイメージジエネ レータとも呼ばれる)を用いる露光装置が提案されている(例えば特許文献 1参照)。 この特許文献 1に記載のマスクレスタイプの露光装置によると、基板ステージの走査 に同期して可変パターン生成装置(可変成形マスク)において生成されるパターンを 変化させることで、所望のパターンを基板ステージに保持された基板上に形成するこ と力 Sできる。さらに、従来のマスクを用いる露光装置とは異なり、マスクステージを備え る必要がな!/、ので、露光装置のコストダウン及び小型化が可能である。
[0004] しかしながら、上記のマスクレスタイプの露光装置では、透過型の場合は勿論、反 射型の場合にも、変調素子(例えばミラーなど)のサイズ及び位置は、可変パターン 生成装置上で固定であるため、特に変調素子のサイズに対応するサイズの整数倍と ならないサイズ (例えば線幅)のパターンを所望の位置に得ることが困難であることが 、最近になって判明した。
[0005] 特許文献 1 :特開 2004— 327660号公報
発明の開示
課題を解決するための手段
[0006] 発明者らは、変調素子として、例えばミラー素子(マイクロミラー)を有する DMD (デ ジタル'マイクロミラー ·デバイス)を可変成形マスクとして用いることを前提として、種 々のシミュレーションを行なった結果、同一パターンの形成中に可変成形マスクで発 生させるパターンを変化させることで、ミラー素子のサイズに対応するサイズの整数倍 とはならない線幅のパターンであっても表面に感応剤(レジスト)が塗布された基板( 感応基板)上に形成できることを見出した。本発明は、力、かる発明者らの新規知見に 基づ!/、てなされたものである。
[0007] 本発明は、第 1の観点からすると、照明光の入射位置に 2次元的に配置され、前記 照明光の振幅、位相及び偏光の状態の少なくとも 1つを空間的に個別に変調する複 数の変調素子を有し、明領域と喑領域とからなるパターンを発生する可変成形マスク を用いて物体上にパターンを形成するパターン形成方法であって、 目標パターンに 関する情報を取得する取得工程と;前記目標パターンに関する情報に基づいて、前 記目標パターンを前記物体上に形成する間に、前記照明光の照射によりパターンの 結像に寄与する複数の変調素子の前記可変成形マスク上の数及び位置の少なくと も一方が変更されるように、前記可変成形マスクの複数の変調素子を制御するバタ ーン形成工程と;を含むパターン形成方法である。
[0008] これによれば、 目標パターンに関する情報を取得し、その目標パターンに関する情 報に基づいて、 目標パターンを物体上に形成する間に、照明光の照射によりパター ンの結像に寄与する複数の変調素子の可変成形マスク上の数及び位置の少なくとも 一方が変更されるように、可変成形マスクの複数の変調素子を制御する。これにより 、照明光の照射によりパターンの結像に寄与する、可変成形マスク上の数及び位置 の少なくとも一方が異なる複数の変調素子の組み合わせが、複数種類生じ、それぞ れの変調素子の組み合わせに応じたパターンの像が物体上に重畳して形成される。 従って、照明光の照射によりパターンの結像に寄与する複数の変調素子の組み合わ せ及び組み合わせ同士の組み合わせの仕方を、例えば実験あるいはシミュレーショ ン等に基づいて定めることで、所望の線幅のパターンを物体上の所望の位置に精度 良く形成することが可能になる。
[0009] 本発明は、第 2の観点からすると、本発明のパターン形成方法を用いて物体上にパ ターンを形成する工程と;該パターンが形成された物体を現像する工程と;を含む第 1のデバイス製造方法である。
[0010] 本発明は、第 3の観点からすると、複数の変調素子が 2次元的に配置される可変成 形マスクを介して照明光で物体を露光する露光方法であって、少なくとも一部でサイ ズが前記変調素子の非整数倍となるパターンを前記物体上に形成するために、前記 露光中に前記パターンの生成に寄与する前記可変成形マスクでの変調素子の数及 び位置の少なくとも一方を変更することを含む露光方法である。
[0011] これによれば、少なくとも一部でサイズが変調素子の非整数倍となるパターンを物 体上に形成するために、露光中にパターンの生成に寄与する、可変成形マスクでの 変調素子の数及び位置の少なくとも一方を変更するので、変調素子の数及び位置 に応じた照明光により物体が重畳して露光される。従って、所望の線幅のパターンを 物体上の所望の位置に精度良く形成することが可能になる。
[0012] 本発明は、第 4の観点からすると、本発明の露光方法を用いて物体を露光すること と、前記露光された物体を現像することを含む第 2のデバイス製造方法である。
[0013] 本発明は、第 5の観点からすると、物体上にパターンを形成するパターン形成装置 であって、照明光を射出する照明系と;前記照明光の入射位置に 2次元的に配置さ れ、前記照明光の振幅、位相及び偏光の状態の少なくとも 1つを空間的に個別に変 調する複数の変調素子を有し、明領域と喑領域とからなるパターンを発生する可変 成形マスクと;前記可変成形マスクで発生したパターンを前記物体上に投影する光 学系と;目標パターンに関する情報に基づいて、前記目標パターンを前記物体上に 形成する間に、前記照明光の照射により前記パターンの結像に寄与する複数の変 調素子の前記可変成形マスク上の数及び位置の少なくとも一方が変更されるように、 前記可変成形マスクの複数の変調素子を制御する制御装置と;を備えるパターン形 成装置である。
[0014] これによれば、制御装置により、 目標パターンに関する情報に基づいて、 目標バタ ーンを物体上に形成する間に、照明系からの照明光の照射によりパターンの結像に 寄与する複数の変調素子の可変成形マスク上の数及び位置の少なくとも一方が変 更されるように、可変成形マスクの複数の変調素子が制御される。これにより、照明光 の照射によりパターンの結像に寄与する、可変成形マスク上の数及び位置の少なくと も一方が異なる複数の変調素子の組み合わせが、複数種類生じ、それぞれの変調 素子の組み合わせに応じたパターンの像が光学系により物体上に重畳して形成され る。従って、照明光の照射によりパターンの結像に寄与する複数の変調素子の組み 合わせ及び組み合わせ同士の組み合わせの仕方を、例えば実験あるいはシミュレ一 シヨン等に基づいて定めることで、所望の線幅のパターンを物体上の所望の位置に 精度良く形成することが可能になる。
[0015] 本発明は、第 6の観点からすると、エネルギビームにより物体を露光して前記物体 上に所定のパターンを形成する露光装置であって、前記パターンの形成装置として 、本発明のパターン形成装置を具備する第 1の露光装置である。
[0016] 本発明は、第 7の観点からすると、照明光で物体を露光する露光装置であって、複 数の変調素子が 2次元に配置される可変成形マスクと;少なくとも一部でサイズが前 記変調素子の非整数倍となるパターンを前記物体上に形成するために、前記露光 中に前記パターンの生成に寄与する前記可変成形マスクでの変調素子の数及び位 置の少なくとも一方を変更する制御装置と;を備える第 2の露光装置である。
[0017] これによれば、制御装置は、少なくとも一部でサイズが変調素子の非整数倍となる パターンを物体上に形成するために、露光中にパターンの生成に寄与する可変成形 マスクでの変調素子の数及び位置の少なくとも一方を変更する。このため、変調素子 の数及び位置に応じた照明光で物体が重畳して露光され、結果的に、所望の線幅 のパターンを物体上の所望の位置に精度良く形成することが可能になる。
[0018] 本発明は、第 8の観点からすると、本発明の第 1、第 2の露光装置のいずれかを用 いて物体を露光し、該物体上に所定のパターンを形成する工程と;該パターンが形 成された物体を現像する工程と;を含む第 3のデバイス製造方法である。 図面の簡単な説明
[0019] [図 1]第 1の実施形態に係る露光装置の構成を概略的に示す図である。
[図 2]プレート上に仮想的に設定される 2次元画素を説明するための図である。
[図 3]第 1の実施形態に係るマイクロミラーの配置を説明するための図である。
[図 4]ラインアンドスペースパターンを説明するための図である。
[図 5]ラインアンドスペースパターンの一例を説明するための図である。
[図 6]図 5のラインアンドスペースパターンに適した重畳情報の一例を説明するための 図である。
[図 7]基本パターンの一例を説明するための図である。
[図 8]図 6の重畳情報を用いて形成されたパターンの線幅誤差(Δ— CD)及び位置 誤差(Δ— Pos)を説明するための図である。
[図 9]ラインアンドスペースパターンの他の一例を説明するための図である。
[図 10]図 9のラインアンドスペースパターンに適した重畳情報の一例を説明するため の図である。
[図 11]図 10の重畳情報を用レ、て形成されたパターンの線幅誤差( Δ— CD)及び位 置誤差(Δ— Pos)を説明するための図である。
[図 12]第 2の実施形態に係る露光装置の構成を概略的に示す図である。
[図 13]プレート上に仮想的に設定される 2次元画素を説明するための図である。
[図 14]第 2の実施形態に係るマイクロミラーの配置を説明するための図である。
[図 15]プレート上に形成されるパターンの一例を説明するための図である。
[図 16]マイクロデバイスとしての半導体デバイスの製造方法を説明するためのフロー チャートである。
[図 17]マイクロデバイスとしての液晶表示素子を製造する方法を説明するためのフロ 一チャートである。
発明を実施するための最良の形態
[0020] 《第 1の実施形態》
以下、本発明の第 1の実施形態を図 1〜図 11に基づいて説明する。図 1には、第 1 の実施形態に係る露光装置 100の構成が概略的に示されている。
[0021] 露光装置 100は、照明系 10、パターン生成装置 12、投影光学系 PL、ステージ装 置 16、及びこれらを制御する制御系等を備えている。露光装置 100は、ステージ装 置 16の一部を構成するステージ ST上に載置されたプレート (感応性基板) P上に、 パターン生成装置 12で生成されたパターンの像を投影光学系 PLを介して投影する ことによって、露光処理を行う。また、露光装置 100は、パターン生成装置 12による 生成パターンの切り替え(変更)とプレート Pの移動とを同期させて、プレート P上にパ ターンを形成する走査型露光装置である。以下では、投影光学系 PLの光軸 AXと平 行な方向を Z軸方向、これに直交する面内でプレート Pが投影光学系 PLに対して相 対走査される方向を Y軸方向、これら Z軸及び Y軸に直交する方向を X軸方向として 説明を行う。また、 X軸、 Y軸、及び Z軸周りの回転 (傾斜)方向をそれぞれ、 θ χ、 Θ y 、及び θ ζ方向とする。
[0022] 制御系は、マイクロコンピュータを含み、装置全体を統括的に制御する主制御装置
20を中心として構成されている。制御系は、インターフェース 32を介してワークステ ーシヨンなどから成る上位装置 50に接続されている。インターフェース 32は、上位装 置 50との通信を制御する通信インターフェースである。
[0023] 照明系 10は、照明光(露光光) ILで、パターン生成装置 12の一部を構成する後述 する可変成形マスク VMの均一照明を行うものであり、光源及び光源制御系を含む 光源系、並びにコリメートレンズ、ォプティカノレインテグレータ、照明光学系の瞳面に おける照明光の光量分布を変更可能な照明条件設定機構、視野絞り、及びリレーレ ンズ、並びにプリズム 26等を含む照明光学系等(いずれも不図示)を備えている。
[0024] ここで、光源としては、一例として、国際公開第 1999/46835号パンフレット(対応 する米国特許第 7,023,610号明細書)などに開示されているように、 DFB半導体レ 一ザあるいはファイバーレーザ(例えば、イツテノレビゥム .ドープ.ファイバーレーザ)な どの単一波長発振レーザから発振される波長 1. 544-1. 553 111の単一波長レー ザ光を、例えばエルビウム(又はエルビウム(Er)とイッテルビウム(Yb)の両方)がドー プされたファイバーアンプで増幅し、非線形光学結晶を用いて波長変換した波長が 193〜194nmの範囲内の 8倍高調波である紫外光 (パルス光)を出力する、高調波 発生装置が用いられている。
[0025] 前記照明条件設定機構としては、例えば、照明光学系内でオプティカルインテグレ ータの入射側に配置されるとともに、交換可能な回折光学素子、可動プリズム、ズー ム光学系、及び偏光部材などを含む複数の光学素子を有する成形光学系を含み、 少なくとも 1つの光学素子の交換又は移動などによって、照明光学系の瞳面上での 照明光 ILの強度分布(2次光源の形状及び/又は大きさ)、すなわち可変成形マス ク VMの照明条件を変更する。オプティカルインテグレータとしては、例えばフライア ィレンズ、ロッド型インテグレータあるいは回折素子などを用いることができる。
[0026] プリズム 26は、上述の如ぐ実際には照明光学系の一部を構成するが、説明の便 宜上から、図 1では照明系 10の外部に取り出して示されている。以下では、プリズム 2 6は、照明系の外部にあるものとして説明する。プリズム 26は照明系 10からの照明光 ILを、可変成形マスク VMに向けて反射(偏向)する。
[0027] パターン生成装置 12は、ステージ ST上に載置されたプレート Pに投影すべき可変 のパターンを生成する電子マスク'システムであり、可変成形マスク VM、可変成形マ スク VMを保持するホルダ 28、可変成形マスク VMの動作状態を制御する駆動系(コ ントローラ) 30、及びメモリ 33等を備えている。
[0028] 可変成形マスク VMは、投影光学系 PLの上方(+ Z側)に配置され、プリズム 26で 偏向された照明光 ILが入射する。この可変成形マスク VMは、一例として、非発光型 画像表示素子(空間光変調器 (SLM : Spatial Light Modulator)とも呼ばれる)の一種 て、、あ oDMD (Digital Micro— mirror Device、 Derormable Micro— mirror Deviceノを- 3み 、入射光を、 2次元的に配歹 IJ (配置)されたミラー素子(マイクロミラー)単位で反射-偏 向して投影光学系 PLへの入射光の強度 (振幅)を空間的に変調する。可変成形マス ク VMの表面には、 2次元マトリックス状に複数の変調素子であるマイクロミラー(ミラ 一素子)が配列され、個々のマイクロミラーには該マイクロミラーに対する入射光の入 射角(及び出射角)を変化させる駆動機構 (ァクチユエータ)が設けられている。なお 、本実施形態では、波長が 193〜194nmの範囲の照明光 ILを用いる関係から、不 図示ではあるが DMDのカバーガラスが合成石英で形成されている。
[0029] 駆動系 30は、インターフェース 32を介して上位装置 50からパターン像の形成に必 要なデータのうちパターンの設計データ(例えば、 CADデータ)を取得する。そして、 駆動系 30は、メモリ 33に格納されている各種情報(以下、「信号生成情報」という)を 参照し、取得した設計データに基づいて、可変成形マスク VMの各マイクロミラーを 駆動する信号を生成する。各マイクロミラーを駆動する信号は各マイクロミラーの駆動 機構に供給される。これにより、各マイクロミラーは、 ON状態と、 OFF状態との間で 2 値動作し、可変成形マスク VM全体として所望の反射パターンを生成する。すなわち 、各マイクロミラーは、可変成形マスク VMで生成された反射パターンからの照明光 I Lの 1次回折光 IL , 2次回折光 IL ,及び 3次回折光 ILを投影光学系 PLに入射する
1 2 3
方向に導く ON状態と、照明光 ILの 0次回折光 ILと共に 1次回折光 ILを投影光学
0 1
系 PLから外れた非露光光路に導く OFF状態との間で 2値動作し、全体として所望の 反射パターンを生成する。なお、本実施形態では、各マイクロミラーの ON状態でも、 0次回折光 ILは、図 1に示されるように、投影光学系 PLから外れた非露光光路に導
0
かれる。また、各マイクロミラーの ON状態では、 2次回折光 ILが投影光学系 PLの光 軸 AXと平行な方向に導かれる。
[0030] 駆動系 30は、取得した設計データに基づいて、可変成形マスク VMで生成すべき パターンを変化させることができる。これにより、可変成形マスク VMで生成されるバタ ーンを、ステージ STに載置されたプレート Pの移動に同期して適宜変化させることが できる。なお、以下では、反射光を投影光学系 PLに入射させる ON状態にあるときの マイクロミラーの姿勢を「オン姿勢」、反射光を非露光光路に導く OFF状態にあるとき のマイクロミラーの姿勢を「オフ姿勢」ともいう。なお、駆動系 30の動作の詳細につい ては、後述する。
[0031] 投影光学系 PLは、鏡筒の内部に所定の位置関係で配置され、 Z軸方向と平行な 光軸 AXに沿って配置された複数の光学素子(レンズエレメントなど)を有する。投影 光学系 PLは、像側テレセントリックな光学系であり、パターン生成装置 12 (可変成形 マスク VM)で生成されたパターンを、被露光面上に配置されたプレート P上に投影 倍率 /3 ( /3は例えば 1/400)で縮小投影する。また、投影光学系 PLには、その内部 の特定のレンズエレメントを光軸 AX方向及び光軸 AXに直交する XY平面に対して 傾斜駆動する結像特性補正装置 38が設けられている。結像特性補正装置 38は、投 影光学系 PLを介してプレート P上に生成されるパターン像の結像状態(投影光学系 PLの結像特性)を調整するが、投影光学系 PLの光学素子を駆動する方式の代わり に、あるいはその方式と組み合わせて他の方式、例えば光源系を制御して照明光 IL の波長特性(中心波長、スぺ外ル幅など)を調整する方式を採用しても良い。
[0032] ステージ装置 16は、露光対象の物体であるプレート(例えばガラス基板、半導体ゥ ェハなど) Pを保持して可動なステージ STと、主制御装置 20からの指令に従ってス テージ STの動作状態 (移動など)を制御するステージ駆動系 40とを備えて!/、る。
[0033] ステージ STは、 X軸、 Y軸及び Z軸方向に移動可能、かつ θ χ、 Θ y及び θ z方向に 回転可能であり、可変成形マスク VMで生成されるパターンの投影光学系 PLによる 像に対してプレート Pを 6自由度でァライメント可能である。さらに、可変成形マスク V M及び投影光学系 PLを介して照明光 ILでプレート Pを走査露光するために、ステー ジ STは XY平面内の所定の走査方向(例えば、図 1における紙面内左右方向である Y軸方向)に所望の速度で移動され、これにより、可変成形マスク VMで生成したバタ ーン (表示画像)の変化に同期してプレート Pが移動される。
[0034] ステージ STの位置情報(回転情報も含む)は、不図示の位置計測系(例えばレー ザ干渉計、及び/又はエンコーダを含み、必要ならフォーカスセンサ等も含む(いず れも不図示))によって計測され、主制御装置 20に供給される。主制御装置 20は、こ の位置情報に基づいてステージ駆動系 40のモータ等を駆動してプレート Pの移動、 及び位置決めを行う。
[0035] 主制御装置 20は、照明系 10、パターン生成装置 12、ステージ装置 16等の動作を 制御し、投影光学系 PLを介してプレート P上に可変成形マスク VMで逐次生成され たパターンの像を形成する。この際、主制御装置 20は、プレート Pを適当な速度で移 動させつつ、これに同期して駆動系 30を介して可変成形マスク VMで生成したバタ ーンをスクロールさせることによって、走査型の露光を行う。
[0036] ここで、プレート Pを保持するステージ STの走査速度を VIとするとき、可変成形マ スク VMにて表示されるパターンの走査方向での表示速度 V2は、
V2=Vl/ /3
となる。従って、投影光学系 PLの投影倍率 /3が 1/400である本実施形態では、可 変成形マスク VMのパターンの走査方向での表示速度 V2は、ステージ STの速度 V 1の 400倍の速度となる。
[0037] 本実施形態におけるパターンの像のプレート P上での結像は、次数の異なる複数 の回折光同士の干渉、具体的には図 1からも分かるように、可変成形マスク VMに照 射された照明光 ILのその可変成形マスク VMで生成されたパターンからの 1次回折 光 ILと 2次回折光 ILと 3次回折光 ILとの 3光束干渉を利用したものである。
1 2 3
[0038] 次に、駆動系 30の動作について説明する。まず、具体的な動作の説明に先立って 、いくつかの前提条件について説明する。
[0039] ここで、プレート P上には、一例として図 2に示されるように、 X軸方向及び Y軸方向 に沿ってマトリックス状に配置される複数の画素から成る 2次元画素が仮想的に設定 されているものとする。なお、図 2における pgは、 X軸方向及び Y軸方向の画素のサ ィズ(画素ピッチ)である。ここでは、一例として、 X軸方向の画素数を nx個、 Y軸方向 の画素数を ny個とし、各画素を G (i= l〜!x、 j = l〜ny)で表記することとする。な お、 +X方向を iの増加方向とし、 +Y方向を jの増加方向とする。
[0040] 上記の仮想的な 2次元画素 G (i= 1〜!x、 j = l〜ny)に対応して、照明光 ILの入 射位置に配置された前述の可変成形マスク VMには、一例として図 3に示されるよう に、複数のマイクロミラーカ、プレート P上での X軸方向に対応する方向(mx方向とす る)及びプレート P上での Y軸方向に対応する方向(my方向とする)に沿って 2次元 的に配置されている。ここでは、 mx方向のマイクロミラーの個数を nx個、 my方向の マイクロミラーの個数を ny個とし、各マイクロミラーを m (1= 1〜1«、 = 1〜1^)で表 記することとする。例えば、 m は G に対応し、 m は G に対応し、 m は G に
1,1 1,1 1,13 1,13 14,1 14,1 対応している。すなわち、 + mx方向力 の増加方向であり、 + my方向が jの増加方向 である。なお、実際には、可変成形マスク VM上のマイクロミラーに対応して、 2次元 画素がプレート P上に仮想的に設定されるのである力 ここでは、説明の便宜上から 、仮想的な 2次元画素に対応して可変成形マスク VMのマイクロミラーが配置されて いるあのとしている。
[0041] また、ここでは、一例として図 4に示されるように、線幅 d、長さ Lの複数のラインパタ ーン 250がピッチ ppで X軸方向に沿って配置された、いわゆるラインアンドスペース パターン(L/Sパターン)を目標パターンとし、そのラインアンドスペースパターンの 像(以下、便宜上「LSパターン像」ともいう)をプレート P上に形成するものとする。な お、本明細書では、そのデューティ比が 50%のもの(ライン部の幅とスペース部の幅 とが等しいもの)に限らず、ライン部とスペース部とが、一定の周期で交互に繰り返さ れるパターンをラインアンドスペースパターンと総称している。
[0042] さらに、一例として、画素のサイズ(画素ピッチ) pg = 30nm、プレート P上に LSパタ 一ン像を形成するのに必要なレーザノ レス数を 50パルスとする。また、投影光学系 PLの開口数 ΝΑ = 0· 85とし、 σ (コヒーレンスファクタ) =0. 90、輪帯比(Ann) = 2 /3の照明条件の下で、 LSパターン像の形成が行なわれるものとする。
[0043] 次に、具体的動作について説明する。なお、前述の如ぐステージ STの速度に比 ベて、可変成形マスク VMのパターンの走査方向での表示速度は格段に速いので、 以下では、あたかも、静止露光により、プレート P上において 1つのパターンの形成が 行われるかのような説明方法を採用するものとする。
[0044] (1)まず、駆動系 30は、上位装置 50から送られてきた設計データに基づいて、上記 線幅 d、長さ L、ピッチ pp、及び 2次元画素上での各ラインパターンの位置(例えば中 心位置)などを、 目標パターン情報として求める。ここでは、一例として図 5に示される ように、 1画素を 30nmX 30nmの正方开$として、 d = 65nm、 L = 360nm、 pp = 180 nmであるものとする。また、各ラインパターンの中心線の位置は、中央の画素列の中 心線に一致して!/、るものとする。
[0045] (2)次に、駆動系 30は、メモリ 33に格納されている信号生成情報から、 目標パターン 情報に基づき、その目標パターンに応じた基本パターンの重畳情報を、 目標パター ンに関する十青幸として取得する。ここでは、「d = 65nm、 L = 360nm、 pp = 180nm、 各ラインパターンの中心線の位置は、中央の画素列の中心線に一致している」という 目標パターン情報(あるいは目標パターンの設計データ)に応じた基本パターンの重 畳情報として、基本パターン 90CEが 34パルス、基本パターン 90LEが 8パルス、基 本パターン 90RIが 8パルス、というパターン組み合わせが取得される(図 6参照)。な お、メモリ 33には、前記信号生成情報の一部として、 目標パターン情報(あるいは目 標パターンの設計データ)毎に、その目標パターンの形成に適した基本パターンの 種類と各基本パターンのノ ルス数とがテーブル形式で設定されているパターン組み 合わせ情報が格納されている。この組み合わせ情報(基本パターンの重畳情報)は、 プレート P上に形成されるパターンの寸法誤差及び位置誤差力 s、プレート p上に仮想 的に設定される 2次元画素における画素のサイズよりも小さい、それぞれの許容値よ り小さくなるように、予め実験、シミュレーション、理論計算などによって求められたも のである。また、この組み合わせ情報は、光近接効果(OPE)によるパターンの線幅 誤差及び位置誤差の両者又は!/、ずれか一方の補正 (すなわち、光近接効果補正(
OPC) )を考慮した情報である。なお、例えば OPCが不要な目標パターンでは、上記 の組み合わせ情報はその補正情報を含まなくても良い。
[0046] なお、図 7に示されるように、基本パターン 90CEは、連続する 3個のオフ姿勢とそ れに続く連続する 4個のオン姿勢とを組とし、その組が m (j = l〜12)を起点として
i,j
繰り返されるパターンである。また、基本パターン 90LEは、上記基本パターン 90CE をマイクロミラー 1個分だけ mx側にシフトさせたパターンである。また、基本パター ン 90RIは、上記基本パターン 90CEをマイクロミラー 1個分だけ + mx側にシフトさせ たパターンである(図 7参照)。なお、 90CE, 90LE, 90RIの 90は、プレート上換算 値で 90nmという意味であり、 30nmX 3 = 90nmである力、ら、 3個のオフ姿勢が連続 しているのである。
[0047] 上述のように、各基本パターンは、明領域 (オン姿勢に対応)と喑領域 (オフ姿勢に 対応)の分布状態が互いに異なっている。なお、図 7では、オフ姿勢(喑領域に対応) が「0」、オン姿勢(明領域に対応)力 S「 1」で示されてレ、る。
[0048] (3)次に、駆動系 30は、取得した組み合わせ情報(基本パターンの重畳情報)に基 づいて、各マイクロミラーを駆動する信号を生成し、各マイクロミラーの駆動機構に供 給する。ここでは、一例として最初の 34パルスでは可変成形マスク VMで基本パター ン 90CEが生成されるように各マイクロミラーを駆動する信号を供給し、次の 8パルス では可変成形マスク VMで基本パターン 90LEが生成されるように各マイクロミラーを 駆動する信号を供給し、次の 8パルスでは可変成形マスク VMで基本パターン 90RI が生成されるように各マイクロミラーを駆動する信号を供給する。なお、各基本パター ンの発生順序は、これに限定されるものではなぐ結果的に、 50パルスのうちの 34パ ルスで基本パターン 90CEが生成され、 8パルスで基本パターン 90LEが生成され、 8パルスで基本パターン 90RIが生成されれば良い。
[0049] すなわち、従来は、 1つ(1種類)のパターンを用いて LSパターン像を形成している 、本実施形態では、明領域と喑領域の分布状態が互いに異なる複数の基本バタ ーンの組み合わせを用いて LSパターン像を形成して!/、る。
[0050] 本実施形態と同様の条件の下、上記の基本パターン 90CEが 34パルス、基本パタ ーン 90LE力 パルス、基本パターン 90RIが 8パルス、というパターン組み合わせに 従って、プレート P上に目標とする LSパターン像を形成するシミュレーションを、発明 者らが行なった結果、その形成された LSパターン像の線幅誤差(Δ—CD)及び位 置誤差(Δ— Pos)は、一例として図 8に示されるようになった。この図 8から分かるよう に、線幅誤差(Δ—CD)は 0. 2nm以下、位置誤差(Δ—Pos)は 0. 4nm以下であり 、十分に誤差は小さいと言える。
[0051] すなわち、線幅 dが画素のサイズ pgの整数倍でなくても、高!/、線幅精度及び位置 精度を得ること力できる。
[0052] 次に、前述の目標パターンと同じぐ d = 65nm、 L = 360nmで、例えばピッチ ppが
180nm以外のときの目標パターン情報(ある!/、は目標パターンの設計データ)に対 応する基本パターンの重畳情報 (組み合わせ情報)につ!/、て図 6及び図 7を用いて 説明する。ピッチ pp = 200nmのときは、基本パターン 90RIが 8パルス、基本パター ン 120LE力 13ノ ノレス、基本パターン 120RIが 29パルス、という基本パターンの組み 合わせが、駆動系 30によって取得される。ここで、図 7に示されるように、基本パター ン 120LEは、連続する 4個のオフ姿勢とそれに続く連続する 3個のオン姿勢とを組と し、基本パターン 90CEにおける連続するオフ姿勢の mx側のオン姿勢をオフ姿勢 に変更したパターンである。また、基本パターン 120RIは、連続する 4個のオフ姿勢 とそれに続く連続する 3個のオン姿勢とを組とし、基本パターン 90CEにおける連続 するオフ姿勢の + mx側のオン姿勢をオフ姿勢に変更したパターンである。
[0053] また、ピッチ pp = 210nmのときには、基本パターン 90CEが 44パルス、基本パター ン 120LE力 ノ ノレス、基本パターン 120RIが 3パルス、という基本パターンの組み合 わせが、駆動系 30によって取得される。 [0054] ピッチ pp = 240nmのときには、基本パターン 90CEが 32パルス、基本パターン 90 LEが 1パルス、基本パターン 90RIが 1パルス、基本パターン 120LEが 8パルス、基 本パターン 120RIが 8パルス、という基本パターンの組み合わせが、駆動系 30によつ て取得される。
[0055] ピッチ pp = 300nmのときには、基本パターン 90CEが 21パルス、基本パターン 12 OLEが 11パルス、基本パターン 120RIが 11パルス、基本パターン 150CEが 7パル ス、という基本パターンの組み合わせが、駆動系 30によって取得される。ここで、基本 パターン 150CEは、図 7に示されるように、基本パターン 90CEにおける連続するォ フ姿勢の mx側のオン姿勢及び + mx側のオン姿勢を、それぞれオフ姿勢に変更 したパターンである。
[0056] ピッチ pp = 450nmのときには、基本パターン 90CEが 20パルス、基本パターン 12 OLE力 パルス、基本パターン 120RIが 4パルス、基本パターン 150CE力 2パルス 、という基本パターンの組み合わせが、駆動系 30によって取得される。
[0057] ピッチ pp = 600nmのときには、基本パターン 90CEが 2パルス、基本パターン 90L E力 パルス、基本パターン 90RIが 2パルス、基本パターン 120LE力 パルス、基 本パターン 120RIが 16パルス、基本パターン 150CE力 パルス、という基本パター ンの組み合わせが、駆動系 30によって取得される。
[0058] また、 目標パターンが孤立線(孤立パターン)のときには、基本パターン 90CEが 27 ノ ノレス、基本パターン 150CE力 ¾3パルス、という基本パターンの組み合わせが、駆 動系 30によって取得される。
[0059] これらの場合においても、発明者らが行なったシミュレーションの結果、一例として 図 8に示されるように、プレート P上に形成された LSパターン像の線幅誤差(Δ—CD )は 0. 2nm以下、位置誤差(Δ— Pos)は 0. 4nm以下であった。特に、ピッチ pp = 2 OOnmのように、ピッチ ppが画素のサイズ pgの整数倍でないときでも、プレート P上に LSパターン像を精度良く形成することができることがわかる。
[0060] ところで、各ラインパターンの中心線の位置力 S、中央の画素列の中心線に一致して V、な!/、場合には、上記基本パターンの組み合わせ情報(重畳情報)とは異なる基本 ノ ターンの組み合わせ情報(重畳情報)が用いられる。例えば、図 9に示されるように 、各ラインパターンの中心線の位置が、中央の画素列の中心線から + X方向に 10η mずれている場合には、一例として図 10に示されるような基本パターンの組み合わ せ情報(重畳情報)が用いられる。例えば、ピッチ pp= 180nmのときには、基本バタ ーン 90CEが 29ノ ノレス、基本パターン 90LE力 S 19パルス、基本パターン 90RIが 2パ ノレス、という基本パターンの組み合わせが、駆動系 30によって取得される。
[0061] この場合においても、発明者らが行なったシミュレーションの結果、一例として図 11 に示されるように、プレート P上に形成されたパターン像の線幅誤差(Δ CD)は 0. 2nm以下、位置誤差(Δ Pos)は 0. 4nm以下であった。
[0062] また、ピッチ pp力 00應, 210nm, 240腹, 300腹, 450應, 600應のそれぞ れの場合には、図 10に示されるような、基本パターンの組み合わせが、駆動系 30に よって取得される。
[0063] これらの場合にも、発明者らが行なったシミュレーションの結果、一例として図 11に 示されるように、プレート P上に形成されたパターン像の線幅誤差(Δ—CD)は 0. 2n m以下、位置誤差(Δ Pos)は 0. 4nm以下であった。
[0064] また、各ラインパターンの中心線の位置が、中央の画素の中心から X方向にずれ てレ、ても、そのずれ量に応じた基本パターンの組み合わせ情報(重畳情報)を用いる ことにより、線幅誤差(Δ—CD)を 0. 2nm以下、位置誤差(Δ—Pos)を 0. 4nm以下 に抑制して、プレート P上に目標パターンを形成することが可能である。
[0065] 以上説明したように、本実施形態に係る露光装置 100によると、駆動系 30は、上位 装置 50から送られてきたパターンの設計データに基づ!/、て、 目標パターン情報(上 記線幅 d、長さ L、ピッチ pp、及び 2次元画素上での各ラインパターンの位置(例えば 中心位置)などを求め、該目標パターン情報に基づき、メモリ 33に格納されている信 号生成情報から、その目標パターンに応じた基本パターンの重畳情報を、 目標バタ ーンに関する情報として取得する。ここで、基本パターンの重畳情報は、明領域と喑 領域の分布状態が互いに異なる複数種類の基本パターンと、基本パターンの種類 毎のパルス光におけるパルス数とを含む情報であり、予めシミュレーションなどによつ て目標パターン毎に求められ、メモリ 33内に予め格納されて!/、る。このメモリ内に格 納された複数の基本パターンの重畳情報の中から、 目標パターンに対応する基本パ ターンの重畳情報(目標パターンを精度良く形成するのに最適な基本パターンの重 畳情報)が、駆動系 30によって、 目標パターンに関する情報として取得される。
[0066] そして、実際の露光に当たり、駆動系 30は、その取得した重畳情報に応じて可変 成形マスク VMにおける各マイクロミラーをオン姿勢及びオフ姿勢のいずれかに駆動 する。これにより、可変成形マスク VMにより、複数の基本パターンがそのノ ルス数に 応じて生成され、投影光学系 PLを介してプレート P上に重畳して結像される。このよう に、本実施形態に係る露光装置 100によると、複数の基本パターンを重畳して設計 データに応じたパターンを形成しているため、画素のサイズ (画素ピッチ)よりも高い 分解能 (解像度)で、任意の線幅のパターンをプレート P上の任意の位置に精度良く 形成することが可能となる。また、発明者らの行なったシミュレーションの結果、本実 施形態の露光装置 100では、形成されるパターンの線幅誤差及び位置誤差の!/ヽず れも十分に小さくなることが確認された。
[0067] また、本実施形態の露光装置 100によると、可変成形マスク VMで一度に露光可能 なプレート P上の領域 (照明領域)を仮想的に複数の画素に分割する場合に、 1画素 の大きさをある程度大きくすること力 Sできる。換言すれば、総画素数が少なくても任意 のパターンをプレート P上の任意の位置に精度良く形成することが可能となる。従つ て、要求される寸法精度及び位置精度に応じて制御対象のマイクロミラー数を変更 せずに、所望のパターンを物体上に精度良く形成することが可能となり、可変成形マ スク VMの高コスト化を抑制することができる。
[0068] また、本実施形態に係る露光装置 100によると、駆動系 30は、可変成形マスク VM における各マイクロミラーをオン姿勢及びオフ姿勢のいずれかに駆動している。これ により、駆動系 30での処理アルゴリズムを単純化することができ、処理の高速化が可 能となる。さらに、駆動系 30の高コスト化を抑制することができる。
[0069] なお、上記実施形態では、各ラインパターンの中心線の位置力 中央の画素列の 中心から + X方向又は X方向にずれる場合を取り上げた力 各ラインパターンの中 心が、中央の画素列の中心から +Y方向あるいは Y方向にずれていても、そのず れ量に応じたパターン組み合わせ情報を用いることにより、 0. 2nm以下の線幅誤差 (厶ーじ0)、及び0. 4nm以下の位置誤差(Δ—Pos)を実現することが可能である。 [0070] また、上記実施形態では、設計データに応じたパターンを形成するのに必要なレー ザパルス数が 50パルスの場合について説明した力 これに限定されるものではない 。例えば、必要なレーザノ ルス数が 100パルスの場合には、パターン組み合わせ情 報におけるパルス数をそれぞれ上記第 1の実施形態の 2倍にすれば良い。具体的に は、「d = 65nm、 L = 360nm、 pp= 180nm、各ラインパターンの中心線の位置は、 中央の画素列の中心線に一致してレ、る」とレ、う目標パターン情報に対応する重畳情 報として、基本パターン 90CEが 68 ( = 34 X 2)パルス、基本パターン 90LEが 16 (= 8 X 2)パノレス、オンオフパターン 90RIが 16 ( = 8 X 2)パルス、というパターン組み合 わせとなる。なお、複数の基本パターンのパルス数はその合計がパターンの形成に 必要な最小パルス数以上となって!/、れば良レ、。
[0071] また、上記実施形態では、画素のサイズが 30nm X 30nmの場合について説明し た力 勿論これに限定されるものではない。
[0072] また、上記実施形態では、プレート P上に密集パターンの一種であるラインアンドス ペースパターンを形成する場合について説明した力 S、これに限らず、ドットパターンそ の他の密集パターンは勿論、孤立パターンを形成する場合にも本発明は好適である
[0073] また、上記実施形態では、投影光学系 PLに対してプレート Pを Y軸方向に走査し つつ可変成形マスク VMで生成するパターンをスクロールしてプレート Pを走査露光 する力 露光装置 100はその走査露光の終了後に、プレート Pを X軸方向にステップ 移動させ、かつプレート Pを再度 Y軸方向に走査しつつ可変成形マスク VMで生成 するパターンをスクロールしてプレート Pを走査露光する、ステップ'アンド 'スティツチ 方式 (ステップ ·アンド ·スキャン方式)あるいはステップ ·アンド ·リピート方式 (ステップ •アンド 'スキャン方式)を採用しても良い。ステップ ·アンド 'スティツチ方式では、プレ ート P上に大面積のパターンを形成することが可能であり、ステップ 'アンド'リピート方 式では、プレート P上の複数の区画領域 (ショット領域)にそれぞれパターンを形成す ることが可能である。
[0074] なお、上記実施形態では、 X軸方向に関して投影光学系 PLによるパターン像の投 影領域の幅がプレート P上の 1つのショット領域の幅よりも小さい。このため、プレート P上の 1つのショット領域の全面にパターンを形成するためには、プレート Pを X軸方 向にステッピングさせつつ Y軸方向の往復走査を繰り返し行わなければならない。そ こで、例えばプレート P上で Y軸方向に並ぶ複数のショット領域を 1つの大きなショット 領域と見なして、 Y軸方向へのプレート Pの 1回の走査範囲をその大きなショット領域 の幅と同程度に設定しても良い。すなわち、 1回の走査で複数のショット領域の走査 露光を行っても良い。この場合、ショット領域毎に走査露光を行う場合に比べて、プレ ート Pの往復走査の回数を減らすことができるので、露光装置のスループットの向上 を図ることが可能となる。
[0075] 《第 2の実施形態》
次に、本発明の第 2の実施形態を図 12〜図 15に基づいて説明する。ここで、前述 した第 1の実施形態と同一若しくは同等の構成部分については同一の符号を用い、 その説明を簡略化し若しくは省略するものとする。
[0076] この第 2の実施形態に係る露光装置 100'は、図 12に示されるように、前述の照明 系 10と同様に構成された 2個の照明系 10a、 10b (プリズム 26a、 26bをそれぞれ含 む)と、照明系 10a、 10bからの照明光 IL1、 IL2によってそれぞれ照明される、前述 の可変成形マスク VMと同様に構成された 2個の可変成形マスク VM1、 VM2と、可 変成形マスク VM1、 VM2をそれぞれ保持するホルダ 28a、 28bとを備えている。プリ ズム 26a、 26bは、上述の如ぐ実際には照明系 10a、 10bの一部をそれぞれ構成す る力 説明の便宜上から、図 12では照明系 10a、 10bの外部に取り出して示されてい る。以下では、プリズム 26a、 26bは、照明系 10a、 10bの外部にあるものとして説明 する。プリズム 26a、 26bは、照明系 10a、 10bからの照明光 IL1、 IL2をそれぞれ偏 向して、可変成形マスク VM1、 VM2に入射させる。その他の部分の構成などは、前 述した第 1の実施形態の露光装置 100と同様になつている。以下においては、第 1の 実施形態に係る露光装置 100との相違点を中心に説明する。
[0077] この第 2の実施形態に係る露光装置 100'は、プレート P上の異なる領域に互いに 種類が異なるパターンを同時に形成するのに適している。
[0078] 例えば、図 13に示されるように、プレート P上の異なる領域に、仮想的な 2次元画素 GA1、 GA2が設定され、一例として図 14に示されるように、可変成形マスク VM1が 2次元画素 GA1に対応し、可変成形マスク VM2が 2次元画素 GA2に対応している ものとする。上記 2次元画素 GA1、 GA2の画素のサイズは、ともに前述の第 1の実施 形態と同じぐ 30nmX 30nmであるものとする。なお、実際には、可変成形マスク V Ml、 VM2上のマイクロミラーにそれぞれ対応して、 2次元画素 GA1、 GA2がプレー ト P上に仮想的に設定されるのである力 S、ここでは、説明の便宜上から、仮想的な 2次 元画素 GA1、 GA2にそれぞれ対応して可変成形マスク VM1、 VM2のマイクロミラ 一が配置されて!/、るものとして!/、る。
[0079] 次に、一例として図 15に示されるように、 2次元画素 GA1が設定されている領域に 複数のラインパターン (以下便宜上、「パターン A」という)を形成し、 2次元画素 GA2 が設定されている領域に複数の矩形パターン (以下便宜上、「パターン B」という)を 形成する場合について、駆動系 30の動作について説明する。ここで、パターン A及 びパターン Bはともにその線幅力 画素のサイズの整数倍ではないものとする。この 場合も、前述の第 1の実施形態と同様に、以下では、あたかも、静止露光により、プレ ート P上において 1つのパターンの形成が行われるかのような説明方法を採用するも のとする。
[0080] (1)駆動系 30は、上位装置 50から送られてきた設計データに基づいて、パターン A の目標パターン情報、及びパターン Bの目標パターン情報を求める。
[0081] (2)次に、駆動系 30は、メモリ 33に格納されている信号生成情報から、第 1の実施形 態と同様にして、パターン Aを形成するのに最適な基本パターンの重畳情報(以下、 「重畳情報 A」という)、及びパターン Bを形成するのに最適な基本パターンの重畳情 報(以下、「重畳情報 B」とレ、う)を、それぞれの目標パターンに関する情報として取得 する。
[0082] これらの重畳情報は、プレート P上に形成される各パターンの寸法誤差及び位置誤 差が前述した誤差範囲となるように予め実験、シミュレーション、理論計算などによつ て求められたものである。また、これらの重畳情報は、光近接効果(OPE)によるバタ 一ンの線幅誤差及び位置誤差の両者又は!/、ずれか一方の補正 (すなわち、光近接 効果補正(OPC) )を考慮した情報である。なお、例えば OPCが不要な目標パターン では、この重畳情報がその補正情報を含まなくても良い。 [0083] (3)駆動系 30は、第 1の実施形態と同様にして、重畳情報 Aに基づいて、可変成形 マスク VM1の各マイクロミラーを駆動する信号 (以下、「駆動信号 A」という)を生成し 、重畳情報 Bに基づいて、可変成形マスク VM2の各マイクロミラーを駆動する信号( 以下、「駆動信号 B」という)を生成する。そして、駆動系 30は、駆動信号 Aを可変成 形マスク VM1の各駆動機構に供給するのと並行して駆動信号 Bを可変成形マスク V M2の各駆動機構に供給する。
[0084] これにより、可変成形マスク VM1で生成された基本パターンは、投影光学系 PLを 介してプレート P上の 2次元画素 GA1が設定されている領域に結像される。一方、可 変成形マスク VM2で生成された基本パターンは、投影光学系 PLを介してプレート P 上の 2次元画素 GA2が設定されている領域に結像される。ただし、本第 2の実施形 態の場合、図 12から明らかなように、可変成形マスク VM1で生成された基本パター ン力 発生する照明光 IL1の 1次回折光と 2次回折光との 2光束干渉によってその基 本パターンの像が形成され、可変成形マスク VM2で生成された基本パターンから発 生する照明光 IL2の 1次回折光と 2次回折光との 2光束干渉によってその基本パター ンの像が形成される。
[0085] このようにして、重畳情報 Aに従った複数の基本パターンがそのノ ルス数に応じて 生成され、投影光学系 PLを介してプレート P上に重畳して結像され、結果的にプレ ート P上の 2次元画素 GA1が設定されている領域にパターン Aが精度良く形成される とともに、重畳情報 Bに従った複数の基本パターンがそのノ ルス数に応じて生成され 、投影光学系 PLを介してプレート P上に重畳して結像され、結果的にプレート P上の 2次元画素 GA2が設定されている領域にパターン Bが精度良く形成される。
[0086] 従って、本第 2の実施形態に係る露光装置 100'によると、プレート P上の異なる領 域に互いに種類が異なるパターンを同時に形成する際に、第 1の実施形態と同等の ¾]果を得ること力できる。
[0087] なお、上記第 2の実施形態では、パターン A及びパターン B力 ともにその線幅が、 画素のサイズの整数倍ではない場合について説明した力 S、パターン A及びパターン
Bのいずれ力、、例えばパターン Bの線幅が画素のサイズの整数倍の場合、駆動系 30 は、パターン Aについては上述した重畳情報 Aを目標パターンに関する情報として取 得し、実際のパターンの形成に際しては、 Aパターンについて重畳情報 Aに基づい て可変成形マスク VM1の各マイクロミラーのオン姿勢、オフ姿勢を制御し、パターン Bについては従来と同様に、パターンの設計データに応じたパターン情報(重畳情報 ではない情報)に基づいて可変成形マスク VM2の各マイクロミラーのオン姿勢、オフ 姿勢を制御することとすれば良い。
[0088] これにより、前記重畳情報に基づいて可変成形マスク VM1で発生した基本パター ンからの照明光 IL1がプレート P上の 2次元画素 GA1が設定された領域に照射され るとともに、プレート P上の 2次元画素 GA2が設定された領域にパターン Bについて の設計情報に基づいて可変成形マスク VM1で発生したパターンからの照明光 IL2 が照射され、このようにしてプレート P上の異なる領域に複数種類のパターンがそれ ぞれ形成される。
[0089] なお、上記第 2の実施形態において、 2次元画素 GA1での画素のサイズ及び 2次 元画素 GA2での画素のサイズは、互いに同一のサイズであっても良いし、互いに異 なるサイズであつても良い。
[0090] また、上記第 2の実施形態では、 2つの可変成形マスク VM1 , VM2を用いて、 2種 類のパターンをプレート P上に同時に形成する場合について説明した力 これに限ら ず、可変成形マスクを 3個以上設け、 3種類以上のパターンを同時に感応物体上の 異なる領域に形成しても良い。あるいは、単一の可変成形マスクを用い、該可変成形 マスク上の複数の変調素子を、複数の変調素子群にグループ分けし、それぞれのグ ループの変調素子群で、異なるパターンを感応物体上の異なる領域に形成すること としても良い。なお、複数の可変成形マスクを用いてプレート上の異なる領域に同一 のパターンを同時に形成しても良い。この場合、第 1の実施形態に比べてスループッ トの向上を図ることが可能となる。また、複数のパターンはその種類がラインアンドス ペースパターンに限られるものでなぐ他の密集パターンあるいは孤立パターンなど でも良い。
[0091] また、上記第 2の実施形態では、複数の可変成形マスク VM1 , VM2を、複数の照 明系 10a, 10bからの照明光 ILl , IL2を個別に用いて照明しているので、 目標バタ ーンの種類に応じて照明系 10a, 10bの照明条件を異ならせても良い。例えば、可 変成形マスク VM1を用いて形成する目標パターン力 Sラインアンドスペースパターン などの密集パターンであり、可変成形マスク VM2で形成する目標パターンが孤立線 又はコンタクトホールなどの孤立パターンである場合には、照明系 10aについては照 明条件設定機構を用いて 2重極照明(ダイポール照明)条件を設定し、照明系 10b については照明条件設定機構を用いていわゆる小 σ照明条件を設定することとして も良い。この他、複数の可変成形マスクを、単一の照明系からの照明光で照明しても 良い。
[0092] また、上記第 2の実施形態では、投影光学系が 1個の場合について説明したが、複 数の可変成形マスクに対応して、例えば非走査方向(X軸方向)に並んで配置される 複数の投影光学系を設けても良い。また、第 2の実施形態でも、前述のステップ 'アン ド ·ステイッチ方式 (ステップ ·アンド ·スキャン方式)ある!/、はステップ ·アンド 'リピート 方式 (ステップ ·アンド '·スキャン方式)を採用しても良い。あるいは、前述の如くプレー ト Ρ上で同一方向に並ぶ複数のショット領域をまとめて走査露光する方式を採用して も良い。
[0093] なお、上記第 2の実施形態では、複数の可変成形マスクを用いてプレート Ρ上の異 なる領域に同一あるいは異なるパターンを同時に形成するものとした力 投影光学系 PLの像面側で Υ軸方向に関して複数の可変成形マスクのパターン像の投影領域( 前述の 2次元画素に相当)を近接して、あるいは少なくとも一部を重ねて配置し、プレ ート P上の同一の領域に異なるパターンをほぼ同時あるいは同時に形成する多重露 光を行っても良い。
[0094] また、上記第 2の実施形態では、 2つの照明系 10a、 10bがそれぞれ光源を備えて いるものとしたが、例えば光源を 1つのみ設け、その光源からの照明光を分岐して 2 つの照明系に導くようにしても良い。なお、共通の光源からの照明光を用いて、複数 の可変成形マスクによるプレートの走査露光を非同時、例えば僅かに開始タイミング をずらして行う場合には、例えば複数の可変成形マスクの少なくとも 1つでそのバタ ーン像の生成タイミングをずらすことが好ましレ、。
[0095] なお、上記各実施形態では、プレート上に形成するパターンの全体でその線幅が 画素サイズの非整数倍であるものとした力 S、パターンの一部でその線幅が画素サイズ の整数倍となっていても良い。また、プレート上に形成するパターンカラインアンドス ペースパターンである場合、例えばピッチが画素サイズの整数倍で、ライン幅が画素 サイズの非整数倍であっても良いし、あるいはその逆であっても良い。これは、ライン アンドスペースパターンなどの周期パターンに限られるものでなぐ複数のパターン 要素を含む他のパターンでも同様である。さらに、上記各実施形態では、前述した複 数の基本パターンはサイズのみ、あるいは位置のみが異なっているだけでも良い。ま た、前述した複数の基本パターンの一部あるいは全部でパルス数を同一としても良 い。
[0096] なお、上記各実施形態では、照明光学系が視野絞りを備えるものとした力 例えば 可変成形マスクの各マイクロミラーのオン姿勢'オフ姿勢により、プレート上での照明 光の照射領域を実質的に規定するようにしても良い。
[0097] また、上記各実施形態では、光源として、単一波長発振レーザから発振される単一 波長レーザ光の高調波(波長 193〜; 194nm)を発生する高調波発生装置を用いる 場合について説明した力 これに限らず、例えば波長 400nm程度の照明光を用い て可変成形マスクを照明するのであれば、 YAGレーザの高調波発生装置を用いて も良い。この他、レーザ発振の繰り返し周波数をそれほど要求されない場合には、 Ar Fエキシマレーザなどを用いても良!/、。
[0098] また、上記各実施形態では、照明光力 Sパルス光である場合について説明したが、 本発明がこれに限定されるものではなぐ連続光を照明光として用いても良い。力、か る場合には、前述の目標パターンに応じた重畳情報として、明領域と喑領域の分布 状態が互いに異なる複数の基本パターンと、該基本パターン毎の可変成形マスクに 照射される照明光の照射時間とを含む情報を、用いることとすれば良い。要は、複数 の変調素子の配置に対応して物体(上記実施形態ではプレートがこれに相当)上に 仮想的に設定される 2次元画素のサイズの整数倍とならな!/、サイズの目標パターン に関して、明領域と喑領域の分布状態が互いに異なる複数の基本パターンと、該基 本パターン毎の可変成形マスクに照射される照明光の積算光量に関する情報とを含 む、 目標パターンに応じた重畳情報を用いれば良い。なお、重畳情報は必ずしも積 算光量に関する情報を含まなくても良い。 [0099] なお、上記各実施形態では、非発光型画像表示素子である DMDを含む可変成形 マスクを用いる場合について説明した力 DMDに代えて、以下に説明する非発光 型画像表示素子を用いても良い。ここで非発光型画像表示素子とは、空間光変調器 (SLM : Spatial Light Modulator)とも呼ばれ、所定方向へ進行する光の振幅(強度) 、位相あるいは偏光の状態を空間的に変調する素子であり、透過型空間光変調器と しては、透過型液晶表示素子(LCD : Liquid Crystal Display)以外に、エレクト口クロミ ックディスプレイ (ECD)等力 S例として挙げられる。また、反射型空間光変調器として は、上述の DMDの他に、反射ミラーアレイ、反射型液晶表示素子、電気泳動デイス プレイ(EPD: Electro Phonetic Display)、電子ペーパー(又は電子インク)、光回折 型ライトバルブ(Grating Light Valve)等が例として挙げられる。また、上記各実施形 態では、非発光型画像表示素子を備える可変成形マスクに代えて、自発光型画像 表示素子を含むパターン生成装置を備えるようにしても良い。この場合、照明系は不 要となる。
[0100] なお、反射型の非発光型画像表示素子を用いて可変成形マスクを構成する場合、 投影光学系としては、前述した屈折系の他、反射屈折系、又は反射系を用いることも できる。また、反射屈折系、反射系、あるいは屈折系の投影光学系と組み合わせて、 透過型の非発光型画像表示素子を含む可変成形マスクを用いても良い。また、本発 明の露光装置が備える光学系は、縮小系に限らず、等倍系、あるいは拡大系であつ ても良い。
[0101] なお、例えば国際公開第 99/49504号パンフレット、欧州特許出願公開第 1,420 ,298号明細書、国際公開第 2004/055803号パンフレツ卜、特開 2004— 289126 号公報(対応米国特許第 6,952,253号明細書)などに開示されているように、投影 光学系とプレートとの間に照明光の光路を含む液浸空間を形成し、投影光学系及び 液浸空間の液体を介して照明光でプレートを露光する露光装置にも本発明を適用 すること力 Sでさる。
[0102] また、例えば特開平 10— 163099号公報及び特開平 10— 214783号公報(対応 米国特許第 6,590,634号明細書)、特表 2000— 505958号公報(対応米国特許第 5,969,441号明細書)、米国特許第 6,208,407号明細書などに開示されているよう に、複数のステージを備えたマルチステージ型の露光装置にも本発明を適用できる
[0103] さらに、例えば特表 2004— 519850号公報及びこれに対応する米国特許第 6,61 1 ,316号明細書などに開示されているように、複数の可変成形マスクでそれぞれ生 成されるパターンを、投影光学系を介してプレート上で合成し、 1回の走査露光によ つてプレート上の 1つの領域をほぼ同時に二重露光する露光装置にも本発明を適用 すること力 Sでさる。
[0104] なお、複数の光学素子からそれぞれ構成される照明光学系、及び投影光学系を露 光装置本体に組み込んで光学調整を行うとともに、前述の可変成形マスク (パターン 生成装置)、多数の機械部品からなるステージを露光装置本体に取り付けて配線や 配管を接続し、更に総合調整 (電気調整、動作確認等)をすることにより、上記各実 施形態の露光装置を製造することができる。なお、露光装置の製造は温度及びタリ ーン度等が管理されたクリーンルームで行うことが望ましい。
[0105] また、本発明は、半導体デバイスの製造プロセスへの適用に限定されることなぐ例 えば、液晶表示素子又はプラズマディスプレイ等のディスプレイ装置の製造プロセス 、撮像素子(CCD等)、マイクロマシーン、 MEMS(Micro Electro Mechanical System s)、セラミックスウェハ等を基板として用いる薄膜磁気ヘッド、及び DNAチップ等の各 種デバイスの製造プロセスにも広く適用できる。さらに、本発明は、各種デバイスのマ スクパターンが形成されたマスク (フォトマスク、レチクル等)をフォトリソグラフイエ程を 用いて製造する際の、製造プロセスにも適用することができる。
[0106] さらに、本発明は、露光対象となる物体 (プレート)がガラスプレートに限られるもの でなぐウェハ、セラミック基板、フィルム部材、あるいはマスクブランクスなど他の物体 でも良いし、その形状も円形に限らず矩形などでも良い。
[0107] なお、本国際出願で指定 (又は選択)された国の法令で許容される限りにおいて、 上記各実施形態及び変形例で引用した露光装置などに関する全ての公開公報(国 際公開パンフレットを含む)及び米国特許明細書の開示を援用して本明細書の記載 の一部とする。
[0108] 《デバイス製造方法》 次に、上記各実施形態の露光装置をリソグラフイエ程で使用したマイクロデバイス の製造方法について説明する。図 16は、マイクロデバイスとしての半導体デバイスの 製造方法を説明するためのフローチャートである。ここでは、ウエノ、(プレート)のロット 単位で処理を行う場合にっレ、て説明する。
[0109] 先ず、ステップ 102において、 1ロットのウエノ、(プレート)上に金属膜が蒸着される。
次のステップ 104において、その 1ロットのウエノ、(プレート)上の金属膜上にフォトレ ジストが塗布される。その後、ステップ 106において、上記各実施形態の露光装置に より、設計データに基づいて決定された目標パターンに関する情報 (複数の変調素 子の配置に対応してプレート上に仮想的に設定される 2次元画素のサイズの整数倍 とならな!/、サイズの目標パターンに関する前述の基本パターンの重畳情報を含む) に応じて、可変成形マスクで発生されたパターンの像が投影光学系 PLを介して、そ の 1ロットのウェハ(プレート)上の各ショット領域に順次投影される。
[0110] その後、ステップ 108において、その 1ロットのウエノ、(プレート)上のフォトレジストの 現像が行われた後、ステップ 110において、その 1ロットのウェハ(プレート)上でレジ ストパターンをマスクとしてエッチングを行う。これによつて、設計データに対応する回 路パターン力 各ウェハ(プレート)上の各ショット領域に形成される。
[0111] その後、更に上のレイヤの回路パターンの形成等を行うことによって、半導体素子 等のデバイスが製造される。従って、所望の線幅のパターンを所望の位置に精度良 く形成することができ、結果的に、半導体素子等のデバイスを歩留り良く製造すること ができる。
[0112] また、上記実施形態に係る露光装置では、プレート (ガラス基板)上に所定のパター ン(回路パターン、電極パターン等)を形成することによって、マイクロデバイスとして の液晶表示素子を得ることもできる。図 17は、上記各実施形態の露光装置を用いて プレート上に所定のパターンを形成することによって、マイクロデバイスとしての液晶 表示素子を製造する方法を説明するためのフローチャートである。
[0113] ステップ 202のパターン形成工程では、上記各実施形態の露光装置により、設計 データに基づいて決定された目標パターンに関する情報 (複数の変調素子の配置に 対応してプレート上に仮想的に設定される 2次元画素のサイズの整数倍とならないサ ィズの目標パターンに関する前述の基本パターンの重畳情報を含む)に応じて、可 変成形マスクで発生されたパターンの像を投影光学系 PLを介して感光性基板 (レジ ストが塗布されたガラス基板等)に順次形成する、いわゆる光リソグラフイエ程が実行 される。この光リソグラフイエ程によって、感光性基板上には多数の電極等を含む所 定パターンが形成される。その後、露光された基板は、現像工程、エッチング工程、 レジスト剥離工程等の各工程を経ることによって、基板上に所定のパターンが形成さ れる。
[0114] 次に、ステップ 204のカラーフィルタ形成工程において、 R (Red)、 G (Green)、 B (B1 ue)に対応した 3つのドットの組がマトリックス状に多数配列されたり、又は R、 G、 Bの 3本のストライプのフィルタの組を複数水平走査線方向に配列したカラーフィルタを形 成する。そして、カラーフィルタ形成工程(ステップ 204)の後に、ステップ 206のセル 組み立て工程が実行される。ステップ 206のセル組み立て工程では、パターン形成 工程にて得られた所定パターンを有する基板、及びカラーフィルタ形成工程にて得 られたカラーフィルタ等を用いて液晶パネル (液晶セル)を組み立てる。
[0115] ステップ 206のセル組み立て工程では、例えば、パターン形成工程にて得られた所 定パターンを有する基板とカラーフィルタ形成工程にて得られたカラーフィルタとの 間に液晶を注入して、液晶パネル (液晶セル)を製造する。その後、ステップ 208のモ ジュール組立工程にて、組み立てられた液晶パネル (液晶セル)の表示動作を行わ せる電気回路、バックライト等の各部品を取り付けて液晶表示素子として完成させる。
[0116] 以上説明したように、このマイクロデバイス(液晶表示素子)の製造方法のパターン 形成工程においては、所望の線幅のパターン像を所望の位置に精度良く形成するこ とができ、結果的に液晶表示素子を歩留り良く製造することができる。
産業上の利用可能性
[0117] 以上説明したように、本発明のパターン形成方法及びパターン形成装置は、物体 上にパターンを形成するのに適している。また、本発明の露光方法及び露光装置は 、感光性基板などの物体上にパターンを形成するのに適している。また、本発明のデ バイス製造方法は、マイクロデバイスの製造に適して!/、る。

Claims

請求の範囲
[1] 照明光の入射位置に 2次元的に配置され、前記照明光の振幅、位相及び偏光の 状態の少なくとも 1つを空間的に個別に変調する複数の変調素子を有し、明領域と 喑領域とからなるパターンを発生する可変成形マスクを用いて物体上にパターンを 形成するパターン形成方法であって、
目標パターンに関する情報を取得する取得工程と;
前記目標パターンに関する情報に基づ!/、て、前記目標パターンを前記物体上に形 成する間に、前記照明光の照射によりパターンの結像に寄与する複数の変調素子の 前記可変成形マスク上の数及び位置の少なくとも一方が変更されるように、前記可変 成形マスクの複数の変調素子を制御するパターン形成工程と;を含むパターン形成 方法。
[2] 請求項 1に記載のパターン形成方法にお!/、て、
前記取得工程では、前記複数の変調素子の配置に対応して前記物体上に仮想的 に設定される 2次元画素のサイズの整数倍とならないサイズの目標パターンに関して 、明領域と喑領域の分布状態が互いに異なる複数の基本パターンと、該基本パター ン毎の前記可変成形マスクに照射される前記照明光の積算光量に関する情報とを 含む、前記目標パターンに応じた基本パターンの重畳情報を、前記目標パターンに 関する情報として取得し、
前記パターン形成工程では、 2次元画素のサイズの整数倍とならないサイズの目標 パターンを前記物体上に形成するに際し、前記重畳情報に基づいて、前記可変成 形マスクの複数の変調素子を制御するパターン形成方法。
[3] 請求項 2に記載のパターン形成方法において、
前記物体上の異なる位置に複数種類の目標パターンを形成するに際し、前記複数 種類の目標パターンの全てが前記 2次元画素の整数倍とならな!/、サイズのパターン である場合、前記取得工程では、前記複数種類の目標パターンのそれぞれについ て前記重畳情報を取得し、
前記パターン形成工程では、前記複数種類のパターンのそれぞれにつ!/、て前記 重畳情報に基づく照明光を、複数の前記変調素子の群をそれぞれ用いて前記物体 上の異なる位置に並行して照射し、前記物体上の異なる位置に前記複数種類のパ ターンをそれぞれ形成するパターン形成方法。
[4] 請求項 2に記載のパターン形成方法において、
前記物体上の異なる位置に複数種類のパターンを形成するに際し、前記複数種類 のパターンのうち一部のパターンのみが前記 2次元画素の整数倍とならないサイズの ノ ターンである場合、前記取得工程では、前記一部のパターンについて前記重畳情 報を取得し、
前記パターン形成工程では、前記一部のパターンにつ!/、て前記重畳情報に基づく 照明光を前記変調素子の 1つの群を用いて前記物体上の所定領域に照射するととも に、前記物体上の前記所定領域とは異なる領域に残りのパターンについての設計情 報に基づく照明光を前記変調素子の他の群を用いて照射し、前記物体上の異なる 領域に前記複数種類のパターンをそれぞれ形成するパターン形成方法。
[5] 請求項 3又は 4に記載のパターン形成方法において、
前記各変調素子の群は、複数の可変成形マスクのそれぞれに設けられてレ、るバタ ーン形成方法。
[6] 請求項 2〜5のいずれか一項に記載のパターン形成方法において、
前記照明光は、パルス光であり、
前記基本パターン毎の前記照明光の積算光量に関する情報は、パルス数を含む パターン形成方法。
[7] 請求項 2〜6の!/、ずれか一項に記載のパターン形成方法にお!/、て、
前記重畳情報は、光近接効果による前記パターンの線幅誤差及び位置誤差の少 なくとも一方の補正を考慮した情報であるパターン形成方法。
[8] 請求項 2〜7のいずれか一項に記載のパターン形成方法において、
前記重畳情報が取得されるパターンは、パターンのピッチが前記 2次元画素のサイ ズの整数倍の密集パターンであるパターン形成方法。
[9] 請求項 8に記載のパターン形成方法において、
前記密集パターンは、ラインアンドスペースパターンであるパターン形成方法。
[10] 請求項 1〜9の何れか一項に記載のパターン形成方法において、 前記パターンの像の物体上での結像は、次数の異なる複数の回折光同士の干渉 を利用したものであるパターン形成方法。
[11] 請求項 1〜; 10のいずれか一項に記載のパターン形成方法を用いて物体上にバタ ーンを形成する工程と;
該パターンが形成された物体を現像する工程と;を含むデバイス製造方法。
[12] 複数の変調素子が 2次元的に配置される可変成形マスクを介して照明光で物体を 露光する露光方法であって、
少なくとも一部でサイズが前記変調素子の非整数倍となるパターンを前記物体上 に形成するために、前記露光中に前記パターンの生成に寄与する前記可変成形マ スクでの変調素子の数及び位置の少なくとも一方を変更することを含む露光方法。
[13] 請求項 12に記載の露光方法において、
前記パターンは、線幅が前記変調素子の非整数倍となるラインパターンを含む露 光方法。
[14] 請求項 12又は 13に記載の露光方法において、
前記パターンは、ピッチが前記変調素子の非整数倍となる密集パターンを含む露 光方法。
[15] 請求項 12〜; 14のいずれか一項に記載の露光方法において、
前記変調素子の数及び位置の少なくとも一方の変更によって生成される、前記物 体上でのサイズ及び位置の少なくとも一方が異なる複数の基本パターンを重ねて前 記パターンを形成する露光方法。
[16] 請求項 12〜; 15のいずれか一項に記載の露光方法において、
前記パターンは、前記照明光の照射によって前記可変成形マスクから発生する次 数の異なる複数の回折光同士の干渉を利用して前記物体上に生成される露光方法
[17] 請求項 12〜; 16のいずれか一項に記載の露光方法を用いて物体を露光することと 前記露光された物体を現像することを含むデバイス製造方法。
[18] 物体上にパターンを形成するパターン形成装置であって、 照明光を射出する照明系と;
前記照明光の入射位置に 2次元的に配置され、前記照明光の振幅、位相及び偏 光の状態の少なくとも 1つを空間的に個別に変調する複数の変調素子を有し、明領 域と喑領域とからなるパターンを発生する可変成形マスクと;
前記可変成形マスクで発生したパターンを前記物体上に投影する光学系と; 目標パターンに関する情報に基づ!/、て、前記目標パターンを前記物体上に形成す る間に、前記照明光の照射により前記パターンの結像に寄与する複数の変調素子の 前記可変成形マスク上の数及び位置の少なくとも一方が変更されるように、前記可変 成形マスクの複数の変調素子を制御する制御装置と;を備えるパターン形成装置。
[19] 請求項 18に記載のパターン形成装置において、
前記複数の変調素子の配置に対応して前記物体上に仮想的に設定される 2次元 画素のサイズの整数倍とならないサイズの目標パターンに関して、明領域と喑領域の 分布状態が互いに異なる複数の基本パターンと、該基本パターン毎の前記可変成 形マスクに照射される前記照明光の積算光量に関する情報とを含む、前記目標バタ ーンに応じた重畳情報を、前記目標パターンに関する情報として取得する情報取得 装置を、さらに備え、
前記制御装置は、 2次元画素のサイズの整数倍とならないサイズの目標パターンを 前記物体上に形成するに際し、前記重畳情報に基づいて、前記可変成形マスクの 複数の変調素子を制御するパターン形成装置。
[20] 請求項 19に記載のパターン形成装置において、
前記可変成形マスクは、前記物体が配置された面と前記光学系に関して実質的に 共役となる面上に、所定方向に並んで複数配置され、
前記複数の可変成形マスクのそれぞれに対応して、前記照明系は、複数設けられ 前記物体上の異なる位置に複数種類のパターンを形成するに際し、前記複数種類 のパターンの全てが前記 2次元画素のサイズの整数倍とならないサイズのパターンで ある場合、前記取得装置は、前記複数種類のパターンのそれぞれについて前記重 畳情報を取得し、 前記制御装置は、前記複数種類のパターンのそれぞれにつ!/、ての前記重畳情報 に基づ!/、て、前記複数の可変成形マスクの複数の変調素子を制御するパターン形 成装置。
[21] 請求項 19に記載のパターン形成装置において、
前記可変成形マスクは、前記物体が配置された面と前記光学系に関して実質的に 共役となる面上に、所定方向に並んで複数配置され、
前記複数の可変成形マスクのそれぞれに対応して前記照明系は、複数設けられ、 前記物体上の異なる位置に複数種類のパターンを形成するに際し、前記複数種類 のパターンのうち一部のパターンのみが前記 2次元画素のサイズの整数倍とならない サイズのパターンである場合、前記取得装置は、前記一部のパターンについて前記 重畳情報を取得し、
前記制御装置は、前記一部のパターンについての前記重畳情報と残りのパターン についての設計情報とに基づいて、前記複数の可変成形マスクの複数の変調素子 を制御するパターン形成装置。
[22] 請求項 20又は 21に記載のパターン形成装置にお!/、て、
前記制御装置は、前記複数の照明系のそれぞれで、前記目標パターンの種類に 応じて、前記複数の照明系の照明条件を異ならせるパターン形成装置。
[23] 請求項 19〜22のいずれか一項に記載のパターン形成装置において、
前記照明光は、パルス光であり、
前記基本パターン毎の前記照明光の積算光量に関する情報は、パルス数を含む パターン形成装置。
[24] 請求項 19〜23のいずれか一項に記載のパターン形成装置において、
前記重畳情報は、光近接効果によるパターンの線幅誤差及び位置誤差の少なくと も一方の補正を考慮した情報であるパターン形成装置。
[25] 請求項 19〜24のいずれか一項に記載のパターン形成装置において、
前記情報取得装置は、設計データ毎にそれに適した重畳情報がテーブル形式で 格納されたメモリを有し、
前記情報取得装置は、前記設計データをキーにして前記テーブルを検索し、前記 重畳情報を取得するパターン形成装置。
[26] 請求項 18〜25のいずれか一項に記載のパターン形成装置において、
前記可変成形マスクは、反射型の可変成形マスクであるパターン形成装置。
[27] 請求項 26に記載のパターン形成装置において、
前記可変成形マスクの変調素子は、駆動信号に応じて光の入射角を変化させるこ とができるミラー素子であるパターン形成装置。
[28] 請求項 27に記載のパターン形成装置において、
前記制御装置は、前記明領域に対応するミラー素子に対して、反射光が前記光学 系の方向に向力、うように前記入射角を変化させる駆動信号を出力し、前記喑領域に 対応するミラー素子に対して、反射光が前記光学系の方向と異なる方向に向力、うよう に前記入射角を変化させる駆動信号を出力するパターン形成装置。
[29] 請求項 27又は 28に記載のパターン形成装置
前記可変成形マスクは、デジタル'マイクロミラー'デバイスを含むパターン形成装 置。
[30] エネルギビームにより物体を露光して前記物体上に所定のパターンを形成する露 光装置であって、
前記パターンの形成装置として、請求項 18〜29のいずれか一項に記載のパター ン形成装置を具備する露光装置。
[31] 照明光で物体を露光する露光装置であって、
複数の変調素子が 2次元に配置される可変成形マスクと;
少なくとも一部でサイズが前記変調素子の非整数倍となるパターンを前記物体上 に形成するために、前記露光中に前記パターンの生成に寄与する前記可変成形マ スクでの変調素子の数及び位置の少なくとも一方を変更する制御装置と;を備える露 光装置。
[32] 請求項 31に記載の露光装置において、
前記パターンは、線幅が前記変調素子の非整数倍となるラインパターンを含む露 光装置。
[33] 請求項 31又は 32に記載の露光装置において、 前記パターンは、ピッチが前記変調素子の非整数倍となる密集パターンを含む露 光装置。
[34] 請求項 3;!〜 33の!/、ずれか一項に記載の露光装置にお!/、て、
前記変調素子の数及び位置の少なくとも一方の変更によって生成される、前記物 体上でのサイズ及び位置の少なくとも一方が異なる複数の基本パターンを重ねて前 記パターンを形成する露光装置。
[35] 請求項 34に記載の露光装置において、
前記照明光はパルス光であり、前記パターンの形成に必要な前記各基本パターン でのノ ルス数が決定される露光装置。
[36] 請求項 3;!〜 35の!/、ずれか一項に記載の露光装置にお!/、て、
前記照明光の照射によって前記可変成形マスクから発生する次数の異なる複数の 回折光の干渉を利用して前記物体上に前記パターンを生成する露光装置。
[37] 請求項 3;!〜 36の!/、ずれか一項に記載の露光装置にお!/、て、
前記制御装置は、前記可変成形マスクを制御して光近接効果による前記パターン のサイズ及び位置の少なくとも一方を補正する露光装置。
[38] 請求項 30〜37のいずれか一項に記載の露光装置を用いて物体を露光し、該物体 上に所定のパターンを形成する工程と;
該パターンが形成された物体を現像する工程と;を含むデバイス製造方法。
PCT/JP2007/061709 2006-06-09 2007-06-11 パターン形成方法及びパターン形成装置、露光方法及び露光装置、並びにデバイス製造方法 WO2007142350A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008520645A JPWO2007142350A1 (ja) 2006-06-09 2007-06-11 パターン形成方法及びパターン形成装置、露光方法及び露光装置、並びにデバイス製造方法
EP07815072A EP2037488A4 (en) 2006-06-09 2007-06-11 METHOD AND DEVICE FOR FORMING PATTERNS, METHOD AND DEVICE FOR EXPOSING, AND METHOD FOR MANUFACTURING DEVICES
US12/330,870 US8405816B2 (en) 2006-06-09 2008-12-09 Pattern formation method, pattern formation apparatus, exposure method, exposure apparatus, and device manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006160886 2006-06-09
JP2006-160886 2006-06-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/330,870 Continuation US8405816B2 (en) 2006-06-09 2008-12-09 Pattern formation method, pattern formation apparatus, exposure method, exposure apparatus, and device manufacturing method

Publications (1)

Publication Number Publication Date
WO2007142350A1 true WO2007142350A1 (ja) 2007-12-13

Family

ID=38801592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/061709 WO2007142350A1 (ja) 2006-06-09 2007-06-11 パターン形成方法及びパターン形成装置、露光方法及び露光装置、並びにデバイス製造方法

Country Status (6)

Country Link
US (1) US8405816B2 (ja)
EP (1) EP2037488A4 (ja)
JP (1) JPWO2007142350A1 (ja)
KR (1) KR20090026116A (ja)
TW (1) TW200816271A (ja)
WO (1) WO2007142350A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011049296A (ja) * 2009-08-26 2011-03-10 Nikon Corp マスクレス露光方法
WO2012043497A1 (ja) * 2010-09-27 2012-04-05 株式会社ニコン 空間光変調器の駆動方法、露光用パターンの生成方法、並びに露光方法及び装置
JP2014235342A (ja) * 2013-06-03 2014-12-15 株式会社アドテックエンジニアリング 露光描画装置、露光描画方法およびプログラム
JP2017129888A (ja) * 2012-01-18 2017-07-27 株式会社ニコン 露光方法及び装置、並びにデバイス製造方法
JP2018092997A (ja) * 2016-11-30 2018-06-14 キヤノン株式会社 インプリント装置、インプリント方法、および物品の製造方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI396947B (zh) * 2008-12-03 2013-05-21 Metal Ind Res & Dev Ct No-mask exposure system
TWI417942B (zh) * 2009-12-17 2013-12-01 Ind Tech Res Inst 二維陣列疊對圖樣組之設計方法、疊對誤差量測方法及其量測系統
US8539395B2 (en) 2010-03-05 2013-09-17 Micronic Laser Systems Ab Method and apparatus for merging multiple geometrical pixel images and generating a single modulator pixel image
JP5213272B2 (ja) * 2010-03-31 2013-06-19 富士フイルム株式会社 マルチビーム露光走査方法及び装置並びに印刷版の製造方法
US8464186B2 (en) * 2011-01-21 2013-06-11 Taiwan Semiconductor Manufacturing Company, Ltd. Providing electron beam proximity effect correction by simulating write operations of polygonal shapes
TWI561327B (en) * 2013-10-16 2016-12-11 Asm Tech Singapore Pte Ltd Laser scribing apparatus comprising adjustable spatial filter and method for etching semiconductor substrate
US20150234295A1 (en) 2014-02-20 2015-08-20 Nikon Corporation Dynamic patterning method that removes phase conflicts and improves pattern fidelity and cdu on a two phase-pixelated digital scanner
KR20160049171A (ko) * 2014-10-24 2016-05-09 삼성디스플레이 주식회사 마스크리스 노광 장치, 마스크리스 노광 방법 및 이에 의해 제조되는 표시 기판
US10840103B2 (en) 2015-11-23 2020-11-17 Nikon Corporation Forced grid method for correcting mask patterns for a pattern transfer apparatus
CN110476121A (zh) * 2017-03-31 2019-11-19 株式会社尼康 图案计算装置、图案计算方法、掩模、曝光装置、元件制造方法、计算机程序和记录媒体
WO2019079010A1 (en) 2017-10-19 2019-04-25 Cymer, Llc FORMATION OF MULTIPLE AERIAL IMAGES IN ONE LITHOGRAPHIC EXPOSURE PASSAGE

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10163099A (ja) 1996-11-28 1998-06-19 Nikon Corp 露光方法及び露光装置
JPH10214783A (ja) 1996-11-28 1998-08-11 Nikon Corp 投影露光装置及び投影露光方法
WO1999049504A1 (fr) 1998-03-26 1999-09-30 Nikon Corporation Procede et systeme d'exposition par projection
US5969441A (en) 1996-12-24 1999-10-19 Asm Lithography Bv Two-dimensionally balanced positioning device with two object holders, and lithographic device provided with such a positioning device
US6208407B1 (en) 1997-12-22 2001-03-27 Asm Lithography B.V. Method and apparatus for repetitively projecting a mask pattern on a substrate, using a time-saving height measurement
JP2003084444A (ja) * 2001-07-05 2003-03-19 Pentax Corp 多重露光描画方法及び多重露光描画装置
US6590634B1 (en) 1996-11-28 2003-07-08 Nikon Corporation Exposure apparatus and method
US6611316B2 (en) 2001-02-27 2003-08-26 Asml Holding N.V. Method and system for dual reticle image exposure
EP1420298A2 (en) 2002-11-12 2004-05-19 ASML Netherlands B.V. Immersion lithographic apparatus and device manufacturing method
WO2004055803A1 (en) 2002-12-13 2004-07-01 Koninklijke Philips Electronics N.V. Liquid removal in a method and device for irradiating spots on a layer
JP2004289126A (ja) 2002-11-12 2004-10-14 Asml Netherlands Bv リソグラフィ装置およびデバイス製造方法
JP2004327660A (ja) 2003-04-24 2004-11-18 Nikon Corp 走査型投影露光装置、露光方法及びデバイス製造方法
JP2005513770A (ja) * 2001-12-14 2005-05-12 マイクロニック レーザー システムズ アクチボラゲット 加工物にパターンを形成するための方法及び装置
US7023610B2 (en) 1998-03-11 2006-04-04 Nikon Corporation Ultraviolet laser apparatus and exposure apparatus using same
JP2006128194A (ja) * 2004-10-26 2006-05-18 Canon Inc 露光装置及びデバイス製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6291110B1 (en) * 1997-06-27 2001-09-18 Pixelligent Technologies Llc Methods for transferring a two-dimensional programmable exposure pattern for photolithography
US7106490B2 (en) * 2001-12-14 2006-09-12 Micronic Laser Systems Ab Methods and systems for improved boundary contrast
US20030233630A1 (en) 2001-12-14 2003-12-18 Torbjorn Sandstrom Methods and systems for process control of corner feature embellishment
KR20070104444A (ko) * 2005-01-28 2007-10-25 에이에스엠엘 홀딩 엔.브이. 전체적 최적화에 기초한 무마스크 리소그래피래스터라이제이션 기술을 위한 방법 및 시스템

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10163099A (ja) 1996-11-28 1998-06-19 Nikon Corp 露光方法及び露光装置
JPH10214783A (ja) 1996-11-28 1998-08-11 Nikon Corp 投影露光装置及び投影露光方法
US6590634B1 (en) 1996-11-28 2003-07-08 Nikon Corporation Exposure apparatus and method
US5969441A (en) 1996-12-24 1999-10-19 Asm Lithography Bv Two-dimensionally balanced positioning device with two object holders, and lithographic device provided with such a positioning device
JP2000505958A (ja) 1996-12-24 2000-05-16 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 2個の物品ホルダを有する二次元バランス位置決め装置及びこの位置決め装置を有するリソグラフ装置
US6208407B1 (en) 1997-12-22 2001-03-27 Asm Lithography B.V. Method and apparatus for repetitively projecting a mask pattern on a substrate, using a time-saving height measurement
US7023610B2 (en) 1998-03-11 2006-04-04 Nikon Corporation Ultraviolet laser apparatus and exposure apparatus using same
WO1999049504A1 (fr) 1998-03-26 1999-09-30 Nikon Corporation Procede et systeme d'exposition par projection
US6611316B2 (en) 2001-02-27 2003-08-26 Asml Holding N.V. Method and system for dual reticle image exposure
JP2004519850A (ja) 2001-02-27 2004-07-02 エイエスエムエル ユーエス, インコーポレイテッド デュアルレチクルイメージを露光する方法および装置
JP2003084444A (ja) * 2001-07-05 2003-03-19 Pentax Corp 多重露光描画方法及び多重露光描画装置
JP2005513770A (ja) * 2001-12-14 2005-05-12 マイクロニック レーザー システムズ アクチボラゲット 加工物にパターンを形成するための方法及び装置
EP1420298A2 (en) 2002-11-12 2004-05-19 ASML Netherlands B.V. Immersion lithographic apparatus and device manufacturing method
JP2004289126A (ja) 2002-11-12 2004-10-14 Asml Netherlands Bv リソグラフィ装置およびデバイス製造方法
US6952253B2 (en) 2002-11-12 2005-10-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
WO2004055803A1 (en) 2002-12-13 2004-07-01 Koninklijke Philips Electronics N.V. Liquid removal in a method and device for irradiating spots on a layer
JP2004327660A (ja) 2003-04-24 2004-11-18 Nikon Corp 走査型投影露光装置、露光方法及びデバイス製造方法
JP2006128194A (ja) * 2004-10-26 2006-05-18 Canon Inc 露光装置及びデバイス製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2037488A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011049296A (ja) * 2009-08-26 2011-03-10 Nikon Corp マスクレス露光方法
WO2012043497A1 (ja) * 2010-09-27 2012-04-05 株式会社ニコン 空間光変調器の駆動方法、露光用パターンの生成方法、並びに露光方法及び装置
JP5811362B2 (ja) * 2010-09-27 2015-11-11 株式会社ニコン 露光用パターンの生成方法、露光方法及び装置、並びにデバイス製造方法
JP2017129888A (ja) * 2012-01-18 2017-07-27 株式会社ニコン 露光方法及び装置、並びにデバイス製造方法
JP2014235342A (ja) * 2013-06-03 2014-12-15 株式会社アドテックエンジニアリング 露光描画装置、露光描画方法およびプログラム
JP2018092997A (ja) * 2016-11-30 2018-06-14 キヤノン株式会社 インプリント装置、インプリント方法、および物品の製造方法
US11204548B2 (en) 2016-11-30 2021-12-21 Canon Kabushiki Kaisha Imprint apparatus, imprinting method, and method for manufacturing article

Also Published As

Publication number Publication date
KR20090026116A (ko) 2009-03-11
TW200816271A (en) 2008-04-01
JPWO2007142350A1 (ja) 2009-10-29
EP2037488A4 (en) 2011-11-23
EP2037488A1 (en) 2009-03-18
US20090135399A1 (en) 2009-05-28
US8405816B2 (en) 2013-03-26

Similar Documents

Publication Publication Date Title
WO2007142350A1 (ja) パターン形成方法及びパターン形成装置、露光方法及び露光装置、並びにデバイス製造方法
JP5741868B2 (ja) パターン形成方法及びパターン形成装置、並びにデバイス製造方法
JP4339842B2 (ja) リソグラフィ装置及びデバイス製造方法
KR100841424B1 (ko) 간섭 패턴들을 감소시키기 위해 회절 광학기에 대해 빔을이동시키는 방법
KR100730060B1 (ko) 리소그래피 장치 및 디바이스 제조 방법
KR20080068006A (ko) 노광 장치와, 노광 방법 및 디바이스 제조 방법
KR20060072052A (ko) 리소그래피 장치 및 디바이스 제조방법
US7563562B2 (en) Lithographic apparatus and device manufacturing method
US7728956B2 (en) Lithographic apparatus and device manufacturing method utilizing multiple die designs on a substrate using a data buffer that stores pattern variation data
JP4898262B2 (ja) 複数のパターン形成デバイスを利用するリソグラフィ装置及びデバイス製造方法
US7834979B2 (en) Off-axis catadioptric projection optical system for lithography
US20050024613A1 (en) Spatial light modulator, lithographic apparatus and device manufacturing method
US7242458B2 (en) Lithographic apparatus and device manufacturing method utilizing a multiple substrate carrier for flat panel display substrates
US20050243298A1 (en) Lithographic apparatus and device manufacturing method
US7336343B2 (en) Lithographic apparatus and device manufacturing method
US7499146B2 (en) Lithographic apparatus and device manufacturing method, an integrated circuit, a flat panel display, and a method of compensating for cupping
US20060126047A1 (en) Lithographic apparatus and device manufacturing method
JP2007329386A (ja) 露光装置及び露光方法、並びにデバイス製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07815072

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020087021670

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2008520645

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007815072

Country of ref document: EP