WO2007142099A1 - 電力伝送装置、電力伝送装置の送電装置および受電装置、ならびに電力伝送装置の作動方法 - Google Patents
電力伝送装置、電力伝送装置の送電装置および受電装置、ならびに電力伝送装置の作動方法Info
- Publication number
- WO2007142099A1 WO2007142099A1 PCT/JP2007/061012 JP2007061012W WO2007142099A1 WO 2007142099 A1 WO2007142099 A1 WO 2007142099A1 JP 2007061012 W JP2007061012 W JP 2007061012W WO 2007142099 A1 WO2007142099 A1 WO 2007142099A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- coil
- power transmission
- power
- frequency
- transmission device
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F38/00—Adaptations of transformers or inductances for specific applications or functions
- H01F38/14—Inductive couplings
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/10—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/70—Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
Definitions
- Power transmission device Power transmission device, power transmission device and power reception device of power transmission device, and method of operating power transmission device
- the present invention relates to a power transmission device that includes a separable power transmission unit and a power reception unit, and transmits power by a mutual induction effect generated between a power transmission coil of the power transmission unit and a power reception coil of the power reception unit.
- the present invention relates to a power transmission device and a power reception device of the device, and a method of operating the power transmission device.
- a power transmission device in which a power transmission coil and a power reception coil are separable performs power transmission, and when there is no power transmission device, the distance between the coils is separated.
- the power transmission coil 1 and the power reception coil 2 are arranged to face each other.
- an alternating current is passed from the power transmission control circuit 3 to the power transmission coil 1
- an electromotive force is induced in the power receiving coil 2 due to mutual induction, and the alternating current due to the electromotive force flows to the load through the power reception control circuit 4 to generate power. Transmission takes place.
- Fig. 37 (B) of the present application the same coil 1 for power transmission and coil 2 for power reception are used.
- the facing state indicating inductive coupling uses the same coil for the power transmission coil 1 and the power reception coil 2.
- different coils may be used for the power transmission coil 1 and the power reception coil 2.
- the term “coil”, including the conventional example simply refers to the coil 1 for power transmission or the coil 2 for power reception, or both coils.
- this coil was made by bundling 100 copper wires with an insulation coating with a diameter of 100 ⁇ ⁇ ⁇ for 5 turns, creating an outer diameter of 30 mm, an inner diameter of 15 mm, and a thickness of 1.5 mm. I'm not equipped with materials.
- the primary side (input side) is connected to the power supply with these facing each other, and the secondary side (output side) is the one that generates output by electromagnetic induction.
- Japanese Utility Model Publication No. Hei 6-29117 discloses a coil formed by winding a conductor, and due to an eddy current loss and a skin effect, the AC resistance of the conductor constituting the coil increases due to an increase in frequency. It is described to do. As a method for avoiding this, it is described that a plurality of single conductor wires are formed into a flat cable shape to form a coil, and the frequency characteristics of AC resistance compared to a coil wound using other wire materials are described. Has been.
- the parts including the power transmission control circuit 3 and the power transmission coil 1 in FIG. 36 of the present application are described as the power transmission side, the primary side, the input side, etc., and the power transmission coil 1 is represented by the power transmission coil, the power transmission coil, and the primary coil. Indicated as primary coil.
- the part including the power reception control circuit 4 and the power reception coil 2 in FIG. 36 of the present application is expressed as a power reception side, a secondary side, an output side, etc.
- the power reception coil 2 is represented by a power reception coil, a power reception coil, a secondary Indicated as a coil, secondary coil, etc.
- a power transmission device in which a power transmission unit and a power reception unit are separable can transmit power to a device without using electric wires or mechanical contacts.
- the configuration and characteristics of the power transmission coil that transmits power using the mutual inductive action, and the effects are not clarified. Therefore, let us consider a conventional example of a power transmission device in which a power transmission coil and a power reception coil can be separated, and a coil of the power transmission device.
- Japanese Patent Application Laid-Open No. 8-148360 discloses that the power transmission frequency can be arbitrarily selected.
- the power transmission means is a transformer.
- the primary and secondary coils are inseparable, it is clear that transformers designed for commercial power supplies between 50Hz and 60Hz cannot be used at any frequency, for example 5Hz or 10kHz.
- the coupling coefficient between the two coils is in a tightly coupled state.
- a transformer in which the primary coil and secondary coil can be separated is loosely coupled with a maximum coupling coefficient of about 0.9. Therefore, the coils described as examples in JP-A-8 148360 and JP-A-4-122007 are equipped with a magnetic material in a coil wound in a plane spiral shape to ensure a coupling coefficient between both coils. I try to do it. That is, the coils described in JP-A-8-148360 and JP-A-4122007 are both comparative examples, and when an air-core planar spiral coil is used, a magnetic material is provided. If you do not do so, you will see that the performance cannot be improved
- the advantage of the planar spiral coil lies in its shape.
- the power receiving coil provided on the device side has a mounting problem unless it is thin.
- small portable devices with a built-in secondary battery require the ability to reduce the coil volume as much as possible due to space constraints.
- a plate material made of a magnetic material is used as an opposing surface of the coil. It must be equipped on the other side of.
- the thickness of the magnetic material is defined as 0.1 mm to 5 mm. If such a magnetic material is not installed in at least one of the power transmission coil and the power reception coil, the power transmission performance cannot be improved. This is also described in paragraph No. 0019 of Japanese Patent Laid-Open No. 8-148360 as a basis for setting the maximum thickness of the magnetic material to 5 mm. However, if the total thickness of the coil is more than mm, there is a problem that it cannot be installed in small devices such as mobile phones.
- a coil described as a comparative example in Japanese Patent Laid-Open No. 8-148360 has a thick wire with a diameter of 1.5 mm, which is a bundle of 100 insulation coated copper wires with a diameter of 100 / im, and a conductive wire with 5 turns. There is only. For this reason, the self-inductance is as small as about 0.8 mm, and the mutual inductance is also small due to the coin shape.
- the coil described in Japanese Patent Laid-Open No. 8-148360 is provided with a magnetic material on the opposite side of the coil facing surface to ensure self-inductance and to generate a magnetic flux when the coils face each other. It is created with the intention of increasing the confinement and coupling coefficient. For this reason, it is not optimized as a coil.
- the power transmission control circuit 3 in FIG. 36 of the present application is indicated by an AC power supply V in FIG. 38 of the present application, and R 3 is an internal resistance of the AC power supply V.
- R1 is the effective series resistance of the coil 1 for power transmission.
- R2 is the effective series resistance of coil 2 for receiving power.
- RL is a load resistance connected to the power reception control circuit 4.
- the effective series resistance R1 has an alternating current as shown in FIG. Connected in series with power supply V. Since the effective series resistance R2 is connected in series with the load resistance RL, power loss occurs at least at two locations R1 and R2. The only way to avoid this is to lower the frequency and reduce the effects of the skin effect and eddy current loss. However, reducing the frequency reduces the coil reactance. As a result, the impedance Z of the power transmission coil decreases, and excessive apparent power is input to the power transmission coil 1.
- the coil described in Japanese Patent Laid-Open No. 4-122007 is also not suitable for use with an air core.
- Japanese Utility Model Publication No. Hei 6-29117 describes that the increase in effective series resistance due to an increase in frequency can be reduced by forming a coil using a conductor in which a single conductor is formed into a flat cable shape.
- paragraph No. 0013 and Table 1 of Japanese Utility Model Laid-Open No. 6-29117 describe the effective series resistance at 50 Hz and 100 kHz of a coil using a flat cable and a coil using another wire.
- Japanese Utility Model Publication No. 6-29117 discloses that the effective series resistance increases with increasing frequency. Is expressed as a ratio rather than a resistance value, and the actual value of the effective series resistance is unknown. And
- JP-A-8-148360 and JP-A-4-122007 the frequency is reduced by mounting a magnetic material having a high magnetic permeability on the coil, contrary to JP-A-6-29117. It is presumed that the method used is to increase the Q of the coil by increasing the inductance rather than increasing the effective series resistance due to the increase.
- An object of the present invention is to provide a power transmission device with improved power transmission performance, a power transmission device and a power reception device for the power transmission device, and a method for operating the power transmission device.
- the power transmission device is configured such that the power transmission unit and the power reception unit are separable, and includes at least a power transmission unit including a power transmission coil that transmits AC power, a load RL, and a power reception coil It consists of a power reception unit, and transmits power to the power transmission unit.
- Power transmission device among the opposing coils, the effective series resistance of one of the Koi Le single R W (Omega), when the short-circuit the other coil opposite to the one coil, the effective series resistance of one coil Rs (Q) and one coil force Rs> Rw, where fl (Hz) is the maximum frequency that satisfies one coil, one coil and the other coil are selected so that fl is 100kHz or more.
- the frequency for driving one coil is set to a frequency less than fl.
- the power transmission performance can be improved as compared with the conventional case.
- fa is set to a frequency less than fl when the output frequency of the power conversion means is fa (Hz).
- the effective series resistance of one coil is ⁇ ⁇ ( ⁇ ), and the highest frequency satisfying Rs> Rn ⁇ Rw is f 2
- the output frequency fa is set to a frequency less than f2.
- the conductive wire forming at least one of the opposing coils is a single conductive wire with an insulation coating, and at least one of the coils is a single-layer or multi-layer spiral.
- the maximum diameter of a single conductor is dl and at least one coil outer diameter is D
- at least one coil outer diameter D is at least 25 times the maximum diameter dl.
- the number of turns of the conducting wire is not less than the predetermined number of turns, and the self-inductance of at least one coil is not less than 2 ⁇ .
- At least one of the opposing coils includes a plurality of conductors, and each conductor is an aggregate of a plurality of bare single conductors selected to have a maximum diameter of 0.3 mm or less.
- the coil is formed by applying an insulating coating, and at least one of the coils is formed by closely winding a conductor having an insulating coating around a collection of a plurality of bare single conductors in a single-layer or multi-layer spiral shape.
- the maximum diameter of the conductor assembly is d2 and at least one of the coil outer diameters is D
- at least one of the coil outer diameters D is at least 25 times the maximum diameter d2 and the number of conductor turns is a predetermined number of turns.
- the self-inductance of at least one coil is at least 2 a H or more.
- the same effect as the above invention is achieved, and the eddy current loss due to the magnetic flux penetrating the conductor increases in proportion to the volume of the conductor.
- the conductive wire forming at least one of the opposing coils is provided with an insulator layer inside the conductive wire, and the cross-sectional area of the insulator layer is such that the entire conductive wire is disconnected. 11% or more of the area, and at least one of the coils is configured by closely winding a conductor wire provided with an insulator layer in a single layer or a multilayer spiral, and has a maximum diameter of the conductor wire provided with the insulator layer.
- the coil outer diameters is D
- at least one of the coil outer diameters D is at least 25 times the maximum diameter d3 and the number of turns of the conducting wire is equal to or greater than the predetermined number of turns, and at least one of them
- the self-inductance of the coil is at least 2 ⁇ .
- the same effect as the above invention is achieved, and the eddy current loss due to the magnetic flux penetrating the conductor increases in proportion to the volume of the conductor.
- the insulating material provides an insulating layer inside the conductive wire, and also makes the conductive wire flexible and facilitates bending of the conductive wire.
- the conductive wire is composed of an assembly of a plurality of single conductive wires each having an insulating coating, and the maximum diameter of the conductor in the single conductive wire is d4, d4 is 0.3 mm or less, and the thickness t of the insulation coating is selected to be (d4) / 30 or more.
- At least one of the opposing coils is formed by winding a conducting wire into a flat single-layer vortex, and the maximum diameter d of the conducting wire is 0.4 mm or more. If there is a gap of 0.2 mm or more between conductors of adjacent conductors and the maximum diameter d of the conductor is less than 0.4 mm, d / 2 (mm) or more between conductors of adjacent conductors The gap is provided.
- the total length of the winding wire is shortened, so that the force S can be suppressed to keep the effective series resistance low.
- the eddy current loss due to the magnetic flux passing through the conductor increases in proportion to the volume of the conductor, if the maximum diameter of the single conductor is not 0.2 mm or more, even if a gap is provided between the conductors, the frequency increases. The rate of increase in effective series resistance cannot be improved much.
- At least one of the coils is formed by winding a conducting wire in a planar single-layer vortex shape, and each of the adjacent conducting wires in the outermost peripheral portion of at least one of the coils. If the width of the gap provided between the conductors is t1, and the width of the gap provided between the conductors of adjacent conductors in the innermost circumference of at least one coil is t2, t2> tl> 0. As the distance from the outermost periphery to the inner periphery increases, the width of the gap increases, and the width t2 of the gap provided between the conductors of adjacent conductors in the innermost circumference is at least 0.2 mm or more. .
- the magnetic flux density generated by the coil is low in the vicinity of the outer peripheral portion and high in the inner peripheral portion, the outer peripheral portion is squeezed and the inner peripheral portion is squeezed as much as possible on the coil surface.
- the magnetic flux density is kept constant, and the decrease in transmittable power when the relative position of the opposing coils fluctuates can be prevented.
- the inner periphery has a high magnetic flux density, eddy current loss can be prevented by providing a gap.
- the coil having the above configuration has a wide frequency range satisfying Rs> Rn ⁇ Rw where the effective series resistance Rw is low in a wide range and in a frequency range, and thus has good power transmission characteristics.
- At least one of the coils has an insulating layer on the outer peripheral portion of the conducting wire, and the conductors of the adjacent conducting wires in the outermost peripheral portion of at least one coil are in close contact with each other via the insulating layer. Yes.
- One turn provided in the outer peripheral portion has a longer wire length than one turn provided in the inner peripheral portion, so that the effect of increasing the inductance of the coil is large. Therefore, the inductance of the coil can be ensured.
- one turn provided in the inner peripheral part causes an increase in eddy current loss in the inner peripheral part having a high magnetic flux density rather than contributing to an increase in inductance. Provided. The effect of the void is as described above.
- At least one of the power transmission coil and the power reception coil is formed on at least one of the insulating plate and the insulating member in order to prevent deformation of the coil.
- the coil of the power transmission device is used as at least one of the power transmission coil and the power reception coil, and the power transmission coil and the power reception coil can be used as being inseparable.
- the effective series resistance of one coil unit is Rw.
- Rs is the effective series resistance of one coil when the other short-circuited coil faces the other.
- Still another aspect of the present invention is a power receiving device including the power receiving unit of the power transmission device described above, wherein the power receiving unit includes one coil, and the output frequency fa is set to a frequency less than fl. Receives power from the specified power transmission unit.
- Another aspect of the present invention is an operation method of a power transmission device that transmits power from a power transmission unit to a power reception unit by causing a coil of a power transmission unit and a coil of a power reception unit to face each other.
- the effective series resistance of one coil alone is Rw (Q)
- the effective series resistance of one coil is R S (Q)
- Rs> Rw where f (Hz) is the maximum frequency that satisfies the above, and fd (Hz) is the frequency at which the power transmission coil is driven.Select one coil and the other so that fl is 100 kHz or more, and fd Transmit power from the power transmission unit by setting to a frequency less than fl.
- both the single coil and the transformer with the coils facing each other are ideally theoretical.
- the power transmission performance can be improved compared to the conventional one.
- the thermal resistance of one coil is ⁇ i (° C / W)
- the allowable operating temperature of one coil is Tw (° C)
- the ambient temperature of the place where one coil is installed is Ta ( ° C)
- when the power is transmitted when the alternating current flowing in one coil is la (A)
- when one coil is transmitting the power at fd, Rw ⁇ (Tw-Ta) / (la 2 X ⁇ i)
- one coil satisfies the relationship.
- the number of turns that determines at least the upper limit of the alternating current la of one coil or the effective series resistance of at least one coil can be specified.
- FIG. 2A is a diagram showing a coil used as a power transmission coil or a power reception coil of the power transmission device shown in FIG. 1.
- FIG. 2B is a cross-sectional view taken along line 1 B-1 B shown in FIG. 2A.
- FIG. 3A is a diagram showing a modification of the outer shape of the coil shown in FIG. 2A.
- 3B is a diagram showing a modification of the outer shape of the coil shown in FIG. 2A.
- 3C is a diagram showing a modification of the outer shape of the coil shown in FIG. 2A.
- 3D] is a diagram showing a modification of the outer shape of the coil shown in FIG. 2A.
- 3E is a diagram showing a modification of the outer shape of the coil shown in FIG. 2A.
- FIG. 5 A diagram showing an equivalent circuit of a single coil in the coil of the power transmission device according to the embodiment of the present invention.
- Fig. 7 is a diagram showing an equivalent circuit of the transformer when the secondary coil is short-circuited.
- Fig. 8 is a diagram showing an equivalent circuit of the transformer when the load resistance RL is connected to the secondary coil.
- FIG. 10 is a graph showing the relationship between Rw, Rn, Rs, kr, ki and frequency of coil 1B in which a single conductor wire with a diameter of 0.6 mm is wound closely for 40 turns with an outer diameter of 70 mm.
- FIG. 11 is a diagram showing the relationship between the phase angle and the frequency of a single coil of 1 mm, in which a single conductor having a diameter of 0.3 mm is closely wound with 70 mm diameter for 70 turns, Rw, Rn, Rs, and coil 1C alone.
- FIG. 13 A diagram showing the relationship between Rw, Rn, Rs, kr and frequency of a coil 1E in which a single conductor having a wire diameter of lmm is wound for 14 turns with a gap of 70mm in outer diameter.
- FIG.14 Relationship between Rw, Rn, Rs, kr, ki and frequency of coil 1F in which 75 litz wires with a 0.05 mm diameter copper wire are bundled and tightly wound 30 turns with an outer diameter of 70 mm
- FIG. 14 Relationship between Rw, Rn, Rs, kr, ki and frequency of coil 1F in which 75 litz wires with a 0.05 mm diameter copper wire are bundled and tightly wound 30 turns with an outer diameter of 70 mm
- FIG.14 Relationship between Rw, Rn, Rs, kr, ki and frequency of coil 1F in which 75 litz wires with a 0.05 mm diameter copper wire are bundled and tightly wound 30 turns with an outer diameter of 70 mm
- FIG. 18 is a diagram showing a comparison of a state where the coil effective series resistance Rw of the close coil 1A shown in FIG. 9 and the loose coil 1E shown in FIG. 13 increases.
- FIG. 19 is a diagram showing the relationship between the Rw and frequency of each coil in which a formal wire having a wire diameter of 0.4 mm is wound with 25 turns with a gap width of 0, 0.2 mm, and 0.4 mm.
- FIG. 20 is an actual measurement diagram showing frequency characteristics of each resistance value and power factor when coil 1 A is used as a power transmission coil and a power reception coil and load resistance value RL is changed.
- FIG. 21 is an actual measurement diagram showing frequency characteristics of each resistance value and power factor when coil 1A is used as a power transmission coil and coil 1F is used as a power reception coil, and load resistance value RL is changed.
- FIG. 22A is a cross-sectional view showing another example of the conductive wire used in the coil shown in FIG. 2A.
- FIG. 22B is a cross-sectional view showing another example of the conductive wire used in the coil shown in FIG. 2A.
- Fig. 23] is a cross-sectional view of a coil in which a conducting wire is wound in an umbrella shape.
- FIG. 24A is a diagram showing the horizontal position and magnetic field strength of the coil of FIG.
- FIG. 24B is a diagram showing the horizontal position and magnetic field strength of the coil of FIG. 2A.
- FIG. 26A A diagram showing a coil of a power transmission device according to another embodiment of the present invention.
- FIG. 26B is a cross-sectional view taken along line 2B-2B in FIG. 26A.
- Fig. 27A is a view showing a coil of a power transmission device in still another embodiment of the present invention.
- FIG. 27B is a cross-sectional view taken along line 3B-3B in FIG. 27A.
- FIG. 28 is a cross-sectional view of an assembly of bare single copper wires as an example of a conductive wire used in a coil of a power transmission device according to still another embodiment of the present invention.
- FIG. 29A is a view showing a coil of a power transmission device in still another embodiment of the present invention.
- FIG. 29B is a cross-sectional view taken along line 4B-4B in FIG. 29A.
- FIG. 30A is a diagram showing an example of a cross section of a litz wire that is a conducting wire used in the coil shown in FIG. 29A.
- FIG. 30B is a cross-sectional view of the single conductor shown in FIG. 30A.
- FIG. 31 is an equivalent circuit diagram of a litz wire.
- FIG. 32 is a cross-sectional view of a conductor in which an insulating material is filled in a pipe-shaped conductor.
- FIG. 33 is a cross-sectional view of a conductive wire formed by dividing a conductor on an insulating material.
- FIG. 34 is a cross-sectional view of a conductive wire in which conductors are formed on an insulating material and conductors are also formed inside the insulator.
- FIG. 35A is a cross-sectional view of a conductive wire formed by overlapping a foil-like conductor and an insulating material so that the cross section is spiral and the conductor and the insulator are alternately present.
- FIG. 35B is a cross-sectional view of a conductor wire wound with a foil conductor and an insulating material.
- FIG. 35C is a cross-sectional view of a conductor in which a foil-like conductor and an insulating material are wound and overlapped to form a spiral shape.
- FIG. 36 is a schematic block diagram of a power transmission device in which a primary coil and a secondary coil can be separated.
- FIG. 37A is a plan view of a power transmission coil or a power reception coil.
- FIG. 37B is a cross-sectional view taken along line 6B-6B in FIG. 37A.
- FIG. 1 is a block diagram of a power transmission device 100 according to an embodiment of the present invention.
- power transmission device 100 includes a power transmission unit 30 that operates as a power transmission device and a power reception unit 40 that operates as a power reception device.
- the power transmission unit 30 includes a DC power supply Vd, a power transmission control circuit 30a, and the power transmission coil 1.
- Power receiving device 40 includes power receiving coil 2, power receiving control circuit 40a, and load RL.
- the power transmission coil 1 and the power reception coil 2 are arranged to face each other.
- the power transmission unit 30 and the power reception unit 40 are configured to be separable.
- the power transmission coil 1 and the power reception coil 2 are arranged to face each other.
- the power transmission coil 1 and the power reception coil 2 function as a transformer.
- alternating current refers to a current that can flow in the forward and reverse directions through the coil connected to the output terminal.
- the power conversion means for converting the DC power source Vd into AC power is referred to as AC power source Va, AC power source, or Va.
- the output frequency of the AC power supply Va is expressed as fa (Hz).
- fd (Hz) the frequency at which the power transmission coil 1 is driven by the AC power source Va.
- the opposing power transmission coil 1 and power reception coil 2 shown in FIG. 1 are air-core coils, and the effective series resistance of one of the coils alone is R W (Q). Let R S (Q) be the effective series resistance of one coil when the other coil facing one coil is short-circuited.
- the output frequency of the AC power source included in the power transmission unit 30 is defined when fl (Hz) is set as the maximum frequency where one coil satisfies Rs> Rw. Fa is set to a frequency region less than fl, and power is transmitted to power receiving unit 40.
- Rn (Q) be the effective series resistance of one coil when the other coil facing one coil is opened.
- the highest frequency satisfying 13 ⁇ 4> 13 ⁇ 41 ⁇ 1 ⁇ is set to £ 201 ⁇ 2).
- the power transmission device 100 sets the output frequency fa of the AC power supply Va included in the power transmission control circuit 30a to a frequency region below f2, and transmits the power to the power receiving unit 40.
- the coil of each embodiment described below is used as the power transmission coil 1 or the power reception coil 2 of the power transmission device 100.
- FIGS. 2A and 2B are diagrams showing an example of an air-core coil, FIG. 2A shows a plan view, and FIG. 2B shows an enlarged cross section taken along line 1B — 1B in FIG.
- the coil la of one embodiment of the present invention is configured by winding the conductive wire 11 into a flat single-layer spiral with an air core, and the conductive wires 11 in contact with P are in close contact with each other.
- the conductor 11 has a circular cross section and the maximum diameter dl is not particularly limited.
- the single conductor 12 having a wire diameter of 0.2 mm or more is covered with an insulating coating. 13 is applied.
- the insulation coating 13 can be a strong coating even if the thickness is thin, such as a formal wire, or a thick coating such as a vinyl wire, or a coating can be misaligned.
- the self-inductance of the coil la is at least 2 ⁇ or more.
- Rw (Q) be the effective series resistance of coil la alone at the frequency at which power is transmitted.
- Rs (Q) be the effective series resistance of the other coil when two coils la shown in Fig. 2A are opposed to each other and one of the opposed coils is short-circuited.
- fl (Hz) be the highest frequency that satisfies Rs> Rw.
- One coil or the other coil, which is a power transmission coil, is driven by an AC power source Va at fd having a frequency less than fl.
- the coil la satisfies Rs> Rw at 100 kHz.
- Rn (Q) be the effective series resistance of the other coil when one of the opposing coils is opened at the frequency at which power is transmitted. At this time, Rs> Rn ⁇ Rw is satisfied Let f 2 (Hz) be the highest frequency.
- One coil or the other coil, which is a power transmission coil, is driven by an AC power source Va at a frequency fd less than f2.
- the thermal resistance of coil la is ⁇ i (° C / W)
- the allowable operating temperature of coil la is Tw (° C)
- the ambient temperature of the place where coil la is installed is Ta (° C )
- the coil la configured as described above is used as the power transmission coil 1 or the power reception coil 2 of the power transmission device shown in FIG. 1 in which the primary side coil and the secondary side coil can be separated. it can.
- the conducting wire is wound in a circular shape.
- it is not limited to a circle, but can be any arbitrary shape such as an oval shape shown in Fig. 3A, an oval shape shown in Fig. 3B, a square shape shown in Fig. 3C, a rectangle shown in Fig. 3D, or a hexagon shown in Fig. 3E.
- the shape of the coil is other than a circle, the outer diameter D of the coil defines the minimum outer dimension ⁇ of the coil as shown in FIGS. 3A to 3E.
- Vl j coLl'Il + jcoM'I2 ... (l)
- V2 j W M-Il + j L2-I2 --- (2)
- V2 -RL-I2 --- (3)
- Z1 R1 + R2 'co 2 M 2 / (co 2 L2 2 + R2 2 ) + j ⁇ LI -j ⁇ L2- ⁇ 2 M 2 / ( ⁇ 2 L2 2 + R2
- the inventor of the present application refers to a coil (hereinafter referred to as a conventional example) described in Japanese Patent Laid-Open No. 4-122007 as the coil la shown in FIG. In shape
- the coil 1A using a formal wire was formed by winding so that adjacent conductors were in close contact with each other. As a result, it was found that when the coil 1A is used for both the power transmission coil and the power reception coil, only a predetermined power transmission performance can be achieved.
- each of the coils 1B to 1G is configured by using a formal wire in the form of a flat single-layer spiral with an air core like the coil la in FIG. 2A.
- FIG. 10 is a characteristic diagram for explaining the coil 1B.
- FIG. 11 is a characteristic diagram for explaining the coil 1C.
- Coinole 1C is a formal wire with a copper wire diameter of 0.3 mm, closely wound with 70 turns with a diameter of 70 mm.
- Figure 11 shows the relationship between Rw, Rn, and Rs of coil 1C and frequency.
- FIG. 12 is a characteristic diagram for explaining the coil 1D.
- Coil 1D is obtained by winding a formal wire with a copper wire diameter of 0.3 mm in close contact with a diameter of 30 mm for 31 turns.
- Figure 12 shows the relationship between Rw, Rn, and Rs of coil 1D and frequency.
- FIG. 13 is a characteristic diagram for explaining the coil IE.
- FIG. 14 is a characteristic diagram for explaining the coil 1F.
- Coil 1F consists of an electric wire (Litz wire) bundled with 75 formal wires with a copper wire diameter of 0.05 mm.
- Figure 14 shows the relationship between Rw, Rn, Rs, kr, ki and frequency of coil 1F.
- FIG. 15 is a characteristic diagram for explaining the coil 1G.
- Coil 1G is an electric wire (Litz wire) that is a bundle of 75 formal wires with a copper wire diameter of 0.05 mm, wound 20 turns closely to an outer diameter of 50 mm.
- Figure 15 shows the relationship between Rw, Rn, Rs, kr, ki and frequency of coil 1G.
- FIGS. 10 to 15 show that the maximum frequency fl satisfying Rs> Rw and the maximum frequency satisfying Rs> Rn ⁇ Rw are f 2 and coil 1B to coil 1G, respectively. Shown in common. However, the maximum frequencies fl and f2 differ depending on each of the coils IB to 1G.
- the power loss due to the effective series resistance of the coil can be suppressed by the definition of Rw ⁇ (Tw-Ta) / (Ia X ⁇ i), which will be described later.
- Rl, R2 in FIG. Since Tw and Ta differ depending on the coil usage conditions, and in the embodiment of the present invention, Rw, Rs, and Rn are set to zero in the facing distance or the coil that is actually used. Pair The maximum frequency f 2 that satisfies Rs> Rw and Rs> Rn ⁇ Rw is obtained when the maximum frequency f 2 that satisfies Rs> Rw is measured.
- Fig. 16 shows the relationship between the frequency and the effective series resistance Rw of each coil with 25 turns of a formal wire with a copper wire diameter of 0.2 mm, 0.4 mm, 0.8 mm, and 1 mm closely wound in a flat plate shape. ing.
- the coil having the highest frequency fl satisfying Rs> Rw. Has a high rate of increase in effective series resistance Rw with increasing frequency.
- the characteristics are the same even for coils with different outer diameters of the same 25 mm number of formal wires with different wire diameters of 0.2 mm, 0.4 mm, 0.8 mm, and 1. Omm.
- the rate of increase in effective series resistance Rw with increasing frequency increases.
- the increase rate of the effective series resistance Rw due to the increase in the frequency with the highest frequency fl satisfying the smaller direction force Rs> Rw satisfying the smaller number of turns is small. I understand.
- Figure 17 shows the effect of connecting a 10 ⁇ load resistor to Rw, Rn, Rs, and coil IF of coil 1A when coil 1A is one coil and coil 1F, described later, is the other coil. It is a characteristic view which shows the relationship between electric power transmission efficiency and a frequency.
- the force explaining that when the coil 1A is used for both the power transmission coil and the power reception coil, only predetermined power transmission performance can be achieved.
- the maximum frequency fl that satisfies the coil 1A force Rs> Rw is about 67 kHz as shown in FIG. That is, fl of coil 1A is less than 100 kHz. Therefore, if the coil 1A using a 1 mm formal wire is used for both the transmitting coil and the receiving coil, only the same power transmission performance as that of the conventional coil can be achieved.
- the coil 1A shown in Fig. 9 was used as one coil, and the coil 1F shown in Fig. 14 was used as the other coil. Then, the coil 1A satisfies at least Rs> Rw.
- the high frequency fl increased from 67kHz to 110kHz. As a result, we were able to improve power transmission performance. Therefore, even with the coil 1A shown in FIG. 9, the power transmission performance can be improved with the air core without using a magnetic material or the like by selecting the other coil facing the coil 1A.
- the frequency that satisfies the condition of coil 1A and Rs> Rw is approximately 67 kHz when the opposing coil is coil 1A, and the opposing coil is In this case, from Fig. 17, it is about 110kHz, and in the case of the opposing coil force coil 1G, it is 150kHz although not shown.
- the coil 1A can increase the maximum frequency fl that satisfies the condition of Rs> Rw.
- the maximum frequency that satisfies the condition of the coin 1F force Rs> Rw is 2 MHz.
- the effective series resistance Rw of the coil 1A alone is a high value of 10 ⁇ or more, so the thermal condition is defined by Rw, which will be described later, Rw ⁇ (Tw-Ta) / (la 2 X ⁇ i ),
- the current that can be passed through the coil 1A that is the secondary coil can be defined.
- both the coil 1A and coil IF forces Rs> Rw are satisfied.
- the maximum frequency fl that satisfies the coil 1A force Rs> Rw is approximately 67 kHz. Therefore, by using the coil 1A and the coil 1F in combination, it is possible to transmit power at 67kHz or higher regardless of whether the coil 1A is used for the transmitting coil or the receiving coil.
- the fl of one coil when the fl of one coil is low, the fl of one coil is set to a predetermined frequency as shown in FIG. Select a coil that is higher than 100kHz with a margin of / ⁇ .
- the power transmission device is configured by combining one coil selected in this way and the other coil. With this configuration, the coil can be used at a high frequency. As a result, the power transmission performance of the power transmission device can be improved.
- one coil and the other coil are selected.
- Rw , Rs, Rn frequency characteristics are measured.
- the maximum frequency fl that satisfies one coil force Rs> Rw is measured.
- the frequency characteristics of power transmission performance are good for the combination of coils with high fl.
- the maximum frequency fl satisfying Rs> Rw for all of coil 1B to coil 1D using a single conductor exceeds 100kHz.
- Coil 1B to coil 1D are set as one coil, and the other coil is set as one of coil 1B to coil 1D.
- the coupling coefficient kr can be approximately obtained by obtaining A 2 from Rw and Rs and taking the square root of A 2 .
- FIG. 13 plots the coupling coefficient kr obtained from Rw and Rs of coil 1E and FIG. 14 of coil 1F.
- Rs> Rn ⁇ Rw is satisfied up to about 3.7 MHz, where the rate at which Rn increases with increasing frequency is low.
- Rn increases rapidly with increasing frequency, and Rs ⁇ Rn when the frequency region exceeds 780 kHz.
- the relationship between the coupling coefficient kr and the frequency between the two coils obtained approximately from Rw and Rs is as follows.
- the coupling coefficient kr has a value of about 0.8 or more up to about 2 MHz
- the coupling coefficient kr has a frequency from about 0.9 at 100 kHz. It can be seen that it decreases as it rises and drops to around 0.65 at 1MHz. Therefore, the frequency that does not satisfy Rs> Rn ⁇ Rw is preferably as high as possible.
- both the single coil shown in Fig. 5 and the transformer configured as shown in Fig. 6 are both theoretically available. Since it approaches the ideal characteristic, the power transmission performance can be improved as compared with the conventional one.
- Rn Rw is not satisfied, and Rn> Rw, and since it is affected by Rn, the values of R1 and R2 cannot be determined accurately in FIG. Rl and R2 vary depending on the RL shown in Fig. 1. That is, Rl and R2 fluctuate due to the current flowing in Rl and R2, and naturally fluctuate depending on the frequency, so in Fig. 1, it is not possible to measure the actual accurate values of Rl and R2 during power transmission. Can not.
- the measurement of whether two conditions of Rs> Rw and Rs> Rn ⁇ Rw are satisfied describes the case where the same coil is opposed.
- two arbitrary coils with different structures, configurations, outer diameters, etc. face each other, and the same coil that can be measured by either the primary side coil or the secondary side coil It is not necessary to measure it facing each other
- the thermal resistance ⁇ i (° C / W) of the coil is determined by the coil structure and installation conditions. For example, if the coil is a single air core, If it is fixed in a resin with low thermal resistance and installed in water, ⁇ i will be low.
- the temperature Tw (° C) at which the coil can operate is determined by the structure and application of the coil, and because of its heat insulation, it is built in the case. For example, when it is installed at a place where humans, animals, etc. touch, for example, 50 ° C to 80 ° C, the temperature is, for example, about 40 ° C.
- the ambient temperature Ta (° C) at the place where the coil is installed is, for example, -20 ° C to 40 ° C outdoors, for example, 15 ° C to 30 ° C indoors, etc. 40 ° C to 50 ° C.
- the coil temperature T 1 (° C) in the initial state is obtained at the place where the primary side or secondary side coil is installed.
- Vd VdXId (W)
- Pd VdXId (W)
- the thermal resistance ⁇ i (° C / W) determined in this way is determined by the effective series resistance Rw (Q) of the coil under actual use conditions and the current la (A) flowing through the coil.
- Tr (° C) the temperature rise value of the coil under actual operating conditions
- Tw (° C) is the temperature at which the coil can operate
- Ta (° C) is the ambient temperature where the coil is installed
- Tr Tw-Ta. If the inequality (Tw_Ta) ⁇ ⁇ iXRwXIa 2 (° C) is not satisfied, the usable temperature of the coil will be exceeded, making implementation difficult.
- the effective series resistance Rw is the variable obtained by actual measurement of the primary or secondary coil alone, the force la obtained by actually measuring the current la flowing in the primary or secondary coil, and the power supply on the primary side It is determined by the conditions, and on the secondary side, it is a variable determined by the load condition.
- the other Tw, Ta and ⁇ i are known constants. Therefore, if Rw is obtained, the upper limit value of la is defined, and conversely if la is determined, the upper limit value of Rw is defined.
- Rw is the sum of DC resistance Rd and AC resistance Ra, and Rd and Rw can be measured directly, so by determining la, the sum of Rd and Ra increases with the number of whirlings.
- the upper limit value of a certain effective series resistance Rw can be defined, and the frequency range in which power can be transmitted can be defined from the relationship between the effective series resistance Rw and the frequency.
- Both 1V X 10A and 10V X 1A have the same power of 10W.
- the power loss due to the effective series resistance of the force coil is 100 times that of 1A in the case of 10A. Regardless of power, regardless of the primary or secondary side, if the current la flowing through the coil is taken into account and the power loss due to the effective series resistance of the coil is not specified, the power transmission performance between the two coils will be improved. I can't.
- the conductors used in the coil 1F shown in Fig. 14 and the coil 1G shown in Fig. 15 are the same, the conductor outer diameter is 0.05 mm, and the insulation coating thickness is 0.005 mm.
- Coil 1F is tightly connected 30 turns to an outer diameter of 70 mm, and coil 1G is closely wound 20 times to an outer diameter of 50 mm. .
- Table 1 shows the values of inductance Ls when the single inductance Lw of the coinore 1B, coil 1F, and coil 1G and the same short-circuited coil face each other at a distance of zero at frequencies of 5.0 kHz and 1.0 MHz. And the coupling coefficient k approximately obtained by the calculation method shown below. i is described. Each ki in this table is the ki plotted in Figs. 10, 14, and 15.
- the maximum frequency f 2 that satisfies Rs> Rn ⁇ Rw is high and the value of Rn / Rw is close to 1, and the coil performance increases with increasing frequency. There are too few.
- the frequency and the relationship between Rw, Rn, and Rs or by comparing the frequency characteristic of the coupling coefficient kr obtained from Rw and Rs with the frequency characteristic of the coupling coefficient ki obtained from Lw and Ls. By doing so, it is possible to know the performance as a transformer, which is a power transmission means with the coils facing each other, which cannot be determined only by the frequency characteristics of the effective series resistance of the single coil.
- the proper twisting method and twisting method of the litz wire constituting the coil are to form a plurality of coils, and to measure the frequency characteristics of the coils R W , Rn, Rs, preferably By measuring the frequency characteristics of Lw and Ls and comparing the frequency characteristics of kr and ki, it is possible to find the optimum coil.
- This method can be applied not only to litz wires but also to copper wires, vinyl wires, and other electric wires of other embodiments described later, and a coil suitable for power transmission can be selected.
- a coil 1E with a 1 mm single conductor and an air gap satisfies Rs> Rn ⁇ Rw up to 3.7 MHz, up to 7.7 MHz, Rs> Rw, Therefore, compared to coil 1G, there is not much difference in terms of Rs> Rn ⁇ Rw.
- Rw of coil 1E alone 0.87 ⁇
- Rw of coil 1G alone is about 2 ⁇
- Rw of coil IE alone at 9 ⁇ is 2.9 ⁇
- coil 1G alone Rw is 17 ⁇
- coil 1E has better high-frequency characteristics of effective series resistance Rw of the coil itself than coil 1G.
- a coil formed of a single conductor according to the definition of Rw ⁇ (Tw-Ta) / (Ia 2 X ⁇ i).
- Nore IE can be used at a higher frequency than the coil 1G formed with litz wire.
- Rs> Rw, Rs> Rn ⁇ Rw, Rw ⁇ (Tw—Ta) / (la 2 X ⁇ i) By realizing the optimum frequency region for using the coil after the realization, it is possible to realize a power transmission device with better power transmission performance than the conventional technology.
- the embodiment of the present invention in the coils having various configurations that can be inductively coupled, by defining the operating conditions of each coil, it is possible to realize a power transmission device with good power transmission performance. As described above, the embodiment of the present invention exhibits extremely excellent effects that could not be realized by the conventional technology.
- the relationship between the linkage flux 0> c, the leakage flux 0> g, and the coupling coefficient k is As is known, the flux linkage c transmits effective power. As is well known, the leakage magnetic flux ⁇ ⁇ gives a reactive power that is the product of the voltage V applied to the reactive element and the flowing current I.
- the phase of I is 90 degrees behind the phase of V. Therefore, multiplying the instantaneous value of V by the instantaneous value of I and integrating for one period results in zero power, so reactance
- the coil that is an element does not consume power.
- the upper limit of the frequency at which the coil of the embodiment of the present invention can be used for power transmission is fl, which is the highest frequency satisfying Rs> Rw, and f2, which is the highest frequency satisfying Rs> Rn ⁇ Rw.
- the lower limit of the frequency at which the coil can be used for power transmission is determined by defining the phase difference between the voltage V applied to the coil alone and the current I flowing through the coil as 80 degrees or more. Desired.
- the force Rs> Rw in which the phase difference between V and I is 80 degrees or more, is less than 5 kHz.
- the phase difference between V and I is less than 3 ⁇ 40 ° when it is less than 20kHz.
- the highest frequency fl satisfying the coil 1B force Rs> Rw is about 210 kHz, and the maximum frequency f 2 satisfying Rs> Rn ⁇ Rw is about 75 kHz.
- Coil IB can be used in the frequency range of 5 to 210 kHz according to the specification of maximum frequency fl satisfying R s> Rw, and the maximum frequency f 2 satisfying Rs> Rn ⁇ Rw of coil 1 B The usable frequency range is 5 to 75 kHz. In this manner, the coil according to the embodiment of the present invention can be used in a frequency region close to the ideal ideal characteristic.
- the phase angle of coil 1C is plotted. In coil 1C, the highest frequency fl that satisfies Rs> Rw is higher than the fl of coil 1B, the frequency at which the phase angle force is 3 ⁇ 40 degrees is about 8 kHz, slightly higher than 5 kHz.
- the necessary self-inductance and coupling coefficient k can be ensured by defining the wire diameter of the conducting wire 11 of the coil la, the coil outer diameter, and the number of turns.
- the upper limit of the current value la of the coil la or the upper limit of the number of turns that determines the effective series resistance Rw of the coil la can be defined, and the ratio of the reactance X to the pure resistance R when the load resistance is connected, X / R and the phase difference ⁇ between the AC voltage and AC current applied to the coil is minimal, the power factor cos ⁇ is maximized, and the effective series resistance Rw is small. Reactive power and apparent power can be reduced. Furthermore, the effective power efficiency can be increased to, for example, 85% or more.
- FIG. 18 is a graph comparing the frequency characteristics of the effective series resistance Rw of the close coil 1A shown in FIG. 9 and the effective series resistance Rw of the sparse coil 1E shown in FIG. As shown in FIG. 18, when the frequency is increased, the sparse coil 1E can suppress the increase in the effective series resistance Rw of the coil compared to the close coiler 1A. In addition, with a coil with the same outer diameter, the total length of the winding is shortened, so that the DC resistance can be kept low.
- Fig. 19 is a diagram showing how the frequency characteristics of the effective series resistance of the coil change depending on the width of the air gap when 25 turns of a 0.4 mm formal wire are wound. It can be seen that the width of the air gap is Omm, 0.2 mm, and 0.4 mm.
- the wide air gap can suppress the increase in effective series resistance with increasing frequency. Since the number of turns is the same, the wider the gap, the larger the outer diameter of the coil, and the longer the total length of the copper wire that constitutes the coil, the lower the effective series resistance at the lower frequency. The person who doesn't install is getting low.
- the increase rate of the effective series resistance Rw of the coil due to the increase in frequency does not decrease much even if a gap t is provided between the conductors.
- the effective series resistance increases as the frequency increases at a diameter of 0.2 mm. It can be seen that the frequency characteristics of the effective series resistance Rw cannot be improved much with a single conductor with a small diameter of 0.2 mm even if a gap is provided.
- the self-inductance of the coil 1D shown in Fig. 12 is about 19 ⁇ m.
- the self-inductance of the coil wound with two layers of coil 1D is about 76 ⁇ .
- the result is almost equivalent to the theory that the process is proportional to the square of the number of turns.
- the frequency characteristics of the effective series resistance of the two-layer coil is worse than that of the single-layer coil, and the maximum frequency fl that satisfies Rs> Rw is also low.
- reactance can be secured, so it may be advantageous to use two layers and use at low frequencies.
- a coil in which the coil 1D is wound in two layers is used for one coil and the other coil.
- the maximum frequency that satisfies the coil force Rs> Rw when the coil 1D is wound in two layers is 550 kHz, and since the inductance is high, the required reactance can be ensured even when used at frequencies below 250 kHz.
- the effective series resistance Rw at 5kHz when a single conductor with a wire diameter of 0.2mm is closely wound is 0.83 ⁇ .
- the effective series resistance at 1MHz is 2.16 ⁇
- the increase rate of the coil 1E that has been installed is smaller than 7.6.
- the absolute value of Rw increases and the thermal resistance ⁇ i decreases, so the relationship of Rw ⁇ (Tw-Ta) / (la 2 X ⁇ i) is satisfied.
- the conventional coil has 5 turns, and at 1 MHz, the coil Lw is 0.79 / i H, Ls is approximately 0.45 / i H, Lw, Ls force.
- the coefficient ki is 0.66, and the power transmission performance is extremely poor.
- a coil wound eight times in the same shape using the same wire as the coil has an Lw of about 2.1 ⁇ H, an Ls of about 0.7 ⁇ H, and an approximately calculated coupling coefficient ki of about 0. 83.
- the maximum frequency fl that satisfies the coil force Rs> Rw wound eight times is about 350 kHz.
- the coil in which the conductor wire of the conventional coil is wound eight times actually has an effective series resistance that is too low, and the frequency characteristics of Rw are also poor and sufficient reactance can be secured.
- Rs> Rw is not satisfied in the frequency domain.
- the specific configuration that “D is required to be at least 25 times d3” has a minimum inductance value of 2 ⁇ by changing another component such as the number of turns. It is possible that the coupling coefficient cannot be secured. For example, it is conceivable that the diameter of the wire is reduced to provide a gap between the wires. Therefore, in order to secure the minimum inductance value of 2 ⁇ , it is possible that a number of turns of 8 or more is required. In order to secure the minimum inductance value of 2 / ⁇ , select the number of wires used, and finally measure the frequency characteristics of Rw, Rs, and Rn in the coil whose configuration is uniquely specified.
- a coil whose configuration is uniquely specified means one that was actually created as a coil. Therefore, the frequency fa of the AC power source, which is the aforementioned operating condition of the coil, derived from the characteristics obtained by measuring what was actually created as a coil is defined.
- the configuration is defined so as to ensure the above-described minimum inductance value of 2 ⁇ and the coupling coefficient, and power transmission is performed from among the coils satisfying those characteristic conditions.
- a suitable coil can be selected.
- the embodiment of the present invention shows measured characteristic data in various embodiments.
- a coil having a configuration capable of inductive coupling has a variation that cannot be specified. That Therefore, it is impossible to ensure power transmission performance in a coil having an arbitrary configuration. Also, with the conventional technology, it cannot be determined that a coil whose configuration is uniquely specified can ensure power transmission performance.
- the maximum frequency fl satisfying one coil force Rs> Rw is preferably 500 kHz or more. Use the same coil, use the highest frequency fl that satisfies Rs> Rw, and use the coil at a frequency that can ensure reactance. For example, it has been confirmed that power transmission performance can be secured by driving at less than 250 kHz. Alternatively, it is more preferable that the maximum frequency f 2 satisfying one coil force S and R s > Rn ⁇ Rw is 500 kHz or more.
- FIG. 20 and 21 are diagrams showing the relationship between the power factor and the frequency when the load resistance RL is varied.
- FIG. 9 described above also shows the relationship between the effective power transmission efficiency and the frequency when the coil 1A is used for both the power transmission coil and the power reception coil.
- the load resistance value that satisfies the above is 10 ⁇ or less.
- the maximum value of the power factor increases as fl increases.
- the frequency characteristics of effective power transmission efficiency 77 in FIGS. 9 and 17 will be described.
- the phase angle ⁇ is obtained on the power transmission side by impedance measurement, and the power factor cos ⁇ at each frequency is calculated.
- the voltage V applied to the power transmission coil is set so that a constant current la of 0.2A flows through the power transmission coil.
- This measurement method is different from the conventional example, taking into consideration that the power factor varies depending on the load resistance value and frequency. [0195] Try to find the load resistance from the power required by the actual electrical equipment.
- the voltage Vs is increased and the current Is is decreased. Even if the actual circuit voltage is about 5V, there are many cases where a step-down PWM converter is used.
- the resistance component on the power transmission coil side is equal to or less than the force load resistance value RL depending on the frequency in the above-described embodiment. Therefore, if the minimum value of the load resistance RL is Rm, it is desirable that the effective series resistance Rw is 0.4 to 10 ⁇ or less for both the transmitting coil and the receiving coil.
- the effective series resistance Rw is preferably 0.4 to 10 ⁇ or less. Therefore, it is desirable that both Rs and Rn be 10 ⁇ or less at the frequency at which the coil is actually used.
- FIG. 22A is a cross-sectional view of another conductor used in the coil shown in FIG.
- Force using a single conductor 12 with a circular cross section As in the example shown in Fig. 22A, a single conductor 12a with an elliptical cross section is provided with an insulation coating 13a, or the cross section is polygonal as shown in Fig. 22B.
- a single conductor 12b having an insulating coating 13b can be used.
- the insulation coatings 13a and 13b may be, for example, strong even if the thickness is thin, such as a formal wire, or even if the thickness is low, such as a vinyl wire, or the thickness of the coating is not sufficient.
- the line indicating the maximum outer dimension dl is preferably parallel to the surface on which the conducting wire is wound. The same applies to other embodiments of the present invention.
- FIG. 23 is a cross-sectional view of a coil in which a conducting wire is wound in an umbrella shape.
- the coil la shown in FIG. 2A is obtained by winding the conductive wire 11 into a flat air core single layer spiral, whereas the coil 1b shown in FIG. 23 is an air core single layer so that the cross section is an umbrella shape. It is formed in a spiral shape.
- the wire width Dl and inner diameter D2 in Fig. 23 are used, provided that they are 25 times or more of the maximum outer diameter dl of the 2 X D1 + D2 power conductor.
- the angle ⁇ formed by the two lines indicating the line width D1 is preferably set between 180 degrees and 90 degrees.
- ⁇ is close to zero.
- FIGS. 24A and 24B are diagrams for comparing the magnetic field strengths of the coil lb wound in the cross-sectional umbrella shape shown in FIG. 23 and the coil la of the cross-sectional plane type shown in FIG. 2A. is there.
- the coil la shown in FIG. 2A has a stronger magnetic field strength central portion at a planar position and a weaker magnetic field strength toward the periphery.
- FIG. 24A shows the magnetic field strength at the planar position when the coil lb wound in the cross-sectional shape shown in FIG. 23 is turned upside down.
- the coil 1 b wound in an umbrella shape can obtain a substantially uniform magnetic field intensity over the entire surface of the coil surface.
- the coil lb may be wound so that the cross section draws a wavy line.
- FIG. 25 is a cross-sectional view of a coil in which a conducting wire is wound on an insulating material.
- the coil la shown in FIG. 2A is arranged on the insulating material 5 and the insulating resin 6 is applied on the single conductor 11 of the coil la.
- the coil la may be fixed on the insulating material 5 with an adhesive instead of the insulating resin 6. With such a configuration, the thermal resistance ⁇ i can be reduced, and the heat generation of the coil can be suppressed.
- a single wire 12 having a maximum diameter dl of 0.4 mm or more is wound in a flat air core single layer spiral shape with a conductive wire 11 having an insulating coating 13 applied thereto.
- a gap t of 0.2 mm or more is provided between the adjacent conductors 11 of the coil lc so as to be narrowed.
- the insulation coating 13 can be strong even if the thickness is thin, such as a formal single wire, or it can be thick, covering, or misaligned, such as a vinyl wire.
- a gap t is provided between adjacent conductors 11, a bare conductor without insulating coating 13 may be used.
- the coil lc has a coil outer diameter D of at least 25 times the maximum diameter dl of the single conductor 12 and the number of turns of the conductor 11 when the coil outer diameter is D. It is configured to be 8 or more. Furthermore, the self-inductance of the coil lc is required to satisfy at least 2 aH or more.
- the effective series resistance of the coil lc alone at the frequency at which power is transmitted is Rw (Q)
- two coils lc shown in Fig. 26A are opposed, and one of the opposed coils is short-circuited.
- the effective series resistance of the other coil is Rs (Q)
- the maximum frequency that satisfies Rs> Rw is fl
- one coil or the other coil that is a power transmission coil has a frequency less than fl. Driven by fd.
- FIGS. 27 and 27 are diagrams showing coils of a power transmission device according to still another embodiment of the present invention.
- FIG. 27 is a plan view
- FIG. 27 is a cross-section taken along line 3-3 in FIG. Enlarged view.
- the adjacent conductors 11 in the outer peripheral portion of the coil Id are closely packed and the adjacent conductors 11 in the inner peripheral portion are sparse with a gap so as to be a flat air core. Single-layer vortex wound in a whirling pattern. As a result, as shown in FIG.
- the width tl of the gap between adjacent conductors provided on the outer periphery of the coil Id is larger than the width t2 of the gap between adjacent conductors provided on the inner periphery of the coil Id. It is getting narrower.
- the coil Id has a coil outer diameter D of at least 25 times the maximum diameter dl of the single conductor 12 and the number of turns of the conductor 11 when the coil outer diameter is D. It is configured to be 8 or more. In addition, the coil Id self-inductance must be at least 2 ⁇ .
- the effective series resistance of the coil Id alone at the frequency at which power is transmitted is Rw ( ⁇ )
- two coils Id shown in Fig. 27A are opposed, and one of the opposed coils is short-circuited.
- the effective series resistance of the other coil is Rs (Q)
- fl is the highest frequency that satisfies Rs> Rw
- one coil or the other coil that is a power transmission coil has a frequency fd less than fl. It is driven by.
- the thermal resistance of coil Id is ⁇ i (° C / W)
- the allowable operating temperature of coil Id is Tw (° C)
- the ambient temperature of the location where coil Id is installed is Ta (° C )
- la (A) is the AC current that flows through coil Id during power transmission
- Fig. 28 is a cross-sectional view showing an assembly of bare single conductors used in the coil of the power transmission device in yet another embodiment of the present invention.
- the conductor 11 is a single conductor 12 with an insulating coating 13 applied thereto, whereas in this embodiment, the maximum diameter d2 is 0.3 mm or less as shown in FIG.
- a so-called vinyl wire 11c which is a so-called vinyl wire in which an assembly of bare single conductor wires 14 is covered with an insulating coating 13c, is used.
- the bare single conductor 14 is preferably not twisted.
- An assembly of bare single conductors cannot retain its shape as an electric wire unless it is twisted only by the collection of bare single conductors.
- the grounding wire of a lightning rod is called a demon twisted wire, and it is known that a plurality of bare single conductors are not twisted at a single direction pitch, but are randomly twisted to lower the effective series resistance.
- FIG. 2A As a winding method, as shown in FIG. 2A, a method in which adjacent conductors 11 are wound closely, or as shown in FIG. 26A, a gap is provided between adjacent conductors 11.
- the method of turning is applicable. In either case, the coil can be formed by winding it into a flat air core single layer spiral. Note that when the conductor 11c is in close contact, a gap due to the insulating coating 13c can be provided between adjacent conductors, and as shown in FIG. 26B, a gap is provided in the same manner as in the embodiment shown in FIG. 26A.
- the magnetic flux ⁇ generated in the vicinity of the conducting wire due to the current flowing through one adjacent conducting wire does not penetrate the adjacent conducting wire, and the magnetic flux ⁇ penetrates the conducting wire that contacts P, so that the eddy current loss generated in the adjacent conducting wire
- the eddy current can prevent the current flowing in the conductor from being affected, and the increase in effective series resistance can be reduced.
- the skin effect The effect of fruits can also be reduced.
- the coil of the above embodiment has good power transmission characteristics because the maximum frequency f2 that satisfies Rs> Rn ⁇ Rw where the effective series resistance Rw is low in a wide range and in a frequency range is high.
- FIG. 29A and FIG. 29B are diagrams showing a coil of a power transmission device having an insulating layer inside a conductor forming a coil in still another embodiment of the present invention
- FIG. 29A is a plan view
- FIG. FIG. 29A shows an enlarged cross section along line 4B-4B
- 30A and 30B are cross-sectional views of the conductors used in the coil shown in FIG. 29B.
- the ratio between the cross-sectional area of the conductor 15 and the cross-sectional area of the insulating coating 16 is determined by the conductor diameter and the number of conductor divisions inside the conductor.
- the conductor l id is composed of, for example, an assembly of seven single conductors 8 each provided with an insulating coating 16.
- d4 is 0.3 mm or less
- the insulation coating thickness ⁇ is selected to be (d4) / 30 or more. I like it.
- the air layer other than the insulation coating 16 is also an insulator layer, as shown in Fig.
- the coil le is formed by winding a lead wire id on a bobbin 7 made of an insulating resin, as shown in Fig. 29B, in multiple layers.
- the outer diameter of the coil is D
- at least the outer diameter D of the coil is at least 25 times the maximum diameter d3 of the litz wire l id and the number of turns of the conductor l id is 8 or more.
- the coil le must have a self-inductance of at least 2 ⁇ H.
- the effective series resistance of the coil le alone at the frequency at which power is transmitted is Rw ( ⁇ )
- two coils le shown in Fig. 29A are opposed, and one of the opposed coils is short-circuited.
- Rs (Q) is the effective series resistance of the other coil.
- the thermal resistance of coil le is ⁇ i (° C / W)
- the allowable operating temperature of coil le is Tw (° C)
- the ambient temperature of the place where coil le is installed is Ta (° C )
- la (A) is the AC current that flows through the coil le during power transmission
- ff satisfies Rw ⁇ (Tw_Ta) / (Ia 2 X ⁇ i).
- FIG. 29A The embodiment shown in FIG. 29A is not limited to this, and the force shown in FIG. 2A is shown in FIG. 2A, in which the conductor lid composed of the assembly of the plurality of single conductors 8 shown in FIG. Single-layer close contact, single-layer dispersal shown in Fig.26A, adjacent conductors in the outer periphery shown in Fig.27A are closely intimately connected, and adjacent conductors in the inner periphery have gaps You can have it and get away with it.
- the coil of the above embodiment has a high power transfer characteristic because the maximum frequency f2 satisfying Rs> Rn ⁇ Rw where the effective series resistance Rw is low in a wide frequency range is high. Further, in this embodiment, several litz wires may be twisted to form one stranded wire, and several stranded wires may be twisted to form a thick electric wire.
- the Litz wire is considered to have an equivalent circuit as shown in Fig. 31 in which the self-inductances La, Lb---of each formal wire composing the Litz wire are connected in parallel. Even if the litz wire is wound with a flat single-layer spiral, the frequency characteristics of the effective series resistance Rw of the coil itself will not be improved much, and conversely, the self-inductance of the coil itself will decrease. It is considered that the self-inductance when the wire is formed as a coil changes due to the mutual inductance between the formal wires and between the conducting wires. That is, as a coil by twisting method, twisting pitch, winding method (close winding, loose winding, multilayer winding), number of turns, outer shape, etc. The characteristics when formed change.
- FIG. 33 shows an example in which the conductor 20 is divided and formed on the insulating material 19.
- FIG. 34 shows an example in which the conductor 22 is divided and formed on the insulating material 21, and the conductor 23 is also formed inside the insulating material 21.
- FIGS. 35A to 35C show foil conductors and insulating materials stacked together, and conductors are formed so that the cross section is spiral and the conductors and insulators are alternately present. That is, the foil conductor 24 and the insulating material 25 are laminated as shown in FIG. 35A, the laminated foil conductor 24 and the insulating material are wound as shown in FIG. 35B, and the cross section is spiraled as shown in FIG. 35C. It is a conductor that has a shape.
- FIGS. 32 to 34 there is a conductor layer on the periphery of the single conductor constituting the conductor, but the conductor layer may or may not be provided with an insulating coating, as long as it conforms to the embodiment. Good.
- FIGS. 32 to 34 as described above are embodiments in which an insulating layer is provided inside a conductor forming a coil, and the insulating material is provided with an insulating layer inside the conducting wire, and the conducting wire is made flexible. This facilitates bending of the conducting wire.
- an air layer present in a conductor formed by bundling single conductors shown in Fig. 30A, and an air layer present in a coil cross section when the conductors shown in Figs. 30A and 32 to 34 are multi-layered. Can also be regarded as an insulating material.
- the force S can be increased to increase the surface area of the conductor constituting the conductor, and the eddy current loss due to the magnetic flux passing through the conductor is proportional to the volume of the conductor.
- the volume of the conductor existing in the magnetic flux path that penetrates the conductor in the conductor can be reduced, and the increase in the effective series resistance Rw due to the skin effect and eddy current loss can be prevented.
- FIG. 30A and FIGS. 32 to 34 is merely an example in which the conductor constituting the conducting wire is divided and an insulating layer is provided inside the conducting wire, and it goes without saying that other embodiments exist.
- Each coil described above is used as a transformer (transformer) in which the two coils cannot be separated as well as the transmitting coil and the receiving coil in the power device in which the primary coil and the secondary coil can be separated. It is also possible to do.
- the coil shown in each embodiment described above does not need to use the same coil as the primary side coil and the secondary side coil of each embodiment, for example, the coil shown in the embodiment of FIG. 2A. Even in the case of la, coils having different numbers of turns and outer shapes may be used as the primary side coil and the secondary side coil, or the coil la in the embodiment of FIG. 2A and the coil lc in the embodiment of FIG. 24A Can also be combined. With such a configuration, the winding ratio can be arbitrarily set. In addition, it is possible to realize a power transmission means using a coil capable of step-up and step-down.
- Rw is measured with each coil alone, and Rn and Rs are measured with each coil facing each other and satisfy the relationship of Rs> Rw, Rs> Rn ⁇ Rw.
- a magnetic material plate or a metal plate may be brought close to the coil for the purpose of shielding magnetic flux. In such cases, the proximity of the magnetic plate or metal plate usually degrades the power transmission performance of the coil.
- FIGS. 25 and 26A or when a magnetic material plate or a metal plate is installed on the opposite side of the coil facing the coil of FIG. is there.
- a bobbin-shaped inner diameter cavity may be equipped with a magnetic material with low permeability, or the cavity may be equipped with a cylindrical metal ring. It is.
- FIG. 26A there are cases where the coil is fixed to the insulating material by making two metal plates having a width of about one fifth or less of the coil outer diameter D into a cross.
- the condition Rs> Rw or Rs> Rn ⁇ Rw may be satisfied in a certain frequency range.
- the magnetic material, metal plate, etc. A coil that does not affect the performance of the coil body of the embodiment of the invention is substantially regarded as an air core.
- the coil according to the embodiment of the present invention has a high magnetic field strength generated by a coil having high power transmission performance. For this reason, as described in paragraph No. 0008 of Japanese Patent Laid-Open No. 11-97263, for example, a magnetic material or metal plate is placed on the opposite side of the opposing surface of the coil in order to shield the electronic components of the device from the magnetic field force. The purpose is not to improve the power transmission performance of the coil, but merely as a magnetic shielding material.
- the material of the conductor forming the conductive wire is not particularly limited, but all the coils described in the present embodiment use copper as the conductor. It is preferable to use copper having a low specific resistance as the conductor, but other metals or alloys having a low specific resistance can also be used as the conductor.
- the effective series resistance of one coil unit is R w.
- Rs be the effective series resistance of one coil when the other coil facing one coil is short-circuited.
- fl be the highest frequency that satisfies Rs> Rw.
- the primary side Ratio of reactance X and pure resistance R at both ends of coil, X / R, and phase difference ⁇ between AC voltage and AC current applied to coil ⁇ is minimum, power factor cos ⁇ is maximum, and effective series resistance Rw
- a coil in the vicinity of a small frequency it is possible to obtain a coil for a power transmission device that has a power transmission performance with a high space factor and can be used even at a high frequency.
- reactive power and apparent power during power transmission can be reduced, and power loss due to the effective series resistance of the coil can also be reduced.
- the upper limit of the current value la of one coil, the upper limit of the number of turns that determines the effective series resistance of one coil, or the frequency region where the effective series resistance Rw is small can be specified.
- the optimal frequency range for power transmission can be specified, or the power transmission performance can be predicted without actually conducting a power transmission test. it can.
- the power factor can be increased to, for example, 75% or more
- the effective power transmission efficiency can be increased to, for example, 85% or more
- the non-inductive load resistance of 10 ⁇ connected to the secondary side can be increased to, for example, 25W or more.
- the coil of this embodiment is installed in at least one of the power transmission unit and the power reception unit, and the power is transmitted by setting the output frequency fa of the AC power supply Va of the power transmission unit to a frequency less than fl and f2.
- a method for operating a power transmission device having good power transmission performance by installing the coil of this embodiment in at least one of the power transmission unit and the power reception unit and driving the power transmission coil in a frequency region less than fl.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Coils Of Transformers For General Uses (AREA)
- Coils Or Transformers For Communication (AREA)
Abstract
電力伝送装置100は、直流電力を交流電力に変換する電力変換手段と、送電コイル1とを少なくとも含む送電部30と、負荷RLと、受電コイル2とを少なくとも含む受電部40とから構成され、送電コイル1と受電コイル2とを対向させて送電部から受電部に電力を伝送する。対向するコイルの内、一方のコイル単体の実効直列抵抗をRw(Ω)、一方のコイルに対向する他方のコイルを短絡したときの、コイルの実効直列抵抗をRs(Ω)、一方のコイルが、Rs>Rw、を満足する最高周波数をf1(Hz)、としたときに、送電部30の電力変換手段である交流電源Vaの出力周波数faをf1未満の周波数に設定する。
Description
明 細 書
電力伝送装置、電力伝送装置の送電装置および受電装置、ならびに電 力伝送装置の作動方法
技術分野
[0001] この発明は、分離可能な送電部と受電部とから成り、送電部の送電用コイルと受電 部の受電コイルとの間に生じる相互誘導作用により電力を伝送する電力伝送装置、 電力伝送装置の送電装置および受電装置、ならびに電力伝送装置の作動方法に関 する。
背景技術
[0002] 送電用コイルと、受電用コイルが分離可能な電力伝送装置は、電力伝送を行って レ、ない場合には両コイル間の距離が離れた分離状態にある。例えば、電力伝送時に は、本願の図 36に示すように、送電用コイル 1と、受電用コイル 2とを対向させ配置し て構成される。送電制御回路 3から送電用コイル 1に交流電流を流すと、相互誘導作 用により受電用コイル 2に起電力が誘起され、前記起電力による交流電流が受電制 御回路 4を通じて負荷に流れ、電力伝送が行われる。
[0003] 送電用コイル 1あるいは受電用コイル 2は、例えば、本願の図 37Aの平面図に示す 導体 lxを渦巻き状に卷回して構成され、本願の図 37Bのような図 37Aの線 6B— 6B に沿う断面図に示すように、間隔 を介して対向して配置される。導体 lxを渦巻き状 に卷回して構成される 2個のコイルを本願の図 37 (B)のように対向させるのは、両コ ィルを誘導結合させるのと同義であるので、「対向」という表記は、両コイルが誘導結 合状態にあることを示してレ、るものとする。
[0004] 本願の図 37 (B)では、送電用コイル 1と受電用コイル 2に同一のものを用いている。
これは、以下に引用する従来例において、誘導結合を示す対向状態が送電用コイル 1と受電用コイル 2に同一のコイルを用いているからである。当然ながら、送電用コィ ノレ 1と受電用コイル 2が異なるコイルを用いることもできる。以降、従来例を含め、単に 「コイル」と表記されている場合、送電用コイル 1または受電用コイル 2、あるいは双方 のコイルを指す。
[0005] 上記のような構成を持つコイルを使用した電力伝送装置力 特開平 8— 148360号 公報に記載されている。この特開平 8— 148360号公報に比較例 1として、ドーナツ 状の平面渦巻き型コイルが記載されている。すなわち、このコイルは、直径 100 μ ΐη の絶縁被覆が施された銅線を 100本束ねたものを 5ターン卷線して、外径 30mm、 内径 15mm、厚さ 1. 5mmに作成し、磁性材料を装備していなレ、。これらを対向させ て電源に接続される方を 1次側 (入力側)、電磁誘導で出力が発生する方を 2次側( 出力側)としている。
[0006] また、特開平 8— 148360号公報の実施例においては、電力伝送周波数が 100k Hzでの実測データが記載されており、電力伝送周波数が 100kHzに限定されないと 記載されている。すなわち、特開平 8— 148360号公報の段落番号 0040には、電力 伝送周波数が任意に選べると記載されている。
[0007] このような構成を持つコイルの他の例力 S、特開平 4一 122007号公報に記載されて いる。この特開平 4— 122007号公報に、比較例 1として、平面渦巻き型コイルであつ て、直径 lmmのエナメル銅線を 25ターン卷線し、外径 80mm、内径 24mmに作成 し、磁心部を設けていないコイルが記載されている。これらを対向させて電源に接続 される方を 1次側 (入力側)とし、電磁誘導で出力が発生する方を 2次側(出力側)とし ている。
[0008] 実開平 6— 29117号公報には、導体を卷回して構成されるコイルが記載されており 、渦電流損および表皮効果によって、周波数の上昇によりコイルを構成する導体の 交流抵抗が増大することが記載されている。その回避方法として、複数の単導線をフ ラットケーブル状にしてコイルを形成する導線とすることが記載されており、他の線材 を使って卷回したコイルと比較した交流抵抗の周波数特性が記載されている。
[0009] 最初に、本願では、引用する文献によって、使用されている用語が異なるため、ま ず用語について説明しておく。本願の図 36の送電制御回路 3、送電用コイル 1を含 む部分を、送電側、 1次側、入力側等と表記し、送電用コイル 1を、送電コイル、送電 用コイル、 1次コイル、 1次側コイル等と表記する。また、本願の図 36の受電制御回路 4、受電用コイル 2を含む部分を、受電側、 2次側、出力側等と表記し、受電用コイル 2を、受電コイル、受電用コイル、 2次コイル、 2次側コイル等と表記する。
[0010] 送電部と、受電部とが分離可能な電力伝送装置は、電線や機械的な接点を用いず に電力を機器に送ることができる。電気機器や電子機器が動作するのに必要な電力 を、電線や機械的な接点を用いずに送ることができるようになると、様々な応用用途 や利点がある。しかし、従来の技術では、相互誘導作用を利用して電力を伝送する 電力伝送用コイルの構成と特性、および作用効果が明確にされていない。そこで、送 電用コイルと、受電用コイルが分離可能な電力伝送装置、および電力伝送装置のコ ィルに関する従来例について考察してみる。
[0011] まず、特開平 8— 148360号公報には、電力伝送周波数が任意に選べると記載さ れている。しかし、電力伝送手段は、変成器 (変圧器)である。 1次コイルと 2次コイル は分離不能ではあるが、 50Hz〜60Hzの商用電源用に設計された変圧器が、任意 の周波数、例えば、 5Hz、あるいは、 10kHzで使用できないことは明らかである。す なわち、電力伝送手段である変成器には、使用可能な周波数の下限および上限が 存在する。しかし、電力伝送用コイルとして使用可能な周波数範囲について考察した 従来技術は存在しない。
[0012] また、 1次コイルと 2次コイルが分離不能な変圧器では、両コイル間の結合係数がほ ぼ 1の密結合状態である。一方、 1次コイルと 2次コイルが分離可能な変成器では、両 コイル間の結合係数が最大でも 0. 9程度の疎結合状態である。したがって、特開平 8 148360号公報、特開平 4— 122007号公報に実施例として記載されたコイルは、 平面渦巻状に卷回したコイルに磁性材を装備して、両コイル間の結合係数を確保す るようにしている。すなわち、特開平 8— 148360号公報、特開平 4 122007号公 報に記載されているコイルは、どちらも比較例であり、空芯の平面渦巻き型コイルを 用いた場合には、磁性材料を装備しないと性能向上が図れない旨の記載が見られる
[0013] しかしながら、平面渦巻き状コイルの利点は、その形状にあり、特に機器側に装備 される受電用コイルは、薄くないと実装上の問題が発生する。特に、 2次電池を内蔵 した小型の携帯機器などでは、スペースの制約上、コイル体積をできる限り小さくす ること力 S要求されてレ、る。電力伝送性能を向上させるために、例えば特開平 8— 148 360号公報に記載されているように、磁性材料で構成された板材をコイルの対向面
の反対側に装備しないといけないことになる。しかし、この場合は、コイルの体積が増 加し、機器に内蔵するのが困難になるという問題がある。
[0014] そのうえ、特開平 8— 148360号公報の請求項 8には、磁性材の厚さとして、 0. lm m〜5mmと規定されている。このような磁性材を、送電コイル、受電コイルの少なくと も一方のコイルに装備しないと、電力伝送性能が改善できないことになる。このことは 、磁性材の厚さの最大値を 5mmにした根拠として、特開平 8— 148360号公報の段 落番号 0019にも記載されている。しかしながら、コイル全体の厚さ力 mm以上とな ると、携帯電話などの小型機器には装備できないという問題がある。
[0015] 特開平 8— 148360号公報、特開平 4一 122007号公報共に、比較例と実施例を 対比し、空芯の平面渦巻き状コイルでは効率よく電力が伝送できないことが記載され ている。し力し、その理由については明記されていない。
[0016] そこで、特開平 8— 148360号公報において、比較例 1として挙げられている空心コ ィルに関する開示データについて検討してみる。まず、本願発明者は、特開平 8— 1 48360号公報に開示されているコイルと同一のコイルを作成し、前記コイルの特性を 計測した。特開平 8— 148360号公報に比較例として記載されているコイルは、直径 100 /i mの絶縁被覆銅線を 100本束ねた線径が 1. 5mmの太レ、導線を 5ターン卷線 しているだけである。このため、 自己インダクタンスが約 0· 8 μ Ηと小さく、コィノレ形状 により相互インダクタンスも小さくなる。そのため、力率が低下し、皮相電力、無効電 力が大きくなる。また、線径が太ぐターン数が少ないので、特開平 8— 148360号公 報の段落番号 0051に記載されている周波数 100kHzにおいては、コイルの実効直 列抵抗力、約 17m Ωと小さくなりすぎるという問題がある。
[0017] 本願の図 38は、特開平 8— 148360号公報に記載された比較例 1のコイルを送電 用コイル 1と受電用コイル 2に用いたときの等価回路図である。前記コイルを 2個用い 、本願の図 38に示すように、送電用コイル 1と受電用コイル 2とからなる変成器を構成 する。その場合、周波数 100kHzでは、負荷抵抗 RLを 10 Ωとしたときの、交流電源 V側から見た 1次側コイルのインピーダンス Zは、 Z =約 0. 6 Ωと非常に小さい値とな つている。本願の図 38において、 R3で示される交流電源 Vの内部抵抗は、通常 0. 5 Ω〜数十 Ωである。よって、交流電源 Vに、前記 1次側コイルが接続されると、交流電
源 Vは短絡された状態に近くなつてしまう。このため、交流電源 Vの内部抵抗 R3が相 当の電力を消費し、電力を効率よく伝送できなくなってしまう上、伝送可能な電力値 も少なくなる。
[0018] もともと、特開平 8— 148360号公報に記載されているコイルは、コイル対向面の反 対側に磁性材を装備することにより、 自己インダクタンスを確保し、コイルが対向した ときに磁束を閉じ込め、結合係数を増加させる意図で作成されている。このため、コィ ルとして最適化されたものではない。
[0019] 次に、特開平 4— 122007号公報に開示されているデータについて検討してみる。
特開平 4一 122007号公報に記載の比較例 1において、特開平 4一 122007号公報 の第 7図より概算計算すると、コイルの対向距離、 g = 5mm、周波数、 f = 50kHz、 2 次側負荷電流、 12 =約 0. 5Aのときに、伝送効率、 η =約 65%で、 2次側電力、 Ρ2 = 20Wの電力が伝送可能と記載されてレ、る。
[0020] し力しながら、この実測結果には納得し難い点がある。特開平 4 122007号公報 では、 1次側、 2次側に同一のコイルを使用しており、変成器として見た場合、卷線比 力 であるので、 2次側電圧は、 1次側電圧以下にしかならないはずである。しかし 、上記実測条件から計算すると、 2次側の電圧値 V2は、 V2 = 20W/0. 5A=40V で、特開平 4— 122007号公報の第 7図には、 VI = 29Vと、 1次側コイルに印加され る電圧が 29Vであることが明記されている。すなわち、昇圧作用を持たない卷線比 1 : 1の変成器が、入力電圧 V1 = 29V、出力電圧、 V2 = 40Vの昇圧効果を呈してい るという実測結果となっている。これは、比較例 1のみならず、実施例 1においても、前 記第 7図の 2次電流 12、約 0. 5Aの箇所を見れば、同様の実測結果となっている。特 開平 4—122007号公報の記載には、このような疑問点が見られる。
[0021] 上記した特開平 4— 122007号公報の理論的な疑問点は別として、特開平 4— 12 2007号公報に開示されている比較例 1のコイルにおいて、空芯では性能が劣る理 由を説明する。実開平 6— 29117号公報の段落番号 0002に記載されているように、 渦電流損および表皮効果は、周波数が上昇すると、コイルの実効直列抵抗を増加さ せる。この特性は、単導線の線径が太いほど、顕著な影響があることが知られている 。本願発明者は、特開平 4— 122007号公報の比較例 1として記載されているコィノレ
とほぼ同等のコイルを試作して追試を行なってみた。その結果、 50kHzになると、コ ィルの実効直列抵抗は、コイルの直流抵抗約 0. 08 Ωの、約 3倍以上の、 0. 266 Ω になることが分かっている。
[0022] 本願の図 36の送電制御回路 3は、本願の図 38において、交流電源 Vで示され、 R 3は交流電源 Vの内部抵抗である。 R1は送電用コイル 1の実効直列抵抗である。 R2 は受電用コイル 2の実効直列抵抗である。 RLは受電制御回路 4に接続される負荷抵 抗である。
[0023] 1次側および 2次側コイルの双方に、特開平 4一 122007号公報の比較例 1として 記載されたコイルを使うと、本願の図 38に示すように、実効直列抵抗 R1が交流電源 Vに直列に接続される。そして、実効直列抵抗 R2が負荷抵抗 RLに直列に接続され ることにより、少なくとも Rl、 R2の 2箇所で電力損失が発生する。これを回避するには 、周波数を下げ、前記した表皮効果、渦電流損の影響を低減するしかない。だが、周 波数を下げると、コイルのリアクタンスが減少する。その結果、送電コイルのインピー ダンス Zが低下し、送電用コイル 1に過大な皮相電力が投入されてしまう。そして、前 記皮相電力による過大電流が送電用コイル 1に流れ、実効直列抵抗 R1と、交流電源 の内部抵抗 R3による電力損失が発生する。そのため、特開平 4 122007号公報の 実施例では、コイルのインダクタンスとリアクタンスを確保し、皮相電力を低減するた め磁性材を装備している。空芯でコイルを使用するには、リアクタンスを確保できるよ う、高い周波数で作動させることが可能なコイルを実現しなければならない。すなわち 、高い周波数で実効直列抵抗 R1が低いコイルを実現すればよい。
[0024] 特開平 4— 122007号公報に記載されたコイルも、空芯で使うには適していない構 成であるのは上記に説明したとおりである。
[0025] 実開平 6— 29117号公報には、単導線をフラットケーブル状に形成した導線を使 用してコイルを構成することにより、周波数の上昇による実効直列抵抗の増大を軽減 できる旨が記載されている。また、実開平 6— 29117号公報の段落番号 0013、表 1 には、フラットケーブルを用いたコイルと他の線材を用いたコイルの、 50Hzと 100kH zにおける実効直列抵抗が記載されている。
[0026] しかし、実開平 6— 29117号公報は、周波数の上昇に伴う実効直列抵抗の増加率
を抵抗値ではなく比で表しており、実効直列抵抗の実際の数値が不明である。そして
、実開平 6— 29117号公報に限らず、本願にて引用している特許文献には、コイル の重要な特性であるインダクタンスについて言及されている文献はなレ、。すなわち、 実効直列抵抗の周波数特性の改善率が、インダクタンスの減少率よりも高くないと、 性能の良いコイルが実現できたとは言えなレ、。換言すれば、高い周波数でコイルの Qを高くしないと、性能の良いコイルが実現できたとは言えない。
[0027] 特開平 8— 148360号公報、特開平 4_ 122007号公報においては、実開平 6 _ 2 9117号公報とは逆に、透磁率の高い磁性材料をコイルに装備することにより、周波 数の上昇による実効直列抵抗の増加率よりもインダクタンスを増加させて、コイルの Q を上げる手法を使っているものと推察される。
[0028] また、実開平 6— 29117号公報の段落番号 0013の表 1を参照すると、従来例と実 施例の比較において、導体断面積と、コイル外寸、ターン数は記載されている。しか し、導体の総延長が不明であるため、実効直列抵抗の実際の数値が分からない。さ らに、実開閉 6— 29117号公報の段落番号 0020、 0021、図 3には、フラットケープ ルを平板渦巻き状に卷回したコイルが開示されている力 図 3のコイルについては、 他の線材を用いて平板渦巻き状に構成したコイルとの性能比較や作用効果につい ては何も記載されていなレ、。また、図 3のコイルが電力伝送に使用可能であることも 全く記載されていない。
[0029] すなわち、電力伝送用の性能がよいコイルを実現するには、 自己インダクタンス、相 互インダクタンス (結合係数)を確保でき、かつ実効直列抵抗による電力損失がもたら すコイルの発熱を回避するために、適切な構成のコイルを選ばねばならない。そして 、コイルの特性規定を行ってコイルの作動条件を定めなければならず、単にコイルの 実効直列抵抗の周波数特性を改善するだけでは不十分である。
[0030] 上記に説明してきたように、平板に導線を単層渦巻き状に卷回した空芯の電力伝 送用コイルは、電力伝送性能が悪いというのが従来の定説となっている。そのため、 磁性材料等を装備することによって、電力伝送性能の向上が図られている。そして、 電力伝送性能を左右する 1つの要因である前述した電力伝送用コイルの実効直列 抵抗と周波数の関係を、前記電力伝送用コイルの構成と共に考察した従来技術は
存在しない。すなわち、従来の技術では、電力伝送装置に用いるのに適切な単層渦 卷き状に卷回した電力伝送用コイルが実現できていない。また、単層渦巻き状に卷 回した電力伝送用コイルの作動条件が規定されていない。そのために、電力伝送性 能のょレ、電力伝送装置が実現できてレ、なレ、。
発明の開示
[0031] この発明の目的は、電力伝送性能を高めた電力伝送装置、電力伝送装置の送電 装置および受電装置、ならびに電力伝送装置の作動方法を提供することである。
[0032] この発明に係る電力伝送装置は、送電部と受電部が分離可能なように構成され、 交流電力を送電する送電コイルを少なくとも含む送電部と、負荷 RLと、受電コイルと を少なくとも含む受電部とから成り、送電コイルと、受電コイルとを対向させて、送電部 力 受電部に電力を伝送する。電力伝送装置は、対向するコイルの内、一方のコィ ル単体の実効直列抵抗を RW ( Ω )、一方のコイルに対向する他方のコイルを短絡し たときの、一方のコイルの実効直列抵抗を Rs ( Q )、一方のコイル力 Rs >Rw、を満 足する最高周波数を fl (Hz)としたときに、 flが 100kHz以上となるように、一方のコ ィルと他方のコイルが選ばれており、一方のコイルを駆動する周波数を fl未満の周 波数に設定したことを特徴とする。
[0033] この発明では、 flが 100kHz以上のコイルを使用し、コイルを駆動する周波数を fl 未満の周波数に設定したことにより、電力伝送性能を、従来よりも向上させることが可 能となる。
[0034] より具体的には、直流電力を交流電力に変換する電力変換手段を含み、電力変換 手段の出力周波数を fa (Hz)としたときに、 faを fl未満の周波数に設定する。
[0035] これより、電力伝送性能を、従来よりも向上させることが可能となる。
[0036] 好ましくは、一方のコイルに対向する他方のコイルを開放したときの、一方のコイル の実効直列抵抗を Ι η ( Ω )とし、 Rs >Rn≥Rw、を満足する最高周波数を f 2 (Hz)と したときに、出力周波数 faを f 2未満の周波数に設定している。この例では、電力を伝 送する周波数において、 Rs >Rn≥Rw、を満足することにより、さらに実効直列抵抗 Rwの小さいコイルを選別でき、かつ電力伝送に最適な周波数範囲を規定できる。
[0037] また、電力を伝送する周波数において、 Rs >Rn≥Rw、の条件を満足するコイルを
使用することにより、コイル単体、コイルを対向させた変成器、のいずれもが理想的な 理論上の特性に近づき、電力伝送性能を、従来よりも向上させることが可能となる。
[0038] 好ましくは、一方のコイルの熱抵抗を Θ i (°C/W)、一方のコイルの許容動作温度 を Tw (°C)、一方のコイルが設置される場所の周囲温度を Ta (°C)、電力を伝送して いるときに、一方のコイルに流れる交流電流を la (A)、としたときに、 faにおいて、 Rw ≤ (Tw-Ta) / (Ia2 X Θ i)、なる関係を一方のコイルが満足するように、送電部から 受電部に電力を伝送する。
[0039] このように、実効直列抵抗 Rwと交流電流 laによる熱条件を規定することで、少なく とも一方のコイルの交流電流 laの上限、あるいは一方のコイルの実効直列抵抗 Rwを 決めるターン数の上限と、実効直列抵抗 Rwが小さい周波数領域を規定できる。
[0040] 好ましい実施形態では、対向するコイルの内、少なくとも一方のコイルを形成する導 線は絶縁被覆が施された単導線で、少なくとも一方のコイルは、単導線を単層または 多層渦巻き状に密接巻きして構成され、単導線の導体単体の最大径を dl、少なくと も一方のコイル外径を Dとしたとき、少なくとも一方のコイル外径 Dが最大径 dlの少な くとも 25倍以上であり、かつ導線の卷き数が所定ターン数以上であり、少なくとも一方 のコイルの自己インダクタンスが少なくとも 2 μ Η以上である。
[0041] このように導線に絶縁被覆を施すことで、導線の酸化を防ぎ、隣接する導線間の短 絡防止を図ることができる。また、コイルの直径 Dおよびターン数を規定することにより 、必要な自己インダクタンスを確保するとともに、両コイル間の所定対向距離におい て、必要な結合係数を確保することができる。
[0042] 好ましい他の例では、対向するコイルの内、少なくとも一方のコイルは複数の導線 を含み、それぞれの導線は、最大径が 0. 3mm以下に選んだ複数の裸単導線の集 合体に絶縁被覆を施して形成され、少なくとも一方のコイルは、複数の裸単導線の集 合体に絶縁被覆を施した導線を単層または多層渦巻き状に密接巻きして構成されて おり、複数の裸単導線の集合体の最大径を d2、少なくとも一方のコイル外径を Dとし たとき、少なくとも一方のコイル外径 Dが最大径 d2の少なくとも 25倍以上であり、かつ 導線の卷き数が所定ターン数以上であり、少なくとも一方のコイルの自己インダクタン スが少なくとも 2 a H以上である。
[0043] この発明では、上記発明と同様の作用効果をなすとともに、導体を貫通する磁束に よる渦電流損は、導体の体積に比例して増加するため、 0. 3mm以下の裸単導線の 集合体を、少なくとも一方のコイルを形成する導線とし、導体の表面積を増加させるこ とによって、渦電流損と表皮効果による実効直列抵抗 Rwの増加を抑えることができ る。
[0044] 好ましいさらに他の実施形態では、対向するコイルの内、少なくとも一方のコイルを 形成する導線には、導線内部に絶縁体層が設けられ、絶縁体層の断面積が導線全 体の断面積の 11 %以上であって、少なくとも一方のコイルは、絶縁体層が設けられ た導線を単層または多層渦巻き状に密接巻きして構成され、絶縁体層が設けられた 導線の最大径を d3、少なくとも一方のコイル外径を Dとしたとき、少なくとも一方のコィ ル外径 Dが最大径 d3の少なくとも 25倍以上であり、かつ導線の卷き数が所定ターン 数以上であり、少なくとも一方のコイルの自己インダクタンスが少なくとも 2 μ Η以上で ある。
[0045] この例では、上記発明と同様の作用効果をなすとともに、導体を貫通する磁束によ る渦電流損は、導体の体積に比例して増加するため、コイルを構成する導線内部に 絶縁体を設け、導線中を貫通する磁束経路に存在する導体体積を減らし、導体の表 面積を増加させることによって、渦電流損と表皮効果による実効直列抵抗 Rwの増加 を抑えること力 Sできる。絶縁材料は導線内部に絶縁層を設けるとともに、導線に可撓 性を持たせ、導線の曲げ加工を容易にするものである。
[0046] 好ましいさらに他の例では、導線は、それぞれに絶縁被覆が施された複数の単導 線の集合体で構成され、かつ、単導線中の導体の最大径を d4としたときに、 d4が 0. 3mm以下であって、絶縁被覆の厚さ tが(d4) /30以上に選ばれている。
[0047] この例では、上記発明と同様の作用効果をなすとともに、導体を貫通する磁束によ る渦電流損は、導体の体積に比例して増加するため、 0. 3mm以下の裸単導線の集 合体を、少なくとも一方のコイルを形成する導線とし、導体の表面積を増加させること によって、渦電流損と表皮効果による実効直列抵抗 Rwの増加を抑えることができる
[0048] この構成のコイルは、それぞれに絶縁被覆が施された複数の単導線の集合体で構
成され、各単導線に隣接する他の単導線との間に、絶縁被覆により、空隙が設けら れており、各単導線に流れる電流により発生する磁束密度が、 1/複数となる上、各 単導線の体積が小さいので、渦電流損が低減できる。なお、表皮効果の影響が低減 できることは言うまでもない。
[0049] 具体的には、対向するコイルの内、少なくとも一方のコイルは、導線を平面単層渦 卷状に卷回して構成されており、導線の最大径 dが、 0. 4mm以上のときに、隣接す る導線の導体間に、 0. 2mm以上の空隙を設け、導線の最大径 dが、 0. 4mm未満 のときに、隣接する導線の導体間に、 d/2 (mm)以上の空隙を設ける。
[0050] 空隙を設けなレ、場合、各導線が発生する磁束は、隣接する導線を全て貫通し、磁 束が隣接した導線を貫通することにより発生する渦電流損により、周波数が上昇した ときに、実効直列抵抗 Rwが増加するが、空隙を設けることにより、磁束が隣接した導 線を貫通することにより発生する渦電流損を少なくできるので、周波数が上昇したとき に、コイル単体の実効直列抵抗 Rwの増加を抑えることができる。
[0051] また、同一外径のコイルでは、卷線の総延長が短くなるので、実効直列抵抗を低く 抑えること力 Sできる。ただし、導体を貫通する磁束による渦電流損は、導体の体積に 比例して増加するため、単導線の最大径が 0. 2mm以上でないと、導線間に空隙を 設けても、周波数の上昇による実効直列抵抗の増加率は余り改善できない。
[0052] 好ましくは、対向するコイルの内、少なくとも一方のコイルは、導線を平面単層渦卷 状に卷回して構成されており、少なくとも一方のコイルの最外周部における隣接する 各導線の各導体間に設ける空隙の幅を tl、少なくとも一方のコイルの最内周部にお ける隣接する各導線の各導体間に設ける空隙の幅を t2、とすると、 t2 >tl > 0、であ つて、最外周部から内周部に行くに従レ、、空隙の幅が増加し、最内周部における隣 接する各導線の各導体間に設ける空隙の幅 t2が、少なくとも 0. 2mm以上である。
[0053] コイルが生成する磁束密度は、外周部近辺では低ぐ内周部では高いため、外周 部を蜜卷きし、内周部を疎卷きすることにより、コイル面上で、できる限り磁束密度を 一定にし、対向しているコイルの相対位置が変動したときの伝送可能電力の低下を 防止できる。内周部は磁束密度が高いので、空隙を設けることで渦電流損を防止で きる。
[0054] 上記構成のコイルは、広レ、周波数範囲で実効直列抵抗 Rwが低ぐ Rs >Rn≥Rw 、を満足している周波数範囲も広いので、電力伝送特性がよい。
[0055] さらに、少なくとも一方のコイルは、導線の外周部が絶縁層を有しており、少なくとも 一方のコイルの最外周部における隣接する各導線の各導体間は絶縁層を介して密 接している。
[0056] 外周部に設ける 1ターンは、内周部に設ける 1ターンに比べて線長が長いので、コ ィルのインダクタンスを増加させる作用が大きレ、。よって、コイルのインダクタンスを確 保できる。また、内周部に設ける 1ターンは、インダクタンスの増加に寄与するよりも、 前述したように、磁束密度の高い内周部において渦電流損を増加させる原因となり、 損失を増大させるので、空隙を設けている。空隙の作用効果は、既述したとおりであ る。
[0057] より好ましくは、コイルの変形を防止するために、送電コイルまたは受電コイルの少 なくとも一方のコイルが、絶縁板上か絶縁部材内の少なくとも一方に形成されている
[0058] 絶縁板上か絶縁部材内の一方側にコイルを配置することで、コイルを構成している 導線の絶縁層を保護できる。対向するコイル間に絶縁材を設ければ、両コイル間の 絶縁耐圧を高めることができる。両コイルを固定して使用する場合においても、絶縁 板上か絶縁部材を設けることにより、両コイル間の絶縁耐圧を高めることができる。
[0059] 好ましい実施形態では、電力伝送装置のコイルを送電コイルまたは受電コイルの少 なくとも一方として使用し、送電コイルと受電コイルを分離不能として使用可能になる
[0060] なお、固定前に送電コイル単体と受電コイル単体の特性を計測し、かつ両コイルを 対向させた特性も計測可能である。最初から一体構造で設計された両コイルは、実 際に組み立てないと性能を確認できなレ、が、本発明の実施形態では、特性を計測し 、実際に電力伝送性能の確認を行ってから、コイルを固定することができる。そして、 受電コイルと受電コイルの卷き線比を、任意の比率に設定可能な、軽量、薄型、空芯 の、特性がよい変圧器が実現できる。
[0061] この発明の他の局面は、上記記載の電力伝送装置の送電部を含む送電装置であ
つて、送電部は、一方のコイルを含み、出力周波数 faを fl未満の周波数に設定して 、受電部に電力を送電する。
[0062] この発明では、一方のコイル単体の実効直列抵抗を Rwとする。一方のコイルに短 絡した他方のコイルが対向したときの、一方のコイルの実効直列抵抗を Rsとする。 Rs >Rw、を満足する周波数 flが 100kHz以上のコイルを使用し、送電コイルを fl未満 の周波数で駆動する。このようにして送電部より電力を伝送することにより、送電部に おける電力伝送性能を、従来よりも向上させることが可能となる。
[0063] この発明のさらに他の局面は、上記記載の電力伝送装置の受電部を含む受電装 置であって、受電部は、一方のコイルを含み、出力周波数 faが fl未満の周波数に設 定された送電部から電力を受電する。
[0064] この発明では、一方のコイル単体の実効直列抵抗を Rwとする。一方のコイルに、 短絡した他方のコイルが対向したときの、一方のコイルの実効直列抵抗を Rsとする。 Rs >Rw、を満足する周波数 flが 100kHz以上のコイルを使用して、受電コイルが f 1未満の周波数で駆動される送電コイルから電力を受電する。このようにして送電部 より受電部が電力を受電することにより、受電部の電力伝送性能を従来よりも向上さ せること力 S可言 となる。
[0065] この発明の他の局面は、送電部のコイルと、受電部のコイルとを対向させて、送電 部から受電部に電力を伝送する電力伝送装置の作動方法であって、対向するコイル の内、一方のコイル単体の実効直列抵抗を Rw ( Q )、一方のコイルに対向する他方 のコイルを短絡したときの、一方のコイルの実効直列抵抗を RS ( Q )、 Rs >Rw、を満 足する最高周波数を fl (Hz)、送電コイルが駆動される周波数を fd (Hz)、としたとき に、 flが 100kHz以上となるように、一方のコイルと他方のコイルを選び、 fdを fl未満 の周波数に設定することによって送電部から電力を伝送する。
[0066] 両コイル対向時に、一方のコイルに対向する他方のコイルを短絡したときの、一方 のコイルの実効直列抵抗 RSが、一方のコイル単体での実効直列抵抗 Rwよりも大きく なることにより、電力を伝送する周波数において、実効直列抵抗 Rwの小さいコイルを 選別でき、かつ、電力伝送に最適な周波数範囲を規定できる。そして前記したように 、自己インダクタンスを確保でき、実効直列抵抗 Rwが低いコイルは、高い Qを持つ。
[0067] したがって、 Rs >Rw、を満足する周波数 flが 100kHz以上のコイルを使用するこ とにより、電力伝送性能を、従来よりも向上させることが可能となる。
[0068] 好ましくは、一方のコイルに対向する他方のコイルを開放したときの、一方のコイル の実効直列抵抗を Rn ( Q )、Rs >Rn≥Rw、を満足する最高周波数を f2 (Hz)、とし たときに、 fdを f 2未満の周波数に設定して電力伝送装置を作動させる。
[0069] この例では、電力を伝送する周波数において、 Rs >Rn≥Rw、を満足することによ り、さらに実効直列抵抗 Rwの小さいコイルを選別でき、かつ電力伝送に最適な周波 数範囲を規定できる。
[0070] また、電力を伝送する周波数において、 Rs >Rn≥Rw、の条件を満足するコイルを 使用することにより、コイル単体、コイルを対向させた変成器、のいずれもが理想的な 理論上の特性に近づき、電力伝送性能を、従来よりも向上させることが可能となる。
[0071] 好ましくは、一方のコイルの熱抵抗を Θ i (°C/W)、一方のコイルの許容動作温度 を Tw (°C)、一方のコイルが設置される場所の周囲温度を Ta (°C)、電力を伝送して レ、るときに、一方のコイルに流れる交流電流を la (A)、としたときに、一方のコイルが 電力を伝送しているときに、 fdにおいて、 Rw≤ (Tw-Ta) / (la2 X Θ i)、なる関係を 一方のコイルが満足する。
[0072] この例では、実効直列抵抗 Rwと交流電流 laによる熱条件を規定することで、少なく とも一方のコイルの交流電流 laの上限、あるいは少なくとも一方のコイルの実効直列 抵抗を決めるターン数の上限と、実効直列抵抗 Rwが小さい周波数領域を規定でき る。
図面の簡単な説明
[0073] [図 1]この発明の一実施形態に係る電力伝送装置のブロック図である。
[図 2A]図 1に示した電力伝送装置の送電コイルまたは受電コイルとして使用されるコ ィルを示す図である。
[図 2B]図 2Aに示した線 1 B— 1 Bに沿う断面図である。
[図 3A]図 2Aに示したコイルの外形形状の変形例を示す図である。
[図 3B]図 2Aに示したコイルの外形形状の変形例を示す図である。
[図 3C]図 2Aに示したコイルの外形形状の変形例を示す図である。
園 3D]図 2Aに示したコイルの外形形状の変形例を示す図である。
園 3E]図 2Aに示したコイルの外形形状の変形例を示す図である。
園 4]変成器の入力インピーダンスを求める等価回路である。
園 5]この発明の一実施形態における電力伝送装置のコイルにおけるコイル単体の 等価回路を示す図である。
園 6]従来例で説明した図 36のように構成された電力伝送装置の変成器部分の等価 回路を表す図である。
園 7]2次側コイルを短絡したときの変成器の等価回路を表す図である。
園 8]2次側コイルに負荷抵抗 RLが接続されたときの変成器の等価回路を表す図で ある。
[図 9]線径 lmmの単導線を、外径 70mmで 25ターン密接巻きしたコイル 1Aの、 Rw 、 Rn、 Rs、および負荷抵抗値 RL= 10 Ωとしたときの実効電力伝送効率と周波数の 関係を示す図である。
[図 10]線径 0. 6mmの単導線を、外径 70mmで 40ターン密接巻きしたコイル 1Bの、 Rw、 Rn、 Rs、 kr、 kiと周波数の関係を示す図である。
[図 11]線径 0. 3mmの単導線を、直径 70mmで 70ターン密接巻きしたコイル 1Cの、 Rw、 Rn、 Rs、コイル 1C単体の位相角と周波数の関係を示す図である。
[図 12]線径 0. 3mmの単導線を、直径 30mmで 31ターン密接巻きしたコイル 1Dの、 Rw、 Rn、 Rsと周波数の関係を示す図である。
[図 13]線径 lmmの単導線を、外径 70mmで空隙を設けて 14ターン卷いたコイル 1E の、 Rw、 Rn、 Rs、 krと周波数の関係を示す図である。
[図 14]銅線径 0. 05mmのホルマル単導線を 75本束ねたリッツ線を、外径 70mmで 3 0ターン密接巻きしたコイル 1Fの、 Rw、 Rn、 Rs、 kr、 kiと周波数の関係を示す図で ある。
[図 15]銅線径 0. 05mmのホルマル単導線を 75本束ねたリッツ線を、外径 50mmで 2 0ターン密接巻きしたコイル 1Gの Rw、 Rn、 Rs、 kr、 kiと周波数の関係を表す図であ る。
[図 16]0. 2mm、 0. 4mm、 0. 8mm、 lmmのホルマル単導線を平板状に 25回卷ぃ
たコイルの周波数と、各コイルの実効抵抗 Rwの関係を示す図である。
[図 17]図 9に示したコイル 1Aに、コイル 1Fを対向させたときの Rw、 Rn、 Rs、および 負荷抵抗値 RL= 10 Ωとしたときの実効電力伝送効率と周波数との関係を表す図で ある。
[図 18]図 9に示した密接卷のコイル 1Aと、図 13に示した疎卷のコイル 1Eとのコイル 実効直列抵抗 Rwが増加する状態を比較して示した図である。
[図 19]線径 0. 4mmのホルマル線を、 0、 0. 2mm、 0. 4mmの空隙幅を設けて 25タ ーン卷いた各コイルの Rwと周波数との関係を示す図である。
[図 20]コイル 1 Aを送電コイル、受電コイルに使用し、負荷抵抗値 RLを変化させたと きの、各抵抗値と力率の周波数特性を示す実測図である。
[図 21]コイル 1Aを送電コイル、コイル 1Fを受電コイルに使用し、負荷抵抗値 RLを変 化させたときの、各抵抗値と力率の周波数特性を示す実測図である。
[図 22A]図 2Aに示したコイルに用いられる導線の他の例を示す断面図である。
[図 22B]図 2Aに示したコイルに用いられる導線の他の例を示す断面図である。 園 23]導線を断面傘型に卷回したコイルの断面図である。
[図 24A]図 23のコイルの水平位置と磁場強度を表す図である。
[図 24B]図 2Aのコイルの水平位置と磁場強度を表す図である。
園 25]絶縁材上に導線を卷回したコイルの断面図である。
園 26A]この発明の他の実施形態における電力伝送装置のコイルを示す図である。
[図 26B]図 26Aの線 2B— 2Bに沿う断面図である。
園 27A]この発明のさらに他の実施形態における電力伝送装置のコイルを示す図で ある。
[図 27B]図 27Aの線 3B— 3Bに沿う断面図である。
園 28]この発明のさらに他の実施形態における電力伝送装置のコイルに用いられる 導線の一例である裸単銅線の集合体の断面図である。
園 29A]この発明のさらに他の実施形態における電力伝送装置のコイルを示す図で ある。
[図 29B]図 29Aの線 4B— 4Bに沿う断面図である。
[図 30A]図 29Aに示したコイルに用いられる導線であるリッツ線の断面の一例を示す 図である。
[図 30B]図 30Aに示した単導線の断面図である。
[図 31]リッツ線の等価回路図である。
[図 32]パイプ状の導体内に絶縁材料が充填されている導体の断面図である。
[図 33]絶縁材料上に、分割して導体を形成した導線の断面図である。
[図 34]絶縁材料上に、分割して導体を形成し、絶縁体内部にも導体を形成した導線 の断面図である。
[図 35A]箔状導体と絶縁材料を重ね、断面が螺旋状で、導体と絶縁体が交互に存在 するように形成した導線の断面図である。
[図 35B]箔状導体と絶縁材料と重ねて卷回した導線の断面図である。
[図 35C]箔状導体と絶縁材料と重ねて卷回し、断面が螺旋状となる導線の断面図で ある。
[図 36]1次側コイルと 2次側コイルとが分離可能な電力伝送装置の概略ブロック図で ある。
[図 37A]送電コイルまたは受電コイルの平面図である。
[図 37B]図 37Aの線 6B— 6Bに沿う断面図である。
[図 38]図 36に示した 1次側コイルと 2次側コイルとが分離可能な電力伝送装置の等 価回路図である。
発明を実施するための最良の形態
[0074] (電力伝送装置の説明)
図 1はこの発明の一実施形態に係る電力伝送装置 100のブロック図である。図 1に おいて、電力伝送装置 100は、送電装置として作動する送電部 30と、受電装置とし て作動する受電部 40とを含む。送電部 30は、直流電源 Vdと、送電制御回路 30aと、 送電コイル 1とを含む。受電装置 40は、受電コイル 2と、受電制御回路 40aと、負荷 R Lとを含む。送電コイル 1と、受電コイル 2とは対向して配置される。
[0075] なお、送電部 30と、受電部 40とは分離可能に構成されている。送電部 30と、受電 部 40とが結合されたときには、送電コイル 1と受電コイル 2とが対向して配置されるの
で、送電コイル 1と受電コイル 2とは変成器として作用する。
[0076] 送電部 30の送電制御回路 30aは、直流電源 Vdを交流電力に変換するインバータ 回路などの電力変換手段を少なくとも含む。交流電力により送電コイル 1を好ましくは 交流正弦波、あるいは交流正弦波に近い階段波等により後述する所定の周波数未 満で駆動して受電部 40に電力を伝送する。受電部 40は受電コイル 2により送電コィ ノレ 1から送電された電力を受電する。受電制御回路 40aは受電した電力を負荷 RLに 供給する。受電制御回路 40aには、交流電力を直流電力に変換する整流回路等が 含まれている。負荷 RLが白熱電球などの交流電力で動作するものは、受電制御回 路 40aを省略し、負荷 RLを受電コイル 2に直結することもできる。
[0077] なお、交流とは、出力端子に接続されたコイルに、正方向、逆方向に電流が流せる ものを言う。以降、直流電源 Vdを交流電力に変換する電源変換手段を交流電源 Va 、交流電源、または Vaと表記する。そして、交流電源 Vaの出力周波数を fa (Hz)と表 記する。さらに、送電コイル 1が交流電源 Vaによって駆動される周波数を fd (Hz)と表 記する。
[0078] (電力伝送装置の動作の説明)
図 1に示す対向する送電コイル 1および受電コイル 2は空芯コイルであり、その内、 一方のコイル単体の実効直列抵抗を RW ( Q )、とする。一方のコイルに対向する他方 のコイルを短絡したときの、一方のコイルの実効直列抵抗を RS ( Q )とする。この発明 の一実施形態に係る電力伝送装置 100は、一方のコイルが、 Rs >Rw、を満足する 最高周波数を fl (Hz)、としたときに、送電部 30に含まれる交流電源の出力周波数 f aを fl未満の周波数領域に設定し、受電部 40に電力を伝送する。 faを上記のように 設定すると、送電コイルである一方のコイルまたは他方のコイル力 周波数 fd = faで 駆動される。
[0079] また、一方のコイルに対向する他方のコイルを開放したときの、一方のコイルの実効 直列抵抗を Rn ( Q )とする。そして、 1¾ >1¾1≥1^を満足する最高周波数を£20½) とする。電力伝送装置 100は、送電制御回路 30aに含まれる交流電源 Vaの出力周 波数 faを f2未満の周波数領域に設定し、電力を受電部 40に伝送する。 faを上記の ように設定すると、送電コイルである一方のコイルまたは他方のコイルが、周波数 fd =
faで駆動される。
[0080] (コイルの具体例の説明)
以下、本発明の実施形態における電力伝送装置に使用されるコイルの具体的な構 成について説明する。以下に説明する各実施形態のコイルは、電力伝送装置 100の 送電コイル 1または受電コイル 2として使われる。
[0081] 図 2Aおよび図 2Bは、空芯コイルの一例を示す図であり、図 2Aは平面図を示し、 図 2Bは図 2の線 1B_ 1Bに沿う断面を拡大して示す。
[0082] この発明の一実施形態のコイル laは、図 2Aに示すように、導線 11を平板で空芯 の単層渦巻き状に、 P 接する導線 11同士が密接するように卷回して構成される。導 線 11は図 2Bに示すように、断面が円形であり、最大径 dlは特に限定されなレ、が、好 ましくは、例えば線径が 0. 2mm以上の単導線 12単体に絶縁被覆 13を施して構成 されている。絶縁被覆 13としては、ホルマル線のように厚みが薄くても強い被膜や、 ビニール線のように厚レ、被膜のレ、ずれであってもよレ、。
[0083] さらに、コイル laの自己インダクタンスが少なくとも 2 μ Η以上である。さらに、電力を 伝送する周波数における、コイル la単体での実効直列抵抗を Rw ( Q )とする。図 2A に示したコイル laを 2個対向させ、対向する一方のコイルを短絡したときの、他方のコ ィルの実効直列抵抗を Rs ( Q )、とする。このときに、 Rs >Rw、を満足する最高周波 数を fl (Hz)とする。送電コイルである一方のコイルまたは他方のコイルは、交流電源 Vaにより、 fl未満の周波数である fdにて駆動される。好ましくは、コイル laは、 100k Hzにて、 Rs >Rw、を満足している。
[0084] コイル外径 Dを単導線 12の最大径 dlの 25倍以上に選んだのは、必要な結合係数 を確保するためである。導線 11のターン数を 8以上になるように選んだのは、 2 μ Η 以上の自己インダクタンスが得られるようにするためである。なお、この実施形態のみ ならず、他の実施形態においても共通するが、コイルには、導線が卷かれない所定 の内径を設けるのが望ましい。内径は、外径 Dの規定を満足していれば、任意の寸 法でよい。
[0085] さらに、電力を伝送する周波数における、対向するコイルの一方を開放したときの 他方のコイルの実効直列抵抗を Rn ( Q )、とする。このときに、 Rs >Rn≥Rw、を満足
する最高周波数を f 2 (Hz)とする。送電コイルである一方のコイルまたは他方のコィ ノレは、交流電源 Vaにより、 f2未満の周波数 fdにて駆動される。
[0086] さらに、コイル laの熱抵抗を Θ i (°C/W)、コイル laの許容動作温度を Tw (°C)、コ ィル laが設置される場所の周囲温度を Ta (°C)、電力を伝送しているときにコイル la に流れる交流電流を la (A)、としたときに、 Rw≤ (Tw-Ta) / (Ia2 X Θ i)なる関係を
、コイル laが、電力を伝送しているときに満足する。
[0087] このように構成されたコイル laは、図 1に示した、 1次側コイルと 2次側コイルが分離 可能な電力伝送装置の送電用コイル 1、または受電用コイル 2として用いることができ る。
[0088] なお、図 2Aの実施形態においては、導線を円形に卷回している。しかし、円形に 限らず、図 3Aに示す長円形、図 3Bに示す楕円形、図 3Cに示す正方形、図 3Dに示 す長方形、図 3Eに示す六角形などの多角形のように、任意の形状で卷回することが できる。これは、後述する他の実施形態でも同様である。ただし、コイルの形状が円 形以外の場合、コイル外径 Dは、図 3A〜図 3Eに示すように、コイルの最小外寸 ΕΓ を規定する。
[0089] 次に、前述した関係、 Rs >Rw、 Rs >Rn≥Rw、 Rw≤ (Tw—Ta) / (la2 X Θ i)、 について説明する。なお、この説明は、後述する他のコイルの実施形態においても同 じ作用効果をもつので、以降に記載の実施形態においては、説明を省略する。
[0090] (コイルで構成した変成器の説明)
図 4は、変成器の等価回路を表す図であり、図 5は、コイル単体の等価回路を示し、 図 6は従来例で説明した図 38のように構成された変成器単体の等価回路を表す図 である。図 7は、 2次側コイルが短絡されたときの変成器の等価回路を表す図であり、 図 8は、 2次側コイルに負荷抵抗 RLが接続されたときの変成器の等価回路を表す図 である。
[0091] 送電コイル 1と、受電コイル 2とが対向して配置されると、変成器として作用する。 Rw 、 Rn、 Rsの理論上の関係を求めるため、変成器の 1次側のインピーダンス Z1を求め ておく。図 4において、 L1は 1次側コイルのインダクタンス、 L2は 2次側コイルのイン ダクタンス、 Mは 1次側コイルと 2次側コイル間の相互インダクタンス、 VIは 1次側コィ
ルの両端電圧、 V2は 2次側コイル (負荷抵抗 RL)の両端電圧、 IIは 1次側コイルに 流れる電流、 12は 2次側コイルに流れる電流、 RLは負荷抵抗 (純抵抗)、 Z1は 1次側 の入力インピーダンスを表す。図 4において、下記の回路方程式が成立し、下記の連 立方程式を解くことにより、 Z1の純抵抗成分 (実効直列抵抗)と、リアクタンス成分 (ィ ンダクタンス)を求めることができる。下記に、図 4の回路方程式を記す。なお、 j2=_ 1、であり、 ωは角周波数で、 co =2 f(fは周波数、 Hz)である。
Vl=j coLl'Il+jcoM'I2... (l)
V2=j WM-Il+j L2-I2--- (2)
V2=-RL-I2--- (3)
求めたいのは、 Z1=V1/I1、であるので、上記の 3つの連立方程式から、 V2、 12 を消去すればよい。上記の連立方程式の(3)式を(2)式に代入し、 V2を消去すると
0=jcoM'Il+ (j coL2 + RL)I2
となり、上式を 12について解き、上記連立方程式の(1)式に代入し、 12を消去すると
VI = (j ω L1 + ω 2M2/ (j ω L2 + RL) ) II
となり、 Z1=V1/I1、であるので、上式より、 Z1は、
Zl=jcoLl+ co2M2/(j coL2 + RL)
となる。実際の変成器は、 1次側コイルに実効直列抵抗 Rl、 2次側コイルに実効直 列抵抗 R2を持つので、図 6の回路を考え、 RL=R2とすると、
Zl =R1 +j ω L1 + ω 2Μ2/ (jcoL2 + R2)
となる。上式の、 co2M2/(jcoL2 + R2)に、(一 j coL2 + R2)/(— j coL2 + R2) = 1を掛けると、
Zl =R1 +j ω LI + ω 2M2(-j ω L2 + R2) Z ( ω 2L22 + R22)
となり、実数項と虚数項を整理すると、
Z1=R1+R2' co2M2/(co2L22 + R22) +j ω LI -j ω L2- ω 2M2/ ( ω 2L22 + R2
2)
となって、 A2= ω 2M22/ ( ω 2L22 + R22)とすると、 Zlは、
Zl = (R1 +A2R2) +j co (LI— A2L2)〜(4)
となる。 ω 2 >0、 M2≥0、 L22>0、R22> 0、であるので、明らかに、 A2≥0である。 すなわち、図 6において、 1次側コイルの入力インピーダンス Z1は、
Zl =Rl +j Ll - - - (5)
であり、(5)式と (4)式を比較すれば明ら力、なように、図 7のように、変成器の 2次側 コイルが短絡されたときには、 1次側コイルの実効直列抵抗 R1が増加し、インダクタ ンス L1が減少するのが分かる。これらは既知の回路理論である。
[0093] 上記(4)式と(5)式は、 Rs >Rw、Rs >Rn≥Rw、の関係を説明するのに引用する 基本式である。
[0094] 次に、図 2Aに示したコイル laに関して、具体的な例について説明する。一部重複 する力 記号の定義を明確にしておく。 Rwは、コイル la単体の実効直列抵抗(図 5 の Rl)、 Rnは、コイル laに他のコイルが対向し、対向したコイルが開放されていると きのコイル laの実効直列抵抗(図 6の Rl)、 Rsは、コイル laに他のコイルが対向し、 対向したコイルが短絡されているときのコイル laの実効直列抵抗(図 7の Rl)、 krは、 Rwと Rsより近似的に求めた両コイル間の結合係数である。
[0095] また、コイル la単体のインダクタンスを Lw、コイル laに他のコイルが対向し、対向し たコイルが短絡されているときのコイル laのインダクタンスを Lsとしたときに、 Lwと Ls 力 近似的に求められる結合係数を kiと表記する。 krと、 kiの近似的な求め方につい ては後述する。
[0096] なお、以下の説明では、コイルを対向させた変成器の 1次側と 2次側を区別してい る力 変成器は 1次側と 2次側を反転させることができるので、図 6の Rl、 L1は、 2次 側の R2、 L2として考えても同様の結果が得られる。すなわち、本発明の実施形態に おける電力伝送用のコイルは、 1次側、 2次側の少なくとも一方に装備されていれば よい。例えば、 2次側 (機器側)にコイル laと同じ構成のものを使用し、 1次側(送電側 )にソレノイド状のコイルや後述するハネカム状の多層卷コイルを使うこともできる。コ ィル la単体の実効直列抵抗を Rwとする。コイル laに短絡したソレノイド状やハネカ ム状の多層卷コイルが対向したときのコイル laの実効直列抵抗を Rsとする。この場 合においても、送電コイルであるソレノイド状ゃハネカム状の多層卷コイルは、 Rs >R
w、を満足する最高周波数 fl未満の fdにて交流電源 Vaにより駆動される。
[0097] 以下、コイル laの具体的な構成例について説明する。
[0098] (コイル laの具体的な構成例 1Aの説明)
図 9は、銅線径 lmmのホルマル線を、外径 70mmで 25ターン(T)密接巻きしたコ ィル 1Aの Rw、 Rn、 Rs、およびコイル 1Aに 10 Ωの負荷抵抗を接続したときの実効 電力伝送効率と周波数との関係を表す図である。
[0099] 本願発明者は、図 2Αに示したコイル laとして、特開平 4_ 122007号公報に記載 されたコイル (以下、従来例と称する。)を参考にして、平板で空芯の単層渦巻き状に
、隣接する導線同士が密接するように卷回してホルマル線を使ったコイル 1Aを形成 した。その結果、コイル 1Aを送電コイルと受電コイルの双方に使用すると、所定の電 力伝送性能しか達成できないことを見出した。
[0100] そこで、本願発明者は、コイル 1Aに比べて、伝送性能を向上させた図 10〜図 17 に示すコイル 1B〜コイル 1Gを見出した。各コイル 1B〜1Gは、図 2Aのコイル laのよ うに平板で空芯の単層渦巻き状に、ホルマル線を使って構成されている。
[0101] (コイル laの具体的な構成例 1Bの説明)
図 10は、コイル 1Bを説明するための特性図である。
[0102] コイル 1Bは、銅線径 0. 6mmのホルマル線を、外径 70mmで 40ターン密接巻きし たものである。コイル 1Bの Rw、 Rn、 Rs、 kr、 kiと周波数との関係が図 10に示されて いる。
[0103] (コイル laの具体的な構成例 1Cの説明)
図 11は、コイル 1Cを説明するための特性図である。
[0104] コィノレ 1Cは、銅線径 0. 3mmのホルマル線を、直径 70mmで 70ターン密接巻きし たものである。コイル 1Cの Rw、 Rn、 Rsと周波数との関係が図 11に示されている。
[0105] (コイル laの具体的な構成例 1Dの説明)
図 12は、コイル 1Dを説明するための特性図である。
[0106] コイル 1Dは、銅線径 0. 3mmのホルマル線を、直径 30mmで 31ターン密接巻きし たものである。コイル 1Dの Rw、 Rn、 Rsと周波数の関係が図 12に示されている。
[0107] (コイル laの具体的な構成例 1Eの説明)
図 13は、コイル IEを説明するための特性図である。
[0108] コイル 1Eは、銅線径 lmmのホルマル線を、外径 70mmに、約 lmmの空隙を設け て 14ターン疎卷きしたものである。コイル 1Eの Rw、 Rn、 Rs、 krと周波数との関係が 図 13に示されている。
[0109] (コイル laの具体的な構成例 1Fの説明)
図 14は、コイル 1Fを説明するための特性図である。
[0110] コイル 1Fは、銅線径 0. 05mmのホルマル線を 75本束ねた電線(リッツ線)を、外径
70mmに 30ターン密接巻きしたものである。コイル 1Fの Rw、 Rn、 Rs、 kr、 kiと周波 数との関係が図 14に示されている。
[0111] (コイル laの具体的な構成例 1Gの説明)
図 15は、コイル 1Gを説明するための特性図である。
[0112] コイル 1Gは、銅線径 0. 05mmのホルマル線を 75本束ねた電線(リッツ線)を、外 径 50mmに 20ターン密接巻きしたものである。コイル 1Gの Rw、 Rn、 Rs、 kr、 kiと周 波数との関係が図 15に示されている。
[0113] (各コイルについての検討)
なお、図 10〜図 15に示す特性図は、コイル 1B〜コイル 1Gに関して、いずれも Rs >Rw、を満足する最高周波数 flと、 Rs >Rn≥Rw、を満足する最高周波数を f 2と が共通的に示されている。ただし、最高周波数 fl、 f2は各コイル IB〜コイル 1Gのそ れぞれによって異なつている。
[0114] また、図 10〜図 15に示す特性図は、全て対向するコイル間の距離をゼロで測定し たものである。コイル間の対向する距離が離れていても、 Rn、 Rsは、対向距離がゼロ のときよりもわずかに低下する力 対向する距離がコイル外径 Dの 1Z10程度までは 殆ど変化しない。実際には、対向する距離が増加すると、結合係数が低下し、 1次側 のリアクタンスが増大して、皮相電力が増加するので力率が低下する。
[0115] コイルの実効直列抵抗による電力損失は、後述する、 Rw≤ (Tw-Ta) / (Ia X Θ i )の規定で抑えることができ、後述するように、図 8における、 Rl、 R2の値が不明な点 と、 Tw、 Ta、はコイルの使用条件によって異なるので、本発明の実施形態において は、前述の、 Rw、 Rs、 Rnを、対向距離ゼロか、あるいは実際に使用するコイルの対
向距離において計測し、 Rs >Rw、を満足する最高周波数 fl、 Rs >Rn≥Rw、を満 足する最高周波数 f 2を求めればょレ、。
[0116] まず、 Rs >Rw、を満足している場合と、満足していない場合の違いについて説明 する。上記に説明したように、コイルの実効直列抵抗 Rwは、周波数が上昇するととも に増加することが知られており、その原因として、表皮効果や渦電流損などが知られ ている。
[0117] さらに、上述の回路理論によると、図 7に示すように、 2次側コイルを短絡すると、 1 次側の純抵抗値は、 (Rl +A 2)に増加することが知られている。ここで、 R2は、 2 次側コイルの実効直列抵抗を表し、 Mを 1次側コイルと 2次側コイル間の相互インダク タンス、 ωを角周波数( ω = 2 π f、 fは周波数、 Hz)、 2次側コイルの自己インダクタン スを L2とすると、 A2= co 2M2/ ( co 2L22 + R22)であり、 ω 2>0、 M2≥0、 L22> 0、 R 22>0、であるので、明ら力、に、 A2≥0である。なお、 1次側のインダクタンスについて は、 1次側コイルの自己インダクタンスを L1とすると、図 7に示すように、 2次側コィノレ を短絡すると、 1次側のインダクタンスは、 (L1 A2L2)に減少することが知られてい る。
[0118] ところが、図 9〜図 11を参照すると、周波数が高い領域では、 Rsが Rwより小さくな る場合が見られる。 Rsく Rwとなる周波数は、比較例としてのコイル 1Aでは、約 67k Hz以上になるのに対して、コイル 1Bでは、約 208kHz以上になる。コイル 1Cでは、 約 820kHz以上になる。平板渦巻き状に密接してホルマル線を卷いたコイルでは、こ のように、ホルマル線の線径が太くなるほど、 Rs >Rw、を満足する最高周波数 flは 低くなる。また、図 12より、コイル 1Cと同じ単導線を使い、外径 30mmに 31ターン卷 回したコイル 1Dでは、 Rs >Rw、を満足する最高周波数 flは、コイル 1Cに比べ高く なっている。
[0119] (線径による周波数特性の変動の説明)
図 16は、銅線径、 0. 2mm、 0. 4mm、 0. 8mm、 1mmの各ホルマル線を平板状 に 25ターン密接巻きしたコイルの、周波数と各コイルの実効直列抵抗 Rwの関係を 示している。
[0120] 図 9〜図 12から明らかなように、 Rs >Rw、を満足する最高周波数 flが低いコイル
は、周波数の上昇に伴う実効直列抵抗 Rwの増加率も高い。図 16より、 0.2mm、 0. 4mm、 0.8mm、 1. Ommの各異なる線径のホルマル線を、同じ 25回のターン数に したコイル外径の異なるコイルでも、特性は同じある。すなわち、ホルマル線の線径が 太くなるほど、周波数の上昇に伴う実効直列抵抗 Rwの増加率も高いことが分かる。 また、同一の線径で卷回したコイルでは、卷回数が少なぐ外形が小さい方力 Rs> Rw、を満足する最高周波数 flが高ぐ周波数の上昇による実効直列抵抗 Rwの増 加率も小さいのが分かる。
[0121] すなわち、回路理論に従うなら、 Rs>Rn = Rw、の関係を満足しないといけないが 、コイル 1A〜コイル 1Dを使用し、図 6、図 7のように構成された変成器では、周波数 が高い領域では、 Rs>Rw、の関係を満足していない。例えば、コィノレ 1Bでは、周波 数 208kHz以上の点で、 Rsく Rw、となっているのが、図 10より分かる。
[0122] Rwと Rsの関係力 Rsく Rw、となるような周波数領域では、正でないとならない A2 、負になってしまう。図 9〜図 12で、 Rsく Rw、となるような周波数領域では、図 8に 示す、実効直列抵抗 R1および R2の実際の値を求めることはできない。その一例を 以下に示す。なお、ここでは実効直列抵抗から近似的に結合係数を求めるので、結 合係数を krと表記する。後述するように、インダクタンスから求めた結合係数を kiと表 記することとする。
[0123] 既知の回路理論によれば、結合係数を krとすると、相互インダクタン M、 1次側コ ィルの自己インダクタンスを Ll、 2次側コイルの自己インダクタンスを L2としたときに、 M2=kr2'Ll'L2の関係が成り立つ。 1次側コイルと 2次側コイルに同一のコイルを使 うなら、 R1=R2、 L1=L2、となるので、 ω 2L22> >R22を満足するときには、 A2 = co2M2/(co2L22 + R22)^co2M2/(co2L22)=kr2'Ll/L2 = kr2、となる。そこで 、(R1+A2R2)力、ら、 (Rw + kr2Rw) =Rs、となり、 kr2= (Rs— Rw)/Rw、として近 似的に kr2を求められ、 kr = ^ ( (Rs-Rw) /Rw)となる。
[0124] なお、 co2L22>>R22を満足しているかは、同一のコイルの場合、 R1=R2、L1 = L2、であるので、 co2Ll2/Rw2、を計算し、この値が 50以上の時に求めた結合係数 の値は、誤差 2%程度と判断している。図 9〜図 15においては、 10kHz〜30kHz以 上になると、 co2Ll2/Rw2>50となっている。 Rs>Rw、を満足する周波数領域では
、このようにして、 Rw、 Rsより結合係数 krを近似的に求めることができる。
[0125] し力し、 Rsく Rw、となるような周波数領域では、正でないとならない A2が、負にな つてしまい、正であるべき結合係数 krの二乗である kr2も負になるので、結合係数を 実効直列抵抗 Rw, Rsより求めることはできず、(4)式から明らかなように、図 8におい て、 Rl、 R2の実際の値を求めることはできなくなる。 Rs = Rwの場合なら、結合係数 krはゼロとなってしまうし、 Rsく Rw、となると、数学的には結合係数 krは虚数になる 。実際に 2個のコイルが対向しており、相互インダクタンス Mが、 M≠0であるのに、両 コイル間の結合係数がゼロになることや、あるいは虚数になることは、理論上あり得な レ、。
[0126] Rs >Rw、の条件を満足しない周波数領域では、上記のように、図 8の実効直列抵 抗 R1と R2の値が不明になる。さらに、コイルの実効直列抵抗 Rwが大きくなり、 1次側 、 2次側のいずれのコイルに電流 Iを流しても、 R1 X I2、 R2 X I2による電力損失が過 大となって、コイルが発熱する。その電力損失のため、実効電力伝送効率が低下す る。なお、同一のコイルを、 1次側、 2次側ともに使用した場合、 2 X Rw=Rs、となると 、結合係数 krが 1となるので、 Rsは、 2 X Rwに近いほどよい。
[0127] (コイル 1Aと、コイル 1Fとの組合せの説明)
図 17は、コイル 1 Aを一方のコイルとし、後述するコイル 1Fを他方のコイルとしたとき の、コイル 1Aの Rw、 Rn、 Rs、およびコイル IFに 10 Ωの負荷抵抗を接続したときの 実効電力伝送効率と周波数との関係を示す特性図である。
[0128] 図 9において、コイル 1Aを送電コイルと受電コイルの双方に使用すると、所定の電 力伝送性能しか達成でききないことを説明した力 これについて説明する。コイル 1A を一方のコイルと他方のコイルの双方に使用すると、コイル 1A力 Rs >Rw、を満足 する最高周波数 flは、図 9から、約 67kHzとなっている。すなわち、コイル 1Aの flは 、 100kHz未満となってレ、る。したがって、 1mmのホルマル線を使ったコイル 1Aを送 電コイルと受電コイルの双方に使用すると、従来例のコイルと同じ電力伝送性能しか 達成できない。
[0129] 図 9に示したコイル 1Aを、一方のコイルとして使レ、、他方のコイルとして、図 14に示 すコイル 1Fを使ってみた。すると、コイル 1Aは、少なくとも、 Rs >Rw、を満足する最
高周波数 flが、 67kHzから 110kHzに上昇した。その結果、電力伝送性能を向上さ せること力 Sできた。したがって、図 9のコイル 1Aであっても、対向する他方のコイルを 選ぶことにより、磁性材等を使用することなぐ空芯のままで電力伝送性能を向上させ ること力 Sできる。
[0130] 実測によると、コイル 1Aにっき、 Rs >Rw、の条件を満足する周波数は、対向する コイルが、コイル 1Aの場合には、図 9より、約 67kHz、対向するコイルが、コィノレ 1F の場合には、図 17より、約 110kHz、対向するコイル力 コイル 1Gの場合には、図示 していないが 150kHz、となっている。対向する他方のコイルを選ぶことにより、コイル 1Aが、 Rs >Rw、の条件を満足する最高周波数 flを上昇させることができる。なお、 コイル 1Fにコイル 1Aを対向させた場合に、コィノレ 1F力 Rs >Rw、の条件を満足す る最高周波数は、 2MHzとなる。このような周波数領域では、コイル 1A単体の実効 直列抵抗 Rwが、 10 Ω以上と高い数値となるので、後述する Rwによる熱条件の規定 、 Rw≤ (Tw-Ta) / (la2 X Θ i)、により、 2次側コイルであるコイル 1Aに流すことが 可能な電流を規定できる。
[0131] 好ましくは、コイル 1Aとコイル 1Fを組み合わせて使用する場合は、前述したように、 fl = 110kHz未満の周波数領域で電力を伝送するために、交流電源の出力周波数 faを fl未満に設定する。当然、 faでは、コイル 1A、コイル IFの双方力 Rs >Rw、を 満足している。コイル 1A力 Rs >Rw、を満足する最高周波数 flは、約 67kHzであ る。し力し、コイル 1Aとコイル 1Fを組み合わせて使用することにより、コイル 1Aを、送 電コイル、受電コイルのいずれに使用しても、 67kHz以上で電力を伝送できるように なる。
[0132] 本発明の実施形態においては、一方のコイルの flが低いときに、他方のコイルとし て、一方のコイルの flが所定周波数として、図 17に示す 110kHz、約 10。/οの余裕を 見て 100kHzよりも高くなるコイルを選ぶ。このようにして選んだ一方のコイルと他方 のコイルを組み合わせて電力伝送装置を構成する。このような構成とすることにより、 高い周波数でコイルを使用できる。そして、電力伝送装置の電力伝送性能が改善で きるようになる。
[0133] すなわち、まず、一方のコイルと、他方のコイルを選ぶ。一方のコイルにおいて、 Rw
、 Rs、 Rn、の各周波数特性を計測する。計測データに基づき、一方のコイル力 Rs >Rw、を満足する最高周波数 flを求める。 flの高いコイルの組合せでは、電力伝 送性能の周波数特性がよいことが、図 9と比較すれば、図 17より分かる。そして交流 電源 Vaの出力周波数 faを fl未満に設定する。このようにして、電力伝送性能のよい 電力伝送装置が実現できる。
[0134] (コイル 1B〜コイル 1Dの組合せの説明)
単導線を使用したコイル 1B〜コイル 1Dは、いずれも、 Rs >Rw、を満足する最高 周波数 flが 100kHzを越えている。コイル 1B〜コイル 1Dを一方のコイルとし、他方 のコイルをコイル 1B〜コイル 1Dのいずれかとする。一方のコイルにおいて、 Rs >Rw 、を満足する最高周波数 flを求める。電力伝送装置に含まれる交流電源 Vaの出力 周波数 faを fl未満に設定する。このようにして、電力伝送性能がよい電力伝送装置 が実現できる。
[0135] (Rs >Rn≥ Rwを満足してレ、る場合の説明)
次に、 Rs >Rn≥Rw、を満足している場合と、満足していない場合の違いについて 説明する。前述したように、コイル単体では、この実効直列抵抗 Rwを、計測によって 正確に求められる力 図 6のように構成された変成器においては、図 9〜図 13に示す ように、単に 2次側コイルが対向しただけで、周波数が高い領域では、 R1力 Rwから Rnに上昇する。 R1は 1次側コイルの実効直列抵抗であるが、図 5の Rl (Rwと同じ) の周波数特性と、図 6の Rl (Rnと同じ)の周波数特性とは異なっているの力 図 9〜 図 13にプロットされた Rwと Rnのグラフにて分かる。
[0136] さらに、 Rwと Rsより A2を求め、 A2の平方根を取ることにより、近似的に結合係数 kr を求めることができるのは上述したとおりである。
[0137] 図 13にはコイル 1Eの、図 14にはコイル 1Fの、 Rwと Rsより求めた結合係数 krがプ ロットしてある。コイル 1Eでは、図 13のように、周波数の上昇とともに Rnが増加する割 合が低ぐ約 3. 7MHzまで、 Rs >Rn≥Rw、を満足している。コイル 1Fでは、図 14 に示すように、周波数の上昇とともに Rnが急激に増加し、 780kHz以上の周波数領 域になると、 Rs<Rn、となっている。
[0138] Rwと Rsより近似的に求めた両コイル間の結合係数 krと周波数の関係を見ると、コ
ィル IEは、約 2MHzまで、結合係数 krがほぼ 0. 8以上の値を保持しているのに対し 、コイル 1Fでは、結合係数 krは、 100kHzのときの 0. 9程度から、周波数が上昇する に従い低下し、 1MHzでは 0. 65程度まで低下しているのが分かる。したがって、 Rs >Rn≥Rw、を満足しなくなる周波数は、できる限り高い方が好ましい。
[0139] Rs >Rn≥Rw、の条件を満足する周波数領域でコイルを使用することにより、図 5 のコイル単体および図 6に示すように構成された変成器、のいずれもが理論上の理 想的な特性に近づくので、電力伝送性能を、従来よりも向上させることが可能となる。
[0140] (Rs > Rn≥ Rwを満足してレ、なレ、場合の説明)
しかしながら、周波数領域によっては、 Rn=Rwは満足せず、 Rn>Rw、となり、 Rn の影響を受けるので、図 8において、 R1と R2の値を正確に求めることはできなレ、。ま た、 Rl、 R2は、図 1に示す RLによって変動する。すなわち、 Rl、 R2に流れる電流に より、 Rl、 R2は変動し、当然、周波数によっても変動するので、図 1において、電力 伝送時の、 Rl、 R2の実際の正確な値を測定することはできない。
[0141] なお、本実施形態において、 Rs >Rw、 Rs >Rn≥Rw、の 2つの条件を満足するか の測定には、同一のコイルを対向させた場合を記載している。しかし、図 17に示すよ うに、構造、構成、外径などが異なる任意のコイル 2個を対向させ、 1次側コイル、 2次 側コイルのいずれかで計測してもよぐ同一のコイルを対向させて測定しなくてもよい
[0142] また、 Rs >Rn≥Rw、の規定に関する詳細な作用効果については、コイル 1F、コィ ノレ 1Gを参照し、後述する。
[0143] (熱抵抗 Θ i (°C/W)、温度 Tw (°C)、周囲温度 Ta (°C)の説明)
次に、 Rw≤ (Tw-Ta) / (Ia2 X Θ i)、の関係について説明する。上述したように、 図 1にて、実際に負荷抵抗 RLに電力を伝送しているときの、コイルの実効直列抵抗 Rl、 R2は不明である上、図 7において、回路理論上は、 Rl >Rw、になる。すなわち 、最低限、 Rwを基準にする以外、コイルの熱条件を規定することができなレ、。したが つて、最低限、 Rwを基準にして、コイルの熱条件を規定することが必要となる。
[0144] この発明を実施する場合において、コイルの熱抵抗 Θ i (°C/W)は、コイルの構造 や設置条件により決まる。例えば、コイルが空芯単体の場合は、 Θ iは高ぐコイルが
熱抵抗の小さい樹脂内に固定され、かつ水中に設置されるような場合は、 Θ iは低く なる。コイルが動作可能な温度 Tw(°C)は、コイルの構造や用途により決まり、断熱性 のよレ、ケース内に組み込まれてレ、るカ 変圧器のように機器内部に組み込まれてレ、 る場合などでは、例えば 50°C〜80°C、人体、動物などが触れるところに設置されて レ、るような場合などでは、例えば 40°C程度となる。コイルが設置される場所の周囲温 度 Ta(°C)は、屋外などでは、例えば— 20°C〜40°C、室内などでは、例えば 15°C〜 30°C、機器内部などでは、例えば 40°C〜50°Cとなる。
[0145] 通常、物体は、温度が高くなるほど、周囲に多くの熱を放散するので、正確には熱 拡散方程式を解く必要がある力 種々の構造を持つコイルにつき、比熱等の熱定数 をカロ味して熱拡散方程式を解くのは困難であるので、下記の方法により簡易的に熱 抵抗 0i(°CZW)を求める。
[0146] まず、 1次側、または 2次側コイルが設置される場所にて、初期状態のコイル温度 T 1(°C)を求めておく。コイルに、直流の定電流 Id (A)を流して、コイルの両端電圧 Vd (V)を計測し、 Pd=VdXId(W)として、コイルの消費電力を求める。金属導線は温 度が上がると抵抗値が増加し、コイルの両端電圧 Vdが上昇するので、 Vdはペンレコ ーダ一等で記録して平均値を求めるか、 A/D変換器等で逐次 Vdをモニターし、平 均値を取るのが望ましい。熱平衡に達したら、コイル温度 T2(°C)を測定する。熱抵 抗 6i(°C/W)は、 θί=(Τ2— Tl)/Pd(°C/W)として求められる。この測定は、 Id の電流値を変えて数回測定し、平均値として求めるのが好ましレ、。
[0147] このようにして求められた熱抵抗 Θ i(°C/W)に、実際の使用条件下でのコイルの 実効直列抵抗 Rw(Q)とコイルに流れる電流 la (A)により決まる、実効直列抵抗 Rw が消費する電力、 RwXIa2(W)を掛けると、実際の使用条件下でのコイルの温度上 昇値、 Tr(°C)が求められる。 Tr= Θ iXRwXIa2(°C)となり、コイルが動作可能な温 度を Tw(°C)、コイルが設置される場所の周囲温度を Ta(°C)とすると、 Tr=Tw-Ta となり、不等式、(Tw_Ta)≥ Θ iXRwXIa2(°C)を満足しないと、コイルの使用可能 温度を越えるので、実施が困難になる。
[0148] 実効直列抵抗 Rw(Q)に関する条件、 Rw≤ (Tw-Ta)/(Ia2X Θ i)は、不等式を 変形し、 Rwまたは laの条件を規定している。電力が伝送される周波数において、実
効直列抵抗 Rwは、 1次側または 2次側コイル単体で実測して求められる変数、 1次 側または 2次側コイルに流れる電流 laも実測して求められる力、 1次側においては電 源条件により決まり、 2次側においては負荷条件により決まる変数で、他の、 Tw、 Ta 、 Θ iは既知の定数となる。したがって、 Rwが求められれば、 laの上限値が規定され 、逆に laが決められれば、 Rwの上限値が規定される。
[0149] Rwは、直流抵抗 Rdと交流抵抗 Raの和であり、 Rdと Rwは直接実測することが可能 なので、 laを決定することにより、卷き数により増加する、 Rdと Raの和である実効直列 抵抗 Rwの上限値を規定でき、実効直列抵抗 Rwと周波数の関係から、電力が伝送 可能な周波数範囲を規定することができる。
[0150] 1V X 10Aと、 10V X 1Aは、どちらも同じ 10Wの電力である力 コイルの実効直列 抵抗による電力損失は、 10Aの場合は、 1Aの 100倍となる。電力ではなぐ 1次側、 2次側を問わず、コイルに流れる電流 laを考慮し、コイルの実効直列抵抗による電力 損失を規定しないと、 2個のコイル間での電力伝送性能を改善することはできない。
[0151] 図 14に示したコイル 1Fと、図 15に示したコイル 1Gに使われている導線は、どちら も同じ、導体外径が 0. 05mm,絶縁被覆の厚さが 0. 005mm,導線外径が 0. 06m mのホルマル線を 75本束ねたリッツ線で、コイル 1Fは外形 70mmに 30回ターン密 接卷きされ、コイル 1Gは外形 50mmに 20回密接卷きされてレ、る。
[0152] コイル 1Fと、コイル 1Gの、 Rw、 Rn、 Rsの周波数特性を、図 14、図 15で比較すると 、コイル 1Fでは、 Rsく Rn、となる点力 780kHz以上に存在する力 コイル 1Gでは 、約 2. 1MHzまで、 Rs >Rn≥Rw、の条件を満足している。この原因が、撚り方や、 撚りのピッチに関係しているのカ あるいはターン数や外形、卷き方に関係するもの なのかは断定できない。し力し、少なくともコイルの Rw、 Rn、 Rsの周波数特性を測定 すれば、該コイルが電力伝送装置用に適しているかどうかの判断ができる。その具体 的な方法を以下に述べる。
[0153] (インダクタンスと結合計数の説明)
表 1は、 5. 0kHz力ら 1. 0MHzの各周波数における、コィノレ 1B、コイル 1F、コイル 1Gの、単体インダクタンス Lwと、短絡した同一のコイルが距離ゼロで対向したときの 、インダクタンス Lsの値、および下記に示す計算法により近似的に求めた結合係数 k
iを記載したものである。この表の各 kiが、図 10、図 14、図 15にプロットされた kiであ る。
[0154] [表 1]
[0155] まず、コイルのインダクタンス変化から結合係数 kiを近似的に求める方法を説明す る。上述のように、図 5のときのコイルの自己インダクタンスを Lw (H)、図 6のときの 1 次側コイルのインダクタンスを Ln (H)、とすると、図 5,図 6において、 Ll =Lw = Ln、 の関係が成り立ち、図 7のように、 1次側コイルに対向している 2次側コイルが短絡さ れているときの 1次側のインダクタンス成分を Ls (H)、とすると、 Ls= (Ll -A2L2) , の関係が成り立つ。実効直列抵抗 Rwや Rnとは異なり、実測上も、 Ll =Lw=Ln,と なっている。 Ll、 L2、 A2、については、前述したとおりである。
[0156] 1次側と 2次側に同一のコイルを使った場合は、 L1 =L2、 R1 =R2なので、 Ls = ( Lw— A2Lw)の関係が成り立ち、 50〜: 100kHz以上では、 c 2L22/R22、力 0以上 なので、 A2 = ki2、とみなせる。したがって、 ki2= (Lw— Ls) ZLw、 ki = " ( (Lw— L s) /Lw)として近似的に結合係数 kiが求められる。前述したとおり、このようにして、 インダクタンスの変化、 Lw、 Ls、より求めた結合係数を kiと表記している。図 14と図 1 5にプロットされた krと kiを比較すると、図 15においては、 krと kiが、ほぼ一致してい るのが分かる。
[0157] し力し、図 14においては、 krと kiの一致は見られなレ、。さらに、コイル 1Bにおいて、 図 10に krと kiがプロットしてあるが、図 10において、 Rn>Rsとなる周波数を境に、 kr
が急激に減少しているのが分かる。実際に、図 15に示すコイル 1Gを 2個使用した場 合は、 2. 1MHzまで、 Rs >Rn≥Rw、を満足しており、 10MHz以上まで、 Rs >Rw を満足しているので、高い周波数、高い力率、高い実効電力効率で電力を伝送でき 、電力伝送性能が非常によい。
[0158] すなわち、 Rs >Rn≥Rw、を満足する最高周波数 f 2が高ぐ高い周波数で、 Rn/ Rwの値が 1に近いほど、コイルの性能はよぐ周波数の上昇による Rwの増カロも少な レ、。このように、周波数と、 Rw、 Rn、 Rsの関係を見ることにより、あるいは、 Rwと Rsよ り求めた結合係数 krの周波数特性と、 Lwと Lsより求めた結合係数 kiの周波数特性 を比較することにより、コイル単体の実効直列抵抗の周波数特性だけでは判断でき なレ、、コイルを対向させた電力伝送手段である変成器としての性能を知ることが可能 となる。
[0159] したがって、コイルを構成するリッツ線の適切な撚り方ゃ撚りピッチ、卷き方は、複数 のコイルを形成して、コイルの RW、 Rn、 Rsの周波数特性を測定し、好ましくは Lw, L sの周波数特性も測定して、 krと kiの周波数特性を比較すれば、最適なコイルを見つ けることが可能になる。この手法は、リッツ線に限らず、単銅線、ビニール線、その他 後述する他の実施形態の電線にも適用でき、電力伝送に適したコイルを選ぶことが できる。すなわち、線材、線径、寸法、形状、巻き方などを変えることにより、コイル単 体の実効直列抵抗の周波数特性だけでは判断できなレ、、コイルを対向させた電力 伝送手段である変成器としての性能を判断することが可能となり、従来の技術では実 現できなかった電力伝送性能の良いコイルが提供できる。
[0160] 例えば、 1mmの単導線を用レ、、空隙を設けて卷いたコイル 1Eは、 3. 7MHzまで、 Rs >Rn≥Rw、を満足しており、 7. 7MHzまで、 Rs >Rw、を満足しているので、コ ィル 1Gに比べ、 Rs >Rn≥Rw、の規定に関しては余り差がなレ、。し力、し、 4MHzに おける、コイル 1E単体の Rwは、 0. 87 Ω、コイル 1G単体の Rwは、約 2 Ω、 ΙΟΜΗζ における、コイル IE単体の Rwは、 2. 9 Ω、コイル 1G単体の Rwは、 17 Ω、となって おり、コイル 1Eは、コイル 1Gよりもコイル単体の実効直列抵抗 Rwの高周波特性がよ くなつている。
[0161] そのため、 Rw≤ (Tw-Ta) / (Ia2 X Θ i)、の規定により、単導線にて形成したコィ
ノレ IEは、リッツ線にて形成したコイル 1Gよりも高い周波数で使用可能となる。このよう に、本発明の実施形態は、 Rs >Rw、 Rs >Rn≥Rw、 Rw≤ (Tw—Ta) / (la2 X Θ i )、の各規定により、従来の技術では実現できないコイルを実現したうえで、該コイル を使用するのに最適な周波数領域を規定することにより、従来の技術に比べ、電力 伝送性能のよい電力伝送装置が実現できるという、優れた効果を奏するものである。
[0162] 前述の引用文献を含む従来技術では、コイルの特定的な構成を規定しているのみ である。そして、特定的構成の一実施例のみを示すことにより、着目する特性、例え ば実効直列抵抗の周波数特性が改善できていることを主張している。しかし、上述し てきたように、外径や内径を同一にしても、線径、ターン数によりコイルの特性は全く 異なってくる。また、全く同一の導線を用いても、構成 (外径、ターン数等)が異なると 、コイルの特性が異なってくる。すなわち、線材ゃ卷き方などの特定的構成を規定し ても、実際に作成されるコイルは種々の構成を持ち、それらが同じ効果を奏すること は、何ら保証されていない。
[0163] したがって、コイルの特定的構成を規定するのみでは、電力伝送装置のコイルとし ての要件を充足するコイルを実現するのは不可能である。現に、従来例に記載され ているような、実効電力伝送効率 80%で、 20Wの電力を伝送可能な電力伝送装置 は、今日に至るも実施はされていない。
[0164] 本願のように、コイルの特定的構成以外の構成が変化したときの特性変化までも明 確化し、コイルの作動条件を規定しない限り、電力伝送性能のよいコイル、および電 力伝送性能のよい電力伝送装置は実現できない。その一方で、本発明の実施形態 は、誘導結合可能な種々の構成を持つコイルにおいて、各コイルの作動条件を規定 することにより、電力伝送性能のよい電力伝送装置が実現できる。このように、本発明 の実施形態は、従来の技術では実現することが不可能であった極めて優れた効果を 奏するものである。
[0165] (コイルの力率の説明)
本発明の各実施形態では、磁性材料を装備していないコイルにより、結合係数が 0 . 9程度以下の疎結合状態にて、 2個のコイル間で、従来では困難であった大電力を 伝送できるコイルを実現するものである。既述したように、力率は 0. 5以上ではあるが
、疎結合状態では、 1次側コイルに投入される無効電力が、実効電力を上回る場合も ある。
[0166] 力率が 1から 0. 5に低下すると、皮相電力により 1次側コイルに流れる電流は、 2 倍になり、 1次側コイルの実効直列抵抗 Rwによる損失は 2倍になる。そのうえ、 2次側 コイルに接続された負荷抵抗に電流が流れると、 2次側コイルに流れる電流により発 生する磁束が 1次側コイルを形成する導線を貫き、渦電流損を発生させ、 1次側コィ ルが発熱する。したがって、不等式、 Rw≤ (Tw-Ta) / (Ia2 X Θ i)は、本発明の実 施形態を実施するのに満足するのが好ましぐ満足していないと、実施が困難になる
[0167] なお、電力を伝送する周波数において、 Rs >Rn≥Rw、を満足している場合、図 1 において、電源の内部抵抗 R3が、 Rwと同等以下の値であれば、負荷抵抗 RLから 見た 2次側コイルは、 1次側が短絡されていると見なせるので、 R2は、 Rsとほぼ同等 の値になる。したがって、 2次側コイルにおいては、 Rs≤(Tw-Ta) / (la2 X Θ i)を 満足していれば、さらに好ましい。また、図 38において、 R1の値は不明ではあるが、 1次側コイルにおいても、 Rs≤(Tw-Ta) / (la2 X Θ i)を満足していれば、より好ま しい。
[0168] ただし、一般の変成器において、鎖交磁束 0> c、漏洩磁束 0> gと、結合係数 kの関 係は、
となっており、既知のとお り、鎖交磁束 cが実効電力を伝達している。漏洩磁束 Φ§は、既知のとおり、リアクタ ンス性素子に印加されている電圧 Vと、流れている電流 Iの積である無効電力をもた らすものである。
[0169] コイルにおいては、 Iの位相は Vの位相よりも 90度遅れているため、 Vの瞬間値と Iの 瞬間値を掛けて、 1周期積分すれば電力はゼロになるので、リアクタンス性素子であ るコイルは電力を消費しなレ、。この分野においては、漏洩磁束がエネルギー損失を 起こすと明記し、鎖交磁束比率を上げるためにコイル形状を規定している文献が多 数見られるが、上記したように、漏洩磁束は電力を消費しない。
[0170] したがって、仮に実効直列抵抗 Rwが無視できるほど小さければ、漏洩磁束の比率 には関係なぐ大電力を伝送できる。しかしながら、特開平 8— 148360号公報に開
示されているような構成のコイルでは、実効直列抵抗 Rwは小さいものの、コイルの自 己インダクタンスゃ結合係数が小さいので、力率が著しく小さい。このため、大きな皮 相電力を 1次コイルに供給しなければならなくなるので、電力伝送に適したコイルを 実現するには、コイルの構成を定め、全てのパラメータを適切に設定し、なおかつ実 効直列抵抗 Rwを可能な限り小さくしなければならない。
[0171] (電力伝送に使用可能な周波数の説明)
なお、本発明の実施形態のコイルを電力伝送に使用可能な周波数の上限は、 Rs >Rw、を満足する最高周波数である fl、 Rs >Rn≥Rw、を満足する最高周波数で ある f2、の規定により求めることができるが、コイルを電力伝送に使用可能な周波数 の下限は、コイル単体に印加される電圧 Vと、コイル単体に流れる電流 Iの位相差を、 80度以上と規定することにより求められる。
[0172] なお、図示しないが、 Rs >Rw、を満足する最高周波数 flが低いコイル IBでは、 5 kHz未満まで、 Vと Iの位相差が 80度以上になっている力 Rs >Rw、を満足する最 高周波数 flが 10MHzを超えるコイル 1Gでは、 20kHz未満になると、 Vと Iの位相差 力 ¾0度以下となっている。
[0173] 前述したように、図 10を参照すると、コイル 1B力 Rs >Rw、を満足する最高周波 数 flは約 210kHz、 Rs >Rn≥Rw、を満足する最高周波数 f 2は約 75kHzである。 R s >Rw、を満足する最高周波数 fl、の規定によるコイル IBの使用可能な周波数領 域は 5〜210kHz、 Rs >Rn≥Rw、を満足する最高周波数 f 2、の規定によるコイル 1 Bの使用可能な周波数領域は 5〜75kHzとなる。このようにして、本発明の実施形態 におけるコイルを、理論上の理想的な特性に近い周波数領域で使用することが可能 となる。図 11には、コイル 1Cの位相角がプロットしてある。 Rs >Rw、を満足する最高 周波数 flが、コイル 1Bの flよりも高いコイル 1Cでは、位相角力 ¾0度となる周波数は 、約 8kHzとなっており、 5kHzより若干高レヽ。
[0174] 上述のごとぐこの実施形態によれば、コイル laの導線 11の線径とコイル外径とタ ーン数とを規定することで、必要な自己インダクタンスと結合係数 kを確保できる。ま た、コイル laの電流値 laの上限、あるいはコイル laの実効直列抵抗 Rwを決めるター ン数の上限を規定でき、負荷抵抗を接続したときのリアクタンス Xと純抵抗 Rの比、 X
/R、およびコイルに印加される交流電圧と交流電流の位相差 φが極小、力率 cos Φが極大となり、かつ実効直列抵抗 Rwが小さい周波数近辺でコイル laを使用する ことにより、電力伝送時の無効電力、皮相電力を低減することができる。さらに、実効 電力効率を、例えば 85%以上に高めることができる。
[0175] (コイル 1Aと、 1Eの周波数特性の比較の説明)
図 18は、図 9に示した密接卷のコイル 1A単体の実効直列抵抗 Rwと、図 13に示し た疎卷のコイル 1E単体のコイル実効直列抵抗 Rwの周波数特性を比較した図である 。図 18に示すように、周波数が上昇したときに、疎卷のコイル 1Eの方が密接卷のコィ ノレ 1Aに比べて、コイルの実効直列抵抗 Rwの増加を抑えることができる。また、同一 外径のコイルでは、卷線の総延長が短くなるので、直流抵抗を低く抑えることができ る。
[0176] (空隙の幅により実効直列抵抗の周波数特性が変化する例の説明)
図 19は、 0. 4mmのホルマル線を 25ターン卷いた場合、空隙の幅により、コイルの 実効直列抵抗の周波数特性が、どのように変化するかを示す図である。空隙の幅は 、 Omm、 0. 2mm、 0. 4mmに設けてある力 広い空隙の方が、周波数の上昇に伴う 実効直列抵抗の増加が抑制できるのが分かる。なお、ターン数を同一としているので 、空隙の幅が広くなるほどコイル外径は大きくなつており、コイルを構成する銅線の総 延長が長くなつているので、低い周波数では、実効直列抵抗は空隙を設けない方が 低くなつている。
[0177] ただし、渦電流損は、磁束が貫く導体体積に比例するので、単導線の最大径が 0.
2mm以上でないと、導線間に空隙 tを設けても、周波数の上昇によるコイルの実効 直列抵抗 Rwの増加率はそれほど低下しなレ、。図 15の、線径 0. 2mmの単導線を密 接卷きしたコイル単体の周波数と実効直列抵抗 Rwの関係から見ても、線径 0. 2mm では、周波数の上昇による実効直列抵抗の増加率は少なぐ線径 0. 2mmの単導線 では、空隙を設けても、実効直列抵抗 Rwの周波数特性は余り改善できないのが分 かる。
[0178] 図 12に示すコイル 1Dの自己インダクタンスは、約 19 μ Ηとなってレヽる。コイル 1Dを 2層に巻いたコイルの自己インダクタンスは、約 76 μ Ηとなっており、 自己インダクタ
ンスがターン数の 2乗に比例するという理論とほぼ同等の結果が得られている。 2層 に卷いたコイルの実効直列抵抗の周波数特性は単層卷に比べ悪くなつており、 Rs >Rw、を満足する最高周波数 flも低い。しかし、実効直列抵抗が低い低周波数領 域においては、リアクタンスを確保できるので、 2層卷とし、低周波数で使用する方が 有利な場合もある。
[0179] なお、コイル 1Dを 2層に巻いたコイルを一方のコイルおよび他方のコイルに用いる 。コイル 1Dを 2層に巻いたコイル力 Rs >Rw、を満足する最高周波数は 550kHzで あり、インダクタンスが高いので、 250kHz未満の周波数で使用しても、所要のリアク タンスを確保できる。
[0180] 図 16において、線径 0. 2mmの単導線を密接巻きしたときの、 5kHzでの実効直列 抵抗 Rwは、 0. 83 Ωになっている。 1MHzでの実効直列抵抗は、 2. 16 Ωとなって おり、実効直列抵抗の増加率は、 2. 16/0. 83 = 2. 60で、後述する線径 lmmの 単導線を、空隙を設けて卷いたコイル 1Eの増加率、 7. 6よりも小さくなつている。ただ し、線径 0. 2mmのコイルでは、 Rwの絶対値が大きくなり、熱抵抗 Θ iが小さくなるの で、 Rw≤ (Tw-Ta) / (la2 X Θ i)の関係を満足するように、伝送する電力値に適合 する導線径を選択しないとならない。
[0181] (コイルのターン数と、インダクタンスの説明)
次に、コイルのターン数 8回、インダクタンスの最低値 2 /i Hにっき説明しておく。従 来例のコイルは 5回のターン数で、 1MHzにおける、コイルの Lwは、 0. 79 /i H, Ls は、 0. 45 /i H, Lw, Ls力ら近似的に計算した結合ィ系数 kiは、 0. 66となっており、 電力伝送性能も著しく悪い。コイルと同じ導線を使って同形状に 8回卷回したコイル は、 Lwが、約 2. 1 μ H、 Lsが、約 0. 7 μ H、近似的に計算した結合係数 kiは、約 0. 83となっている。また、 8回卷回したコイル力 Rs >Rw、を満足する最高周波数 flは 、約 350kHzとなってレヽる。
[0182] 従来例のコイルの導線を 8回卷回したコイルは、前述したように、実際には実効直 列抵抗が過小なうえ、 Rwの周波数特性も悪ぐかつ十分なリアクタンスを確保できる 高周波数領域で、 Rs >Rw、を満足していない。このために、導線の適切な撚り方お よび卷き方を選ぶ必要があるが、高周波領域で使用する最低のインダクタンスと結合
係数が確保できるので、上記の実測結果から最低限 8回の卷回数を規定するととも に、インダクタンスの最低値として、 2 μ Ηを規定している。
[0183] そして、前述したように、従来例のコイルの導線の直径は 1. 5mmであり、 5回卷回 したコイルの最外周部に、さらに導線を 3回卷回し、ターン数を 8回とすると、外径は、 3回 X 2倍 X I . 5mm + 30mm = 39mmとなる。したがって、従来例のコイルの導線 を使用して構成したコイルにおいて、インダクタンスの最低値 2 μ Hと結合係数を確 保するには、コイル外径 Dと線径 d3の比が、 39/1. 5 = 26、となり、コイル外径 Dは 線径 d3の少なくとも 25倍は必要となる。
[0184] ただし、前述したように、「Dが d3の少なくとも 25倍は必要」、という特定的構成は、 線材ゃターン数という別の構成要因を変えることにより、インダクタンスの最低値 2 μ Ηと結合係数を確保できなくなることも有り得る。例えば、線材の直径を細くして、線 間に空隙を設ける場合などが考えられる。したがって、インダクタンスの最低値 2 μ Η を確保するには、 8回以上の卷き数が必要となる可能性もある。インダクタンスの最低 値 2 / Ηを確保するように、使用される線材の卷回数を選び、最終的に構成が一義 的に特定されたコイルにおいて、 Rw、 Rs、 Rn、の周波数特性を計測する。構成が一 義的に特定されたコイルとは、実際にコイルとして作成されたものを意味するのは言う までも無レ、。そこで、実際にコイルとして作成されたものを計測して求められた特性か ら導かれる前述したコイルの作動条件である交流電源の周波数 faを規定する。
[0185] 繰り返しになる力 コイルは、例えば特定的な構成を規定するだけでは、他の構成 要因を変化させることにより、実質的には無限の構成を持つ。特定的な構成を規定し たコイルが、その他の特定的構成規定を要旨とする発明よりも、常に優れた電力伝送 性能を発揮する効果を奏することは証明されていなレ、。また、証明するのは実質的に 不可能である。
[0186] 本発明の実施形態によってのみ、上述したインダクタンスの最低値 2 μ Ηと結合係 数を確保するように構成を規定し、それらの特性条件を満足するコイルの中から、電 力伝送に適したコイルを選ぶことができるようになる。このように、本発明の実施形態 は、従来例のコイルとは異なり、種々の実施形態における実測特性のデータを示して いる。誘導結合可能な構成を持つコイルは、特定不能なバリエーションを持つ。その
ため、任意の構成のコイルにおいて電力伝送性能を確保することは不可能である。ま た、従来の技術では、構成が一義的に特定されたコイルが、電力伝送性能を確保可 能という判断すらできない。
[0187] 前述した方法により選ばれたコイルを、本発明の実施形態の要旨である特性規定 による作動条件を規定することによってのみ、種々の構成を持つ電力伝送装置のコ ィルを使用した性能のよい電力伝送装置が実現できる。この極めて優れた効果は、 コイルの特定的構成のみを規定した従来例のコイルでは実現することが不可能であ つた。
[0188] また、一方のコイル力 Rs >Rw、を満足する最高周波数 flは、 500kHz以上であ ること力 S好ましい。同一のコイルを使用し、 Rs >Rw、を満足する最高周波数 flが高 レ、コイルを、リアクタンスが確保可能な周波数で使用する。例えば、 250kHz未満で 駆動することにより、電力伝送性能を確保できることが確認できている。あるいは、一 方のコイル力 S、 Rs >Rn≥Rw、を満足する最高周波数 f 2が、 500kHz以上であると より好ましい。
[0189] 図 20、図 21は、負荷抵抗 RLを変動させたときの力率と周波数の関係を示す図で ある。なお、前述した図 9には、送電コイル、受電コイル共に、コイル 1Aを用いた場合 の実効電力伝送効率と周波数の関係も図示してある。また、図 17にも、送電コイルに コイル 1A、受電コイルにコイル IFを用いた場合の実効電力伝送効率と周波数の関 係を図示してある。いずれも負荷抵抗 RL= 10 Ωのときの周波数特性である。力率は 1次側のインピーダンスを計測して位相角 φを求め、 cos φ力 計算してある。 cos60 度 =0. 5である。 φく 60度となる周波数領域では、力率は 50%以上となる。
[0190] 図 20、図 21から分かるように、負荷抵抗値が低いと力率が最高となる周波数は低 レ、。負荷抵抗値が高いと力率が最高となる周波数は高い。また、負荷抵抗値が低い と力率の極大値は大きい。負荷抵抗値が高いと力率の極大値は小さい。一般に使用 される最小の負荷抵抗値である 5 Ω以下では、力率が最高となる周波数は、一方の コイルの f 2未満になっている。
[0191] 図 20で、コイル 1Aを 2個使用した場合には、 Rs >Rw、を満足する最高周波数 fl = 67kHz未満において、力率 50。/。以上を満足する負荷抵抗値は、 10 Ω以下であ
る。図 21で、送電コイルにコイル 1Aを、受電コイルにコイル 1Fを使用すると、 Rs >R w、を満足する最高周波数 fl = 110kHz未満において、力率 50%以上を満足する 負荷抵抗値は、 50 Ωまで対応している。また、図 20と図 21を比較すれば分かるが、 図 21では、 flの上昇と共に、力率の極大値も上昇している。
[0192] 図 9と図 17の電力伝送効率と周波数の関係を見ても、 flが上昇すると共に、電力 伝送性能が向上していることが分かる。特に、周波数が fl以上となると、電力伝送効 率 が極端に悪化する。したがって、コイル 1Aにコイル 1Fを対向させることにより、 電力伝送性能を改善できることが分かる。
[0193] 従来例のコイルの特定的構成の一例を記載した電力伝送装置では、特定の周波 数 100kHzでの実施例を記載しているのみである。そして、周波数は 100kHzに限 定されないと明記されている。しかし、上記のように、周波数により力率とコイルの実 効直列抵抗 Rwは変化する。負荷抵抗 RLの最小値 Rmにおける力率最大点に周波 数を設定しないと、無効電力により、実効直列抵抗 Rwによる電力損失が発生する。 前述したように、 Rw、 Rs、 Rn、の周波数特性を計測し、 flと f2を求める。力率が最高 となる周波数 f Φ力 flよりも小さいことが好ましい。しかし、負荷抵抗値 RLが大きくな ると、コイルの実効直列抵抗 Rwと RLの比、 Rw/RLが小さくなる。そのため、 Rwに よる電力損失が負荷電力に比べ相対的に小さくなる。したがって、負荷抵抗値が大 きい場合でも、力率は小さくなるが、 fl未満の周波数で電力伝送を行なえる。
[0194] (実効電力伝送効率 77の周波数特性についての説明)
なお、図 9、図 17における実効電力伝送効率 77の周波数特性について説明してお く。受電コイルに 10 Ωの無誘導負荷抵抗を接続し、送電側でインピーダンスを計測 する。インピーダンス計測により送電側にて位相角 φを求め、各周波数での力率 cos Φを計算しておく。送電コイルには 0. 2Aの一定電流 laが流れるよう、送電コイルに 印加する電圧 Vを設定する。送電側の実効電力 Prは、 Pr = cos ci) X V X Ia,として求 められる。 2次側の実効電力 Psは、 10 Ωの無誘導負荷抵抗の両端電圧の実効値 Ve を求め、 Ps=Ve2ZlO、として求められる。各周波数における実効電力伝送効率 77 は、 η =Ps/Pr、として求められる。この計測法は、負荷抵抗値や周波数により力率 が変動することを勘案してレ、なレ、従来例とは異なってレ、る。
[0195] 実際の電気機器が必要とする電力から、負荷抵抗値を求めてみる。電気機器が必 要とする電力は、電圧 Vs = 5V、電流 ls = 0. 5A、電力 2. 5W程度が下限であるため 、負荷抵抗値 RLの最小値は 10 Ω程度となる。 10W以上の電力を必要とする電気機 器では、電圧 Vsを上げ、電流 Isを下げている。実際の回路電圧は 5V程度であっても 、降圧式の PWMコンバータを使っている場合が多レ、。例えば、 30W程度の電力を 必要とするパソコンなどでは、 15V、 2Aの電源を使っている。この場合の負荷抵抗値 RLの最小値は、 15/2 = 7. 5 Ω程度になる。さらに電圧 Vsを上げ、電流 Isを下げ、 30V、 1A程度とすると、負荷抵抗値 RLの最小値は、 30/1 = 30 Ω程度になる。大 体の目安として、負荷抵抗 RLの最小値は、 2〜50 Ω程度になる。したがって、コィノレ の実効直列抵抗による電力損失を受電電力の 20%程度以下に抑えるには、負荷抵 抗 RLの最小値を Rm、とすると、受電コイルの実効直列抵抗 Rwは、 Rw X 5≤Rm、 を満足している必要がある。すなわち、交流電源の出力周波数 faにおいて、受電コィ ルの Rwは 0. 4〜10 Ω以下であることが望ましい。
[0196] 実測によると、送電コイル側の抵抗成分は、前述した実施形態においては、周波数 にもよる力 負荷抵抗値 RL以下となる。したがって、負荷抵抗 RLの最小値を Rm、と すると、送電コイル、受電コイル共に、実効直列抵抗 Rwは 0. 4〜: 10 Ω以下であるこ とが望ましい。
[0197] 実効直列抵抗 Rwの上限が決まると、 Rs、 Rnは実測して求められる。 flにおいて、 実効直列抵抗 Rwは 0. 4〜: 10 Ω以下であることが望ましい。したがって、実際にコィ ルが使用される周波数では、 Rs、 Rnともに、 10 Ω以下であることが望ましい。
[0198] 図 2に示し、前述したが、実際に電力伝送を行なうと、送電コイルと受電コイルに流 れる電流が発生する磁束が他方のコイルを貫通することによる渦電流損による損失 が発生し、電力損失は増加する。前述したように、実際に電力伝送を行なっている場 合、図 8における Rl、 R2の値は不明である。よって、上記に述べた実際の実効直列 抵抗値 Rwは、 Rw≤ (Tw-Ta) / (Ia2 X Θ i)、の規定と同じように、受電側機器の 使用条件によって決定されるものである。
[0199] (コイルを構成する導線の説明)
図 22Aは、図 1に示したコイルに用いられる他の導線の断面図である。図 2Aでは、
単導線 12として断面が円形のものを用いた力 図 22Aに示した例のように断面が楕 円形の単導線 12aに絶縁被覆 13aを施したものや、図 22Bに示すように断面が多角 形の単導線 12bに絶縁被覆 13bを施したものなどを用いることができる。この例にお いても、絶縁被覆 13a, 13bとしては、例えば、ホルマル線のように厚みが薄くても強 レ、被覆や、ビニール線のように厚レ、被覆のレ、ずれであってもよレ、。
[0200] ただし、図 22Aおよび図 22Bにおいて、最大外寸 dlを示す線は、導線が卷回され る面と平行になっていることが好ましい。これは、本発明の他の実施形態においても 同様である。また、 P 接している導線が密接している場合には、導線の接点が点にな るように、卷回面に対して、導線断面の方向を決定するのが好ましい。
[0201] (断面傘型のコイルの例の説明)
図 23は導線を断面傘型に卷回したコイルの断面図である。図 2Aに示したコイル la は、導線 11を平板空芯単層渦巻き状に卷回したのに対して、図 23に示したコイル 1 bは、断面が傘型となるように空芯単層渦巻き状に形成したものである。
[0202] この場合、図 23の卷き線幅 Dl、内径 D2とし、 2 X D1 +D2力 導線の最大外形 dl の 25倍以上であることを条件としている。なお、 2つの卷き線幅 D1を示す線がなす 角度 Θは、 180度から 90度の間に設定するのが好ましい。ただし、図 23において、 卷き線幅 D1が内径 D2の概ね 1/4以下で、かつ短絡したコイルが対向したときに、 Rs >Rw、を満足している場合には、 Θがゼロに近いソレノイド形状とすることもできる
[0203] 図 24Aおよび図 24Bは、図 23に示した断面傘型に卷回したコイル lbと、図 2Aに 示した断面平面型のコイル laの磁場強度を対比して説明するための図である。図 2 Aに示したコイル laは、図 24Bに示すように、平面位置における磁場強度力 中央部 分が強くなつて周辺に行くほど磁場強度が弱くなつている。これに対して、図 24Aで は図 23に示した断面傘型に卷回したコイル lbの上下を反対にしたときの平面位置 における磁場強度を示している。図 24Aに示すように、断面傘型に卷回したコイル 1 bは、コイル面上の全面で、ほぼ均一の磁場強度を得ることができる。
[0204] また、コイル lbは、断面が波線を描くように卷回してもよい。
[0205] (絶縁材上に導線を卷回したコイルの例の説明)
図 25は、絶縁材上に導線を卷回したコイルの断面図である。この例は図 2Aに示し たコイル laを絶縁材 5上に配置し、コイル laの単導線 11上に絶縁性樹脂 6を塗布し たものである。この例では、絶縁部材としての絶縁性樹脂 6が導線 11間に入り込んで 固定されるので、コイル laの変形を防止することができる。絶縁性樹脂 6に代えて接 着剤でコイル laを絶縁材 5上に固定してもよレ、。このような構成とすることにより、熱抵 抗 Θ iを低減でき、コイルの発熱を抑えることができる。
[0206] 具体的には 5mm程度の絶縁材 5を両コイル間に設置することにより、 1次側と 2次 側の間に 1万 V程度の電位差があっても問題ない。また、熱抵抗 Θ iを低下させ、コィ ルの発熱を低減できるので、大電力を伝送できる。
[0207] (コイルの他の実施例の説明)
図 26Aおよび図 26Bは、この発明の他の実施形態における電力伝送装置のコイル を示す図であり、図 26Aは平面図を示し、図 26Bは図 26Aの線 2B— 2Bに沿う断面 を拡大して示す。
[0208] 図 26Bに示した実施形態では、単導線 12として最大径 dlが 0. 4mm以上の単導 線 12に絶縁被覆 13を施した導線 11を平板空芯単層渦巻き状に卷回し、図 26Bに 示すように、コイル lcの隣接する各導線 11間に、 0· 2mm以上の空隙 tを設けて疎 卷きするようにしたものである。この例においても、絶縁被覆 13としては、ホルマル単 導線のように厚みが薄くても強レ、被覆や、ビニール線のように厚レ、被覆のレ、ずれであ つてもよレ、。また、隣接する導線 11間に空隙 tを設けているので、絶縁被覆 13を施し ていない裸導線を用いてもよレ、。最大外径 dlが、 0. 4mm未満のときには、 t = dl/ 2、の空隙を設けるようにする。なお、この実施形態は、後述する他の実施形態の導 線についても同様で、最大外径 dlを dと表記する。
[0209] この実施形態においても、コイル lcは、コイル外径を Dとしたとき、少なくともコイル 外径 Dが単導線 12の最大径 dlの 25倍以上であり、かつ導線 11の卷き数が 8以上に なるように構成される。さらに、コイル lcの自己インダクタンスが少なくとも 2 a H以上 を満足することを条件としている。
[0210] また、電力を伝送する周波数における、コイル lc単体での実効直列抵抗を Rw ( Q )、図 26Aに示したコイル lcを 2個対向させ、対向する一方のコイルを短絡したときの
、他方のコイルの実効直列抵抗を Rs(Q)、としたときに、 Rs>Rw、を満足する最高 周波数を flとすると、送電コイルである一方のコイルまたは他方のコイルは、 fl未満 の周波数 fdにて駆動される。
[0211] さらに、電力を伝送する周波数における、対向するコイルの一方を開放したときの 他方のコイルの実効直列抵抗を Rn(Q)、としたときに、 Rs>Rn≥Rw、を満足する 最高周波数を f2とすると、送電コイルである一方のコイルまたは他方のコイルは、 12 未満の周波数 fdにて駆動される。
[0212] さらに、コイル lcの熱抵抗を Θ i(°C/W)、コイル lcの許容動作温度を Tw(°C)、コ ィル lcが設置される場所の周囲温度を Ta(°C)、電力を伝送しているときにコイル lc に流れる交流電流を la (A)、としたときに、 Rw≤ (Tw-Ta)/(Ia2X Θ i)、なる関係 を満足する。
[0213] 図 2Bに示したように、単導線を密接して卷いた場合には、導線を流れる電流により 発生する磁束 Φが、隣接する導線を貫き、隣接する導線内に渦電流を発生させると ともに、渦電流により、導線中を流れる電流が影響を受け、実効直列抵抗 Rwが増加 する。この実施形態では、空隙を設けることで、図 26Bに示すように、隣接する一方 の導線を流れる電流により導線近傍に発生する磁束 Φが、隣接する導線を貫かなく なり、隣接する導線を磁束 Φが貫くことにより、隣接する導線内に発生する渦電流損 を卬えること力 Sできる。
[0214] 渦電流損は周波数に比例して増加するので、隣接する導線間に空隙を設けること により、周波数の上昇による実効直列抵抗 Rwの増加を防止できる。なお、導線 11の 近傍の磁束 Φは強ぐ導線 11から少しでも離れると磁束 Φは急激に弱くなるので、わ ずかな空隙でも効果があり、空隙の幅は任意の寸法に広げることができる力 余り広 げすぎると、 8回の卷線回数を確保できなくなる場合や、コイルの自己インダクタンス が 2 μ Η以下となる場合がある。
[0215] (コイルの他の例の説明)
図 27Αおよび図 27Βは、この発明のさらに他の実施形態における電力伝送装置の コイルを示す図であり、図 27Αは平面図を示し、図 27Βは図 27Αの線 3Β— 3Βに沿 う断面を拡大して示す。
[0216] この実施形態は、コイル Idの外周部における隣接する導線 11は密接して密卷きさ れ、内周部における隣接する導線 11は空隙を有して疎卷きされて平板空芯単層渦 卷き状に卷回されている。その結果、図 27Bに示すように、コイル Idの外周部に設け られる隣接する導線間の空隙の幅 tlは、コイル Idの内周部に設けられる隣接する導 線間の空隙の幅 t2よりも狭くなつている。
[0217] この実施形態においても、コイル Idは、コイル外径を Dとしたとき、少なくともコィノレ 外径 Dが単導線 12の最大径 dlの 25倍以上であり、かつ導線 11の卷き数が 8以上に なるように構成される。さらに、コイル Idの自己インダクタンスが少なくとも 2 μ Η以上 であることを条件としてレ、る。
[0218] また、電力を伝送する周波数における、コイル Id単体での実効直列抵抗を Rw ( Ω )、図 27Aに示したコイル Idを 2個対向させ、対向する一方のコイルを短絡したときの 、他方のコイルの実効直列抵抗を Rs ( Q )、としたときに、 Rs >Rw、を満足する最高 周波数を flとすると、送電コイルである一方のコイルまたは他方のコイルは、 fl未満 の周波数 fdにて駆動される。
[0219] さらに、電力を伝送する周波数における、対向するコイルの一方を開放したときの 他方のコイルの実効直列抵抗を Rn ( Q )としたときに、 Rs >Rn≥Rw,を満足する最 高周波数を f2とすると、送電コイルである一方のコイルまたは他方のコイルは、 f2未 満の周波数 fdにて駆動される。
[0220] さらに、コイル Idの熱抵抗を Θ i (°C/W)、コイル Idの許容動作温度を Tw (°C)、コ ィル Idが設置される場所の周囲温度を Ta (°C)、電力を伝送しているときにコイル Id に流れる交流電流を la (A)、としたときに、 Rw≤ (Tw-Ta) / (la2 X Θ i)を満足する
[0221] 密卷されたコイルが生成する磁束密度は、外周部近辺では低ぐ内周部では高い ため、外周部を蜜卷きし、内周部を疎卷きするようにコイル Idを構成することによって 、できる限りコイル面上の磁束密度を一定にし、コイル Idに対向しているコイルとの相 対位置が変動したときの伝送可能電力の低下を軽減できる。内周部は磁束密度が 高いので、空隙を設けることにより、渦電流損を防止できる。空隙の作用効果は前述 したとおりである。
[0222] 上記実施形態のコイルは、広レ、周波数範囲で実効直列抵抗 Rwが低ぐ Rs >Rn ≥Rw、を満足している最高周波数 f 2も高いので、電力伝送特性がよい。
[0223] 図 28は、この発明のさらに他の実施形態における電力伝送装置のコイルに用いら れる裸単導線の集合体を示す断面図である。前述の実施形態は、導線 11として、単 導線 12に絶縁被覆 13を施したものを用いたのに対して、この実施形態は、図 28に 示すように、最大径 d2が 0. 3mm以下の裸単導線 14の集合体を絶縁被覆 13cで覆 つたいわゆるビニール線と称される導線 11cを用いる。裸単導線 14は、撚らないほう が好ましい。
[0224] 裸単導線の集合体は、裸単導線の集合のみでは、撚らないと、その集合体が電線 としての形状を保持できない。避雷針の接地線は鬼撚り線と呼ばれ、複数の裸単導 線を単方向のピッチに撚らず、ランダムに撚つて、実効直列抵抗を下げていることが 知られている。
[0225] また、複数の裸単導線 14の集合体に強い撚りピッチをカ卩えると、裸単導線 14同士 が密接し、図 28の導体断面が、図 2Bの単導線 12と同じになるので、表皮効果や渦 電流損の影響を低減できなくなる。ただし、 1mmの単導線を用いて形成したコイル 1 Eを参照し、後述するが、コイルを形成する導線として裸単導線の集合体を使用し、 導線間に空隙を設けて卷回する場合においては、適切な撚りを施した方が、高周波 数での特性がよい場合もある。実際にビニール線を卷いて作成したコイルは、殆どの 場合、 1MHz以上の周波数帯域まで、 Rs >Rn≥Rw、の関係を満足している。
[0226] 卷回方法としては、図 2Aに示したように、隣接する導線 11を密着させて卷回する 方法や、図 26Aに示したように、隣接する導線 11間に空隙を設けて卷回する方法を 適用可能である。いずれも平板空芯単層渦巻き状に卷回することでコイルを形成で きる。なお、導線 11cを密接卷したとき、隣接する導線との間に絶縁被覆 13cによる 空隙を設けることができ、図 26Aに示した実施形態と同様にして、空隙を設けること で、図 26Bに示すように、隣接する一方の導線を流れる電流により、導線近傍に発生 する磁束 Φが、隣接する導線を貫かなくなり、 P 接する導線を磁束 Φが貫くことにより 、隣接する導線内に発生する渦電流損を抑えるとともに、渦電流により、導線中を流 れる電流が影響されるのを防ぎ、実効直列抵抗の増加を低減できる。なお、表皮効
果の影響も低減できる。
[0227] 上記実施形態のコイルは、広レ、周波数範囲で実効直列抵抗 Rwが低ぐ Rs >Rn ≥Rw、を満足している最高周波数 f 2も高いので、電力伝送特性がよい。
[0228] (導体内部に絶縁層を有するコイルの例の説明)
図 29Aおよび図 29Bは、この発明のさらに他の実施形態におけるコイルを形成す る導体内部に絶縁層を有する電力伝送装置のコイルを示す図であり、図 29Aは平面 図を示し、図 29Bは図 29Aの線 4B— 4Bに沿う断面を拡大して示す。図 30Aおよび 図 30Bは、図 29Bに示したコイルに用いられる導線の断面図である。
[0229] この実施形態は、図 30Bに示す単導線 15に、ポリウレタンなどの透明樹脂を絶縁 被覆 16として施した、例えば、図 30Aに示す断面構造を持つ導線 8の集合体導線で ある l id (通称リッツ線とも称される)を、コイルを形成する導線として用いる。
[0230] 図 30Aに示す導線 l idにおいて、導体 15の断面積と、絶縁被覆 16の断面積との 比率は、導線径ゃ導線内部の導体分割数などにより決まるので、一概にはいえない 力 導線 l idは、それぞれに絶縁被覆 16が施された、例えば 7本の単導線 8の集合 体で構成されている。単導線 8は、絶縁被覆 16を除く導体 15の最大径を d4としたと きに、 d4が 0. 3mm以下であって、絶縁被覆の厚さ αを(d4) /30以上に選ぶのが 好ましレ、。また、絶縁被覆 16以外の空気層も絶縁体層であるところから、図 30Aのよ うに、単導線 8が 7本含まれる最小の円を描き、その円に内接する正六角形を考え、 正六角形の面積と、線径 d4の導体 15の 7本の合計断面積を計算すると、導線断面 中の絶縁体層の比率は、空気層も含め、約 11 %になる。
[0231] コイル leは、図 29Aに示すように、絶縁性樹脂で形成されたボビン 7に導線 l idを 図 29Bに示すように、多層密接巻きして構成される。コイル leは、コイル外径を Dとし たとき、少なくともコイル外径 Dがリッツ線 l idの最大径 d3の 25倍以上であり、かつ導 線 l idの卷き数が 8以上になるように構成される。さらに、コイル leの自己インダクタ ンスが少なくとも 2 μ H以上を満足することを条件としている。
[0232] また、電力を伝送する周波数における、コイル le単体での実効直列抵抗を Rw ( Ω )、図 29Aに示したコイル leを 2個対向させ、対向する一方のコイルを短絡したときの 、他方のコイルの実効直列抵抗を Rs ( Q )、としたときに、 Rs >Rw、を満足する最高
周波数を flとすると、送電コイルである一方のコイルまたは他方のコイルは、 fl未満 の周波数 fdにて駆動される。
[0233] さらに、電力を伝送する周波数における、対向するコイルの一方を開放したときの 他方のコイルの実効直列抵抗を Rn ( Q )、としたときに、 Rs > Rn≥Rw、を満足する 最高周波数を f2とすると、送電コイルである一方のコイルまたは他方のコイルは、 12 未満の周波数 fdにて駆動される。
[0234] さらに、コイル l eの熱抵抗を Θ i (°C/W)、コイル l eの許容動作温度を Tw (°C)、コ ィル l eが設置される場所の周囲温度を Ta (°C)、電力を伝送しているときにコイル l e に流れる交流電流を la (A)、としたときに、 fdにて、 Rw≤ (Tw_Ta) / (Ia2 X Θ i)、 を満足する。
[0235] 図 29Aに示した実施形態は、図 30Aに示した複数の単導線 8の集合体からなる導 線 l i dをボビン 7に多層密接巻きした力 これに限ることなく、図 2Aに示した単層密 接卷きや、図 26Aに示した単層疎卷き、図 27Aに示した外周部における隣接する導 線は密接して密卷きし、内周部における隣接する導線は空隙を有して疎卷きしてもよ レ、。
[0236] 上記実施形態のコイルは、広レ、周波数範囲で実効直列抵抗 Rwが低ぐ Rs >Rn ≥Rw、を満足している最高周波数 f 2も高いので、電力伝送特性がよい。また、本実 施形態においては、リッツ線を数本撚つて 1本の撚り線とし、さらに撚り線を数本まと めて撚り、太い電線としてもよい。
[0237] ここで、コイル 1F、コイル 1Gを参照し、 Rs > Rn≥Rw、の規定に関する詳細な作用 効果について説明する。
[0238] リッツ線は、リッツ線を構成する各ホルマル線の自己インダクタンス La, Lb- - - ,を並 列に接続した、図 31のような等価回路を持つものと考えられる。リッツ線を、平板単層 渦巻き状に空隙を設けて卷レ、ても、コイル単体の実効直列抵抗 Rwの周波数特性は 余り改善されず、逆にコイル単体の自己インダクタンスが低下するところから、リッツ線 は、各ホルマル線間、および導線間の相互インダクタンスにより、コイルとして形成し たときの自己インダクタンスが変化するものと考えられる。すなわち、撚り方ゃ撚りのピ ツチ、巻き方 (密接巻き、疎巻き、多層巻き)、ターン数、外形などにより、コイルとして
形成したときの特性が変わってくる。
[0239] (導線の構造の説明)
図 32、図 33、図 34、図 35A〜図 35Cは、この発明のその他の実施形態における 電力伝送装置のコイルを構成する導線の構造を示す図である。
[0240] 図 32は、パイプ状の導体 17内に絶縁材料 18が充填されており、パイプ内が空洞 である場合に、ノイブが折れて、曲げ加工ができなくなるのを防止している。なお、パ イブの材質やパイプの肉厚により、パイプ自体が可撓性を持つ場合は、パイプ内が 空洞であってもよい。
[0241] 図 33は、絶縁材料 19上に、分割して導体 20を形成したものの一例を示す。
[0242] 図 34は、絶縁材料 21上に、分割して導体 22を形成し、絶縁材料 21の内部にも導 体 23を形成したものの一例を示す。
[0243] 図 35A〜図 35Cは、箔状導体と絶縁材料を重ね、断面が螺旋状で、導体と絶縁体 が交互に存在するように導線を形成したものである。すなわち、図 35Aに示すように 箔状導体 24と絶縁材料 25とを積層し、図 35Bに示すように積層した箔状導体 24と 絶縁材料とを卷回し、図 35Cに示すように断面が螺旋状となる導線を形成したもので ある。
[0244] 図 32〜図 34は、導線を構成する単導線の周上に導体層が有るが、導体層に絶縁 被覆を施しても、施さなくても、実施形態に適合するなら、いずれでもよい。
[0245] 上述のごとぐ図 32〜図 34は、コイルを形成する導体内部に絶縁層を有する実施 形態で、絶縁材料は導線内部に絶縁層を設けるとともに、導線に可撓性を持たせ、 導線の曲げ加工を容易にするものである。
[0246] また、図 30Aに示す単導線を束ねて形成した導線内に存在する空気層、図 30A、 図 32〜図 34に示す導線を多層卷きする場合において、コイル断面に存在する空気 層も、絶縁材とみなせる。
[0247] 図 30A、図 32〜図 34の実施形態では、導線を構成する導体の表面積を増加させ ること力 Sでき、導体を貫通する磁束による渦電流損は、導体の体積に比例して増加 する。このため、導線内の導体を貫く磁束経路に存在する導体体積を減少させること ができるので、表皮効果および渦電流損による実効直列抵抗 Rwの増加を防止でき
る。
[0248] 図 30A、図 32〜図 34の実施形態は、導線を構成する導体を分割し、導線内部に 絶縁層を設ける一例に過ぎず、その他の実施形態が存在することは言うまでもなレ、。
[0249] 上述の各コイルは、 1次側コイルと 2次側コイルが分離可能な電力装置における送 電コイルゃ受電コイルのみならず、 2つのコイルが分離不能な変圧器 (変成器)として 使用することも可能である。
[0250] 上述した各実施形態に示すコイルは、各実施形態のものを 1次側コイル、 2次側コ ィルとして同一のコイルを使用する必要はなぐ例えば図 2Aの実施形態に示すコィ ノレ laであっても、ターン数や外形が異なるコイルを、 1次側コイル、 2次側コイルとして 用いてもよぐあるいは、図 2Aの実施形態のコイル laと、図 24Aの実施形態のコイル lcを組み合わせることもできる。このような構成とすることにより、卷線比を任意に設定 可能となる。そして、昇圧、降圧が可能な、コイルを使った電力伝送手段が実現でき る。
[0251] このような場合、 Rwは、各コイル単体で計測し、 Rn、 Rsは、両コイルを対向させ、 各コイルにおいて計測し、 Rs >Rw、 Rs >Rn≥Rw、の関係を満足するかを確認す ればよい。 1次側、 2次側の各コイルにて、 Rw、 Rn、 Rs、の周波数特性を見ることに より、両コイルを組み合わせたときの電力伝送性能が予測できることは、上述したとお りである。
[0252] あるいは、異なる数種のコイルを作成し、各コイルにおいて、同一のコイルを対向さ せ、 Rw、 Rn、 Rsの周波数特性を計測した後に、特性の良いコイルを組み合わせて 使ってもよレ、。組合せ後に、 1次側コイル、 2次側コイルにおいて、 Rw、 Rn、 Rsの周 波数特性を計測すれば、より好ましい。
[0253] なお、コイルに、磁束遮蔽を目的として、磁性材板ゃ金属板を近接させることがある 。そのような場合は、通常、磁性材板ゃ金属板の近接が、コイルの電力伝送性能を 劣化させる。例えば、図 25、図 26Aの実施形態や、図 30Aの導線を平板空芯単層 渦巻き状に卷回したコイルの対向面の反対側に、磁性材料板や、金属板を設置した 場合などである。あるいは、図 29Aの実施形態において、ボビン状の内径空洞内に、 透磁率の低い磁性材料を装備するか、空洞に円筒状の金属リングを装備する場合な
どである。さらに、図 26Aの実施形態において、コイル外径 Dの 5分の 1程度以下の 幅を持った金属板を 2枚十字にして絶縁材にコイルを固定する場合などである。
[0254] このような場合などでも、ある周波数範囲で、 Rs >Rw、または、 Rs >Rn≥Rw、の 条件を満足する場合があるが、これらの構成で、磁性材、金属板等は本発明の実施 形態のコイル本体の性能を左右するものではなぐコイルは実質的に空芯と見なされ る。
[0255] この発明の実施形態におけるコイルは、電力伝送性能が高ぐコイルが生成する磁 場強度が高い。このため、例えば特開平 11— 97263号公報の段落番号 0008に記 載されているように、機器の電子部品を磁場力 遮蔽するために、コイルの対向面の 反対側に、磁性材ゃ金属板などを装備した場合、その目的は、コイルの電力伝送性 能を改善するものではなぐ単に磁気遮蔽材として装備しているに過ぎない。
[0256] このような場合は、 1個の構成からなる発明ではなぐこの発明を元にし、別の作用 効果を意図しているものである。すなわち、この発明の実施形態におけるコイルの特 性や性能の改善を目的とせずに、磁性材料や金属材料がこの発明の実施形態にお けるコイルに近接しているときなどは、コイルの電力伝送性能自体は、コイルの構成 や作用効果と異なるものではなぐコイルは空芯と見なせ、本発明の実施形態の範囲 に包含される。例えばインダクタンスを高くしても、実効直列抵抗 Rwが増加すれば性 能改善にはならず、上述したこの発明の実施形態におけるコイルの特性のうち、 1つ でも劣化すれば改善にはならなレ、。
[0257] なお、この発明の実施形態において、導線を形成する導体の材質は特に限定され ないが、本実施形態にて述べている各コイルは、全て導体に銅を用いている。導体と して比抵抗が小さい銅を使うのが好ましいが、比抵抗が小さい他の金属、あるいは合 金を導体として使うこともできる。
[0258] また、上記に説明した各コイルの実効直列抵抗やインダクタンスの測定には、 1M Hzまでは、アジレント社の LCRメータ、 4284A、 1〜: 10MHzの測定には、ヒユーレツ トパッカード社の LCRメータ、 4275Αを使用した。なお、 1〜: 10MHzの計測は、 1、 2 、 4、 10MHzの各点でしか計測できないので、例えば、 4MHzにて、 Rs >Rwを満足 し、 10MHzにて、 Rs >Rw、を満足しない場合は、補間により、 Rs >Rw、を満足す
る最高周波数 flを推定している。
[0259] (実施例の効果の説明)
このように、この発明の実施形態によれば、一方のコイル単体の実効直列抵抗を R wとする。一方のコイルに対向する他方のコイルを短絡したときの、一方のコイルの実 効直列抵抗を Rsとする。 Rs >Rw、を満足する最高周波数を flとする。 flの高いコィ ルを使用し、 fl未満の周波数に交流電源の出力周波数 faを設定することにより、電 力伝送性能を、従来よりも向上させることが可能となる。
[0260] そして、一方のコイルに対向する他方のコイルを開放したときの、一方のコイルの実 効直列抵抗 Ι η ( Ω )とし、 Rw、 Rn、 Rsの周波数特性を見ることにより、広い周波数範 囲で実効直列抵抗 Rwが低ぐ Qが高い、電力伝送性能のよいコイルを選別、実現で き、負荷抵抗を接続した 2次側コイルが 1次側コイルと対向したときの、 1次側コイル両 端のリアクタンス Xと純抵抗 Rとの比、 X/R、およびコイルに印加される交流電圧と交 流電流の位相差 Φが極小、力率 cos φが極大となり、かつ実効直列抵抗 Rwが小さ い周波数近辺でコイルを使用することにより、スペースファクタがよぐ高い電力伝送 性能を持ち、高い周波数でも使用可能な、電力伝送装置のコイルを得ることができる 。その結果、電力伝送時の無効電力、皮相電力を低減できるので、コイルの実効直 列抵抗による電力損失も低減できる。
[0261] さらに、一方のコイル単体の実効直列抵抗 Rw ( Q )と一方のコイルに流れる電流 la
(A)による熱条件を規定することで、一方のコイルの電流値 laの上限、あるいは一方 のコイルの実効直列抵抗を決めるターン数の上限、あるいは実効直列抵抗 Rwが小 さい周波数領域を規定できる。
[0262] また、 0. 3mm以下の裸単導線の集合体を用いた場合には、表皮効果および渦電 流損によるコイルの実効直列抵抗増加を抑えることにより、電力伝送性能が向上する
[0263] さらに、コイルを構成する導線内部に絶縁体を設け、導線中を貫通する磁束経路 に存在する導体体積を減らすことによって、表皮効果と渦電流損による実効直列抵 抗の増加を抑えることができる。絶縁材料は導線内部に絶縁層を設けるとともに、導 線に可撓性を持たせることができ、導線の曲げ力卩ェが容易となる。
[0264] あるいは、 Rw、 Rs、 Rnの周波数特性を計測することにより、電力伝送に最適な周 波数範囲を規定でき、あるいは、実際に電力伝送試験を行わずとも、電力伝送の性 能が予測できる。
[0265] このようなコイルを用いることにより、高い周波数で、大電力を伝送できる。すなわち 、磁性材料を装備していないコイルを用いた場合で、結合係数が 0. 9程度以下の疎 結合状態でも、電力伝送性能を確保できる。具体的には、力率は、例えば 75%以上 に、実効電力伝送効率を、例えば 85%以上に高めることができ、 2次側に接続され た 10 Ωの無誘導負荷抵抗に、例えば 25W以上の電力を伝送できる。
[0266] そして、この実施形態のコイルを送電部または受電部の少なくとも一方に装備し、 送電部の交流電源 Vaの出力周波数 faを fl、 f2未満の周波数に設定して電力を伝 送することにより、上記のような、従来よりも性能のよい電力伝送装置、電力伝送装置 の送電装置、電力伝送装置の受電装置、が実現可能となる。
[0267] また、この実施形態のコイルを送電部または受電部の少なくとも一方に装備し、 fl 未満の周波数領域にて送電コイルを駆動することにより電力伝送性能のよい電力伝 送装置の作動方法が得られ、 fl、 f2を求めることにより、種々の構成を持つ電力伝送 装置のコイルにぉレ、て、電力伝送性能がょレ、コイルを比較選別できるようになる。
[0268] 以上、図面を参照してこの発明の実施形態を説明したが、この発明は、図示した実 施形態のものに限定されない。図示された実施形態に対して、この発明と同一の範 囲内において、あるいは均等の範囲内において、種々の修正や変形を加えることが 可能である。
産業上の利用可能性
[0269] この発明の電力伝送装置、電力伝送装置の送電装置および受電装置、ならびに 電力伝送装置の作動方法は、電線や機械的な接点を用いることなく送電部から受電 部へ、受電部が必要とする電力を伝送するのに利用できる。
Claims
[1] 送電部と受電部が分離可能なように構成され、
交流電力を送電する送電コイルを少なくとも含む送電部と、
負荷 RLと、受電コイルとを少なくとも含む受電部とから成り、
前記送電コイルと、前記受電コイルとを対向させて、前記送電部から前記受電部に 電力を伝送する電力伝送装置において、
前記対向するコイルの内、一方のコイル単体の実効直列抵抗を Rw ( Q )、 前記一方のコイルに対向する他方のコイルを短絡したときの、前記一方のコイルの 実効直列抵抗を Rs ( Q )、
前記一方のコイルが、 Rs >Rw、を満足する最高周波数を fl (Hz)としたときに、 前記 flが 100kHz以上となるように、前記一方のコイルと前記他方のコイルが選ば れており、
一方のコイルを駆動する周波数を前記 fl未満の周波数に設定したことを特徴とす る、電力伝送装置。
[2] さらに、直流電力を交流電力に変換する電力変換手段を含み、
前記電力変換手段の出力周波数を fa (Hz)、としたときに、
前記 faを前記 fl未満の周波数に設定した、請求項 1に記載の電力伝送装置。
[3] さらに、前記一方のコイルに対向する他方のコイルを開放したときの、前記一方のコ ィルの実効直列抵抗を Rn ( Ω )、
Rs >Rn≥Rw、を満足する最高周波数を f 2 (Hz)、としたときに、
前記 faを前記 f 2未満の周波数に設定した、請求項 2に記載の電力伝送装置。
[4] さらに、前記一方のコイルの熱抵抗を Θ i (°CZW)、
前記一方のコイルの許容動作温度を Tw (°C)、
前記一方のコイルが設置される場所の周囲温度を Ta (°C)、
電力を伝送しているときに、前記一方のコイルに流れる交流電流を la (A)、としたと きに、
前記 faにおいて、
Rw≤ (Tw-Ta) / (la2 X Θ i)、
なる関係を前記一方のコイルが満足するように、前記送電部から前記受電部に電 力を伝送する、請求項 2に記載の電力伝送装置。
[5] 前記対向するコイルの内、少なくとも一方のコイルを形成する導線は絶縁被服が施 された単導線であり、
前記少なくとも一方のコイルは、前記単導線を単層または多層渦巻き状に密接巻き して構成されており、
前記単導線の導体単体の最大径を dl、前記少なくとも一方のコイル外径を Dとした とき、
前記少なくとも一方のコイル外径 Dが前記最大径 dlの少なくとも 25倍以上であり、 かつ前記導線の卷き数が所定ターン数以上であり、
前記少なくとも一方のコイルの自己インダクタンスが少なくとも 2 μ Η以上である、請 求項 1に記載の電力伝送装置。
[6] 前記対向するコイルの内、少なくとも一方のコイルは複数の導線を含み、それぞれ の導線は、最大径が 0. 3mm以下に選んだ複数の裸単導線の集合体に絶縁被覆を 施して形成され、
前記少なくとも一方のコイルは、前記複数の裸単導線の集合体に絶縁被覆を施し た導線を単層または多層渦巻き状に密接巻きして構成されており、
前記複数の裸単導線の集合体の最大径を d2、前記少なくとも一方のコイル外径を Dとしたとさ、
前記少なくとも一方のコイル外径 Dが前記最大径 d2の少なくとも 25倍以上であり、 かつ前記導線の卷き数が所定ターン数以上であり、
前記少なくとも一方のコイルの自己インダクタンスが少なくとも 2 μ Η以上である、請 求項 1に記載の電力伝送装置。
[7] 前記対向するコイルの内、少なくとも一方のコイルを形成する導線には、前記導線 内部に絶縁体層が設けられ、
前記絶縁体層の断面積が導線全体の断面積の 11。/。以上であって、
前記少なくとも一方のコイルは、前記絶縁体層が設けられた導線を単層または多層 渦巻き状に密接巻きして構成されており、
前記絶縁体層が設けられた導線の最大径を d3、前記少なくとも一方のコイル外径 を Dとしたとき、
前記少なくとも一方のコイル外径 Dが前記最大径 d3の少なくとも 25倍以上であり、 かつ導線の卷き数が所定ターン数以上であり、前記少なくとも一方のコイルの自己ィ ンダクタンスが少なくとも 2 μ H以上である、請求項 1に記載の電力伝送装置。
[8] 前記導線は、それぞれに絶縁被覆が施された複数の単導線の集合体で構成され、 かつ、前記単導線中の導体の最大径を d4としたときに、
d4が 0. 3mm以下であって、前記絶縁被覆の厚さ tが(d4) Z30以上に選ばれて いる、請求項 7に記載の電力伝送装置。
[9] 前記対向するコイルの内、少なくとも一方のコイルは、導線を平面単層渦卷状に卷 回して構成されており、
前記導線の最大径 dが、 0. 4mm以上のときに、隣接する導線の導体間に、 0. 2m m以上の空隙を設け、
前記導線の最大径 dが、 0. 4mm未満のときに、隣接する導線の導体間に、 d/2 ( mm)以上の空隙を設けた、請求項 1に記載の電力伝送装置。
[10] 前記対向するコイルの内、少なくとも一方のコイルは、導線を平面単層渦卷状に卷 回して構成されており、
前記少なくとも一方のコイルの最外周部における隣接する各導線の各導体間に設 ける空隙の幅を tl、
前記少なくとも一方のコイルの最内周部における隣接する各導線の各導体間に設 ける空隙の幅を t2、とすると、
t2 >tl > 0、であって、最外周部から内周部に行くに従レ、、空隙の幅が増加し、最 内周部における隣接する各導線の各導体間に設ける空隙の幅 t2が、少なくとも 0. 2 mm以上である、請求項 1に記載の電力伝送装置。
[11] 前記少なくとも一方のコイルは、導線の外周部が絶縁層を有しており、
前記少なくとも一方のコイルの最外周部における隣接する各導線の各導体間は絶 縁層を介して密接してレ、る、請求項 10に記載の電力伝送装置。
[12] 送電コイルまたは受電コイルの少なくとも一方のコイル力 S、絶縁板上か絶縁部材内
の少なくとも一方に形成されている、請求項 1に記載の電力伝送装置。
[13] 請求項 1に記載の電力伝送装置のコイルを、送電コイルまたは受電コイルの少なく とも一方に使用し、両コイルを分離不能とした、電力伝送装置。
[14] 請求項 2に記載の電力伝送装置の送電部を含む送電装置であって、
前記送電部は、前記一方のコイルを含み、
前記 faが前記 fl未満の周波数に設定されている、電力伝送装置の送電装置。
[15] 請求項 2に記載の電力伝送装置の受電部を含む受電装置であって、
前記受電部は、前記一方のコイルを含み、
前記 faが前記 fl未満の周波数に設定された前記送電部から電力を受電する、電 力伝送装置の受電装置。
[16] 送電部のコイルと、受電部のコイルとを対向させて、前記送電部から前記受電部に 電力を伝送する電力伝送装置の作動方法であって、
前記対向するコイルの内、一方のコイル単体の実効直列抵抗を Rw ( Q )、 前記一方のコイルに対向する他方のコイルを短絡したときの、前記一方のコイルの 実効直列抵抗を Rs ( Q )、
Rs >Rw、を満足する最高周波数を fl (Hz)、
前記送電コイルが駆動される周波数を fd (Hz)、としたときに、
前記 flが 100kHz以上となるように、前記一方のコイルと前記他方のコイルを選び 前記 fdを前記 fl未満の周波数に設定する、電力伝送装置の作動方法。
[17] さらに、前記一方のコイルに対向する他方のコイルを開放したときの、前記少なくと も一方のコイルの実効直列抵抗を Rn ( Ω )、
Rs >Rn≥Rw、を満足する最高周波数を f 2 (Hz)、としたときに、
前記 fdを前記 f2未満の周波数に設定して前記送電部から電力を伝送する、請求 項 16に記載の電力伝送装置の作動方法。
[18] さらに、前記一方のコイルの熱抵抗を Θ i (°CZW)、
前記一方のコイルの許容動作温度を Tw (°C)、
前記一方のコイルが設置される場所の周囲温度を Ta (°C)、
電力を伝送しているときに、前記一方のコイルに流れる交流電流を la (A)、としたと きに、
前記 fdにおいて、
Rw≤ (Tw-Ta)/(Ia2X Θ i)、
なる関係を前記一方のコイルが満足する、請求項 16に記載の電力伝送装置の作 動方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2007801000685A CN101785073B (zh) | 2006-06-05 | 2007-05-30 | 电力传送装置、电力传送装置的送电装置和受电装置、以及电力传送装置的操作方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006-156216 | 2006-06-05 | ||
JP2006156216A JP4057038B2 (ja) | 2006-06-05 | 2006-06-05 | 電力伝送方法、電力伝送装置のコイルの選別方法および使用方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007142099A1 true WO2007142099A1 (ja) | 2007-12-13 |
Family
ID=38801357
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2007/061012 WO2007142099A1 (ja) | 2006-06-05 | 2007-05-30 | 電力伝送装置、電力伝送装置の送電装置および受電装置、ならびに電力伝送装置の作動方法 |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP4057038B2 (ja) |
CN (1) | CN101785073B (ja) |
TW (2) | TW200824216A (ja) |
WO (1) | WO2007142099A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009063975A1 (ja) * | 2007-11-15 | 2009-05-22 | Meleagros Corporation | 電力伝送装置の空芯コイル、電力伝送装置のコイル、電力伝送装置、電力伝送装置の送電装置および電力伝送装置に使用される半導体集積回路 |
JP2014239644A (ja) * | 2008-09-08 | 2014-12-18 | クゥアルコム・インコーポレイテッドQualcomm Incorporated | 無線電力のための受信アンテナ配置 |
JP5651194B2 (ja) * | 2010-12-29 | 2015-01-07 | 川崎重工業株式会社 | 電池モジュールの充電システム |
EP2860841A1 (en) * | 2013-10-04 | 2015-04-15 | TDK Corporation | Power receiving device and power feeding device |
GB2553842A (en) * | 2016-09-16 | 2018-03-21 | Drayson Tech Europe Ltd | Method and apparatus |
Families Citing this family (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8394300B2 (en) | 2007-12-17 | 2013-03-12 | Seiko Epson Corporation | Manufacturing method of optical goods |
JP5486773B2 (ja) * | 2008-02-05 | 2014-05-07 | リコーエレメックス株式会社 | 非接触伝送装置および非接触伝送システム |
JP2009261782A (ja) * | 2008-04-28 | 2009-11-12 | Sharp Corp | エネルギー供給用コイル、エネルギー供給装置、ならびに無線型被検体内部情報取得システム |
JP2009273260A (ja) * | 2008-05-08 | 2009-11-19 | Seiko Epson Corp | 無接点電力伝送装置、送電装置及びそれを用いた電子機器 |
JP4561886B2 (ja) * | 2008-06-27 | 2010-10-13 | ソニー株式会社 | 電力伝送装置、給電装置及び受電装置 |
JP4752879B2 (ja) | 2008-07-04 | 2011-08-17 | パナソニック電工株式会社 | 平面コイル |
US9515494B2 (en) | 2008-09-27 | 2016-12-06 | Witricity Corporation | Wireless power system including impedance matching network |
US9160203B2 (en) | 2008-09-27 | 2015-10-13 | Witricity Corporation | Wireless powered television |
JP2012504387A (ja) * | 2008-09-27 | 2012-02-16 | ウィトリシティ コーポレーション | 無線エネルギー伝達システム |
JP5329929B2 (ja) * | 2008-12-02 | 2013-10-30 | 昭和飛行機工業株式会社 | 非接触給電装置 |
EP2396796A4 (en) * | 2009-02-13 | 2017-03-22 | Witricity Corporation | Wireless energy transfer in lossy environments |
JP5534442B2 (ja) | 2009-10-16 | 2014-07-02 | スミダコーポレーション株式会社 | コイル |
JP5383432B2 (ja) * | 2009-10-27 | 2014-01-08 | リコーエレメックス株式会社 | 非接触給電装置、受電モジュールおよび携帯型電子機器 |
EP2670037B1 (en) | 2011-01-26 | 2022-11-16 | Murata Manufacturing Co., Ltd. | Switching power supply device |
JP6024013B2 (ja) * | 2011-02-26 | 2016-11-09 | 学校法人 龍谷大学 | 無線電力伝送システム |
WO2014034491A1 (ja) * | 2012-08-31 | 2014-03-06 | 日本電気株式会社 | 電力伝送装置及び電力伝送方法 |
CN106961164A (zh) * | 2012-10-11 | 2017-07-18 | 株式会社村田制作所 | 无线供电装置 |
JP5629304B2 (ja) * | 2012-12-17 | 2014-11-19 | 昭和電線デバイステクノロジー株式会社 | リッツ線コイル |
US9887681B2 (en) | 2013-02-20 | 2018-02-06 | Nec Corporation | Power transmission system, transmission apparatus, receiving apparatus, and power transmission method |
US10038342B2 (en) | 2013-05-15 | 2018-07-31 | Nec Corporation | Power transfer system with shielding body, power transmitting device with shielding body, and power transfer method for power transmitting system |
CN104578188B (zh) * | 2013-10-09 | 2018-03-02 | 鸿富锦精密电子(天津)有限公司 | 无线充电系统 |
WO2015129247A1 (ja) * | 2014-02-25 | 2015-09-03 | 日本電気株式会社 | 無線給電装置、無線給電システムおよび無線給電方法 |
CN107003514A (zh) * | 2014-12-26 | 2017-08-01 | 英特尔公司 | 头戴式可穿戴设备电源系统 |
JP6231061B2 (ja) * | 2015-10-13 | 2017-11-15 | 日本包材株式会社 | 非接触給電装置の受信コイルユニットとその製造方法 |
CN106602687A (zh) * | 2015-10-19 | 2017-04-26 | 北京纳米能源与系统研究所 | 摩擦纳米发电机的能量管理方法、电路和装置 |
JP6453787B2 (ja) * | 2016-02-04 | 2019-01-16 | 矢崎総業株式会社 | 巻線ユニット |
CN106226598B (zh) * | 2016-07-25 | 2023-05-16 | 浙江工业职业技术学院 | 一种压触式耦合线圈快测装置 |
JPWO2018105167A1 (ja) * | 2016-12-05 | 2019-10-24 | パナソニックIpマネジメント株式会社 | コイルユニット |
US20180269710A1 (en) * | 2017-03-16 | 2018-09-20 | Shenzhen Yichong Wireless Power Technology Co. Ltd. | Power transmitter coil in wireless charging system |
JP7050566B2 (ja) * | 2017-05-02 | 2022-04-08 | 古河電気工業株式会社 | 高周波用高出力トランス |
CN110880803B (zh) | 2019-12-17 | 2022-02-15 | 台达电子企业管理(上海)有限公司 | 无线充电装置 |
CN111864913A (zh) * | 2020-06-23 | 2020-10-30 | 广东工业大学 | 一种升压型无线电能传输线圈及线圈的绕制方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03280408A (ja) * | 1990-03-29 | 1991-12-11 | Toshiba Lighting & Technol Corp | 平面インダクタンス素子 |
JPH04122007A (ja) * | 1990-09-12 | 1992-04-22 | Unitika Ltd | 非接触型トランス |
JPH0661072A (ja) * | 1992-03-27 | 1994-03-04 | Hitachi Ltd | 薄型トランス及びそれを用いた電源装置 |
JPH07231586A (ja) * | 1993-09-08 | 1995-08-29 | Tokin Corp | コードレスパワーステーション |
JPH08148360A (ja) * | 1994-11-18 | 1996-06-07 | Tokin Corp | コードレスパワーステーション |
JPH1197263A (ja) * | 1997-09-22 | 1999-04-09 | Tokin Corp | 非接触式電力伝送装置およびそれに使用される渦巻型コイル |
JP2005006440A (ja) * | 2003-06-12 | 2005-01-06 | Seiko Epson Corp | 無接点充電システムおよび無接点充電器 |
JP2006059979A (ja) * | 2004-08-19 | 2006-03-02 | Seiko Epson Corp | 非接触電力伝送装置 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5502430A (en) * | 1992-10-29 | 1996-03-26 | Hitachi, Ltd. | Flat transformer and power supply unit having flat transformer |
KR100488524B1 (ko) * | 2003-04-09 | 2005-05-11 | 삼성전자주식회사 | 로봇충전장치 |
CN1674405A (zh) * | 2004-06-11 | 2005-09-28 | 深圳市丕希软件科技有限公司 | 电器的非接触式供电方法及其装置 |
-
2006
- 2006-06-05 JP JP2006156216A patent/JP4057038B2/ja active Active
-
2007
- 2007-05-30 WO PCT/JP2007/061012 patent/WO2007142099A1/ja active Application Filing
- 2007-05-30 CN CN2007801000685A patent/CN101785073B/zh not_active Expired - Fee Related
- 2007-06-01 TW TW096119750A patent/TW200824216A/zh not_active IP Right Cessation
- 2007-06-01 TW TW098140059A patent/TW201012023A/zh unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03280408A (ja) * | 1990-03-29 | 1991-12-11 | Toshiba Lighting & Technol Corp | 平面インダクタンス素子 |
JPH04122007A (ja) * | 1990-09-12 | 1992-04-22 | Unitika Ltd | 非接触型トランス |
JPH0661072A (ja) * | 1992-03-27 | 1994-03-04 | Hitachi Ltd | 薄型トランス及びそれを用いた電源装置 |
JPH07231586A (ja) * | 1993-09-08 | 1995-08-29 | Tokin Corp | コードレスパワーステーション |
JPH08148360A (ja) * | 1994-11-18 | 1996-06-07 | Tokin Corp | コードレスパワーステーション |
JPH1197263A (ja) * | 1997-09-22 | 1999-04-09 | Tokin Corp | 非接触式電力伝送装置およびそれに使用される渦巻型コイル |
JP2005006440A (ja) * | 2003-06-12 | 2005-01-06 | Seiko Epson Corp | 無接点充電システムおよび無接点充電器 |
JP2006059979A (ja) * | 2004-08-19 | 2006-03-02 | Seiko Epson Corp | 非接触電力伝送装置 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009063975A1 (ja) * | 2007-11-15 | 2009-05-22 | Meleagros Corporation | 電力伝送装置の空芯コイル、電力伝送装置のコイル、電力伝送装置、電力伝送装置の送電装置および電力伝送装置に使用される半導体集積回路 |
JP2014239644A (ja) * | 2008-09-08 | 2014-12-18 | クゥアルコム・インコーポレイテッドQualcomm Incorporated | 無線電力のための受信アンテナ配置 |
JP5651194B2 (ja) * | 2010-12-29 | 2015-01-07 | 川崎重工業株式会社 | 電池モジュールの充電システム |
EP2860841A1 (en) * | 2013-10-04 | 2015-04-15 | TDK Corporation | Power receiving device and power feeding device |
GB2553842A (en) * | 2016-09-16 | 2018-03-21 | Drayson Tech Europe Ltd | Method and apparatus |
GB2553842B (en) * | 2016-09-16 | 2021-04-07 | Drayson Tech Europe Ltd | Three dimensional coil and method of making the same for inductive power transfer systems |
US11056276B2 (en) | 2016-09-16 | 2021-07-06 | Drayson Technologies (Europe) Limited | Inductive power transfer coil and method for making the same for use in wireless power transfer systems |
Also Published As
Publication number | Publication date |
---|---|
CN101785073B (zh) | 2012-07-18 |
JP2007324532A (ja) | 2007-12-13 |
CN101785073A (zh) | 2010-07-21 |
JP4057038B2 (ja) | 2008-03-05 |
TWI331432B (ja) | 2010-10-01 |
TW201012023A (en) | 2010-03-16 |
TW200824216A (en) | 2008-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2007142099A1 (ja) | 電力伝送装置、電力伝送装置の送電装置および受電装置、ならびに電力伝送装置の作動方法 | |
US10158256B2 (en) | Contactless connector system tolerant of position displacement between transmitter coil and receiver coil and having high transmission efficiency | |
JP5160858B2 (ja) | 電力伝送装置のコイル、電力伝送装置、電力伝送装置の送電装置、および電力送電装置の受電装置。 | |
US9425662B2 (en) | Electric wire, coil, device for designing electric wire, and electric motor | |
CN1998055B (zh) | 平板高压变压器装置 | |
EP2372870A1 (en) | Non-contact power transmission apparatus and design method | |
JP2009112137A (ja) | 電力伝送装置の送電装置 | |
JP2009118587A (ja) | 電力伝送装置 | |
CN102084440A (zh) | 平面线圈 | |
JP7373709B2 (ja) | 高周波コイル部品、無線給電用コイル部品、無線給電装置および周波コイル部品の製造方法 | |
CN103098573A (zh) | 磁屏装置 | |
JP2009112153A (ja) | 電力伝送装置の受電装置 | |
CN102971813A (zh) | 电抗器 | |
Wojda et al. | Optimum foil thickness of inductors conducting DC and non-sinusoidal periodic currents | |
JP2021068815A (ja) | コイルおよびコイルユニットおよび無線電力伝送装置およびコイルの製造方法 | |
JP2011222617A (ja) | インダクタ用線材およびインダクタ | |
US20180094849A1 (en) | High-frequency self-defrosting evaporator coil | |
JP2015012656A (ja) | ワイヤレス電力伝送装置 | |
CN105556619A (zh) | 用于运输交流电的方法和铠装电力电缆 | |
CN107092722A (zh) | 一种高频无线电能传输线圈阻抗仿真计算方法 | |
Kazimierczuk et al. | Foil winding resistance and power loss in individual layers of inductors | |
CN111864913A (zh) | 一种升压型无线电能传输线圈及线圈的绕制方法 | |
JP2013207907A (ja) | 集合電線、これを用いた送電装置および電子機器、ならびにワイヤレス電力伝送システム | |
JPH11186086A (ja) | 非接触式電力伝送装置用渦巻型コイルの製造方法 | |
CN212849986U (zh) | 一种升压型无线电能传输线圈 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200780100068.5 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07744425 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07744425 Country of ref document: EP Kind code of ref document: A1 |