WO2007141990A1 - ウェーハの製造方法 - Google Patents

ウェーハの製造方法 Download PDF

Info

Publication number
WO2007141990A1
WO2007141990A1 PCT/JP2007/059708 JP2007059708W WO2007141990A1 WO 2007141990 A1 WO2007141990 A1 WO 2007141990A1 JP 2007059708 W JP2007059708 W JP 2007059708W WO 2007141990 A1 WO2007141990 A1 WO 2007141990A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
chamfering
chamfered
shape
woofer
Prior art date
Application number
PCT/JP2007/059708
Other languages
English (en)
French (fr)
Inventor
Tadahiro Kato
Original Assignee
Shin-Etsu Handotai Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin-Etsu Handotai Co., Ltd. filed Critical Shin-Etsu Handotai Co., Ltd.
Priority to EP07743143A priority Critical patent/EP2033739B1/en
Priority to KR1020087029512A priority patent/KR101333189B1/ko
Priority to US12/227,894 priority patent/US8231430B2/en
Publication of WO2007141990A1 publication Critical patent/WO2007141990A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B9/00Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
    • B24B9/02Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground
    • B24B9/06Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain
    • B24B9/065Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of thin, brittle parts, e.g. semiconductors, wafers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/02Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent
    • B24B49/03Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent according to the final size of the previously ground workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/18Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation taking regard of the presence of dressing tools
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02021Edge treatment, chamfering

Definitions

  • the present invention relates to a method for manufacturing a woofer, and more particularly to a method for manufacturing a woofer that performs chamfering by managing the chamfering shape of the peripheral portion of the woofer.
  • a semiconductor wafer used for manufacturing a semiconductor device is obtained by slicing a silicon single crystal ingot grown by, for example, the Chiyoklarsky method into a wafer shape, then chamfering, planarizing, etching, It is manufactured through each process such as mirror chamfering and polishing.
  • the shape of the semiconductor wafer manufactured in this way is strictly controlled, in recent years, it has been required to further improve the dimensional accuracy of the chamfered shape.
  • the substrate manufacturer uses a chamfered process on the drawing based on the process design value of the wafer thickness for each process, that is, a wafer sliced from an ingot (as sliced ueno) or flat.
  • Chamfering target values processing control values
  • the processing width is generally set to 50 to: LOO ⁇ m in the flattening process, 10 to 40 ⁇ m in the etching process, and 10 to 20 m in the polishing process.
  • the term “flattening process” includes various flattening methods such as lapping and surface grinding.
  • the dimensions of the chamfered shape standard are defined. Roughly speaking, the chamfering width XI on the front side of the woofer, the chamfering width X2 on the back side of the woofer, the angle formed by the woofer surface and the inclined surface on the front side ⁇ 1, the angle formed by the rear surface of the woofer and the inclined surface on the backside ⁇ 2
  • the distance between the intersection of the extension line of the woofer surface side inclined surface, the extension line of the woofer back surface side inclined surface, and the vertical line of the end surface is X3, and the radius of the R portion, which is a substantially arc portion of the woofer front and back surfaces, respectively.
  • Rl and R2 are defined.
  • a chamfering stone is produced based on a predetermined standard for chamfering shape, and the chamfering process is performed using this chamfering stone. After actually chamfering When the dimensions of the chamfered part of the product wafer that had been subjected to flattening, etching, polishing, etc. were measured, there was a significant deviation from the target chamfered dimension. This phenomenon tended to be particularly noticeable in the case of woofers with short XI and X2 lengths, which are frequently requested by customers.
  • the customer is provided with a drawing that describes the target chamfered shape (a), and the chamfering stone is designed and manufactured so that this chamfered shape is obtained.
  • B an as-sliced wafer serving as a dummy wafer was prepared (c), and after chamfering (d), the chamfered shape of this dummy wafer was measured (e).
  • this dummy wafer is put into the process after chamfering treatment (f), the chamfering shape of the wafer that has been processed up to the final process is measured (g), and the difference from the target chamfering shape is grasped (h).
  • the groove shape was designed again to produce a chamfering wheel (i). Then, prepare an as-sliced wafer to be a dummy wafer again, perform steps (c) to (h), and the difference between the chamfered shape measured in step (g) and the target chamfered shape should be sufficiently small. For example, set the chamfering target value of the wafer measured in step (e), that is, the control target value in the chamfering process of the product woofer, and actually manufacture the product wafer. (1) Shifted to product processing for
  • steps (a) to (h) are performed in the same manner as in the conventional method shown in FIG. 3, and the dummy wafer is processed up to the final step, and then the dummy wafer is chamfered. Grasping the difference between the target shape and the target chamfer shape, and correcting the groove shape of the chamfering turret with the chamfer shape correction function of the chamfering device (i) t ! /, Ru (Japanese Patent Laid-Open No. 2 005-153085).
  • an object of the present invention is to provide a method for manufacturing a wafer that can make a chamfered shape of a product wafer into a desired chamfered shape in a short period of time.
  • the present invention has been made to solve the above-mentioned problems, and at least, a slicing process in which an ingot is sliced to form a wafer, and a wafer sliced from the ingot is used using a chamfering stone.
  • a correction step of correcting the shape of the chamfering cobblestone based on the measured chamfering shape of the dummy wafer is provided, and the wafer sliced from the ingot is chamfered using the chamfering cobblestone corrected for the shape.
  • a method for manufacturing a wafer is provided.
  • the dummy wafer having the same thickness as the product wafer is chamfered, the chamfered shape of the chamfered dummy wafer is measured, and the measured dummy wafer is measured.
  • a method for manufacturing a wafer that includes a correction step of correcting the shape of the chamfering stone for chamfering based on the chamfered shape, and chamfers the wafer sliced from the ingot using the chamfering grindstone having the corrected shape.
  • the chamfered shape of the wafer to be manufactured can be changed to a desired chamfered shape in a short period of time. As a result, a wafer having a desired chamfered shape can be manufactured with high efficiency.
  • correctioning the shape of the chamfering cobblestone includes not performing correction when correction is not necessary as a result of measurement of the chamfered shape.
  • the correction of the chamfering stone is preferably performed on the machine.
  • the chamfering wheel can be corrected in a shorter period of time, so that the desired chamfering shape of the wafer to be manufactured can be obtained in a shorter period of time.
  • the shape can be changed.
  • the chamfering chamfer has a total mold groove, and the total mold groove can be chamfered by contacting the peripheral edge of the wafer.
  • the chamfering cobble is a cylindrical outer peripheral rotating turret, and the outer peripheral rotating turret is relatively movable in the thickness direction and the diameter direction of the wafer to chamfer the wafer. it can.
  • the chamfering grindstone has a cylindrical shape. This is an outer peripheral rotary grindstone, and even when the outer peripheral rotary grindstone is relatively movable in the thickness direction and diameter direction of the wafer to chamfer the wafer, the chamfering stone for chamfering can be quickly completed. The shape can be corrected to obtain an appropriately shaped chamfering stone. Also, with such a chamfering method, it is easy With the apparatus, the chamfered shape of the wafer to be manufactured can be changed to a desired chamfered shape.
  • a dummy wafer having a thickness equivalent to the wafer sliced from the ingot is chamfered using a chamfering stone whose shape has been corrected, and the chamfered dummy wafer is chamfered. It is preferable to measure the chamfered shape of the wafer and set the measured dimension of the chamfered shape of the dummy wafer as the chamfering target value of the wafer sliced from the ingot.
  • a dummy wafer having a thickness equivalent to that of a as-sliced wafer is chamfered, and the wafer is manufactured by setting the chamfered shape as a chamfering target and a value, the product is actually manufactured. Wafers can be manufactured by confirming the target and value when chamfering a wafer to be processed. As a result, a wafer having a desired chamfered shape can be manufactured more accurately and efficiently.
  • the chamfered shape of the product woofer can be changed to a desired chamfered shape in a short period of time.
  • FIG. 1 is a flowchart showing an example of an outline of a method for producing a wafer according to the present invention.
  • FIG. 2 is a flowchart showing another example of the outline of the method for producing the wafer of the present invention.
  • FIG. 3 is a flowchart showing an example of an outline of a conventional woofer manufacturing method.
  • FIG. 4 is a flowchart showing another example of the outline of a conventional method for manufacturing a wafer.
  • FIG. 5 is a flowchart showing an outline of the product processing of the wafer and the processing width in each process.
  • FIG. 6 is a cross-sectional view showing the main definition dimensions of the chamfered shape of the wafer.
  • FIG. 7 is a cross-sectional view showing an example of a target chamfer dimension of the wafer.
  • FIG. 8 is a cross-sectional view showing an example of a deviation between the target chamfer dimension of the woofer and the chamfer dimension of the manufactured woofer.
  • FIG. 9 is a schematic view showing the chamfering of a wafer with a chamfering boulder having a total groove
  • (a) is a schematic cross-sectional view of a chamfering boulder having a total groove
  • (b ) Is a schematic cross-sectional view showing how the chamfering grindstone is brought close to the woofer
  • (c) is a chamfering by the chamfering grindstone. It is a schematic sectional drawing which shows the done woofer.
  • FIG. 10 is a schematic view showing the chamfering of the wafer with a cylindrical outer peripheral rotating turret, (a) is a schematic sectional view, and (b) is a schematic plan view.
  • FIG. 11 is a schematic view showing the movement of the grindstone when chamfering the wafer with a cylindrical outer peripheral blade rotating grindstone.
  • FIG. 12 is a cross-sectional view showing an example of a method for correcting a lure and a method for correcting a chamfering stone.
  • FIG. 13 is a cross-sectional view showing another example of the method of correcting the lure and the method of correcting the chamfering stone.
  • a chamfering stone is prepared in advance based on the chamfering shape standard, and after chamfering is actually performed, the dimensions of the chamfered part of the product wafer subjected to flattening, etching, polishing, etc. are measured. Then, there was a problem that the dimensional force of the target chamfered part may be greatly deviated. This phenomenon was prominent in the case of wafers with short XI and X2.
  • the inventors of the present invention have studied as follows why the target wafer chamfered shape may be greatly different from the wafer chamfered shape obtained as a product. .
  • an as-sliced wafer having a thickness of 0.91 mm is chamfered, the thickness is 775 ⁇ ⁇ (0. 775 mm), the chamfer width XI and ⁇ 2 are 0.342 mm, and each of the inclined surfaces of the chamfered portion is chamfered.
  • a measuring device for process control and shipping inspection measuring chamfered shapes adopts a general transmitted light method, and binarized image processing is performed on the captured image.
  • the measurement algorithm of chamfer shape is chamfered inclined surface and surface Or distance force from boundary A with back surface Determined by straight line connecting two points of 10% (point B) and 30% (point C) of XI length or X2 length, or best fit between two points If the XI (X2) length required by the product wafer is 0.342 mm as shown in Fig. 7, the XI (X2) length specified for the first slice wafer in the chamfering process is From the simple geometrical basis shown in the following formula (1), it is about 0.55 mm.
  • a 0.91 mm thick as-sliced wafer is XI ( X2)
  • the XI length and X2 length predicted by a product wafer with a length of 0.45 mm and a thickness of 775 / ⁇ ⁇ (0.775 mm) will be about 0.24 mm.
  • R is 0.3 mm
  • the boundary point D between the R part and the slope part is located inside B-C, so the straight line that determines ⁇ 1 and ⁇ 2 deviates from the designed straight line by approximately 3 °. .
  • the X3 value calculated based on ⁇ 1 and 0 2 is also 0.026 mm smaller than the design value (see Fig. 8).
  • the required chamfer shape variation is about ⁇ 0.03 to 0.04mm. Therefore, the above deviations are usually large enough to require redesign and re-fabrication of chamfering wheels. Become.
  • the measuring device for measuring the chamfered shape adopts the transmitted light method. Therefore, when XI and X2 are relatively short, measurement deviation due to the algorithm is likely to occur. Specifically, since the force R, which should be measured with the inclination of the slope straight line as 0 1 (0 2), is included, the values of ⁇ 1 and ⁇ 2 obtained do not tend to increase. Furthermore, in this case, the value of X3 calculated based on ⁇ 1 and ⁇ 2 was also shortened.
  • the distance between point B and point C is reduced (for example, point C is set to a point that is 20% of the XI length or X2 length).
  • the accuracy of measurement such as the angle of the inclined surface is reduced. As a result, it becomes difficult to adjust the chamfered shape.
  • the present inventors conducted extensive experiments and studies based on these findings, and after chamfering using a dummy wafer having the same thickness as that of the product wafer in advance, the chamfering of this dummy wafer was performed. By measuring the shape and evaluating the difference from the target chamfering shape and correcting the shape of the chamfering grindstone, it was found that a product wafer having the target chamfering shape can be manufactured in a shorter period of time than before. The present invention has been completed. [0035] Hereinafter, the present invention will be described more specifically with reference to the drawings. The present invention is not limited to this.
  • FIG. 1 is a flowchart showing an example of a first embodiment of a wafer manufacturing method according to the present invention.
  • the outline of the first embodiment of the present invention is as follows.
  • step (a) a drawing on which a chamfered shape of a target product standard is written is prepared.
  • 1.An angle between the back surface of the woofer and the inclined surface on the back surface ⁇ 2, and the distance between the intersection of the extended line of the inclined surface of the woofer surface, the extended line of the inclined surface of the woofer surface, and the vertical line of the end surface is X3 , R part, Rl and R2 are defined, which are roughly circular arcs on the front and back sides of the woofer.
  • the target chamfered shape of such a product is determined in advance according to the standard according to the purpose of use of the wafer.
  • a chamfering cobblestone is designed and manufactured based on the drawing prepared in step (a).
  • the chamfering wheel designed and manufactured here may be any shape as long as the wafer can be chamfered into a predetermined shape, and may be chamfered by any operation. The following is preferable because the wafer can be chamfered by a simple operation with a relatively simple shape.
  • One is a chamfering stone 11 having a chamfer 12 as shown in FIG. 9 (FIG. 9 (a)).
  • the other is a cylindrical outer peripheral rotating turret 16 as shown in FIG.
  • the woofer W held by the rotatable suction stage S and the cylindrical outer rotatory turret 16 chamfering the end face of the woofer are relative to each other in the thickness direction and the diameter direction of the woofer W on the machine. Therefore, it is possible to obtain a desired chamfered shape by independently controlling the movement and controlling each movable distance.
  • the wafer W can be chamfered by moving the center of the outer peripheral rotating wheel 16.
  • a force that can use various materials such as a metal boulder and a resin grindstone.
  • a whetstone made of a material such as a resin whetstone.
  • step (c) a dummy wafer having a thickness equivalent to that of a finally manufactured product wafer is prepared. As described above, the thickness of the product wafer is determined in advance by the standard.
  • the dummy wafer prepared in step (c) is the same as the thickness of the product wafer that is thinner than the first slice wafer.
  • the flattening process includes any conventionally performed process such as lapping and surface grinding, and these processes may be performed alternatively or two or more processes may be performed. It may be determined by convenience.
  • step (d) the chamfering process is performed on the dummy wafer having the same thickness as the product wafer prepared in step (c) using the chamfering grind designed and manufactured in step (b).
  • the chamfering process performed here is the same as the normal method except that the thickness of the woofer is equivalent to the final product woofer.
  • step 3 the chamfered shape of the chamfered dummy wafer is measured.
  • this chamfered shape it is easy to use the above-described measurement method that derives each dimension of the chamfered shape by adopting the transmitted light method and subjecting the captured image to binary image processing.
  • the present invention can be applied without problems if the shape of the chamfered portion of the wafer can be measured even if it is measured by various other measuring methods.
  • step (f) the chamfered shape is evaluated.
  • the allowable range of deviation from the target chamfer shape is, for example, a force that can be ⁇ 2 ° for ⁇ 1 and ⁇ 2, and ⁇ 0.03 mm for X3, but is not limited to this. .
  • step (f) if the dimensions of ⁇ 1, ⁇ 2, X3, etc. are within the allowable range compared to the target chamfered shape, the process proceeds to the product processing step of step (h). On the other hand, if the dimensions of ⁇ 1, ⁇ 2, ⁇ 3, etc. are out of the standard, the chamfering wheel in step (g) is corrected.
  • the shape of the chamfering grindstone may be designed and manufactured again in consideration of the deviation of ⁇ value and X3 value. If the shape of the chamfering grindstone is corrected, the desired chamfered shape can be obtained in a shorter period of time.
  • Such correction of the shape of the chamfering stone on the machine can be realized, for example, by using a chamfering device having a shape correction function on the machine as described below.
  • the chamfering device W-GM-5200 manufactured by Tosei Engineering Co., Ltd. has a clawing function for creating the shape of the chamfering stone on the machine (Figs. 12 and 13).
  • the truing function of this equipment is a resin and diamond # 1 500 using a resin luer 21 containing GC # 300 or so, which is tooled with a master grindstone 22 made of metal # 300-600.
  • the shape of the total groove of the chamfering mould 11 consisting of ⁇ 3000 can be corrected.
  • the groove width of the chamfering stone 11 is reduced by relatively swinging both up and down while the lure 21 and the chamfering stone 11 are in contact with each other. Can be adjusted.
  • the shape of the lure 21 is adjusted by relatively swinging the two up and down.
  • the chamfer 11 can be clawed.
  • step (b) When a cylindrical outer cutter rotating grindstone is prepared in step (b), a numerical value for correcting the shape of the chamfering grindstone and defining the movement trajectory of the center of the cylindrical outer cutter rotating grindstone is provided. By adjusting the control program, the chamfered shape can be adjusted on the machine.
  • steps (d) to (f) are performed again to chamfer a dummy wafer having a thickness equivalent to that of the product wafer, and the chamfered shape is evaluated.
  • the chamfering grindstone produced and corrected in the above steps is used. Use to chamfer a sliced wafer.
  • planarization, etching, polishing, and other processes are performed according to a normal method to obtain a product wafer.
  • the woofer manufactured through the above steps has a chamfered shape that sufficiently matches the standard size of the target chamfered shape.
  • a dummy wafer having a thickness equivalent to that of the product wafer is used as the dummy wafer, so that the chamfered shape can be directly adjusted. As a result, it is possible to correct the chamfering stone accurately in a shorter period of time.
  • the chamfer target value is set as the manufacturing control value of the product wafer to be manufactured before shifting to the product processing in step (h) in FIG. 1 in the first embodiment.
  • Set. An example of the outline of the second embodiment is shown in FIG.
  • the outline of the second embodiment of the present invention is as follows.
  • Steps (a to (g) in FIG. 2 are the same as steps (a) to (g) in FIG.
  • step ( ⁇ ) The chamfered shape is evaluated in step ( ⁇ ), and if a chamfered shape that sufficiently meets the standard is obtained, proceed to step ().
  • a dummy wafer (azuslice dummy wafer) having the same thickness as the as-sliced wafer that is actually put in the product processing is prepared.
  • the dummy wafer may be the as-sliced wafer itself, but is not limited to this.
  • the dummy wafer is the same material as the as-sliced wafer, and any processing can be used as long as it has the same thickness. Even in Ueha who received it.
  • step (1) the dummy wafer prepared in step () is replaced with step (d ') using a chamfering grindstone that has passed the evaluation in step ( ⁇ ). ) Perform chamfering in the same manner as).
  • the chamfered shape of the dummy wafer chamfered in step ( ⁇ ) is measured, and the product wafer to be manufactured with the measured value is measured.
  • the chamfering target value as the manufacturing control value of C.
  • the thickness of the product wafer is 0.2 mm or more and lmm or less
  • the effective value of the chamfer target value should be 1 ° unit for 0 1 and 0 2 and 0.01 mm unit for X3. Is preferred. Tolerances are set according to customer requirements, chamfering device conditions, etc.
  • the thickness of the product wafer is 0.2 mm or more 1 If it is less than or equal to mm, it can be about ⁇ 3 ° for 0 1 and 0 2 and about ⁇ 0.05 mm for X3.
  • this chamfer target value is used as a reference, and it is determined whether or not the chamfered shape has a properly formed force.
  • the shape of the dummy wafer after chamfering is about 3 ° larger for the 0 1 and 0 2 values than the design shape, that is, about the X3 value. It drifted by 35 ⁇ m (Fig. 1 (f)).
  • the X3 length of the chamfered dummy wafer is 585 ⁇ m, which is about 35 ⁇ m shorter than the target X3 length of 620 m. Therefore, when chamfering the chamfering wheel, it was set to swing up and down by ⁇ 17 m (amplitude: 34 ⁇ m), and clawing was performed to widen the total groove of the chamfering stone (Fig. 1 (g) ). When the dummy wafer was chamfered again using the chamfering stone that was corrected in this way, the chamfered shape within the standard was found (Fig. 1 (d) to (f)). The product was processed using ( Figure l (h)).
  • the chamfered shape of the product wafer was within the design range.
  • the chamfer target value was set as follows according to the process shown in FIG. Prepare a 910-m-thick as-sliced wafer as a dummy wafer with the chamfering chamfer corrected in Example 1 (), chamfer this, and measure the chamfer shape to set the chamfer target value. ( ⁇ ).
  • Table 3 shows the measurement result of the chamfered shape of the chamfered as-sliced dummy wafer, and the chamfering target and value set based on the measurement result.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)

Abstract

 本発明は、少なくとも、インゴットからスライスされたウェーハを、面取り用砥石を用いて面取りする面取り工程と、該面取りしたウェーハに平坦化処理、エッチング、研磨のうち少なくとも1つ以上の処理をすることによって前記面取りしたウェーハよりも薄い厚さの製品ウェーハとする工程とを備えるウェーハの製造方法において、少なくとも前記面取り工程より前に、少なくとも、前記製品ウェーハと同等の厚さのダミーウェーハを面取りし、該面取りされたダミーウェーハの面取り形状を測定し、該測定されたダミーウェーハの面取り形状に基づいて前記面取り用砥石の形状を補正する補正工程を備え、該形状を補正した面取り用砥石を用いて前記インゴットからスライスされたウェーハを面取りするウェーハの製造方法である。これにより、製品ウェーハの面取り形状を短期間で所望の面取り形状にすることができるウェーハの製造方法が提供される。

Description

明 細 書
ゥエーハの製造方法
技術分野
[0001] 本発明は、ゥヱーハの製造方法に関し、より詳しくは、ゥヱーハの周縁部の面取り形 状を管理して面取りを行うゥ ーハの製造方法に関する。
背景技術
[0002] 半導体デバイスの製造に使用する半導体ゥ ーハは、例えばチヨクラルスキー法に より育成されたシリコン単結晶インゴットをスライスしてゥエーハ形状に加工した後、面 取り、平坦化処理、エッチング、鏡面面取り、研磨等の各工程を経て製造される。この ようにして製造される半導体ゥヱーハは、その形状が厳しく管理されているが、近年、 面取り形状について、その寸法精度の向上がさらに要求されるようになってきた。
[0003] このような理由として、例えば以下のような背景が挙げられる。直径 300mm以上の ような大口径単結晶シリコンゥエーハを採用する先端デバイスでは、対物レンズとシリ コンゥ ーハの間に液体 (通常は純水)を挟み込む事によって解像度を高める技術( 液浸露光技術)を採用した液浸ステッパーが採用されつつあるが、当該技術を使つ た露光では、ゥエーハ面取り部形状にばらつきがあるとゥエーハ最外周部のスキャン の際に液体がゥ ーハ面取り部力 漏洩しやすくなる。このため、ゥ ーハ面取り形 状寸法について、面取り幅を短くする等の見直しや寸法精度の向上が要求されるよう になってきた。
[0004] また、デバイス工程中の拡散や膜形成を行う熱処理工程の生産性向上のために、 ヒートサイクル中の昇降温時間を短縮する傾向にある。この場合、従来より大きな熱 衝撃がシリコンゥエーハに働き、ゥエーハが割れるという問題が懸念される。同時に搬 送関係の速度向上も実施され、ゥ ーハ面取り部と搬送部ゃゥ ーハキャリアとの接 触によるゥエーハ割れも懸念される。これらの熱応力や機械応力への耐性を持たせ るために、シリコンゥヱーハの面取り形状の寸法を厳密に規定する必要性が生じてき [0005] シリコンゥヱーハの面取り形状の規格については、顧客であるデバイスメーカより、 要求する製品シリコンゥエーハの面取り形状が提示されることが多 、。基板メーカで は、図 5に示すように、工程ごとのゥヱーハ厚さの工程設計値に基づき、図面上で面 取り工程、即ちインゴットからスライスされたゥエーハ(ァズスライスゥエーノ、)や平坦化 処理を施したゥエーハ、エッチングゥエーノ、、研磨ゥエーハ等に対する面取り狙い値( 工程管理値)を設計し、これに基づき工程管理を行っていた。加工幅は、平坦化処 理工程では 50〜: LOO μ m、エッチング工程では 10〜40 μ m、研磨工程では 10〜2 0 mとするのが一般的である。なお、以下、「平坦ィ匕処理」と言う場合にはラッピング や平面研削等の種々の平坦化処理方法を含むこととする。
[0006] 図 6に示すように、面取り形状の規格についてはその寸法が定義されている。大ま かには、ゥヱーハ表面側の面取り幅 XI、ゥヱーハ裏面側の面取り幅 X2、ゥヱーハ表 面と表面側傾斜面のなす角度 Θ 1、ゥ ーハ裏面と裏面側傾斜面のなす角度 Θ 2、 ゥ ーハ表面側傾斜面の延長線とゥエーハ裏面側傾斜面の延長線と、端面鉛直線と の交点間距離を X3、ゥ ーハ表裏面の略円弧部である R部の半径をそれぞれ Rl、 R2と定義されている。
[0007] 前述のように予め定められた面取り形状の規格に基づいて、面取り用砲石を作製し 、この面取り用砲石を用いて面取り工程を行うわけである力 実際に面取りを行った 後、平坦化処理、エッチング、研磨等を施した製品ゥ ーハの面取り部の寸法を測定 すると、目標とした面取り部の寸法から大きく外れていることがあった。そして、この現 象は、最近の顧客要求に多い XI、 X2の長さが短いゥヱーハの場合に特に顕著とな る傾向があった。
[0008] 上記の問題に対応するために、従来以下の方法が取られてきた。
図 3に示すように、従来手法では、まず、目標とする面取り形状が記載されている図 面が顧客力 提供され (a)、この面取り形状となるように面取り用砲石を設計、作製す る(b)。次に、ダミーゥエーハとなるァズスライスウェーハを準備して (c)、これを面取り 処理した後(d)、このダミーゥエーハについて面取り形状を測定した (e)。次に、この ダミーゥエーハを面取り処理後の工程に投入し (f)、最終工程まで行ったゥエーハの 面取り形状を測定し (g)、目標とした面取り形状との差を把握し (h)、大幅にずれてい る場合は再度溝形状を設計し、面取り用砥石を作製していた (i)。そして、再度ダミー ゥエーハとなるァズスライスウェーハを準備して、工程 (c)〜(h)を行い、工程 (g)で測 定された面取り形状と目標とした面取り形状の差が十分に小さければ、工程 (e)で測 定された寸法値を製造するゥ ーハの面取り狙 、値、すなわち製品ゥ ーハの面取 り工程での管理狙い値として設定し、実際に製品ゥエーハを製造するための製品処 理へと移行した①。
このような工程を経る場合、面取り用砥石を再度作製するために例えば 1ヶ月以上 かかるなど、非常に非効率的であった。
[0009] また最近では、図 4に示したように、工程 (a)〜(h)を図 3に示した従来法と同様に 行い、ダミーゥヱーハを最終工程まで処理を行った後、ダミーゥヱーハの面取り形状 と目標とした面取り形状との差を把握し、面取り装置のもつ面取り形状補正機能によ つて、面取り用砲石の溝形状を機上で修正する(i) t 、う方法も行われて!/、る(特開 2 005— 153085号公報)。
しかし、このような工程を経る場合であっても、依然としてシリコンゥエーハの加工ェ 程を最終工程まで行う必要があることに変わりはなぐ所望の面取り形状が得られるま で通常 3〜7日程度の期間を要するという欠点があった。 発明の開示
[0010] そこで、本発明は、このような問題点に鑑みなされたもので、製品ゥヱーハの面取り 形状を短期間で所望の面取り形状にすることができるゥエーハの製造方法を提供す ることを目的とする。
[0011] 本発明は、上記課題を解決するためになされたもので、少なくとも、インゴットをスラ イスしてゥエーハとするスライス工程と、該インゴットからスライスされたゥエーハを、面 取り用砲石を用いて面取りする面取り工程と、該面取りしたゥ ーハに平坦ィ匕処理、 エッチング、研磨のうち少なくとも 1つ以上の処理をすることによって前記面取りしたゥ エーハよりも薄い厚さの製品ゥエーハとする工程とを備えるゥエーハの製造方法にお いて、少なくとも前記面取り工程より前に、少なくとも、前記製品ゥ ーハと同等の厚さ のダミーゥヱーハを面取りし、該面取りされたダミーゥヱーハの面取り形状を測定し、 該測定されたダミーゥ ーハの面取り形状に基づいて前記面取り用砲石の形状を補 正する補正工程を備え、該形状を補正した面取り用砲石を用いて前記インゴットから スライスされたゥエーハを面取りすることを特徴とするゥエーハの製造方法を提供する
[0012] このように、少なくとも面取り工程より前に、製品ゥ ーハと同等の厚さのダミーゥェ ーハを面取りし、面取りされたダミーゥ ーハの面取り形状を測定し、測定されたダミ ーゥエーハの面取り形状に基づいて前記面取り用砲石の形状を補正する補正工程 を備え、形状を補正した面取り用砥石を用いてインゴットからスライスされたゥエーハ を面取りするゥ ーハの製造方法であれば、より短期間で正確に面取り用砲石の形 状を補正することができるので、製造するゥエーハの面取り形状を、短期間で所望の 面取り形状にすることができる。この結果、高効率で所望の面取り形状を有するゥ ーハを製造することができる。
なお、本明細書中の「面取り用砲石の形状を補正する」ということには、面取り形状 の測定の結果、補正を行う必要がない場合は、補正を行わないことも含む。
[0013] この場合、前記面取り用砲石の補正は、機上において行うものであることが好ましい
[0014] このように、面取り用砲石の補正を機上において行えば、より短期間で面取り用砥 石の補正ができるので、より短期間で、製造するゥヱーハの面取り形状を所望の面取 り形状にすることができる。
[0015] また、前記面取り用砲石は総型溝を有するものであり、該総型溝を前記ゥエーハの 周縁部に当接させて面取りすることができる。また、前記面取り用砲石が円筒状の外 周刃回転砲石であり、該外周刃回転砲石が前記ゥエーハの厚さ方向及び直径方向 に相対的に可動して前記ゥエーハを面取りすることもできる。
[0016] このように、総型溝を有する面取り用砲石を用いて、総型溝をゥ ーハの周縁部に 当接させて面取りする場合であっても、面取り用砥石が円筒状の外周刃回転砥石で あり、外周刃回転砲石がゥ ーハの厚さ方向及び直径方向に相対的に可動してゥ ーハを面取りする場合であっても、短期間で面取り用砲石の形状を補正して適正形 状の面取り用砲石とすることができる。また、このような面取り方法であれば、簡単な 装置で、製造するゥ ーハの面取り形状を所望の面取り形状にすることができる。
[0017] さらに、少なくとも前記補正工程の後に、前記形状を補正した面取り用砲石を用い て、前記インゴットからスライスされたゥエーハと同等の厚さのダミーゥエーハを面取り し、該面取りされたダミーゥ ーハの面取り形状を測定し、該測定されたダミーゥ ー ハの面取り形状の寸法を、前記インゴットからスライスされたゥヱーハの面取り狙 、値 として設定することが好まし 、。
[0018] このように、少なくとも補正工程の後に、ァズスライスウェーハと同等の厚さのダミー ゥエーハを面取りし、その面取り形状を面取り狙 、値として設定してゥエーハを製造 すれば、実際に製品処理を行うァズスライスウェーハを面取りした場合の狙 、値を確 認してゥエーハを製造することができる。その結果、より正確に、所望の面取り形状を 有するゥ ーハを効率よく製造することができる。
[0019] 以上説明したように、本発明に従うゥ ーハの製造方法であれば、製品ゥ ーハの 面取り形状を、短期間で所望の面取り形状にすることができる。 図面の簡単な説明
[0020] [図 1]本発明のゥ ーハの製造方法の概略の一例を示したフロー図である。
[図 2]本発明のゥ ーハの製造方法の概略の別の一例を示したフロー図である。
[図 3]従来のゥ ーハの製造方法の概略の一例を示したフロー図である。
[図 4]従来のゥ ーハの製造方法の概略の別の一例を示したフロー図である。
[図 5]ゥヱーハの製品処理の概略とその各工程における加工幅を示したフロー図であ る。
[図 6]ゥ ーハの面取り形状の主な定義寸法を示した断面図である。
[図 7]ゥ ーハの、目標とする面取り寸法の一例を示した断面図である。
[図 8]ゥ ーハの、目標とする面取り寸法と製造されたゥ ーハの面取り寸法のズレの 一例を示した断面図である。
[図 9]総型溝を有する面取り用砲石でゥ ーハを面取りする様子を示す概略図であり 、(a)は総型溝を有する面取り用砲石の概略断面図であり、(b)はゥ ーハに面取り 用砥石を近づける様子を示す概略断面図であり、(c)は面取り用砥石によって面取り されたゥ ーハを示す概略断面図である。
[図 10]円筒状の外周刃回転砲石でゥエーハを面取りする様子を示す概略図であり、 ( a)は概略断面図であり、(b)は概略平面図である。
[図 11]円筒状の外周刃回転砥石でゥエーハを面取りする場合の、砥石の動きを示す 概略図である。
[図 12]ッルアーの補正方法及び面取り用砲石の補正方法の一例を示した断面図で ある。
[図 13]ッルアーの補正方法及び面取り用砲石の補正方法の別の一例を示した断面 図である。
発明を実施するための最良の形態
[0021] 以下、本発明についてより具体的に説明する。
前述のように、予め面取り形状規格に基づいて面取り用砲石を作製し、実際に面取 りを行った後、平坦化処理、エッチング、研磨等を施した製品ゥエーハの面取り部の 寸法を測定すると、目標とした面取り部の寸法力も大きく外れることがあるという問題 があった。そして、この現象は、 XI、 X2の長さが短いゥエーハの場合に顕著となる傾 向があった。
[0022] 本発明者らは、このように目標とするゥエーハの面取り形状と、製品として得られた ゥヱーハの面取り形状とが大きく異なることがある理由につ 、て以下のように検討を 行った。
[0023] 以下、具体例を挙げて図 7を参照しながら説明する。
具体例として、厚さが 0. 91mmであるァズスライスウェーハを面取りして、厚さ 775 ^ πι (0. 775mm)、面取り幅 XIおよび Χ2が 0. 342mm,面取り部の傾斜面のそれ ぞれの延長線と、端面鉛直線との交点間距離 X3が 0. 533mm,傾斜面角度 θ 1お よび 0 2が 18. 0° 、 R部の半径 Rが 0. 3mmの製品ゥヱーハを製造しょうとする場合 について説明する。
[0024] 通常、面取り形状を測定している工程管理や出荷検査のための測定機は一般的な 透過光方式を採用しており、取り込まれた画像に 2値化画像処理を施している。
面取り形状の測定アルゴリズム、特に Θ値を設定する条件は、面取り傾斜面と表面 または裏面との境界 Aからの距離力 XI長さまたは X2長さの 10% (点 B)と 30% (点 C)の 2点間を結ぶ直線、もしくは 2点間のベストフィットで決定される直線を元にする 図 7に示すように製品ゥエーハで要求される XI (X2)長さが 0. 342mmの場合、面 取り工程でのァズスライスウェーハにおいて規定される XI (X2)長さは、下記の式(1 )に示す簡単な幾何学的根拠から、 0. 55mm程度となる。
[0025] [数 1]
Dt = Df + -^- … ( 1 )
f tan ^
A : ァズスライスゥェ—ハにおける X 1 ( X 2 ) の設計値 」 製品ゥ ーハでの X 1 ( X 2 ) 設計値
Δ :製品ゥェ一ハまでの加工量 / 2
Θ θ 1 ( 0 2 ) の設計値
[0026] R部において、半径 Rが 0. 3mmの場合、 R部と斜面部の境界点 Dは、 B— C間の 外側に位置するため、原理的にはァズスライス段階と最終段階のゥ ーハ面取り形 状のうち、 0 1、 0 2と X3は変ィ匕しない。
[0027] ところが、前述のように、液浸ステッパーを採用するような場合、より短い XI、 X2長 さの形状が要求される。具体例として XI、 X2長さで 0. 25mm程度と、比較的短い場 合について、同様の検討を行った。
[0028] 目標となる製品ゥエーハの XI長さおよび X2長さを 0. 242mmとすると、厚さ 0. 91 mmのァズスライスウェーハでは、式(1)に示した幾何学的根拠から XI (X2)長さが 0 . 45mmとなり、厚さ 775 /ζ πι (0. 775mm)となる製品ゥエーハで予測される XI長さ および X2長さは、 0. 24mm程度となる。 Rが 0. 3mmの場合、 R部と斜面部の境界 点 Dは、 B— C間の内側に位置するため、 θ 1および Θ 2を決定する直線は、設計時 の直線から約 3° ずれる。さらに、 θ 1および 0 2を元に算出する X3値も設計値に比 ベ、 0. 026mm小さくなる(図 8参照)。通常、要求される面取り形状寸法ばらつきは ± 0. 03〜0. 04mm程度であるため、通常は上記のような寸法のズレは面取り用砥 石の再設計と再作製が必要となるほど大きなズレとなる。
[0029] すなわち、前述のように、面取り形状を測定する測定機は透過光方式を採用してい るため、 XIおよび X2が比較的短い場合、そのアルゴリズムに起因する測定ズレが起 きやすい。具体的には、本来傾斜直線部の傾きを 0 1 ( 0 2)として計測されるべきも の力 R部を含んで計測されるため、得られる θ 1および Θ 2の値は大きい方向へず れる場合があり、さらに、この場合には、 θ 1や Θ 2を元に算出する X3の値も連動して 短くなるということが分力つた。
[0030] (実験例)
これらの現象を確認するために、 XI長さおよび X2長さが 0. 24mm程度の場合に ついて実際にゥヱーハを製造し、ァズスライスウェーハの面取り形状を測定したデー タと、製造された製品ゥヱーハの面取り形状を測定したデータを表 1に示す。
[0031] [表 1]
Figure imgf000010_0001
[0032] 表 1の結果より、上記の現象、すなわち、ァズスライスゥ ーハの面取りの時点では 、面取り形状は目標とした面取り形状の範囲に入っているが、製品ゥエーハの面取り 形状の寸法が目標とした面取り形状の寸法カゝら大きくずれる現象が確認された。
[0033] なお、面取り形状測定条件にお!、て、点 Bと点 Cの距離を縮めれば (例えば、点 Cを XI長さまたは X2長さの 20%の点とする)、 R部分によるエラー分は少なく出来るが、 その一方で、傾斜面の角度等の測定精度が低下してしまう。その結果、面取り形状 の合わせ込みは却って困難になる。
[0034] そこで、本発明者らは、これらの知見に基づき鋭意実験及び検討を行ったところ、 予め、製品ゥエーハと同じ厚さのダミーゥエーハを用いて面取り処理した後にこのダミ ーゥ ーハの面取り形状を測定して目標となる面取り形状との差を評価して面取り用 砥石の形状を補正すれば、従来と比べて短期間で目標となる面取り形状を有する製 品ゥエーハを製造できることを見出し、本発明を完成させた。 [0035] 以下、本発明について図面を参照してさらに具体的に説明する力 本発明はこれ に限定されるものではない。
図 1は、本発明にかかるゥエーハの製造方法の第一の実施形態の一例を示すフロ 一図である。本発明の第一の実施形態の概略は以下に示す通りである。
[0036] まず、工程 (a)において、目標とする製品規格の面取り形状が記されている図面を 用意する。
この図面には例えば寸法として、前述の図 6のように、ゥ ーハ表面側の面取り幅 X 1、ゥ ーハ裏面側の面取り幅 X2、ゥ ーハ表面と表面側傾斜面のなす角度 θ 1、ゥ ーハ裏面と裏面側傾斜面のなす角度 Θ 2、ゥ ーハ表面側傾斜面の延長線とゥ ーハ裏面側傾斜面の延長線と、端面鉛直線との交点間距離を X3、ゥ ーハ表裏面 の略円弧部である R部分、それぞれ Rl、 R2が定義されている。
このような目標となる製品の面取り形状は、ゥエーハの使用目的等に応じて予め規 格によって決められる。
[0037] 次に、工程 (b)において、工程 (a)で用意した図面に基づいて面取り用砲石を設計 、作製する。ここで設計、作製される面取り用砥石は、ゥエーハを所定の形状に面取 りできるものであればどのような形状であり、どのような動作によって面取りするもので あってもよいが、例えば、以下のようなものとすれば、比較的簡単な形状で単純な動 作によりゥエーハを面取りすることができるので好ましい。
[0038] 一つは、図 9に示すような総型溝 12を有する面取り用砲石 11である(図 9 (a) )。
このような面取り用砲石 11を回転させながら、水平方向に保持され、回転するゥェ ーハ Wに対して、横方向力も押しつける(図 9 (b) )ことによってその形状を転写してゥ ヱーハ Wの面取りを行う(図 9 (c) )。
[0039] もう一つは、図 10に示すような円筒状の外周刃回転砲石 16である。
自転可能な吸着ステージ Sに保持されるゥ ーハ Wと該ゥ ーハ端面を面取りする 円筒状の外周刃回転砲石 16が、機上でゥ ーハ Wの厚さ方向及び直径方向に相対 的に独立に可動制御可能とし、かつ各々の可動距離を制御することにより、所望の 面取り形状とすることができる。
このような円筒状の外周刃回転砲石を、回転させながら、例えば、図 11の点線のよ うに外周刃回転砥石 16の中心を動かすことによってゥエーハ Wを面取りすることがで きる。
[0040] なお、面取り用砲石としては、メタル砲石、レジン砥石等、種々の材料を用いること ができる力 後述するように、機上で面取り用砲石の形状補正を行う場合等には、該 形状補正を行 、やす ヽ材料からなる砥石、例えばレジン砥石とすることが好ま ヽ。
[0041] 次に、工程 (c)において、最終的に製造される製品ゥエーハと同等の厚さのダミー ゥエーハを準備する。製品ゥエーハの厚さは、前述のように予め規格によって決まつ ている。
また、ァズスライスウェーノ、から製品ゥエーハとなるには、平坦化処理、エッチング、 研磨等の工程を経る必要があり、これらの工程によって徐々に薄くなる。したがって、 工程 (c)において用意されるダミーゥエーハは、ァズスライスウェーハよりも薄い製品 ゥヱーハの厚さと同じものである。ここで平坦化処理は、ラッピングや平面研削等、従 来より行われるいずれのものをも含み、これらは、択一的に行われてもよいし、 2種以 上の処理が行われてもよぐ都合により決定すればよい。
[0042] 次に、工程 (d)において、工程 (b)で設計、作製した面取り用砥石を用いて、工程( c)で準備した製品ゥヱーハと同等の厚さのダミーゥヱーハについて、面取り処理を行 う。ここで行う面取り処理は、ゥ ーハの厚さ力 最終的な製品ゥ ーハと同等である 以外は通常の方法と同様に行われる。
[0043] 次に、工程 )において、面取りしたダミーゥヱーハについて面取り形状の測定を行 う。この面取り形状の測定には、前述の、透過光方式を採用し、取り込まれた画像に 2値化画像処理を施した上で面取り形状の各寸法を導出する測定法を用いることが 簡便であり好ましいが、他の種々の測定法で測定されたものであってもゥエーハの面 取り部の形状が測定できれば本発明は問題無く適用できる。
[0044] 次に、工程 (f)において、面取り形状の評価を行う。目標とした面取り形状とのズレ として許容できる範囲としては、例えば、 θ 1および Θ 2については ± 2° 、 X3につい ては ±0. 03mmとすることができる力 これに限定されるものではない。
[0045] 工程 (f)において、 θ 1および Θ 2、 X3等の寸法が目標とした面取り形状と比べて 許容される範囲内であれば、工程 (h)の製品処理工程へと移行する。 一方、 θ 1および θ 2、 Χ3等の寸法が規格力 外れているようであれば、工程 (g) の面取り用砥石の補正を行う。
[0046] 工程 (g)の面取り用砲石の補正工程では、 Θ値と X3値等のズレ分を勘案して再度 面取り用砥石の形状設計し、作製しても構わないが、機上において面取り用砥石の 形状を補正すれば、さらに短期間で所望の面取り形状とすることができる。そして、こ のような機上における面取り用砲石の形状の補正は、例えば、以下のような機上に形 状補正機能を備えた面取り装置を用いることによって実現できる。
[0047] 東精エンジニアリング社製面取り装置 W—GM— 5200は、機上で面取り用砲石の 形状を作り込むツル一イング機能を有している(図 12、図 13)。この装置のツルーィ ング機能とは、メタル # 300〜600で成るマスター砥石 22によりツル一イングされた G C # 300程度の砲粒を含む榭脂製ッルアー 21を用いて、レジン材とダイヤモンド # 1 500〜3000から成る面取り用砲石 11の総型溝の形状を補正することができるもので ある。
[0048] このとき、図 12に示すように、ッルアー 21と面取り用砥石 11を当接させている間に 両者を相対的に上下揺動させることによって、面取り用砲石 11の溝の幅を調節する ことができる。
また、図 13に示すように、マスター砥石 22とッルアー 21を当接させている間に両者 を相対的に上下揺動することによって、ッルアー 21の形状を調節して、このッルアー 21を用いて面取り用砲石 11をツル一イングすることもできる。
[0049] なお、工程 (b)で円筒状の外周刃回転砥石を用意した場合は、面取り用砥石の形 状補正を行うとともに、円筒状の外周刃回転砥石の中心の移動軌跡を規定する数値 制御のプログラムの補正を行うことによつても機上で面取り形状の合わせ込みを行う ことができる。
[0050] このようにして面取り用砲石の補正を行った後、工程 (d)〜 (f)を再度行って、製品 ゥエーハと同等の厚さのダミーゥエーハを面取りし、面取り形状を評価する。
[0051] そして、工程 (f)で面取り形状評価を行った結果、規格に十分に合っていれば工程
(h)の、実際に製品ゥエーハを製造する製品処理へと移行する。
この製品処理工程では、まず、上記の工程で作製及び補正された面取り用砥石を 用いて、ァズスライスウェーハを面取りする。次に、通常の方法に従って平坦化処理、 エッチング、研磨等の処理が行われ、製品ゥ ーハとなる。
[0052] 以上のような工程を経て製造されたゥヱーハは、その面取り形状が、目標とした面 取り形状の規格寸法に十分に合致したものとなる。
そして、本発明のゥヱーハの製造方法によれば、ダミーゥヱーハとして製品ゥヱーハ と同等の厚さのダミーゥエーハを用いるので、直接的に面取り形状の合わせ込みが できる。その結果、より短期間で正確に面取り用砲石の補正をすることができる。
[0053] 本発明の第二の実施形態では、第一の実施形態における図 1の工程 (h)の製品処 理に移行する前に、製造する製品ゥエーハの製造管理値として、面取り狙い値を設 定する。第二の実施形態について、図 2にその概略の一例を示した。本発明の第二 の実施形態の概略は以下に示す通りである。
[0054] 図 2の工程 (a から (g までは、図 1の工程 (a)から (g)までと同一である。
工程 (Γ)で面取り形状評価を行い、規格に十分に合う面取り形状が得られたなら ば、工程 ( )へと進む。
[0055] 工程 ( )において、実際に製品処理において投入されるァズスライスウェーハと同 等の厚さのダミーゥエーハ(ァズスライスダミーゥエーハ)を準備する。このダミーゥエー ノ、としては、ァズスライスウェーハそのものであってもよいが、これに限定されるもので はなぐァズスライスゥ ーハと同一の材料であり、同等の厚さであればどのような処 理を受けたゥエーハでもよ 、。
[0056] 次に、工程 (Πにおいて、工程 ( )で準備したダミーゥヱーハを、工程 (Γ)の評価 で合格した面取り用砥石を用いて工程 (d') (ある ヽは図 1の工程 (d) )と同様に面取 り処理を行う。
次に、工程 (Γ)において、ダミーゥエーハに平坦ィ匕処理等をする前に工程 (Γ)で面 取りされたダミーゥ ーハの面取り形状を測定し、測定された値の製造する製品ゥェ ーハの製造管理値としての面取り狙い値とする。面取り狙い値の有効数字は、例え ば、製品ゥヱーハの厚さが 0. 2mm以上 lmm以下であるような場合には、 0 1、 0 2 では 1° 単位、 X3では 0. 01mm単位とすることが好ましい。公差は顧客要求や面取 り装置の状態等によって設定するが、例えば、製品ゥエーハの厚さが 0. 2mm以上 1 mm以下であるような場合には、 0 1、 0 2では ± 3° 程度、 X3では ±0. 05mm程度 とすることができる。
次の工程 ( )の製品処理においては、この面取り狙い値が基準となり、面取り形状 が適切に形成された力どうかが判断される。 実施例
[0057] 以下、本発明の実施例を示して本発明をより具体的に説明する力 本発明はこれら に限定されるものではない。
[0058] (実施例 1)
製品ゥエーハと同じ 775 μ m厚さの単結晶シリコンゥエーハをダミーゥエーハとして 準備し、総型溝を有する面取り用砲石 11を用いて、図 1の工程 (a)から (e)までを行 つた o
その結果、表 2中に示したように、ダミーゥ ーハの面取り後の形状は設計形状、す なわち目標形状に対し、 0 1および 0 2値については約 3° 大きぐ X3値については 約 35 μ m小さくずれて ヽた(図 1 (f) )。
[0059] 上記のダミーゥ ーハ結果より、目標とした X3長さ 620 mに対し、面取り後のダミ ーゥエーハの X3長さは 585 μ mと約 35 μ m短いことがわかる。そこで面取り用砥石 のツル一イング時に ± 17 mの上下揺動(振幅で 34 μ m)を行う設定とし、面取り用 砲石の総型溝を広げるツル一イングを行った(図 1 (g) )。このようにして補正を行った 面取り用砲石を用いて再びダミーゥヱーハを面取りしたところ規格内の面取り形状で あつたので(図 1 (d)〜 (f) )、この補正した面取り用砲石を用いて製品処理を行った( 図 l (h) )。
その結果、表 2中に示したように、製品ゥ ーハの面取り形状は、設計形状の範囲 に収まっていた。
[0060] [表 2] e i ) Θ 2 (° ) X3 (mm)
16~20 16〜20 0.59〜0.65 設計形状
(18±2) (18±2) (0.62±0.03) 平均 =21.2 平均 =21.1 平均 =0.585 ダミ一ゥェ一ハの
最大 =22.3 最大 =22.2 最大 =0.602 面取り後形状
最小 =20.5 最小 =20.8 最小 =0.579 平均 =18.1 平均 =18.3 平均 =0.618 製品ゥヱーハの形状 最大 = 18.6 最大 = 19.2 最大 =0.640
最小 = 17.1 最小 = 17.9 最小 =0.599
[0061] (実施例 2)
実施例 1で形状が適正化された面取り用砲石で実際に製品処理を行う前に、面取 り狙い値の設定を、図 2に示した工程に従って以下のように行った。実施例 1で補正 された面取り用砲石で、 910 m厚さのァズスライスウェーハをダミーゥエーハとして 準備し ( )、これを面取り処理した後 ( )、面取り形状を測定して面取り狙い値を設 定した (Γ)。
面取りされたァズスライスダミーゥ ーハの面取り形状の測定結果と、該結果より設 定した面取り狙!、値の例を表 3に示す。
[0062] [表 3]
Θ 1 (° ) Θ 2 (° ) Χ3 (mm) 平均 = 14.6 平均 =14.5 平均 =0.647 ァズスライスダミー
最大 =15.2 最大 =15.3 最大 =0.670 ゥエーハ面取り形状
最小 =12.9 最小 =13.0 最小 =0.625 中心値 =15 中心値 =15 中心値 =0.65 面取り狙い値
(±3) (±3) (±0.04) [0063] 表 3から明らかなように、最終的に製品ゥ ーハで面取り形状が規格に合致する面 取り用砥石でァズスライスの厚さを有するゥエーハを面取りすると、 Θ 1、 Θ 2が規格よ りむしろシフトしていることがわかる。従来は、ァズスライスの厚さを有するダミーゥエー ハを用い、これを面取りしたときの Θ 1、 Θ 2が製品ゥエーハの規格を満たすように面 取り用砲石を作製して 、たことと大きく異なる結果となって 、る。
[0064] なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は単な る例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一 な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技 術的範囲に包含される。

Claims

請求の範囲
[1] 少なくとも、インゴットをスライスしてゥエーハとするスライス工程と、該インゴットからス ライスされたゥ ーハを、面取り用砥石を用いて面取りする面取り工程と、該面取りし たゥエーハに平坦ィ匕処理、エッチング、研磨のうち少なくとも 1つ以上の処理をするこ とによって前記面取りしたゥエーハよりも薄い厚さの製品ゥエーハとする工程とを備え るゥ ーハの製造方法において、少なくとも前記面取り工程より前に、少なくとも、前 記製品ゥ ーハと同等の厚さのダミーゥ ーハを面取りし、該面取りされたダミーゥ ーハの面取り形状を測定し、該測定されたダミーゥ ーハの面取り形状に基づ!/、て 前記面取り用砲石の形状を補正する補正工程を備え、該形状を補正した面取り用砥 石を用いて前記インゴットからスライスされたゥエーハを面取りすることを特徴とするゥ エーハの製造方法。
[2] 前記面取り用砲石の補正は、機上において行うものであることを特徴とする請求項 1に記載のゥヱーハの製造方法。
[3] 前記面取り用砲石は総型溝を有するものであり、該総型溝を前記ゥエーハの周縁 部に当接させて面取りすることを特徴とする請求項 1または請求項 2に記載のゥ ー ハの製造方法。
[4] 前記面取り用砥石が円筒状の外周刃回転砥石であり、該外周刃回転砥石が前記 ゥ ーハの厚さ方向及び直径方向に相対的に可動して前記ゥ ーハを面取りするこ とを特徴とする請求項 1または請求項 2に記載のゥ ーハの製造方法。
[5] 請求項 1な 、し請求項 4の 、ずれか一項に記載のゥエーハの製造方法にぉ 、て、 少なくとも前記補正工程の後に、前記形状を補正した面取り用砲石を用いて、前記ィ ンゴットからスライスされたゥエーハと同等の厚さのダミーゥエーハを面取りし、該面取 りされたダミーゥ ーハの面取り形状を測定し、該測定されたダミーゥ ーハの面取り 形状の寸法を、前記インゴットからスライスされたゥヱーハの面取り狙 ヽ値として設定 することを特徴とするゥエーハの製造方法。
PCT/JP2007/059708 2006-06-08 2007-05-11 ウェーハの製造方法 WO2007141990A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP07743143A EP2033739B1 (en) 2006-06-08 2007-05-11 Wafer production method
KR1020087029512A KR101333189B1 (ko) 2006-06-08 2007-05-11 웨이퍼의 제조방법
US12/227,894 US8231430B2 (en) 2006-06-08 2007-05-11 Wafer production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-159988 2006-06-08
JP2006159988A JP4915146B2 (ja) 2006-06-08 2006-06-08 ウェーハの製造方法

Publications (1)

Publication Number Publication Date
WO2007141990A1 true WO2007141990A1 (ja) 2007-12-13

Family

ID=38801255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/059708 WO2007141990A1 (ja) 2006-06-08 2007-05-11 ウェーハの製造方法

Country Status (5)

Country Link
US (1) US8231430B2 (ja)
EP (1) EP2033739B1 (ja)
JP (1) JP4915146B2 (ja)
KR (1) KR101333189B1 (ja)
WO (1) WO2007141990A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006037267B4 (de) * 2006-08-09 2010-12-09 Siltronic Ag Verfahren zur Herstellung von Halbleiterscheiben mit hochpräzisem Kantenprofil
US20090142916A1 (en) * 2007-11-29 2009-06-04 Qimonda Ag Apparatus and method of manufacturing an integrated circuit
JP2009283650A (ja) * 2008-05-22 2009-12-03 Sumco Corp 半導体ウェーハの再生方法
JP5521582B2 (ja) 2010-01-28 2014-06-18 信越半導体株式会社 貼り合わせウェーハの製造方法
DE102011076954A1 (de) 2011-06-06 2012-03-15 Siltronic Ag Fertigungsablauf für Halbleiterscheiben mit Rückseiten-Getter
JP2013008769A (ja) * 2011-06-23 2013-01-10 Sumitomo Electric Ind Ltd 炭化珪素基板の製造方法
US9718164B2 (en) 2012-12-06 2017-08-01 Taiwan Semiconductor Manufacturing Company, Ltd. Polishing system and polishing method
KR101452250B1 (ko) * 2013-05-28 2014-10-22 코닝정밀소재 주식회사 기판 대칭 면취 방법 및 장치
JP6280355B2 (ja) * 2013-11-29 2018-02-14 Hoya株式会社 磁気ディスク用基板の製造方法及び研磨処理用キャリア
JP2015140270A (ja) * 2014-01-28 2015-08-03 グローバルウェーハズ・ジャパン株式会社 シリコンウェーハ
JP6750592B2 (ja) 2017-08-15 2020-09-02 信越半導体株式会社 シリコンウエーハのエッジ形状の評価方法および評価装置、シリコンウエーハ、ならびにその選別方法および製造方法
JP6939752B2 (ja) * 2018-11-19 2021-09-22 株式会社Sumco シリコンウェーハのヘリカル面取り加工方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000015548A (ja) * 1998-07-01 2000-01-18 Tokyo Seimitsu Co Ltd ウェーハ面取り装置
JP2000084811A (ja) * 1998-09-16 2000-03-28 Tokyo Seimitsu Co Ltd ウェーハ面取り装置
JP2003142434A (ja) * 2001-10-30 2003-05-16 Shin Etsu Handotai Co Ltd 鏡面ウエーハの製造方法
JP2004214398A (ja) * 2002-12-27 2004-07-29 Sumitomo Mitsubishi Silicon Corp 半導体ウェーハの製造方法
JP2005153085A (ja) 2003-11-26 2005-06-16 Tokyo Seimitsu Co Ltd 面取り砥石のツルーイング方法及び面取り装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2921250B2 (ja) * 1992-02-28 1999-07-19 信越半導体株式会社 ウエーハ面取部の鏡面研磨方法及び装置
JPH08243891A (ja) * 1995-03-07 1996-09-24 Kao Corp 基板のチャンファ加工装置
JPH0919857A (ja) * 1995-07-10 1997-01-21 Toyo A Tec Kk スライシング装置により切り出されるウェハの面取り方法及び装置並びに面取り用砥石
JP3658454B2 (ja) * 1996-03-29 2005-06-08 コマツ電子金属株式会社 半導体ウェハの製造方法
AU3042097A (en) * 1996-06-15 1998-01-07 Unova U.K. Limited Improvements in and relating to grinding machines
JPH11219923A (ja) * 1998-02-03 1999-08-10 Hitachi Ltd 半導体ウェハおよび半導体ウェハの製造方法ならびに半導体装置の製造方法
JP3846706B2 (ja) 2000-02-23 2006-11-15 信越半導体株式会社 ウエーハ外周面取部の研磨方法及び研磨装置
JP2004243422A (ja) * 2003-02-12 2004-09-02 Komatsu Electronic Metals Co Ltd 外周研削合体ホイル
JP2004356230A (ja) 2003-05-27 2004-12-16 Matsushita Electric Works Ltd 発光装置およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000015548A (ja) * 1998-07-01 2000-01-18 Tokyo Seimitsu Co Ltd ウェーハ面取り装置
JP2000084811A (ja) * 1998-09-16 2000-03-28 Tokyo Seimitsu Co Ltd ウェーハ面取り装置
JP2003142434A (ja) * 2001-10-30 2003-05-16 Shin Etsu Handotai Co Ltd 鏡面ウエーハの製造方法
JP2004214398A (ja) * 2002-12-27 2004-07-29 Sumitomo Mitsubishi Silicon Corp 半導体ウェーハの製造方法
JP2005153085A (ja) 2003-11-26 2005-06-16 Tokyo Seimitsu Co Ltd 面取り砥石のツルーイング方法及び面取り装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2033739A4

Also Published As

Publication number Publication date
US8231430B2 (en) 2012-07-31
KR20090018621A (ko) 2009-02-20
EP2033739A4 (en) 2010-09-01
EP2033739B1 (en) 2011-09-21
JP4915146B2 (ja) 2012-04-11
JP2007326191A (ja) 2007-12-20
US20090170406A1 (en) 2009-07-02
KR101333189B1 (ko) 2013-11-26
EP2033739A1 (en) 2009-03-11

Similar Documents

Publication Publication Date Title
WO2007141990A1 (ja) ウェーハの製造方法
US8454852B2 (en) Chamfering apparatus for silicon wafer, method for producing silicon wafer, and etched silicon wafer
KR20170061606A (ko) 박형의 SiC 웨이퍼의 제조 방법 및 박형의 SiC 웨이퍼
KR101436482B1 (ko) 반도체 웨이퍼 및 그 제조 방법
CN108369895B (zh) 单晶半导体晶片和用于生产半导体晶片的方法
TWI445125B (zh) A method of manufacturing a two-head grinding apparatus and a wafer
WO2016038800A1 (ja) 半導体ウェーハの加工方法、貼り合わせウェーハの製造方法、及びエピタキシャルウェーハの製造方法
US8551346B2 (en) Photomask-forming glass substrate and making method
JP2008042213A (ja) 極めて正確なエッジプロフィルを備えた半導体ウェハ及びこれを製造する方法
JP2016203342A (ja) ツルーアーの製造方法および半導体ウェーハの製造方法、ならびに半導体ウェーハの面取り加工装置
TW202022176A (zh) 碳化矽晶圓以及碳化矽晶圓的製造方法
JP6913295B2 (ja) ガラス板、及びガラス板の製造方法
JP5472073B2 (ja) 半導体ウェーハ及びその製造方法
JP2011023422A (ja) エピタキシャルウェーハの製造方法
JP6493253B2 (ja) シリコンウェーハの製造方法およびシリコンウェーハ
CN110383427B (zh) 晶圆的制造方法
TW201802929A (zh) 旋轉蝕刻方法及裝置以及半導體晶圓之製造方法
KR101869980B1 (ko) 금형용 기판 및 금형용 기판의 검사 방법
JP5074845B2 (ja) 半導体ウェハの研削方法、及び半導体ウェハの加工方法
JP6471686B2 (ja) シリコンウェーハの面取り方法、シリコンウェーハの製造方法およびシリコンウェーハ
JP2008177287A (ja) 化合物半導体ウェハ
TW201829117A (zh) 晶圓之製造方法以及晶圓
JP2015153999A (ja) 半導体ウェーハの製造方法
CN110034018B (zh) 半导体晶片的制造方法
JP6939752B2 (ja) シリコンウェーハのヘリカル面取り加工方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07743143

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12227894

Country of ref document: US

Ref document number: 1020087029512

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007743143

Country of ref document: EP