WO2007138746A1 - 磁性体濃度計測装置及び磁性体濃度計測方法 - Google Patents

磁性体濃度計測装置及び磁性体濃度計測方法 Download PDF

Info

Publication number
WO2007138746A1
WO2007138746A1 PCT/JP2007/000572 JP2007000572W WO2007138746A1 WO 2007138746 A1 WO2007138746 A1 WO 2007138746A1 JP 2007000572 W JP2007000572 W JP 2007000572W WO 2007138746 A1 WO2007138746 A1 WO 2007138746A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic substance
signal
fluid
coil
concentration
Prior art date
Application number
PCT/JP2007/000572
Other languages
English (en)
French (fr)
Inventor
Takashi Fujii
Shigeki Kagomiya
Original Assignee
Diesel United, Ltd.
Meiyo Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diesel United, Ltd., Meiyo Electric Co., Ltd. filed Critical Diesel United, Ltd.
Priority to EP07737228.2A priority Critical patent/EP2034303B1/en
Priority to CN2007800200858A priority patent/CN101460836B/zh
Priority to US12/302,631 priority patent/US8115478B2/en
Priority to KR1020087031391A priority patent/KR101351287B1/ko
Publication of WO2007138746A1 publication Critical patent/WO2007138746A1/ja
Priority to HK09107510.7A priority patent/HK1129925A1/xx

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2835Specific substances contained in the oils or fuels
    • G01N33/2858Metal particles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/74Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables of fluids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/56Investigating resistance to wear or abrasion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/56Investigating resistance to wear or abrasion
    • G01N3/567Investigating resistance to wear or abrasion by submitting the specimen to the action of a fluid or of a fluidised material, e.g. cavitation, jet abrasion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/634Specific applications or type of materials wear behaviour, roughness

Definitions

  • the present invention relates to a magnetic substance concentration measuring device and a magnetic substance concentration measuring method.
  • the lubricating oil or drain oil is sampled manually and the concentration of the magnetic material is measured by a chemical method.
  • a magnetic substance concentration measuring device is placed near the flow path to measure the magnetic substance concentration.
  • a magnetic field applying means and a magnetic measuring means including a magnetic sensor of a superconducting quantum interference element are provided in the vicinity of the flow path through which the drain oil flows, Some of them detect only the magnetic field of the magnetic component, which is described in Patent Document 1, for example.
  • Another example is an LC oscillation circuit for actual measurement in which the first coil is disposed near the drain oil flow path, and a correction coil in which the second coil is disposed at a position not affected by the magnetic material of the drain oil.
  • Patent Document 1 Japanese Patent Laid-Open No. 10-2 6 8 0 1 3
  • Patent Document 2 Japanese Patent Laid-Open No. 2 0 0 5 _ 8 3 8 9 7 Disclosure of the invention
  • the present invention has been made in view of such a situation, and measures the concentration of the magnetic substance with high accuracy, and further measures the concentration of the magnetic substance contained in the fluid continuously. It is an object of the present invention to provide a magnetic substance concentration measuring method.
  • the present invention is a magnetic substance concentration measuring apparatus comprising an exciting coil and an output coil that generates an exciting voltage when an alternating current flows through the exciting coil, the voltage of the exciting coil being And measuring means for measuring a change in phase difference between the voltage of the output coil and the test object, which is generated when the excitation coil or the Z coil and the output coil are brought close to each other.
  • the present invention relates to a magnetic substance concentration measuring apparatus that grasps the concentration of a magnetic substance from a change in phase difference.
  • a lock-in amplifier as the measuring means.
  • a voltage of the excitation coil as a reference signal of the lock-in amplifier.
  • the inspection object and the excitation coil or Z and output coil It is preferable to have driving means for introducing the inspection object from a flow path through which a fluid containing a magnetic body flows or a reservoir in which a fluid containing the magnetic body accumulates.
  • the present invention provides a detection unit connected to a flow path through which a fluid containing a magnetic body flows down or a reservoir in which a fluid containing a magnetic body accumulates, and a fluid lead-in / out means and a detection unit, and the detection described above And a signal processing unit connected to the means for arranging the lock-in amplifier, wherein the detection unit introduces the fluid by the fluid introduction / introduction means and outputs the fluid from the output signal of the alternating voltage through the detection means.
  • the detection signal of the magnetic material at the time of introduction and the detection signal for correction at the time of fluid discharge are acquired, and the signal processing unit simultaneously removes noise from each signal by a lock-in amplifier using a reference signal of the same frequency.
  • the phase difference between each signal and the reference signal is detected, converted into a DC voltage signal according to the detected amount of the phase difference, and the difference between the converted values is detected as the magnetic substance concentration.
  • Magnetic substance concentration measurement It depends on the device.
  • the present invention provides a detection unit that is connected to a flow path through which a fluid containing a magnetic material flows or a reservoir in which a fluid containing a magnetic material accumulates, and includes a fluid lead-in / out means and a detection unit, And a signal processing unit connected to the means for arranging the lock-in amplifier, wherein the detecting unit introduces the fluid by the fluid introducing / introducing means and introduces the magnetic material when the fluid is introduced through the detecting means.
  • the signal processing unit obtains a detection signal and a correction detection signal at the time of fluid discharge, and the signal processing unit performs noise removal from each signal by a lock-in amplifier using a reference signal of the same frequency, and then converts it to a DC voltage signal.
  • the present invention relates to a magnetic substance concentration measuring apparatus configured to detect a difference between values after conversion as a magnetic substance concentration.
  • the signal processing unit shifts the phase of the reference signal or the detection signal of the magnetic material so that the value obtained by converting the output signal to the DC voltage signal approaches zero when the magnetic material is not detected.
  • the signal processing unit shifts the phase of the reference signal or the detection signal of the magnetic material so that the value obtained by converting the output signal to the DC voltage signal approaches zero when the magnetic material is not detected.
  • it is comprised.
  • the detection means includes an output coil that acquires a detection signal of a magnetic material, and an excitation coil, and an AC voltage is applied to the excitation coil so that the output coil An output signal of AC voltage is generated, and the magnetic substance is detected from the output signal. It is preferable that the output signal or the detection signal for correction is acquired and the reference signal is acquired from an oscillation circuit connected to the exciting coil.
  • the detection means includes a plurality of excitation coils wound in opposite directions, a detection coil disposed between the plurality of excitation coils, and an output signal of the detection coil. Is preferably configured to be small
  • the fluid lead-in / out means is configured to lead in / out the fluid by a reciprocating motion of a piston.
  • the concentration of the magnetic material from a test object containing a magnetic material or a fluid containing a magnetic material, the concentration of the magnetic material, the rate of change of the concentration, the amplitude of the concentration change, the cycle of the concentration change, the concentration deviation at the time of multipoint measurement It is preferable that at least one piece of information is acquired, and the state of the sliding object is determined from the correlation between the magnetic substance concentration obtained in advance and the state of the sliding object.
  • a warning means for issuing a warning or Z and a warning according to the state of the sliding object.
  • the supply amount, supply timing, supply pressure, supply temperature, lubrication fluid injection method, and property of the lubrication fluid are controlled according to the state of the slide object. It is preferable to be configured as described above.
  • the present invention is a magnetic substance concentration measurement method using an excitation coil and an output coil that generates an excitation voltage when an alternating current flows through the excitation coil, the inspection object, Measure the change in phase difference between the excitation coil voltage and the output coil voltage when the excitation coil or Z and the output coil are brought close to each other, and grasp the magnetic substance concentration.
  • Magnetic material concentration measurement method using an excitation coil and an output coil that generates an excitation voltage when an alternating current flows through the excitation coil, the inspection object, Measure the change in phase difference between the excitation coil voltage and the output coil voltage when the excitation coil or Z and the output coil are brought close to each other, and grasp the magnetic substance concentration.
  • the voltage signal of the output coil is partially inverted in phase and converted into a direct current to measure a change in phase difference.
  • the output coil It is preferable to partially invert the voltage signal of the signal.
  • the inspection object is introduced from a flow path through which a fluid containing a magnetic body flows or a reservoir in which a fluid containing a magnetic body accumulates, and is brought close to the exciting coil or Z and the output coil. It is preferable.
  • the present invention introduces a fluid from a flow path through which a fluid containing a magnetic material flows or a reservoir in which a fluid containing a magnetic material accumulates to the detection unit, and acquires a detection signal of the magnetic material from the fluid of the detection unit At the same time, a reference signal of the same frequency is prepared, and the detection signal of the magnetic material and the reference signal of the same frequency are combined to remove noise by a lock-in amplifier, and a DC voltage is output as the output value for the concentration of the magnetic material. Processing steps during fluid introduction that are processed to convert to signals,
  • the present invention relates to a magnetic substance concentration measuring method in which the output value for the concentration of the magnetic substance is corrected by the output value for comparison.
  • a detection signal for magnetic substance and a detection signal for correction are obtained from an output signal of the alternating voltage, and a detection signal for magnetic substance is obtained.
  • the correction detection signal and the reference signal of the same frequency are combined to remove noise from each signal by a lock-in amplifier, and at the same time, the phase difference between each signal and the reference signal and the effective value of the signal are detected. It is preferable to convert the output value for the concentration of the magnetic substance and the output value for comparison according to the amount of the detected phase difference.
  • the treatment process at the time of introducing the fluid and the treatment process at the time of discharging the fluid are alternately and continuously repeated, whereby the output value for the concentration of the magnetic substance and the output value for comparison are obtained.
  • the difference is further converted into a DC voltage signal, and the difference is converted into a magnetic substance concentration based on the correlation obtained in advance, thereby eliminating measurement errors due to disturbances and changes over time. It is preferable.
  • the phase of the reference signal or the detection signal of the magnetic substance is shifted, and the value obtained by converting the output signal of the signal processing device into a DC voltage signal is brought close to zero by a later-stage amplifier. This is preferable for limiting amplification.
  • the concentration of the magnetic material from a test object containing a magnetic material or a fluid containing a magnetic material, the concentration of the magnetic material, the rate of change of the concentration, the amplitude of the concentration change, the cycle of the concentration change, the concentration deviation at the time of multipoint measurement It is possible to obtain at least one piece of information, and to determine the state of the sliding object from the correlation between the magnetic substance concentration obtained in advance and the state of the sliding object. It is preferable to always confirm that the measurement is performed in a state.
  • the magnetic body is included.
  • the present invention uses the phase difference generated between the voltage of the exciting coil and the voltage of the output coil and the voltage change of the output coil.
  • a reference signal having the same frequency as the excitation voltage is prepared, a detection signal of the magnetic material is obtained from the fluid in the detection unit, and the phase of the reference signal is obtained.
  • the difference and the voltage change of the output coil are measured, converted into a DC voltage signal according to the measured phase difference amount, and then the correction detection signal in the detection unit is obtained from the detection unit from which the fluid has been discharged.
  • the phase difference from the reference signal is measured and converted to a DC voltage signal according to the amount of the measured phase difference, and the difference between the converted value at the time of fluid introduction and the converted value at the time of fluid discharge is magnetized.
  • the concentration of the magnetic body can be measured with extremely high accuracy using the change in phase difference and the voltage change in the output coil.
  • the change in the phase difference and the voltage change in the output coil are finally converted to the effective value of the voltage and used as the magnetic substance detection signal.
  • a reference signal having the same frequency as the excitation voltage is prepared, the noise of the detection signal of the magnetic material obtained by the fluid in the detection unit is removed by the band-pass filter, Noise is removed together with the reference signal, converted to a DC voltage component for the concentration of the magnetic substance, and then the correction detection signal obtained from the detection unit from which the fluid has been discharged is combined with the reference signal to generate noise.
  • the fluid is repeatedly derived and acquired to obtain multiple differences in each measured value, the measurement error due to changes over time is always eliminated by processing multiple times of data, and the minute concentration of the magnetic substance in the fluid is continuously obtained. Can be measured automatically.
  • the detection signal of the magnetic material at the time of fluid introduction and the detection signal for correction at the time of fluid discharge are acquired from the output signal of the AC voltage, and the phase difference between each signal and the reference signal is detected,
  • the phase difference between each signal and the reference signal is detected,
  • a slight phase difference can be obtained as a large output value, and the magnetic substance concentration can be detected with high sensitivity. Can be measured with good accuracy.
  • FIG. 1 is a conceptual diagram showing a first example of an embodiment of the present invention.
  • FIG. 2 is a conceptual diagram showing another example in the first example of the embodiment of the present invention.
  • FIG. 3 is a block diagram showing a configuration of a fluid lead-in / out means and a signal processing unit in an embodiment of the present invention.
  • FIG. 4 is a block diagram of another example showing the configuration of the fluid lead-in / out means and the signal processing unit in the embodiment of the present invention.
  • FIG. 5 is a conceptual diagram showing processing from an output signal to a comparative output value (DC voltage signal) without being affected by a magnetic material.
  • FIG. 6 is a conceptual diagram showing the processing from the output signal to the output value for the concentration of the magnetic substance (DC voltage signal) in a state where the influence of the magnetic substance is present.
  • FIG. 7 is a flow diagram for determining the sliding state of a sliding object by determining the concentration of the magnetic substance (inspection object).
  • FIG. 8 is a graph showing a detection state when an inspection object is actually measured.
  • FIG. 9 is a schematic view showing a second example of the embodiment of the present invention.
  • FIG. 10 is a block diagram showing a configuration of a fluid lead-in / out means and a signal processing unit in the second example of the embodiment of the present invention.
  • FIG. 11 is a block diagram of another example showing the configuration of the fluid lead-in / out means and the signal processing unit in the second example of the embodiment of the present invention.
  • FIG. 12 is a schematic view showing a third example of the embodiment of the present invention.
  • a magnetic substance concentration measuring apparatus and a magnetic substance concentration measuring method as a first example of an embodiment of the present invention will be described.
  • 1 to 8 show a first example of the embodiment of the present invention.
  • the magnetic substance concentration measuring apparatus and the magnetic substance concentration measuring method of the first example include a fluid lead-in / out means (driving means) in a flow path 1 of a pipe through which a fluid such as drain oil containing magnetic powder flows.
  • a measurement value display and abnormality determination device 7 is connected.
  • the piping flow path 1 extends in a straight line in the horizontal direction, and allows the lubricating oil to flow into and out of equipment (not shown) provided with sliding objects.
  • the flow path 1 of the pipe is not limited to a straight line that extends in the horizontal direction, but a flow path that extends in a curved line, a flow path that extends at an angle, A flow path extending in a vertical direction or an oblique direction may be used.
  • the fluid is not limited to the lubricating oil, and any fluid may be used.
  • the sliding object is not limited to the driving piston and the driving cylinder, but any sliding object may be used.
  • the detection unit 4 includes a cylindrical detection unit main body 9 that forms an opening 8 in the flow path 1, and a fluid derivation that slides inside the detection unit main body 9 and extracts and introduces lubricating oil (detection fluid).
  • the coil 11 of the detection means 3 includes two exciting coils 1 1 a and 1 1 a wound in opposite directions and connected in series, and two exciting coils 1 1 a , 1 1 a with a detection coil (output coil) 1 1 b, and when an AC voltage is applied to the excitation coil 1 1 a, the detection coil 1 1 b An output signal of AC voltage (excitation voltage) is generated.
  • the two excitation coils 1 1 a and 1 1 a and the detection coil 1 1 b are adjusted by adjusting the number of turns of the coil 1 1 and the distance between the coils 1 1 1 so that the mutual inductance is substantially equal.
  • the mutual inductance is adjusted to be substantially the same.
  • the number of exciting coils 1 1 a and detection coils 1 1 b is not particularly limited. Furthermore, it is preferable to provide a shield such as an aluminum tube outside the coil 11 1 so that noise does not enter from the outside.
  • the coil 11 of the detecting means 3 is composed of one exciting coil as shown in FIG.
  • the signal processing unit 6 is connected to the detection coil 1 1b so as to obtain a magnetic detection signal or a correction detection signal from the output signal of the detection coil 1 1b.
  • Amplifying circuit 1 2 that amplifies weak waveform signals
  • band-pass filter 1 3 that is connected to amplifying circuit 1 2 to remove the noise of waveform signals within a specified range
  • a sine wave oscillation circuit that obtains a sine wave for excitation 1 4 and a phase circuit 1 5 connected to the sine wave oscillation circuit 1 4 to shift the phase of the sine wave
  • an edge trigger circuit 1 6 connected to the phase circuit 1 5 to convert the sine wave into a square wave I have.
  • the phase circuit 15 has a phase of 10 ° to 170 °, preferably 45 ° to 13 ° in the state of non-detection of the magnetic material during setting or adjustment. More preferably, it is preferably shifted around 90 °. It may be shifted somewhat forward or backward due to an electrical shift in the waveform. Further, the phase circuit 15 may be positioned between the bandpass filter 13 and the signal processing device 5, and the detection signal for the magnetic material and the detection signal for correction may be shifted instead of the reference signal. Furthermore, the signal processing device 5 is preferably a lock-in amplifier, but any configuration can be used as long as it can measure a change in phase difference.
  • the signal processing unit 6 includes a signal processing device 5 connected to the band-pass filter 13 and the edge trigger circuit 16 respectively, and a signal processing device 5 connected to the output signal to convert the output signal into a DC voltage signal.
  • a low-pass filter 1 7 that converts to a low-pass filter 17, an amplifier 18 that is connected to the low-pass filter 1 7 and amplifies a DC voltage signal, and only a fluctuation amount of the DC voltage signal that is connected to the amplifier 1 8 and is derived from the introduction and detection of the detection fluid
  • An AC signal transmission circuit 19 to be transmitted and an amplifier 20 connected to the AC signal transmission circuit 19 are provided.
  • a DC conversion that converts an AC signal corresponding to the movement of the piston 2 a into a DC signal is provided.
  • a conversion circuit 21 may be provided to facilitate subsequent processing.
  • the measurement value display and abnormality determination device 7 is connected to the amplifier 20 of the signal processing unit 6 to convert the signal into the concentration of the magnetic substance, as shown in FIGS.
  • a control unit 22 for performing predetermined control is provided so that lubrication control and warning of abnormality can be performed with respect to the lubrication state of the sliding object.
  • the lubricating oil is introduced into the detecting section 4 from the flow path 1 by drawing in the biston 2a of the fluid outlet / inlet means 2. Install and measure the output signal in the presence of lubricant.
  • the piston 2 a of the fluid lead-in / out means 2 draws in the lubricating oil until the drain oil is positioned at one of the exciting coil 1 1 a and about half of the detecting coil 1 1 b.
  • the detection coil 1 1 b, the amplification circuit 1 2 and the lubricant oil from the detection unit 4 are used.
  • the detection signal of the magnetic substance is acquired through the bandpass filter 1 3 (( ⁇ ') in Fig. 6), and the exciting coil 1 1 a, sine wave oscillation circuit 1 4, phase circuit 15 and edge trigger circuit 1 6 is used to prepare a rectangular wave reference signal that produces a constant phase difference at the same frequency as the excitation voltage by shifting the phase by a predetermined angle (in Fig. 6, ( ⁇ ⁇ ')).
  • the piston 2a of the fluid lead-in / out means 2 is pushed out to discharge (lead out) the lubricating oil in the detection section 4, and there is no lubricating oil (the fluid lead-in / out means 2 itself).
  • the output signal is measured and processed.
  • the time interval of the reciprocating motion of the fluid lead-in / out means 2 varies depending on the viscosity of the fluid to be measured, etc., but it is preferable to perform it at intervals of several seconds.
  • the detection coil 1 1 b When the measurement process is performed in a state in which the lubricant is discharged (derived) from the detection unit 4 (processing step at the time of fluid discharge), the detection coil 1 1 b, the amplification circuit 1 2 and the detection circuit 1 2 And the correction detection signal through the bandpass filter 1 3 ((A) in Fig. 5), excitation coil 1 1 a, sine wave oscillation circuit 1 4, phase circuit 1 5 and edge trigger circuit 1 6) Prepare a rectangular wave reference signal that produces a constant phase difference at the same frequency as the excitation voltage by shifting the phase by a predetermined angle ((B) in Fig. 5).
  • the output value for the concentration of the magnetic material is corrected by the AC signal transmission circuit 19.
  • the difference AV is obtained, and the measured value display and abnormality determination device 7 converts the difference into the magnetic substance concentration by the correlation (function processing) with the previously obtained concentration.
  • the output value for the concentration of the magnetic substance (DC voltage signal) and the output value for comparison (DC voltage signal) are converted into a phase difference A between the output signal of the magnetic substance and the reference signal by the signal processor 5. It is also possible to detect f, the output signal for correction, the reference signal, and a phase difference (not shown) and convert them according to the detected amount of phase difference.
  • the output value for the concentration of the magnetic substance is an AC signal that moves up and down with respect to the output value for comparison by the reciprocating motion of the fluid lead-in / out means 2 as shown in FIG. 5 (D ′). Further, this AC signal may be converted into a DC signal by using the DC conversion circuit 21.
  • the control unit 2 2 preliminarily correlates the sliding state of the sliding object on the prime mover piston and the like with the concentration of the magnetic material (standard).
  • (Data) is input (step S 1), from the fluid containing the magnetic material (inspection object) via the signal processing unit 6 etc., the concentration of the magnetic material, the change rate of the magnetic material concentration, Obtain at least one of the amplitude of concentration change, the period of concentration change of the magnetic material, and the concentration deviation at the time of multipoint measurement (step S 2), then the correlation (reference data) and the magnetic material
  • the information obtained from the fluid (inspection object) is compared (Step S 3), the sliding state of the sliding object such as the piston is judged (Step S 4), and the sliding state of the sliding object such as the piston is determined.
  • Drain oil for sliding objects lubrication (Fluid) supply amount, supply timing, supply pressure, supply temperature, drain oil (lubricating fluid) injection method, drain oil (lubricating fluid) property control (step S5), and the concentration of magnetic powder If it is determined that the amount of wear on the sliding object such as Biston exceeds a certain level, it is determined that the time for maintenance is reached, and a warning, warning, warning is displayed from the measured value display and abnormality determination device 7. Notify the administrator via the light (step S6).
  • the first example of the embodiment it is common to use the phase difference generated between the voltage of the excitation coil 1 1 a and the voltage of the detection coil (output coil) 1 1 b.
  • the change in phase difference that occurs according to the concentration of the magnetic material is used. Therefore, it is possible to accurately measure the concentration of the magnetic material.
  • the first example of the embodiment is that between the voltage of the exciting coil 11a and the voltage of the detecting coil 11b. Phase difference and voltage change of output coil 1 1 b are used.
  • Excitation coil 1 1 b reactance change due to presence / absence of magnetic material
  • detection coil (output coil) 1 1 b due to presence / absence of magnetic material
  • concentration of magnetic material can be measured with high accuracy.
  • the reactance change of the excitation coil 1 1 a due to the presence or absence of the magnetic material the detection coil (output coil) 1 1 b change of the reactance due to the presence or absence of the magnetic material, Changes in eddy currents generated in inspection objects, changes in Joule loss due to eddy currents, changes in eddy currents generated in surrounding objects of coils, changes in Joule loss due to eddy currents, etc.
  • the phase difference unlike the case of the voltage phase difference, it is affected by other changes, so the concentration of the magnetic substance cannot be measured with high accuracy.
  • the lock-in amplifier detects the phase difference between the detection signal of the magnetic material and the reference signal and removes noise. Since it is converted into a signal corresponding to the amount of detected phase difference, the magnetic substance concentration can be detected with high sensitivity with a slight phase difference, and the minute concentration of the magnetic substance in the lubricating oil can be measured suitably and accurately. .
  • a flow path or a magnetic body through which a fluid containing a magnetic body flows is used as a means for bringing the inspection object close to the exciting coil 1 1a or Z and the output coil 1 1b. If there is a drive means to introduce the inspection object from the reservoir where the contained fluid accumulates, the inspection object of the fluid can be easily acquired or discharged, so the minute concentration of the magnetic substance in the lubricating oil can be measured continuously and accurately. can do.
  • the detection signal of the magnetic material is obtained from the fluid in the detection unit 4, a reference signal having the same frequency is prepared, the phase difference from the reference signal is changed, and the output coil 11 1
  • the voltage change of b is measured and converted into a signal corresponding to the measured amount of phase difference, and then the correction detection signal in the detection unit 4 is acquired from the detection unit 4 from which the fluid has been discharged and the reference signal Is measured and converted into a signal corresponding to the measured phase difference, and the difference between the value at the time of fluid introduction after conversion and the value at the time of fluid discharge after conversion is calculated. Since the concentration is used, the concentration of the magnetic material can be measured with extremely high accuracy by using the change in phase difference and the voltage change in the output coil 11 b. Note that the change in phase difference and the voltage change in the output coil 1 1 b are finally converted to the effective value of the voltage and used as the magnetic substance detection signal.
  • the concentration of the magnetic material is acquired as a measured value of the change width in one operation of the introduction and removal of the lubricant, and the signal value is obtained continuously by performing the introduction and removal of the lubricant. So, by averaging multiple data, we always eliminate the influence of reference point (zero point) drift and offset change (fluctuation) due to changes over time, and continuously reduce the minute concentration of the magnetic substance in the drain oil. It can be measured.
  • the phase of the reference signal or the phase of the detection signal of the magnetic material is set so as to be shifted from the other signal, the amplification of the signal by the amplifiers 18 and 25 can be more easily performed. Therefore, it is possible to suitably measure the minute concentration of the magnetic substance of the drain oil.
  • the minute concentration of the magnetic material can be measured, and if the phase is shifted by 45 ° to 13.5 °, the minute concentration of the magnetic material can be measured.
  • the phase is shifted around 90 °, the minute concentration of the magnetic material can be measured very suitably.
  • the phase of the reference signal or the phase of the detection signal of the magnetic material is
  • the magnetic material is not detected, if the value obtained by converting the output signal of the signal processing device (lock-in amplifier) 5 to a DC voltage signal is brought close to zero, the signal can be easily amplified. Therefore, it is possible to suitably measure the minute concentration of.
  • the detection means 3 includes a detection coil 1 1 b for obtaining a magnetic detection signal and an excitation coil 1 1 a, and an AC voltage is applied to the excitation coil 1 1 a. Apply an AC voltage output signal to the detection coil 1 1 b to obtain a magnetic detection signal or correction detection signal from the output signal, and at the same time, an oscillation circuit 1 connected to the excitation coil 1 1 a When configured to acquire a reference signal from 4 etc., the voltage and phase change according to the concentration of the magnetic material due to the AC voltage, making it easy to measure the concentration of the magnetic material, and A minute concentration can be measured appropriately.
  • the exciting coil 11a is used, a reference signal having the same frequency as the output signal of the detecting coil 11b can be easily prepared.
  • the detection means 3 is arranged by winding a plurality of excitation coils 1 1a in opposite directions and placing the detection coil 1 1 b between the plurality of excitation coils 1 1 a. If the sensor is configured so that the output signal of the detection coil 1 1 b is small, the concentration of the magnetic substance is detected with high sensitivity via the amplifiers 1 8 and 2 5. A minute density can be measured with high accuracy.
  • the fluid lead-in / out means 2 when the fluid lead-in / out means 2 is configured to lead out and drain the drain oil by the reciprocating motion of the piston 2a, the accumulated solid content is easily discharged and measurement is continuously performed. In this way, measurement errors due to disturbances and changes over time can be eliminated, and the minute concentration of the magnetic substance in the drain oil can be measured continuously and accurately.
  • deposits such as solids are suitably removed by the reciprocating motion of the piston 2a, so that periodic air blowing and mechanical removal can be eliminated.
  • the drain oil even when the drain oil has a high viscosity, the drain oil can be reliably led out at regular intervals by the reciprocating motion of the biston 2a, so that the concentration of the magnetic substance in the drain oil can be continuously and accurately improved.
  • the signal processing unit 6 uses a reference signal of the same frequency, and a signal processing device that removes noise from the detection signal of the magnetic material at the time of fluid introduction or the correction detection signal at the time of fluid discharge 5, noise is removed from the detection signal of the magnetic material obtained by the lubricating oil in the detection unit 4 by the band-pass filter 13, and the signal processing device 5 combines it with the reference signal of the same frequency.
  • the concentration deviation of the magnetic material from the fluid (inspection object) containing the magnetic material, at least the concentration deviation of the magnetic material, the concentration change rate, the concentration change amplitude, the concentration change cycle, and the concentration deviation at the time of multipoint measurement
  • the state of the sliding object such as a piston is confirmed, maintenance, drain oil (Lubricating fluid) can be controlled extremely easily and accurately.
  • the amount of drain oil (lubricating fluid) supplied to the sliding object, the supply timing, the supply pressure, the supply temperature, the drain oil (lubricating fluid) injection method, and lubrication according to the state of the sliding object By controlling the properties of the fluid, the sliding state of a sliding object such as a piston can be suitably maintained.
  • a magnetic substance concentration measuring apparatus and a magnetic substance concentration measuring method as a second example of the embodiment of the present invention will be described.
  • 9 to 11 show a second example of the embodiment of the present invention.
  • the magnetic substance concentration measuring device and the magnetic substance concentration measuring method of the second example include a fluid lead-in / out means 3 2 and a detecting means in a flow path 31 of a pipe through which a fluid such as drain oil containing magnetic powder flows down.
  • 3 3 Detecting unit with 3 3 is connected to the detection means 3 3 of the detecting unit 3 4
  • a signal processing unit 36 including a lock-in amplifier 35 and the like is connected to the signal processing unit 36, and a measurement value display and abnormality determination device 37 is connected to the signal processing unit 36.
  • the flow path 31 of the pipe is for discharging drain oil from a device (not shown) such as a diesel engine equipped with a drive piston and a drive cylinder.
  • a device not shown
  • On the downstream side there is an on-off valve 3 9 as a closing means for forming a drain oil reservoir 3 8, and a branch passage 40 arranged so as to avoid the on-off valve 3 9.
  • 40 includes a branch port 41 formed on the upstream side of the reservoir portion 38 and a junction port 42 formed on the downstream side of the on-off valve 39, and a drain overflowing from the reservoir portion 38
  • the oil is allowed to flow downstream.
  • the fluid is not limited to the drain oil, and any fluid containing a magnetic material may be used.
  • the detection unit 3 4 is a cylindrical detection unit body 4 4 that forms an opening 4 3 in the reservoir 3 8 so as to be disposed in the flow path 31 between the on-off valve 39 and the branch port 41. And a piston 3 2 a for fluid lead-in / out means 3 2 that slides inside the detector main body 4 4, and a rotating part 4 5 for driving means for moving the piston 3 2 a forward and backward in the fluid lead-out obtaining stage 3 2, Detecting unit body 4 It has a plurality of coils 4 6 of detecting means 3 3 arranged on the outer periphery of 4
  • the plurality of coils 4 6 of the detection means 3 3 include two exciting coils 4 6 a and 4 6 a wound in opposite directions and connected in series, and two exciting coils 4 6 detection coil 4 6 b arranged between a and 4 6 a, and when an AC voltage is applied to excitation coil 4 6 a, an output signal of the AC voltage is applied to detection coil 4 6 b. At the same time, the output signal of the detection coil 46 b is adjusted to be small when the magnetic material is not detected. Also, the two exciting coils 4 6 a and 4 6 a and the detecting coil 4 6 b are adjusted by adjusting the number of turns of the coil 4 6 and the distance between the coils 4 6 so that the mutual inductances are substantially equal.
  • the mutual inductance is adjusted to be approximately equal.
  • the number of exciting coils 4 6 a and detecting coils 4 6 b is not particularly limited.
  • the coil 4 6 It is preferable to install a shield such as an aluminum cylinder outside to prevent noise from entering.
  • the coil 46 may include one excitation coil and a detection coil (output coil) arranged close to one excitation coil. good.
  • the signal processing unit 36 is connected to the detection coil 46b to generate a weak waveform signal so as to obtain a magnetic detection signal or a correction detection signal from the output signal of the detection coil 46b.
  • Amplifying circuit 4 7 to be amplified band-pass filter 4 8 connected to amplifier circuit 4 7 to remove the noise of the waveform signal within a predetermined range, and excitation coils 4 6 a and 4 6 a connected to excitation circuit
  • an edge trigger circuit 51 for making a wave.
  • the phase circuit 50 is located between the bandpass filter 48 and the mouth-in amplifier 35, and instead of the reference signal, the magnetic detection signal and the correction detection signal are shifted about 90 °. Also good.
  • the phase circuit 50 preferably shifts the phase by 90 ° when the magnetic substance is not detected, but it may be shifted slightly back and forth due to the electrical shift of the waveform.
  • the phase circuit 50 may set the phase shift in the range of 10 ° to 1700 ° in the state when the magnetic material is not detected, as in the first example.
  • the signal processing unit 3 6 includes a band-pass filter 4 8 and an edge trigger circuit 5
  • the low-pass filter 5 2 is connected to the lock-in amplifier 3 5 and converts the output signal into a DC voltage signal, and the DC voltage is connected to the low-pass filter 5 2.
  • An amplifier 53 for amplifying a signal, an AC signal transmission circuit 54 connected to the amplifier 53, and an amplifier 55 connected to the AC signal transmission circuit 54 are provided.
  • a DC conversion circuit 56 that converts an AC signal according to the movement of the piston 3 2 a into a DC signal is provided. Later processing may be facilitated.
  • the measured value display and abnormality determination device 37 is connected to the amplifier 55 of the signal processing unit 36. It is connected so that it can convert the signal to the concentration of the magnetic material and give a warning of abnormality.
  • the measured value display and abnormality determination device 37 performs predetermined control so that lubrication control and warning of abnormality can be performed for the lubrication state of sliding objects such as pipes. You may provide the control part (not shown) which performs.
  • the flow path 3 1 When measuring the concentration of the magnetic powder contained in the drain oil (fluid), the flow path 3 1 in a state where the biston 3 2a of the fluid lead-in / out means 3 2 of the detection unit 3 4 is pushed out in advance. Close the open / close valve 3 9 and store a certain amount of drain oil in the reservoir 3 8.
  • the piston 3 2a of the fluid lead-in / out means 32 draws in the drain oil until the drain oil is located in about one half of the excitation coil 46a and about half of the detection coil 46b.
  • the detection oil 4 6 b and the amplification circuit 4 7 are extracted from the drain oil of the detection unit 3 4. And the detection signal of the magnetic material through the band-pass filter 48.
  • the drain oil in the detection unit 3 4 is discharged (derived) by pushing out the piston 3 2a of the fluid introducing / introducing means 3 2, and there is no drain oil (fluid derivation). Measure the output signal of the input means 3 2 itself).
  • the time interval of the reciprocating motion of the fluid lead-in / out means 3 2 varies depending on the viscosity of the fluid to be measured, etc., but it is preferably performed at intervals of several seconds.
  • the detection coil 4 6 b is amplified from the drain oil of the detection unit 3 4.
  • the correction detection signal is acquired via the circuit 4 7 and the bandpass filter 48 ((A) in FIG. 5), the excitation coil 4 6 a, the sine wave oscillation circuit 4 9, the phase circuit 50, and the edge trigger.
  • the AC signal transmission circuit 54 corrects the output value for the concentration of the magnetic material.
  • the difference AV is obtained and converted into a DC voltage signal
  • the measured value display and abnormality determination device 37 converts the difference into the magnetic substance concentration by the correlation (function processing) obtained in advance.
  • the output value for the concentration of the magnetic substance (DC voltage signal) and the output value for comparison (DC voltage signal) are converted by the lock-in amplifier 35 to the phase difference between the output signal of the magnetic substance and the reference signal.
  • ⁇ f, the output signal for correction, the reference signal, and the phase difference may be detected and converted according to the amount of the detected phase difference.
  • the measurement process in the state where the drain oil is introduced into the detection unit 3 4 (processing step when introducing the fluid) )
  • the output value for the concentration of the magnetic substance is an AC signal that moves up and down with respect to the output value for comparison as shown in (D ′) of FIG. . Further, this AC signal may be converted into a DC signal by using a DC conversion circuit 56.
  • the concentration of the magnetic powder exceeds a certain level in the state of measuring the drain oil, the amount of wear of the device including the driving fluid lead-in means and the driving cylinder is large. Notify the administrator via the warning display, warning sound, and warning light from the measured value display and abnormality determination device 37 as the time when maintenance is necessary. If a control unit (not shown) is provided, the correlation (reference data) between the sliding state of the sliding object such as the piston and the concentration of the magnetic material, as in the first example, and the magnetic material Compare the information obtained from the fluid (inspection object), determine the sliding state of the sliding object such as the piston, control drain oil (lubricating fluid) on the sliding object, and issue warnings, etc. Also good.
  • the detection signal of the magnetic substance obtained from the drain oil in the detection unit 34 is combined with the reference signal of the same frequency by the lock-in amplifier 35. Then, it is converted into a DC voltage component for the concentration of the magnetic substance, and then the correction detection signal acquired from the detection unit 34 from which the drain oil is discharged is locked in together with the reference signal of the same frequency.
  • the drain oil can be led in and out by the fluid lead-in / out means, the accumulated solid matter can be discharged, and the minute concentration of the magnetic substance in the drain oil can be accurately measured.
  • the second example of the embodiment uses a phase difference generated between the voltage of the exciting coil 46a and the voltage of the detecting coil 46b as in the first example.
  • the reactance change of the excitation coil 4 6 a due to the presence or absence of the magnetic material the change of the reactance of the detection coil (output coil) 4 6 b due to the presence or absence of the magnetic material, Change the phase difference of some of the changes in the eddy current generated in the inspection object, the change in Joule loss due to the eddy current, the change in the eddy current generated in the surrounding object of the coil, the change in Joule loss due to the eddy current, etc.
  • the voltage phase difference when measured by using it, it is affected by other changes, so the concentration of the magnetic material cannot be measured accurately.
  • the detection signal of the magnetic material when the drain oil is introduced and the detection signal for correction when the drain oil is discharged are obtained from the output signal of the AC voltage, and each signal and the reference are obtained by the lock-in amplifier 35.
  • the magnetic substance concentration is detected with high sensitivity with a slight phase difference, so the minute concentration of the magnetic substance in the drain oil can be reduced. Measurement can be performed with good accuracy.
  • the phase of the reference signal or the detection signal of the magnetic material is shifted, and when the magnetic material is not detected, the value obtained by converting the output signal of the lock-in amplifier 35 into a DC voltage signal is brought close to zero. Since the signal can be easily amplified, the minute concentration of the magnetic substance of the drain oil can be suitably measured.
  • the phase of the reference signal or the phase of the detection signal of the magnetic substance is shifted by about 90 ° from the other signal, and the signals are amplified by the amplifiers 5 3 and 5 5. Therefore, the minute concentration of the magnetic substance of the drain oil can be measured very suitably.
  • the detection means includes a detection coil for acquiring a detection signal of the magnetic body.
  • an AC voltage is applied to excitation coil 4 6 a to generate an output signal of AC voltage on detection coil 4 6 b, and magnetic material is generated from the output signal.
  • the reference signal is acquired from the oscillation circuit 49 connected to the excitation coil 46a, etc., the concentration of the magnetic substance is increased by the AC voltage. Since the voltage and phase change accordingly, the concentration of the magnetic substance can be easily measured, and the minute concentration of the magnetic substance of the drain oil can be suitably measured. Further, since the exciting coil 46a is used, a reference signal having the same frequency as the output signal of the detecting coil 46b can be easily prepared.
  • the detection means is arranged by winding a plurality of excitation coils 4 6a in opposite directions and arranging the detection coil 4 6 b between the plurality of excitation coils 4 6 a. If the output signal of the detection coil 4 6 b is small, the magnetic substance concentration is detected with high sensitivity via the amplifiers 5 3 and 5 5. Accurate concentration can be measured with high accuracy.
  • the fluid lead-in / out means when the fluid lead-in / out means is configured to lead out / drain the drain oil by the reciprocating motion of the piston 3 2a, the accumulated solid content is easily discharged and the measurement is continuously performed. In this way, measurement errors due to disturbances and changes over time can be eliminated, and the minute concentration of the magnetic substance in the drain oil can be measured continuously and accurately.
  • solids and other deposits are suitably eliminated by the reciprocating motion of piston 32a, periodic air blow and mechanical removal can be eliminated.
  • the drain oil can be reliably led out at regular intervals by the reciprocating motion of Biston 3 2 a, so the concentration of the magnetic substance in the drain oil can be measured continuously and accurately. can do.
  • the second example can obtain substantially the same operational effects as the first example.
  • Figure 12 shows a third example of the embodiment of the present invention.
  • the same reference numerals as those in FIG. 9 denote the same items.
  • the magnetic concentration measuring apparatus of the third example is a modification of the flow path 31 of the pipe through which the fluid such as drain oil flows, and the flow path 61 of the third example is substantially the same as the first example.
  • the same detector 3 4 is connected.
  • the flow path 61 of the pipe of the third example is for discharging drain oil from a device (not shown) such as a diesel engine equipped with a drive viston and a drive cylinder. Downstream of the main flow path 62 is curved from the horizontal direction to the vertical direction, the opening and closing valve 6 3 of the closing means disposed in the vertical portion of the main flow path 62, In order to avoid the valve 6 3, the branch flow path 6 6 is arranged in the same way as the first example to form the branch port 6 4 and the junction port 6 5, and between the on-off valve 6 3 and the branch port 6 4 An extended flow path 6 7 extending horizontally in length, and a small-diameter communication flow path 6 8 connecting the end of the extended flow path 6 7 and the horizontal portion of the main flow path 62 I have.
  • the main flow path 6 2 from the branch port 6 4 to the on-off valve 6 3 of the closing means becomes the first reservoir 6 9 for accumulating the old drain oil fluid, and the extended flow path 6 7
  • the communication channel 68 is a second reservoir 70 for receiving and storing a new drain oil fluid.
  • the branch flow path 6 6 allows the drain oil overflowing from the first reservoir 69 to flow downstream as in the first example.
  • the connecting flow path 68 is arranged so that the drain oil flows in first than the vertical portion of the main flow path 62.
  • the detection unit 34 is a cylindrical detection that forms an opening 43 in the second reservoir 70 so as to be arranged at the junction of the extended flow path 67 and the communication flow path 68.
  • Part body 4 4 fluid lead-in / out means 3 2 sliding inside detection part body 4 4 3 2, piston 3 2 a of fluid lead-in / out means 3 2 driving means for driving piston 3 2 a (not shown) )
  • a plurality of coils 4 6 of the detection means 3 3 disposed on the outer periphery of the detection section main body 4 4, a signal processing section 3 6 of the detection means 3 3 3 for controlling the signal of the coil 46, and a signal processing section 3 and 6 are provided with a measured value display and abnormality determination device 37. or,
  • the detection section main body 4 4 of the detection section 34 is arranged so as to extend from the end of the extension flow path 67 in order to increase the reliability of the fluid in and out.
  • the piston 3 2a of the fluid lead-in / out means 3 2 of the detector 3 4 is pushed in advance and the main flow path 6 2 of the pipe is The on-off valve 63 is closed, a certain amount of drain oil is stored in the first reservoir 69 and the second reservoir 70, and the drain of the second reservoir 70 is drained using the fluid lead-in means 32.
  • the concentration of the magnetic material is measured in substantially the same manner as in the first example.
  • the reservoir includes a first reservoir 69 for storing an old fluid and a second reservoir 70 for receiving and storing a new fluid.
  • a new drain oil fluid is introduced into the detector 3 4 by the fluid lead-in / out means 3 2 to prevent the old fluid and the new fluid from mixing, and the fluid magnetism
  • the body concentration can be measured continuously and accurately.
  • the concentration of the magnetic powder in the fluid can be continuously and Measurement can be performed with extremely high accuracy.
  • the magnetic substance concentration measuring device and the magnetic substance concentration measuring method of the present invention are not limited to the above-described embodiments.
  • the magnetic substance concentration is continuously measured to measure disturbances and changes over time.
  • the fluid is not limited to drain oil, but other oils, aqueous solutions, water,
  • the means is not limited, and other processing is possible.
  • the fluid lead-in / out means may be an eccentric rotating body instead of the piston, and other various modifications may be made without departing from the scope of the present invention.
  • the magnetic substance concentration measuring device and the magnetic substance concentration measuring method of the present invention can measure the concentration of a magnetic substance generated by sliding of a component.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

励磁用コイル11aと、励磁用コイル11aに交流電流が流れると励磁電圧を発生する出力用コイル11bとを備える磁性体濃度計測装置であって、励磁用コイル11aの電圧と出力用コイル11bの電圧との間の位相差の変化を計測する計測手段6を有し、検査対象物と、励磁用コイル11a又は/及び出力用コイル11bとを接近させるときに発生する位相差の変化から磁性体の濃度を精度良く計測し、更に流体の磁性体の微小な濃度を連続的に計測する。

Description

明 細 書
磁性体濃度計測装置及び磁性体濃度計測方法
技術分野
[0001 ] 本発明は、 磁性体濃度計測装置及び磁性体濃度計測方法に関するものであ る。
背景技術
[0002] 例えば、 ピストンのような往復動部品を有するエンジン等の原動機におい ては、 ピストンとシリンダ等の摺動により、 ピストン及びシリンダ等に磨耗 が生じ、 鉄粉等の磁性体が生じる。 而して、 このような磁性体が生じた際に は、 エンジンからのドレイン油が流通する流路にドレイン油と同伴して磁性 体が流れるため、 流路のドレイン油中に含まれる磁性体の濃度を測定し、 機 器の磨耗状況を正確に把握する必要がある。
[0003] 一般に、 機器の磨耗状態を把握する場合には、 手作業で潤滑油やドレイン 油をサンプリングして化学的な手法により磁性体の濃度を計測したり、 又、 潤滑油やドレイン油が流れる流路の近傍に磁性体濃度計測装置を配置して磁 性体の濃度を計測している。
[0004] ここで、 磁性体の濃度計測装置の一例としては、 ドレイン油が流下する流 路の近傍に、 磁場印加手段と、 超電導量子干渉素子の磁気センサを含む磁気 計測手段とを備え、 磁化された磁性成分の磁場のみを検出するものがあり、 例えば、 特許文献 1にとりあげられている。 又、 他の例としては、 ドレイン 油の流路近傍に第一コイルを配する実測用の L C発振回路と、 ドレイン油の 磁性体の影響を受けない位置に第二コイルを配する補正用の L C発生回路と を備え、 実測用の L C発生回路の発振周波数と、 補正用の L C発生回路の発 振周波数との差を利用して磁性体の濃度を検出するものがあり、 例えば、 特 許文献 2にとリあげられている。
特許文献 1 :特開平 1 0— 2 6 8 0 1 3号公報
特許文献 2:特開 2 0 0 5 _ 8 3 8 9 7号公報 発明の開示
発明が解決しょうとする課題
[0005] しかしながら、 従来例の如く、 化学的な手法、 磁性成分の磁場、 単なる発 振周波数の差によリ磁性体の濃度を計測する方法では、 磁性体の濃度を精度 良く計測することができないという問題があつた。
[0006] 又、 手作業によリ潤滑油やドレイン油等の流体をサンプリングして磁性体 の濃度を計測する場合には、 手間がかかると共に一定の間隔でしか計測を行 うことができないという問題があった。 更に、 従来の磁性体濃度計測装置を 用いる場合には、 固形分の堆積や流体の流量変化により、 外乱を生じると共 に、 連続的に精度良く計測できないという問題があった。 更に又、 他の例の 磁性体濃度計測装置を用いる場合であっても、 ノイズを一層低減して微量な 磁性体の濃度を精度良く計測することが求められていた。
[0007] 本発明はこのような実情に鑑みてなしたもので、 磁性体の濃度を精度良く 計測し、 更に流体に含まれる磁性体の微小な濃度を連続的に計測する磁性体 濃度計測装置及び磁性体濃度計測方法を提供することを目的とするものであ る。
課題を解決するための手段
[0008] 本発明は、 励磁用コイルと、 該励磁用コイルに交流電流が流れると励磁電 圧を発生する出力用コイルとを備える磁性体濃度計測装置であって、 前記励 磁用コイルの電圧と前記出力用コイルの電圧との間の位相差の変化を計測す る計測手段を有し、 検査対象物と、 前記励磁用コイル又は Z及び出力用コィ ルとを接近させるときに発生する前記位相差の変化から磁性体の濃度を把握 してなる磁性体濃度計測装置、 にかかるものである。
[0009] 本発明において、 前記計測手段にロックインアンプを使用することが好ま しい。
[0010] 本発明において、 前記ロックインアンプのリファレンス信号として前記励 磁用コイルの電圧を用いることが好ましい。
[0011 ] 本発明において、 検査対象物と前記励磁用コイル又は Z及び出力用コイル とを接近させる手段として、 磁性体を含む流体が流れる流路又は磁性体を含 む流体が溜る溜り部から検査対象物を導入する駆動手段を有することが好ま しい。
[0012] 本発明は、 磁性体を含む流体が流下する流路、 又は磁性体を含む流体が溜 まる溜り部に接続されて流体導出入手段及び検出手段を配する検出部と、 前 記検出手段に接続されてロックインアンプを配する信号処理部とを備え、 前 記検出部は、 流体導出入手段によリ流体を導出入し且つ検出手段を介して交 流電圧の出力信号から流体導入時の磁性体の検出信号と流体排出時の補正用 検出信号とを取得し、 前記信号処理部は、 同一周波数のリファレンス信号を 用いてロックインアンプにより前記各信号からノィズ除去を行うと同時に、 前記各信号とリファレンス信号との位相差を検出し、 検出した位相差の量に 応じて直流電圧信号に変換し、 変換後の各値の差分を磁性体の濃度として検 出するように構成されてなる磁性体濃度計測装置、 にかかるものである。
[0013] 本発明は、 磁性体を含む流体が流下する流路、 又は磁性体を含む流体が溜 まる溜り部に接続されて流体導出入手段及び検出手段を配する検出部と、 前 記検出手段に接続されてロックインアンプを配する信号処理部とを備え、 前 記検出部は、 流体導出入手段によリ流体を導出入し且つ検出手段を介して流 体導入時の磁性体の検出信号と流体排出時の補正用検出信号とを取得し、 前 記信号処理部は、 同一周波数のリファレンス信号を用いてロックインアンプ により前記各信号からノィズ除去を行つたのち直流電圧信号に変換し、 変換 後の各値の差分を磁性体の濃度として検出するように構成されてなる磁性体 濃度計測装置、 にかかるものである。
[0014] 本発明において、 前記信号処理部は、 リファレンス信号の位相又は磁性体 の検出信号の位相をずらし、 磁性体の非検出時に、 出力信号を直流電圧信号 に変換した値をゼロに近づけるように構成されることが好ましい。
[0015] 本発明において、 前記検出手段は、 磁性体の検出信号を取得する出力用コ ィルと、 励磁用コイルとを備え、 前記励磁用コイルに交流電圧を印加して出 力用コイルに交流電圧の出力信号を生じさせ、 前記出力信号から磁性体の検 出信号又は補正用検出信号を取得すると共に、 前記励磁用コイルに接続され た発振回路からリファレンス信号を取得するように構成されることが好まし い。
[0016] 本発明において、 前記検出手段は、 複数の励磁用コイルを互いに逆方向に 巻いて配置すると共に、 検出用コイルを複数の励磁用コイルの間に配置し、 前記検出用コイルの出力信号が小さくなるように構成されることが好ましい
[0017] 本発明において、 前記流体導出入手段は、 ピストンの往復動で流体を導出 入するように構成されることが好ましい。
[0018] 本発明において、 磁性体を含む検査対象物、 又は磁性体を含む流体から、 磁性体の濃度、 濃度の変化率、 濃度変化の振幅、 濃度変化の周期、 多点計測 時における濃度偏差のうち少なくとも一つ以上の情報を取得し、 予め求めた 磁性体の濃度と摺動物の状態との相関関係より、 摺動物の状態を判断するよ うに構成されることが好ましい。
[0019] 本発明において、 摺動物の状態に応じて警告又は Z及び警報を発する警告 手段を備えるように構成されることが好ましい。
[0020] 本発明において、 摺動物の状態に応じて、 摺動物に対する潤滑流体の供給 量、 供給時期、 供給圧力、 供給温度、 潤滑流体の噴射方法、 潤滑流体の性状 を制御するように構成するように構成されることが好ましい。
[0021 ] 本発明は、 励磁用コイルと、 該励磁用コイルに交流電流が流れると励磁電 圧を発生する出力用コイルとを用いる磁性体濃度計測方法であって、 検査対 象物と、 前記励磁用コイル又は Z及び出力用コイルとを接近させたときの前 記励磁用コィルの電圧と前記出力用コィルの電圧との間の位相差の変化を計 測して、 磁性体の濃度を把握する磁性体濃度計測方法、 にかかるものである
[0022] 本発明において、 前記出力用コイルの電圧信号を部分的に位相反転し、 直 流化して位相差の変化を計測することが好ましい。
[0023] 本発明において、 前記励磁用コイルの電圧信号を用いて、 前記出力用コィ ルの電圧信号を部分的に位相反転させることが好ましい。
[0024] 本発明において、 前記検査対象物は、 磁性体を含む流体が流れる流路又は 磁性体を含む流体が溜まる溜り部から導入されて前記励磁用コイル又は Z及 び出力用コイルに接近させることが好ましい。
[0025] 本発明は、 磁性体を含む流体が流下する流路、 又は磁性体を含む流体が溜 まる溜り部から検出部へ流体を導入し、 検出部の流体から磁性体の検出信号 を取得すると共に同一周波数のリファレンス信号を準備し、 磁性体の検出信 号と同一周波数のリファレンス信号とをあわせてロックインアンプによリノ ィズ除去を行い、 磁性体の濃度用の出力値として直流電圧信号に変換するよ うに処理される流体導入時の処理工程と、
前記検出部から流体を排出し、 検出部内の補正用検出信号を取得すると共 に同一周波数のリファレンス信号を準備し、 補正用検出信号と同一周波数の リファレンス信号とをあわせてロックインアンプによりノイズ除去を行い、 比較用の出力値として直流電圧信号に変換するように処理される流体排出時 の処理工程とを備え、
前記磁性体の濃度用の出力値を、 前記比較用の出力値によリ補正する磁性 体濃度計測方法、 にかかるものである。
[0026] 本発明において、 流体導入時の処理工程及び流体排出時の処理工程で、 交 流電圧の、 出力信号から磁性体の検出信号及び補正用検出信号を取得し、 磁 性体の検出信号及び補正用検出信号と、 同一周波数のリファレンス信号とを あわせてロックインアンプにより前記各信号からノィズ除去を行うと同時に 、 前記各信号とリファレンス信号との位相差及び前記信号の実効値を検出し 、 検出した位相差の量に応じて磁性体の濃度用の出力値及び比較用の出力値 に変換することが好ましい。
[0027] 本発明において、 流体導入時の処理工程と、 流体排出時の処理工程とを交 互に連続的に繰り返すことにより、 磁性体の濃度用の出力値と、 比較用の出 力値とから差分を更に直流電圧信号に変換し、 予め求めた相関性によって前 記差分を磁性体の濃度に変換し、 外乱や経時変化による計測誤差を排除する ことが好ましい。
[0028] 本発明において、 前記リファレンス信号の位相又は磁性体の検出信号の位 相をずらし、 信号処理装置の出力信号を直流電圧信号に変換した値をゼロに 近づけることは、 後段のアンプで最大限の増幅をする上で好ましい。
[0029] 本発明において、 磁性体を含む検査対象物、 又は磁性体を含む流体から、 磁性体の濃度、 濃度の変化率、 濃度変化の振幅、 濃度変化の周期、 多点計測 時における濃度偏差のうち少なくとも一つ以上の情報を取得し、 予め求めた 磁性体の濃度と摺動物の状態との相関関係より、 摺動物の状態を判断するこ とが本装置の自己診断を行い、 適切な状態で計測していることを常時確認す る上で好ましい。
[0030] 本発明において、 摺動物の状態に応じて警告又は Z及び警報を発すること が適切な状態で計測していることを常時確認する上で好ましい。
[0031 ] 本発明において、 摺動物の状態に応じて、 摺動物に対する潤滑流体の供給 量、 供給時期、 供給圧力、 供給温度、 潤滑流体の噴射方法、 潤滑流体の性状 を制御することが好ましい。
[0032] このように、 本発明によれば、 磁性体の濃度に応じて生じる励磁用コイル の電圧と出力用コイルの電圧とその信号の位相差の変化を利用するので、 磁 性体を含む検査対象物と、 励磁用コィル又は Z及び出力用コィルとを接近さ せることで、 この電圧と位相差の変化を感度良く検出することができる。 即 ち、 磁性体の濃度を精度良く計測することができる。 又、 本発明は、 励磁用 コイルの電圧と出力用コイルの電圧との間に生じる位相差及び出力用コイル の電圧変化を用いるので、 磁性体の有無による励磁用コイルのリアクタンス の変化、 磁性体の有無による出力用コイルのリアクタンスの変化、 検査対象 物に発生する渦電流の変化、 渦電流によるジュール損失の変化、 コイルの周 辺物体に発生する渦電流の変化、 渦電流によるジュール損失の変化等の様々 な変化を総合的に捉え、 磁性体の濃度を精度良く計測することができる。
[0033] 本発明によれば、 励磁電圧と同一の周波数のリファレンス信号を準備し、 検出部内の流体より磁性体の検出信号を取得してリファレンス信号との位相 差及び出力用コイルの電圧変化を計測し、 計測した位相差の量に応じて直流 電圧信号に変換し、 次に、 流体が排出された検出部より、 検出部内の補正用 検出信号を取得してリファレンス信号との位相差を計測し、 計測した位相差 の量に応じて直流電圧信号に変換し、 変換後の流体導入時の値と、 変換後の 流体排出時の値との差分を磁性体の濃度とするので、 位相差の変化及び出力 用コイルの電圧変化を利用して磁性体の濃度を極めて精度良く計測すること ができる。 なお、 位相差の変化及び出力用コイルの電圧変化は最終的に電圧 の実効値に変換され、 磁性体検出信号とする。
[0034] 本発明によれば、 励磁電圧と同一の周波数のリファレンス信号を準備し、 検出部内の流体よリ取得された磁性体の検出信号をバンドバスフィルタでノ ィズを除去し、 更に、 リファレンス信号とあわせてノイズ除去し、 磁性体の 濃度用の直流電圧成分に変換し、 次に、 流体が排出された前記検出部より取 得された補正用検出信号を、 リファレンス信号とあわせてノイズ除去し、 比 較用の直流電圧成分に変換し、 変換後の各直流成分の値の差分を流体の磁性 体の濃度とするので、 測定時の出力信号に重畳したノイズを除去すると共に 、 流体の導出入により堆積した固形分を排出し、 流体の磁性体の微小な濃度 を精度良く計測することができる。
[0035] 流体の導出入を繰り返し行って各計測値の差分を複数取得するので、 複数 回分のデータを処理して経時変化による計測誤差を常に排除し、 流体の磁性 体の微小な濃度を連続的に計測することができる。
[0036] 本発明において、 交流電圧の出力信号から流体導入時の磁性体の検出信号 と流体排出時の補正用検出信号とを取得し、 前記各信号とリファレンス信号 との位相差を検出し、 検出した位相差の量に応じた直流電圧信号に変換する ことにより、 わずかな位相差を大きな出力値として得られ、 磁性体の濃度を 高感度に検出するので、 流体の磁性体の微小な濃度を好適に精度良く計測す ることができる。
発明の効果
[0037] 以上説明したように、 本発明によれば、 位相差を利用するので、 磁性体の 濃度を精度良く、 連続的に計測することができるという優れた種々の効果を 奏し得る。
図面の簡単な説明
[0038] [図 1 ]本発明の実施例の第一例を示す概念図である。
[図 2]本発明の実施例の第一例において他の例を示す概念図である。
[図 3]本発明の実施例における流体導出入手段及び信号処理部の構成を示すブ ロック図である。
[図 4]本発明の実施例における流体導出入手段及び信号処理部の構成を示す他 の例のブロック図である。
[図 5]磁性体の影響のない状態で出力信号から比較用の出力値 (直流電圧信号 ) までの処理を示す概念図である。
[図 6]磁性体の影響のある状態で出力信号から磁性体の濃度用の出力値 (直流 電圧信号) までの処理を示す概念図である。
[図 7]磁性体 (検査対象物) の濃度等を求めて摺動物の摺動状態を判定するフ ロー図である。
[図 8]実際に検査対象物を測定した際の検出状態を示すグラフである。
[図 9]本発明の実施例の第二例を示す概略図である。
[図 10]本発明の実施例の第二例における流体導出入手段及び信号処理部の構 成を示すブロック図である。
[図 1 1 ]本発明の実施例の第二例における流体導出入手段及び信号処理部の構 成を示す他の例のブロック図である。
[図 12]本発明の実施例の第三例を示す概略図である。
符号の説明
[0039] 1 流路
2 流体導出入手段 (駆動手段)
2 a ピストン
3 検出手段
4 検出部 5 信号処理装置
6 信号処理部 (計測手段)
7 計測値表示及び異常判定装置 (警告手段)
1 1 コイル
1 1 a 励磁用コイル
1 1 b 検出用コイル (出力用コイル)
1 1 c 励磁用コイル
1 1 d 検出用コイル (出力用コイル)
1 4 正弦波発振回路 (発振回路)
3 1 流路
3 2 流体導出入手段
3 2 a ビス卜ン
3 3 検出手段
3 4 検出部
3 5 ロックインアンプ
3 6 信号処理部
3 7 計測値表示及び異常判定装置 (警告手段)
4 6 コイル
4 6 a 励磁用コイル
4 6 b 検出用コイル (出力用コイル)
4 9 正弦波発振回路 (発振回路)
6 1 流路
7 0 第二の溜め部
発明を実施するための最良の形態
本発明の実施例の第一例である磁性体濃度計測装置及び磁性体濃度計測方 法を説明する。 図 1〜図 8は本発明の実施例の第一例を示すものである。 第一例の磁性体濃度計測装置及び磁性体濃度計測方法は、 磁性体粉を含む ドレイン油等の流体が流れる配管の流路 1に、 流体導出入手段 (駆動手段) 2及び検出手段 3を備える検出部 4を接続し、 検出部 4の検出手段 3には、 信号処理装置 5を備える信号処理部 (計測手段) 6を接続し、 更に信号処理 部 6には、 計測値表示及び異常判定装置 7を接続している。
[0041 ] 配管の流路 1は、 直線で水平方向に延在し、 摺動物を備えた機器 (図示せ ず) へ潤滑油を流出入するものである。 ここで、 配管の流路 1は、 直線で水 平方向に延在する流路に限定されるものでなく、 曲線状に延在する流路、 角 度を有して延在する流路、 鉛直方向や斜め方向に延在する流路でも良い。 又 、 流体は、 潤滑油に限定されるものでなく、 流体ならばどのようなものでも 良い。 更に、 摺動物は、 駆動用ピストン及び駆動用シリンダに限定されるも のでなく、 摺動するものならばどのようなものでも良い。
[0042] 検出部 4は、 流路 1に開口 8を形成する筒状の検出部本体 9と、 検出部本 体 9の内部を摺動して潤滑油 (検出流体) を導出入する流体導出入手段 2の ビストン 2 aと、 流体導出入手段 2のビストン 2 aを進退動させる駆動手段 の回転部 1 0と、 検出部本体 9の外周部に配置される検出手段 3のコイル 1 1を備えている。
[0043] 又、 検出手段 3のコイル 1 1は、 互いに逆方向に巻かれて直列に接続され た二個の励磁用コイル 1 1 a, 1 1 aと、 二個の励磁用コイル 1 1 a, 1 1 aの間に近接配置される検出用コイル (出力用コイル) 1 1 bとを備え、 励 磁用コイル 1 1 aに交流電圧を印加した際には、 検出用コイル 1 1 bに交流 電圧 (励磁電圧) の出力信号を生じさせるようになつている。 又、 二個の励 磁用コイル 1 1 a, 1 1 aと、 検出用コイル 1 1 bは、 相互インダクタンス が略均等になるようにコイル 1 1の巻き数、 コイル 1 1間の距離を調整して 、 相互インダクタンスが略同じとなるように調整している。 又、 励磁用コィ ル 1 1 aと検出用コイル 1 1 bの個数は特に限定されるものではない。 更に コイル 1 1の外方には、 外部からノイズが入らないよう、 アルミ製の筒等の シールドを設けることが好ましい。
[0044] 更に、 検出手段 3のコイル 1 1は、 図 2に示す如く、 一個の励磁用コイル
1 1 cと、 一個の励磁用コイル 1 1 cに近接して配置される検出用コイル ( 出力用コイル) 1 1 dとを備えても良く、 この場合も同様に、 励磁用コイル
1 1 cに交流電圧を印加した際には、 検出用コイル 1 1 dに交流電圧 (励磁 電圧) の出力信号を生じるようになつており、 磁性体の非検出時には、 検出 用コイル 1 1 dの交流電圧 (励磁電圧) の出力信号が小さくなるように調整 されている。
[0045] 信号処理部 6は、 図 3に示す如く、 検出用コイル 1 1 bの出力信号から磁 性体の検出信号又は補正用検出信号を取得するよう、 検出用コイル 1 1 bに 接続されて微弱な波形信号を増幅する増幅回路 1 2と、 増幅回路 1 2に接続 されて波形信号のノイズを所定範囲で削除するバンドパスフィルタ 1 3と、 励磁用の正弦波を得る正弦波発振回路 1 4と、 正弦波発振回路 1 4に接続さ れて正弦波の位相をずらす位相回路 1 5と、 位相回路 1 5に接続されて正弦 波を矩形波にするエツジ卜リガー回路 1 6とを備えている。
[0046] ここで、 位相回路 1 5は、 設定の際や調整の際に、 磁性体非検出時の状態 で位相を 1 0 ° 〜 1 7 0 ° 、 好ましくは 4 5 ° 〜 1 3 5 ° 、 更に好ましくは 9 0 ° 前後ずらすことが好ましい。 なお、 波形の電気的なずれにより多少前 後してずらしても良い。 又、 位相回路 1 5は、 バンドパスフィルタ 1 3と信 号処理装置 5との間に位置し、 リファレンス信号の代わりに、 磁性体の検出 信号及び補正用検出信号をずらすようにしても良い。 更に、 信号処理装置 5 は、 ロックインアンプが好ましいが、 位相差の変化を計測できる構成ならば どのようなものでも良い。
[0047] 又、 信号処理部 6は、 バンドパスフィルタ 1 3とェッジ卜リガー回路 1 6 とに夫々接続される信号処理装置 5と、 信号処理装置 5に接続されて出力信 号を直流電圧信号に変換するローパスフィルタ 1 7と、 ローパスフィルタ 1 7に接続されて直流電圧信号を増幅する増幅器 1 8と、 増幅器 1 8に接続さ れ且つ検出流体の導出入による直流電圧信号の変動量のみを透過させる交流 信号透過回路 1 9と、 交流信号透過回路 1 9に接続される増幅器 2 0とを備 えている。 ここで、 交流信号透過回路 1 9と増幅器 2 0の間には、 図 4に示 す如く、 ピストン 2 aの動きに応じた交流信号を直流信号に変換する直流変 換回路 2 1を備え、 後の処理を容易にするようにしても良い。
[0048] 更に計測値表示及び異常判定装置 7は、 図 1〜図 4に示す如く、 信号処理 部 6の増幅器 2 0に接続されて、 信号を磁性体の濃度に変換するようになつ ており、 内部には、 摺動物の潤滑状態に対して潤滑制御や異常の警告等を為 し得るよう、 所定の制御を行う制御部 2 2を備えている。
[0049] 以下、 本発明の実施例の第一例の作用を説明する。
[0050] 潤滑油 (流体) に含まれる磁性体粉の濃度を計測する際には、 流体導出入 手段 2のビストン 2 aを引き込むことによリ流路 1から潤滑油を検出部 4内 に導入し、 潤滑油のある状態で出力信号を計測処理する。 ここで、 流体導出 入手段 2のピストン 2 aは、 励磁用コイル 1 1 aの一個、 検出用コイル 1 1 bの半分程度にドレイン油が位置するまで潤滑油を引き込むことが好ましい
[0051 ] 検出部 4内にドレイン油を導入した状態で計測処理する際 (流体導入時の 処理工程) には、 検出部 4の潤滑油から、 検出用コイル 1 1 b、 増幅回路 1 2及びバンドパスフィルタ 1 3を介して磁性体の検出信号を取得する (図 6 では (Α ' ) ) と共に、 励磁用コイル 1 1 a、 正弦波発振回路 1 4、 位相回路 1 5及びエッジトリガー回路 1 6により、 所定の角度で位相をずらして励磁 電圧と同一周波数で一定の位相差を生じる矩形波のリファレンス信号を準備 し (図 6では (Β ' ) ) 、 信号処理装置 5により、 リファレンス信号をあわせ てノイズ除去を行うと共に、 磁性体の検出信号とリファレンス信号との位相 差を検出し、 ローパスフィルタ 1 7により、 磁性体の濃度用の出力値として 平滑な直流電圧信号に変換し (図 6では (D ' ) ) 、 増幅器 1 8を介して交流 信号透過回路 1 9に入力する。 なお、 図 6の (Β ' ) では位相を 9 0 ° 前後ず らして設定しており、 図 6の (C ' ) は、 リファレンス信号により、 磁性体の 検出信号を反転させた状態を示し、 この面積を積分処理すると図 6の (D ' ) となっている。
[0052] 続いて、 流体導出入手段 2のピストン 2 aを押し出すことにより検出部 4 内の潤滑油を排出 (導出) し、 潤滑油がない状態 (流体導出入手段 2自体) の出力信号を計測処理する。 ここで、 流体導出入手段 2の往復運動の時間間 隔は、 計測する流体の粘度等により変化するが、 数秒間隔で行うことが好ま しい。
[0053] 検出部 4内から潤滑油を排出 (導出) した状態で計測処理する際 (流体排 出時の処理工程) には、 検出部 4から検出用コイル 1 1 b、 増幅回路 1 2及 びバンドパスフィルタ 1 3を介して補正用検出信号を取得する (図 5では ( A) ) と共に、 励磁用コイル 1 1 a、 正弦波発振回路 1 4、 位相回路 1 5及 びエッジトリガー回路 1 6により、 所定の角度で位相をずらして励磁電圧と 同一周波数で一定の位相差を生じる矩形波のリファレンス信号を準備し (図 5では (B ) ) 、 信号処理装置 5により、 リファレンス信号をあわせてノィ ズ除去を行うと共に、 補正用検出信号とリファレンス信号との位相差を検出 し、 ローパスフィルタ 1 7により、 比較用の出力値として平滑な直流電圧信 号に変換し (図 5では (D ) ) 、 増幅器 1 8を介して交流信号透過回路 1 9 に入力する。 なお、 図 5の (B ) では位相を 9 0 ° 前後ずらして設定してお リ、 図 5の (C) は、 リファレンス信号により、 磁性体の検出信号を反転さ せた状態を示し、 この面積を積分処理すると図 5の (D ) となっている。
[0054] そして、 交流信号透過回路 1 9により、 磁性体の濃度用の出力値を補正す るよう、 図 6に示す如く、 磁性体の濃度用の出力値と、 比較用の出力値とか ら差分 A Vを求め、 計測値表示及び異常判定装置 7により、 予め求めた濃度 との相関性 (関数処理) によって差分を磁性体の濃度に変換する。 ここで、 磁性体の濃度用の出力値 (直流電圧信号) と、 比較用の出力値 (直流電圧信 号) は、 信号処理装置 5により、 磁性体の出力信号とリファレンス信号との 位相差 A f と、 及び補正用の出力信号とリファレンス信号と位相差 (図示せ ず) とを検出し、 検出した位相差の量に応じて変換されるものであっても良 い。
[0055] 続いて、 流体導出入手段 2のピストン 2 aを連続的に往復動することによ リ、 検出部 4内に潤滑油を導入した状態での計測処理 (流体導入時の処理ェ 程) と、 検出部 4内から潤滑油を排出 (導出) した状態での計測処理 (流体 排出時の処理工程) とを交互に連続的に繰り返し、 交流信号透過回路 1 9等 により、 磁性体の濃度用の出力値と、 比較用の出力値とから差分の信号を検 出すると共に移動平均処理を行い、 計測値表示及び異常判定装置 7を介して 磁性体の濃度の平均値を求める。 なお、 磁性体の濃度用の出力値は、 図 5の ( D ' ) の如く、 流体導出入手段 2の往復動により、 比較用の出力値に対して 上下動する交流信号となっている。 又、 この交流信号を直流変換回路 2 1を 用いて直流信号に変換しても良い。
[0056] 更に、 計測表示及び異常判定装置 7では、 制御部 2 2により、 図 7に示す 如く、 予め、 原動機のピストン等における摺動物の摺動状態と磁性体の濃度 との相関関係 (基準データ) が入力される (ステップ S 1 ) と共に、 磁性体 を含む流体 (検査対象物) から、 信号処理部 6等を介して磁性体の濃度、 磁 性体の濃度の変化率、 磁性体の濃度変化の振幅、 磁性体の濃度変化の周期、 多点計測時における濃度偏差のうち少なくとも一つ以上の情報を取得し (ス テツプ S 2 ) 、 次いで、 相関関係 (基準データ) と磁性体を含む流体 (検査 対象物) から取得した情報を比較し (ステップ S 3 ) 、 ピストン等の摺動物 の摺動状態を判定し (ステップ S 4 ) 、 ピストン等の摺動物の摺動状態に応 じて、 摺動物に対するドレイン油 (潤滑流体) の供給量、 供給時期、 供給圧 力、 供給温度、 ドレイン油 (潤滑流体) の噴射方法、 ドレイン油 (潤滑流体 ) の性状を制御する (ステップ S 5 ) と共に、 磁性体粉の濃度が一定の濃度 を超えてビストン等の摺動物の磨耗量が大きいと判定した場合には、 整備が 必要な時期に達しているとして、 計測値表示及び異常判定装置 7より警告表 示、 警報、 警告灯を介し管理者に告知する (ステップ S 6 ) 。
[0057] このように、 実施例の第一例によれば、 励磁用コイル 1 1 aの電圧と検出 用コイル (出力用コイル) 1 1 bの電圧との間に生じる位相差を用いると共 に、 磁性体を含む検査対象物と、 励磁用コイル 1 1 a又は Z及び出力用コィ ル 1 1 bとを接近させた際に、 磁性体の濃度に応じて生じる位相差の変化を 利用するので、 磁性体の濃度を精度良く計測することができる。 又、 実施例 の第一例は、 励磁用コイル 1 1 aの電圧と検出用コイル 1 1 bの電圧との間 に生じる位相差及び出力用コイル 1 1 bの電圧変化を用いるので、 磁性体の 有無による励磁用コイル 1 1 aのリアクタンスの変化、 磁性体の有無による 検出用コイル (出力用コイル) 1 1 bのリアクタンスの変化、 検査対象物に 発生する渦電流の変化、 渦電流によるジュール損失の変化、 コイルの周辺物 体に発生する渦電流の変化、 渦電流によるジュール損失の変化等の様々な変 化を総合的に捉え、 磁性体の濃度を精度良く計測することができる。 ここで 、 磁性体の濃度を計測する際に、 磁性体の有無による励磁用コイル 1 1 aの リアクタンスの変化、 磁性体の有無による検出用コイル (出力用コイル) 1 1 bのリアクタンスの変化、 検査対象物に発生する渦電流の変化、 渦電流に よるジュール損失の変化、 コイルの周辺物体に発生する渦電流の変化、 渦電 流によるジュール損失の変化等の中から一部の変化の位相差を利用して計測 した場合には、 電圧の位相差の場合と異なり、 他の変化の影響を受けるので 、 磁性体の濃度を精度良く計測することができない。
[0058] 事実、 本発明者が行った実験結果によれば、 図 8のグラフで示す通り、 実 施例で数百 P p mの鉄粉を含む流体 (検査対象) を測定した場合には、 検査 対象物の投入と同時に出力 (濃度) が上昇し、 更に検査対象物の排出に伴つ て出力 (濃度) が低下しており、 磁性体に対する反応が明瞭且つ迅速で、 磁 性体の濃度を精度良く計測できることが明らかである。
[0059] 又、 第一例において、 計測手段に信号処理装置 5のロックインアンプを使 用すると、 ロックインアンプにより磁性体の検出信号とリファレンス信号と の位相差を検出すると共にノイズ除去し、 検出した位相差の量に応じた信号 に変換するので、 わずかな位相差で磁性体の濃度を高感度に検出し、 潤滑油 の磁性体の微小な濃度を好適に精度良く計測することができる。
[0060] 更に、 第一例において、 ロックインアンプのリファレンス信号として励磁 用コイル 1 1 aの電圧を用いると、 交流電圧の出力信号から潤滑油導入時の 磁性体の検出信号と、 潤滑油排出時の補正用検出信号とを取得するので、 口 ックインアンプにより位相差を容易に検出すると共にノイズ除去し、 潤滑油 の磁性体の微小な濃度を好適に精度良く計測することができる。 [0061] 又、 第一例において、 検査対象物と励磁用コイル 1 1 a又は Z及び出力用 コイル 1 1 bとを接近させる手段として、 磁性体を含む流体が流れる流路又 は磁性体を含む流体が溜る溜り部から検査対象物を導入する駆動手段を有す ると、 流体の検査対象を容易に取得若しくは排出するので、 潤滑油の磁性体 の微小な濃度を連続的に精度良く計測することができる。
[0062] 第一例によれば、 検出部 4内の流体より磁性体の検出信号を取得すると共 に同一周波数のリファレンス信号を準備し、 リファレンス信号との位相差の 変化及び出力用コイル 1 1 bの電圧変化を計測し、 計測した位相差の量に応 じた信号に変換し、 次に、 流体が排出された検出部 4より検出部 4内の補正 用検出信号を取得すると共にリファレンス信号との位相差の変化を計測し、 計測した位相差の量に応じた信号に変換し、 変換後の流体導入時の値と、 変 換後の流体排出時の値との差分を磁性体の濃度とするので、 位相差の変化及 び出力用コイル 1 1 bの電圧変化を利用して磁性体の濃度を極めて精度良く 計測することができる。 なお、 位相差の変化及び出力用コイル 1 1 bの電圧 変化は最終的に電圧の実効値に変換され、 磁性体検出信号とする。
[0063] 又、 磁性体の濃度を、 潤滑油の導出入の 1回における変化幅を計測値とし て取得すると共に、 潤滑油の導出入を連続して行って信号値を連続して取得 するので、 複数のデータを平均処理して、 経時変化による基準点 (ゼロ点) のドリフトや、 オフセットの変化 (揺らぎ) の影響を常に排除し、 ドレイン 油の磁性体の微小な濃度を連続的に計測することができる。
[0064] 第一例において、 リファレンス信号の位相又は磁性体の検出信号の位相は 、 他方の信号から、 ずらして設定されると、 増幅器 1 8, 2 5による信号の 増幅を一層容易に行い得るので、 ドレイン油の磁性体の微小な濃度を好適に 計測することができる。 ここで、 位相を 1 0 ° 〜 1 7 0 ° ずらした場合には 磁性体の微小な濃度を計測でき、 位相を 4 5 ° 〜 1 3 5 ° ずらした場合には 磁性体の微小な濃度を好適に計測でき、 位相を 9 0 ° 前後ずらした場合には 磁性体の微小な濃度を極めて好適に計測できる。
[0065] 第一例において、 リファレンス信号の位相又は磁性体の検出信号の位相を ずらし、 磁性体の非検出時に、 信号処理装置 (ロックインアンプ) 5の出力 信号を直流電圧信号に変換した値をゼロに近づけると、 信号の増幅を容易に 行い得るので、 ドレイン油の磁性体の微小な濃度を好適に計測することがで さる。
[0066] 第一例において、 検出手段 3は、 磁性体の検出信号を取得する検出用コィ ル 1 1 bと、 励磁用コイル 1 1 aとを備え、 励磁用コイル 1 1 aに交流電圧 を印加して検出用コイル 1 1 bに交流電圧の出力信号を生じさせ、 出力信号 から磁性体の検出信号又は補正用検出信号を取得すると共に、 励磁用コイル 1 1 aに接続された発振回路 1 4等からリファレンス信号を取得するように 構成されると、 交流電圧により磁性体の濃度に応じて電圧及び位相が変化す るので、 磁性体の濃度の計測を容易にし、 潤滑油の磁性体の微小な濃度を好 適に計測することができる。 又、 励磁用コイル 1 1 aを用いるので、 検出用 コイル 1 1 bの出力信号に対する同一周波数のリファレンス信号を容易に準 備することができる。
[0067] 第一例において、 検出手段 3は、 複数の励磁用コイル 1 1 aを互いに逆方 向に巻いて配置すると共に、 検出用コイル 1 1 bを複数の励磁用コイル 1 1 aの間に配置し、 検出用コイル 1 1 bの出力信号が小さくなるように構成さ れると、 増幅器 1 8, 2 5を介して磁性体の濃度を高感度に検出するので、 ドレイン油の磁性体の微小な濃度を精度良く計測することができる。
[0068] 第一例において、 流体導出入手段 2は、 ピストン 2 aの往復動でドレイン 油を導出入するように構成されると、 堆積した固形分を容易に排出すると共 に計測を連続的に行い、 外乱や経時変化による計測誤差を排除し、 ドレイン 油の磁性体の微小な濃度を連続的に精度良く計測することができる。 又、 ピ ストン 2 aの往復運動によリ固形分等の堆積物を好適に排除するので、 定期 的なエアブローや機械的な除去を不要にすることができる。 更に、 ドレイン 油が高粘度の場合であってもビストン 2 aの往復運動により一定間隔でドレ ィン油を確実に導出入し得るので、 ドレイン油の磁性体の濃度を連続的に精 度良く計測することができる。 [0069] 第一例において、 信号処理部 6は、 同一周波数のリファレンス信号を用い て、 流体導入時の磁性体の検出信号、 又は流体排出時の補正用検出信号から ノィズ除去を行う信号処理装置 5を備えると、 検出部 4内の潤滑油よリ取得 された磁性体の検出信号をバンドパスフィルタ 1 3でノイズを除去し、 更に 、 同一周波数のリファレンス信号とあわせて信号処理装置 5によリノイズ除 去し、 次に、 ドレイン油が排出された検出部 4より取得された補正用検出信 号を、 リファレンス信号とあわせて信号処理装置 5によりノイズ除去し、 変 換後の各信号の値の差分をドレイン油の磁性体の濃度とするので、 測定時の 出力信号に重畳したノィズを除去し、 ドレイン油の磁性体の微小な濃度を精 度良く計測することができる。
[0070] 第一例において、 磁性体を含む流体 (検査対象物) から、 磁性体の濃度、 濃度の変化率、 濃度変化の振幅、 濃度変化の周期、 多点計測時における濃度 偏差のうち少なくとも一つ以上の情報を取得し、 予め求めた磁性体の濃度と 摺動物の状態との相関関係より、 摺動物の摺動状態を判断すると、 ピストン 等の摺動物の状態確認、 メンテナンス、 ドレイン油 (潤滑流体) の制御を極 めて容易且つ正確に行うことができる。
[0071 ] 第一例において、 摺動物の状態に応じて警告又は Z及び警報を発する計測 表示及び異常判定装置 (警告手段) 7を備えると、 ピストン等の摺動物の状 態確認、 メンテナンスを極めて容易且つ迅速に行うことができる。
[0072] 第一例において、 摺動物の状態に応じて、 摺動物に対するドレイン油 (潤 滑流体) の供給量、 供給時期、 供給圧力、 供給温度、 ドレイン油 (潤滑流体 ) の噴射方法、 潤滑流体の性状を制御すると、 ピストン等の摺動物の摺動状 態を好適に維持することができる。
[0073] 本発明の実施例の第二例である磁性体濃度計測装置及び磁性体濃度計測方 法を説明する。 図 9〜図 1 1は本発明の実施例の第二例を示すものである。
[0074] 第二例の磁性体濃度計測装置及び磁性体濃度計測方法は、 磁性体粉を含む ドレイン油等の流体が流下する配管の流路 3 1に、 流体導出入手段 3 2及び 検出手段 3 3を備える検出部 3 4を接続し、 検出部 3 4の検出手段 3 3には 、 ロックインアンプ 3 5等を備える信号処理部 3 6を接続し、 更に信号処理 部 3 6には、 計測値表示及び異常判定装置 3 7を接続している。
[0075] ここで、 配管の流路 3 1は、 駆動用ビストンと駆動用シリンダ等を備えた ディーゼルエンジン等の機器 (図示せず) からドレイン油を排出するもので あり、 流路 3 1の下流には、 ドレイン油の溜め部 3 8を形成する閉止手段の 開閉弁 3 9と、 開閉弁 3 9を回避するように配置される分岐流路 4 0とを備 えておリ、 分岐流路 4 0は、 溜め部 3 8の上流側に形成される分岐口 4 1と 、 開閉弁 3 9の下流側に形成される合流口 4 2とを備え、 溜め部 3 8から溢 れ出したドレイン油を下流側へ流すようになつている。 又、 流体は、 ドレイ ン油に限定されるものでなく、 磁性体を含む流体ならばどのようなものでも 良い。
[0076] 検出部 3 4は、 開閉弁 3 9と分岐口 4 1の間の流路 3 1に配置されるよう に溜め部 3 8に開口 4 3を形成する筒状の検出部本体 4 4と、 検出部本体 4 4の内部を摺動する流体導出入手段 3 2のピストン 3 2 aと、 流体導出入手 段 3 2のピストン 3 2 aを進退動させる駆動手段の回転部 4 5と、 検出部本 体 4 4の外周部に配置される検出手段 3 3の複数のコイル 4 6を備えている
[0077] 検出手段 3 3の複数のコイル 4 6は、 互いに逆方向に巻かれて直列に接続 された二個の励磁用コイル 4 6 a, 4 6 aと、 二個の励磁用コイル 4 6 a, 4 6 aの間に配置された検出用コイル 4 6 bとを備え、 励磁用コイル 4 6 a に交流電圧を印加した際には、 検出用コイル 4 6 bに交流電圧の出力信号を 生じさせると共に、 磁性体の非検出時に検出用コイル 4 6 bの出力信号が小 さくなるように調整されている。 又、 二個の励磁用コイル 4 6 a, 4 6 aと 、 検出用コイル 4 6 bは、 相互インダクタンスが略均等になるようにコイル 4 6の巻き数、 コイル 4 6間の距離を調整しており、 相互インダクタンスが 略均等になるように調整している。 ここで、 検出用コイル 4 6 bの出力信号 は小さくなるように調整することが好ましい。 又、 励磁用コイル 4 6 aと検 出用コイル 4 6 bの個数は特に限定されるものではない。 更にコイル 4 6の 外方には、 外部からノイズが入らないよう、 アルミ製の筒等のシールドを設 けることが好ましい。 又、 コイル 4 6は、 第一例と同様に、 一個の励磁用コ ィルと、 一個の励磁用コイルに近接して配置される検出用コイル (出力用コ ィル) とを備えても良い。
[0078] 信号処理部 3 6は、 検出用コイル 4 6 bの出力信号から磁性体の検出信号 又は補正用検出信号を取得するよう、 検出用コイル 4 6 bに接続されて微弱 な波形信号を増幅する増幅回路 4 7と、 増幅回路 4 7に接続されて波形信号 のノイズを所定範囲で削除するバンドパスフィルタ 4 8と、 励磁用コイル 4 6 a , 4 6 aに接続されて励磁用の正弦波を得る正弦波発振回路 4 9と、 正 弦波発振回路 4 9に接続されて正弦波の位相をずらす位相回路 5 0と、 位相 回路 5 0に接続されて励磁用の正弦波を矩形波にするエッジトリガー回路 5 1とを備えている。 ここで、 位相回路 5 0は、 バンドパスフィルタ 4 8と口 ックインアンプ 3 5の間に位置し、 リファレンス信号の代わりに、 磁性体の 検出信号及び補正用検出信号を 9 0 ° 前後ずらすようにしても良い。 又、 位 相回路 5 0は、 磁性体非検出時に位相を 9 0 ° ずらすことが好ましいが、 波 形の電気的なずれにより多少前後してずらしても良い。 更に、 位相回路 5 0 は、 位相のずれを第一例と略同様に、 磁性体非検出時の状態で 1 0 ° 〜 1 7 0 ° の範囲にしても良い。
[0079] 又、 信号処理部 3 6は、 バンドパスフィルタ 4 8とエッジトリガー回路 5
1とに夫々接続されるロックインアンプ 3 5と、 ロックインアンプ 3 5に接 続されて出力信号を直流電圧信号に変換するローパスフィルタ 5 2と、 ロー パスフィルタ 5 2に接続されて直流電圧信号を増幅する増幅器 5 3と、 増幅 器 5 3に接続される交流信号透過回路 5 4と、 交流信号透過回路 5 4に接続 される増幅器 5 5とを備えている。 ここで、 交流信号透過回路 5 4と増幅器 5 5の間には、 図 1 1に示す如く、 ピストン 3 2 aの動きに応じた交流信号 を直流信号に変換する直流変換回路 5 6を備え、 後の処理を容易にするよう にしても良い。
[0080] 更に計測値表示及び異常判定装置 3 7は、 信号処理部 3 6の増幅器 5 5に 接続されて、 信号を磁性体の濃度に変換し且つ異常の警告を為し得るように なっている。 更に計測値表示及び異常判定装置 3 7は、 第一例と同様に、 ピ ス卜ン等の摺動物の潤滑状態に対して潤滑制御や異常の警告等を為し得るよ う、 所定の制御を行う制御部 (図示せず) を備えても良い。
[0081 ] 以下、 本発明の実施例の第二例の作用を説明する。
[0082] ドレイン油 (流体) に含まれる磁性体粉の濃度を計測する際には、 予め検 出部 3 4の流体導出入手段 3 2のビストン 3 2 aを押し出した状態で流路 3 1の開閉弁 3 9を閉じ、 溜め部 3 8に一定量のドレイン油を溜める。 次に、 流体導出入手段 3 2のピストン 3 2 aを引き込むことにより溜め部 3 8のド レイン油を検出部 3 4内に導入し、 ドレイン油のある状態で出力信号を計測 処理する。 ここで、 流体導出入手段 3 2のピストン 3 2 aは、 励磁用コイル 4 6 aの一個、 検出用コイル 4 6 bの半分程度にドレイン油が位置するまで ドレイン油を引き込むことが好ましい。
[0083] 検出部 3 4内にドレイン油を導入した状態で計測処理する際 (流体導入時 の処理工程) には、 検出部 3 4のドレイン油から検出用コイル 4 6 b、 増幅 回路 4 7及びバンドバスフィルタ 4 8を介して磁性体の検出信号を取得する
(図 6では (Α ' ) ) と共に、 励磁用コイル 4 6 a、 正弦波発振回路 4 9、 位 相回路 5 0及びエッジトリガー回路 5 1を介して、 磁性体の検出信号 (励磁 電圧) と同一周波数で 9 0 ° 前後ずらして設定された矩形波のリファレンス 信号を準備し (図 6では (Β ' ) ) 、 ロックインアンプ 3 5により、 磁性体の 出力信号と、 同一周波数のリファレンス信号とをあわせてノイズ除去を行い 、 ローパスフィルタ 5 2により、 磁性体の濃度用の出力値として平滑な直流 電圧信号に変換し (図 6では (D ' ) ) 、 増幅器を介して交流信号透過回路 5 4に入力する。 なお、 図 6の (C ' ) は、 リファレンス信号により、 磁性体の 検出信号を反転させた状態を示し、 この面積を積分処理すると図 6の (D ' ) となる。
[0084] 続いて、 流体導出入手段 3 2のピストン 3 2 aを押し出すことにより検出 部 3 4内のドレイン油を排出 (導出) し、 ドレイン油がない状態 (流体導出 入手段 3 2自体) の出力信号を計測処理する。 ここで、 流体導出入手段 3 2 の往復運動の時間間隔は、 計測する流体の粘度等により変化するが、 数秒間 隔で行うことが好ましい。
[0085] 検出部 3 4内からドレイン油を排出 (導出) した状態で計測処理する際 ( 流体排出時の処理工程) には、 検出部 3 4のドレイン油から検出用コイル 4 6 b、 増幅回路 4 7及びバンドパスフィルタ 4 8を介して補正用検出信号を 取得する (図 5では (A) ) と共に、 励磁用コイル 4 6 a、 正弦波発振回路 4 9、 位相回路 5 0及びエッジトリガー回路 5 1を介して、 補正用検出信号 (励磁電圧) と同一周波数で 9 0 ° 前後ずらして設定された矩形波のリファ レンス信号を準備し (図 5では (B) ) 、 ロックインアンプ 3 5により、 補 正用検出信号と、 同一周波数のリファレンス信号とをあわせてノイズ除去を 行い、 ローパスフィルタ 5 2により、 比較用の出力値として平滑な直流電圧 信号に変換し (図 5では (D) ) 、 増幅器を介して交流信号透過回路 5 4に 入力する。 なお、 図 5の (C) は、 リファレンス信号により、 磁性体の検出 信号を反転させた状態を示し、 この面積を積分処理すると図 5の (D) とな る。
[0086] そして、 交流信号透過回路 5 4により、 磁性体の濃度用の出力値を補正す るよう、 図 6に示す如く、 磁性体の濃度用の出力値と、 比較用の出力値とか ら差分 A Vを求めて直流電圧信号に変換し、 計測値表示及び異常判定装置 3 7により、 予め求めた相関性 (関数処理) によって差分を磁性体の濃度に変 換する。 ここで、 磁性体の濃度用の出力値 (直流電圧信号) と、 比較用の出 力値 (直流電圧信号) は、 ロックインアンプ 3 5により、 磁性体の出力信号 とリファレンス信号との位相差 Δ f と、 及び補正用の出力信号とリファレン ス信号と位相差 (図示せず) とを検出し、 検出した位相差の量に応じて変換 されるものであっても良い。
[0087] 続いて、 流体導出入手段のビストン 3 2 aを連続的に往復動することによ リ、 検出部 3 4内にドレイン油を導入した状態での計測処理 (流体導入時の 処理工程) と、 検出部 3 4内からドレイン油を排出 (導出) した状態での計 測処理 (流体排出時の処理工程) とを交互に連続的に繰り返し、 交流信号透 過回路 5 4等により、 磁性体の濃度用の出力値と、 比較用の出力値とから差 分の信号を検出すると共に移動平均処理を行い、 計測値表示及び異常判定装 置 3 7を介して磁性体の濃度の平均値を求める。 なお、 磁性体の濃度用の出 力値は、 図 6の (D ' ) の如く、 流体導出入手段の往復動により、 比較用の出 力値に対して上下動する交流信号となっている。 又、 この交流信号を直流変 換回路 5 6を用いて直流信号に変換しても良い。
[0088] ここでドレイン油を計測する状態において、 磁性体粉の濃度が一定の濃度 を超えた場合には、 駆動用流体導出入手段と駆動用シリンダ等を備えた機器 の磨耗量が大きく、 整備が必要な時期に達しているとして、 計測値表示及び 異常判定装置 3 7より警告表示、 警告音、 警告灯を介し管理者に告知する。 又、 制御部 (図示せず) を備えた場合には、 第一例と同様に、 ピストン等の 摺動物の摺動状態と磁性体の濃度との相関関係 (基準データ) と、 磁性体を 含む流体 (検査対象物) から取得した情報とを比較し、 ピストン等の摺動物 の摺動状態を判定し、 摺動物に対するドレイン油 (潤滑流体) の制御や、 警 報等の発令を行っても良い。
[0089] このように実施例の第二例によれば、 検出部 3 4内のドレイン油より取得 された磁性体の検出信号を、 同一周波数のリファレンス信号とあわせてロッ クインアンプ 3 5によりノイズ除去し、 磁性体の濃度用の直流電圧成分に変 換し、 次に、 ドレイン油が排出された検出部 3 4より取得された補正用検出 信号を、 同一周波数のリファレンス信号とあわせてロックインアンプ 3 5に よりノイズ除去し、 比較用の直流電圧成分に変換し、 変換後の各直流成分の 値の差分をドレイン油の磁性体の濃度とするので、 測定時の出力信号に重畳 したノイズを除去すると共に、 流体導出入手段によりドレイン油を導出入し て、 堆積した固形分を排出し、 ドレイン油の磁性体の微小な濃度を精度良く 計測することができる。 又、 実施例の第二例は、 第一例と同様に、 励磁用コ ィル 4 6 aの電圧と検出用コイル 4 6 bの電圧との間に生じる位相差を用い るので、 磁性体の有無による励磁用コイル 4 6 aのリアクタンスの変化、 磁 性体の有無による検出用コイル (出力用コイル) 4 6 bのリアクタンスの変 化、 検査対象物に発生する渦電流の変化、 渦電流によるジュール損失の変化 、 コイルの周辺物体に発生する渦電流の変化、 渦電流によるジュール損失の 変化等の様々な変化を総合的に捉え、 磁性体の濃度を精度良く計測すること ができる。 ここで、 磁性体の濃度を計測する際に、 磁性体の有無による励磁 用コイル 4 6 aのリアクタンスの変化、 磁性体の有無による検出用コイル ( 出力用コイル) 4 6 bのリアクタンスの変化、 検査対象物に発生する渦電流 の変化、 渦電流によるジュール損失の変化、 コイルの周辺物体に発生する渦 電流の変化、 渦電流によるジュール損失の変化等の中から一部の変化の位相 差を利用して計測した場合には、 電圧の位相差の場合と異なり、 他の変化の 影響を受けるので、 磁性体の濃度を精度よく計測することができない。
[0090] 又、 磁性体の濃度を、 ドレイン油の導出入の 1回における各直流成分とし て取得すると共に、 ドレイン油の導出入を繰り返し行って各直流成分の値の 差分を複数取得するので、 複数のデータを平均処理して、 経時変化による基 準点 (ゼロ点) のドリフトや、 オフセットの変化 (揺らぎ) の影響を常に排 除し、 ドレイン油の磁性体の微小な濃度を連続的に計測することができる。
[0091 ] 第二例において、 交流電圧の出力信号からドレイン油導入時の磁性体の検 出信号とドレイン油排出時の補正用検出信号とを取得し、 ロックインアンプ 3 5により各信号とリファレンス信号との位相差を検出し、 検出した位相差 の量に応じた信号に変換すると、 わずかな位相差で磁性体の濃度を高感度に 検出するので、 ドレイン油の磁性体の微小な濃度を好適に精度良く計測する ことができる。
[0092] 第二例において、 リファレンス信号の位相又は磁性体の検出信号の位相を ずらし、 磁性体の非検出時に、 ロックインアンプ 3 5の出力信号を直流電圧 信号に変換した値をゼロに近づけると、 信号の増幅を容易に行い得るので、 ドレイン油の磁性体の微小な濃度を好適に計測することができる。
[0093] 第二例において、 リファレンス信号の位相又は磁性体の検出信号の位相は 、 他方の信号から 9 0 ° 前後ずらすと、 増幅器 5 3, 5 5による信号の増幅 を一層容易に行い得るので、 ドレイン油の磁性体の微小な濃度を極めて好適 に計測することができる。
[0094] 第二例において、 検出手段は、 磁性体の検出信号を取得する検出用コイル
4 6 bと、 励磁用コイル 4 6 aとを備え、 励磁用コイル 4 6 aに交流電圧を 印加して検出用コイル 4 6 bに交流電圧の出力信号を生じさせ、 出力信号か ら磁性体の検出信号又は補正用検出信号を取得すると共に、 励磁用コイル 4 6 aに接続された発振回路 4 9等からリファレンス信号を取得するように構 成されると、 交流電圧により磁性体の濃度に応じて電圧及び位相が変化する ので、 磁性体の濃度の計測を容易にし、 ドレイン油の磁性体の微小な濃度を 好適に計測することができる。 又、 励磁用コイル 4 6 aを用いるので、 検出 用コイル 4 6 bの出力信号に対する同一周波数のリファレンス信号を容易に 準備することができる。
[0095] 第二例において、 検出手段は、 複数の励磁用コイル 4 6 aを互いに逆方向 に巻いて配置すると共に、 検出用コイル 4 6 bを複数の励磁用コイル 4 6 a の間に配置し、 検出用コイル 4 6 bの出力信号が小さくなるように構成され ると、 増幅器 5 3, 5 5を介して磁性体の濃度を高感度に検出するので、 ド レイン油の磁性体の微小な濃度を精度良く計測することができる。
[0096] 第二例において、 流体導出入手段は、 ピストン 3 2 aの往復動でドレイン 油を導出入するように構成されると、 堆積した固形分を容易に排出すると共 に計測を連続的に行い、 外乱や経時変化による計測誤差を排除し、 ドレイン 油の磁性体の微小な濃度を連続的に精度良く計測することができる。 又、 ピ ストン 3 2 aの往復運動により固形分等の堆積物を好適に排除するので、 定 期的なエアブローや機械的な除去を不要にすることができる。 更に、 ドレイ ン油が高粘度の場合であってもビストン 3 2 aの往復運動により一定間隔で ドレイン油を確実に導出入し得るので、 ドレイン油の磁性体の濃度を連続的 に精度良く計測することができる。 更に、 第二例は、 第一例と略同様な作用 効果を得ることができる。
[0097] 以下、 本発明の実施例の第三例である磁性体濃度計測装置を説明する。 図 1 2は本発明の実施例の第三例を示すものである。 なお、 図中図 9と同一の 符号を付した部分は同一物を表わしている。
[0098] 第三例の磁性体濃度計測装置は、 ドレイン油等の流体が流下する配管の流 路 3 1を変形したものであり、 第三例の流路 6 1には第一例と略同じ検出部 3 4を接続している。
[0099] 第三例の配管の流路 6 1は、 駆動用ビストンと駆動用シリンダ等を備えた ディーゼルエンジン等の機器 (図示せず) からドレイン油を排出するもので あり、 流路 6 1の下流には、 水平方向から鉛直方向に湾曲して延在するメイ ン流路 6 2と、 メイン流路 6 2の鉛直方向の部分に配置される閉止手段の開 閉弁 6 3と、 開閉弁 6 3を回避するよう第一例と略同様に分岐口 6 4と合流 口 6 5を形成して配置される分岐流路 6 6と、 開閉弁 6 3と分岐口 6 4の間 から所定長さで水平方向に延在する延在流路 6 7と、 延在流路 6 7の端側と メィン流路 6 2の水平方向の部分とを接続する小径の連絡流路 6 8とを備え ている。
[0100] ここで、 分岐口 6 4から閉止手段の開閉弁 6 3までのメイン流路 6 2は、 古いドレイン油の流体を溜める第一の溜め部 6 9となり、 延在流路 6 7と連 絡流路 6 8は、 新たなドレイン油の流体を受け入れて溜める第二の溜め部 7 0となっている。 又、 分岐流路 6 6は、 第一例と同様に第一の溜め部 6 9か ら溢れ出したドレイン油を下流側へ流すようになつている。 更に、 連絡流路 6 8は、 メイン流路 6 2の鉛直方向の部分よりも、 ドレイン油が最初に流入 されるように配置されている。
[0101 ] 一方、 検出部 3 4は、 延在流路 6 7と連絡流路 6 8の合流部分に配置され るように第二の溜め部 7 0に開口 4 3を形成する筒状の検出部本体 4 4と、 検出部本体 4 4の内部を摺動する流体導出入手段 3 2のピストン 3 2 aと、 流体導出入手段 3 2のピストン 3 2 aを駆動させる駆動手段 (図示せず) と 、 検出部本体 4 4の外周部に配置される検出手段 3 3の複数のコイル 4 6と 、 コイル 4 6の信号を制御する検出手段 3 3の信号処理部 3 6と、 信号処理 部 3 6に接続された計測値表示及び異常判定装置 3 7とを備えている。 又、 検出部 3 4の検出部本体 4 4は、 流体の導出入の確実性を高めるために、 延 在流路 6 7の端部から延在するように配置されている。
[0102] 以下、 本発明の実施例の第三例の作用を説明する。
[0103] ドレイン油に含まれる磁性体粉の濃度を計測する際には、 予め検出部 3 4 の流体導出入手段 3 2のピストン 3 2 aを押し出した状態で配管のメイン流 路 6 2の開閉弁 6 3を閉じ、 第一の溜め部 6 9及び第二の溜め部 7 0に一定 量のドレイン油を溜め、 流体導出入手段 3 2を用いて第二の溜め部 7 0のド レイン油を導出入することにより、 実施例の第一例と略同様に、 磁性体の濃 度を計測する。
[0104] このように実施例の第三例によれば、 第一例と略同様な作用効果を得るこ とができる。 又、 実施例の第三例において、 溜め部は、 古い流体を溜める第 一の溜め部 6 9と、 新たな流体を受け入れて溜める第二の溜め部 7 0を備え 、 検出部 3 4を第二の溜め部 7 0に接続すると、 流体導出入手段 3 2により 検出部 3 4内に新たなドレイン油の流体を導入するので、 古い流体と新たな 流体が混ざることを防止し、 流体の磁性体の濃度を連続的に精度良く計測す ることができる。 更に、 検出部 3 4の配置と共に第一の溜め部 6 9及び第二 の溜め部 7 0により流体へのエアの混入を好適に防止するので、 流体の磁性 体粉の濃度を連続的に且つ極めて精度良く計測することができる。
[0105] なお、 本発明の磁性体濃度計測装置及び磁性体濃度計測方法は、 上述の実 施例にのみ限定されるものではなく、 磁性体の濃度を連続的に測定して外乱 や経時変化の影響を排除するものならば、 実施例に限定されるものでなく、 他の構成や信号処理でも良いこと、 流体はドレイン油に限定されるものでな く、 他の油、 水溶液、 水、 粉体等でも良いこと、 流体導入時の処理工程の信 号と、 流体排出時の処理工程の信号との差分を求めることができるものなら ば、 手段は限定されるものでなく、 他の処理手段でも良いこと、 流体導出入 手段はピストンの代わりに偏心回転体でも良いこと、 その他、 本発明の要旨 を逸脱しない範囲内において種々変更を加え得ることは勿論である。
産業上の利用可能性 本発明の磁性体濃度計測装置及び磁性体濃度計測方法は、 部品の摺動によ リ生じた磁性体の濃度を計測できる。

Claims

請求の範囲
[1 ] 励磁用コイルと、 該励磁用コイルに交流電流が流れると励磁電圧を発生す る出力用コイルとを備える磁性体濃度計測装置であって、 前記励磁用コイル の電圧と前記出力用コイルの電圧との間の位相差の変化を計測する計測手段 を有し、 検査対象物と、 前記励磁用コイル又は Z及び出力用コイルとを接近 させるときに発生する前記位相差の変化から磁性体の濃度を把握してなる磁 性体濃度計測装置。
[2] 前記計測手段にロックインアンプを使用してなる請求項 1に記載の磁性体 濃度計測装置。
[3] 前記ロックインアンプのリファレンス信号として前記励磁用コィルの電圧 を用いる請求項 2に記載の磁性体濃度計測装置。
[4] 検査対象物と前記励磁用コイル又は Z及び出力用コイルとを接近させる手 段として、 磁性体を含む流体が流れる流路又は磁性体を含む流体が溜る溜り 部から検査対象物を導入する駆動手段を有する請求項 1〜 3のいずれかに記 載の磁性体濃度計測装置。
[5] 磁性体を含む流体が流下する流路、 又は磁性体を含む流体が溜まる溜り部 に接続されて流体導出入手段及び検出手段を配する検出部と、 前記検出手段 に接続されてロックインアンプを配する信号処理部とを備え、 前記検出部は 、 流体導出入手段によリ流体を導出入し且つ検出手段を介して交流電圧の出 力信号から流体導入時の磁性体の検出信号と流体排出時の補正用検出信号と を取得し、 前記信号処理部は、 同一周波数のリファレンス信号を用いてロッ クインアンプにより前記各信号からノィズ除去を行うと同時に、 前記各信号 とリファレンス信号との位相差を検出し、 検出した位相差の量に応じて直流 電圧信号に変換し、 変換後の各値の差分を磁性体の濃度として検出するよう に構成されてなる磁性体濃度計測装置。
[6] 磁性体を含む流体が流下する流路、 又は磁性体を含む流体が溜まる溜り部 に接続されて流体導出入手段及び検出手段を配する検出部と、 前記検出手段 に接続されてロックインアンプを配する信号処理部とを備え、 前記検出部は 、 流体導出入手段によリ流体を導出入し且つ検出手段を介して流体導入時の 磁性体の検出信号と流体排出時の補正用検出信号とを取得し、 前記信号処理 部は、 同一周波数のリファレンス信号を用いてロックインアンプによリ前記 各信号からノィズ除去を行つたのち直流電圧信号に変換し、 変換後の各値の 差分を磁性体の濃度として検出するように構成されてなる磁性体濃度計測装 置。
[7] 前記信号処理部は、 リファレンス信号の位相又は磁性体の検出信号の位相 をずらし、 磁性体の非検出時に、 出力信号を直流電圧信号に変換した値をゼ 口に近づけるように構成されてなる請求項 5又は 6に記載の磁性体濃度計測 装置。
[8] 前記検出手段は、 磁性体の検出信号を取得する出力用コイルと、 励磁用コ ィルとを備え、 前記励磁用コイルに交流電圧を印加して出力用コイルに交流 電圧の出力信号を生じさせ、 前記出力信号から磁性体の検出信号又は補正用 検出信号を取得すると共に、 前記励磁用コイルに接続された発振回路からリ ファレンス信号を取得するように構成されてなる請求項 5又は 6に記載の磁 性体濃度計測装置。
[9] 前記検出手段は、 複数の励磁用コイルを互いに逆方向に巻いて配置すると 共に、 検出用コイルを複数の励磁用コイルの間に配置し、 前記検出用コイル の出力信号が小さくなるように構成されてなる請求項 5又は 6に記載の磁性 体濃度計測装置。
[10] 前記流体導出入手段は、 ピストンの往復動で流体を導出入するように構成 されてなる請求項 5又は 6に記載の磁性体濃度計測装置。
[11] 磁性体を含む検査対象物、 又は磁性体を含む流体から、 磁性体の濃度、 濃 度の変化率、 濃度変化の振幅、 濃度変化の周期、 多点計測時における濃度偏 差のうち少なくとも一つ以上の情報を取得し、 予め求めた磁性体の濃度と摺 動物の状態との相関関係よリ、 摺動物の状態を判断するように構成してなる 請求項 1、 5、 6のいずれかに記載の磁性体濃度計測装置。
[12] 摺動物の状態に応じて警告又は Z及び警報を発する警告手段を備えてなる 請求項 1 1に記載の磁性体濃度計測装置。
[13] 摺動物の状態に応じて、 摺動物に対する潤滑流体の供給量、 供給時期、 供 給圧力、 供給温度、 潤滑流体の噴射方法、 潤滑流体の性状を制御するように 構成してなる請求項 1 1に記載の磁性体濃度計測装置。
[14] 励磁用コイルと、 該励磁用コイルに交流電流が流れると励磁電圧を発生す る出力用コイルとを用いる磁性体濃度計測方法であって、 検査対象物と、 前 記励磁用コイル又は Z及び出力用コイルとを接近させたときの前記励磁用コ ィルの電圧と前記出力用コイルの電圧との間の位相差の変化を計測して、 磁 性体の濃度を把握する磁性体濃度計測方法。
[15] 前記出力用コイルの電圧信号を部分的に位相反転し、 直流化して位相差の 変化を計測する請求項 1 4に記載の磁性体濃度計測方法。
[16] 前記励磁用コイルの電圧信号を用いて、 前記出力用コイルの電圧信号を部 分的に位相反転させる請求項 1 4又は 1 5に記載の磁性体濃度計測方法。
[17] 前記検査対象物は、 磁性体を含む流体が流れる流路又は磁性体を含む流体 が溜まる溜り部から導入されて前記励磁用コイル又は Z及び出力用コイルに 接近させる請求項 1 4又は 1 5に記載の磁性体濃度計測方法。
[18] 磁性体を含む流体が流下する流路、 又は磁性体を含む流体が溜まる溜り部 から検出部へ流体を導入し、 検出部の流体から磁性体の検出信号を取得する と共に同一周波数のリファレンス信号を準備し、 磁性体の検出信号と同一周 波数のリファレンス信号とをあわせてロックインアンプによリノィズ除去を 行い、 磁性体の濃度用の出力値として直流電圧信号に変換するように処理さ れる流体導入時の処理工程と、
前記検出部から流体を排出し、 検出部内の補正用検出信号を取得すると共 に同一周波数のリファレンス信号を準備し、 補正用検出信号と同一周波数の リファレンス信号とをあわせてロックインアンプによりノイズ除去を行い、 比較用の出力値として直流電圧信号に変換するように処理される流体排出時 の処理工程とを備え、
前記磁性体の濃度用の出力値を、 前記比較用の出力値によリ補正する磁性 体濃度計測方法。
[19] 流体導入時の処理工程及び流体排出時の処理工程で、 交流電圧の出力信号 から磁性体の検出信号及び補正用検出信号を取得し、 磁性体の検出信号及び 補正用検出信号と、 同一周波数のリファレンス信号とをあわせてロックイン アンプによリ前記各信号からノイズ除去を行うと同時に、 前記各信号とリフ ァレンス信号との位相差を検出し、 検出した位相差の量に応じて磁性体の濃 度用の出力値及び比較用の出力値に変換する請求項 1 8に記載の磁性体濃度 計測方法。
[20] 流体導入時の処理工程と、 流体排出時の処理工程とを交互に連続的に繰り 返すことにより、 磁性体の濃度用の出力値と、 比較用の出力値とから差分を 更に直流電圧信号に変換し、 予め求めた相関性によつて前記差分を磁性体の 濃度に変換し、 外乱や経時変化による計測誤差を排除する請求項 1 8又は 1 9に記載の磁性体濃度計測方法。
[21] 前記リファレンス信号の位相又は磁性体の検出信号の位相をずらし、 信号 処理装置の出力信号を直流電圧信号に変換した値をゼロに近づける請求項 1 8又は 1 9に記載の磁性体濃度計測方法。
[22] 磁性体を含む検査対象物、 又は磁性体を含む流体から、 磁性体の濃度、 濃 度の変化率、 濃度変化の振幅、 濃度変化の周期、 多点計測時における濃度偏 差のうち少なくとも一つ以上の情報を取得し、 予め求めた磁性体の濃度と摺 動物の状態との相関関係より、 摺動物の状態を判断する請求項 1 8又は 1 9 に記載の磁性体濃度計測方法。
[23] 摺動物の状態に応じて警告又は Z及び警報を発する請求項 2 2に記載の磁 性体濃度計測方法。
[24] 摺動物の状態に応じて、 摺動物に対する潤滑流体の供給量、 供給時期、 供 給圧力、 供給温度、 潤滑流体の噴射方法、 潤滑流体の性状を制御する請求項 2 2に記載の磁性体濃度計測方法。
PCT/JP2007/000572 2006-05-30 2007-05-29 磁性体濃度計測装置及び磁性体濃度計測方法 WO2007138746A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP07737228.2A EP2034303B1 (en) 2006-05-30 2007-05-29 Device and method for measuring concentration of magnetic material
CN2007800200858A CN101460836B (zh) 2006-05-30 2007-05-29 磁性体浓度计测装置以及磁性体浓度计测方法
US12/302,631 US8115478B2 (en) 2006-05-30 2007-05-29 Device and method for measuring concentration of magnetic material
KR1020087031391A KR101351287B1 (ko) 2006-05-30 2007-05-29 자성체 농도 계측 장치 및 자성체 농도 계측 방법
HK09107510.7A HK1129925A1 (en) 2006-05-30 2009-08-14 Device and method for measuring concentration of magnetic material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-149383 2006-05-30
JP2006149383 2006-05-30

Publications (1)

Publication Number Publication Date
WO2007138746A1 true WO2007138746A1 (ja) 2007-12-06

Family

ID=38778273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/000572 WO2007138746A1 (ja) 2006-05-30 2007-05-29 磁性体濃度計測装置及び磁性体濃度計測方法

Country Status (6)

Country Link
US (1) US8115478B2 (ja)
EP (1) EP2034303B1 (ja)
KR (1) KR101351287B1 (ja)
CN (1) CN101460836B (ja)
HK (1) HK1129925A1 (ja)
WO (1) WO2007138746A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102422142A (zh) * 2009-03-12 2012-04-18 株式会社Ihi 硬质粒子的浓度检测方法、粒子的浓度检测方法及其装置

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007039435A1 (de) * 2006-12-15 2008-06-19 Prüftechnik Dieter Busch AG Vorrichtung und Verfahren zum Erfassen von Partikeln in einer strömenden Flüssigkeit
JP5467857B2 (ja) * 2009-12-24 2014-04-09 株式会社Ihi 粒子の濃度検出方法およびその装置
CN102866086B (zh) * 2010-11-30 2017-04-12 浙江中欣动力测控技术有限公司 流动油液金属颗粒在线监测传感器
CN102331389A (zh) * 2010-11-30 2012-01-25 蒋伟平 一种高灵敏度的油液磨粒在线监测传感器
CN102331390B (zh) * 2010-11-30 2013-05-08 浙江中欣动力测控技术有限公司 流动油液金属颗粒在线监测传感器
WO2013187979A1 (en) 2012-06-11 2013-12-19 Siemens Water Technologies Llc Treatment using fixed film processes and ballasted settling
CN102830156A (zh) * 2012-08-31 2012-12-19 爱德森(厦门)电子有限公司 一种磁悬液浓度的在线动态实时监测方法及装置
WO2014052674A1 (en) * 2012-09-26 2014-04-03 Evoqua Water Technologies Llc System for measuring the concentration of magnetic ballast in a slurry
CN103728343B (zh) * 2014-01-15 2016-04-20 南京工业大学 一种回转支承润滑脂中铁屑含量的在线检测方法及其润滑脂在线检测装置
CN105181534B (zh) * 2015-09-29 2018-02-16 桂林电子科技大学 输出振动信号的油液磨粒监测传感器及油液在线监测系统
CN105241949B (zh) * 2015-10-16 2018-09-18 中国航空工业集团公司北京长城航空测控技术研究所 滑油金属屑末在线监测器的检测电路及载波信号解调方法
KR101909928B1 (ko) 2016-07-07 2018-10-19 한국전자통신연구원 위상 차 분석을 이용한 중금속 제거 효율 분석 방법 및 이를 이용한 장치
CN106770622A (zh) * 2016-10-27 2017-05-31 北京润道油液监测技术有限公司 用于在线监测油样中磨屑的测试系统及方法
US10295499B2 (en) 2017-02-16 2019-05-21 Spectro Scientific, Inc. Ferrous metals measuring magnetometer system and method
US10436728B2 (en) * 2017-05-24 2019-10-08 United Technologies Corporation Vibration induced noise suppression device
DE102017114566A1 (de) 2017-06-29 2019-01-03 Aixtron Se Verfahren zur Bestimmung der Dampfkonzentration unter Verwendung der magnetischen Eigenschaften des Dampfes
CN107576719A (zh) * 2017-08-25 2018-01-12 爱德森(厦门)电子有限公司 一种提高在线油液金属磨粒电磁监测准确度的方法
CN108051348A (zh) * 2017-12-05 2018-05-18 西人马(厦门)科技有限公司 一种流体非金属颗粒浓度的检测系统及方法
CN109900333B (zh) * 2019-04-12 2023-05-16 西南石油大学 一种自适应电磁流量计和测量方法
WO2021033238A1 (ja) 2019-08-19 2021-02-25 株式会社Ihi原動機 磁性体濃度計測装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06288986A (ja) * 1993-02-27 1994-10-18 Draegerwerk Ag 常磁性物質成分の測定装置
JPH0726758U (ja) * 1992-02-07 1995-05-19 東京瓦斯株式会社 リモートフィールド渦流式探傷装置に於ける受信コイル
JPH089653Y2 (ja) * 1989-04-12 1996-03-21 ティーディーケイ株式会社 トナー検知用センサ回路
JPH08201245A (ja) * 1995-01-26 1996-08-09 Kooa Kogyo Kk 濾液測定方法およびその装置
JP2001023833A (ja) * 1999-07-13 2001-01-26 Hitachi Metals Ltd コイルブロック及びトナーセンサ
JP2002296893A (ja) * 2001-03-30 2002-10-09 Ricoh Co Ltd トナー濃度検知装置、これを用いた画像形成装置又はディジタル複写機、磁性体検知装置、導体検知装置
JP2003232776A (ja) * 2002-02-08 2003-08-22 Marktec Corp 渦流探傷装置および渦流探傷方法
JP2005299459A (ja) * 2004-04-09 2005-10-27 Diesel United:Kk 運動機関

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4144741A (en) * 1977-03-28 1979-03-20 Doryokuro Kakunenryo Kaihatsu-Jigyodan Void detecting device
DE3275441D1 (en) * 1982-09-22 1987-03-19 Ibm Deutschland Device to determine the properties of magnetic particle dispersions
US4613815A (en) * 1983-04-27 1986-09-23 Pall Corporation Electromagnetic detector for metallic materials having an improved phase detection circuit
US5001424A (en) * 1989-02-03 1991-03-19 Product Resources, Inc. Apparatus for measuring magnetic particles suspended in a fluid based on fluctuations in an induced voltage
US5315243A (en) * 1992-04-06 1994-05-24 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defence Detection and discrimination between ferromagnetic and non-ferromagnetic conductive particles in a fluid
JPH0726758A (ja) 1993-07-08 1995-01-27 Masateru Niimura 昇降床装置
JP3467315B2 (ja) 1994-06-16 2003-11-17 株式会社日立産機システム インバータ装置
US5608315A (en) * 1995-08-21 1997-03-04 Caterpillar Inc. Apparatus for detecting particles in a fluid and a method for operating same
US5793199A (en) * 1995-11-10 1998-08-11 New Cosmos Electric Co., Ltd. Method and apparatus for determining magnetic powder concentration by using the electromagnetic induction method
JP3742998B2 (ja) 1997-03-26 2006-02-08 住友電気工業株式会社 磁性体濃度の検出方法及び装置
DE10322913A1 (de) * 2003-05-21 2004-12-16 Bayer Technology Services Gmbh Verfahren und Vorrichtung zur Messung des Gehaltes an ferromagnetischen Partikeln in Flüssigkeits-Suspensionen oder Feststoff-Gemischen
JP2005083897A (ja) 2003-09-09 2005-03-31 Diesel United:Kk 磁性体濃度計測装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH089653Y2 (ja) * 1989-04-12 1996-03-21 ティーディーケイ株式会社 トナー検知用センサ回路
JPH0726758U (ja) * 1992-02-07 1995-05-19 東京瓦斯株式会社 リモートフィールド渦流式探傷装置に於ける受信コイル
JPH06288986A (ja) * 1993-02-27 1994-10-18 Draegerwerk Ag 常磁性物質成分の測定装置
JPH08201245A (ja) * 1995-01-26 1996-08-09 Kooa Kogyo Kk 濾液測定方法およびその装置
JP2001023833A (ja) * 1999-07-13 2001-01-26 Hitachi Metals Ltd コイルブロック及びトナーセンサ
JP2002296893A (ja) * 2001-03-30 2002-10-09 Ricoh Co Ltd トナー濃度検知装置、これを用いた画像形成装置又はディジタル複写機、磁性体検知装置、導体検知装置
JP2003232776A (ja) * 2002-02-08 2003-08-22 Marktec Corp 渦流探傷装置および渦流探傷方法
JP2005299459A (ja) * 2004-04-09 2005-10-27 Diesel United:Kk 運動機関

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2034303A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102422142A (zh) * 2009-03-12 2012-04-18 株式会社Ihi 硬质粒子的浓度检测方法、粒子的浓度检测方法及其装置

Also Published As

Publication number Publication date
EP2034303B1 (en) 2015-09-23
EP2034303A1 (en) 2009-03-11
HK1129925A1 (en) 2009-12-11
EP2034303A4 (en) 2012-07-04
US8115478B2 (en) 2012-02-14
KR101351287B1 (ko) 2014-01-14
CN101460836B (zh) 2012-04-18
CN101460836A (zh) 2009-06-17
KR20090025264A (ko) 2009-03-10
US20090189599A1 (en) 2009-07-30

Similar Documents

Publication Publication Date Title
WO2007138746A1 (ja) 磁性体濃度計測装置及び磁性体濃度計測方法
JP5165269B2 (ja) 磁性体濃度計測装置及び磁性体濃度計測方法
US7956601B2 (en) Device and process for detecting particles in a flowing liquid
CN103813863B (zh) 清洁设备
US20170248572A1 (en) Lubricant condition assessment system
US20070189452A1 (en) On-Line Tool For Detection Of Solids And Water In Petroleum Pipelines
CN106556439B (zh) 曳出流体检测诊断
KR101196251B1 (ko) 경질 입자의 농도 검출 방법
WO2006043854A1 (fr) Procede de mesure par correlation des debits total et fractionnaire de milieux non melangeables multiphases et dispositif permettant de mettre en oeuvre ce procede
RU2478943C2 (ru) Устройство и способ измерения содержания воды и концентрации соли в потоке многофазного флюида
JP5155588B2 (ja) 導電体濃度計測装置及び導電体濃度計測方法
WO2007129462A1 (ja) 導電体濃度計測装置及び磁性体濃度計測装置
EP3144644B1 (en) Method and apparatus for interference reduction
US10132747B2 (en) Absorption spectrometer
US20170074816A1 (en) Electromagnetic steam energy/quality, flow, and fluid property sensor and method
JP5002608B2 (ja) 硬質粒子の濃度検出方法
JP6242316B2 (ja) 濃度検出装置
KR101651045B1 (ko) 병렬형 신호처리구조를 이용한 배관의 비파괴 검사시스템 및 그 시스템을 이용한 검사방법
US20190128781A1 (en) Adaptive automated sampling system and method
JP5129974B2 (ja) 導電体濃度計測装置及び磁性体濃度計測装置
JP2018025502A (ja) 導電体濃度計測装置
Akresh et al. Extended Measurement Range of Vortex Flow Meter in High Turbulent Range
DK2447654T3 (en) Process for monitoring a freeze-drying process and freeze-drying plant for this
JPH07198860A (ja) 金属検出機
Diguero et al. Effective and efficient evaluation of vacuum drying of power transformers in the field

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780020085.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07737228

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12302631

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007737228

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020087031391

Country of ref document: KR