WO2007129741A1 - 自動分析装置 - Google Patents

自動分析装置 Download PDF

Info

Publication number
WO2007129741A1
WO2007129741A1 PCT/JP2007/059614 JP2007059614W WO2007129741A1 WO 2007129741 A1 WO2007129741 A1 WO 2007129741A1 JP 2007059614 W JP2007059614 W JP 2007059614W WO 2007129741 A1 WO2007129741 A1 WO 2007129741A1
Authority
WO
WIPO (PCT)
Prior art keywords
reagent
liquid level
unit
sample
detected
Prior art date
Application number
PCT/JP2007/059614
Other languages
English (en)
French (fr)
Inventor
Toshio Sakagami
Original Assignee
Olympus Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corporation filed Critical Olympus Corporation
Publication of WO2007129741A1 publication Critical patent/WO2007129741A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1002Reagent dispensers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • G01N35/1016Control of the volume dispensed or introduced
    • G01N2035/1018Detecting inhomogeneities, e.g. foam, bubbles, clots
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • G01N2035/1025Fluid level sensing

Definitions

  • the present invention relates to an automatic analyzer that automatically performs analyzes such as biochemical analysis and immunological tests.
  • the automatic analyzer has a sample supply unit, an analysis unit, and a data processing unit.
  • the sample supply unit sequentially supplies racks with collection tubes.
  • the analysis unit has a reaction tank and a reagent cold storage.
  • the reaction tank includes a cuvette wheel and a measurement optical system inside, and the reagent cooler stores a reagent bottle containing a reagent that reacts with the sample.
  • the cuvette wheel contains a cuvette (reaction vessel), which sucks and dispenses the reagent from the reagent bottle based on the liquid level detected by the liquid level detection means. Then suck out the sample and dispense it. Then, the absorbance of the test solution (mixed solution consisting of the reagent and the sample) reacted in the cuvette is measured using a measurement optical system. Further, the data processing unit obtains the analysis result from the measured absorbance.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2005-164506
  • bubbles are detected before a reagent bottle is set in a reagent cool box.
  • Strength, shinaga In the automatic analyzer, after the reagent bottle is set, the reagent bottle is moved to the reagent supply position, and bubbles may be generated in the reagent bottle due to vibration at this time. If bubbles are generated in the reagent bottle in this state, the liquid level detecting means for detecting the reagent liquid level in the reagent bottle erroneously detects the bubbles as the liquid level during the reagent aspirating operation of the reagent probe, and the reagent liquid level is detected.
  • the present invention has been made in view of the above, and even when bubbles are generated in the reagent bottle, the bubbles and the reagent liquid level can be accurately detected and the reagent can be normally aspirated.
  • the purpose is to provide an automatic analyzer that can be used.
  • an automatic analyzer according to the present invention.
  • Reagent bottle force In an automatic analyzer that analyzes a sample by photometric measurement of a sample consisting of a predetermined amount of reagent dispensed by a reagent probe and a predetermined amount of sample, the remaining amount of the reagent filled in the reagent bottle A liquid level calculating means for calculating the liquid level position of the reagent; and the reagent probe is inserted into the reagent bottleneck based on the liquid level position calculated by the liquid level calculating means, and the tip of the reagent probe is set to a predetermined position.
  • a movement control means for controlling movement to a position, a liquid level detection means for detecting the liquid level position of the reagent based on the tip position of the reagent probe moved by the movement control means, and a detection by the liquid level detection means And a bubble detection determination unit that determines bubble detection when the liquid level of the reagent is above the liquid level calculated by the liquid level calculation unit.
  • the automatic analyzer according to the present invention is the above-described invention, wherein the tip of the reagent probe is moved to a predetermined position by the aspiration detection means for detecting the aspiration of the reagent by the reagent probe and the movement control means, and When the liquid level position is detected by the liquid level detection unit, the liquid level detection unit further includes an analysis stop unit that stops the analysis of the sample when the suction of the reagent by the suction detection unit cannot be detected. .
  • the movement control means moves the tip of the reagent probe to a predetermined position, and the liquid level detection means sets the liquid level position.
  • a warning means for issuing a warning if the suction of the reagent by the suction detection means cannot be detected is further provided.
  • the automatic analyzer according to the present invention further includes a bubble information adding means for adding bubble detection information to the analysis result when the bubble detection determining means determines that the bubble is detected. It is characterized by that.
  • the automatic analyzer calculates the liquid level position of the reagent from the remaining amount of the reagent filled in the reagent bottle, and places the reagent probe in the reagent bottle based on the calculated liquid level position. And the tip of the reagent probe is moved to a predetermined position.
  • the automatic analyzer detects the liquid level position of the reagent during this movement, and if the detected liquid level position is a position above the calculated liquid level position, it is determined as bubble detection. As a result, even if bubbles are generated in the reagent bottle, the bubbles and the reagent liquid level can be accurately detected, and the reagent can be sucked normally.
  • FIG. 1 is a front view showing a configuration of an automatic analyzer according to a first embodiment of the present invention.
  • FIG. 2 is a plan view showing configurations of a sample supply unit and an analysis unit.
  • FIG. 3 is a conceptual perspective view showing configurations of a sample supply unit and an analysis unit.
  • FIG. 4 is a block diagram showing the configuration of the automatic analyzer.
  • FIG. 5 is a configuration diagram showing a part of the configuration of the reagent dispensing unit.
  • FIG. 6 is a flowchart for explaining the reagent dispensing operation of the automatic analyzer.
  • Fig. 7 is a view for explaining the lowering operation of the reagent probe.
  • FIG. 8 is a diagram showing an example of an analysis result report.
  • the automatic analyzer according to the present invention can be applied to an automatic analyzer that automatically performs analyzes such as biochemical analysis and immunological tests.
  • biochemical analyzer used for clinical tests and the like is used. Will be described as an example.
  • FIGS. 1 is a front view showing the configuration of the automatic analyzer according to the first embodiment of the present invention
  • FIG. 2 is a plan view showing the configurations of the sample supply unit and the analysis unit
  • FIG. 3 is the sample supply unit and the analysis unit.
  • FIG. 4 is a block diagram showing the configuration of the automatic analyzer.
  • the automatic analyzer 1 includes a sample supply unit 2, an analysis unit 3, and a data processing unit 4.
  • the sample supply unit 2 can sequentially supply the rack 20 on which the collection tube 21 (for example, a collection tube) is mounted to the analysis unit 3.
  • the collection tube 21 for example, a collection tube
  • ten collection tubes 21 can be mounted, and 150 samples can be set in the sample supply unit 2.
  • the collected tube 21 contains a collected sample (for example, blood), and an identification code label (not shown) force S for identifying the sample is affixed to the side surface thereof. This identification code label displays information about the specimen.
  • the sample supply unit 2 includes a rack supply conveyor 22, a rack transport conveyor 23, and a rack collection conveyor 24.
  • the rack supply conveyor 22 is a conveyor provided with a plurality of L-shaped attachments 22a that are perpendicular to the conveyance direction, and the rack 20 can be mounted between the attachments 22a. Therefore, the rack 20 is aligned on the rack supply conveyor 22 and is supported by the attachment 22a so as not to fall down.
  • the rack transport conveyor 23 transports the rack 20 to the sample supply position, and is constituted by a conveyor.
  • the rack transport conveyor 23 can intermittently transport the rack 20 and can sequentially move the sampling tube 21 on the rack 20 to the sample supply position.
  • an identification code reader 25 is provided on the front side of the rack conveyance conveyor 23 in the conveyance direction, and information on the sample (identification code) stored in the collection tube 21 to be conveyed to the sample supply position is acquired. Is possible.
  • the rack collection conveyor 24 is a conveyor having a plurality of L-shaped attachments 24a orthogonal to the conveyance direction, like the rack supply conveyor 22, and the rack conveyance conveyor 23 is attached to the rack 20 that has been conveyed.
  • the rack 20 can be recovered by storing it between 24a.
  • the collected racks 20 are aligned on the rack collection conveyor 24 and supported by the attachment 24a so that they cannot fall down.
  • the analysis unit 3 includes a reaction tank 31, a first reagent cold box 32, and a second reagent cold box 33.
  • the reaction tank 31 is disposed at a substantially central portion of the analysis unit 3.
  • the reaction tank 31 includes a heating device (not shown) and a temperature sensor (not shown) inside, and is covered with a disk-shaped lid 312 so that the internal temperature is the same as the body temperature of the human body. It constitutes a thermostatic chamber that is maintained at a temperature (37 degrees Celsius).
  • the reaction tank 31 includes a cuvette wheel 313 and a measurement optical system 314 inside, and can obtain an analysis result from the absorbance of a test solution (mixed solution of a sample and a reagent).
  • the cuvette wheel 313 is an annular member formed in a ring shape and can be rotated intermittently. In the center of the cuvette wheel 313 in the radially outward direction, receiving recesses 313a are provided at equal intervals in the circumferential direction (hereinafter, this interval is referred to as one pitch). Further, on the inner side surface and the outer side surface of the cuvette wheel 313, a photometric window 313b that guides the light beam from the outer side to the inner side of the cuvette wheel 313 is provided.
  • the accommodation recess 313a accommodates a reaction vessel called a cuvette (hereinafter referred to as “cuvette C”). Cuvette C is a rectangular tube-shaped transparent container, and the upper part is open. Accordingly, the luminous flux is guided from the outside of the cuvette wheel 313 through the cuvette C to the inside of the cuvette wheel 313.
  • a light source 314a for irradiating light in the radial direction of the cuvette wheel 313 is provided at a position outside the cuvette wheel 313.
  • a photometric sensor is provided on a straight line connecting the light source 314a and the cuvette to be analyzed.
  • 314b is provided.
  • the light source 314a emits irradiation light (340 to 800 nm) for analyzing the test solution in the cuvette C where the reagent and the sample have reacted.
  • the photometric sensor 314b measures the parallel light that has passed through the test solution in the cuvette C and passed through the photometric window 313b.
  • the light source 314a and the photometric sensor 314b constitute the measurement optical system 314 described above.
  • the measurement optical system 314 includes a collimation lens 314c at a position outside the cuvette wheel and a filter (not shown) at a position inside the cuvette wheel. ing.
  • the collimation lens 314c converges the light emitted from the light source 314a into parallel light.
  • the filter is an optical filter that selects light having a wavelength that is specifically absorbed by the test solution, and a filter that is predetermined for each measurement item is used.
  • the cuvette wheel 313 described above rotates counterclockwise (1 turn -1 pitch) / 4 turns (hereinafter referred to as "one cycle") over 4.5 seconds, and the cuvette wheel 313 takes 4 cycles over 18 seconds. Then, it rotates (1 turn-1 pitch). As a result, cuvette C moves 1 pitch clockwise in 4 cycles.
  • the position where the cuvette wheel 313 is close to the sample supply position is the first sample dispensing position, and the position substantially opposite to the first sample dispensing position is the first reagent dispensing position.
  • the position that bisects the first sample dispensing position and the first reagent dispensing position clockwise from the first sample dispensing position is the second reagent dispensing position.
  • a position that substantially bisects between the first sample dispensing position and the first reagent dispensing position in the counterclockwise direction is the second sample dispensing position.
  • the position near the counterclockwise direction of the second reagent dispensing position is the first stirring position
  • the position near the clockwise direction of the second sample dispensing position is the second stirring position.
  • the position near the second sample dispensing position in the counterclockwise direction is the washing / drying position.
  • the lid 312 covering the reaction tank 31 has these first sample dispensing position, second sample dispensing position, first reagent dispensing position, second reagent dispensing position, first stirring position, Corresponding to the second stirring position and the washing position, as shown in FIG. 2, the first specimen dispensing hole 312a, the second specimen dispensing hole 312b, the first reagent dispensing hole 312c, and the second reagent dispensing hole 312d
  • the first stirring hole (not shown), the second stirring hole (not shown), and the cleaning hole 312g are provided.
  • the first reagent cold box 32 and the second reagent cold box 33 are disposed on the left part of the reaction tank 31.
  • the first reagent cooler 32 and the second reagent cooler 33 each have a cooling device (not shown) and a temperature sensor (not shown) inside, and are covered by disk-shaped lids 322 and 332, respectively.
  • the cold storage which makes internal temperature below predetermined temperature is comprised.
  • the first reagent cool box 32 and the second reagent cool box 33 are each provided with a turntable (not shown). [0029]
  • the turntable can rotate intermittently, and a plurality of partitions extending radially outward from the central portion are disposed on the upper surface of the turntable.
  • the partition can be attached and detached with a single touch, and the turntable can be defined in any area.
  • each turntable accommodates a plurality of reagent bottles B in an opened state.
  • Each reagent bottle B contains a predetermined reagent corresponding to the inspection item, and an identification code label (not shown) for identifying the reagent is affixed to the outer peripheral surface thereof.
  • the identification code label displays information about the reagent. For example, the reagent type, production lot number, calibration value, calibration curve, expiration date, capacity, and the like are displayed.
  • the first reagent cold box 32 and the second reagent cold box 33 are provided with identification code readers 32 3 and 333, respectively.
  • the identification code readers 323 and 333 read the identification code label affixed to the reagent bottle B, and can acquire information on the reagent contained in the reagent bottle B. Therefore, the turntable can move any reagent bottle B to the reagent supply position at any timing.
  • the lids 322, 332 covering the first reagent cool box 32 and the second reagent cool box 33 correspond to the reagent supply positions, respectively, as shown in FIG. Two reagent holes 332a are provided.
  • the analysis unit 3 includes a sample dispensing unit 34, a first reagent dispensing unit 35, and a second reagent dispensing unit 36.
  • the sample dispensing unit 34 dispenses a predetermined amount of sample from the collection tube 21 moved to the sample supply position to the cuvette C, and includes an arm 341 and a sample probe 342.
  • the arm 341 can rotate between the sample supply position and the first sample dispensing position, and between the sample supply position and the second sample dispensing position, and can move up and down.
  • the sample probe 342 is a part that sucks the sample, and the liquid level of the sample stored in the collection tube 21 can be detected by monitoring the capacitance when the arm 341 is lowered.
  • the sample dispensing unit 34 includes a sample aspiration detection unit 342a attached to the sample probe 342 and serving as aspiration detection means for detecting that the sample probe 342 has aspirated a predetermined amount of sample.
  • Specimen aspiration detection unit 342a is used to monitor pressure changes during aspiration. This is a sensor, etc., and uses the fact that when the sampling tube 21 is not accommodated, the pressure is lower than the pressure at the time of sample aspiration, and when the sample probe 342 is clogged, it becomes higher than the pressure at the time of sample aspiration Thus, it is possible to detect aspiration of the specimen.
  • a cleaning unit 343 is provided on the locus connecting the sample supply position and the first sample dispensing position (see FIG. 2). The cleaning unit 343 is supplied with cleaning water from a cleaning water tank (not shown), and the sample probe 342 can be cleaned.
  • the first reagent dispensing unit 35 and the second reagent dispensing unit 36 are for dispensing a predetermined amount of reagent from the reagent bottle B moved to the reagent supply position to the cuvette C.
  • the sample dispensing unit Similar to 34, arms 351 and 361 and reagent probes 352 and 362 are provided.
  • the arms 351 and 361 are rotatable between the reagent supply position and the reagent dispensing position, and can be moved up and down.
  • the reagent probes 352 and 362 are parts for aspirating the reagent. When the reagent bottle B is moved to the reagent supply position with this turntable, bubbles may be generated on the liquid surface of the reagent due to vibration or the like.
  • the first reagent dispensing unit 35 and the second reagent dispensing unit 36 are arranged in accordance with the reagent amount of the reagent filled in the reagent bottle B (value read by the identification code readers 323 and 333).
  • the distance between the tips of 352 and 362 and the reagent liquid surface position is calculated by counting the number of pulses, for example, and this value (distance information) is output to the control unit 5 and the data processing unit 4.
  • the first reagent dispensing unit 35 and the second reagent dispensing unit 36 are attached to the reagent probes 3 52 and 362, and are used as a liquid level detecting unit 352b, which detects the liquid level of the reagent. 362b.
  • the liquid level detection units 352b and 362b detect the liquid level position of the reagent stored in the reagent bottle B by monitoring the capacitance when the arms 351 and 361 are lowered.
  • the liquid level position by the liquid level detectors 352b and 362b is detected from the distance information.
  • the reagent probes 352 and 362 are configured to insulate the outer periphery excluding the tip part and electrically shield the outer periphery of the reagent probes 352 and 362 so that the tip part detects the liquid level of the reagent. Furthermore, you may comprise so that the outer side may be insulated.
  • the first reagent dispensing unit 35 and the second reagent dispensing unit 36 dispense a predetermined amount of reagent into the reagent probes 352 and 362 to enable dispensing.
  • Reagent aspiration detection units 352a and 362a are provided as suction detection means for detecting each of them.
  • Reagent aspiration detectors 352a and 362a are pressure sensors or the like that monitor pressure changes during aspiration. When the reagent runs out, the pressure is lower than the pressure during reagent aspiration, and the reagent probes 3 52 and 362 are clogged.
  • the suction of the reagent can be detected by utilizing the fact that the pressure is higher than the pressure at the time of reagent suction. Further, on the trajectory connecting the reagent supply position and the reagent dispensing position, cleaning 353 and 363 force S are provided (see FIG. 2). Washing water is supplied to the washings 353 and 363 from a washing water tank (not shown), and the tip force of the reagent probes 352 and 362 can be washed at a portion corresponding to the depth of the reagent bottle.
  • the analysis unit 3 includes a first stirring unit 37 and a second stirring unit 38.
  • the first stirrer unit 37 and the second stirrer unit 38 are for stirring the mixed liquid (sample and reagent) of the cuvette C moved to the first stirrer position and the second stirrer position to promote the reaction.
  • the rotary arms 371 and 381 can rotate (revolve) and move up and down in the vertical direction, and have a substantially triangular shape in plan view.
  • the stirring rods 372 and 382 are arranged in the vicinity of the tops of the rotating arms 371 and 381.
  • the stirring rods 372 and 382 can rotate (rotate) independently of the rotating arms 371 and 381.
  • the washing units 373 and 383 are supplied with washing water from a washing water tank (not shown) and can wash the stirring rods 372 and 382.
  • the analysis unit 3 includes a cleaning / drying unit 39.
  • the cleaning / drying unit 39 has a plurality of nozzles 391 that can be moved up and down every four cycles of the cuvette wheel 313, that is, every time it rotates by one pitch.
  • These nozzles are a nozzle such as a suction nozzle that sucks a test solution that has been analyzed from a cuvette, a cleaning nozzle that supplies cleaning liquid to the cuvette, a suction nozzle that sucks cleaning liquid from the cuvette, and an air nozzle that supplies compressed air to the cuvette.
  • the above-described units and components of the sample supply unit 2 and the analysis unit 3 are connected to the control unit 5 and can be controlled comprehensively.
  • the control unit 5 can employ, for example, a microcomputer.
  • the control unit 5 controls the operation of each part of the automatic analyzer 1, and includes a movement control unit 5a as a movement control unit and an analysis stop unit 5b as an analysis stop unit.
  • the movement control unit 5a controls the rotational movement of the arms 351 and 361 and the vertical movement of the reagent probes 352 and 362.
  • the movement control unit 5a controls the reagent probes 352 and 362 based on the liquid level position calculated by the liquid level calculation unit 4a described later and the distance information from the first reagent dispensing unit 35 and the second reagent dispensing unit 36. Insert into reagent bottle B and move the tips of reagent probes 352 and 362 down to the specified position.
  • the predetermined position is a position below the liquid surface position calculated by the liquid surface calculating unit 4a and capable of sufficiently sucking the amount of reagent used in the analysis.
  • the analysis stopping unit 5b is configured such that the tips of the reagent probes 352 and 362 controlled by the movement control unit 5a move down to a predetermined position and the liquid level detection units 352b and 362b detect the liquid level position. In addition, if reagent aspiration detection by the reagent aspiration detection units 352a and 362a cannot be detected, it operates to stop the analysis of the sample for each corresponding analysis item. In addition, the control unit 5 controls the analysis unit 3 so as to regulate the analysis work together with each probe when the reagent lot or expiration date is outside the set range.
  • a data processing unit 4 (hereinafter referred to as DPR4) is connected to the control unit 5.
  • DPR4 is a part that processes various data acquired by the control unit 5.
  • the data processing unit 4 includes a liquid level calculation unit 4a (liquid level calculation unit), a bubble detection determination unit 4b (bubble detection determination unit), a warning unit 4c (warning unit), a bubble information addition unit 4d (bubble information addition unit),
  • An input unit 41 and an output unit 42 are provided, and various data acquired by the control unit 5 and various data input from the input unit 41 are processed.
  • the input unit 41 is, for example, a keyboard or a mouse, and can input various information such as the number of specimens and examination items. The inspection items can be entered individually, but can also be entered roughly as in the standard inspection and fine inspection.
  • the input unit 41 is connected to an information reading device 6 described later.
  • the output unit 42 is, for example, a display panel or a printer, and can output various kinds of information such as analysis contents including alarm results and alarms.
  • the liquid level calculation unit 4a calculates the liquid level position of the reagent based on the remaining amount of the reagent filled in the reagent bottle B.
  • the amount of reagent required for analysis is the amount of reagent determined for each analysis item, and is determined for each reagent. Therefore, the liquid level calculation unit 4a calculates the usage amount of the reagent used for the analysis by adding up the number of specimens and the amount dispensed once for each analysis item. Furthermore, the liquid level The calculation unit 4a subtracts the amount of reagent used from the reagent amount of the reagent filled in the reagent bottle B (the capacity read by the identification code readers 323 and 333) to obtain the remaining amount of reagent, and the remaining reagent amount.
  • the force level of the reagent filled in the reagent bottle B can be calculated.
  • the amount of the remaining reagent is a guideline for replenishing the reagent to the first reagent cooler 32 and the second reagent cooler 33. This remaining reagent amount is displayed on a display panel as a display means, and can be recognized by the operator.
  • the bubble detection determination unit 4b detects bubbles when the liquid level position force of the reagent detected by the liquid level detection units 352b and 362b is higher than the liquid level position calculated by the liquid level calculation unit 4a. Judgment. That is, as shown in FIG. 7, the movement controller 5a inserts the reagent probes 352 and 362 into the reagent bottle B and controls the lowering. If the tip positions of the reagent probes 352 and 362 come into contact with the bubble E during this lowering, the liquid level detection units 352b and 362b are located above the liquid level D position calculated by the liquid level calculation unit 4a. Regardless, the liquid level of the reagent will be detected. In this state, the bubble detection determination unit 4b regards the liquid level detected by the liquid level detection units 352b and 362b as being due to contact with the bubble E that is not at the actual liquid level, and determines that the bubble is detected.
  • the warning unit 4c is used when the tip of the reagent probe has moved to the predetermined position and when the liquid level of the reagent has been detected by the liquid level detection units 352b and 362b, the reagent suction detection units 352a and 36 2a A warning is generated if reagent aspiration due to is not detected. This warning is displayed on the display panel of the output unit 42, printed on the printer, and can be recognized by the operator.
  • the bubble information adding unit 4d adds bubble detection information to the analysis result when the bubble detection determining unit 4b determines that the bubble is detected. As shown in FIG. 8, the analysis result for each sample is output by the display panel or printer of the output unit 42 as shown in FIG. 8 and the numerical data corresponding to the analysis item.
  • the bubble information adding unit 4d adds a mark indicating bubble detection, for example, ⁇ to the output data, so that the operator can recognize the bubble detection. It is possible to display (bubble detection) together with this mark.
  • the data processing unit 4 is connected to the photometric sensor 314b via the control unit 5, and analyzes the component concentration and the like of the specimen based on the amount of light (absorbance) measured by the photometric sensor 314b.
  • the component concentration of the sample is analyzed using the absorbance of the test solution consisting of the reagent in the cuvette C and the sample. The absorbance can be compared and contrasted by measuring the amount of light relating to the blank sample in advance by the photometric sensor 314b. This analysis result can be output to the output unit 42.
  • the sample supply unit 2 supplies the sample to the analysis unit 3.
  • the rack supply conveyor 22 supplies the rack 20 to the rack transport conveyor 23, and the rack transport conveyor 23 transports the rack 20 to the sample supply position.
  • the reagent and the sample are dispensed into the cuvette C from the first reagent cold storage 32, the second reagent cold storage 33, and the sample supply unit 2, and the reaction of these mixed solutions is measured. Analyze by. This will be specifically described.
  • the reagent bottle B containing the reagent corresponding to the analysis item is moved to the reagent suction position (step S10). Then, when the reagent bottle B corresponding to the analysis item is moved to the reagent suction position, the liquid level calculation unit 4a calculates the liquid level position from the reagent remaining amount information (step Sl l). Next, the first reagent dispensing unit 35 lowers the reagent probe 352 into the reagent bottle B (step S12), and the liquid level detector 352b detects the liquid level position (step S13).
  • the bubble detection determination unit 4b determines whether the liquid level detection unit 352b has detected the liquid level at the liquid level position (calculation position) calculated by the liquid level calculation unit 4a (step S14).
  • the bubble detection determination unit 4b performs the bubble detection.
  • the detected position information is transmitted to the bubble information adding unit 4d (step S15).
  • the bubble information adding unit 4d adds a mark indicating bubble detection to the analysis result of the corresponding sample (step S16). This analysis result is output as shown in FIG. 8 by the display panel or printer of the output unit 42 after the analysis is completed.
  • the movement control unit 5a controls the lowering of the reagent probe 352 to the calculation position (step S17), and enables the first reagent dispensing unit 35 to suck the first reagent (step S18). Also, when the liquid level is detected at the calculated position (Step S 14: Yes), the first reagent dispensing unit 35 absorbs the first reagent. Enable the bow [step S18].
  • the reagent suction pressure is confirmed by the reagent suction detector 352a (step S19), and it is determined whether or not the suction pressure is normal (step S20).
  • suction pressure is performed up to n times (n is an arbitrary positive number) to detect the suction pressure. If the suction pressure is abnormal (step S20: No), the control unit 5 checks the number of abnormalities detected by the reagent suction detection unit 352a (step S21). Then, when an abnormality is detected a plurality of times (step S22), it is determined whether or not the abnormal power is reached (step S23).
  • step S23 In the case of the number of detected abnormal times (step S23: Yes), warning of abnormal suction by warning section 4c and stop of suction by reagent probe 352 are performed, and analysis is stopped by analysis stop section 5b (step S23). S24). If the detected abnormal force has not been reached (step S23: No), the movement control unit 5a moves the reagent probe 352 to the cleaning position (step S28), and the cleaning unit 353 performs cleaning (step S29). The reagent probe 352 is moved again to the reagent suction position (step S10), and the above operation is repeated.
  • step S20 If the reagent suction pressure detected by the reagent suction detection unit 352a is normal (step S20: Yes), the liquid level calculation unit 4a subtracts the liquid level position based on this reagent suction.
  • Step S25 the first reagent dispensing unit 35 moves the reagent probe 352 to the reagent discharge position under the control of the movement control unit 5a (Step S26), and discharges the first reagent to the cuvette C (dispensing). (Step S27). After the dispensing, the reagent probe 352 is moved to the washing position (Step S28) and washed by the washing unit 353 (Step S29).
  • the sample dispensing unit 34 As a subsequent analysis operation in the automatic analyzer 1, when the cuvette wheel 313 rotates and the cuvette C into which the first reagent has been dispensed moves to the sample dispensing position, the sample dispensing unit 34 is moved to the sample. Aspirate the sample from the collection tube 21 transported to the aspiration position and dispense the sample into the cuvette C located at the sample dispensing position. Then, the sample probe 342 that has been dispensed is washed by the washing unit 343.
  • the first stirring unit 37 stirs the mixed solution of the first reagent and the sample stored in the cuvette C.
  • the stirring rod 372 used for the previous stirring is cleaned in the cleaning unit 373.
  • the second reagent can be dispensed.
  • the reagent bottle B containing the reagent corresponding to the analysis item is placed in the reagent suction position in the second reagent cooler 33 as in the case of dispensing the first reagent. Move to.
  • the second reagent dispensing unit 36 Aspirate the second reagent from B and dispense the second reagent into cuvette C located at the second reagent dispensing position. Then, the reagent probe 362 used for dispensing is washed by the washing unit 363.
  • the mixed solution stored in the cuvette C can be stirred by the second stirring unit 38. It becomes. If the second reagent is not dispensed, stirring is not necessary.
  • the photometric sensor 314b performs photometry. Then, the data processing unit 4 analyzes the component concentration of the specimen based on the light amount (absorbance) measured by the photometric sensor 314b.
  • the cuvette C whose test solution photometry was completed in this way was cleaned at the cleaning 'drying position. • The drying unit 39 was aspirated and discarded, and was supplied from the cleaning water tank. After the inside is washed with washing water, it is dried with compressed air. Then, the cuvette C is again dispensed by the first reagent dispensing unit 35 and used for analysis.
  • the liquid level position of the reagent is calculated from the remaining amount of the reagent filled in the reagent bottle, and the reagent probe is placed in the reagent bottle based on the calculated liquid level position. Enter Then, the tip of the reagent probe is moved to a predetermined position.
  • the automatic analyzer detects the liquid level position of the reagent during this movement, and if the detected liquid level position is located above the calculated liquid level position, it is determined as bubble detection.
  • it is not necessary to provide a bubble detection means separately from the liquid level detection unit and even if bubbles are generated in the reagent bottle, the bubbles and the reagent liquid level are accurately detected and the reagent is normally suctioned. be able to. Thereby, in this embodiment, it becomes possible to perform a more accurate analysis.
  • the bubble detection unit determines bubble detection, and the reagent suction detection unit checks the reagent suction pressure by the reagent probe. If the reagent suction pressure is normal, bubbles are generated. However, since the analysis operation can be continued, it is possible to recover without stopping the analysis when bubbles are generated at the time of reagent dispensing, thereby shortening the analysis time.
  • the automatic analyzer according to the present invention is useful for an automatic analyzer that detects a liquid level and sucks a reagent, particularly when bubbles are generated in a reagent bottle. Appropriate for accurate detection of bubbles and reagent liquid levels, and for normal reagent aspiration.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

 試薬ボトルに充填された試薬残量から試薬の液面位置を液面算出部4aで算出し、この液面位置をもとに移動制御部5aが試薬プローブを試薬ボトル内に挿入して、試薬プローブの先端を所定位置まで移動制御する。液面検知部352b,362bは、この移動の際に試薬の液面位置を検知しており、この検知された液面位置が、前記算出した液面位置よりも上方位置の場合に、泡検知判断部4bが泡検知と判断し、試薬ボトル内に泡が発生しても、泡および試薬液面の検知を正確に行い、試薬の吸引を正常に行うことができる。

Description

明 細 書
自動分析装置
技術分野
[0001] 本発明は、生化学分析、免疫検査等の分析を自動で行う自動分析装置に関するも のである。
背景技術
[0002] 生化学分析等の分析を自動で行う自動分析装置が広く知られてレ、る。 自動分析装 置は、検体供給部、分析部、データ処理部を有している。検体供給部は、採取管を 搭載したラックを逐次供給するものである。分析部は、反応槽および試薬保冷庫を有 している。反応槽は、内部にキュベットホイールと測定光学系を備え、試薬保冷庫に は、検体と反応する試薬を収容した試薬ボトルが収納してある。また、キュベットホイ ールには、キュベット(反応容器)が収容してあり、液面検知手段で検知した液面をも とに試薬ボトルから試薬を吸弓 [して分注する一方、採取管から検体を吸弓 [して分注 する。そして、測定光学系を用いてキュベットにおいて反応させた検液 (試薬と検体と 力 なる混合液)の吸光度を測定する。さらに、測定した吸光度からデータ処理部が 分析結果を取得する。
[0003] このような分析装置に使用される各種試薬は、添加されている界面活性剤の影響 で泡が発生しやすぐこの状態で試薬の液面を検知すると、泡を液面と誤検知するこ と力 Sある。そこで、従来では試薬ボトルを開栓し、試薬ボトル内に泡の有無を確認し、 泡が発生している場合には、オペレータが泡を取り除いてから、試薬ボトルを試薬保 冷庫へセットしていた。また、従来では液面検知手段とは別に、試薬ボトル内に発生 した泡を自動的に検知する検知手段を設けて、泡の有無を確認するものもある(たと えば、特許文献 1参照)。
[0004] 特許文献 1 :特開 2005— 164506号公報
発明の開示
発明が解決しょうとする課題
[0005] 従来では、試薬保冷庫に試薬ボトルをセットする前に泡を検知している。し力、しなが ら、 自動分析装置では、試薬ボトルのセット後に、この試薬ボトルを試薬供給位置へ 移動しており、この際の振動などで試薬ボトル内に泡が生じることがある。この状態で 試薬ボトル内に泡が生じると、試薬プローブの試薬吸引動作のときに、試薬ボトル内 の試薬液面を検知する液面検知手段が泡を液面と誤検知し、試薬液面に試薬プロ ーブ先端が到達していないにもかかわらず、試薬プローブの下方への移動を停止し て吸引動作を行い、空気を吸引してしまう。このため、従来では試薬の吸引動作を行 うことができず、正確な分析を行うことができなかった。
[0006] 本発明は、上記に鑑みてなされたものであって、試薬ボトル内に泡が発生しても、 泡および試薬液面の検知を正確に行い、試薬の吸引を正常に行うことができる自動 分析装置を提供することを目的とする。
課題を解決するための手段
[0007] 上述した課題を解決し、 目的を達成するために、本発明にかかる自動分析装置は
、試薬ボトル力 試薬プローブが分注した所定量の試薬と所定量の検体とからなる検 液を測光することにより検体を分析する自動分析装置において、前記試薬ボトルに 充填された試薬残量から該試薬の液面位置を算出する液面算出手段と、前記液面 算出手段で算出した液面位置をもとに前記試薬プローブを前記試薬ボトノレ内に揷入 して、該試薬プローブの先端を所定位置まで移動制御する移動制御手段と、前記移 動制御手段で移動する試薬プローブの先端位置をもとに試薬の液面位置を検知す る液面検知手段と、前記液面検知手段で検知した試薬の液面位置が、前記液面算 出手段で算出した液面位置よりも上方位置である場合に、泡検知と判断する泡検知 判断手段と、を備える。
[0008] 本発明にかかる自動分析装置は、上記発明において、前記試薬プローブによる試 薬の吸引を検知する吸引検知手段と、前記移動制御手段で試薬プローブの先端を 所定位置まで移動し、かつ前記液面検知手段で前記液面位置を検知してある場合 に、前記吸引検知手段による試薬の吸引が検知できないと、前記検体の分析を停止 する分析停止手段と、をさらに備えることを特徴とする。
[0009] 本発明にかかる自動分析装置は、上記発明において、前記移動制御手段で試薬 プローブの先端を所定位置まで移動し、かつ前記液面検知手段で前記液面位置を 検知してある場合に、前記吸引検知手段による試薬の吸引が検知できないと、警告 を発する警告手段を、さらに備えることを特徴とする。
[0010] 本発明にかかる自動分析装置は、上記発明において、前記泡検知判断手段が泡 検知と判断した場合に、分析結果に泡検知の情報を付加する泡情報付加手段を、さ らに備えることを特徴とする。
発明の効果
[0011] 本発明にかかる自動分析装置は、試薬ボトルに充填された試薬残量から試薬の液 面位置を算出し、この算出した液面位置をもとに前記試薬プローブを前記試薬ボト ル内に挿入して、該試薬プローブの先端を所定位置まで移動する。 自動分析装置は 、この移動の際に試薬の液面位置を検知しており、この検知された液面位置が、前 記算出した液面位置よりも上方位置の場合に、泡検知と判断することで、試薬ボトル 内に泡が発生しても、泡および試薬液面の検知を正確に行い、試薬の吸引を正常に 行うことができる。
図面の簡単な説明
[0012] [図 1]図 1は、本発明の実施の形態 1にかかる自動分析装置の構成を示す正面図で ある。
[図 2]図 2は、検体供給部および分析部の構成を示す平面図である。
[図 3]図 3は、検体供給部および分析部の構成を示す概念斜視図である。
[図 4]図 4は、 自動分析装置の構成を示すブロック図である。
[図 5]図 5は、試薬分注ユニットの構成の一部を示す構成図である。
[図 6]図 6は、 自動分析装置の試薬の分注動作を説明するフローチャートである。
[図 7]図 7は、試薬プローブの下降動作を説明するための図である。
[図 8]図 8は、分析結果報告の一例を示す図である。
符号の説明
[0013] 1 自動分析装置
2 検体供給部
3 分析部
4 データ処理部 4a 液面算出部
4b 泡検知判断部
4c 警告部
4d 泡情報付加部
5 制御部
5a 移動制御部
5b 分析停止部
31 反応槽
313 キュベットホイール
32 第一試薬保冷庫
323 識別コードリーダ
33 第二試薬保冷庫
333 識別コードリーダ
34 検体分注ユニット
342 検体プローブ
342a 検体吸引検知部
35 第一試薬分注ユニット
352, 362 試薬プローブ
352a, 362a 試薬吸引検知部
352b, 362b 液面検知部
36 第二試薬分注ユニット
41 入力部
42 出力部
B 試薬ボトル
C キュベット
D 液面
E 泡
発明を実施するための最良の形態 [0014] 以下に添付図面を参照して、本発明の実施の形態に力かる自動分析装置法を詳 細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
[0015] 本発明にかかる自動分析装置は、生化学分析、免疫検査等の分析を自動で行う自 動分析装置に適用可能であるが、ここでは、臨床検査等に用いられる生化学分析装 置を例に説明する。
[0016] (実施の形態 1)
まず、図 1〜図 8を参照し、実施の形態 1にかかる自動分析装置の構成を説明する 。なお、図 1は本発明の実施の形態 1にかかる自動分析装置の構成を示す正面図、 図 2は検体供給部および分析部の構成を示す平面図、図 3は検体供給部および分 析部の構成を示す概念斜視図、図 4は自動分析装置の構成を示すブロック図である
[0017] 自動分析装置 1は、図 1および図 4に示すように、検体供給部 2、分析部 3、データ 処理部 4を有している。検体供給部 2は、図 2に示すように、採取管 21 (たとえば、採 血管)を搭載したラック 20を分析部 3に逐次供給可能である。本実施の形態 1にかか るラック 20は 10本の採取管 21が搭載可能であり、検体供給部 2に 150検体分をセッ ト可能である。採取管 21には、採取した検体 (たとえば血液)が収容してあり、その側 面には、検体を識別する識別コードラベル(図示せず)力 S貼付してある。この識別コー ドラベルは、検体に関する情報を表示している。
[0018] 図 2に示すように、検体供給部 2は、ラック供給コンベア 22、ラック搬送コンベア 23、 ラック回収コンベア 24を備えている。ラック供給コンベア 22は、搬送方向に対して直 交する L字状のアタッチメント 22aを複数備えたコンベアであり、アタッチメント 22aの 相互間にラック 20を搭載可能である。したがって、ラック 20は、ラック供給コンベア 22 上で整列し、アタッチメント 22aに支承されて倒伏することがない。
[0019] ラック搬送コンベア 23は、検体供給位置にラック 20を搬送するものであり、コンベア により構成してある。ラック搬送コンベア 23は、ラック 20を間欠的に搬送可能であり、 ラック 20上の採取管 21を検体供給位置に逐次移動可能である。また、ラック搬送コ ンベア 23の搬送方向手前側には、識別コードリーダ 25が配設してあり、検体供給位 置に搬送する採取管 21に収容してある検体の情報 (識別コード)を取得可能である。 [0020] ラック回収コンベア 24は、ラック供給コンベア 22と同様に、搬送方向に対して直交 する L字状のアタッチメント 24aを複数備えたコンベアであり、ラック搬送コンベア 23 力 搬送されたラック 20をアタッチメント 24aの相互間に収容することにより、ラック 20 を回収可能である。回収されたラック 20は、ラック回収コンベア 24上で整列し、ァタツ チメント 24aに支承されて倒伏することがなレ、。
[0021] 分析部 3は、反応槽 31、第一試薬保冷庫 32および第二試薬保冷庫 33を備えてい る。反応槽 31は、分析部 3の略中央部に配設してある。反応槽 31は、内部に加温装 置(図示せず)と温度センサ(図示せず)とを備えるとともに、円板状の蓋 312により覆 つてあり、内部の温度を人体の体温と同一の温度(摂氏 37度)で維持する恒温槽を 構成している。また、反応槽 31は、図 3に示すように、内部にキュベットホイール 313 および測定光学系 314を備え、検液 (検体と試薬の混合液)の吸光度から分析結果 を取得可能である。
[0022] キュベットホイール 313は、リング状に成形された環状の部材であり、間欠して回転 可能である。キュベットホイール 313の径外方向略中央には、収容凹部 313aが周方 向に等間隔(以下、この間隔を 1ピッチという)で設けてある。また、キュベットホイール 313の内側側面と外側側面とには、収容凹部 313aに挿通し、キュベットホイール 31 3の外側から内側に光束を案内する測光窓 313bが設けてある。収容凹部 313aには 、キュベットと称される反応容器(以下、「キュベット C」という)が収容してある。キュべ ット Cは、角筒形状の透明容器であり、上方部が開口している。したがって、光束は、 キュベットホイール 313の外側からキュベット Cを通過してキュベットホイール 313の内 側に案内される。
[0023] キュベットホイール 313の外側となる位置には、キュベットホイール 313の径内方向 に光を照射する光源 314aが設けてあり、光源 314aと分析対象となるキュベットを結 ぶ直線上には測光センサ 314bが設けてある。光源 314aは、試薬と検体とが反応し たキュベット C内の検液を分析するための照射光(340〜800nm)を出射するもので ある。測光センサ 314bは、キュベット C内の検液を透過し、測光窓 313bを通過した 平行光を測光するものである。これら光源 314aおよび測光センサ 314bは、上述した 測定光学系 314を構成する。 [0024] 測定光学系 314は、光源 314a、測光センサ 314bのほか、キュベットホイールの外 側となる位置にコリメーシヨンレンズ 314cを、キュベットホイールの内側となる位置に フィルタ(図示せず)を備えている。コリメーシヨンレンズ 314cは、光源 314aが出射し た光を平行光に収束させるものである。フィルタは、検液に特異的に吸収される波長 の光を選択する光学フィルタであり、測定項目毎に予め定めたものが使用される。
[0025] 上述したキュベットホイール 313は、 4. 5秒かけて反時計方向に(1周 _ 1ピッチ)/ 4回転し(以下「1周期」という)、キュベットホイール 313が 18秒かけて 4周期すると(1 周— 1ピッチ)回転する。この結果、キュベット Cは、 4周期で時計方向に 1ピッチ移動 することになる。
[0026] ここで、キュベットホイール 313が検体供給位置に近接する位置が第一検体分注位 置となり、当該第一検体分注位置と略対向する位置が第一試薬分注位置となる。ま た、第一検体分注位置から時計方向に第一検体分注位置と第一試薬分注位置との 間を略二分する位置が第二試薬分注位置となり、第一検体分注位置から反時計方 向に第一検体分注位置と第一試薬分注位置との間を略二分する位置が第二検体分 注位置となる。さらに、第二試薬分注位置の反時計方向近傍位置が第一攪拌位置と なり、第二検体分注位置の時計方向近傍位置が第二攪拌位置となる。またさらに、 第二検体分注位置の反時計方向近傍位置が洗浄 ·乾燥位置となる。
[0027] そして、反応槽 31を覆う蓋 312には、これら第一検体分注位置、第二検体分注位 置、第一試薬分注位置、第二試薬分注位置、第一攪拌位置、第二攪拌位置、洗浄 位置に対応して、図 2に示すように、第一検体分注孔 312a、第二検体分注孔 312b 、第一試薬分注孔 312c、第二試薬分注孔 312d、第一攪拌孔 (図示せず)、第二攪 拌孔(図示せず)、洗浄孔 312gが設けてある。
[0028] 第一試薬保冷庫 32および第二試薬保冷庫 33は、反応槽 31の左部に配設してあ る。第一試薬保冷庫 32および第二試薬保冷庫 33は、それぞれ、内部に冷却装置( 図示せず)と温度センサ(図示せず)とを備えるとともに、円盤状の蓋 322, 332により 覆ってあり、内部の温度を所定の温度以下とする保冷庫を構成している。第一試薬 保冷庫 32および第二試薬保冷庫 33は、内部にターンテーブル(図示せず)を備え ている。 [0029] ターンテーブルは、間欠して回転可能であり、ターンテーブルの上面には、中央部 から径外方向に延在する仕切りが複数配設してある。仕切りは、ワンタッチで着脱可 能であって、ターンテーブルを任意の領域に画成可能である。
[0030] 各ターンテーブルには、図 3に示すように、それぞれ複数の試薬ボトル Bが開栓した 状態で収容してある。各試薬ボトル Bには、検查項目に対応する所定の試薬が収容 してあり、その外周面には試薬を識別する識別コードラベル(図示せず)が貼付して ある。識別コードラベルは、試薬に関する情報を表示するものであり、たとえば、試薬 の種類、製造ロット番号、キャリブレーション値、検量線、有効期限、容量などが表示 してある。
[0031] 第一試薬保冷庫 32および第二試薬保冷庫 33には、それぞれ識別コードリーダ 32 3, 333が配設してある。識別コードリーダ 323, 333は、試薬ボトル Bに貼付した識 別コードラベルを読み取るものであり、試薬ボトル Bに収容した試薬に関する情報を 取得可能である。したがって、ターンテーブルは、任意の試薬ボトル Bを任意のタイミ ングで試薬供給位置に移動可能である。
[0032] そして、第一試薬保冷庫 32および第二試薬保冷庫 33を覆う蓋 322, 332には、図 2に示すように、試薬供給位置に対応して、それぞれ第一試薬孔 322a、第二試薬孔 332aが設けてある。
[0033] また、分析部 3は、検体分注ユニット 34、第一試薬分注ユニット 35および第二試薬 分注ユニット 36を備えている。検体分注ユニット 34は、検体供給位置に移動された 採取管 21からキュベット Cに所定量の検体を分注するものであり、アーム 341と検体 プローブ 342とを有している。アーム 341は、検体供給位置と第一検体分注位置との 間、および、検体供給位置と第二検体分注位置との間を回動可能、かつ上下方向に 昇降可能である。検体プローブ 342は、検体を吸引する部分であり、アーム 341の降 下時に静電容量を監視することにより、採取管 21に収容された検体の液面を検出可 能である。
[0034] また、検体分注ユニット 34は、検体プローブ 342に取り付けられ、検体プローブ 34 2が所定量の検体を吸引したことを検知する吸引検知手段としての検体吸引検知部 342aを備えている。検体吸引検知部 342aは、吸引時の圧力変化を監視する圧力 センサ等であり、採取管 21が収容されていない場合に検体吸引時の圧力よりも圧力 が低くなり、検体プローブ 342に詰まりが生じた場合に検体吸引時の圧力よりも高く なることを利用して検体の吸引を検知可能である。また、検体供給位置と第一検体分 注位置とを結ぶ軌跡上には、洗浄部 343が設けてある(図 2参照)。洗浄部 343には 、図示せぬ洗浄水タンクから洗浄水が供給され、検体プローブ 342を洗浄可能であ る。
[0035] 第一試薬分注ユニット 35および第二試薬分注ユニット 36は、試薬供給位置に移動 された試薬ボトル Bからキュベット Cに所定量の試薬を分注するものであり、検体分注 ユニット 34と同様に、それぞれ、アーム 351 , 361と試薬プローブ 352, 362とを有し ている。アーム 351 , 361は、試薬供給位置と試薬分注位置との間を回動可能、かつ 上下方向に昇降可能である。試薬プローブ 352, 362は、試薬を吸引する部分であ る。なお、このターンテーブルで試薬ボトル Bを試薬供給位置に移動する際に、振動 などによって試薬の液面には泡が発生することがある。
[0036] 第一試薬分注ユニット 35および第二試薬分注ユニット 36は、試薬ボトノレ Bに充填さ れた試薬の試薬量 (識別コードリーダ 323, 333で読み取った値)に合わせて、試薬 プローブ 352, 362の先端と試薬液面位置との距離を、たとえばパルス数などでカウ ントして算出し、この値(距離情報)を制御部 5およびデータ処理部 4に出力している 。また、第一試薬分注ユニット 35および第二試薬分注ユニット 36は、試薬プローブ 3 52, 362に取り付けられて試薬の液面位置を検知する液面検知手段としての液面検 知部 352b, 362bを備えている。液面検知部 352b, 362bは、アーム 351 , 361の降 下時に静電容量を監視することにより、試薬ボトル Bに収容された試薬の液面位置を 検知している。この液面検知部 352b, 362bによる液面位置は、上記距離情報から 検知される。なお、試薬プローブ 352, 362は、先端部を除く外周を絶縁し、先端部 で試薬の液面を検出するように構成している力 試薬プローブ 352, 362の外周を電 気的にシールドし、さらにその外側を絶縁するように構成しても良い。
[0037] また、第一試薬分注ユニット 35および第二試薬分注ユニット 36は、図 5に示すよう に、試薬プローブ 352, 362に所定量の試薬を吸引させ分注を可能にする分注器 3 54, 364と、試薬プローブ 352, 362に取り付けられ、上記試薬を吸引したことをそれ ぞれ検知する吸引検知手段としての試薬吸引検知部 352a, 362aとを備えている。 試薬吸引検知部 352a, 362aは、吸引時の圧力変化を監視する圧力センサ等であり 、試薬切れが生じた場合に試薬吸引時の圧力よりも圧力が低くなり、試薬プローブ 3 52, 362に詰まりが生じた場合に試薬吸引時の圧力よりも高くなることを利用して試 薬の吸引を検知可能である。また、試薬供給位置と試薬分注位置とを結ぶ軌跡上に は、洗净咅 353, 363力 S設けてある(図 2参照)。洗净咅 353, 363には、図示せぬ洗 浄水タンクから洗浄水が供給され、試薬プローブ 352, 362の先端力 試薬ボトルの 深さ分に相当する部分の洗浄可能である。
[0038] さらに、分析部 3は、第一攪拌ユニット 37および第二攪拌ユニット 38を備えている。
第一攪拌ユニット 37および第二攪拌ユニット 38は、第一攪拌位置と第二攪拌位置に 移動されたキュベット Cの混合液 (検体と試薬)を攪拌して反応を促進させるものであ り、それぞれ、回転アーム 371, 381と撹拌棒 372, 382とを備えている。回転アーム 371 , 381は、回転 (公転)可能、かつ上下方向に昇降可能であって、平面視略三角 形状を有している。撹拌棒 372, 382は、回転アーム 371 , 381の各頂部近傍に配 設してある。撹拌棒 372, 382は、回転アーム 371 , 381と独立して回転(自転)可能 である。また、携禅棒 372, 382の公転軌跡上には、洗净部 373, 383力 S設けてある( 図 2参照)。洗浄部 373, 383は、図示せぬ洗浄水タンクから洗浄水が供給され、撹 拌棒 372, 382を洗浄可能である。
[0039] またさらに、分析部 3は、洗浄 ·乾燥ユニット 39を備えている。洗浄 ·乾燥ユニット 39 は、キュベットホイール 313が四周期するごと、すなわち 1周 1ピッチ回転するごと に上下方向に昇降可能であって、複数のノズル 391を有している。これらノズノレは、 キュベットから分析を終了した検液を吸引する吸引ノズル、キュベットに洗浄液を供給 する洗浄ノズル、キュベットから洗浄液を吸引する吸引ノズル、キュベットに圧縮空気 を供給するエアノズノレ等のノズルである。
[0040] 上述した検体供給部 2、分析部 3の各ユニットおよび構成要素は、制御部 5に接続 してあり、統括的に制御可能である。制御部 5は、たとえば、マイクロコンピュータ等を 採用可能である。制御部 5は、 自動分析装置 1の各部の作動を制御するもので、移 動制御手段としての移動制御部 5aと、分析停止手段としての分析停止部 5bとを備え る。移動制御部 5aは、アーム 351 , 361の回転移動および試薬プローブ 352, 362 の上下移動を制御するものである。移動制御部 5aは、後述する液面算出部 4aで算 出した液面位置および第一試薬分注ユニット 35および第二試薬分注ユニット 36から の距離情報をもとに試薬プローブ 352, 362を試薬ボトル B内に挿入して、試薬プロ ーブ 352, 362の先端を所定位置まで下降移動する。なお、この所定位置とは、液 面算出部 4aで算出した液面位置より下方で、かつ分析における試薬の使用量を十 分に吸引することができる位置である。
[0041] 分析停止部 5bは、移動制御部 5aで制御する試薬プローブ 352, 362の先端が所 定位置まで下降移動し、かつ液面検知部 352b, 362bで液面位置を検知している場 合に、試薬吸引検知部 352a, 362aによる試薬の吸引が検知できないと、該当する 分析項目ごとの検体の分析を停止するように動作する。また、制御部 5は、各プロ一 ブとともに、試薬のロットや有効期限等が設定範囲外の場合、分析作業を規制するよ うに分析部 3を制御する。
[0042] 制御部 5には、データ処理部 4 (以下、 DPR4という)が接続してある。 DPR4は、制 御部 5が取得した各種データを処理する部分である。データ処理部 4は、液面算出 部 4a (液面算出手段)、泡検知判断部 4b (泡検知判断手段)、警告部 4c (警告手段) 、泡情報付加部 4d (泡情報付加手段)、入力部 41、出力部 42を備え、制御部 5が取 得した各種データおよび入力部 41から入力する各種データを処理する。入力部 41 は、たとえば、キーボードやマウス等であり、検体数および検査項目等の各種情報が 入力可能である。検査項目は、個別に入力することも可能であるが、標準検査、精密 検査のように大別して入力することも可能である。また、入力部 41は、その他に、後 述する情報読取装置 6が接続してある。出力部 42は、たとえば、ディスプレイパネル やプリンタ等であり、分析結果を含む分析内容や警報等の各種情報が出力可能であ る。
[0043] 液面算出部 4aは、試薬ボトル Bに充填された試薬残量力も試薬の液面位置を算出 するものである。分析に要する試薬量は、分析項目ごとに定められた試薬の量であり 、試薬ごとに定められている。したがって、液面算出部 4aは、分析項目ごとに検体数 と一回の分注量とを積算して、分析に使用した試薬の使用量を求める。さらに、液面 算出部 4aは、この試薬の使用量を試薬ボトル Bに充填された試薬の試薬量 (識別コ 一ドリーダ 323, 333が読み取った容量)から減算することで試薬残量を求め、この試 薬残量力 試薬ボトル B内に充填された試薬の液面位置を算出することができる。な お、この残試薬量は、第一試薬保冷庫 32および第二試薬保冷庫 33への試薬補充 の目安となる。この残試薬量は表示手段としてのディスプレイパネルに表示され、ォ ペレータが認識可能となる。
[0044] 泡検知判断部 4bは、液面検知部 352b, 362bで検知した試薬の液面位置力 液 面算出部 4aで算出した液面位置よりも上方位置である場合に、泡の検知と判断する ものである。すなわち、図 7に示すように、移動制御部 5aによって試薬プローブ 352, 362を試薬ボトル B内に挿入して下降制御する。この下降のときに試薬プローブ 352 , 362の先端の位置が泡 Eに接触すると、液面検知部 352b, 362bは、液面算出部 4aで算出した液面 D位置よりも上方位置であるにもかかわらず、試薬の液面を検知 することとなる。この状態では、泡検知判断部 4bは、液面検知部 352b, 362bで検知 した液面が実際の液面ではなぐ泡 Eとの接触によるものと見なして、泡の検知と判断 する。
[0045] 警告部 4cは、試薬プローブの先端が上記所定位置まで移動し、かつ液面検知部 3 52b, 362bによって試薬の液面が検知してある場合に、試薬吸引検知部 352a, 36 2aによる試薬の吸引が検知できないと、警告を発生するものである。この警告は、出 力部 42のディスプレイパネルに画面表示され、プリンタで印字表示され、オペレータ が認識可能となる。
[0046] 泡情報付加部 4dは、泡検知判断部 4bが泡検知と判断した場合に、分析結果に泡 検知の情報を付加するものである。各検体に対する分析結果は、出力部 42のデイス プレイパネルやプリンタによって、図 8に示すように、各分析項目と、この分析項目に 対応する数値のデータとが出力される。この出力データに泡情報付加部 4dが泡検知 を示すマーク、たとえば★を付加することで、オペレータが泡の検知を認識可能とな る。なお、このマークとともに、(泡検知)と表示することも可能である。
[0047] また、データ処理部 4は、制御部 5を介して測光センサ 314bと接続してあり、測光セ ンサ 314bが測光した光量 (吸光度)に基づいて、検体の成分濃度等を分析する。具 体的には、キュベット C内の試薬と検体とからなる検液の吸光度を用いて検体の成分 濃度等を分析する。吸光度は、測光センサ 314bによって予めブランク試料に関する 光量を測定しておくことにより比較対照が可能である。この分析結果は、出力部 42に 出力可能である。
[0048] つぎに、図 6を参照し、上述した本実施の形態 1にかかる自動分析装置の試薬の分 注動作を説明する。まず、分析を開始すると、検体供給部 2では、分析部 3に検体を 供給する。具体的には、ラック供給コンベア 22がラック 20をラック搬送コンベア 23に 供給し、ラック搬送コンベア 23が当該ラック 20を検体供給位置に搬送する。
[0049] 一方、分析部 3では、第一試薬保冷庫 32、第二試薬保冷庫 33および検体供給部 2から試薬および検体をキュベット Cに分注し、これらの混合液の反応を測光すること により分析する。具体的に説明する。
[0050] まず、第一試薬保冷庫 32において、分析項目に対応する試薬が収容してある試薬 ボトル Bを試薬吸引位置に移動する (ステップ S10)。そして、分析項目に対応する試 薬ボトル Bを試薬吸引位置に移動すると、液面算出部 4aが、試薬残量情報から液面 位置を算出する (ステップ Sl l)。次に、第一試薬分注ユニット 35が試薬プローブ 35 2を試薬ボトル B内に下降させ (ステップ S12)、液面検知部 352bが液面位置を検知 する(ステップ S 13)。
[0051] 泡検知判断部 4bは、液面算出部 4aで算出した液面位置 (算出位置)で、液面検知 部 352bが液面を検知したかどうか判断する (ステップ S14)。ここで、算出位置で液 面を検知してない場合 (ステップ S14 : No)、すなわち、許容範囲を含んだ算出位置 より上方位置で液面を検知した場合、泡検知判断部 4bは、泡検知と判断して、検知 位置情報を泡情報付加部 4dに伝達する(ステップ S 15)。泡情報付加部 4dは、この 検知位置情報が入力すると、該当する検体の分析結果に泡検知を示すマークを付 加する(ステップ S16)。この分析結果は、分析終了後に出力部 42のディスプレイパ ネルやプリンタによって、図 8に示すように出力される。そして、移動制御部 5aは、算 出位置まで試薬プローブ 352を下降制御して (ステップ S 17)、第一試薬分注ュニッ ト 35による第一試薬の吸引を可能にする (ステップ S18)。また、算出位置で液面を 検知した場合も(ステップ S 14 : Yes)、第一試薬分注ユニット 35による第一試薬の吸 弓 [を可能にする(ステップ S 18)。
[0052] 次に、試薬吸引検知部 352aにより、試薬吸引圧の確認を行い (ステップ S19)、こ の吸引圧が正常な圧力かどうか判断する (ステップ S20)。なお、この実施の形態で は、吸引圧が異常の場合には、 n回 (nは任意の正数)まで吸引を行って、吸引圧を 検知するものとする。ここで、吸引圧が異常な圧力の場合 (ステップ S20 : No)、制御 部 5は、試薬吸引検知部 352aにより検知された異常回数の確認を行う(ステップ S21 )。そして、複数回異常を検出した場合に (ステップ S22)、その異常力 回目かどうか 判断する(ステップ S23)。ここで、検出した異常の回数力 回の場合 (ステップ S23 : Yes)、警告部 4cによる吸引異常の警告及び試薬プローブ 352による吸引の中止を 行って、分析停止部 5bによって分析を停止する(ステップ S24)。また、検出した異常 力 回に至っていない場合(ステップ S23: No)、移動制御部 5aにより試薬プローブ 3 52を洗浄位置に移動し (ステップ S28)、洗浄部 353で洗浄を行い(ステップ S29)、 再び試薬プローブ 352を試薬吸引位置に移動して (ステップ S10)、上記動作を繰り 返す。
[0053] また、試薬吸引検知部 352aにより検知した試薬吸引圧が正常な圧力の場合 (ステ ップ S20 :Yes)、この試薬吸引をもとに、液面算出部 4aが液面位置を減算し (ステツ プ S25)、第一試薬分注ユニット 35が移動制御部 5aの制御により、試薬プローブ 35 2を試薬吐出位置に移動し (ステップ S26)、第一試薬をキュベット Cに吐出(分注)す る(ステップ S27)。そして、分注を終えた試薬プローブ 352は洗浄位置に移動され( ステップ S28)、洗浄部 353で洗浄される(ステップ S29)。
[0054] 自動分析装置 1におけるその後の分析動作としては、キュベットホイール 313が回 転し、第一試薬が分注されたキュベット Cが検体分注位置に移動すると、検体分注ュ ニット 34が検体吸引位置に搬送された採取管 21から検体を吸引して、検体分注位 置に位置するキュベット Cに検体を分注する。そして、分注を終えた検体プローブ 34 2は洗浄部 343で洗浄される。
[0055] そして、キュベットホイール 313が 4周期回転すると、第一試薬と検体を分注したキ ュベット Cは、上述したように、第一試薬を分注した位置から時計方向に 1ピッチ移動 したことになる。したがって、当該キュベット Cと反時計方向に隣り合うキュベット Cに第 一試薬を分注可能となる。
[0056] その後、キュベットホイール 313が回転し、キュベット Cが第一攪拌位置に移動する と、第一攪拌ユニット 37がキュベット Cに収容された第一試薬と検体の混合液を攪拌 する。このとき、前回攪拌に用いた撹拌棒 372が洗浄部 373において洗浄される。
[0057] そして、キュベットホイール 313が回転し、攪拌された混合液を収容したキュベット C が第二試薬分注位置に移動すると、第二試薬が分注可能となる。ここで、通常の分 祈において第二試薬を分注することはなぐ必要に応じて第二試薬を分注する。第 二試薬を分注する場合には、第一試薬を分注する場合と同様に、第二試薬保冷庫 3 3において、分析項目に対応する試薬が収容してある試薬ボトル Bを試薬吸引位置 に移動する。そして、分析項目に対応する試薬ボトル Bが試薬吸引位置に移動する と、上述した液面検知、泡検知判断、試薬吸引圧の確認を行った後、第二試薬分注 ユニット 36が、試薬ボトル Bから第二試薬を吸引して第二試薬分注位置に位置する キュベット Cに第二試薬を分注する。そして、分注に用いられた試薬プローブ 362は 洗浄部 363で洗浄される。
[0058] さらに、キュベットホイール 313が回転し、混合液に第二試薬を分注したキュベット C が第二攪拌位置に移動すると、第二攪拌ユニット 38がキュベット Cに収容された混合 液が攪拌可能となる。ここで、第二試薬を分注してない場合には攪拌する必要はな レ、。
[0059] そして、試薬および検体を混合攪拌した検液を収容したキュベット Cが測定光学系 314を横切るごとに測光センサ 314bが測光する。そして、データ処理部 4は、測光セ ンサ 314bが測光した光量(吸光度)に基づいて、検体の成分濃度等を分析する。
[0060] このようにして検液の測光が終了したキュベット Cは、洗浄'乾燥位置において洗浄 •乾燥ユニット 39が内部の検液が吸引されて廃棄されるとともに、洗浄水タンクから供 給された洗浄水によって内部が洗浄された後、圧縮空気により乾燥される。そして、 キュベット Cは、再び第一試薬分注ユニット 35によって第一試薬が分注され、分析に 使用される。
[0061] このように、この実施の形態では、試薬ボトルに充填された試薬残量から試薬の液 面位置を算出し、この算出した液面位置をもとに試薬プローブを試薬ボトル内に揷入 して、試薬プローブの先端を所定位置まで移動する。 自動分析装置は、この移動の 際に試薬の液面位置を検知しており、この検知された液面位置が、この算出した液 面位置よりも上方位置の場合に、泡検知と判断するので、液面検知部とは別に泡検 知手段を設ける必要がなぐかつ試薬ボトル内に泡が発生しても、泡および試薬液面 の検知を正確に行レ、、試薬の吸引を正常に行うことができる。これにより、この実施の 形態では、より正確な分析を行うことが可能となる。
[0062] また、この実施の形態では、泡検知部で泡検知を判断するとともに、試薬吸引検知 部で試薬プローブによる試薬吸引圧を確認し、試薬吸引圧が正常であれば、泡が発 生しても分析動作を続行できるので、試薬分注時の泡発生に対して分析を停止する ことなくリカバーが可能となり、これにより分析時間の短縮が可能となる。
[0063] また、この実施の形態では、泡が検知された場合、分析結果に泡検知を示すマー クを付加するので、このマークが再検査を行うかどうかの判断基準となって、より正確 な検査が可能となる。
産業上の利用可能性
[0064] 以上のように、本発明にかかる自動分析装置は、液面の検知を行なって試薬の吸 引を行う自動分析装置に有用であり、特に、試薬ボトル内に泡が発生した場合に泡 および試薬液面の検知を正確に行レ、、試薬の吸引を正常に行レ、たレ、場合に適して いる。

Claims

請求の範囲
[1] 試薬ボトル力 試薬プローブが分注した所定量の試薬と所定量の検体とからなる検 液を測光することにより検体を分析する自動分析装置にぉレ、て、
前記試薬ボトルに充填された試薬残量力 該試薬の液面位置を算出する液面算 出手段と、
前記液面算出手段で算出した液面位置をもとに前記試薬プローブを前記試薬ボト ル内に挿入して、該試薬プローブの先端を所定位置まで移動制御する移動制御手 段と、
前記移動制御手段で移動する試薬プローブの先端位置をもとに試薬の液面位置 を検知する液面検知手段と、
前記液面検知手段で検知した試薬の液面位置が、前記液面算出手段で算出した 液面位置よりも上方位置である場合に、泡検知と判断する泡検知判断手段と、 を備えることを特徴とする自動分析装置。
[2] 前記試薬プローブによる試薬の吸弓 Iを検知する吸弓 [検知手段と、
前記移動制御手段で試薬プローブの先端を所定位置まで移動し、かつ前記液面 検知手段で前記液面位置を検知してある場合に、前記吸引検知手段による試薬の 吸引が検知できないと、前記検体の分析を停止する分析停止手段と、
をさらに備えることを特徴とする請求項 1に記載の自動分析装置。
[3] 前記移動制御手段で試薬プローブの先端を所定位置まで移動し、かつ前記液面 検知手段で前記液面位置を検知してある場合に、前記吸引検知手段による試薬の 吸引が検知できないと、警告を発する警告手段を、
さらに備えることを特徴とする請求項 2に記載の自動分析装置。
[4] 前記泡検知判断手段が泡検知と判断した場合に、分析結果に泡検知の情報を付 加する泡情報付加手段を、
さらに備えることを特徴とする請求項 1に記載の自動分析装置。
PCT/JP2007/059614 2006-05-10 2007-05-09 自動分析装置 WO2007129741A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-131907 2006-05-10
JP2006131907A JP2007303937A (ja) 2006-05-10 2006-05-10 自動分析装置

Publications (1)

Publication Number Publication Date
WO2007129741A1 true WO2007129741A1 (ja) 2007-11-15

Family

ID=38667849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/059614 WO2007129741A1 (ja) 2006-05-10 2007-05-09 自動分析装置

Country Status (2)

Country Link
JP (1) JP2007303937A (ja)
WO (1) WO2007129741A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3570043A1 (en) * 2018-05-16 2019-11-20 Jeol Ltd. Automatic analyzer and automatic analysis method
CN113544518A (zh) * 2019-04-26 2021-10-22 株式会社日立高新技术 自动分析装置
US11719714B2 (en) 2018-03-28 2023-08-08 Hitachi High-Tech Corporation Automatic analyzer

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5107146B2 (ja) * 2008-06-11 2012-12-26 株式会社日立ハイテクノロジーズ 自動分析装置
JP2010169468A (ja) * 2009-01-21 2010-08-05 Beckman Coulter Inc 自動分析装置、測光装置および測光方法
JP6249653B2 (ja) * 2013-07-11 2017-12-20 株式会社日立ハイテクノロジーズ 自動分析装置
JP6224418B2 (ja) * 2013-10-31 2017-11-01 株式会社日立ハイテクノロジーズ 自動分析装置
JP6919535B2 (ja) * 2017-12-05 2021-08-18 株式会社島津製作所 分注装置
US20240319222A1 (en) * 2018-10-25 2024-09-26 Hitachi High-Tech Corporation Automatic Analysis Device
CN113950626A (zh) 2019-06-11 2022-01-18 株式会社日立高新技术 自动分析装置以及异常检测方法
US20230341425A1 (en) 2019-10-24 2023-10-26 Hitachi High-Tech Corporation Automatic analyzer and dispensing method of reagent
WO2024095646A1 (ja) * 2022-10-31 2024-05-10 株式会社日立ハイテク 自動分析装置および検体分注方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11337559A (ja) * 1998-04-27 1999-12-10 Ortho Clinical Diagnostics Inc 分与用先端部内の水性液体の状態を検出する方法、及び分析器の計量供給用先端部の不適切な液体内容物を検出する装置
JP2004028673A (ja) * 2002-06-24 2004-01-29 Olympus Corp 自動分析装置
JP2004125780A (ja) * 2002-08-07 2004-04-22 Hitachi High-Technologies Corp サンプル分注装置およびそれを用いた自動分析装置
JP2004170279A (ja) * 2002-11-21 2004-06-17 Hitachi High-Technologies Corp 自動分析装置
JP3120180U (ja) * 2006-01-11 2006-03-23 株式会社日立ハイテクノロジーズ 自動分析装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11337559A (ja) * 1998-04-27 1999-12-10 Ortho Clinical Diagnostics Inc 分与用先端部内の水性液体の状態を検出する方法、及び分析器の計量供給用先端部の不適切な液体内容物を検出する装置
JP2004028673A (ja) * 2002-06-24 2004-01-29 Olympus Corp 自動分析装置
JP2004125780A (ja) * 2002-08-07 2004-04-22 Hitachi High-Technologies Corp サンプル分注装置およびそれを用いた自動分析装置
JP2004170279A (ja) * 2002-11-21 2004-06-17 Hitachi High-Technologies Corp 自動分析装置
JP3120180U (ja) * 2006-01-11 2006-03-23 株式会社日立ハイテクノロジーズ 自動分析装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11719714B2 (en) 2018-03-28 2023-08-08 Hitachi High-Tech Corporation Automatic analyzer
EP3570043A1 (en) * 2018-05-16 2019-11-20 Jeol Ltd. Automatic analyzer and automatic analysis method
CN113544518A (zh) * 2019-04-26 2021-10-22 株式会社日立高新技术 自动分析装置

Also Published As

Publication number Publication date
JP2007303937A (ja) 2007-11-22

Similar Documents

Publication Publication Date Title
WO2007129741A1 (ja) 自動分析装置
US10261016B2 (en) Specimen analyzing method and specimen analyzing apparatus
US7931863B2 (en) Sample analyzer
US9213037B2 (en) Sample analyzer and sample analyzing method
JP5236612B2 (ja) 自動分析装置
WO2007139212A1 (ja) 自動分析装置
WO2011074273A1 (ja) 自動分析装置
US8778686B2 (en) Automatic analyzer and dispensing method thereof
JP2017026548A (ja) 自動分析装置
JP2007248276A (ja) 試料分析方法および試料分析装置
JP2007303884A (ja) 自動分析装置
JPH10232234A (ja) 自動分析装置
JP4871025B2 (ja) 自動分析装置およびその検体分注方法
JP6121743B2 (ja) 自動分析装置
JP5606843B2 (ja) 自動分析装置
JP5931540B2 (ja) 自動分析装置及び検査システム
JP2022118402A (ja) 標準試料容器及び自動分析装置
JP2007309742A (ja) 自動分析装置
JP2017207294A (ja) 自動分析装置
JP6537895B2 (ja) 自動分析装置
CN118759207A (zh) 自动分析装置
JP5808473B2 (ja) 自動分析装置
JPS61262639A (ja) 自動分析装置
JP2011007697A (ja) 自動分析装置
JP7309467B2 (ja) 自動分析装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07743049

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07743049

Country of ref document: EP

Kind code of ref document: A1