WO2007129628A1 - マイコバクテリウム・イントラセルラーレ検出用プライマー及びプローブ、並びにこれを用いたマイコバクテリウム・イントラセルラーレの検出方法 - Google Patents

マイコバクテリウム・イントラセルラーレ検出用プライマー及びプローブ、並びにこれを用いたマイコバクテリウム・イントラセルラーレの検出方法 Download PDF

Info

Publication number
WO2007129628A1
WO2007129628A1 PCT/JP2007/059251 JP2007059251W WO2007129628A1 WO 2007129628 A1 WO2007129628 A1 WO 2007129628A1 JP 2007059251 W JP2007059251 W JP 2007059251W WO 2007129628 A1 WO2007129628 A1 WO 2007129628A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
oligonucleotide
primer
base sequence
represented
Prior art date
Application number
PCT/JP2007/059251
Other languages
English (en)
French (fr)
Inventor
Tomokazu Ishikawa
Original Assignee
Wako Pure Chemical Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wako Pure Chemical Industries, Ltd. filed Critical Wako Pure Chemical Industries, Ltd.
Priority to JP2008514461A priority Critical patent/JPWO2007129628A1/ja
Priority to US12/298,525 priority patent/US8188256B2/en
Priority to CN2007800157913A priority patent/CN101432426B/zh
Priority to EP07742686A priority patent/EP2011871A4/en
Publication of WO2007129628A1 publication Critical patent/WO2007129628A1/ja
Priority to US13/478,869 priority patent/US20130005595A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/689Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria

Definitions

  • the present invention detects and detects Mycobacterium intracellulare (hereinafter sometimes abbreviated as "M. Intrasenolelare”) using nucleic acid amplification and its detection system. Z or a method of identification.
  • M. Intrasenolelare Mycobacterium intracellulare
  • Nontuberculous mvcobacterium is a Gram-positive gonococci with anti-acidic properties classified into the genus Mycobacterium (hereinafter sometimes abbreviated as "Mvcobac terium"). It is a kind of mycobacteria other than Mycobacterium tuberculosis group and Mvcobacterium leprae. Fifteen to 20% of cases with a positive mycobacterial smear test for sputum are diagnosed as nontuberculous mycobacteria by subsequent bacterial species identification tests.
  • M. intracellulare M. cobacterium kansasn
  • Mvcobacterium marmunu Mvcobacterium eordonae
  • Mvcobacterium eordonae Mvcobacterium xenopi
  • Mvc obactenum forum Mvcobacterium szukai, Mvcobacterium aviunu
  • Mvcobacterium chelone i Myconocterium cerone
  • Mvcobacterium abscessus Myconocterium, Absessus
  • M. Intracellulare and M ⁇ ium are common.
  • M. Intracellarale M.avium is very similar and difficult to distinguish, so M. Intracellulararale and M. avium are collectively called Mvcobacterium avium complex (MAC).
  • MAC Mvcobacterium avium complex
  • Nontuberculous mycobacteria are generally said to be harmless to healthy individuals with weak virulence. Yes. However, it rarely infects humans. Among them, MAC is known to cause tuberculosis sequelae (pulmonary infection) and opportunistic infections in AIDS and other susceptible patients. Therefore, it is particularly important for treatment to detect nontuberculous mycobacteria quickly and accurately.
  • the diagnostic method is also significant because the method of diagnosis has been applied to health insurance.
  • nontuberculous mycobacteria are resistant to antituberculous drugs. Therefore, if a patient is suspected of having a mycobacterial infection, differential diagnosis of tuberculosis or nontuberculous mycobacterial disease is important in determining the treatment strategy. Furthermore, since the treatment method for diseases caused by non-tuberculous mycobacteria varies depending on the type of the bacterium, it is very important to determine the bacterium type. However, non-tuberculous mycobacteriosis has no specific clinical symptoms. Therefore, it is extremely difficult to distinguish tuberculosis from nontuberculous mycobacteria based on clinical and histopathological findings and to identify the type of nontuberculous mycobacteria. Therefore, the diagnosis of tuberculosis or nontuberculous mycobacteriosis must be made by identifying the bacteria.
  • a common method for identifying bacteria for the diagnosis of nontuberculous mycobacterial disease is a sputum smear test.
  • this test can only tell whether the pathogen is “acid-fast bacilli positive”, and cannot distinguish whether the pathogen is tuberculosis or non-tuberculous mycobacteria. Therefore, in general, if the sputum smear is positive, a bacterial culture test is carried out by separating and culturing the bacteria on a medium such as Ogawa's medium to distinguish between tuberculosis or non-tuberculous mycobacteria. . Further biochemical tests are performed to identify the bacterial species.
  • mycobacteria are slow in growth, for example, it takes 3 to 4 weeks to isolate bacteria. It takes two to three weeks to obtain the results of various biochemical tests to identify the bacterial species. For this reason, the conventional basic method of obtaining the diagnosis result of tuberculosis by performing the above-described smear test or culture test is a method that requires much effort and time.
  • Examples of methods for detecting M. intracellulare using PCR include MacSequevar gene region, M. avium 19 kilodalton protein (MAVl 9k) gene region, and M. intracellulare ribosomal protein si gene region
  • Patent Document 1 a method for detecting the presence or absence of MAC nucleic acid using a multiple primer set of oligonucleotide primers specific to two or more of the above.
  • this detection method cannot distinguish between M. intracellular and md l.
  • PCR using the rpsl primer used (a primer designed for the M. intracellulare reribosomal protein si gene region force) also detected amplification products even when the sample was a M ⁇ ium isolate. There is a problem with specificity for intracellular.
  • PCR is performed using a primer that amplifies the DNA base sequence sandwiching the insertion site of the gene insertion sequence IS901, and depending on the chain length of the amplification product obtained, the avium caustic M A method for determining whether it is intracellular (Patent Document 2) is also known.
  • Patent Document 2 a primer extension product is obtained regardless of whether the sample is M. tuberculosis ( ⁇ ⁇ ⁇ ⁇ ) or M. intracellulare. It is not a specific method. Further, the method of discriminating both of them based on the chain length of the primer extension product is complicated, and the judgment result may differ depending on the judge, so it cannot be said to be a reliable judgment method.
  • Patent Document 3 discloses a method for targeting the 63 nucleotide segment of the BCG85-B gene encoding a part of the ⁇ antigen of mycobacteria. This method is ⁇ . Intracellulare and Ma This is a method of detecting nucleic acids by the nucleic acid amplification reaction by SDA method using primers that amplify the target sequence of BCG85-B gene of both vium bacteria, and based on the result.
  • the primer used in the method is a primer that amplifies both M. intracellulare and m.
  • a primer extension product can be obtained in both cases where M. intracellulare and ⁇ ⁇ ⁇ ⁇ are present in the sample. Therefore, the force that can detect MAC by this method M. Intracellulare cannot be detected specifically. Even when detecting MAC, false positives may appear.
  • Patent Document 4 JP-A-2001-103986 discloses a primer used for detecting MAC, an oligonucleotide used as a capture probe and a detection probe.
  • the primer amplifies the 48 bp target sequence of dnaj gene strength possessed by both M. intracellulare and M. idum. That is, amplification reaction occurs both when M. intracellulare and M ⁇ md l are present in the sample. Therefore, the SDA method can be performed using the primer, the primer extension product can be detected using the supplementary probe and the detection probe, and the MAC can be detected based on the result.
  • Patent Document 1 Japanese Patent Laid-Open No. 11-69999
  • Patent Document 2 Japanese Patent No. 3111213
  • Patent Document 3 Japanese Patent Laid-Open No. 10-4984
  • Patent Document 4 Japanese Patent Laid-Open No. 2001-103986
  • Patent Document 5 JP-A-2005-204582
  • Non-Patent Document l F. Poly et al, J. Bacteriology, 2004, 186 (14), p.4781-4795 Disclosure of the Invention
  • the present invention has been made in view of the above-described circumstances, and is a novel M. intracellulare detection primer that eliminates false positives in diagnosis, and simple, rapid, and highly accurate using the same.
  • An object of the present invention is to provide a method for detecting M. intracellulare.
  • the present invention has been made for the purpose of solving the above-mentioned problems, and has the following configuration.
  • nucleotide sequence represented by SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7 or SEQ ID NO: 8 (where A is adenine, C is Cytosine, G represents guanine, T represents thymine, and T at any position may be substituted with uracil (U), the same shall apply hereinafter), or SEQ ID NO: 1, SEQ ID NO: 2 , SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7 or SEQ ID NO: 8, containing part or all of the complementary sequence to the nucleotide sequence, and M. intracellulare gene An oligonucleotide that hybridizes with the base sequence of a child.
  • SEQ ID NO: 1 Part or all of the nucleotide sequence represented by SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7 or SEQ ID NO: 8, or SEQ ID NO: 1. part or all of the complementary sequence to the base sequence represented by SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7 or SEQ ID NO: 8, and M A primer for detection of M. intracellulare comprising an oligonucleotide that hybridizes with the nucleotide sequence of the gene.
  • SEQ ID NO: 1 Part or all of the base sequence represented by SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7 or SEQ ID NO: 8, or SEQ ID NO: 1. part or all of the complementary sequence to the base sequence represented by SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7 or SEQ ID NO: 8, and M
  • a reagent kit for detecting M. intracellulare comprising an oligonucleotide that hybridizes with the base sequence of the intracellular gene as a primer and / or probe
  • the present inventor conducted theoretical verification and experimental verification on the homology of each gene sequence between various genes of M. intracellulare and other organisms determined to date. Piled up. As a result, in the fragment of the base sequence derived from M. intracellulare obtained by the method using the microarray method, it specifically hybridizes to a specific region of the gene sequence of M. intracellulare, and M. intracellulare. It was found that there is a base sequence that is useful for detection.
  • oligonucleotides specific to M. intracellulare SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7 or SEQ ID NO: 8 were obtained, and these base sequences were found to be useful for the detection of M. intracellulare. Furthermore, based on these sequences, M. intracellulare detection primers and probes were developed, and a method for detecting M. intracellulare using them was established.
  • M. intracellulare can be detected quickly and with high accuracy.
  • diagnostic false positives can be eliminated compared to the conventional diagnostic method using PCR using primers or Z and probes. Therefore, it is possible to detect and diagnose M. intracellulare with higher accuracy and accuracy and with specific force.
  • M. intracellulare cells can be quantified.
  • FIG. 1 Arrows indicate the base sequence of candidate clone 1 and the position of the base sequence designed as a primer.
  • FIG. 2 The base sequence of candidate clone 2 and the position of the base sequence designed as a primer are indicated by arrows.
  • FIG. 3 The base sequence of candidate clone 3 and the position of the base sequence designed as a primer are indicated by arrows.
  • FIG. 5 The base sequence of candidate clone 5 and the position of the base sequence designed as a primer are indicated by arrows.
  • FIG. 7 The base sequence of candidate clone 7 and the position of the base sequence designed as a primer are indicated by arrows.
  • FIG. 8 The base sequence of candidate clone 8 and the position of the base sequence designed as a primer are indicated by arrows.
  • FIG. 9 Obtained based on the results of real-time PCR by intercalator method using primer 02_Fwl and primer 02_Rvl obtained in Example 1 and using a DNA sample derived from M. intracellulare as a saddle type. It is the result of a melting curve analysis.
  • FIG. 10 shows the results of real-time PCR detection performed in Example 2, and is a calibration curve in which Ct values (y-axis) are plotted against the number of genomic copies of each PCR DNA sample (X-axis, logarithmic value).
  • the M. intracellulare gene refers to an arbitrary base sequence unit (region) in the entire genome sequence of Mycobacterium intracellulare.
  • the complete genome sequence of Mycobacterium int racellulare has not yet been decoded.
  • the oligonucleotide of the present invention includes a nucleotide sequence represented by SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7 or SEQ ID NO: 8.
  • A represents adenine
  • C represents cytosine
  • G represents guanine
  • T represents thymine
  • T in any position may be substituted with uracil (U).
  • oligonucleotides that hybridize with the base sequence of the Mycobacterium intracellulare gene hereinafter may be abbreviated as “oligonucleotide of the present invention”.
  • the oligonucleotide having the base sequence ability represented by SEQ ID NO: 1 is represented by 666 base
  • the oligonucleotide comprising the base sequence represented by SEQ ID NO: 2 is represented by 1128 bases, SEQ ID NO: 3.
  • the oligonucleotide consisting of the base sequence shown is 510 bases
  • the oligonucleotide consisting of the base sequence shown by SEQ ID NO: 7 is 1005 bases
  • the oligonucleotide consisting of the base sequence shown by SEQ ID NO: 8 is 700 bases That's it.
  • oligonucleotide to be contained include (1) a nucleotide sequence represented by SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7 or SEQ ID NO: 8.
  • an oligonucleotide containing a base sequence Containing about 70% or more, preferably about 80% or more, more preferably about 90% or more, more preferably about 95% or more of an oligonucleotide containing a base sequence, or (2) SEQ ID NO: 1, sequence SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7 Alternatively, an oligonucleotide characterized by containing 10 or more consecutive bases, preferably 15 or more bases, more preferably 20 or more bases in the base sequence represented by SEQ ID NO: 8.
  • oligonucleotide containing the entire base sequence represented by SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7 or SEQ ID NO: 8 according to the present invention.
  • leotide examples include, for example, an oligonucleotide having a base sequence represented by SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7 or SEQ ID NO: 8, Alternatively, an oligonucleotide containing the nucleotide sequence represented by SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7 or SEQ ID NO: 8 is exemplified.
  • the body include, for example, those containing a part or all of the sequence selected by the nucleotide sequence ability represented by SEQ ID NOs: 9 to 203.
  • oligonucleotides containing 10 or more consecutive bases, preferably 15 or more bases, more preferably 20 or more bases in a sequence selected from the base sequences represented by SEQ ID NOs: 9 to 203 are mentioned.
  • oligonucleotide containing the entire sequence selected from the base sequences represented by SEQ ID NOs: 9 to 203 include oligos comprising the sequences selected by the base sequence ability represented by SEQ ID NOs: 9 to 203.
  • examples include nucleotides or oligonucleotides containing a sequence selected from the nucleotide sequence represented by SEQ ID NOs: 9 to 203.
  • oligonucleotide containing a part of the base sequence represented by SEQ ID NO: 1 include, for example, a sequence that also has a base sequence ability represented by SEQ ID NO: 9-22 or SEQ ID NO: 139-145. The thing to contain is mentioned.
  • oligonucleotide containing a part of the base sequence represented by SEQ ID NO: 2 include, for example, a sequence that also has the base sequence ability represented by SEQ ID NO: 23 to 40 or SEQ ID NO: 146 to 154 The thing to contain is mentioned.
  • the oligonucleotide containing a part of the base sequence represented by SEQ ID NO: 3 for example, the base sequence ability represented by SEQ ID NO: 41-58 or SEQ ID NO: 155-163 is also selected. And those containing the sequence to be released.
  • oligonucleotide containing a part of the base sequence represented by SEQ ID NO: 4 include, for example, a sequence that also has a base sequence ability represented by SEQ ID NO: 59 to 78 or SEQ ID NOs: 164 to 173. The thing to contain is mentioned.
  • oligonucleotide containing a part of the base sequence represented by SEQ ID NO: 5 include, for example, a sequence that also has the base sequence ability represented by SEQ ID NO: 79-92 or SEQ ID NO: 174-180. The thing to contain is mentioned.
  • oligonucleotide containing a part of the base sequence represented by SEQ ID NO: 6 include, for example, a sequence selected from the base sequences represented by SEQ ID NO: 93-104 or SEQ ID NO: 181-186. The thing to contain is mentioned.
  • oligonucleotide containing a part of the base sequence represented by SEQ ID NO: 7 include, for example, a sequence selected from the base sequences represented by SEQ ID NO: 105 to 126 or SEQ ID NO: 187 to 197 The thing containing is mentioned.
  • oligonucleotide containing a part of the base sequence represented by SEQ ID NO: 8 for example, a sequence selected from the base sequences represented by SEQ ID NO: 127-138 or SEQ ID NO: 198-203 The thing containing is mentioned.
  • SEQ ID NO: 1 SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7 or SEQ ID NO: 8 of the present invention.
  • examples thereof include oligonucleotides containing a part or all of a base sequence that hybridizes with an oligonucleotide having a base sequence ability.
  • the oligonucleotide containing a part or all of the base sequence that hybridizes with tide includes SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6.
  • the "high stringent conditions” mentioned here are specifically, for example, “hybridizers at 42 to 70 ° C, preferably 60 to 70 ° C in 50% formamide. Washed at 25-70 ° C in Chillon, then 0.2-2 X SSC, 0.1% sodium dodecyl sulfate (SDS) ".
  • the "stringent conditions” specifically refers to, for example, "6 X SSC or a hybridization solution having a salt concentration equivalent thereto at a temperature of 50 to 70 ° C. Perform a time hybridization, pre-wash with 6 X SSC or a solution with a salt concentration equivalent to this, and then wash with 1 X SSC or a solution with a salt concentration equivalent to this. It is.
  • oligonucleotides containing a part or all include (1) SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7 or SEQ ID NO: 8 according to the present invention
  • oligonucleotides containing a part or all include (1) SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7 or SEQ ID NO: 8
  • oligonucleotide to be contained include, for example, complementary to the nucleotide sequence represented by SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7 or SEQ ID NO: 8.
  • An oligonucleotide having a sequence ability or a complementary sequence to the nucleotide sequence represented by SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7 or SEQ ID NO: 8 An oligonucleotide is mentioned.
  • SEQ ID NO: 1 SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, sequence Specific examples of the oligonucleotide containing a part of the complementary sequence to the base sequence represented by SEQ ID NO: 7 or SEQ ID NO: 8 include, for example, a sequence complementary to the sequence selected from the base sequences represented by SEQ ID NOs: 9 to 203 Examples thereof include oligonucleotides containing a part or all of them. Preferably, oligonucleotides containing 10 or more consecutive bases, preferably 15 or more bases, and more preferably 20 or more bases in a complementary sequence to a selected sequence represented by SEQ ID NOs: 9 to 203 are listed. It is done.
  • oligonucleotide containing all the complementary sequences to the sequence selected from the nucleotide sequences represented by SEQ ID NO: 9 to SEQ ID NO: 203 include, for example, the nucleotide sequence capabilities represented by SEQ ID NOs: 9 to 203 Examples include an oligonucleotide having a complementary sequence ability for a selected sequence, or an oligonucleotide containing a complementary sequence for a selected sequence having a base sequence ability represented by SEQ ID NO: 9 to 203.
  • the oligonucleotide that hybridizes with the base sequence of the M. intracellulare gene according to the present invention refers to the above-described base sequence of the M. intracellulare gene and the hybridized under high stringent conditions or stringent conditions. And oligonucleotides having a base sequence to be used.
  • the stringent conditions and stringent conditions are as described above.
  • the oligonucleotide of the present invention may be deoxyribonucleic acid (DNA) or ribonucleic acid (RNA).
  • DNA deoxyribonucleic acid
  • RNA ribonucleic acid
  • T thymidine residue
  • U uridine residue
  • T thymidine residue
  • U uridine residue
  • U uridine residue
  • RNA containing a thymidine residue in which U at any position is changed to T may be used.
  • One or more nucleotides may be deleted, inserted or substituted. It may be a modified nucleotide such as one or more nucleotide forces inosine (I).
  • the method of obtaining the oligonucleotide of the present invention is not particularly limited, but examples thereof include a method of preparing by a publicly known chemical synthesis method. In this method, it is possible to obtain oligonucleotides of a certain quality easily, in large quantities and at a low cost compared to the method of obtaining oligonucleotides or polynucleotides by gene manipulation using vectors etc. (cloning method). .
  • oligonucleotide synthesis may be outsourced to a vendor and purchased from the vendor.
  • oligonucleotides that can achieve the object of the present invention can also be searched for by using a so-called microarray method, and the oligonucleotide of the present invention can be obtained.
  • the outline of the method is as follows.
  • a shotgun clone of DNA derived from M. intracellulare genome is prepared, and the obtained shotgun clone force is also used to purify DNA.
  • the purified DNA derived from the yacht gun 'clone is amplified by PCR or the like and then placed on a slide glass to prepare a microarray.
  • a group of fluorescently labeled (labeled 1) DNA fragments is prepared from the target genomic DNA of M. intracellulare.
  • a separate group of fluorescently labeled (labeled 2) DNA fragments is also created from genomic DNA derived from the species to be distinguished, and a control experiment is performed.
  • the reactivity (binding property) between the sequence on the microarray and the label 1 and the label 2 is assayed by a competitive hybridization method using each of the label 1 and the label 2 in the same reaction system.
  • This test allows selection of a candidate group of sequences that reacts more specifically with the target M. intracellulare-derived genomic DNA fragment (label 1) (for example, non-patent document 1). Nucleotides can be selected. Less than An example of the method for selecting the oligonucleotide of the present invention using the microarray method is described in detail below.
  • the M. intracellulare strain may be crushed by a conventional method (for example, autoclaving and pulverizing cells using glass beads), and then DNA may be extracted and purified according to a conventional method.
  • a conventional method for example, autoclaving and pulverizing cells using glass beads
  • the nebulizer Treat with DNA for about 1-5 minutes to fragment the DNA is purified using a commercially available extraction column.
  • the obtained fraction (DNA fragment, including the desired DNA fragment) was incorporated into vector DNA by ligation according to a conventional method, and recombinant DNA (Whole Genome Shotgun library of M. Intracellulare) Protect.
  • Examples of the vector DNA used for this purpose include pBS [for example, pBSII sk + vector (Stratagene)], pQE-TRI plasmid (manufactured by Qiagen) when the host cell to be transformed later is Escherichia coli. ), PBluescript, pET, pGEM-3Z, pGEX and the like.
  • the DNA fragment may be treated with DNA polymerase in advance and blunted at the ends of the DNA fragment prior to ligation.
  • Examples of host cells used for this purpose include Escherichia coli (E. coli), preferably JM109, DH5a, TOP10 and the like.
  • E. coli Escherichia coli
  • JM109 JM109
  • DH5a DH5a
  • TOP10 TOP10
  • Competent Cell having a higher efficiency of introducing a plasmid or phage DNA may be used.
  • E coli TM109 Competent Cells manufactured by Takara Bio Inc.
  • the transformation can be performed, for example, by the method of D.M. Morrison (Method in Enzymology, 68, 326-331, 1979).
  • D.M. Morrison Method in Enzymology, 68, 326-331, 1979.
  • transformation may be performed according to the product protocol.
  • a method utilizing the properties of the vector used for transformation may be used. For example, when a vector containing an ampicillin resistance gene is used, the transformant is cultured on a medium containing ampicillin and the resulting clone is selected to incorporate the DNA fragment of interest.
  • a transformant (Whole Genome Shotgun clone library derived from the genome of M. intracellulare) into which recombinant DNA has been introduced can be easily obtained.
  • microarray is produced by the following method.
  • DNA is purified from the transformant obtained in (2) (Whole Genome Shotgun clone library derived from the genome of M. intracellulare) according to a conventional method.
  • M13 Primer Ml manufactured by Takara Bio Inc.
  • M13 Primer RV manufactured by Takara Bio Inc.
  • the PCR amplification product obtained is purified after performing PCR according to a conventional method.
  • the purified PCR amplification product is spotted on a glass slide for microarray.
  • UV irradiation 60 mJ / cm 2 to 300 mJ / cm 2 , usually 150 mJ / cm 2
  • the PCR amplification product including DNA derived from the target M. intracellulare
  • a control microarray is also prepared.
  • a DNA fragment of a sequence specific to M. intracellulare such as rpsl (Patent Document 1), a fragment of a genomic DNA derived from a species to be distinguished (partial sequence of IS6110 (IS6110 element) peculiar to Mycobacterium tuberculosis) DNA fragments with base sequences specific to MJs ⁇ such as KATS2 sequence (JP-A-11-155589), DNA fragments with base sequences specific to ⁇ such as MAV19K (patent document 1), etc.
  • Bacteria other than Mycobacterium such as DNA
  • a series of treatments from DNA fragmentation to creation of the Whole genome Shotgun clone library were performed, and PCR was performed in the same manner.
  • the resulting PCR product was fixed on a glass slide. And each microarray is also produced.
  • the Cy3 labeled control genomic DNA used in the subsequent microarray hybridization is derived from the positive control.
  • Cy3-labeled genomic DNA derived from the same bacterial cell For example, when a microarray is prepared using a DNA fragment of a base sequence specific to M. kansasii and this is set as a positive control, Cy3 labeling used in microarray 'hybridization' is used.
  • As one of the control genomic DNAs use a labeled product obtained by labeling the purified genomic DNA extracted from M.kansasii with Cv3.
  • Genomic DNA extracted and purified from M. intracellulare strains by conventional methods is labeled with Cy5 by indirect labeling using hexylamino-UTP.
  • extract the purified bacterial power from the positive control of the microarray and label the purified control genomic DNA with Cy3.
  • the indirect labeling method modified from the protocol published by the DeRisi laboratory www.microarrays.org
  • This method uses a UTP with an amino group and creates a DNA strand that is incorporated into the molecule by an enzyme extension reaction.
  • the amino group is then labeled with a fluorescent dye (succinimide), which is chemically labeled.
  • the starting materials are heat-denatured according to a conventional method.
  • add NaHCO 3 to the dried reaction product and mix at room temperature for 2-3 minutes.
  • Cy3 (or Cy5) dissolved in DMSO is prepared (Cy-dye Solution Cy3, Cy-dye Solution Cy5).
  • This Cy-dye Solution Cy3 is added to the above reaction product obtained using the control genomic DNA, and Cy-dye Solution Cy5 is added to the above reaction product obtained using the M. intracellulare genomic DNA. Incubate at 40 ° C for about 60 minutes in the dark. In addition, 4M NH OH was added to each reaction product, and after stirring, about 15 minutes.
  • the obtained labeled product is placed on an ultrafiltration column and centrifuged at 14000 rpm for about 4 minutes, and then the concentrated solution is collected in a microtube and completely dried with a vacuum drying centrifuge.
  • this microtube contains 5 ⁇ L of salmon sperm DNA (10 mg / mL), and the total amount was adjusted to 40 to 50 ⁇ L with ArrayHyb Hybridization buffer (manufactured by SIGMA).
  • ArrayHyb Hybridization buffer manufactured by SIGMA.
  • Add the reagent solution the composition when the cover glass of the microarray to be used later has a size of 24 x 55 mm
  • suspend and mix the dried product obtained above in the same solution Incubate for about 5 minutes to prepare a Cy3Cy5 labeled product mixture solution.
  • fluorescence intensity on the microarray obtained by the microarray hybridization process obtained in (5) above is measured.
  • fluorescence detection data is obtained by measuring fluorescence intensities of Cy3 and Cy5 in two channels.
  • the number of fluorescent signals can be determined by using commercially available DNA chip expression image analysis software, etc., and performing automatic spot recognition, knock ground calculation, and normality of the fluorescence intensity ratio according to the software operation procedure.
  • the Cy5-labeled product used for the hybridization was a group of DNA fragments labeled with M. intracellulare-derived genomic DNA as the material, and the Cy3-labeled product was labeled with the control genomic DNA as the material. It is a group of DNA fragments. Therefore, as a result of measuring the fluorescence intensity of Cy3 and Cy5 at a certain spot on the microarray, if the fluorescence of Cy5 is detected more strongly, the DNA fragment (PCR product) at that spot is the Cy5 labeled product, In other words, this means that the DNA fragment (PCR product) is highly specific for M. intracellulare, indicating that it has hybridized more strongly with a specific sequence of genomic DNA derived from M. intracellulare.
  • the nucleotide sequence of the obtained candidate clone is determined according to a conventional method. If you go.
  • a sequencer usually used in this field for example, an ABI PRISM310 capillary sequencer (Appliedo), etc.
  • the base sequence is determined for candidate clones selected as a result of the numerical analysis of Cy3 / Cy5 Ratio described above.
  • the base sequence is determined for candidate clones selected as a result of the numerical analysis of Cy3 / Cy5 Ratio described above.
  • software commonly used for primer design for example, Primer3 (Whitehead Institute for Biomedical Research.), A web tool for primer design, etc. Use them to design appropriate primers for PCR.
  • Appropriate combinations are also selected for the designed primer primers, and real-time PCR is carried out according to a conventional method using the M. intracellulare-derived genomic DNA as a saddle shape using the primers of the combination.
  • M. intracellulare-derived genomic DNA Select a combination of primers that yields amplification products by real-time PCR using the cocoon type, and that cannot be amplified by real-time PCR using other genomic DNA (control).
  • the candidate clone for which the primer combination is designed may be selected as a candidate clone specific for the final M. intracellulare.
  • the primer for detecting M. intracellulare of the present invention is represented by SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7 or SEQ ID NO: 8.
  • SEQ ID NO: 1 SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7 or SEQ ID NO: 8.
  • a part or the entire of the sequence complementary and M. intracellulare primers containing nucleotide sequences and Haiburidizu oligonucleotides genes include (hereinafter, may be described as the primers of the present invention.) 0
  • the primer of the present invention includes SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, according to conditions such as nucleic acid amplification reaction such as PCR (including real-time PCR), nucleic acid hybridization, etc.
  • Tm value Dissociation temperature
  • the length is 10 to 50 bases, more preferably 10 to 35 bases, more preferably 18 to 25 bases, which is considered to be the number of bases necessary to maintain specificity as a primer sequence.
  • the primer design method is generally used for primer design
  • the primer design may be performed using a web tool Primer3 (Whitehead Institute for Biomedical Research).
  • nucleotide sequence represented by SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7 or SEQ ID NO: 8 used for the primer of the present invention.
  • Specific examples of oligonucleotides (oligonucleotides of the present invention) that contain a base sequence of the M. intracellulare gene and hybridize with the nucleotide sequence of the M. intracellulare gene are those described in the description of the oligonucleotide of the present invention above. The same.
  • primer of the present invention include, for example, a part or all of a sequence selected from the base sequences represented by SEQ ID NOs: 9 to 138, and the base sequence of the M. intracellulare gene.
  • examples include oligonucleotides that hybridize, or oligonucleotides that contain part or all of a complementary sequence to a sequence selected from the base sequences represented by SEQ ID NOs: 9 to 138 and hybridize with the base sequence of the M. intracellulare gene. I can get lost.
  • primer of the present invention include an oligonucleotide containing a sequence selected from the base sequences represented by SEQ ID NOs: 9 to 138 and hybridizing with the base sequence of the M. intracellulare gene, Alternatively, an oligonucleotide containing a complementary sequence to a sequence selected from the base sequences represented by SEQ ID NOs: 9 to 138 and hybridizing with the base sequence of the M. intracellulare gene can be mentioned.
  • ⁇ IJ number 9, 10, 23, 24, 41, 42, 59, 60, 79, 80, 93, 94, 105, 106, 127 Oligonucleotides containing a sequence that also has a base sequence ability represented by 128, or SEQ ID NOs: 9, 10, 23, 24, 41, 42, 59, 60, 79, 80, 93, 94, 105, 106, 127, Examples include oligonucleotides containing a complementary sequence to IJ selected from the base IJ force represented by 128.
  • the primer containing the base sequence represented by SEQ ID NO: 9 to 22 was designed based on the base sequence represented by SEQ ID NO: 1.
  • the primer containing the nucleotide sequence represented by SEQ ID NOs: 23 to 40 is designed based on the nucleotide sequence represented by SEQ ID NO: 2.
  • the primer containing the base sequence represented by SEQ ID NOs: 41 to 58 is designed based on the base sequence represented by SEQ ID NO: 3.
  • the primer containing the nucleotide sequence represented by SEQ ID NO: 59 to 78 is represented by SEQ ID NO: 4. It is designed based on the base sequence.
  • the primer containing the base sequence represented by SEQ ID NOs: 79 to 92 is designed based on the base sequence represented by SEQ ID NO: 5.
  • the primer containing the base sequence represented by SEQ ID NOs: 93 to 104 is designed based on the base sequence represented by SEQ ID NO: 6.
  • the primer containing the base sequence represented by SEQ ID NO: 105 to 126 is designed based on the base sequence represented by SEQ ID NO: 7.
  • the primer containing the nucleotide sequence represented by SEQ ID NOs: 127 to 138 is designed based on the nucleotide sequence represented by SEQ ID NO: 8.
  • FIG. 1 shows the positions of the nucleotide sequences represented by SEQ ID NO: 9 and SEQ ID NO: 10 designed as primers on the nucleotide sequence represented by SEQ ID NO: 1, as 02_Fwl and 02_Rvl, respectively by arrows. Show.
  • Fig. 4 shows the positions of the nucleotide sequences represented by SEQ ID NO: 59 and SEQ ID NO: 60 designed as primers on the nucleotide sequence represented by SEQ ID NO: 4, as 06_Fwl and 06_Rvl, respectively, with arrows. Show.
  • Fig. 5 shows the positions of the nucleotide sequences represented by SEQ ID NO: 79 and SEQ ID NO: 80 designed as primers on the nucleotide sequence represented by SEQ ID NO: 5 as 10_Fwl and 10_Rvl, respectively, with arrows. Show.
  • FIG. 6 shows the positions of the nucleotide sequences represented by SEQ ID NO: 93 and SEQ ID NO: 94 designed as primers on the nucleotide sequence represented by SEQ ID NO: 6 as 13_Fw2 and 13_Rv2, respectively, with arrows. Show.
  • FIG. 7 shows SEQ ID NO: 1 designed as a primer on the nucleotide sequence represented by SEQ ID NO: 7.
  • the positions of the nucleotide sequences represented by 05 and SEQ ID NO: 106 are indicated by arrows as 14_Fwl and 14_Rvl, respectively.
  • FIG. 8 shows the positions of the nucleotide sequences represented by SEQ ID NO: 127 and SEQ ID NO: 128 designed as primers on the nucleotide sequence represented by SEQ ID NO: 8 as 15_Fw2 and 15_Rv2, respectively. It shows with.
  • SEQ ID NO: 11 (02—Fw2): position 415 ′, position 434,
  • SEQ ID NO: 12 (02—Fw3): From position 91 to position 410,
  • SEQ ID NO: 13 (02_Fw4): position 272 ', position 290,
  • SEQ ID NO: 14 (02—Fw5): 245 ', 264,
  • SEQ ID NO: 16 (02—Fw7): position 423 ', position 442,
  • SEQ ID NO: 17 (02—Rv2) position 563, position 582,
  • Sequence number 22 (02_Rv7) The 641st position and the 659th position.
  • SEQ ID NO: 25 designed as a primer on the base sequence represented by SEQ ID NO: 2
  • SEQ ID NO: 25 (03—Fw2): 18th to 35th
  • SEQ ID NO: 26 (03—Fw3): 111 to 128,
  • SEQ ID NO: 27 (03_Fw4): 229th to 248th,
  • SEQ ID NO: 30 (03—Fw7): 776 to 796
  • SEQ ID NO: 31 (03—Fw8): 873 to 890
  • SEQ ID NO: 32 (03_Fw9): 911 to 930
  • SEQ ID NO: 34 (03—Rv3): positions 288 to 306,
  • SEQ ID NO: 36 (03—Rv5): positions 542 to 561,
  • SEQ ID NO: 37 (03—Rv6): 700 to 719,
  • SEQ ID NO: 38 (03—Rv7): 955 to 972,
  • SEQ ID NO: 39 (03—Rv8): positions 1040 to 1059,
  • Sequence number 40 (03_Rv9): The 1075th position-the 1093rd position.
  • Sequence number 47 (04_Fw7): 5th to 658th
  • SEQ ID NO: 48 (04—Fw8): 709 to 728
  • SEQ ID NO: 49 (04—Fw9): to position 772, position 789,
  • SEQ ID NO: 50 (04— FwlO;: 803 to 822,
  • SEQ ID NO: 51 (04—Rv3): From position 134 to position 452,
  • SEQ ID NO: 53 (04—Rv5): 560 to 579,
  • Sequence number 58 (04— RvlO): The 955th place and the 972nd place.
  • SEQ ID NOS: 61 to 78 designed as primers on the base sequence represented by SEQ ID NO: 4
  • the positions of the base sequences represented by are as follows.
  • SEQ ID NO: 64 (06—Fw5): positions 268 to 285,
  • SEQ ID NO: 65 (06—Fw6): positions 376 to 395
  • SEQ ID NO: 70 (06—Rv2): positions 282 to 301
  • Sequence number 78 (06_RvlO): 703rd-720th place.
  • the positions of the nucleotide sequences represented by SEQ ID NOs: 81 to 92 designed as primers on the nucleotide sequence represented by SEQ ID NO: 5 are as follows.
  • SEQ ID NO: 84 (10_Fw5): positions 207 to 226,
  • SEQ ID NO: 87 (10—Rv2): positions 541 to 560
  • Sequence number 88 (10_Rv3): 150th-169th
  • SEQ ID NO: 90 (10—Rv5): positions 370 to 389
  • Sequence number 92 (10_Rv7): The 593rd-610th position.
  • SEQ ID NO: 99 (13_Fw7): positions 286 to 305,
  • SEQ ID NO: 100 (13—Rv3): positions 225 to 244,
  • SEQ ID NO: 104 (13—Rv7): 416 to 435.
  • SEQ ID NOS: 107 to 12 designed as primers on the base sequence represented by SEQ ID NO: 7
  • SEQ ID NO: 108 (14_Fw4): positions 73 to 92
  • SEQ ID NO: 110 (14_Fw6): positions 413 to 431,
  • SEQ ID NO: 111 (14—Fw7): positions 519 to 538,
  • Sequence number 126 (14_Rvl2): The 967th position and the 986th position.
  • SEQ ID NOS: 129 to 13 designed as primers on the base sequence represented by SEQ ID NO: 8
  • the position of the base sequence represented by 8 is as follows.
  • SEQ ID NO: 131 (15—Fw5): positions 131 to 148,
  • SEQ ID NO: 133 (15—Fw7): positions 462 to 481,
  • Sequence number 138 (15_Rv7): The 619th-636th position.
  • the method for obtaining the primer of the present invention is as described in the method for obtaining the nucleotide of the present invention.
  • the primer of the present invention may be labeled with a labeling substance.
  • Examples of the method for labeling the primer of the present invention include oligonucleotide labeling methods commonly used in this field, and an appropriate method may be selected for each labeling substance!
  • any known labeling substance such as a radioactive isotope, an enzyme, a fluorescent substance, a luminescent substance and piotin can be used. be able to.
  • luminescent substances include chemiluminescent reagents including Acridinium Ester.
  • a method of labeling the primer of the present invention with a radioisotope when synthesizing the primer, a method of labeling the primer by incorporating a nucleotide labeled with a radioisotope, or a primer is used.
  • a method of labeling with a radioisotope after synthesis is exemplified. Specifically, the commonly used random primer method, double translation method, 5'-end labeling method using T4 polynucleotide kinase, 3'-end labeling method using terminal deoxynucleotide transferase And RNA labeling method.
  • the method for labeling the primer of the present invention with an enzyme is a conventional method in this field, such as directly binding an enzyme molecule such as alkaline phosphatase or horseradish peroxidase directly to the primer to be labeled.
  • a direct labeling method may be mentioned.
  • a fluorescein-labeled nucleotide may be incorporated into the primer by a conventional labeling technique in this field.
  • nucleotides can be labeled with a fluorescent substance by a method in which a nucleotide having a linker arm is substituted as a member of an oligonucleotide of a sequence (see, for example, Nucleic Acids Res., 1986, Vol. 14, p. 6115). .
  • the M. intracellulare detection probe of the present invention is represented by SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7 or SEQ ID NO: 8.
  • a probe containing an oligonucleotide that contains part or all of the complementary sequence and hybridizes with the base sequence of the mycobacterial intracellular gene (hereinafter sometimes referred to as the probe of the present invention).
  • the probe of the present invention comprises SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, sequence according to conditions such as nucleic acid amplification reaction such as PCR (including real-time PCR), nucleic acid hybridization, etc.
  • an appropriate length of an appropriate area may be selected and used. However, if it is desired to have sufficient specificity for the probe, it is desirable to design in consideration of the number of bases necessary to maintain the specificity as the probe sequence.
  • the probe used in the nucleic acid hybridization method is 10 to 700 bases, preferably 100 to 600 bases, more preferably 100 to 600 bases.
  • examples include those having a length of 500 bases, more preferably 200 to 500 bases.
  • a probe used in a real-time PCR amplification system has a length of 10 to 50 bases, preferably 15 to 40 bases, more preferably 20 to 30 bases. And there are things!
  • nucleotide sequences represented by SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7 or SEQ ID NO: 8 used for the probe of the present invention Partial or all or one of complementary sequences to the nucleotide sequence represented by SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7 or SEQ ID NO: 8. Part or all, and hybridizes with the base sequence of the M. intracellulare gene
  • Specific examples of the oligonucleotide are the same as those described in the description of the oligonucleotide of the present invention.
  • probe of the present invention include, for example, a part or all of a sequence selected from the nucleotide sequences represented by SEQ ID NOs: 9 to 203, or the nucleotide sequence represented by SEQ ID NOs: 9 to 203. And a probe that contains an oligonucleotide that hybridizes to the base sequence of the M. intracellulare gene and contains part or all of the complementary sequence to the sequence selected from the above.
  • probe of the present invention include those containing a sequence selected from the nucleotide sequences represented by SEQ ID NOs: 9 to 203, or selected from the nucleotide sequences represented by SEQ ID NOs: 9 to 203. And those containing a complementary sequence to the sequence to be expressed. Among these, those containing a sequence selected from the base sequences represented by SEQ ID NOs: 139 to 203 or those containing a complementary sequence to the sequence selected from the base sequences represented by SEQ ID NOs: 139 to 203 are mentioned.
  • the base sequence represented by SEQ ID NOs: 139 to 203 or the complementary sequence to the base sequence represented by SEQ ID NOs: 139 to 203 is an oligonucleotide base sequence amplified by PCR using the primer of the present invention. It is. Table 1 shows the combinations of forward primer and reverse primer, and the SEQ ID NOs of the base sequences amplified by PCR using them.
  • the base sequence represented by SEQ ID NO: 139 is obtained by PCR using the oligonucleotide having the base sequence represented by SEQ ID NO: 9 as the forward primer and the oligonucleotide having the base sequence represented by SEQ ID NO: 10 as the reverse primer. It shows the base sequence of the oligonucleotide to be amplified.
  • the method for obtaining the probe of the present invention is as described in the method for obtaining the nucleotide of the present invention.
  • the probe of the present invention may be labeled with a labeling substance.
  • the labeling substance used for labeling the probe of the present invention with a labeling substance may be any known labeling substance such as a radioactive isotope, enzyme, fluorescent substance, luminescent substance, and pyotin. be able to.
  • examples of the labeled probe used in the detection method by real-time PCR described later include those obtained by labeling the probe of the present invention with a labeling substance usually used in the real-time PCR method.
  • the 5 ′ end is labeled with a reporter fluorescent substance [carboxyfluorescein (FAM), hexafluoro oral fluorescein (HEX), tetrachloro oral fluorescein (TET), etc.]
  • the 3 ′ end is labeled with a quencher dye
  • a fluorescent substance such as damin (TAMRA) or a non-fluorescent substance such as Black Hole Quencher dye (BHQ), 4-((4- (dimethylamino) phenyl) azo) benzoic acid (DABCYL)] Is mentioned.
  • the above-described labeling probe can also be used.
  • Samples (test samples) used for detection of M. intracellulare include sputum, blood, pharyngeal mucus, gastric fluid, bronchial lavage fluid, transbronchial collection, puncture fluid such as pleural effusion, urine And various clinical materials such as pus. Further, it may be a cultured microbial cell isolated and cultured from a specimen, a nucleic acid isolated and purified from these, or a nucleic acid amplified by a nucleic acid amplification detection system or the like.
  • the cells are treated with a surfactant such as SDS or a protein denaturant such as guanidine thiocyanate (GTC).
  • a surfactant such as SDS
  • a protein denaturant such as guanidine thiocyanate (GTC).
  • GTC guanidine thiocyanate
  • NALC N-acety-to-L-cysteine-NaOH method
  • Pubnc Health Mycobactenolog y A Guide for the Level III Laboratory, US It is desirable to perform homogenization of specimens according to the Department of Health and Human Services, Public Health Service, Center for Disease Control, Atlanta, USA, 1985, p. 31-55).
  • the cultured cells isolated and cultured from the specimen were used as samples for detecting M. intracellulare. Taking the case of use as an example, it is as follows.
  • colonies on Ogawa's medium are collected, suspended in sterilized distilled water, centrifuged to collect bacterial cells, resuspended in distilled water, autoclaved, and then pulverized ( After physical crushing with glass beads, etc., the supernatant is further collected by centrifugation. Extract and purify the DNA from the resulting supernatant! ⁇ .
  • Extraction of DNA 'Various kits for this purpose are commercially available, so you can use them, or use conventional methods in this field (for example, phenol' black mouth form extraction method, ethanol or You may carry out according to the method etc. which precipitate using isopropanol etc.).
  • extraction and purification of DNA may be performed using an ion exchange resin type DNA extraction and purification kit Genomic-tip manufactured by Qiagen Co., Ltd.
  • the method for detecting M. intracellulare according to the present invention includes SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7 or SEQ ID NO: 8.
  • a method using an oligonucleotide that contains part or all of the complementary sequence to and hybridizes with the base sequence of the M. intracellulare gene as a primer and Z or probe (method using the primer and Z or probe of the present invention) ).
  • SEQ ID NO: 1 Part or all of the base sequence represented by SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7 or SEQ ID NO: 8, or SEQ ID NO: 1.
  • (A) A method for detecting a primer extension product obtained by performing a nucleic acid amplification reaction using the oligonucleotide of the present invention as a primer
  • a method for performing a nucleic acid amplification reaction using the oligonucleotide of the present invention as a primer for example, using the primer of the present invention and using the nucleic acid in a sample as a cage, DNA polymerase, etc.
  • PCR polymerase chain reaction
  • LAMP Loop-mediated Isothermal Amplification
  • ICANTM Is othermal and Cnimeric primer-initiated Amplification of Nucleic acids
  • LCR ligase chain reaction
  • SDA strand displacement amplification
  • the PCR method is the most common method.
  • examples of the PCR method include a real-time amplification detection system (eg, US Pat. No. 5,210,015, US Pat. 5538848) can be used.
  • An example of a detection system using a real-time amplification detection system is a real-time PCR detection method.
  • Examples of real-time PCR detection methods include TaqMan TM real-time PCR (see, for example, the description in US Pat. No. 5,538,848), MGB Eclipse Probe System method (see, for example, the description in US Pat. No. 5,801,155), Molecular Beacons Probe Technology method (see, for example, US Pat. No. 5,925,517), LUX Fluorogenic Primer method (Invitrogen Corporation, Quenching probe-PCR (QP) method (see, for example, the description in US Pat. No. 6,492,121)), etc. It is done.
  • primer of the present invention used in a nucleic acid amplification reaction such as PCR are as described above.
  • examples of a preferable combination of the forward primer and the reverse primer used in the nucleic acid amplification reaction include the combinations shown in Table 1 above.
  • preferable forward primer and reverse primer combinations include, for example, the following.
  • dATP deoxyribonucleoside triphosphates
  • dCTP deoxyribonucleoside triphosphates
  • dGTP dGTP
  • dTTP DNA polymerase used in nucleic acid amplification reactions
  • a reagent such as ZE that is usually used in this field, and the conditions, methods, etc. may be carried out in accordance with a general protocol of PCR except that the primer and probe of the present invention are used.
  • the method for detecting the primer extension product obtained by the nucleic acid amplification reaction is usually carried out in this field, and is not limited to the conventional method.
  • intercalator method for example, see description in US Pat. No. 55 38848
  • MGB Eclipse Probe System method for example, see description in US Pat. No. 5,801,155
  • Molecular Beacons Probe Technology method See, for example, U.S. Pat. No. 59255 / 3 ⁇ 4
  • LUX Fluorogenic Primer method Invitrogen Corporation
  • QP quenching probe-PCR
  • nucleic acid amplification reaction Then, electrophoresis is performed on the obtained primer extension product, based on the results, a method of performing the method, a method of measuring the label of the primer extension product obtained by performing a nucleic acid amplification reaction using a labeled primer, etc. There are various detection methods.
  • A-3) A method of performing electrophoresis based on the obtained primer extension product after performing a nucleic acid amplification reaction, and performing based on the result,
  • a method for measuring the label of a primer extension product obtained by performing a nucleic acid amplification reaction using a labeled primer A method for measuring the label of a primer extension product obtained by performing a nucleic acid amplification reaction using a labeled primer.
  • a conventional intercalator method that performs real-time PCR using a known intercalator can be used.
  • the intercalator is a reagent that specifically binds to double-stranded DNA and emits fluorescence. And emits fluorescence when irradiated with excitation light.
  • the intercalator is incorporated into the DNA, so it is incorporated into the DNA in proportion to the amount of primer extension product, so the fluorescence intensity derived from the intercalator is detected.
  • the amount of the primer extension product can be known.
  • the intercalator binds to all double-stranded DNA, a melting curve analysis is performed as necessary based on the obtained fluorescence intensity measurement results.
  • the fluorescence intensity derived from the intercalator is measured while gradually raising the temperature of the PCR reaction solution after PCR.
  • the PCR amplification product forms a double strand, so it fluoresces, but when the temperature of the PCR reaction solution reaches a certain temperature, it dissociates into a single strand, so the fluorescence derived from the intercalator Drops rapidly.
  • the temperature at this time is the melting temperature (Tm value), which is unique to the sequence of the primer extension product. Whether the peak is the peak power of the target specific product or the peak of the non-specific product, this Tm value can also be determined.
  • This intercalator method does not require electrophoresis after real-time PCR, and is therefore an effective method when it is necessary to make a quick determination in the field of clinical examinations.
  • the intercalator used in the present invention can be any force that can be used as long as it is an interstitial forceator usually used in this field, such as SYBR TM Green I (trade name of Molecular Probe), Etzimu bromide, fluorene, etc.
  • the melting curve analysis of the primer extension product is performed. Sample is detected and a single peak is obtained, the test sample is M. intracellulare. It is determined that it is positive (that is, M. intracellulare or its gene is present; the same shall apply hereinafter).
  • [0178] Alternatively, prepare a dilution series of the purified DNA sample solution, and perform real-time PCR for each dilution series as described above. Next, taking the dissociation temperature of the primer extension product (double-stranded DNA) on the horizontal axis and the first derivative (change) of the fluorescence amount on the vertical axis, creating a melting curve, and analyzing the melting curve of the amplified product And detect the peak.
  • test sample is If it is determined that M. Intracellulare is positive.
  • a calibration curve can be created according to the information performed in real-time PCR based on the measured value obtained by the method using the intercalator method, so that the calibration curve can be used in the sample.
  • the amount of genomic DNA (copy number) of a certain M. intracellulare can be obtained.
  • a purified DNA sample is obtained from a sample (test sample) for detecting M. intracellulare by a known method.
  • an oligonucleotide (02_Fwl) having the nucleotide sequence represented by SEQ ID NO: 9 and an oligonucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 10 (02_Rvl) by the phosphoramidite method ).
  • primer 02_Fwl and primer 02_Rvl are 50 to 2000 nM each, and an intercalator [eg SYBR TM Green I (product name of Molecular Probe)] is about 5000 to 100000 times the stock solution. Dilution, 1.0-4.0 mM MgCl, KC1, BSA, sodium cholate, 0.005-0.2% TritonX-100
  • the melting curve analysis of the primer extension product is performed to detect the peak. If a single peak is obtained, the test sample is determined to be positive for M. intracellulare.
  • [0187] Alternatively, prepare a dilution series of the purified DNA sample solution, and perform real-time PCR for each dilution series as described above. Next, take the dissociation temperature of the primer extension product (double-stranded DNA) on the horizontal axis and the first derivative (change) of the fluorescence amount on the vertical axis, create a melting curve, and analyze the melting curve of the primer extension product. To analyze the detected peak.
  • the detection method for M. intracellulare in this case is that when the same Tm peak is detected for each primer extension product for each dilution series in the melting curve analysis, the test sample is M. Intracellularity is determined as positive.
  • DNA derived from the genus Mycobacterium other than M. intracellulare was extracted and purified by a conventional method, and this was used as a saddle type in the same manner as described above in real time.
  • Perform PCR measure the fluorescence of SYBR TM Green I in the same way, and perform melting curve analysis. In this case, there should be no peaks in the melting curve analysis since there is no sequence from M. intracellulare in the sample. M.
  • the number (copy number) of genomic DNA of M. intracellulare in the sample can be obtained by preparing a calibration curve. In addition, the number is compared with the number of M. Intracellulare. As an example, the number of M. intracellulare in the sample (test sample) can also be known. (A-2) TaqMan TM real-time PCR method (TaqMan TM probe method)
  • the TaqMan TM real-time PCR method is a real-time PCR method using a labeled probe in which the 5 'end is labeled with a fluorescent dye (reporter) such as FAM and the 3' end is labeled with a quencher dye such as TAMRA.
  • a fluorescent dye reporter
  • TAMRA quencher dye
  • intracellulare gene is labeled with a reporter fluorescent dye, and 3 ′
  • PCR is performed using a nucleic acid in a sample as a saddle, and the label of the labeling substance released from the labeled probe is detected by using the one labeled with a quencher dye as a labeled probe.
  • an oligonucleotide probe that hybridizes to a specific region of a target gene, which is labeled with a fluorescent dye (reporter) at the 5 'end and a single dye at the 3' end, is used.
  • a fluorescent dye reporter
  • the fluorescence of the reporter is suppressed by the quencher dye.
  • PCR is performed from the outside using DNA polymerase.
  • the exonuclease activity also hydrolyzes the fluorescently labeled probe force, releasing the reporter dye and emitting fluorescence.
  • Real-time PC The R method is a method for monitoring the fluorescence intensity in real time, whereby the initial amount of the cage DNA can be accurately quantified.
  • the primer of the present invention is used as the forward primer and the reverse primer used in the TaqMan TM real-time PCR detection system according to the present invention.
  • Preferred primers include those used in nucleic acid amplification reactions such as the PCR method described above, and preferred examples and preferred combinations and preferred combinations are also as described above.
  • the probe used for the probe used in the TaqMan TM real-time PCR detection system according to the present invention is labeled with a fluorescent dye (reporter) at the 5 'end and a quencher dye at the 3' end. Any probe of the invention may be used. Actually, a probe containing the base sequence of the primer extension product predicted to be obtained when real-time PCR is performed using a combination of the selected forward primer and reverse primer, or a base sequence designed from that sequence is used. The containing probe is used.
  • a probe used when performing real-time PCR using a combination of two primers 02_Fwl (having the base sequence represented by SEQ ID NO: 9) and 02_Rvl (having the base sequence represented by SEQ ID NO: 10) Contains a nucleotide containing the nucleotide sequence of the sequence code 139 expected to be amplified by the real-time PCR or a sequence designed from the nucleotide sequence of SEQ ID NO: 139 (for example, the sequence represented by SEQ ID NO: 204) An oligonucleotide is mentioned.
  • reporter fluorescent substances for labeling the 5 'end of the labeled probe include carboxyfluorescein (FAM), hexaclonal fluorescein (HEX), tetraclonal fluorescein (TET), Cy5, and VIC. FAM is often used.
  • the tenant dyes that label the 3 'end include fluorescent substances such as carboxytetramethylrhodamine (TAMRA), B lack Hole Quencher color (eHw2), 4-((4- (dimethylamino) phenyl) azo) benzoic acid TAMRA is often used, especially in the power of non-fluorescent substances such as (DABCYL).
  • dATP deoxyribonucleoside triphosphates
  • dCTP deoxyribonucleoside triphosphates
  • dGTP dGTP
  • dTTP DNA polymerase
  • DNA polymerase DNA polymerase
  • other reagents used in real-time PCR detection systems are the same as those used in normal real-time PCR.
  • the real-time PCR method to be used may be performed according to a general protocol for real-time PCR except that the primer and probe of the present invention are used.
  • An example of a method for detecting M. intracellulare by the TaqMan TM real-time PCR detection system according to the present invention will be described as follows.
  • a purified DNA sample is obtained from a sample (test sample) for detecting M. intracellulare.
  • a sample test sample
  • the oligonucleotide (02_Fwl) consisting of the base sequence represented by SEQ ID NO: 9 and the oligonucleotide (02_Rvl) consisting of the base sequence represented by SEQ ID NO: 10 were synthesized by the phosphoramidite method To do.
  • a sequence for use as a probe (for example, the sequence represented by SEQ ID NO: 204) is used. Design and synthesize oligonucleotides of this base sequence.
  • a reporter dye FAM is bound to the 5 ′ end of the oligonucleotide and a reporter quencher TAMRA is bound to the 3 ′ end by a conventional method to obtain a fluorescently labeled probe.
  • LOmM Tris-HC1 buffer PH8.9 containing 0.005 to 0.2% TritonX-100, each containing about 0.2 mM dATP, dCTP, dGTP, dTTP, 10 to 80 units / mL polymerase such as Taq DNA polymerase )
  • a PCR reaction solution Add 20 ng of purified DNA sample to 20 L of this PCR reaction solution to obtain a PCR sample. Place this PCR sample in the well of a 96-well reaction plate and perform real-time PCR using an appropriate real-time PCR detector. The reaction is repeated 30-50 times, and the amount of luminescence of the reporter dye is measured every cycle.
  • test sample is determined to be positive for M. intracellulare.
  • the number of M. intracellulare genomic DNA (copy number) in the sample can be obtained. Since the number is proportional to the number of M. intracellulare, the number of M. intracellulare in the sample (test sample) You can know the number.
  • the calibration curve may be prepared by a conventional method that is usually performed in the real-time PCR method. For example, using a M. intracellulare genomic DNA sample with a known copy number as a standard, prepare a DNA sample for PCR at a dilution series concentration (copy number). Next, perform real-time PCR using the DNA samples for PCR of each dilution series, and measure the amount of luminescence of the reporter dye. For each DNA sample for PCR in each dilution series, create an amplification curve that plots the measured light emission values (Rn, y-axis) against the number of PCR sites (X-axis). Next, select the Rn part where the light emission is exponentially amplified, and draw the Threshold line (Th).
  • Th Threshold line
  • Threshold eye le The point at which Th and the amplification curve of each PCR DNA sample intersect is defined as the Threshold eye le (Ct) value.
  • Ct Threshold eye le
  • a calibration curve can be similarly generated based on the measured values obtained by performing real-time PCR by the intercalator method. For example, an amplification curve is prepared by plotting measured values (Rn, y-axis) of the amount of fluorescence derived from the intercalator for each number of PCR cycles (X-axis). Next, Ct values were obtained by the same method as above, and the Ct values (y-axis) against the logarithmic values (X-axis) of the copy number of each PCR DNA sample used for real-time PCR were plotted and obtained for each Ct. Use the approximated curve as the calibration curve.
  • SEQ ID NO: 1 SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, sequence Part or all of the nucleotide sequence represented by No. 7 or SEQ ID No. 8, or SEQ ID No. 1, SEQ ID No. 2, SEQ ID No. 3, SEQ ID No. 4, SEQ ID No. 5, SEQ ID No. 6, SEQ ID No. 7, or SEQ ID No.
  • An oligonucleotide that contains part or all of the complementary sequence to the base sequence represented by 8 and hybridizes with the base sequence of the M. intracellulare gene is used as a primer (primer of the present invention), and the nucleic acid in the sample To perform nucleic acid amplification reaction using
  • nucleic acid amplification reaction Specific examples of the nucleic acid amplification reaction are as described above.
  • the conditions, operation methods, etc. of the electrophoresis method may be in accordance with conventional methods usually performed in this field.
  • a suitable forward primer and reverse primer combination is selected from the primers of the present invention, and a nucleic acid amplification reaction such as PCR is performed using the combination.
  • electrophoresis is performed on the obtained primer extension product. Predict the size (number of base pairs) of the primer extension product that will be amplified from the combination of the forward primer and reverse primer used in the nucleic acid amplification reaction, and predict the resulting electrophoretic fraction. It may be confirmed by a conventional method whether or not it corresponds to a primer extension product of a specified size.
  • the obtained electrophoretic fraction is stained with ethidium bromide to visualize the nucleic acid species.
  • a method of confirming by the characteristic size (number of base pairs) of the primer extension product can be used.
  • the primer obtained after PCR was performed using the combination of the forward primer and the reverse primer described in Table 1 above.
  • the extension product is subjected to electrophoresis, and is expected to be amplified by the combination of the primers.
  • the oligonucleotide having the base sequence represented by the sequence number shown in Table 1 or the size of the base pair thereof is expected. If the fraction is confirmed, the test sample can be determined to be positive for M. intracellulare.
  • More preferable methods among these methods include the following methods.
  • [0218] (4) obtained after PCR using a combination of an oligonucleotide primer containing the nucleotide sequence represented by SEQ ID NO: 59 and an oligonucleotide primer containing the nucleotide sequence represented by SEQ ID NO: 60
  • the primer extension product was electrophoresed to obtain an oligonucleotide fraction of 157 base pairs or an oligonucleotide containing the base sequence represented by SEQ ID NO: 164.
  • electrophoresis is performed on the primer extension product obtained by nucleic acid amplification reaction.
  • the obtained electrophoretic fraction is subjected to hybridization to a labeled probe obtained by labeling the probe of the present invention with a labeling substance.
  • An example thereof is as follows. That is, after performing PCR using the combination of the forward primer and reverse primer shown in Table 1, the resulting primer extension product is electrophoresed.
  • Pre-labeled oligonucleotides with base sequences containing part or all of the base sequences of SEQ ID NOs shown in Table 1, which are predicted to be amplified by the combination of forward primer and reverse primer used in PCR Prepare a labeled probe labeled with the substance. When the presence of the fraction hybridized with the labeled probe is confirmed by performing hybridization on the labeled probe of the electrophoresis fraction and detecting the label of the labeled probe, the test sample is M. Intra. And a method of determining that the cellarre is positive.
  • a primer extension product obtained after PCR using a combination of an oligonucleotide primer having the base sequence represented by SEQ ID NO: 9 and an oligonucleotide primer having the base sequence represented by SEQ ID NO: 10 Perform electrophoresis. Subsequently, the obtained fraction is subjected to hybridization for a labeled probe in which an oligonucleotide containing a base sequence containing part or all of the base sequence represented by SEQ ID NO: 139 is labeled with a labeling substance.
  • a method for determining that the fraction hybridized with the labeled probe is positive by detecting the label of the labeled probe;
  • a purified DNA sample is obtained from a sample (test sample) for detecting the presence or absence of M. intracellulare.
  • 02_Fwl an oligonucleotide having a sequence represented by SEQ ID NO: 9
  • 02_Fwl a sequence represented by SEQ ID NO: 10
  • Oligonucleotide having a base sequence to be synthesized.
  • primer 02_Fwl and primer 02_Rvl 0.1 to 2 ⁇ 2 each, preferably 1 ⁇ each of primer 02_Fwl and primer 02_Rvl, 1.0 to 4.0 mM MgCl, KC1, BSA, sodium cholate, 0.005 to 0.2% polyoxyethylene
  • the present invention can also apply a detection method using an RNA transcript in the nucleic acid amplification step.
  • NAS BA nucleic acid sequence based amplification
  • 3SR self-sustained sequence replication
  • TAS transcription based amplification system
  • special table Heisei 2-500565: International Publication WO88 / 10315
  • TMA transcription mediated amplification
  • A-4) A method for measuring the label of a primer extension product obtained by performing a nucleic acid amplification reaction using a labeled primer,
  • a nucleic acid amplification reaction such as PCR is performed using the nucleic acid in the test sample as a cage, and the label of the obtained primer extension product is detected. If the label is detected after measurement, the test sample may be determined to be positive for M. intracellulare.
  • the foam primer and reverse primer used in this method include those used in the PCR method described above, and preferred examples and preferred combinations thereof are also as described above.
  • the label of the extension product of the primer is measured after removing the free labeled primer, and when the label can be detected, the test sample is M. intracellulare. If it is determined to be positive.
  • a primer extension product in a reaction product obtained by carrying out a nucleic acid amplification reaction reaction is used to precipitate a nucleic acid (ethanol precipitation method, isopate).
  • ethanol precipitation method, isopate a method of removing a supernatant containing a free labeled primer that has not been precipitated, and the like.
  • the method for detecting M. intracellulare according to the present invention is represented by SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7 or SEQ ID NO: 8.
  • intracellulare gene (the oligonucleotide of the present invention) with a labeling substance is used, and the labeled probe is used as a sample.
  • the oligonucleotide of the present invention bound to a solid phase carrier is used as a capture probe, which is hybridized with the nucleic acid in the test sample and derived from M. intracellulare in the sample. (See, for example, the description of JP-A-62-265999).
  • the oligonucleotide or solid phase carrier of the present invention may be labeled with a labeling substance.
  • the capture probe of (B-1) and the label probe labeled with the probe of the present invention are hybridized with the nucleic acid in the sample to be immobilized.
  • the reagents used in the M. intracellulare detection method of the present invention are reagents commonly used in this field, such as buffers, stabilizers, preservatives, etc., and coexist. Those that do not inhibit the stability of reagents and the like and do not inhibit nucleic acid amplification reactions such as PCR and hybridization reactions can be used. In addition, the concentration should be appropriately selected from the concentration range normally used in this field.
  • the buffer solution include nucleic acid amplification reaction and hybridization reaction such as normal PCR such as Tris buffer solution, phosphate buffer solution, veronal buffer solution, borate buffer solution, Good buffer solution, etc.
  • normal PCR such as Tris buffer solution, phosphate buffer solution, veronal buffer solution, borate buffer solution, Good buffer solution, etc.
  • the pH is not particularly limited, but the range of 5 to 9 is usually preferred.
  • nucleic acid synthase DNA polymerase, RNA polymerase, reverse transcriptase, etc.
  • substrate according to the enzyme dNTP, rNTP, etc.
  • double-stranded intercalator ethidium bromide, SYBR TM Green, etc.
  • labeled detection substances such as FAM and TAMRA are used.
  • the reagent kit for detecting M. intracellulare includes "SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7 or SEQ ID NO: Part or all of the nucleotide sequence represented by No. 8, or represented by SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7 or SEQ ID NO: 8. Oligonucleotide that contains part or all of the complementary sequence to the base sequence and hybridizes with the base sequence of the M. intracellulare gene (primer of the present invention) or Z and probe (probe of the present invention) M. intracellulare detection reagent kit.
  • the primer may be labeled with a labeling substance. Specific examples of the labeling substance are as described above.
  • primer of the present invention and the probe of the present invention constituting the kit are as described in the above description of the "primer of the present invention” and “probe of the present invention”. .
  • the primer of the present invention may be labeled with a labeling substance.
  • a labeling substance for example, Specific examples are as described above.
  • the kit comprising the primer of the present invention also includes a composition comprising a pair of primers of a forward primer and a reverse primer.
  • a preferred embodiment thereof includes a composition containing the primer combinations described in Table 1 above.
  • [0253] (2) (a) part or all of the base sequence represented by SEQ ID NO: 23, or part or all of the complementary sequence to the base sequence represented by SEQ ID NO: 23, and M. intra An oligonucleotide primer that hybridizes with the base sequence of the cellular gene, and (b) part or all of the base sequence represented by SEQ ID NO: 24, or a part of the complementary sequence to the base sequence represented by SEQ ID NO: 24 Alternatively, an oligonucleotide primer that contains all of them and hybridizes with the base sequence of the M. intracellulare gene as a constituent reagent.
  • [0255] (4) (a) part or all of the base sequence represented by SEQ ID NO: 59, or part or all of the complementary sequence to the base sequence represented by SEQ ID NO: 59, and M. intra cell An oligonucleotide primer that hybridizes with the base sequence of the Lare gene, and (b) a part or all of the base sequence represented by SEQ ID NO: 60, or a part of the complementary sequence to the base sequence represented by SEQ ID NO: 60, or An oligonucleotide primer that contains all of them and hybridizes with the base sequence of the M. intracellulare gene as a constituent reagent.
  • [0256] (5) (a) part or all of the base sequence represented by SEQ ID NO: 79, or part or all of the complementary sequence to the base sequence represented by SEQ ID NO: 79; An oligonucleotide primer that hybridizes with the base sequence of the cellular gene, and (b) part or all of the base sequence represented by SEQ ID NO: 80, or a part of the complementary sequence to the base sequence represented by SEQ ID NO: 80 Alternatively, an oligonucleotide primer that contains all of them and hybridizes with the base sequence of the M. intracellulare gene as a constituent reagent.
  • [0257] (a) a part or all of the base sequence represented by SEQ ID NO: 93, or a part or all of a complementary sequence to the base sequence represented by SEQ ID NO: 93; An oligonucleotide primer that hybridizes with the base sequence of the cellular gene, and (b) part or all of the base sequence represented by SEQ ID NO: 94, or a part of the complementary sequence to the base sequence represented by SEQ ID NO: 94 Alternatively, an oligonucleotide primer that contains all of them and hybridizes with the base sequence of the M. intracellulare gene as a constituent reagent.
  • [0258] (7) (a) a part or all of the base sequence represented by SEQ ID NO: 105, or part or all of a complementary sequence to the base sequence represented by SEQ ID NO: 105, and M. (B) a part or all of the base sequence represented by SEQ ID NO: 106, or a part or all of the complementary sequence to the base sequence represented by SEQ ID NO: 106; An oligonucleotide primer that contains and hybridizes with the base sequence of the M. intracellulare gene as a constituent reagent.
  • the kit may further contain a labeled probe obtained by labeling the oligonucleotide of the present invention with a labeling substance.
  • M. intracellulare detection reagent kit comprising the oligonucleotide of the present invention as a probe
  • the probe may be labeled with a labeling substance.
  • the M. intracellulare detection reagent kit of the present invention includes, for example, buffers, stabilizers, preservatives, etc., and does not inhibit the stability of coexisting reagents, etc. Nucleic acid amplification reactions such as those that do not inhibit the hybridization reaction may be included. In addition, the concentration may be appropriately selected depending on the concentration range force normally used in this field.
  • the buffer solution include a normal PCR hybridization reaction such as Tris buffer solution, phosphate buffer solution, veronal buffer solution, borate buffer solution, Good buffer solution, and the like.
  • a normal PCR hybridization reaction such as Tris buffer solution, phosphate buffer solution, veronal buffer solution, borate buffer solution, Good buffer solution, and the like.
  • the pH is not particularly limited, but the range of 5 to 9 is usually preferable.
  • nucleic acid synthase DNA polymerase, RNA polymerase, reverse transcriptase, etc.
  • substrate according to the enzyme dNTP, rNTP, etc.
  • double-stranded intercalator ethidium bromide, SYBR TM Green, etc.
  • labeled detection substances such as FAM and TAMRA may be included.
  • the bacteria used in the examples are all clinical isolates, and after culturing, the bacterial species have already been differentiated by the shape of the colony and various conventional biochemical tests.
  • the obtained purified genomic DNA fragment was subjected to final 400 ngZ ⁇ L (10 mM Tris-HC1 buffer, pH 8.
  • rpsl DNA fragment of sequence represented by SEQ ID NO: 205, sequence specific to M. intracellulare, described in Patent Document 1
  • IS6110 element SEQ ID NO: 206
  • KATS2 sequence of M.kansasii DNA fragment of the sequence represented by SEQ ID NO: 207, a sequence specific to M.kansasii , JP-A-11-155589
  • MAV19K of ⁇ ⁇ ⁇ as a negative control DNA fragment of sequence represented by SEQ ID NO: 208, sequence specific to M.avium, JP-A-11-06999
  • DNA samples were prepared in the same manner using E. coli-derived DNA that had been extracted and purified in accordance with the conventional method for extracting DNA and E. coli DNA, and the following treatment was performed in the same manner.
  • JM109 Competent Cells were transformed using the recombinant DNA obtained above according to the product protocol.
  • the obtained transformant was plated on an LB-agar medium containing 100 g / mL ampicillin, 0.2 mM IPTG, 40 ⁇ g / mL X-Gal. White colonies were picked up to obtain a transformant li brary (Whole Genome Shotgun clone library derived from M. intracellulare chemome) into which recombinant DNA incorporating the target DNA fragment was introduced.
  • Primer RV (Takara Bio Inc.), 1.5 mM MgCl, 80 mM KC1, 500 ⁇ g / mL BSA% 0.1%
  • Triton X-100 Triton X-100, polyoxyethyleneoctyl ether, trade name of Rohm and Haas
  • 0.2mM dATP dCTP, dGTP, dTTP and Taq DNA polymerase
  • 1 OmM Tris-HCl buffer (pH 8.9) containing 40 units / mL was prepared as a reaction solution for PCR.
  • DNA was purified from each of the transformants (Whole Genome Shotgun clone derived from the genome of M. intracellulare) obtained in (2) according to a conventional method.
  • PCR was performed for 30 cycles under the following reaction conditions using a DNA thermal cycler (DNA Engine PTC200) manufactured by MJ Research.
  • PCR reaction conditions :
  • the obtained PCR amplification product was purified and then mixed with an immobilized buffer (final concentration: 3x SSC).
  • the final concentration of the PCR product to be spotted was adjusted to be 300 ⁇ ⁇ / / ⁇ L, typing a machine set humidity 55% in the device; a (GTMAS Stamp II manufactured by Nippon Laser & Electronics Co., Ltd.) Then, the PCR product obtained above was spotted on a slide glass (CMT GAPS-II; manufactured by Corning) (spot diameter 150-250 ⁇ m). Transfer the slide glass after spotting to a UV crosslinker (UV Stratalinkerl800; manufactured by Stratagene), irradiate it with 150 mJ / cm 2 of UV, and immobilize the PCR amplification product (target DNA) on the slide glass. (A microarray using M. Intracellulare genome-derived DNA Whoule Genome Shotgun clone library as a material, a total of 1100 clones).
  • the positive control DNA sample (rpsl, IS6110 element, KA TS2 sequence) and the negative control DNA sample (MAV19K, E. coli-derived DNA) obtained in (1) above were similarly applied to the above (2).
  • the Whole Genome Shotgun library of (1) and the microarray of (3) above were prepared, and each microarray was prepared on a slide glass.
  • the target genomic DNA fragment was labeled with a fluorescent dye.
  • reaction product solution (Hereinafter referred to as “reaction product solution”)
  • Cy3 (Amersham Biosciences) or Cy5 (Amersham Biosciences) dissolved in 105 L of DMSO was prepared (Cy-dye Solut ion Cy3, Cy-dye Solution Cy5). ). Carry out this Cy-dye Solution Cy3 lO ⁇ L for each sample solution obtained using genomic DNA fragments for control (derived from M. bovis and M. kansasii) and incubate at 40 ° C for 60 minutes (light-shielded) Went. In addition, Cy-dye Solution Cy5 10 / z L was added to the sample solution obtained using M. intracellulare-derived genomic DNA, and incubated (light-shielded) at 40 ° C for 60 minutes.
  • M.kansasii labeled each labeled product ie, the labeled genomic DNA for control derived from ⁇ ⁇ _ ⁇ with Cy3
  • a labeled product obtained by labeling the control genomic DNA derived from Cy3 with Cy3 and a labeled product obtained by labeling genomic DNA derived from M. intracellulare with Cy5 were obtained.
  • Cy3 labeled product solution and Cy5 labeled product solution were mixed, placed on an ultrafiltration column of Microcon YM-10 (Millipore), and centrifuged at 14000 rpm for 4 minutes, and then the concentrated solution was put into a microtube. And completely dried with a vacuum drying centrifuge (CentriVap concentrator; manufactured by LABCONCO). Next, add the following reagents to the microtube, suspend and mix to dissolve the labeled product,
  • the obtained Cy3Cy5 labeled product mixture solution was incubated at 95 ° C. for 5 minutes, and kept at 70 ° C. until hybridization.
  • a microarray (DNA chip) was prepared in which spots of DNA fragments used as M. Intracellulare Whole Genome shotgun clone, positive control and negative control were integrated on the same glass slide.
  • the Cy3Cy5 labeled product mixed solution obtained in (4) ii) above was placed on the microarray, and covered with a cover glass to prevent bubbles from entering. Set this in the Noble cassette and tap it The mixture was sealed by placing Kim towel moistened with distilled water on top of it, and hybridized by reacting at 65 ° C for 8 hours or more in the dark. After hybridization, the DNA chip was dipped in 2X SSC-0.1% SDS solution at room temperature together with the cover glass, and the cover glass was removed by gently shaking the DNA chip in the solution.
  • DNA derived from M. intracellulare cells positive control (rpsl: DNA fragment of sequence specific to M. intracellulare, IS6110 element: specific to M. bovis DNA fragment of sequence, KATS2 sequence: DNA fragment of sequence specific to M.kansasii) and negative control (MAV19K: DNA fragment of sequence specific to ⁇ ⁇ ⁇ m, genomic DNA fragment of E. coli) are spotted ing.
  • microarray hybridization was performed using a mixture of Cy3-labeled products of control genomic DNA derived from ⁇ ⁇ ⁇ and Cy5-labeled products of M. intracellulare-derived genomic DNA.
  • the intensity was measured to determine the fluorescence intensity ratio (Ratio) of Cy3 / Cy5. That is, if the fluorescence intensity ratio of Cy5 to Cy3 of a spot on a microarray is high, the spot
  • the DNA fragment in the pot shows a stronger hybridization with the Cy5-labeled product, ie, genomic DNA derived from M. intracellulare.
  • the fluorescence intensity ratio of Cy5 to Cy3 of a spot on a microarray is low, the DNA fragment of the spot is weakly specific for M. intracellulare-derived genomic DNA, ie, a Cy3-labeled product, ie, M ⁇ 2Xk It shows that it hybridized more strongly with the control genomic DNA.
  • the fluorescence intensity ratio of all the spots in the microarray was calculated, and the top 50 spots of the spots with the highest fluorescence intensity and the higher fluorescence intensity ratio of Cy5 to Cy3 were selected.
  • intracellulare-derived genomic DNA that is, a needle from M.kansasi oil. It shows that it hybridized more strongly with genomic DNA for reference.
  • the fluorescence intensity ratios of all the spots in the microarray were calculated, and the top 50 spots with the highest fluorescence intensity and the higher fluorescence intensity ratio of Cy5 to Cy3 were selected.
  • M. intracellulare is also due to the fact that the genome sequence has not been decoded yet.
  • PCR amplification detection was performed for each primary candidate clone using Primer3 (Whitehead Institute for Biomedical Research.) Based on the results, we designed a combination of forward and reverse primers that could be used for PCR.
  • a sequence for use as a probe is designed, and an oligonucleotide of this sequence is designed.
  • Reporter dye FAM is attached to the 5 'end of this oligonucleotide and the reporter quencher TAMRA is attached to the 3' end, and a labeled oligonucleotide probe (TaqMan TM Fluorescent Probe, manufactured by Applied Biosystems Japan) is used. Obtained.
  • a genomic DNA sample was prepared from M. intracellulare according to a conventional method.
  • Escherichia coli and 18 mycobacteria (M.tuberculosis, M.kansasiu M.marinum. M.simiae. M.scrofulaceum. M.gordonae. M.szulgau M.aviu) M.gastri.M.xenopi.M.nonchromogenicum.M.terrae.M.tnviale.M.fortuitum.M.chelonei.M.abscessus, M.peregrinum), a DNA sample (for control) was prepared according to a conventional method. .
  • genomic copy number was determined by comparing the obtained amount of DNA with the known amount of genomic DNA of each cell. 10 8 copies of Z ⁇ L genomic DNA were obtained.
  • the primary candidate clones were designed with 1 ⁇ and 195 ⁇ each of the designed forward primer and reverse primer, respectively, and the fluorescently labeled probe prepared in (2) above, 1.5 mM MgCl, 80
  • a 10 mM Tris-HCl buffer solution (pH 8.9) containing / mL was prepared as a reaction solution.
  • a PCR sample was prepared by adding 1 ⁇ L of each dilution series of DNA sample to 20 ⁇ L of the reaction solution, and this was used as a 96-well reaction plate (microamplifier optical 96-well reaction plate).
  • Real-time PCR was carried out using TaqMan TM PCR thermal cycler detector ( ABI7500 , Applied Biosystems Japan). The reaction was incubated at 95 ° C. for 10 minutes, and then the reaction of 95 ° C. for 15 seconds and 60 ° C. for 1 minute was repeated 50 cycles, and the luminescence amount of the reporter dye was measured every cycle. The amount of luminescence was determined using the function of numerically calculating the relative fluorescence intensity ratio for each plate of the 96-well reaction plate used in the measurement of the thermal cycler used for the measurement.
  • the following eight candidate clones were selected. Unless otherwise specified, the candidate clone selected in the primary screening is hereinafter referred to as the “primary candidate clone”, and the candidate clone finally selected in the secondary screening is simply referred to as the “candidate clone”.
  • Candidate clone 2 1129-base oligonucleotide with the nucleotide sequence represented by SEQ ID NO: 2 'Candidate clone 3: 1003-base oligonucleotide with the nucleotide sequence represented by SEQ ID NO: 3
  • 'Candidate clone 7 1006 base oligo nucleotide with nucleotide sequence represented by SEQ ID NO: 7
  • 'Candidate clone 8 702 nucleotide oligonucleotide having the nucleotide sequence represented by SEQ ID NO: 8
  • Example 1 Evaluation of M. intracellulare specificity of candidate clones
  • the primer sequence for PCR amplification detection using the primer design Web tool Primer3 (Whitehead Institute for Biomedical Research). Oligonucleotides of 5′-GTTCAGCAGATC GTCGTAGG-3′J (SEQ ID NO: 9) and “5′-CTCTTGACGAGGCAAAACAT-3 ′” (SEQ ID NO: 10) were designed.
  • the primer of the base sequence represented by SEQ ID NO: 9 is referred to as “02_Fwl”
  • the primer of the base sequence represented by SEQ ID NO: 10 is referred to as “02_Rvl”.
  • the designed oligonucleotide was synthesized by the phosphoramidite method using ABI DNA Synthesizer Model 392.
  • the synthesis method was in accordance with the ABI manual, and various oligonucleotides were deprotected by heating an aqueous ammonia solution of the oligonucleotide at 55 ° C overnight.
  • an anion exchange column using FPLC manufactured by Falmasia The synthetic oligonucleotide was purified by chromatography.
  • Escherichia coli E. coli
  • ATCC11775 Mycobacterium tuberculosis
  • TMC102 [H37Rv] Mycobacterium tuberculosis
  • M. intra Cellulare ATCC13950
  • Mvcobacteriu m kansasii ATCC12478
  • Mycobacterium marinum ATCC927
  • Mycobacterium simiae ATCC25275
  • Mycobacterium um Mycobacterium szukai ATCC 19981
  • Mycobacterium gordonae ATCC 14470.
  • Mycobacterium szukai (ATCC35799), Mycobacterium avium (Mycobacterium avium) (Abum) (ATCC25291), Mvcobacteriu m gastri (ATCC15754), Mycobacterium xenoDi (My Nocterium xenopi (ATCC19250), Mycobacterium nonchromogenicum (ATCC19530), Mycobacterium terrae (ATCC15755).
  • Mycobacterium triviale (AT CC23292) .
  • Mycobacterium fortuitum (ATCC6 841), Mycobacterium chelonei (ATCC35752), Mvcob acterium abscessus (ATCC 19977), Mvcobacteriu m Using peregrinum (ATCC14467), DNA was extracted and purified by the following method to obtain a DNA sample.
  • Mycobacterium tuberculosis obtained purified genomic DNA from Mycos Research, LLC and used it as purified DNA.
  • strains were obtained from the American Type Culture Collection (ATCC), and DNA was extracted and purified by the following method. Bacteria are all clinical isolates, and after culturing, the bacterial species have already been identified by the shape of the colony and various conventional biochemical tests.
  • ATCC American Type Culture Collection
  • DNA was extracted and purified according to the conventional method for extracting E. coli DNA.
  • the obtained purified DNA was prepared so as to have a final IngZ ⁇ L (10 mM Tris-HC1 buffer, pH 8.9), and used as a DNA sample.
  • PCR was performed as follows using the primers 02_Fwl and 02_Rvl designed and synthesized in (1) above.
  • the positions of the nucleotide sequences possessed by each primer 02_Fwl and primer 02_Rvl on the nucleotide sequence of candidate clone 1 are as shown in FIG.
  • Primer 02_Fwl and Primer 02_Rvl obtained in (1) above are 300 nM each, and SYBR TM Green I (product name of Molecular Probe) is diluted 30 times the stock solution as a coloring reagent, 1.5 mM MgCl
  • the horizontal axis represents the dissociation temperature of the primer extension product (double-stranded DNA), and the vertical axis represents the first derivative (change) of the fluorescence amount. The peak was detected.
  • a melting curve analysis was performed when a DNA sample derived from M. intracellulare was used as a saddle type, and a single clear peak was obtained. It can be seen that the detection system is a highly specific detection method for M. intracellulare.
  • M. intracellulare can be specifically detected by using the oligonucleotide of the present invention as a primer in PCR.
  • detection by PCR or other nucleic acid amplification can be expected to be highly sensitive, it is not necessary to isolate bacteria, and clinical materials can be used as they are for detection.
  • M. intracellulare was detected for a long time. But it can be done within a day.
  • Example 2 Test for detection sensitivity of candidate clones for M. intracellulare
  • Example 1 Primer 02_Fwl and primer 0 2_Rvl were synthesized in the same manner using the same equipment as in (1).
  • the sequence “5'-ATACG TGCCCAGAAGCTCTACCGAGAT-3'J for use as a probe was designed from the nucleotide sequence of SEQ ID NO: 139 (155 bases) predicted to be amplified by PCR using 02_Fwl and 02_Rvl as primers.
  • An oligonucleotide having this sequence was synthesized (SEQ ID NO: 204.
  • the oligonucleotide probe having this sequence is hereinafter referred to as INT02—F1R1_FAMTAM;).
  • the reporter dye FAM was added to the 5 ′ end of this oligonucleotide.
  • Reporter quencher TAMRA was bound to the 3 ′ end to obtain a labeled oligonucleotide probe (TaqMan TM Fluorescent Probe, manufactured by Applied Biosystems Japan).
  • M. Intracellulare power prepared in Experimental Example 1 (1)
  • the absorbance was measured to determine the amount of DNA in the sample.
  • the amount of genomic DNA in the sample was determined by comparing the obtained DNA amount with the known genomic DNA amount of M. intracellulare. 10 8 copies Z ⁇ L of genomic DNA was obtained.
  • Real-time PCR was performed as follows using 02_Fwl prepared in (1) above as a forward primer and 02_Rvl as a reverse primer.
  • PCR sample was prepared by adding 1 ⁇ L of DNA sample of each dilution series to 20 ⁇ L of the reaction solution, and this was used as a 96-well reaction plate (microamplifier 'Optical 96well' reaction 'plate, Real-time PCR was carried out using TaqMan TM PCR thermal cycler detector ( ABI7500 , Applied Biosystems Japan). The reaction was incubated at 95 ° C. for 10 minutes, and then the reaction of 95 ° C. for 15 seconds and 60 ° C. for 1 minute was repeated 50 cycles, and the luminescence amount of the reporter dye was measured every cycle. The amount of luminescence was determined using the function of numerically calculating the relative fluorescence intensity ratio for each plate of the 96-well reaction plate used in the measurement of the thermal cycler used for the measurement.
  • the oligonucleotide of the present invention was used as a primer, and an array strength-labeled probe serving as the amplification region was designed, and real-time PCR was performed to perform M. It was found that can be detected.
  • M. intracellulare can be quantified by the real-time PCR method using the primer and probe of the present invention. Furthermore, from FIG. 10, in the real-time PCR method using the primer and probe of the present invention, It can be seen that M. intracellulare can be detected even under the condition that 2 copies of genomic DNA of M. intracellulare are present as the initial amount.
  • M. intracellulare detection method using the primer or Z and probe of the present invention it is much quicker and more expensive than the conventional method of identifying bacterial species by culture inspection of bacteria. M. Intracellularity can be detected accurately.
  • diagnostic false positives can be eliminated compared to the conventional diagnostic method using PCR using primers or Z and probes. Therefore, it is possible to detect and diagnose M. intracellulare with higher accuracy.
  • detection method of the present invention there is an effect that M. intracellulare cells can be quantified.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

配列番号1、配列番号2、配列番号3、配列番号4、配列番号5、配列番号6、配列番号7又は配列番号8で表される塩基配列の一部若しくは全部、又はこれに対する相補配列の一部若しくは全部を含有し、且つマイコバクテリウム・イントラセルラーレ(Mycobacterium intracellulare、M.イントラセルラーレ)遺伝子の塩基配列とハイブリダイズするオリゴヌクレオチド、該オリゴヌクレオチドを含有する、M.イントラセルラーレ検出用プライマー並びにプローブ、該プライマ及び/又はプローブを用いるM.イントラセルラーレの検出方法を開示する。  本発明の検出方法によれば、従来の菌の培養検査法又はPCR法による診断方法に比較して、診断上の偽陽性が排除でき、より高精度に且つ正確に、しかも特異的にM.イントラセルラーレの検出及び診断を行うことができる。更に、菌体の定量を行うこともできる。

Description

マイコバクテリゥム ·イントラセルラーレ検出用プライマー及びプローブ、並 びにこれを用いたマイコバクテリゥム 'イントラセルラーレの検出方法
技術分野
[0001] 本発明は、核酸の増幅及びその検出系を利用した、マイコバクテリゥム 'イントラセ ノレラーレ(Mycobacterium intracellulare,以下、「M.イントラセノレラーレ」と略記する場 合がある。 )を検出及び Z又は同定する方法に関するものである。
背景技術
[0002] 非結核性抗酸菌 (nontuberculous mvcobacterium)は、マイコバクテリゥム (Mvcobac terium.以下、単に と略記する場合がある。)属に分類される抗酸性の性質を持つ グラム陽性桿菌で、結核菌群及び Mvcobacterium leprae以外の抗酸菌の一種である 。喀痰の抗酸菌塗抹検査で陽性となった症例の 15〜20%は、その後の菌種同定検 查で非結核性抗酸菌と診断されて ヽる。
[0003] 非結核性抗酸菌のうち、臨床上問題となる菌種としては、 M.イントラセルラーレ、 Μϊ cobacterium kansasnマイコノヽクァリゥム ·力ンサンィ )、 Mvcobacterium marmunuマイ コノ クテリゥム 'マリナム)、 Mvcobacterium eordonae (マイコノ クテリゥム ·ゴノレドネァ) 、 Mvcobacterium szukai、マイコノヽクァリゥム ·スズ、ノレガイ)、 Mvcobacterium aviunuマ ィコバタテリゥム.アビゥム)、 Mvcobacterium xenopi (マイコバクテリゥム ·ゼノピ)、 Mvc obactenum fortuitum、マイコノヽクァリゥム ·フォ ~~チユイタム)、 Mvcobacterium chelone i (マイコノクテリゥム 'セロネィ)、 Mvcobacterium abscessus (マイコノ クテリゥム,アブ セッサス)等が知られて 、る。
[0004] その中でもよく見られるのが、 M.イントラセルラーレと M^ iumである。 M.イントラセル ラーレ M.aviumは非常によく似ており、区別が付きにくかったことから、 M.イントラセ ノレラーレと M . aviumをあわせて Mvcobacterium avium complex (MAC)と呼ばれる。 非結核性抗酸菌症患者のおよそ 70%は MAC感染症であり、次に多!ヽのが M.kansasii 症で、 20%を占める。そして残る 10%がその他の菌種による感染症である。
[0005] 非結核性抗酸菌は一般には毒力が弱ぐ健常人に対しては無害であるといわれて いる。しかし、まれにヒトに対して感染性を示す。中でも MACは、結核後遺症 (肺感 染症)を引き起こしたり、 AIDSなどの易感染患者に対して日和見感染を引き起こす ことが知られている。そのため、非結核性抗酸菌を迅速且つ正確に検出することは治 療上、特に重要である。
[0006] また、非結核性抗酸菌症は近年増加傾向にあるため、結核菌と非結核性抗酸菌を 短時間で鑑別する方法の開発が強く望まれている。更に、 M.イントラセルラーレ及び
Μ^ Ϊ Ιを核酸増幅検出法で検出 '診断する方法が健康保険の適用となったことか らも、その診断上の意義は大きい。
[0007] また、非結核性抗酸菌は、多くが抗結核薬に対して抵抗性を示す。そのため、患者 に抗酸菌感染症の疑 ヽがある場合、結核症か非結核性抗酸菌症かを鑑別診断する ことが、治療方針を決定するために重要である。更に、非結核性抗酸菌による病気は 、その菌の種類によって治療法が夫々異なるので、その菌種を決めることも非常に重 要である。しかし、非結核性抗酸菌症には特異的な臨床症状がない。そのため、臨 床的所見、病理組織学的所見から結核症と非結核性抗酸菌症を鑑別し、更に非結 核性抗酸菌の種類を特定することは極めて困難である。そのため、結核症か非結核 性抗酸菌症かの診断は菌の同定によってなさなければならない。
[0008] 非結核性抗酸菌症の診断のために行う一般的な菌の同定法は、喀痰塗沫検査で ある。しかし、この検査では、その病原菌が「抗酸菌陽性」か否かということが判るだけ で、その病原菌が結核菌か非結核性抗酸菌かということは鑑別できない。そこで、通 常、喀痰塗末検査で陽性だった場合は、小川培地等の培地上で菌を分離培養する ことによって菌の培養検査を行い、結核菌か非結核性抗酸菌かを鑑別する。そして、 さらに生化学的試験を行い、菌種の同定をする。しかしながら、一般にマイコバクテリ ゥム属は発育が遅ぐ例えば、菌の分離培養だけで 3〜4週間を要する。そして、菌 種を同定するための各種生化学的試験の結果を得るまでに、更に 2〜3週間を要す る。そのため、従来の基本法である、以上のような塗沫検査や培養検査を行って結核 症か否かの診断結果を得るという方法は、力なり時間が力かる方法である。
[0009] 一方、近年、遺伝子レベルで菌を検出する技術が開発されてきた。例えばポリメラ ーゼ連鎖反応(Polymerare Chain Reaction, PCR)等の核酸増幅技術を利用した診 断技術が、菌を検出するための有用な手段として検討されている。この方法は感度 が高いので、試料中に数個の菌があれば、菌を検出できる。また、短時間(長くても 4 日)で検出できる(菌種を同定できる)という利点がある。しかし、通常の PCR法では、 菌数は判らない。また、生菌でも死菌でも区別無く検出してしまう。更に、試料に菌が あれば、菌数の多少に関わらず陽性と判定される。そのため、 PCR法では感染性の 診断が不確実になる。更にまた、 PCR法には、感度が高すぎるため、偽陽性の判定 が出やすい等の問題点がある。
[0010] PCR法を利用した M.イントラセルラーレの検出方法としては、例えば MacSequevar 遺伝子領域、 M.avium 19キロダルトンタンパク質(MAVl 9k)遺伝子領域、及び M.ィ ントラセルラーレリボソームタンパク質 si遺伝子領域の二つ以上に特異的なオリゴヌ クレオチドプライマ一の多重プライマーセットを用いて、 MAC核酸の存否を検出する 方法 (特許文献 1)がある。し力しながら、この検出方法では M.イントラセルラーレと md lを判別することはできない。また、使用した rpslプライマー(M.イントラセルラー レリボソームタンパク質 si遺伝子領域力も設計されたプライマー)を用いた PCRでは 、試料が M^ ium分離株の場合にも増幅産物が検出されており、 M.イントラセルラー レに対する特異性に問題がある。
[0011] また、遺伝子挿入配列 IS901の挿入部位を挟む DNA塩基配列を増幅するプライマ 一を用いて PCRを行い、得られた増幅産物増幅産物の鎖長によって、トリ結核菌 ( avium)カゝ M.イントラセルラーレかを判定する方法 (特許文献 2)も知られて ヽる。し力し 、該プライマーを用いた PCRでは、試料がトリ結核菌 (Μ^ Ϊ Ι)の場合でも M.イントラ セルラーレの場合でもプライマー伸長産物が得られるので、この判別方法は Μ.イント ラセルラーレに特異的な方法とはいえない。また、プライマー伸長産物の鎖長によつ て両者を判別するという方法は、煩雑であるし、判定者によってその判定結果が異な る場合もあり得、確実な判定方法とは言えない。
[0012] PCR法以外に、鎖置換増幅法(SDA法、 Strand Displacement Amplification Meth od)を利用する検出方法もある。例えば、特開平 10-4984号 (特許文献 3)には、マイ コバクテリアの α抗原の一部分をコードする BCG85— B遺伝子の 63ヌクレオチドセ グメントを標的とする方法が開示されている。この方法は、 Μ.イントラセルラーレと M.a viumの、両方の菌が持つ BCG85— B遺伝子の標的配列を増幅させるプライマーを 用いて、 SDA法で核酸増幅反応を行い、そして、その結果をもとに MACを検出する 方法である。即ち、該方法に用いられるプライマーは、 M.イントラセルラーレと mの両方を増幅させるプライマーである。し力し、この方法では、当然のことながら、試 料中に M.イントラセルラーレがある場合と Μ^ Ϊ Ιがある場合の両方の場合でプライ マー伸長産物が得られる。そのため、この方法で MACを検出することはできる力 M .イントラセルラーレを特異的に検出することはできない。また、 MACを検出する際で あっても、偽陽性が出現する場合がある。
[0013] 特開 2001-103986号公報(特許文献 4)には、 MACを検出するために用いられるプ ライマー、捕捉プローブ及び検出用プローブとして使用されるオリゴヌクレオチドが開 示されている。し力しながら、該プライマーは M.イントラセルラーレと鳥型結核菌 (M^ idum)の両方の菌が持つ dnaj遺伝子力もの 48bp標的配列を増幅する。即ち、試料 中に M.イントラセルラーレが存在する場合にも、 M^md lが存在する場合にも増幅反 応が起こる。従って、該プライマーを用いて SDA法を行い、補足プローブ及び検出 用プローブを用いてプライマー伸長産物を検出し、その結果に基づいて MACの検 出を行うことはできる。しかし、 M.aviumを枪出せずに、 M.イントラセルラーレを特異的 に検出することはできない。
[0014] その他、 LAMP (Loop-Mediated Isothermal Amplification)法を利用し、 M.イントラ セルラーレの核酸を増幅する方法 (特許文献 5)等がある。しかし、 LAMP法〖こは増 幅された DNAの塩基配列を決定することができな!/、、効率よく増幅できる DNAの長 さに制限がある、偽陽性が出現する、等の問題がある。
[0015] 以上のことから、 M.イントラセルラーレを特異的に且つ迅速に検出する方法を確立 することが望まれて 、る現状にあった。
[0016] 特許文献 1 :特開平 11-69999号公報
特許文献 2:特許第 3111213号公報
特許文献 3:特開平 10-4984号公報
特許文献 4:特開 2001-103986号公報
特許文献 5:特開 2005-204582号公報 非特許文献 l : F.Poly et al, J. Bacteriology, 2004, 186(14), p.4781-4795 発明の開示
発明が解決しょうとする課題
[0017] 本発明は、上記した如き状況に鑑みなされたもので、診断上の偽陽性を排除した 新規な M.イントラセルラーレ検出用プライマー、及びこれを用いた簡便、迅速且つ精 度の高 、M.イントラセルラーレの検出方法を提供することを目的とする。
課題を解決するための手段
[0018] 本発明は上記課題を解決する目的で成されたもので、以下の構成よりなる。
(1)配列番号 1、配列番号 2、配列番号 3、配列番号 4、配列番号 5、配列番号 6、配 列番号 7又は配列番号 8で表される塩基配列(但し、 Aはアデニン、 Cはシトシン、 G はグァニン、 Tはチミンを表す。また、任意の位置の Tはゥラシル (U)と置換されてい てもよい。以下同じ。)の一部若しくは全部、又は配列番号 1、配列番号 2、配列番号 3、配列番号 4、配列番号 5、配列番号 6、配列番号 7又は配列番号 8で表される塩基 配列に対する相補配列の一部若しくは全部を含有し、且つ M.イントラセルラーレ遺 伝子の塩基配列とハイブリダィズするオリゴヌクレオチド。
(2)配列番号 1、配列番号 2、配列番号 3、配列番号 4、配列番号 5、配列番号 6、配 列番号 7又は配列番号 8で表される塩基配列の一部若しくは全部、又は配列番号 1、 配列番号 2、配列番号 3、配列番号 4、配列番号 5、配列番号 6、配列番号 7又は配 列番号 8で表される塩基配列に対する相補配列の一部若しくは全部を含有し、且つ M.イントラセルラーレ遺伝子の塩基配列とハイブリダィズするオリゴヌクレオチドを含 有する、 M.イントラセルラーレ検出用プライマー。
(3)配列番号 1、配列番号 2、配列番号 3、配列番号 4、配列番号 5、配列番号 6、配 列番号 7又は配列番号 8で表される塩基配列の一部若しくは全部、又は配列番号 1、 配列番号 2、配列番号 3、配列番号 4、配列番号 5、配列番号 6、配列番号 7又は配 列番号 8で表される塩基配列に対する相補配列の一部若しくは全部を含有し、且つ M.イントラセルラーレ遺伝子の塩基配列とハイブリダィズするオリゴヌクレオチドを含 有する、 M.イントラセルラーレ検出用プローブ。
(4)配列番号 1、配列番号 2、配列番号 3、配列番号 4、配列番号 5、配列番号 6、配 列番号 7又は配列番号 8で表される塩基配列の一部若しくは全部、又は配列番号 1、 配列番号 2、配列番号 3、配列番号 4、配列番号 5、配列番号 6、配列番号 7又は配 列番号 8で表される塩基配列に対する相補配列の一部若しくは全部を含有し、且つ M.イントラセルラーレ遺伝子の塩基配列とハイブリダィズするオリゴヌクレオチドをプラ イマ一及び/又はプローブとして用いることを特徴とする M.イントラセルラーレの検出 方法。
(5)配列番号 1、配列番号 2、配列番号 3、配列番号 4、配列番号 5、配列番号 6、配 列番号 7又は配列番号 8で表される塩基配列の一部若しくは全部、又は配列番号 1、 配列番号 2、配列番号 3、配列番号 4、配列番号 5、配列番号 6、配列番号 7又は配 列番号 8で表される塩基配列に対する相補配列の一部若しくは全部を含有し、且つ M.イントラセルラーレ遺伝子の塩基配列とハイブリダィズするオリゴヌクレオチドをプラ イマ一及び/又はプローブとして含んでなる、 M.イントラセルラーレ検出用試薬キット
[0019] 本発明者は、現在までに決定された M.イントラセルラーレとその他の生物の各種遺 伝子について、各種間の各遺伝子配列の相同性についての理論的検証と実験的検 証を重ねた。その結果、マイクロアレイ法を用いた方法により得られた M.イントラセル ラーレ由来の塩基配列の断片中に、 M.イントラセルラーレの遺伝子配列の特定領域 に特異的にハイブリダィズし、 M.イントラセルラーレの検出に有用となる塩基配列が 存在することを見出した。
[0020] そこで、これらの知見をもとに更に鋭意研究の結果、 M.イントラセルラーレに特異的 なオリゴヌクレオチド (配列番号 1、配列番号 2、配列番号 3、配列番号 4、配列番号 5 、配列番号 6、配列番号 7又は配列番号 8で表される塩基配列)を得、これらの塩基 配列が M.イントラセルラーレの検出に有用であることを見出した。そして更にこれらの 配列をもとに M.イントラセルラーレ検出用プライマー及びプローブを開発し、これらを 用いた M.イントラセルラーレの検出方法を確立するに到った。
発明の効果
[0021] 本発明のプライマー又は Z及びプローブを用いた M.イントラセルラーレの検出方法 によれば、従来の菌の培養検査等により菌種を同定する方法と比較して、はるかに 迅速且つ高精度に、 M.イントラセルラーレの検出を行うことができる。また、本発明の 検出方法で M.イントラセルラーレの検出を行うことにより、従来のプライマー又は Z及 びプローブを用いた PCR法による診断方法に比較して、診断上の偽陽性が排除可 能となり、より高精度に且つ正確に、し力も特異的に M.イントラセルラーレの検出及び 診断を行うことができる。更に、本発明の検出方法を用いることにより、 M.イントラセル ラーレ菌体の定量を行うこともできる。 図面の簡単な説明
[図 1]候補クローン 1の塩基配列と、プライマーとして設計した塩基配列の存在位置を 矢印で示す。
[図 2]候補クローン 2の塩基配列と、プライマーとして設計した塩基配列の存在位置を 矢印で示す。
[図 3]候補クローン 3の塩基配列と、プライマーとして設計した塩基配列の存在位置を 矢印で示す。
[図 4]候補クローン 4の塩基配列と、プライマーとして設計した塩基配列の存在位置を 矢印で示す。
[図 5]候補クローン 5の塩基配列と、プライマーとして設計した塩基配列の存在位置を 矢印で示す。
[図 6]候補クローン 6の塩基配列と、プライマーとして設計した塩基配列の存在位置を 矢印で示す。
[図 7]候補クローン 7の塩基配列と、プライマーとして設計した塩基配列の存在位置を 矢印で示す。
[図 8]候補クローン 8の塩基配列と、プライマーとして設計した塩基配列の存在位置を 矢印で示す。
[図 9]実施例 1で得られた、プライマー 02_Fwl及びプライマー 02_Rvlを用い、 M.イント ラセルラーレ由来の DNA試料を铸型として用いた、インターカレーター法によるリア ルタイム PCRの結果をもとに得られた融解曲線解析の結果である。
[図 10]実施例 2で行ったリアルタイム PCR検出結果を示し、各 PCR用 DNA試料のゲ ノムのコピー数 (X軸、対数値)に対する Ct値 (y軸)をプロットした検量線である。 発明を実施するための最良の形態
[0023] 本発明にお 、て、 M.イントラセルラーレ遺伝子とは、 Mycobacterium intracellulare の持つ全ゲノム配列における任意の塩基配列単位(領域)を 、う。 Mycobacterium int racellulareの全ゲノム配列は、まだ解読されていない。
[0024] 本発明のオリゴヌクレオチドとしては、配列番号 1、配列番号 2、配列番号 3、配列番 号 4、配列番号 5、配列番号 6、配列番号 7又は配列番号 8で表される塩基配列(但し 、 Aはアデニン、 Cはシトシン、 Gはグァニン、 Tはチミンを表す。また、任意の位置の Tはゥラシル (U)と置換されていてもよい。以下同じ。)の一部若しくは全部、又は配 列番号 1、配列番号 2、配列番号 3、配列番号 4、配列番号 5、配列番号 6、配列番号 7又は配列番号 8で表される塩基配列に対する相補配列の一部若しくは全部を含有 し、且つマイコバクテリゥム 'イントラセルラーレ遺伝子の塩基配列とハイブリダィズす るオリゴヌクレオチドが挙げられる(以下、「本発明のオリゴヌクレオチド」と略記する場 合がある。)。
[0025] 本発明に係る、配列番号 1で表される塩基配列力 なるオリゴヌクレオチドは 666塩 基、配列番号 2で表される塩基配列からなるオリゴヌクレオチドは 1128塩基、配列番 号 3で表される塩基配列力 なるオリゴヌクレオチドは 1002塩基、配列番号 4で表され る塩基配列力 なるオリゴヌクレオチドは 747塩基、配列番号 5で表される塩基配列か らなるオリゴヌクレオチドは 618塩基、配列番号 6で表される塩基配列からなるオリゴヌ クレオチドは 510塩基、配列番号 7で表される塩基配列からなるオリゴヌクレオチドは 1 005塩基、配列番号 8で表される塩基配列からなるオリゴヌクレオチドは 700塩基の大 きさである。
[0026] 本発明に係る配列番号 1、配列番号 2、配列番号 3、配列番号 4、配列番号 5、配列 番号 6、配列番号 7又は配列番号 8で表される塩基配列の一部若しくは全部を含有 するオリゴヌクレオチドとしては、例えば、(1)配列番号 1、配列番号 2、配列番号 3、 配列番号 4、配列番号 5、配列番号 6、配列番号 7又は配列番号 8で表される塩基配 列と約 70%以上、好ましくは約 80%以上、より好ましくは約 90%以上、更に好ましくは 約 95%以上の相同性を有する塩基配列を含有するオリゴヌクレオチド、又は(2)配列 番号 1、配列番号 2、配列番号 3、配列番号 4、配列番号 5、配列番号 6、配列番号 7 又は配列番号 8で表される塩基配列中の、連続する 10塩基以上、好ましくは 15塩基 以上、より好ましくは 20塩基以上を含有することを特徴とするオリゴヌクレオチド等が 挙げられる。
[0027] 本発明に係る配列番号 1、配列番号 2、配列番号 3、配列番号 4、配列番号 5、配列 番号 6、配列番号 7又は配列番号 8で表される塩基配列の全部を含有するオリゴヌク レオチドの具体例としては、例えば配列番号 1、配列番号 2、配列番号 3、配列番号 4 、配列番号 5、配列番号 6、配列番号 7又は配列番号 8で表される塩基配列からなる オリゴヌクレオチド、又は配列番号 1、配列番号 2、配列番号 3、配列番号 4、配列番 号 5、配列番号 6、配列番号 7又は配列番号 8で表される塩基配列を含有するオリゴ ヌクレオチドが挙げられる。
[0028] 配列番号 1、配列番号 2、配列番号 3、配列番号 4、配列番号 5、配列番号 6、配列 番号 7又は配列番号 8で表される塩基配列の一部を含有するオリゴヌクレオチドの具 体例としては、例えば配列番号 9〜203で表される塩基配列力 選ばれる配列の一 部若しくは全部を含有するものが挙げられる。好ましくは配列番号 9〜203で表され る塩基配列から選ばれる配列中の、連続する 10塩基以上、好ましくは 15塩基以上、 より好ましくは 20塩基以上を含有するオリゴヌクレオチドが挙げられる。
[0029] 配列番号 9〜203で表される塩基配列から選ばれる配列の全部を含有するオリゴヌ クレオチドの具体例としては、配列番号 9〜203で表される塩基配列力 選ばれる配 列からなるオリゴヌクレオチド、又は配列番号 9〜203で表される塩基配列力 選ば れる配列を含有するオリゴヌクレオチドが挙げられる。
[0030] 配列番号 1で表される塩基配列の一部を含有するオリゴヌクレオチドの具体例とし ては、例えば配列番号 9〜22又は配列番号 139〜145で表される塩基配列力も選 ばれる配列を含有するものが挙げられる。
[0031] 配列番号 2で表される塩基配列の一部を含有するオリゴヌクレオチドの具体例とし ては、例えば配列番号 23〜40又は配列番号 146〜154で表される塩基配列力も選 ばれる配列を含有するものが挙げられる。
[0032] 配列番号 3で表される塩基配列の一部を含有するオリゴヌクレオチドの具体例とし ては、例えば配列番号 41〜58又は配列番号 155〜163で表される塩基配列力も選 ばれる配列を含有するものが挙げられる。
[0033] 配列番号 4で表される塩基配列の一部を含有するオリゴヌクレオチドの具体例とし ては、例えば配列番号 59〜78又は配列番号 164〜173で表される塩基配列力も選 ばれる配列を含有するものが挙げられる。
[0034] 配列番号 5で表される塩基配列の一部を含有するオリゴヌクレオチドの具体例とし ては、例えば配列番号 79〜92又は配列番号 174〜180で表される塩基配列力も選 ばれる配列を含有するものが挙げられる。
[0035] 配列番号 6で表される塩基配列の一部を含有するオリゴヌクレオチドの具体例とし ては、例えば配列番号 93〜104又は配列番号 181〜186で表される塩基配列から 選ばれる配列を含有するものが挙げられる。
[0036] 配列番号 7で表される塩基配列の一部を含有するオリゴヌクレオチドの具体例とし ては、例えば配列番号 105〜126又は配列番号 187〜197で表される塩基配列か ら選ばれる配列を含有するものが挙げられる。
[0037] 配列番号 8で表される塩基配列の一部を含有するオリゴヌクレオチドの具体例とし ては、例えば配列番号 127〜138又は配列番号 198〜203で表される塩基配列か ら選ばれる配列を含有するものが挙げられる。
[0038] 本発明に係る、配列番号 1、配列番号 2、配列番号 3、配列番号 4、配列番号 5、配 列番号 6、配列番号 7又は配列番号 8で表される塩基配列に対する相補配列の一部 若しくは全部を含有するオリゴヌクレオチドとしては、例えば本発明の配列番号 1、配 列番号 2、配列番号 3、配列番号 4、配列番号 5、配列番号 6、配列番号 7又は配列 番号 8で表される塩基配列力もなるオリゴヌクレオチドとハイブリダィズする塩基配列 の、一部若しくは全部を含有するオリゴヌクレオチド等が挙げられる。
[0039] 上記の、本発明の配列番号 1、配列番号 2、配列番号 3、配列番号 4、配列番号 5、 配列番号 6、配列番号 7又は配列番号 8で表される塩基配列力 なるオリゴヌクレオ チドとハイブリダィズする塩基配列の一部若しくは全部を含有するオリゴヌクレオチド とは、具体的には、本発明の配列番号 1、配列番号 2、配列番号 3、配列番号 4、配 列番号 5、配列番号 6、配列番号 7又は配列番号 8で表される塩基配列力 なるオリ ゴヌクレオチドと、ハイストリンジェントな条件又はストリンジェントな条件下でノ、イブリ ダイズする塩基配列の、一部若しくは全部を有するオリゴヌクレオチド等が挙げられる
[0040] 尚、ここでいう「ハイストリンジェントな条件」とは、具体的には例えば「50%ホルムアミ ド中で 42〜70°Cで、好ましくは 60〜70°Cでのハイブリダィゼーシヨン、その後 0.2〜2 X SSC、 0.1%ドデシル硫酸ナトリウム(SDS)中で 25〜70°Cで洗浄」という条件である。
[0041] また、「ストリンジヱントな条件」とは、具体的には例えば「6 X SSC又はこれと同等の 塩濃度のハイブリダィゼーシヨン溶液中、 50〜70°Cの温度の条件下で 16時間ハイブ リダィゼーシヨンを行い、 6 X SSC又はこれと同等の塩濃度の溶液等で必要に応じて 予備洗浄を行った後、 1 X SSC又はこれと同等の塩濃度の溶液等で洗浄」という条 件である。
[0042] 本発明に係る配列番号 1、配列番号 2、配列番号 3、配列番号 4、配列番号 5、配列 番号 6、配列番号 7又は配列番号 8で表される塩基配列に対する相補配列の、一部 若しくは全部を含有するオリゴヌクレオチドの例としては、例えば、(1)配列番号 1、配 列番号 2、配列番号 3、配列番号 4、配列番号 5、配列番号 6、配列番号 7又は配列 番号 8で表される塩基配列に対する相補配列と約 70%以上、好ましくは約 80%以上 、より好ましくは約 90%以上、更に好ましくは約 95%以上の相同性を有する塩基配列 を含有するオリゴヌクレオチド、又は(2)配列番号 1、配列番号 2、配列番号 3、配列 番号 4、配列番号 5、配列番号 6、配列番号 7又は配列番号 8で表される塩基配列に 対する相補配列中の、連続する 10塩基以上、好ましくは 15以上、より好ましくは 20 塩基以上を含有することを特徴とするオリゴヌクレオチド、等が挙げられる。
[0043] 本発明に係る配列番号 1、配列番号 2、配列番号 3、配列番号 4、配列番号 5、配列 番号 6、配列番号 7又は配列番号 8で表される塩基配列に対する相補配列の全部を 含有するオリゴヌクレオチドの具体例としては、例えば配列番号 1、配列番号 2、配列 番号 3、配列番号 4、配列番号 5、配列番号 6、配列番号 7又は配列番号 8で表される 塩基配列に対する相補配列力 なるオリゴヌクレオチド、又は配列番号 1、配列番号 2、配列番号 3、配列番号 4、配列番号 5、配列番号 6、配列番号 7又は配列番号 8で 表される塩基配列に対する相補配列を含有するオリゴヌクレオチドが挙げられる。
[0044] 配列番号 1、配列番号 2、配列番号 3、配列番号 4、配列番号 5、配列番号 6、配列 番号 7又は配列番号 8で表される塩基配列に対する相補配列の一部を含有するオリ ゴヌクレオチドの具体例としては、例えば配列番号 9〜203で表される塩基配列から 選ばれる配列に対する相補配列の一部若しくは全部を含有するオリゴヌクレオチドが 挙げられる。好ましくは、配列番号 9〜203で表される塩基配列力 選ばれる配列に 対する相補配列中の、連続する 10塩基以上、好ましくは 15塩基以上、更に好ましく は 20塩基以上を含有するオリゴヌクレオチドが挙げられる。
[0045] 配列番号 9〜配列番号 203で表される塩基配列から選ばれる配列に対する相補配 列の全部を含有するオリゴヌクレオチドの具体例としては、例えば配列番号 9〜203 で表される塩基配列力 選ばれる配列に対する相補配列力 なるオリゴヌクレオチド 、又は配列番号 9〜203で表される塩基配列力 選ばれる配列に対する相補配列を 含有するオリゴヌクレオチドが挙げられる。
[0046] 本発明に係る M.イントラセルラーレ遺伝子の塩基配列とハイブリダィズするオリゴヌ クレオチドとは、前記した、 M.イントラセルラーレ遺伝子の塩基配列とハイストリンジェ ントな条件又はストリンジヱントな条件下でハイブリダィズする塩基配列を有するオリゴ ヌクレオチド等が挙げられる。そのノ、イストリンジヱントな条件及びストリンジヱントな条 件は、前記した通りである。
[0047] 尚、本発明のオリゴヌクレオチドはデォキシリボ核酸 (DNA)でもリボ核酸 (RNA)で もよ 、。リボ核酸の場合はチミジン残基 (T)をゥリジン残基 (U)と読み替えることは言 うまでもな ヽ。また合成に際して任意の位置の Tを Uに変えて合成を行なって得られ た、ゥリジン残基を含む DNAであってもよい。同様に任意の位置の Uを Tに変えたチ ミジン残基を含む RNAであってもよい。また、一つ若しくは複数のヌクレオチドが欠 失、挿入或いは置換されていてもよい。一つ若しくは複数のヌクレオチド力イノシン (I )のような修飾ヌクレオチドであってもよ 、。
[0048] 本発明のオリゴヌクレオチドを得る方法としては、特に限定されな!、が、例えば自体 公知の化学合成法により調製する方法が挙げられる。この方法では、ベクター等を用 V、る遺伝子操作法によりオリゴヌクレオチド又はポリヌクレオチドを得る方法 (クローン 化法)に比べ、容易、大量且つ安価に一定品質のオリゴヌクレオチドを得ることが可 能である。 [0049] 例えば、 DNAの合成に通常行われている、 DNAシンセサイザーを用い、通常の ホスホアミダイト法にてオリゴヌクレオチドを合成し、陰イオン交換カラムクロマトグラフ ィーを用いる常法により精製すれば、 目的とする本発明のオリゴヌクレオチドを得るこ とがでさる。
[0050] また、オリゴヌクレオチドの合成を業者に委託して、業者から購入しても良い。
[0051] 本発明の目的を達成し得るオリゴヌクレオチドを探索 (スクリーニング)する手段とし ては、 FEMS Microbiology Letters 166: 63—70, 1998あるいは Systematic and Applie d Microbiology 24: 109-112, 2001などに示されているサブトラクシヨン法、即ち標的 であるゲノム DNA由来フラグメント群から区別した 、生物種由来のゲノム DNA由来 フラグメント群と反応したものを差し引く事で、候補配列を濃縮する方法等がある。
[0052] また、標的であるゲノム DNA及び区別したい生物種由来のゲノム DNAからの増幅 産物のディファレンシャルディスプレイを作成すると 、つたアプローチ、即ち任意にプ ライムされたポリメラーゼ連鎖反応 (AP— PCR)を利用する方法等が考えられる(特 開平 11-155589号公報)。
[0053] 更に、いわゆるマイクロアレイ法と呼ばれる方法を利用することによつても、本発明 の目的を達成し得るオリゴヌクレオチドを探索することができるし、本発明のオリゴヌク レオチドを得ることができる。その方法の概略は以下の通りである。
[0054] 即ち、例えば M.イントラセルラーレゲノム由来 DNAのショットガン.クローンを作成し 、得られたショットガン 'クローン力も DNAを精製する。次いで、そのヨットガン'クロー ン由来の精製 DNAを、 PCR等により増幅させた後、スライドガラス上に配置させてマ イクロアレイを作成する。別に、標的である M.イントラセルラーレのゲノム DNAから蛍 光標識 (標識 1)した DNAフラグメント群を作成する。一方、区別したい生物種由来の ゲノム DNAからも蛍光標識 (標識 2)した DNAフラグメント群を別途に作成し、対照 実験を行う。即ち、標識 1及び標識 2の各々を同一反応系で用いる競合ハイブリダィ ゼーシヨン法によって、マイクロアレイ上の配列と、標識 1及び標識 2との反応性 (結合 性)を検定する。この検定により、標的である M.イントラセルラーレのゲノム DNA由来 フラグメント (標識 1)と、より特異的に反応する配列候補群を選定できる (例えば非特 許文献 1等)ため、これにより目的のオリゴヌクレオチドを選別することができる。以下 にマイクロアレイ法を用いた、本発明のオリゴヌクレオチドの選定方法の一例につい て詳説する。
[0055] (1) M.イントラセルラーレ由来精製ゲノム DNAの調製
まず、 M.イントラセルラーレ菌株を、常法 (例えばオートクレープ処理とガラスビーズ 等を用いた菌体の粉砕処理)によって破砕処理した後、常法に従って DNAの抽出, 精製を行えばよい。
[0056] (2) Whole Genome Shotgun libraryの作製
M.イントラセルラーレの Whole Genome Shotgun libraryの作製を行う方法の一例とし て、 Venter et al., Science. 2001 Feb 16;291(5507): 1304- 1351に記載の Whole Geno me Shotgun法を改変した方法を、以下に説明する。
まず、前記 (1)で得られた M.イントラセルラーレ由来精製ゲノム DNAを、適当な緩衝 液等で希釈した後、例えば終濃度 20%のグリセロール存在下、 5kPa〜9kPaの圧力下 で、ネビュライザ一を用いて約 1〜5分間処理し、 DNAの断片化処理を行う。この処 理方法により、 目的とする 500〜1000塩基対のサイズ画分を効率よく回収する事がで きる。得られた画分を市販の抽出カラムを利用して精製する。
[0057] その後、得られた画分 (DNA断片。 目的の DNA断片を含む。)を、常法に従いライ ゲーシヨンによってベクター DNAに組み込んだ、組み換え DNA (M.イントラセルラー レの Whole Genome Shotgun library)をネ守る。
[0058] そのために用いられるベクター DNAとしては、後で形質転換する宿主細胞が大腸 菌の場合には、例えば、 pBS [例えば pBSII sk+ベクター (Stratagene社)]、 pQE- TRIプ ラスミド(Qiagen社製)、 pBluescript、 pET、 pGEM- 3Z、 pGEX等のベクターが挙げられ る。用いるベクターの種類によっては、ライゲーシヨンの前に、予め DNA断片を、 DN Aポリメラーゼで処理して、 DNA断片の末端を平滑化処理してもよ ヽ。
[0059] 次 、で、得られた組み換え DNAを用いて、適当な宿主細胞を形質転換して形質 転換体を得る。
[0060] そのために用いられる宿主細胞としては例えば、大腸菌 (E.coli)が挙げられ、好ま しくは JM109、 DH5 a、 TOP10等が挙げられる。この他、よりプラスミドやファージ DN Aの導入効率の高い、 Competent Cell (コンビテントセル)を用いても良い。例えば、 E . coli TM109 Competent Cells (タカラバイオ社製)等が挙げられる。
[0061] 开質転換は、例えば、 D.M.Morrisonの方法(Method in Enzymology, 68, 326-331, 1979)等により行うことができる。また、市販の Competent Cellを用いる場合には、そ の製品プロトコールに従って、形質転換を行えばよい。
[0062] 目的の DNA断片を組み込んだ組換え DNAが導入された形質転換体を選別する には、例えば、形質転換のために用いたベクターの性質を利用する方法で行えばよ い。例えば、アンピシリン耐性遺伝子を含有するベクターを用いた場合にば、アンピ シリンを含有する培地上で形質転換体を培養し、得られたクローンを選択すること〖こ より、 目的の DNA断片を組み込んだ組換え DNAが導入された、形質転換体 (M.ィ ントラセルラーレのゲノム由来の Whole Genome Shotgun clone library)が容易に得ら れる。
(3)マイクロアレイ作製
続いて、下記の方法でマイクロアレイを作製する。
[0063] 即ち、上記 (2)で得られた形質転換体 (M.イントラセルラーレのゲノム由来の Whole Genome Shotgun clone library)から常法に従い DNAを精製する。精製した DNAを 铸型として用い、適当なプライマー [市販のプライマーでも良い。例えば M13 Primer Ml (タカラバイオ社製)及び M13 Primer RV (タカラバイオ社製)等]を用い、常法に従 つて PCRを行った後、得られた PCR増幅産物を精製する。次いで常法に従って、精 製した PCR増幅産物をマイクロアレイ用スライドガラス上にスポットする。これに UV照 射(60mJ/cm2〜300mJ/cm2、通常 150mJ/cm2)を行ない、スライドガラス上に PCR増幅 産物(ターゲットの M.イントラセルラーレ由来 DNAを含む)を固定することにより、マイ クロアレイを作製する。
[0064] 尚、必要に応じコントロールのマイクロアレイも作製する。例えば rpsl (特許文献 1)等 の M.イントラセルラーレに特異的な配列の DNAフラグメント、区別したい生物種由来 のゲノム DNAのフラグメント〔結核菌特有の挿入配列 IS6110の部分配列(IS6110 ele ment)、 KATS2 sequence (特開平 11-155589号公報)等の MJs ^ に特異的な塩基 配列の DNAフラグメント、 MAV19K (特許文献 1)等の Μ πΐに特異的な塩基配列 の DNAフラグメント、等や、例えば大腸 DNA等のマイコバクテリウム属菌以外の菌 由来の DNA等〕を用い、夫々同様に DN Aの断片化から Whole genome Shotgun clo ne libraryを作成までの一連の処理を行い、同様に PCRを行い、得られた PCR産物 をスライドガラス上に固定して、夫々のマイクロアレイも作製する。
[0065] 尚、コントロールのマイクロアレイについて、あるマイクロアレイをポジティブコント口 ールとして設定した場合、後で行うマイクロアレイ'ハイブリダィゼーシヨンで使用する Cy3標識対照用ゲノム DNAには、該ポジティブコントロールの由来菌体と同じ菌体 由来のゲノム DNAを Cy3標識したものを、用いる。例えば、 M.kansasiiに特異的な塩 基配列の DNAフラグメントを用いてマイクロアレイを作製し、これをポジティブコント口 ールに設定した場合には、マイクロアレイ'ハイブリダィゼーシヨンで使用する Cy3標 識対照用ゲノム DNAの一つとして、 M.kansasiiから柚出,精製したゲノム DNAを Cv3 で標識した標識産物を用いる。
[0066] また、あるマイクロアレイをネガティブコントロールとして設定した場合、後で行うマイ クロアレイ.ハイブリダィゼーシヨンでは、該ネガティブコントロールの由来菌体と同じ 由来菌体ゲノム DNAの Cy3標識産物も Cy5標識産物も使用しな 、。
[0067] (4)標的ゲノム DNAの蛍光色素標識
i)標的ゲノム DNAの蛍光色素標識
へキシルァミノ- UTPを用いた間接標識法により、 M.イントラセルラーレ菌株から常 法により抽出'精製したゲノム DNAを Cy5でラベリングする。また、前記マイクロアレイ のポジティブコントロールの由来菌体力 抽出'精製した対照用ゲノム DNAを Cy3で ラベリングする。例えば DeRisi研究室(www.microarrays.org)が発表したプロトコール を改変した間接標識法を例にとって説明する。この方法は、アミノ基をもつ a UTPを 使い、酵素伸長反応によりこれを分子内に取り込ませた DNA鎖を作成する。そして そのアミノ基に蛍光色素(サクシ-イミド体)をィ匕学的に結合させることによって DNA をラベリングしょうというものである。
[0068] まず、出発材料(M.イントラセルラーレのゲノム DNA、及び対照用ゲノム DNA)を、 常法に従い熱変性処理する。次いで、熱変性処理物に DTT 2 μ dATP/dCTP/dG TPの混合液、 dTTP、 Ha- dUTP、 Klenow酵素を添カ卩し、 37°Cで 3時間程度の伸長反 応を行う。得られた反応産物を限外ろ過カラムにのせ 14000rpmで 4分程度遠心した 後、濃縮液をマイクロチューブに回収して、真空乾燥遠心機等を用いて完全に乾燥 させる。次に、乾燥させた上記反応産物に NaHCO をカ卩えて混合し、 2〜3分常温静
3
置する。
[0069] 別に Cy3 (又は Cy5)を DMSOに溶かしたものを調製(Cy- dye Solution Cy3、 Cy-dy e Solution Cy5)する。この Cy- dye Solution Cy3を、対照用ゲノム DN Aを用いて得ら れた上記反応産物に加え、また Cy-dye Solution Cy5を M.イントラセルラーレゲノム D NAを用いて得られた上記反応産物にカ卩え、夫々 40°Cで 60分程度、遮光下にインキ ュペートする。さらに、夫々の反応産物に 4M NH OHをカ卩え、攪拌後に 15分程度、
2
遮光下にインキュベートして、夫々のゲノム由来 DNAの標識産物を得る。その後、得 られた標識産物を、限外ろ過カラムにのせ 14000rpmで 4分程度遠心した後、濃縮液 をマイクロチューブに回収して、真空乾燥遠心機で完全に乾燥させる。
[0070] ii)標識産物の断片化工程
前記 (4)0で得られた乾燥状態の各ゲノム由来の DNAフラグメントの標識産物に対 して、終濃度が 0.04M Tris- acetate(pH8.1)、 0.1M酢酸カリウム、 0.03M酢酸マグネシ ゥム四水和物の組成の溶液を調製する。該溶液に乾燥状態のゲノム由来の DNAフ ラグメントの標識産物を懸濁混和させる。 94°Cで 15分間加熱処理し、 100base〜300 baseのゲノム由来 DNAフラグメントの標識産物を得る(Cy3標識産物、 Cy5標識産物
) o
[0071] 得られた Cy3標識産物と Cy5標識産物を混合した後、限外ろ過カラムにのせ 14000r pmで 4分程度遠心した後、濃縮液をマイクロチューブに回収して、真空乾燥遠心機 等で完全に乾燥させる。
[0072] 次いで、このマイクロチューブに、 salmon sperm DNA (10mg/mL) 0.5 μ Lゝ formamid e 5 μ Lを含有し、 ArrayHyb Hybridization buffer (SIGMA社製)で全量を 40〜50 μ L に調整した試薬溶液 (後に使用するマイクロアレイのカバーガラスが 24 X 55mmの大 きさの場合の組成である)を加え、上記で得た乾燥物を同一の溶液中で懸濁混和後 、 95°Cで 5分程度インキュベートし、 Cy3Cy5標識産物混合溶液を調製する。
[0073] (5)マイクロアレイ'ノヽィブリダィゼーシヨン(アレイ上での DNA- DNA hybridization) 前記 (3)の工程で得られたマイクロアレイ (DNAチップ)上に、上記 (4)ii)で調製した Cy3Cy5標識産物混合溶液をのせ、カバーガラスをかぶせる。これをノヽイブリカセット にセットした後、 65°Cで 8時間以上、遮光下に反応させて、ハイブリダィゼーシヨンを 行う。ハイブリダィゼーシヨン後、マイクロアレイをカバーグラスごと 2 X SSC- 0.1%SDS 溶液に室温で浸し、カバーグラスをはずす。 1 X SSC、 0.03%SDS溶液(60°C)で 10分 間洗浄、 0.2 X SSC溶液 (42°C)で 10分間洗浄、 0.05 X SSC溶液(室温)で 10分間洗 浄後、 800prmで約 5分間遠心を行って乾燥させる。
[0074] (6)蛍光強度の測定;シグナル検出から数量ィヒまで
蛍光読み取りスキャナーを用いて、上記 (5)で得られたマイクロアレイ'ハイブリダィ ゼーシヨン処理したマイクロアレイ上の蛍光強度を測定する。この際、 Cy3及び Cy5の 、 2チャンネルでの蛍光強度を測定して、蛍光検出データを得る。蛍光シグナルの数 量ィ匕は市販の DNAチップ発現イメージ解析ソフトウェア等を用い、ソフトの操作手順 に従って、スポット自動認識、ノックグラウンド計算、蛍光強度比の正規ィ匕を行えば良 い。
[0075] ノ、イブリダィゼーシヨンに用いた Cy5標識産物は、 M.イントラセルラーレ由来ゲノム DNAを材料として標識した DNAフラグメント群であり、 Cy3標識産物は対照用ゲノム DNAを材料として標識した DNAフラグメント群である。そのため、マイクロアレイ上の あるスポットの Cy3と Cy5の夫々の蛍光強度を測定した結果、 Cy5の蛍光の方が強く 検出された場合には、そのスポットの DNA断片(PCR産物)は、 Cy5標識産物、即ち M.イントラセルラーレ由来のゲノム DNAの特定の配列とより強くハイブリダィズした、 ということを意味し、 DNA断片(PCR産物)は M.イントラセルラーレに対する特異性が 高いと判断される。
一方、あるスポットについて Cy5より Cy3の蛍光の方が強く検出された場合には、そ のスポットの DNA断片(PCR産物)は、 Cy3標識産物、即ち対照用ゲノム DNAとハイ ブリダィズした、ということを意味し、 DNA断片(PCR産物)は M.イントラセルラーレに 対する特異性が低いと判断される。また、 Cy3及び Cy5の蛍光の強さが同程度だった 場合と、 Cy3及び Cy5のどちらの蛍光も検出されな力つた場合にも、そのスポットの D NA断片(PCR産物)は、 M.イントラセルラーレに対する特異性が低いと判断される。
[0076] そこで、例えばマイクロアレイ上で検出された Cy3/Cy5の蛍光強度比(Ratio)を基に 、例えば、散布図 (スキヤッタープロット)を作成する等して、結果を解析し、 M.イントラ セルラーレ特異配列の検出のためのスクリーニングを行う。解析においては、用いた ポジティブコントロール配列のうち M.イントラセルラーレに特異的な DNAの Cy3/Cy5 Ratioの数値が特異性評価のための有用な基準値となる。
[0077] 尚、マイクロアレイ上にポジティブコントロール及びネガティブコントロールがスポット されている場合には、夫々の Cy3Cy5蛍光強度を測定して、その蛍光強度の傾向を みれば、蛍光スキャナー測定における 1つのデータ評価基準として利用する事がで きる。
[0078] スクリーニングを行った候補の中から、 Cy3/Cy5 Ratioの数値解析の結果、有意に M.イントラセルラーレ特異的なシグナルが得られ (Cy5の蛍光強度が強い場合)、な おかつ上述の M.イントラセルラーレに特異的なポジティブコントロールのスポットに比 ベて Ratioの数値が大き!/、(Cy5の蛍光強度が強!、)クローンを選択する。
[0079] 次いで、通常この分野で用いられているシークェンサ一、例えば ABI PRISM310キ ャピラリーシーケンサー (アプライドバイォ社)等の機器を利用し、常法に従い、得られ た候補クローンの塩基配列決定を行えばょ 、。
[0080] 尚、選択されたクローンの中から、更に M.イントラセルラーレ特異的検出のための 候補配列をスクリーニングするために、例えば、リアルタイム PCR法による二次スクリ 一二ングを行っても良い。
[0081] 即ち、上記した Cy3/Cy5 Ratioの数値解析の結果選択された候補クローンについて 、塩基配列決定を行う。夫々の候補クローンについて、得られた塩基配列を基に、例 えばプライマー設計のために一般に用いられて 、るソフトや、例えばプライマーデザ イン用の Webツール Primer3 (Whitehead Institute for Biomedical Research.)等を用い て夫々 PCR用の適当なプライマーを設計する。
[0082] 設計されたプライマーカも適当な組合せを選択し、その組合せのプライマーを用い て、 M.イントラセルラーレ由来ゲノム DNAを铸型として、常法に従いリアルタイム PC Rを行う。また、マイコバクテリゥム属の適当な菌体由来ゲノム DNA、更に要すれば 大腸菌等のマイコバクテリゥム属以外の菌体由来ゲノム DNA等 (対照)を铸型として 、同様にリアルタイム PCRを行う。その結果、 M.イントラセルラーレ由来ゲノム DNAを 铸型として用いたリアルタイム PCRでは増幅産物が得られ、その他の菌体由来ゲノム DNA (対照)を铸型として用いたリアルタイム PCRでは増幅産物が得られなかったプ ライマーの組合せを選択する。そして、そのプライマーの組合せを設計した候補クロ ーンを、最終的な M.イントラセルラーレに特異的な候補クローンとして選択すればよ い。
[0083] 本発明の M.イントラセルラーレ検出用プライマーとしては、配列番号 1、配列番号 2 、配列番号 3、配列番号 4、配列番号 5、配列番号 6、配列番号 7又は配列番号 8で表 される塩基配列の一部若しくは全部、又は配列番号 1、配列番号 2、配列番号 3、配 列番号 4、配列番号 5、配列番号 6、配列番号 7又は配列番号 8で表される塩基配列 に対する相補配列の一部若しくは全部を含有し、且つ M.イントラセルラーレ遺伝子の 塩基配列とハイブリダィズするオリゴヌクレオチドを含有するプライマーが挙げられる( 以下、本発明のプライマーと記載する場合がある。 ) 0
[0084] また、本発明のプライマーは、 PCR (リアルタイム PCRを含む)等の核酸増幅反応、 核酸ハイブリダィゼーシヨン等の条件に合わせて、配列番号 1、配列番号 2、配列番 号 3、配列番号 4、配列番号 5、配列番号 6、配列番号 7又は配列番号 8で表される塩 基配列の一部若しくは全部を含有するオリゴヌクレオチド、又は配列番号 1、配列番 号 2、配列番号 3、配列番号 4、配列番号 5、配列番号 6、配列番号 7又は配列番号 8 で表される塩基配列に対する相補配列の一部若しくは全部を含有するオリゴヌクレオ チドの中から、解離温度 (Tm値)などを考慮して、適当な領域の適当な長さを選択し て使用すればよい。
[0085] 好ましくは、プライマー配列としての特異性を維持するために必要な塩基数と考え られている 10〜50塩基、より好ましくは 10〜35塩基、更に好ましくは 18〜25塩基の 長さを有して 、るオリゴヌクレオチドがよ 、。
[0086] プライマーの設計方法は、プライマー設計のために一般に用いられて 、るソフトや
、例えばプライマーデザイン用の Webツール Primer3 (Whitehead Institute for Biomed ical Research.)等を用いて設計すればよい。
[0087] 本発明のプライマーに用いられる、配列番号 1、配列番号 2、配列番号 3、配列番 号 4、配列番号 5、配列番号 6、配列番号 7又は配列番号 8で表される塩基配列の一 部若しくは全部、又は配列番号 1、配列番号 2、配列番号 3、配列番号 4、配列番号 5 、配列番号 6、配列番号 7又は配列番号 8で表される塩基配列に対する相補配列の 一部若しくは全部を含有し、且つ M.イントラセルラーレ遺伝子の塩基配列とハイプリ ダイズするオリゴヌクレオチド (本発明のオリゴヌクレオチド)の具体例は、前記の本発 明のオリゴヌクレオチドの説明にお 、て記載したものと同じである。
[0088] 本発明のプライマーの具体例としては、例えば配列番号 9〜138で表される塩基配 列から選ばれる配列の一部若しくは全部を含有し、且つ M.イントラセルラーレ遺伝子 の塩基配列とハイブリダィズするオリゴヌクレオチド、又は配列番号 9〜 138で表され る塩基配列から選ばれる配列に対する相補配列の一部若しくは全部を含有し、且つ M.イントラセルラーレ遺伝子の塩基配列とハイブリダィズするオリゴヌクレオチドが挙 げられる。
[0089] 本発明のプライマーの好ましい具体例としては、配列番号 9〜 138で表される塩基 配列から選ばれる配列を含有し、且つ M.イントラセルラーレ遺伝子の塩基配列とハイ ブリダィズするオリゴヌクレオチド、又は配列番号 9〜 138で表される塩基配列から選 ばれる配列に対する相補配列を含有し、且つ M.イントラセルラーレ遺伝子の塩基配 列とハイブリダィズするオリゴヌクレオチドが挙げられる。
[0090] より好まし ヽプライマーとしては、 ί列えば、酉己歹 IJ番号 9、 10、 23、 24、 41、 42、 59、 60 、 79、 80、 93、 94、 105、 106、 127、 128で表される塩基配列力も選ばれる配列を 含有するオリゴヌクレオチド、又は配列番号 9、 10、 23、 24、 41、 42、 59、 60、 79、 80、 93、 94、 105、 106、 127、 128で表される塩基酉己歹 IJ力ら選ば、れる酉己歹 IJに対する 相補配列を含有するオリゴヌクレオチドが挙げられる。
[0091] 尚、配列番号 9〜22で表される塩基配列を含有するプライマーは、配列番号 1で表 される塩基配列をもとに設計されたものである。
[0092] 配列番号 23〜40で表される塩基配列を含有するプライマーは、配列番号 2で表さ れる塩基配列をもとに設計されたものである。
[0093] 配列番号 41〜58で表される塩基配列を含有するプライマーは、配列番号 3で表さ れる塩基配列をもとに設計されたものである。
[0094] 配列番号 59〜78で表される塩基配列を含有するプライマーは、配列番号 4で表さ れる塩基配列をもとに設計されたものである。
[0095] 配列番号 79〜92で表される塩基配列を含有するプライマーは、配列番号 5で表さ れる塩基配列をもとに設計されたものである。
[0096] 配列番号 93〜104で表される塩基配列を含有するプライマーは、配列番号 6で表 される塩基配列をもとに設計されたものである。
[0097] 配列番号 105〜126で表される塩基配列を含有するプライマーは、配列番号 7で 表される塩基配列をもとに設計されたものである。
[0098] 配列番号 127〜138で表される塩基配列を含有するプライマーは、配列番号 8で 表される塩基配列をもとに設計されたものである。
[0099] 図 1に、配列番号 1で表される塩基配列上の、プライマーとして設計した配列番号 9 及び配列番号 10で表される塩基配列の存在位置を、 02_Fwl及び 02_Rvlとして、夫 々矢印で示す。
[0100] 図 2に、配列番号 2で表される塩基配列上の、プライマーとして設計した配列番号 2 3及び配列番号 24で表される塩基配列の存在位置を、 03_Fwl及び 03_Rvlとして、 夫々矢印で示す。
[0101] 図 3に、配列番号 3で表される塩基配列上の、プライマーとして設計した配列番号 4 1及び配列番号 42で表される塩基配列の存在位置を、 04_Fw2及び 04_Rv2として、 夫々矢印で示す。
[0102] 図 4に、配列番号 4で表される塩基配列上の、プライマーとして設計した配列番号 5 9及び配列番号 60で表される塩基配列の存在位置を、 06_Fwl及び 06_Rvlとして、 夫々矢印で示す。
[0103] 図 5に、配列番号 5で表される塩基配列上の、プライマーとして設計した配列番号 7 9及び配列番号 80で表される塩基配列の存在位置を、 10_Fwl及び 10_Rvlとして、 夫々矢印で示す。
[0104] 図 6に、配列番号 6で表される塩基配列上の、プライマーとして設計した配列番号 9 3及び配列番号 94で表される塩基配列の存在位置を、 13_Fw2及び 13_Rv2として、 夫々矢印で示す。
[0105] 図 7に、配列番号 7で表される塩基配列上の、プライマーとして設計した配列番号 1 05及び配列番号 106で表される塩基配列の存在位置を、 14_Fwl及び 14_Rvlとし て、夫々矢印で示す。
[0106] 図 8に、配列番号 8で表される塩基配列上の、プライマーとして設計した配列番号 1 27及び配列番号 128で表される塩基配列の存在位置を、 15_Fw2及び 15_Rv2とし て、夫々矢印で示す。
[0107] また、配列番号 1で表される塩基配列上の、プライマーとして設計した配列番号 11 〜22で表される塩基配列の存在位置は、夫々次の通りである。
配列番号 11 (02— Fw2) :415位' 、434位、
配列番号 12 (02— Fw3) : 91位へ 410位、
配列番号 13 (02_Fw4) : 272位' 、290位、
配列番号 14 (02— Fw5) : 245位' 、264位、
配列番号 15 (02— Fw6) :41 へ '61位、
配列番号 16 (02— Fw7) :423位' 、442位、
配列番号 17 (02— Rv2) 563位 ^582位、
配列番号 18 (02— Rv3) 294位 313位、
配列番号 19 (02_Rv4) 447位 ^466位、
配列番号 20 (02_Rv5) 373位 ^392位、
配列番号 21 (02_Rv6) 175位 、194位、
配列番号 22 (02_Rv7) 641位 、659位。
[0108] 配列番号 2で表される塩基配列上の、プライマーとして設計した配列番号 25
で表される塩基配列の存在位置は、夫々次の通りである。
配列番号 25 (03— Fw2): 18位〜 35位、
配列番号 26 (03— Fw3): 111位〜 128位、
配列番号 27 (03_Fw4) : 229位〜 248位、
配列番号 28 (03— Fw5) :412位〜 430位、
配列番号 29 (03— Fw6) : 580位〜 599位、
配列番号 30 (03— Fw7) : 776位〜 796位、
配列番号 31 (03— Fw8) : 873位〜 890位、 配列番号 32 (03_Fw9): 911位〜 930位、
配列番号 33 (03_Rv2): 158位〜 175位、
配列番号 34 (03— Rv3) : 288位〜 306位、
配列番号 35 (03_Rv4) : 362位〜 381位、
配列番号 36 (03— Rv5) : 542位〜 561位、
配列番号 37 (03— Rv6) : 700位〜 719位、
配列番号 38 (03— Rv7) : 955位〜 972位、
配列番号 39 (03— Rv8): 1040位〜 1059位、
配列番号 40 (03_Rv9): 1075位〜 1093位。
[0109] 配列番号 3で表される塩基配列上の、プライマーとして設計した配列番号 43 で表される塩基配列の存在位置は、夫々次の通りである。
配列番号 43 (04— Fw3) : 4位〜 21位、
配列番号 44 (04_Fw4) : 217位へ 35位、
配列番号 45 (04— Fw5) : 423位へ 440位、
配列番号 46 (04— Fw6) : 476位へ 494位、
配列番号 47 (04_Fw7) : 658位へ 5位、
配列番号 48 (04— Fw8) : 709位へ 728位、
配列番号 49 (04— Fw9) : 772位へ 789位、
配列番号 50 (04— FwlO; : 803位 〜822位、
配列番号 51 (04— Rv3): 134位へ 452位、
配列番号 52 (04_Rv4): 367位へ384位、
配列番号 53 (04— Rv5): 560位へ579位、
配列番号 54 (04— Rv6): 605位へ622位、
配列番号 55 (04_Rv7): 801位へ820位、
配列番号 56 (04— Rv8): 845位へ862位、
配列番号 57 (04— Rv9): 899位へ916位、
配列番号 58 (04— RvlO) : 955位 972位。
[0110] 配列番号 4で表される塩基配列上の、プライマーとして設計した配列番号 61〜78 で表される塩基配列の存在位置は、夫々次の通りである。
配列番号 61 (06— Fw2): 153位〜 172位、
配列番号 62 (06_Fw3): 1位〜 19位、
配列番号 63 (06— Fw4) :32位〜 49位、
配列番号 64 (06— Fw5) :268位〜 285位、
配列番号 65 (06— Fw6) :376位〜 395位、
配列番号 66 (06— Fw7) :445位〜 462位、
配列番号 67(06— Fw8) :492位〜 509位、
配列番号 68 (06— Fw9) :556位〜 574位、
配列番号 69 (06_FwlO) :581位〜 600位、
配列番号 70 (06— Rv2) :282位〜 301位、
配列番号 71 (06— Rv3): 100位〜 119位、
配列番号 72 (06_Rv4): 184位〜 203位、
配列番号 73 (06— Rv5) :386位〜 405位、
配列番号 74 (06— Rv6) :516位〜 534位、
配列番号 75 (06_Rv7) :575位〜 594位、
配列番号 76 (06— Rv8) :656位〜 675位、
配列番号 77(06— Rv9) :686位〜 705位、
配列番号 78 (06_RvlO): 703位〜 720位。
また、配列番号 5で表される塩基配列上の、プライマーとして設計した配列番号 81 〜92で表される塩基配列の存在位置は、夫々次の通りである。
配列番号 81 (10_Fw2) :388位〜 407位、
配列番号 82(10— Fw3) :2位〜 19、
配列番号 83 (10_Fw4): 122位〜 141位、
配列番号 84(10_Fw5) :207位〜 226位、
配列番号 85(10_Fw6) :298位〜 318位、
配列番号 86(10_Fw7) :459位〜 478位、
配列番号 87(10— Rv2) :541位〜 560位、 配列番号 88 (10_Rv3): 150位〜 169位、
配列番号 89(10_Rv4) :276位〜 294位、
配列番号 90(10— Rv5) :370位〜 389位、
配列番号 91 (10_Rv6) :453位〜 472位、
配列番号 92(10_Rv7) :593位〜 610位。
[0112] 配列番号 6で表される塩基配列上の、プライマーとして設計した配列番号 95〜 104 で表される塩基配列の存在位置は、夫々次の通りである。
配列番号 95(13_Fw3) :56位〜 75位、
配列番号 96 (13_Fw4): 129位〜 148位、
配列番号 97(13_Fw5) :200位〜 219位、
配列番号 98(13_Fw6) :333位〜 352位、
配列番号 99(13_Fw7) :286位〜 305位、
配列番号 100 (13— Rv3) :225位〜 244位、
配列番号 101 (13_Rv4) :242位〜 261位、
配列番号 102 (13— Rv5) :325位〜 343位、
配列番号 103 (13— Rv6) :481位〜 500位、
配列番号 104 (13— Rv7) :416位〜 435位。
[0113] 配列番号 7で表される塩基配列上の、プライマーとして設計した配列番号 107〜 12
6で表される塩基配列の存在位置は、夫々次の通りである。
配列番号 107 (14— Fw3) :11位〜 29位、
配列番号 108(14_Fw4) :73位〜 92位、
配列番号 109(14_Fw5) :201位〜 220位、
配列番号 110(14_Fw6) :413位〜 431位、
配列番号 111(14— Fw7) :519位〜 538位、
配列番号 112(14_Fw8): 657位〜 674位、
配列番号 113(14_Fw9) :596位〜 613位、
配列番号 114 (14_FwlO): 618位〜 635位、
配列番号 115 (14_Fwll): 864位〜 883位、 配列番号 116 (14_Fwl2) : 806位〜824位、
配列番号 117 (14_Rv3): 158位へ 477位、
配列番号 118 (14_Rv4): 208位へ227位、
配列番号 119 (14_Rv5): 337位へ356位、
配列番号 120 (14_Rv6): 548位へ
配列番号 121 (14_Rv7): 669位へ688位、
配列番号 122 (14_Rv8): 782位へ 0位、
配列番号 123 (14_Rv9): 721位へ 40位、
配列番号 124 〔14— RvlO) : 755位 773位、
配列番号 125 〔14— Rvll) : 978位 997位、
配列番号 126 (14_Rvl2) : 967位 、986位。
[0114] 配列番号 8で表される塩基配列上の、プライマーとして設計した配列番号 129〜 13
8で表される塩基配列の存在位置は、夫々次の通りである。
配列番号 129 (15— Fw3) : 28位〜 45位、
配列番号 130 (15_Fw4) : 64位〜 82位、
配列番号 131 (15— Fw5): 131位〜 148位、
配列番号 132 (15— Fw6) : 348位〜 366位、
配列番号 133 (15— Fw7) :462位〜 481位、
配列番号 134 (15— Rv3) : 182位〜 200位、
配列番号 135 (15_Rv4) : 197位〜 215位、
配列番号 136 (15_Rv5) : 270位〜 287位、
配列番号 137 (15— Rv6) :451位〜 470位、
配列番号 138 (15_Rv7) : 619位〜 636位。
[0115] 尚、上記において、各配列番号の後の( )内に、本発明で命名したプライマーの名 称を示す。
[0116] 本発明のプライマーを得る方法は、前記の本発明のヌクレオチドを得る方法におい て記載した通りである。
[0117] また、本発明のプライマーは、標識物質で標識されていてもよい。 [0118] 本発明のプライマーを標識する方法としては、この分野で通常行われているオリゴ ヌクレオチドの標識方法が挙げられ、標識物質毎に適宜方法を選択すればよ!、。
[0119] 本発明のプライマーを標識物質で標識するために用いられる標識物質としては、放 射性同位体や酵素、蛍光物質、発光物質、ピオチンなど公知の標識物質であれば 何れも用 、ることができる。
[0120] 例えば、放射性同位体としては32 P, 33P, 35S等、酵素としてはアルカリホスファターゼ ,西洋ヮサビペルォキシダーゼ等、蛍光物質としては Cyanine Dye系の Cy3, Cy5 (ァ マシャムバイオサイエンス株式会社)、フルォレセイン等、発光物質としては Acridiniu m Esterを含む化学発光試薬等が挙げられる。
[0121] 本発明のプライマーを放射性同位体により標識する方法としては、プライマーを合 成する際に、放射性同位体で標識されたヌクレオチドを取り込ませることによって、プ ライマーを標識する方法や、プライマーを合成した後、放射性同位体で標識する方 法等が挙げられる。具体的には、一般によく用いられているランダムプライマー法、二 ックトランスレーション法、 T4ポリヌクレオチドキナーゼによる 5 '—末端標識法、ターミ ナルデォキシヌクレオチドトランスフェラーゼを用いた 3 '—末端標識法、 RNAラベリン グ法等が挙げられる。
[0122] 本発明のプライマーを酵素で標識する方法としては、アルカリホスファターゼ,西洋 ヮサビペルォキシダーゼ等の酵素分子を、標識するプライマーに直接共有結合させ る等の、この分野における常法である直接標識法が挙げられる。
[0123] 本発明のプライマーを蛍光物質で標識する方法としては、例えばフルォレセイン標 識したヌクレオチドをこの分野における常法の標識手法によりプライマーに取り込ま せればよい。また、リンカ一アームを有するヌクレオチドを配列のオリゴヌクレオチドの 一員として置換する方法(例えば、 Nucleic Acids Res., 1986年,第 14卷, p.6115参照) でもヌクレオチドを蛍光物質で標識することができる。その場合、 5位にリンカーァー ムを有するゥリジンを特開昭 60-500717号公報に開示された合成法によりデォキシゥ リジン力も化学合成し、上記オリゴヌクレオチド鎖に蛍光物質を導入する方法もある。
[0124] 本発明のプライマーを発光物質又はピオチンで標識するには、通常この分野で行 われて 、るヌクレオチドを発光標識又はピオチン標識する常法に従って行えばょ 、。 [0125] 本発明の M.イントラセルラーレ検出用プローブとしては、配列番号 1、配列番号 2、 配列番号 3、配列番号 4、配列番号 5、配列番号 6、配列番号 7又は配列番号 8で表 される塩基配列の一部若しくは全部、又は配列番号 1、配列番号 2、配列番号 3、配 列番号 4、配列番号 5、配列番号 6、配列番号 7又は配列番号 8で表される塩基配列 に対する相補配列の一部若しくは全部を含有し、且つマイコバクテリゥム 'イントラセ ルラーレ遺伝子の塩基配列とハイブリダィズするオリゴヌクレオチドを含有するプロ一 ブが挙げられる(以下、本発明のプローブと記載する場合がある。 ) 0
[0126] 本発明のプローブは、 PCR (リアルタイム PCRを含む)等の核酸増幅反応、核酸ノヽ イブリダィゼーシヨン等の条件に合わせて、配列番号 1、配列番号 2、配列番号 3、配 列番号 4、配列番号 5、配列番号 6、配列番号 7又は配列番号 8で表される塩基配列 の一部若しくは全部を含有するオリゴヌクレオチド、又は配列番号 1、配列番号 2、配 列番号 3、配列番号 4、配列番号 5、配列番号 6、配列番号 7又は配列番号 8で表さ れる塩基配列に対する相補配列の一部若しくは全部を含有するオリゴヌクレオチドか ら、解離温度 (Tm値)などを考慮して、適当な領域の適当な長さを選択して使用す ればよい。但し、プローブに十分な特異性を持たせたいのならば、プローブ配列とし ての特異性を維持するために必要な塩基数を考慮して設計することが望ましい。
[0127] 例えば、核酸ノヽイブリダィゼーシヨン法 (例えばサザン 'ハイブリダィゼーシヨン等) 等に用いるプローブとしては、 10〜700塩基、好ましくは 100〜600塩基、より好まし くは 100〜500塩基、更に好ましくは 200〜500塩基の長さを有しているものが挙げ られる。
[0128] 例えばリアルタイム PCR増幅系(例えば TaqMan™法、 Molecular Beacon法等)等に 用いるプローブとしては、 10〜50塩基、好ましくは 15〜40塩基、更に好ましくは 20 〜30塩基の長さを有して!/、るものが挙げられる。
[0129] 本発明のプローブに用いられる、配列番号 1、配列番号 2、配列番号 3、配列番号 4 、配列番号 5、配列番号 6、配列番号 7又は配列番号 8で表される塩基配列の一部若 しくは全部、又は配列番号 1、配列番号 2、配列番号 3、配列番号 4、配列番号 5、配 列番号 6、配列番号 7又は配列番号 8で表される塩基配列に対する相補配列の一部 若しくは全部を含有し、且つ M.イントラセルラーレ遺伝子の塩基配列とハイブリダィズ するオリゴヌクレオチド (本発明のオリゴヌクレオチド)の具体例は、前記の本発明の オリゴヌクレオチドの説明にお 、て記載したものと同じである。
[0130] 本発明のプローブの具体例としては、例えば、配列番号 9〜203で表される塩基配 列から選ばれる配列の一部若しくは全部、又は配列番号 9〜203で表される塩基配 列から選ばれる配列に対する相補配列の一部若しくは全部を含有し、且つ M.イントラ セルラーレ遺伝子の塩基配列とハイブリダィズするオリゴヌクレオチドを含有するプロ ーブ力 選ばれるものが挙げられる。
[0131] 本発明のプローブの好ましい具体例としては、配列番号 9〜203で表される塩基配 列から選ばれる配列を含有するもの、又は配列番号 9〜203で表される塩基配列か ら選ばれる配列に対する相補配列を含有するものが挙げられる。中でも配列番号 13 9〜203で表される塩基配列から選ばれる配列を含有するもの、又は配列番号 139 〜203で表される塩基配列から選ばれる配列に対する相補配列を含有するものが挙 げられる。特に好ましいものとしては、酉己歹 IJ番号 139、 146、 155、 164、 174、 181、 187、 198で表される塩基配列から選ばれる配列を含有するもの、又は配列番号 13 9、 146、 155、 164、 174、 181、 187、 198で表される塩基酉己列力ら選ばれる酉己列 に対する相補配列を含有するものが挙げられる。
[0132] 尚、配列番号 139〜203で表される塩基配列又は配列番号 139〜203で表される 塩基配列に対する相補配列は、本発明のプライマーを用いた PCRにより増幅される オリゴヌクレオチドの塩基配列である。フォワードプライマーとリバースプライマーの組 合せと、それを用いた PCRにより増幅される塩基配列の配列番号を表 1に併せて示 す。例えば、配列番号 139で表される塩基配列は、配列番号 9で表される塩基配列 のオリゴヌクレオチドをフォワードプライマーとし、配列番号 10で表される塩基配列の オリゴヌクレオチドをリバースプライマーとして用いた PCRにより増幅されるオリゴヌク レオチドの塩基配列であることを示す。
[0133] [表 1] フォワード' リハ' 増幅される フォワード リ 増幅される フォワード リハ' 増幅される フライマー プライ 配列 プライ フ。ライマー 配列 フ。ライマー フ。ライマー 配列
9 10 139 48 56 161 96 101 183
1 1 17 140 49 57 162 97 102 184
12 18 141 50 58 163 98 103 185
13 19 142 59 60 164 99 104 186
14 20 143 61 70 165 105 106 187
15 21 144 62 71 166 107 1 17 188
16 22 145 63 72 167 108 1 18 189
23 24 146 64 73 168 109 1 19 190
25 33 147 65 74 169 110 120 191
26 34 148 66 75 170 11 1 121 192
27 35 149 67 76 171 112 122 193
28 36 150 68 77 172 113 123 194
29 37 151 69 78 173 114 124 195
30 38 152 79 80 174 115 125 196
31 39 153 81 87 175 116 126 197
32 40 154 82 88 176 127 128 198
41 42 155 83 89 177 129 134 199
43 51 156 84 90 178 130 135 200
44 52 157 85 91 179 131 136 201
45 53 158 86 92 180 132 137 202
46 54 159 93 94 181 133 138 203
47 55 160 95 100 182
[0134] 本発明のプローブを得る方法は、前記の本発明のヌクレオチドを得る方法において 記載した通りである。
[0135] 本発明のプローブは、標識物質で標識されていてもよい。
[0136] 本発明のプローブを標識物質で標識するために用いられる標識物質としては、放 射性同位体や酵素、蛍光物質、発光物質、ピオチンなど公知の標識物質であれば 何れも用 、ることができる。
[0137] 本発明のプローブを標識するために用いられる標識物質の具体例及び標識方法 は、本発明のプライマーの標識方法の説明にお 、て記載した通りである。
[0138] また、後述するリアルタイム PCRによる検出法において用いられる標識プローブとし ては、本発明のプローブを、リアルタイム PCR法において通常用いられている標識物 質で標識したものが挙げられる。例えば、 5'末端がレポーター蛍光物質 [カルボキシ フルォレセイン(FAM)、 へキサクロ口フルォレセイン(HEX)、テトラクロ口フルォレセィ ン (TET)等]で標識され、 3'末端がクェンチヤ一色素 [例えばカルボキシテトラメチル口 ーダミン(TAMRA)等の蛍光物質、 Black Hole Quencher色素(BHQ) , 4- ((4- (dimeth ylamino) phenyl)azo)benzoic acid (DABCYL)等の非蛍光物質]で標識された本発明 のプローブが挙げられる。
[0139] 後述する TaqMan™リアルタイム PCRによる検出法においても、上記した標識プロ一 ブを用いることができる。
[0140] 本発明に係る M.イントラセルラーレの検出に用いられる試料 (被検試料)としては、 喀痰、血液、咽頭粘液、胃液、気管支洗浄液、経気管支採取物、胸水などの穿刺液 、尿、膿等の各種臨床材料が挙げられる。また、検体から単離、培養された培養菌体 、これらより単離、精製された核酸、又は核酸増幅検出系等で増幅された核酸でもよ い。
[0141] 上記試料カゝら DNAを抽出 ·精製するには、検体からの抗酸菌(結核菌)の DNA抽 出に用いられる常法に従って行えばよい。
[0142] まず、試料中の菌体の細胞壁を破壊する必要がある。その方法としては、例えば菌 体を試料とする場合には、例えば SDS等の界面活性剤や、グァ-ジンチオシァネート (GTC)等の蛋白変性剤で菌体を処理して結核菌等の抗酸菌の膜構造を破壊する 方法、菌体をガラスビーズ等によって物理的に破砕する方法等が用いられる。
[0143] 喀痰を検体として用いる場合には、まず前処理として、米国疾病管理予防センター
(Centers for Disease Control and Preventionゝ略称 CDC)で推奨している NALC (N- acetyト L- cysteine) - NaOH法 (Kent PT, Kubica GP, Pubnc Health Mycobactenolog y, A Guide for the Level III Laboratory, U.S. Department of Health and Human Servi ces, Public Health Service, Center for Disease Control, Atlanta, U.S.A., 1985年, p. 31-55)による検体の均質ィ匕を行うことが望ま 、。
[0144] 菌体の細胞壁を破壊した後、この分野で一般的な DNAの調製法 (フ ノール'クロ 口ホルム抽出、エタノール沈殿法等 Rapid and simple method for purification of nucl eic acids, J. Clin. Microbiol, 1990, Mar;28 (3) , 495-503, Boom R, Sol CJ, Salimans MM, Jansen CL, Wertheim— van Dillen PM, van der Noordaa J)、イソプロノノ一ノレを 用 ヽて沈殿させる方法等により DNAの抽出及び精製を行えばよ!/ヽ。
[0145] 検体から単離、培養された培養菌体を、 M.イントラセルラーレを検出する試料として 用いる場合を例にとって示すと、次の通りである。
[0146] 例えば小川培地上のコロニーを採取し、滅菌蒸留水に懸濁、遠心分離して菌体を 集めた後、蒸留水に再懸濁し、オートクレープ処理した後、菌体の粉砕処理 (ガラス ビーズによる物理的破砕等)を経て、さらに遠心分離して上清を回収する。得られた 上清カゝら DNAを抽出'精製すればよ!ヽ。
[0147] DNAの抽出 '精製には、そのための様々なキットが市販されているので、それを用 いてもよいし、この分野における常法 (例えば、フエノール'クロ口ホルム抽出法、エタ ノールやイソプロパノール等を用いて沈殿させる方法等)に従って行ってもよい。例え ば (株)キアゲン製イオン交換榭脂タイプ DNA抽出精製キット Genomic-tip等を用い て DNAの抽出、精製を行えばよい。
[0148] 本発明に係る M.イントラセルラーレの検出方法としては、配列番号 1、配列番号 2、 配列番号 3、配列番号 4、配列番号 5、配列番号 6、配列番号 7又は配列番号 8で表 される塩基配列の一部若しくは全部、又は配列番号 1、配列番号 2、配列番号 3、配 列番号 4、配列番号 5、配列番号 6、配列番号 7又は配列番号 8で表される塩基配列 に対する相補配列の一部若しくは全部を含有し、且つ M.イントラセルラーレ遺伝子の 塩基配列とハイブリダィズするオリゴヌクレオチドをプライマー及び Z又はプローブと して用いる方法 (本発明のプライマー及び Z又はプローブを用いる方法)が挙げられ る。
[0149] 例えば、
(A)配列番号 1、配列番号 2、配列番号 3、配列番号 4、配列番号 5、配列番号 6、配 列番号 7又は配列番号 8で表される塩基配列の一部若しくは全部、又は配列番号 1、 配列番号 2、配列番号 3、配列番号 4、配列番号 5、配列番号 6、配列番号 7又は配 列番号 8で表される塩基配列に対する相補配列の一部若しくは全部を含有し、且つ M.イントラセルラーレ遺伝子の塩基配列とハイブリダィズするオリゴヌクレオチド (本発 明のオリゴヌクレオチド)をプライマーとして用いて核酸増幅反応を行 、、得られたプ ライマー伸長産物を検出する方法、
(B)本発明のオリゴヌクレオチドを標識物質で標識したものを標識プローブとして用 いる方法、 等が挙げられる。以下に、夫々の方法について説明する。
[0150] (A)本発明のオリゴヌクレオチドをプライマーとして用いて核酸増幅反応を行い、得ら れたプライマー伸長産物を検出する方法
該方法において (A)の、本発明のオリゴヌクレオチドをプライマーとして用いて核酸 増幅反応を行う方法としては、例えば、本発明のプライマーを用い、試料中の核酸を 铸型として用いて、 DNAポリメラーゼ等による核酸増幅反応 [例えばポリメラーゼ連鎖 反応(PCR)法(特開昭 60- 281号公報)、 LAMP (Loop-mediated Isothermal Amplifi cation)法(Tsugunori Notomi et al, Nucleic Acid Res., 28, e63, 2000)、 ICANTM (Is othermal and Cnimeric primer-initiated Amplification of Nucleic acids)法 (臨床病理, 51(11), 1061-1067, 2003, Nov)、 LCR(ligase chain reaction)法(特開平 4- 211399号) 、 SDA(strand displacement amplification)法(特開平 8- 19394号)]を行ってプライマー 伸長させる方法が挙げられる。これにより M.イントラセルラーレの塩基配列の特定の 領域の配列を増幅させることができるので、得られたプライマー伸長産物を測定する ことにより、 M.イントラセルラーレを検出することができる。
[0151] 上記の核酸増幅反応を行う方法の中でも、 PCR法が最も一般的な方法として挙げ られ、 PCR法の例としては、例えばリアルタイム増幅検出系(例えば米国特許第 5210 015号、米国特許第 5538848号の記載参照)を用いることができる。また、リアルタイム 増幅検出系による検出系の例として、例えばリアルタイム PCR検出法が挙げられる。
[0152] リアルタイム PCR検出法の例としては、 TaqMan™リアルタイム PCR法(例えば米国 特許第 5538848号の記載参照)、 MGB Eclipse Probe System法(例えば米国特許第 5 ,801, 155号の記載参照)、 Molecular Beacons Probe Technology法(例えば米国特許 5925517号の己載参照)、 LUX Fluorogenic Primer法 (Invitrogen Corporationノ、 Q uenching probe-PCR (QP)法(例えば米国特許第 6,492,121号の記載参照)等が挙 げられる。
[0153] PCR等の核酸増幅反応において用いられる本発明のプライマーの具体例は、前 記した通りである。
[0154] また、核酸増幅反応に用いられる、好ましいフォワードプライマーとリバースプライマ 一の組合せとしては、前記表 1で示される組合せが挙げられる。 [0155] その中でも好ましいフォワードプライマーとリバースプライマーの組合せとしては、例 えば下記のものが挙げられる。
[0156] (1)フォワードプライマーが配列番号 9で表される塩基配列を含有するオリゴヌクレオ チドで、リバースプライマーが配列番号 10で表される塩基配列を含有するオリゴヌク レオチドである組合せ、
[0157] (2)フォワードプライマーが配列番号 23で表される塩基配列を含有するオリゴヌタレ ォチドで、リバースプライマーが配列番号 24で表される塩基配列を含有するオリゴヌ クレオチドである組合せ、
[0158] (3)フォワードプライマーが配列番号 41で表される塩基配列を含有するオリゴヌタレ ォチドで、リバースプライマーが配列番号 42で表される塩基配列を含有するオリゴヌ クレオチドである組合せ、
[0159] (4)フォワードプライマーが配列番号 59で表される塩基配列を含有するオリゴヌタレ ォチドで、リバースプライマーが配列番号 60で表される塩基配列を含有するオリゴヌ クレオチドである組合せ、
[0160] (5)フォワードプライマーが配列番号 79で表される塩基配列を含有するオリゴヌタレ ォチドで、リバースプライマーが配列番号 80で表される塩基配列を含有するオリゴヌ クレオチドである組合せ、
[0161] (6)フォワードプライマーが配列番号 93で表される塩基配列を含有するオリゴヌタレ ォチドで、リバースプライマーが配列番号 94で表される塩基配列を含有するオリゴヌ クレオチドである組合せ、
[0162] (7)フォワードプライマーが配列番号 105で表される塩基配列を含有するオリゴヌク レオチドで、リバースプライマーが配列番号 106で表される塩基配列を含有するオリ ゴヌクレオチドである組合せ、
[0163] (8)フォワードプライマーが配列番号 127で表される塩基配列を含有するオリゴヌク レオチドで、リバースプライマーが配列番号 128で表される塩基配列を含有するオリ ゴヌクレオチドである組合せ。
[0164] 上記プライマーを用いたリアルタイム PCR等の核酸増幅反応に用いられるその他 のデォキシリボヌクレオシド三リン酸(dATP、 dCTP、 dGTP、 dTTP)、 DNAポリメラー ゼ等の試薬は、通常この分野で用いられているものを用いればよぐその条件、手法 等は、本発明のプライマー及びプローブを用いる以外は、 PCRの一般的なプロトコ ルに従って行えばよい。
[0165] 核酸増幅反応で得られたプライマー伸長産物を検出する方法は、通常この分野で 行われて 、る常法で良ぐ限定されるものではな 、。
[0166] 例えばインターカレーター法、 TaqMan™リアルタイム PCR法(例えば米国特許第 55 38848号の記載参照)、 MGB Eclipse Probe System法(例えば米国特許第 5,801, 155 号の記載参照)、 Molecular Beacons Probe Technology法(例えば米国特許第 59255 丄 /号の ¾己¾参照)、 LUX Fluorogenic Primer法 (Invitrogen Corporation)、 quenching probe-PCR (QP)法 (例えば米国特許第 6,492,121号の記載参照)、核酸増幅反応 を行った後、得られたプライマー伸長産物について電気泳動を行い、その結果に基 づ 、て行う方法、標識プライマーを用いた核酸増幅反応を行って得られたプライマー 伸長産物の標識を測定する方法等、様々な検出法が挙げられる。
[0167] これらのうち、一般によく用いられる方法としては、例えば、以下の方法が挙げられ る。
[0168] (A—1)インターカレーター法、
(A- 2) TaqMan™リアルタイム PCR法、
(A— 3)核酸増幅反応を行った後、得られたプライマー伸長産物について電気泳動 を行い、その結果に基づいて行う方法、
(A— 4)標識プライマーを用いた核酸増幅反応を行って得られたプライマー伸長産 物の標識を測定する方法。
[0169] 以下に、夫々の方法について説明する。
(A— 1)インターカレーター法
公知のインターカレーターを利用してリアルタイム PCRを行う、通常のインターカレ 一ター法が利用できる。
[0170] 例えば、本発明のプライマーと、インターカレーターを用い、通常のインターカレー ター法を利用したリアルタイム PCRを行う方法が挙げられる。
[0171] 即ち、インターカレーターは、二本鎖 DNAに特異的に結合して蛍光を発する試薬 であり、励起光を照射すると蛍光を発する。 PCRによって増幅を繰り返して DNAが 増えると、インターカレーターがその DNAに取り込まれるので、プライマー伸長産物 の生成量に比例して、 DNAに取り込まれていくため、インターカレーターに由来する 蛍光強度を検出することにより、プライマー伸長産物の量を知ることができる。
[0172] 但しインターカレーターは全ての二本鎖 DNAに結合するので、得られた蛍光強度 の測定結果を基に、必要に応じ、融解曲線分析を行う。即ち、 PCR後に PCR反応液 の温度を徐々に上げながら、インターカレーター由来の蛍光強度を測定する。最初 は PCR増幅産物は二本鎖を形成して 、るので蛍光を発して 、るが、 PCR反応液の 温度がある一定の温度に達すると一本鎖に解離するので、インターカレーター由来 の蛍光は急激に低下する。この時の温度が融解温度 (Tm値)であり、プライマー伸 長産物の配列に固有の値である。そのピークが、 目的とする特異産物のピーク力 又 は非特異産物のピークかにつ 、ては、この Tm値力も判定することができる。
[0173] このインターカレーター法は、リアルタイム PCRの後に電気泳動を行う必要がない ので、臨床検査の分野等において、迅速に判定を行う必要がある場合には、有効な 方法である。
[0174] 本発明に用いられるインターカレーターとしては、通常この分野で用いられているィ ンタ一力レーターであれば、何でも用いることができる力 例えば SYBR™ Green I (M olecular Probe社商品名)、ェチジゥムブロマイド、フルオレン等がある。
[0175] 本発明に係る「インターカレーター法を利用した M.イントラセルラーレの検出方法」 の例を説明すると、以下の通りである。
[0176] 本発明のプライマーと、インターカレーター(例えば SYBR™ Green I)を用い、 M.ィ ントラセルラーレを検出する試料 (被検試料)から精製した精製 DNA試料を铸型とし て用いて、 Taq DNAポリメラーゼ等のポリメラーゼを用いたリアルタイム PCRを行う。 そして前記した温度を上げる方法で、プライマー伸長産物に対してインターカレーシ ヨンするインターカレーター(SYBR™ Green I)由来の蛍光量を測定する。
[0177] 次いで、横軸をプライマー伸長産物(二本鎖 DNA)の解離温度、縦軸に蛍光量の 1次微分 (変化量)をとり、プライマー伸長産物の融解曲線解析を行うことによって、ピ ークの検出を行い、単一のピークが得られた場合に、被検試料は M.イントラセルラ ーレ陽性 (即ち、 M.イントラセルラーレ菌、又はその遺伝子が存在する。以下同じ。 ) と判定される。
[0178] 又は、精製 DNA試料溶液の希釈系列を調製し、各希釈系列毎に、上記と同様にリ アルタイム PCRを行う。次いで、横軸をプライマー伸長産物(2本鎖 DNA)の解離温 度、縦軸に蛍光量の 1次微分 (変化量)をとり、融解曲線を作成して、増幅産物の融 解曲線解析を行い、ピークの検出を行う。
[0179] この場合の M.イントラセルラーレの検出方法としては、融解曲線解析で各希釈系 列に対する各プライマー伸長産物について、同一の Tm値のピークが検出された場 合に、被検試料は M.イントラセルラーレ陽性と判定すればょ 、。
[0180] また、インターカレーター法を利用した方法で得られた測定値をもとに、リアルタイム PCRにおいて行われる情報に従って、検量線を作成することもできるので、その検量 線を用いて試料中にある M.イントラセルラーレのゲノム DNA量 (コピー数)を得ること ができる。
検量線の作成方法及びそれを用いた M.イントラセルラーレの定量方法は後記する
[0181] 本発明に係るインターカレーターを用いたリアルタイム PCR検出法による M.イントラ セルラーレの検出方法の一例として、前記した「プライマー 02_Fwl」と「プライマー 02— Rvl」を用いて、 M.イントラセルラーレを検出する場合を例にとって説明すると、以下 の通りである。
[0182] まず、公知の方法により、 M.イントラセルラーレを検出する試料 (被検試料)中から 精製 DNA試料を得る。
[0183] 別に、 DNAシンセサイザーを用いて、ホスホアミダイト法にて、配列番号 9で表され る塩基配列力もなるオリゴヌクレオチド (02_Fwl)、及び配列番号 10で表される塩基 配列からなるオリゴヌクレオチド (02_Rvl)を合成する。
[0184] 上記で合成した 02_Fwlをフォワードプライマーとして、 02_Rvlをリバースプライマー として用い、例えば下記の通りリアルタイム PCRを行う。
[0185] 即ち、プライマー 02_Fwlと、プライマー 02_Rvlを各 50〜2000nM、インターカレータ 一 [例えば SYBR™ Green I (Molecular Probe社商品名)]を原液の約 5000〜 100000倍 希釈、 1.0〜4.0mM MgCl、 KC1、 BSA、コール酸ナトリウム、 0.005〜0.2% TritonX- 100
2
、夫々 0.2mM程度の dATP、 dCTP、 dGTP、 dTTP、 10〜80単位/ mLのポリメラーゼ(例 えば Taq DNAポリメラーゼ)を含有する 10mM Tris- HC1緩衝液(pH8.9)を調製し、 P CR用反応液とする。該 PCR用反応液に、 M.イントラセルラーレを検出する試料 (被 検試料)から精製した精製 DNA試料を加え、 PCR用試料とする。この PCR用試料を 96穴反応プレートのゥエルに入れ、リアルタイム PCR検出装置等を用いてリアルタイ ム PCRを行う。反応は 30〜50回サイクル繰り返し、 1サイクル毎にプライマー伸長産 物に対してインターカレーシヨンするインターカレーター(例えば SYBR™ Green I)由 来の蛍光量を測定する。
[0186] 次いで、横軸をプライマー伸長産物(2本鎖 DNA)の解離温度、縦軸に蛍光量の 一次微分 (変化量)をとり、プライマー伸長産物の融解曲線解析を行い、ピークの検出 を行い、単一のピークが得られた場合に、被検試料は M.イントラセルラーレ陽性と判 定される。
[0187] 又は、精製 DNA試料溶液の希釈系列を調製し、各希釈系列毎に、上記と同様にリ アルタイム PCRを行う。次 、で横軸をプライマー伸長産物(2本鎖 DNA)の解離温度 、縦軸に蛍光量の 1次微分 (変化量)をとり、融解曲線を作成して、プライマー伸長産 物の融解曲線解析を行い、検出ピークの解析を行う。
[0188] この場合の M.イントラセルラーレの検出方法としては、融解曲線解析で各希釈系列 に対する各プライマー伸長産物について、同一の Tm値のピークが検出された場合 に、被検試料は M.イントラセルラーレ陽性と判定される。
[0189] また、対照として、 M.イントラセルラーレ以外のマイコバクテリウム属菌由来 DNAを 常法により抽出'精製し、これを铸型として用いる以外は、上記と同様の方法にしてリ アルタイム PCRを行い、同様に SYBR™ Green Iの蛍光量を測定し、融解曲線解析を 行ってもよい。この場合は、試料中に M.イントラセルラーレ由来の配列がないので、 融解曲線解析でピークは出現しないはずである。 M.イントラセルラーレの有無の判定 をより確実にするためには、上記した対照実験を一緒に行うことが望ま 、。
[0190] 更に、検量線を作成することによって、試料中の M.イントラセルラーレのゲノム DN Aの数 (コピー数)を得ることができる。また、その数は M.イントラセルラーレの数に比 例するので、試料 (被検試料)中の M.イントラセルラーレの数も知ることができる。 (A- 2) TaqMan™リアルタイム PCR法(TaqMan™プローブ法)
TaqMan™リアルタイム PCR法は、 5'末端を例えば FAM等の蛍光色素(レポーター) で、 3'末端を例えば TAMRA等のクェンチヤ一色素で標識した標識プローブを用いた リアルタイム PCR法で、 目的の微量な DNAを高感度且つ定量的に検出することがで きる方法である(例えば米国特許第 5,538,848号の記載参照)。
[0191] 具体的には、配列番号 1,配列番号 2、配列番号 3、配列番号 4、配列番号 5、配列 番号 6、配列番号 7又は配列番号 8で表される塩基配列の一部若しくは全部、又は配 列番号 1,配列番号 2、配列番号 3、配列番号 4、配列番号 5、配列番号 6、配列番号 7又は配列番号 8で表される塩基配列に対する相補配列の一部若しくは全部を含有 し、且つ M.イントラセルラーレ遺伝子の塩基配列とハイブリダィズするオリゴヌクレオ チドをプライマー (本発明のプライマー)として用い、配列番号 1、配列番号 2、配列番 号 3、配列番号 4、配列番号 5、配列番号 6、配列番号 7又は配列番号 8で表される塩 基配列の一部若しくは全部又は配列番号 1,配列番号 2、配列番号 3、配列番号 4、 配列番号 5、配列番号 6、配列番号 7又は配列番号 8で表される塩基配列に対する 相補配列の一部若しくは全部を含有し、且つ M.イントラセルラーレ遺伝子の塩基配 列とハイブリダィズするオリゴヌクレオチド (本発明のオリゴヌクレオチド)の 5'末端がレ ポーター蛍光色素で標識され、 3'末端がクェンチヤ一色素で標識されたものを標識 プローブとして用いて、試料中の核酸を铸型として PCRを行い、該標識プローブから 遊離された標識物質の標識を検出する方法である。
[0192] TaqMan™リアルタイム PCR法の原理は以下の通りである。
[0193] この方法には、 5'末端を蛍光色素(レポーター)で、 3'末端をクェンチヤ一色素で標 識した、 目的遺伝子の特定領域にハイブリダィズするオリゴヌクレオチドプローブが 使用される。該プローブは、通常の状態ではクェンチヤ一色素によってレポーターの 蛍光が抑制されている。この蛍光標識プローブを目的遺伝子に完全にハイブリダィ ズさせた状態で、その外側から DNAポリメラーゼを用いて PCRを行う。 DNAポリメラ ーゼによる伸長反応が進むと、そのェキソヌクレアーゼ活性により蛍光標識プローブ 力 '端力も加水分解され、レポーター色素が遊離し、蛍光を発する。リアルタイム PC R法は、この蛍光強度をリアルタイムでモニタリングする方法であり、これにより、铸型 DNAの初期量を正確に定量することができる。
[0194] 本発明に係る TaqMan™リアルタイム PCR検出系に用いられるフォワードプライマー 及びリバースプライマーには、本発明のプライマーが用いられる。好ましいプライマー としては、前記した PCR法等の核酸増幅反応において用いられるものが挙げられ、 その好まし!/ヽ具体例及び好ま ヽ組合せも前記した通りである。
[0195] 本発明に係る TaqMan™リアルタイム PCR検出系に用いられる 5'末端を蛍光色素( レポーター)で、 3'末端をクェンチヤ一色素で標識したプローブに用いられるプロ一 ブとしては、前記した本発明のプローブであればよい。実際には、選択したフォワード プライマーとリバースプライマーの組合せでリアルタイム PCRを行った場合に得られ ると予測されるプライマー伸長産物の塩基配列を含有するプローブ、又は更にその 配列から設計される塩基配列を含有するプローブが用いられる。例えば、 02_Fwl (配 列番号 9で表される塩基配列を持つ)と 02_Rvl (配列番号 10で表される塩基配列を 持つ)の二つのプライマーの組み合わせを用いてリアルタイム PCRを行う場合に用い られるプローブは、そのリアルタイム PCRで増幅されると予想される配列暗号 139の 塩基配列を含有するヌクレオチドか、配列番号 139の塩基配列から設計される配列( 例えば配列番号 204で表される配列)を含有するオリゴヌクレオチドが挙げられる。
[0196] 標識プローブの 5'末端を標識するレポーター蛍光物質としてはカルボキシフルォレ セイン(FAM)、へキサクロ口フルォレセイン(HEX)、テトラクロ口フルォレセイン (TET) 、 Cy5、 VIC等が挙げられる力 中でも FAMがよく用いられる。 3'末端を標識するタエ ンチヤー色素としては、カルボキシテトラメチルローダミン (TAMRA)等の蛍光物質、 B lack Hole Quencher色 (例 は eHw2) , 4- ((4- (dimethylamino) phenyl)azo)benzoic acid (DABCYL)等の非蛍光物質が挙げられる力 中でも TAMRAがよく用いられる。
[0197] リアルタイム PCR検出系に用いられるその他のデォキシリボヌクレオシド三リン酸(d ATP、 dCTP、 dGTP、 dTTP)、 DNAポリメラーゼ等の試薬は、通常のリアルタイム PC Rで用いられているものを用いればよぐリアルタイム PCRの手法は、本発明のプライ マー及びプローブを用いる以外は、リアルタイム PCRの一般的なプロトコルに従って 行えばよい。 [0198] 本発明に係る TaqMan™リアルタイム PCR検出系による M.イントラセルラーレの検出 方法の一例を説明すると、以下の通りである。
[0199] まず、公知の方法 (例えば前記した方法)に従い、 M.イントラセルラーレを検出する 試料 (被検試料)中から精製 DNA試料を得る。別に、 DNAシンセサイザーを用いて 、ホスホアミダイト法にて、配列番号 9で表される塩基配列からなるオリゴヌクレオチド ( 02_Fwl)、及び配列番号 10で表される塩基配列力もなるオリゴヌクレオチド(02_Rvl) を合成する。
[0200] また、 02_Fwl及び 02_Rvlをプライマーとして用いた PCRで増幅されると予想される 配列番号 138の塩基配列から、プローブとして利用するための配列(例えば配列番 号 204で表される配列)を設計し、この塩基配列のオリゴヌクレオチドを合成する。こ のオリゴヌクレオチドの 5'末端にレポーター色素の FAMを、 3'末端にレポーター消光 体の TAMRAを常法により結合し、蛍光標識プローブを得る。
[0201] 上記で調製した 02_Fwlをフォワードプライマーとして、 02_Rvlをリバースプライマー として用い、例えば下記の通りリアルタイム PCRを行う。
[0202] 即ち、各 0.1〜2 μ Μ、好ましくは各 1 μ Μのプライマー 02_Fwl及びプライマー 02_Rvl 、 100〜1000nMの蛍光標識プローブ、 1.0〜4.0mM MgCl 、 KC1、 BSA、コール酸ナト
2
リウム、 0.005〜0.2% TritonX- 100、夫々 0.2mM程度の dATP、 dCTP、 dGTP、 dTTP、 1 0〜80単位/ mLの Taq DNAポリメラーゼ等のポリメラーゼを含有する lOmM Tris- HC1 緩衝液 (PH8.9)を調製し、 PCR用反応液とする。この PCR用反応液 20 Lに精製 D NA試料 lngをカ卩え、 PCR用試料を得る。この PCR用試料を 96穴反応プレートのゥェ ルに入れ、適当なリアルタイム PCR検出装置等を用いてリアルタイム PCRを行う。反 応は 30〜50回サイクル繰り返し、 1サイクル毎にレポーター色素の発光量を測定する
[0203] この場合の M.イントラセルラーレ検出方法としては、レポーター色素の発光量が測 定された場合に、被検試料は M.イントラセルラーレ陽性と判定される。
[0204] また、リアルタイム PCR法では、検量線を作成することができるので、試料中の M.ィ ントラセルラーレのゲノム DNAの数(コピー数)を得ることがでる。また、その数は M.ィ ントラセルラーレの数に比例するので、試料 (被検試料)中の M.イントラセルラーレの 数ち知ることができる。
[0205] 検量線の作成方法は、リアルタイム PCR法において通常行われている常法に従え ばよい。例えば、標準としてコピー数既知の M.イントラセルラーレのゲノム DNA試料 を用い、希釈系列の濃度 (コピー数)の PCR用 DNA試料を調製する。次いで各希釈 系列の PCR用 DNA試料を用いて上記方法に従!、リアルタイム PCRを行 、、レポ一 ター色素の発光量を測定する。各希釈系列の PCR用 DNA試料毎に、 PCRの各サ イタル数 (X軸)に対する、測定した発光量の測定値 (Rn、 y軸)をプロットした増幅曲線 を作成する。次いで、発光量が指数関数的に増幅している Rn部を選択し、 Threshold line (Th)を引く。 Thと各 PCR用 DNA試料の増幅曲線が交差した点を Threshold eye le (Ct)値とする。次いで用いた各 PCR用 DNA試料のコピー数の対数値 (X軸)に対 する Ct値 (y軸)をプロットし、各 Ctに対して得られた近似曲線を検量線とすればよい。
[0206] インターカレーター法によるリアルタイム PCRを行って、得られた測定値を基に同様 に検量線を作成することができる。例えば、 PCRの各サイクル数 (X軸)に対するイン ターカレーター由来の蛍光量の測定値 (Rn、 y軸)をプロットした増幅曲線を作成する 。次いで、上記と同じ方法で Ct値を得、リアルタイム PCRに用いた各 PCR用 DNA試 料のコピー数の対数値 (X軸)に対する Ct値 (y軸)をプロットし、各 Ctに対して得られた 近似曲線を検量線とすればょ ヽ。
[0207] 試料中の M.イントラセルラーレのゲノム DNAの数(コピー数)を定量するには、先ず M.イントラセルラーレを検出する試料中カゝら DNAを分離精製した後、得られた DNA 試料についてリアルタイム PCRを行い、同様に増幅曲線を作成する。検量線を作成 したときの Thと得られた増幅曲線が交差した Ct値を得る。その Ct値を検量線に当て はめることにより、試料中の M.イントラセルラーレのゲノム DNA量(コピー数)を得るこ とがでさる。
[0208] (A- 3)核酸増幅反応を行った後、得られたプライマー伸長産物にっ 、て電気泳動 を行い、その結果に基づいて行う方法
この方法としては、例えば
「下記工程
(i)配列番号 1,配列番号 2、配列番号 3、配列番号 4、配列番号 5、配列番号 6、配列 番号 7又は配列番号 8で表される塩基配列の一部若しくは全部、又は配列番号 1,配 列番号 2、配列番号 3、配列番号 4、配列番号 5、配列番号 6、配列番号 7又は配列 番号 8で表される塩基配列に対する相補配列の一部若しくは全部を含有し、且つ M. イントラセルラーレ遺伝子の塩基配列とハイブリダィズするオリゴヌクレオチドをプライ マー (本発明のプライマー)として用い、試料中の核酸を铸型として核酸増幅反応を 行う、
(ii)上記 (0で得られたプライマー伸長産物にっ 、て電気泳動を行 、、その結果に基 づ!、て M.イントラセルラーレの有無を判定する、
を包含することを特徴とする M.イントラセルラーレの検出方法」が挙げられる。
[0209] 電気泳動を行!、、その結果に基づ 、て、 M.イントラセルラーレの有無を判定する方 法としては、例えば
(A— 3— 1)目的とする大きさ (塩基対数)のプライマー伸長産物画分を確認するこ とにより判定する方法、
(A- 3- 2)標識プローブを用いたノ、イブリダィゼーシヨンにより判定する方法 等が挙げられる。
[0210] 核酸増幅反応の具体例は、前記した通りである。
[0211] 電気泳動法の条件、操作方法等は、この分野で通常行われている常法に従えばよ い。
[0212] 以下に、(A— 3— 1)及び (A— 3— 2)の方法について説明する。
[0213] (A— 3— 1)目的とする大きさ (塩基対数)のプライマー伸長産物画分を確認すること により判定する方法
例えば、まず本発明のプライマーから、適当なフォワードプライマーとリバースプライ マーの組合せを選択し、それを用いて PCR等の核酸増幅反応を行う。次いで、得ら れたプライマー伸長産物について電気泳動を行う。予め、核酸増幅反応に用いたフ ォワードプライマーとリバースプライマーの組合せから、増幅されるであろうプライマー 伸長産物の大きさ (塩基対数)を予測しておき、得られた電気泳動画分が予測された 大きさのプライマー伸長産物に該当するか否かを、常法により確認すればよい。例え ば、得られた電気泳動画分をェチジゥムブロマイド等で染色して核酸種を視覚化す るといった方法で、そのプライマー伸長産物の特徴的大きさ (塩基対数)により確認 する等の方法が挙げられる。
[0214] (A— 3— 1)の方法による具体的な判定方法としては、例えば前記した表 1に記載 されたフォワードプライマーとリバースプライマーの組合せを用いて PCRを行った後、 得られたプライマー伸長産物にっ 、て電気泳動を行 、、そのプライマーの組合せで 増幅されると予想される、表 1に記載の配列番号で表される塩基配列のオリゴヌタレ ォチド、又はその塩基対数の大きさの画分が確認された場合に、被検試料は M.イン トラセルラーレ陽性と判定する方法が挙げられる。
[0215] これらの方法の中のより好ましい方法としては、例えば下記の方法が挙げられる。
(1)配列番号 9で表される塩基配列を含有するオリゴヌクレオチドプライマーと配列番 号 10で表される塩基配列を含有するオリゴヌクレオチドプライマーの組合せを用いて PCRを行った後、得られたプライマー伸長産物について電気泳動を行い、 155塩基 対のオリゴヌクレオチド画分又は配列番号 139で表される塩基配列を含有するオリゴ ヌクレオチドの画分が確認されたものを陽性と判定する方法、
[0216] (2)配列番号 23で表される塩基配列を含有するオリゴヌクレオチドプライマーと配列 番号 24で表される塩基配列を含有するオリゴヌクレオチドプライマーの組合せを用い て PCRを行った後、得られたプライマー伸長産物について電気泳動を行い、 159塩 基対のオリゴヌクレオチド画分又は配列番号 146で表される塩基配列を含有するオリ ゴヌクレオチドの画分が確認されたものを陽性と判定する方法、
[0217] (3)配列番号 41で表される塩基配列を含有するオリゴヌクレオチドプライマーと配列 番号 42で表される塩基配列を含有するオリゴヌクレオチドプライマーの組合せを用い て PCRを行った後、得られたプライマー伸長産物について電気泳動を行い、 179塩 基対のオリゴヌクレオチド画分又は配列番号 155で表される塩基配列を含有するオリ ゴヌクレオチドの画分が確認されたものを陽性と判定する方法、
[0218] (4)配列番号 59で表される塩基配列を含有するオリゴヌクレオチドプライマーと配列 番号 60で表される塩基配列を含有するオリゴヌクレオチドプライマーの組合せを用い て PCRを行った後、得られたプライマー伸長産物について電気泳動を行い、 157塩 基対のオリゴヌクレオチド画分又は配列番号 164で表される塩基配列を含有するオリ ゴヌクレオチドの画分が確認されたものを陽性と判定する方法、
[0219] (5)配列番号 79で表される塩基配列を含有するオリゴヌクレオチドプライマーと配列 番号 80で表される塩基配列を含有するオリゴヌクレオチドプライマーの組合せを用い て PCRを行った後、得られたプライマー伸長産物について電気泳動を行い、 160塩 基対のオリゴヌクレオチド画分又は配列番号 174で表される塩基配列を含有するオリ ゴヌクレオチドの画分が確認されたものを陽性と判定する方法、
[0220] (6)配列番号 93で表される塩基配列を含有するオリゴヌクレオチドプライマーと配列 番号 94で表される塩基配列を含有するオリゴヌクレオチドプライマーの組合せを用い て PCRを行った後、得られたプライマー伸長産物について電気泳動を行い、 172塩 基対のオリゴヌクレオチド画分又は配列番号 181で表される塩基配列を含有するオリ ゴヌクレオチドの画分が確認されたものを陽性と判定する方法、
[0221] (7)配列番号 105で表される塩基配列を含有するオリゴヌクレオチドプライマーと配 列番号 106で表される塩基配列を含有するオリゴヌクレオチドプライマーの組合せを 用いて PCRを行った後、得られたプライマー伸長産物について電気泳動を行い、 18 1塩基対のオリゴヌクレオチド画分又は配列番号 187で表される塩基配列を含有する オリゴヌクレオチドの画分が確認されたものを陽性と判定する方法、
[0222] (8)配列番号 127で表される塩基配列を含有するオリゴヌクレオチドプライマーと配 列番号 128で表される塩基配列を含有するオリゴヌクレオチドプライマーの組合せを 用いて PCRを行った後、得られたプライマー伸長産物について電気泳動を行い、 15 2塩基対のオリゴヌクレオチド画分又は配列番号 198で表される塩基配列を含有する オリゴヌクレオチドの画分が確認されたものを陽性と判定する方法。
[0223] (A- 3- 2)標識プローブを用いたノヽイブリダィゼーシヨンにより判定する方法
例えば核酸増幅反応を行って得られたプライマー伸長産物にっ 、て、電気泳動を 行う。得られた電気泳動画分について、本発明のプローブを標識物質で標識した標 識プローブに対するハイブリダィゼーシヨンを行う。該標識プローブの標識を検出す ることによって、該標識プローブとハイブリダィズした画分の存在が確認された場合に 、その被検試料は、 M.イントラセルラーレ陽性と判定する方法が挙げられる。
[0224] 用いられるプローブ及びプローブを標識する標識物質の具体例、並びにプローブ の標識方法は、前記した通りである。
[0225] その一例を示すと、次の通りである。即ち、前記した表 1に記載のフォワードプライ マーとリバースプライマーの組合せを用いて PCRを行った後、得られたプライマー伸 長産物について電気泳動を行う。予め、 PCRに用いたフォワードプライマーとリバ一 スプライマーの組合せで増幅されると予測される、表 1に記載の配列番号の塩基配 列の一部又は全部を含有する塩基配列のオリゴヌクレオチドを標識物質で標識した 標識プローブを調製しておく。電気泳動画分の該標識プローブに対するハイブリダィ ゼーシヨンを行 、、該標識プローブの標識を検出することによって該標識プローブと ハイブリダィズした画分の存在が確認された場合に、その被検試料は M.イントラセル ラーレ陽性である、と判定する方法、が挙げられる。
[0226] これらの方法の好ましい具体例としては、例えば、下記の方法が挙げられる。
(1)配列番号 9で表される塩基配列を持つオリゴヌクレオチドプライマーと配列番号 1 0で表される塩基配列を持つオリゴヌクレオチドプライマーの組合せを用いて PCRを 行った後、得られたプライマー伸長産物について電気泳動を行う。次いで、得られた 画分について、配列番号 139で表される塩基配列の一部又は全部を含有する塩基 配列を含有するオリゴヌクレオチドを標識物質で標識した標識プローブに対するハイ ブリダィゼーシヨンを行、、該標識プローブの標識を検出することによって該標識プ ローブとハイブリダィズした画分が確認されたものを陽性と判定する方法、
[0227] (2)配列番号 23で表される塩基配列を持つオリゴヌクレオチドプライマーと配列番号 24で表される塩基配列を持つオリゴヌクレオチドプライマーの組合せを用いて PCR を行った後、得られたプライマー伸長産物について電気泳動を行う。次いで、得られ た画分について配列番号 146で表される塩基配列の一部又は全部を含有する塩基 配列を含有するオリゴヌクレオチドを標識物質で標識した標識プローブに対するハイ ブリダィゼーシヨンを行、、該標識プローブの標識を検出することによって該標識プ ローブとハイブリダィズした画分が確認されたものを陽性と判定する方法、
[0228] (3)配列番号 41で表される塩基配列を持つオリゴヌクレオチドプライマーと配列番号 42で表される塩基配列を持つオリゴヌクレオチドプライマーの組合せを用いて PCR を行った後、得られたプライマー伸長産物について電気泳動を行う。次いで、得られ た画分について配列番号 155で表される塩基配列の一部又は全部を含有する塩基 配列を含有するオリゴヌクレオチドを標識物質で標識した標識プローブに対するハイ ブリダィゼーシヨンを行 、、該標識プローブの標識を検出することによって該標識プ ローブとハイブリダィズした画分が確認されたものを陽性と判定する方法、
[0229] (4)配列番号 59で表される塩基配列を持つオリゴヌクレオチドプライマーと配列番号 60で表される塩基配列を持つオリゴヌクレオチドプライマーの組合せを用いて PCR を行った後、得られたプライマー伸長産物について電気泳動を行う。次いで、得られ た画分について配列番号 164で表される塩基配列の一部又は全部を含有する塩基 配列を含有するオリゴヌクレオチドを標識物質で標識した標識プローブに対するハイ ブリダィゼーシヨンを行 、、該標識プローブの標識を検出することによって該標識プ ローブとハイブリダィズした画分が確認されたものを陽性と判定する方法、
[0230] (5)配列番号 79で表される塩基配列を持つオリゴヌクレオチドプライマーと配列番号 80で表される塩基配列を持つオリゴヌクレオチドプライマーの組合せを用いて PCR を行った後、得られたプライマー伸長産物について電気泳動を行う。次いで、得られ た画分について配列番号 174で表される塩基配列の一部又は全部を含有する塩基 配列を含有するオリゴヌクレオチドを標識物質で標識した標識プローブに対するハイ ブリダィゼーシヨンを行 、、該標識プローブの標識を検出することによって該標識プ ローブとハイブリダィズした画分が確認されたものを陽性と判定する方法、
[0231] (6)配列番号 93で表される塩基配列を持つオリゴヌクレオチドプライマーと配列番号 94で表される塩基配列を持つオリゴヌクレオチドプライマーの組合せを用いて PCR を行った後、得られたプライマー伸長産物について電気泳動を行う。次いで、得られ た画分について配列番号 181で表される塩基配列の一部又は全部を含有する塩基 配列を含有するオリゴヌクレオチドを標識物質で標識した標識プローブに対するハイ ブリダィゼーシヨンを行 、、該標識プローブの標識を検出することによって該標識プ ローブとハイブリダィズした画分が確認されたものを陽性と判定する方法、
[0232] (7)配列番号 105で表される塩基配列を持つオリゴヌクレオチドプライマーと配列番 号 106で表される塩基配列を持つオリゴヌクレオチドプライマーの組合せを用いて P CRを行った後、得られたプライマー伸長産物について電気泳動を行う。次いで、得 られた画分について配列番号 187で表される塩基配列の一部又は全部を含有する 塩基配列を含有するオリゴヌクレオチドを標識物質で標識した標識プローブに対する ノ、イブリダィゼーシヨンを行 、、該標識プローブの標識を検出することによって該標 識プローブとハイブリダィズした画分が確認されたものを陽性と判定する方法、
[0233] (8)配列番号 127で表される塩基配列を持つオリゴヌクレオチドプライマーと配列番 号 128で表される塩基配列を持つオリゴヌクレオチドプライマーの組合せを用いて P CRを行った後、得られたプライマー伸長産物について電気泳動を行う。次いで、得 られた画分について配列番号 198で表される塩基配列の一部又は全部を含有する 塩基配列を含有するオリゴヌクレオチドを標識物質で標識した標識プローブに対する ノ、イブリダィゼーシヨンを行 、、該標識プローブの標識を検出することによって該標 識プローブとハイブリダィズした画分が確認されたものを陽性と判定する方法。
[0234] (A- 3)の方法による、本発明の M.イントラセルラーレの検出方法の詳細を、例え ば 02_Fwlをフォワードプライマーとしてを用い、 02_Rvlをリバースプライマーとして用 いた PCR、及び電気泳動を行った後、 目的とする塩基対数のプライマー伸長産物画 分を確認する方法によって検出する場合 (上記の (A— 3— 1)の(1)の方法)を例に 挙げて説明すると、以下の通りである。
[0235] まず、公知の方法 (例えば前記した方法)に従!、、 M.イントラセルラーレの有無を検 出する試料 (被検試料)中から精製 DNA試料を得る。別に、前記した方法で、本発 明に係るヌクレオチドから、 DNAシンセサイザーを用いてホスホアミダイト法にて、 02_ Fwl (配列番号 9で表される配列を持つオリゴヌクレオチド)及び 02_Fwl (配列番号 10 で表される塩基配列を持つオリゴヌクレオチド)を合成する。
[0236] 各 0.1〜2 μ Μ、好ましくは各 1 μ Μのプライマー 02_Fwl及びプライマー 02_Rvl、 1.0 〜4.0mM MgCl 、 KC1、 BSA、コール酸ナトリウム、 0.005〜0.2%ポリオキシエチレンォ
2
クチルフエ-ルエーテル、夫々 0.1〜0.6mM程度の dATP、 dCTP、 dGTP、 dTTP及び 1 0〜80単位/ mLの Taq DNAポリメラーゼを含有する lOmM Tris-HCl (pH8.9)緩衝液 を調製し、 PCR用反応液とする。
[0237] PCR用反応液に精製 DNA試料を添カ卩したものを PCR用試料として用い、 DNAサ 一マルサイクラ一にて、 20〜40回 PCRを行う。得られた PCR後の反応液を、 1.5%ァ ガロースゲル電気泳動する。次いでェチジゥムブロマイド染色した後、紫外線での蛍 光を検出する。また、分子量マーカーも反応液と同時に電気泳動し、相対泳動度の 比較により、検出された DNA断片の長さを算出する。フォワードプライマーとして 02— Fwl、及びリバースプライマーとして 02_Rvlを用いた PCRでは、 M.イントラセルラーレ の塩基配列中の 155塩基対の DNA断片(配列番号 139で表される塩基配列を持つ 。)が複製されると予測される。そこで、 155塩基対の大きさの蛍光バンドが確認された 場合に、被検試料は M.イントラセルラーレ陽性と判定すればょ 、。
[0238] また本発明は、核酸増幅工程において、 RNA転写産物を利用した検出法を適用 する事ができる。例えば、 N AS BA (nucleic acid sequence based amplification)法 (特 許第 2650159号)、 3SR (self- sustained sequence replication)法(特公平 7- 114718号 )、 TAS (transcription based amplification system)法(特表平 2- 500565号:国際公開 WO88/10315号)、 TMA (transcription mediated amplification)法(特開平 11- 46778 号)などが挙げられるが、中でも逆転写酵素及び RNAポリメラーゼの協奏的作用(逆 転写酵素及び RNAポリメラーゼが協奏的に作用するような条件下で反応させる。 )を 利用する一定温度核酸増幅法が測定系の自動化には適する。
[0239] (A— 4)標識プライマーを用いた核酸増幅反応を行って得られたプライマー伸長産物 の標識を測定する方法、
本発明のプライマーを前記した方法で標識した標識プライマーを用い、被検試料 中の核酸を铸型として用いて PCR等の核酸増幅反応を行 、、得られたプライマー伸 長産物の標識を検出'測定し、標識を検出できた場合には、その被検試料 M.イントラ セルラーレ陽性である、と判定する方法が挙げられる。この方法に用いられるフォヮ 一ドプライマ一及びリバースプライマーとしては、前記の PCR法において用いられる ものが挙げられ、その好まし ヽ具体例及び好ま 、組合せも前記した通りである。
[0240] 上記方法の場合、核酸増幅反応を行ったのち、遊離の標識プライマーを除き、ブラ イマ一伸長産物の標識を測定し、標識を検出できた場合に、被検試料は M.イントラ セルラーレ陽性であると判定すればよ 、。
[0241] 遊離の標識プライマーを除く方法としては、核酸増幅反応反応を行って得られた反 応物中のプライマー伸長産物を、核酸を沈殿させる常法 (エタノール沈殿法、イソプ ロバノールを用いた沈殿法等)により沈殿させた後、沈殿しな力つた遊離の標識ブラ イマ一を含有する上清を除去する方法等が挙げられる。
[0242] また、核酸増幅反応を行って得られた反応物を適当な条件下、ゲルクロマトグラフィ 一で処理して、プライマー伸長産物と遊離の標識プライマーを分離する方法、電気 泳動法により分離する方法等も挙げられる。
[0243] (B)本発明のオリゴヌクレオチドを標識物質で標識したものを標識プローブとして用 いる方法
更に、本発明の M.イントラセルラーレの検出方法として、配列番号 1,配列番号 2、 配列番号 3、配列番号 4、配列番号 5、配列番号 6、配列番号 7又は配列番号 8で表 される塩基配列の一部若しくは全部、又は配列番号 1,配列番号 2、配列番号 3、配 列番号 4、配列番号 5、配列番号 6、配列番号 7又は配列番号 8で表される塩基配列 に対する相補配列の一部若しくは全部を含有し、且つ M.イントラセルラーレ遺伝子の 塩基配列とハイブリダィズするオリゴヌクレオチド (本発明のオリゴヌクレオチド)を標 識物質で標識したものを標識プローブとして用い、該標識プローブを試料中の核酸 とハイブリダィゼーシヨンさせ、遊離の標識プローブを除いた後、ハイブリダィズした 複合体の標識を検出する方法が挙げられる。
[0244] 具体的には、例えば下記のような方法が挙げられる。
(B— 1)本発明のオリゴヌクレオチドを固相担体に結合させたものを捕捉プローブと して用い、被検試料中の核酸とハイブリダィゼーシヨンさせて、試料中の M.イントラセ ルラーレ由来の核酸を固相上に固定化させる検出法 (例えば、特開昭 62-265999号 の記載参照)。この場合、本発明のオリゴヌクレオチドあるいは固相担体が、標識物 質で標識されていてもよい。
(B- 2)標識されて!ヽな ヽ (B-1)の捕捉プローブと、本発明のプローブを標識した標 識プローブを、被検試料中の核酸とハイブリダィゼーシヨンさせて、固相担体上に補 足プローブと M.イントラセルラーレ由来の核酸と標識プローブの複合体を形成させて 、標識プローブの標識を測定するサンドイッチアツセィ (例えば、特開昭 58-40099号 の記載参照)を行う方法。
(B— 3)ピオチンで標識した本発明のプローブを用い、被検試料中の核酸とハイブ リダィゼーシヨン後、試料中の M.イントラセルラーレ由来の核酸をアビジン結合担体 で捕捉する方法。
[0245] 尚、本発明の M.イントラセルラーレの検出方法に用いられる試薬中には、通常この 分野で用いられる試薬類、例えば緩衝剤、安定化剤、防腐剤等であって、共存する 試薬等の安定性を阻害せず、 PCR等の核酸増幅反応やハイブリダィゼーシヨン反応 を阻害しないものを用いることができる。また、その濃度も、通常この分野で通常用い られる濃度範囲から適宜選択すればょ ヽ。
[0246] 緩衝液の具体例を挙げると、例えばトリス緩衝液、リン酸緩衝液、ベロナール緩衝 液、ホウ酸緩衝液、グッド緩衝液等、通常の PCR等の核酸増幅反応やハイブリダィ ゼーシヨン反応を実施する場合に用いられて ヽる緩衝液は全て挙げられ、その pHも 特に限定されな 、が、通常 5〜9の範囲が好まし 、。
[0247] また、必要に応じて核酸合成酵素(DNAポリメラーゼ、 RNAポリメラーゼ、逆転写 酵素など)、酵素に応じた基質 (dNTP、 rNTPなど)、また二本鎖インターカレーター (ェチジゥムブロマイド、 SYBR™ Greenなど)あるいは FAMや TAMRA等の標識検出 物質などが用いられる。
[0248] 本発明に係る M.イントラセルラーレ検出用試薬キットとしては、「配列番号 1,配列 番号 2、配列番号 3、配列番号 4、配列番号 5、配列番号 6、配列番号 7又は配列番 号 8で表される塩基配列の一部若しくは全部、又は配列番号 1,配列番号 2、配列番 号 3、配列番号 4、配列番号 5、配列番号 6、配列番号 7又は配列番号 8で表される塩 基配列に対する相補配列の一部若しくは全部を含有し、且つ M.イントラセルラーレ 遺伝子の塩基配列とハイブリダィズするオリゴヌクレオチドをプライマー (本発明のプ ライマー)又は Z及びプローブ (本発明のプローブ)として含んでなる M.イントラセル ラーレ検出用試薬キット。」が挙げられる。プライマーは標識物質で標識されたもので あってもょ 、。その標識物質の具体例は前記した通りである。
[0249] 上記キットを構成する本発明のプライマー及び本発明のプローブの具体例は、前 記した「本発明のプライマー」、「本発明のプローブ」につ 、ての説明に記載した通り である。
[0250] 本発明のプライマーは標識物質で標識されたものであってもよい。その標識物質の 具体例は前記した通りである。
[0251] 本発明のプライマーを含んでなるキットには、フォワードプライマーとリバースプライ マーの一組のプライマーを含む組成も含まれる。その好ましい実施態様としては、前 記表 1に記載のプライマーの組合せを含む組成が挙げられる。
[0252] 例えば下記のものが挙げられる。
(1) (a)配列番号 9で表される塩基配列の一部若しくは全部、又は配列番号 9で表さ れる塩基配列に対する相補配列の一部若しくは全部を含有し、且つ M.イントラセルラ ーレ遺伝子の塩基配列とハイブリダィズするオリゴヌクレオチドプライマーと、(b)配列 番号 10で表される塩基配列の一部若しくは全部、又は配列番号 10で表される塩基 配列に対する相補配列の一部若しくは全部を含有し、且つ M.イントラセルラーレ遺 伝子の塩基配列とハイブリダィズするオリゴヌクレオチドプライマー、を構成試薬とし て含んでなるもの。
[0253] (2) (a)配列番号 23で表される塩基配列の一部若しくは全部、又は配列番号 23で表 される塩基配列に対する相補配列の一部若しくは全部を含有し、且つ M.イントラセル ラーレ遺伝子の塩基配列とハイブリダィズするオリゴヌクレオチドプライマーと、(b)配 列番号 24で表される塩基配列の一部若しくは全部、又は配列番号 24で表される塩 基配列に対する相補配列の一部若しくは全部を含有し、且つ M.イントラセルラーレ 遺伝子の塩基配列とハイブリダィズするオリゴヌクレオチドプライマー、を構成試薬と して含んでなるもの。
[0254] (3) (a)配列番号 41で表される塩基配列の一部若しくは全部、又は配列番号 41で表 される塩基配列に対する相補配列の一部若しくは全部を含有し、且つ M.イントラセル ラーレ遺伝子の塩基配列とハイブリダィズするオリゴヌクレオチドプライマーと、(b)配 列番号 42で表される塩基配列の一部若しくは全部、又は配列番号 42で表される塩 基配列に対する相補配列の一部若しくは全部を含有し、且つ M.イントラセルラーレ 遺伝子の塩基配列とハイブリダィズするオリゴヌクレオチドプライマー、を構成試薬と して含んでなるもの。
[0255] (4) (a)配列番号 59で表される塩基配列の一部若しくは全部、又は配列番号 59で表 される塩基配列に対する相補配列の一部若しくは全部を含有し、且つ M.イントラセル ラーレ遺伝子の塩基配列とハイブリダィズするオリゴヌクレオチドプライマーと、(b)配 列番号 60で表される塩基配列の一部若しくは全部、又は配列番号 60で表される塩 基配列に対する相補配列の一部若しくは全部を含有し、且つ M.イントラセルラーレ 遺伝子の塩基配列とハイブリダィズするオリゴヌクレオチドプライマー、を構成試薬と して含んでなるもの。
[0256] (5) (a)配列番号 79で表される塩基配列の一部若しくは全部、又は配列番号 79で表 される塩基配列に対する相補配列の一部若しくは全部を含有し、且つ M.イントラセル ラーレ遺伝子の塩基配列とハイブリダィズするオリゴヌクレオチドプライマーと、(b)配 列番号 80で表される塩基配列の一部若しくは全部、又は配列番号 80で表される塩 基配列に対する相補配列の一部若しくは全部を含有し、且つ M.イントラセルラーレ 遺伝子の塩基配列とハイブリダィズするオリゴヌクレオチドプライマー、を構成試薬と して含んでなるもの。
[0257] (6) (a)配列番号 93で表される塩基配列の一部若しくは全部、又は配列番号 93で表 される塩基配列に対する相補配列の一部若しくは全部を含有し、且つ M.イントラセル ラーレ遺伝子の塩基配列とハイブリダィズするオリゴヌクレオチドプライマーと、(b)配 列番号 94で表される塩基配列の一部若しくは全部、又は配列番号 94で表される塩 基配列に対する相補配列の一部若しくは全部を含有し、且つ M.イントラセルラーレ 遺伝子の塩基配列とハイブリダィズするオリゴヌクレオチドプライマー、を構成試薬と して含んでなるもの。
[0258] (7) (a)配列番号 105で表される塩基配列の一部若しくは全部、又は配列番号 105で 表される塩基配列に対する相補配列の一部若しくは全部を含有し、且つ M.イントラセ ルラーレ遺伝子の塩基配列とハイブリダィズするオリゴヌクレオチドプライマーと、 (b) 配列番号 106で表される塩基配列の一部若しくは全部、又は配列番号 106で表され る塩基配列に対する相補配列の一部若しくは全部を含有し、且つ M.イントラセルラー レ遺伝子の塩基配列とハイブリダィズするオリゴヌクレオチドプライマー、を構成試薬 として含んでなるもの。
[0259] (8) (a)配列番号 127で表される塩基配列の一部若しくは全部、又は配列番号 127で 表される塩基配列に対する相補配列の一部若しくは全部を含有し、且つ M.イントラセ ルラーレ遺伝子の塩基配列とハイブリダィズするオリゴヌクレオチドプライマーと、 (b) 配列番号 128で表される塩基配列の一部若しくは全部、又は配列番号 128で表され る塩基配列に対する相補配列の一部若しくは全部を含有し、且つ M.イントラセルラー レ遺伝子の塩基配列とハイブリダィズするオリゴヌクレオチドプライマー、を構成試薬 として含んでなるもの。
[0260] 上記キットは、更に、本発明のオリゴヌクレオチドを標識物質で標識したものを標識 プローブとして含んで 、てもよ 、。
[0261] 更に、「本発明のオリゴヌクレオチドをプローブとして含んでなる M.イントラセルラー レ検出用試薬キット。」が挙げられる。該プローブは標識物質で標識されたものであつ てもよい。
[0262] これらのキットを構成する構成試薬の好ま ヽ態様及び具体例は前記した通りであ る。
[0263] 尚、本発明の M.イントラセルラーレの検出用試薬キットには、例えば緩衝剤、安定 ィ匕剤、防腐剤等であって、共存する試薬等の安定性を阻害せず、 PCR等の核酸増 幅反応ゃノヽイブリダィゼーシヨン反応を阻害しな 、ものが含まれて 、てもよ 、。また、 その濃度も、通常この分野で通常用いられる濃度範囲力 適宜選択すればよい。
[0264] 緩衝液の具体例を挙げると、例えばトリス緩衝液、リン酸緩衝液、ベロナール緩衝 液、ホウ酸緩衝液、グッド緩衝液等、通常の PCRゃノヽイブリダィゼーシヨン反応を実 施する場合に用いられて ヽる緩衝液は全て挙げられ、その pHも特に限定されな ヽが 、通常 5〜9の範囲が好ましい。
[0265] また、必要に応じて核酸合成酵素(DNAポリメラーゼ、 RNAポリメラーゼ、逆転写 酵素など)、酵素に応じた基質 (dNTP、 rNTPなど)、また二本鎖インターカレーター (ェチジゥムブロマイド、 SYBR™ Greenなど)あるいは FAMや TAMRA等の標識検出 物質などを含んで ヽてもよ ヽ。
[0266] 以下に実施例を挙げて、本発明を更に具体的に説明するが、本発明はこれらによ り何等限定されるものではな 、。
[0267] 尚、実施例で用いられる細菌はいずれも臨床分離株であり、培養後、コロニーの形 状や従来の各種生化学的試験などによって菌種がすでに鑑別されているものである 実施例
[0268] 実験例 1. M.イントラセルラーレゲノム由来のクローンの選択
(l) DNA試料の調製
まず、小川培地十.で培着した M.イントラセルラーレ (ATCC13950)のコロニーを精製 水に懸濁し、オートクレープ処理(120°C ' 2気圧、 20分)した後、菌体の粉砕処理( 直径 2mmガラスビーズによる物理的破砕)を経て、遠心分離し、上清を得た。得られ た上清から、(株)キアゲン製のイオン交換榭脂タイプ DNA抽出精製キット Genomic-t ipを用いて DNAの抽出、精製を行った。
[0269] 得られた精製ゲノム DNA断片を、最終 400ngZ μ L (10mM Tris- HC1緩衝液、 pH8.
9)になるように調製し、 M.イントラセルラーレ由来 DNA試料として用いた。
[0270] また、ポジティブコントロール用に、 rpsl (配列番号 205で表される配列の DNAフラ グメント、 M.イントラセルラーレに特異的な配列、特許文献 1に記載)、 IS6110 element (配列番号 206で表される配列の DNAフラグメント、 Mycobacterium bovis (ゥシ型結 核菌)が持つ配列)、 M.kansasiiの KATS2 sequence (配列番号 207で表される配列の DNAフラグメント、 M.kansasiiに特異的な配列、特開平 11- 155589号公報)、ネガティ ブコントロールとして ^ Ϊ Ιの MAV19K (配列番号 208で表される配列の DNAフラ グメント、 M.aviumに特異的な配列、特開平 11-06999号公報に記載)及び大腸菌の D NAの抽出方法の常法に従い DNAを抽出,精製した大腸菌由来の DNA、を用いて 夫々同様に DNA試料を調製し、同様に以下の処理を行った。
[0271] (2) Whole Genome Shotgun libraryの作製
上記 (1)で得られた M.イントラセルラーレ由来 DNA試料 24 gを材料として用い、 以下の方法(Science. 2001 Feb 16;291(5507):1304- 1351 Venter et al.に記載の Who le uenome Shotgun法を改変)で、 Whole uenome Shotgun libraryの作:^ 行った。
[0272] まず、終濃度 20%のグリセロール存在下で、 5kPa〜9kPaの圧力下、ネビュライザ一( インビトロジェン社製)を用いてで約 10分間処理して、 M.イントラセルラーレ由来 DN A試料を断片化した。この処理方法により、 目的とする 500〜1000塩基対のサイズ画 分を効率よく回収する事ができた。得られた画分を (株)キアゲン製の抽出カラムを利 用して精製した。
[0273] 次に、タカラバィォ社製の DNA Blunting Kitを用い、 T4 DNA Polymeraseの 5'→3' polymerase活性と 3'→5'exonuclease活性を利用して、得られた DNA断片の末端を 平滑化した。この DNA断片と、平滑末端処理済み pBSII sk+ベクター (Stratagene社) とでライゲーシヨン反応を行い、 DNA断片を pBSII sk+ベクター ( m1)に み込んだ 糸且み換え DNAを作製した。
[0274] タカラバィォ社製 E. coli JM109 Competent Cellsを用い、その製品プロトコ一ノレに 従って、上記で得られた組み換え DNAを用いて JM109 Competent Cellsの形 質転換を行った。得られた形質転換体を 100 g/mLのアンピシリン、 0.2 mM IPTG、 4 0 μ g/mL X- Galを含む LB-寒天培地にプレート培養した。白色コロニーをピックアツ プし、 目的の DNA断片を組み込んだ組み換え DNAが導入された、形質転換体の li brary(M.イントラセノレラーレのケノム由来の Whole Genome Shotgun clone library)を 得た。
[0275] (3)マイクロアレイ作製
上記 (2)で得られた形質転換体の library (M.イントラセルラーレのゲノム由来の Whol e Genome Shotgun clone library)を用い、下記の方法で PCRを行って、スライドガラ ス上に固定するプローブ材料を調製した。
[0276] まず、各 1 μ Μのプライマー M13 Primer Ml (タカラバイオ社製)及びプライマー M13
Primer RV (タカラバイオ社製)、 1.5mM MgCl 、 80mM KC1、 500 μ g/mL BSAゝ 0.1%コ
2
ール酸ナトリウム、 0.1% Triton X-100 (トリトン X-100、ポリオキシエチレンォクチルフエ -ルエーテル、ロームアンドハース社商品名)、夫々 0.2mMの dATP、 dCTP、 dGTP 、 dTTP及び Taq DNAポリメラーゼ((株)二ツボン 'ジーン製) 40単位/ mLを含有する 1 OmM Tris-HCl緩衝液 (pH8.9)を調製し、 PCR用反応液とした。
[0277] 上記 (2)で得られた形質転換体(M.イントラセルラーレのゲノム由来の Whole Geno me Shotgun clone)のそれぞれから、常法に従い DNAを精製した。この精製した DN A (テンプレートとなる)を PCR用反応液 20 Lに懸濁添カ卩したものを調製し、 PCR用 試料とした。この PCR用試料を用い、 MJ Research社の DNAサーマルサイクラ一(D NA Engine PTC200)を使用して、下記の反応条件で 30サイクル PCRを行った。 [0278] PCR反応条件:
熱変性: 94°C、 0. 5分
アニーリング: 55°C、 1分
重合反応: 75°C、0. 5分。
[0279] 得られた PCR増幅産物を精製後、固定化 Buffer (終濃度 3x SSC)と混合した。
[0280] スポットされる PCR産物の終濃度が 300η§/ /ζ Lとなるように調整し、装置内の湿度を 55%に設定したタイピング用装置(GTMAS Stamp II; 日本レーザ電子社製)を使用し 、スライドガラス(CMT GAPS- II; Corning社製)上に、上記で得られた PCR産物をス ポットした (スポット径 150- 250 μ m)。スポットが終了したスライドガラスを UVクロスリン カー(UV Stratalinkerl800; Stratagene社製)に移し、 150mJ/cm2の UV照射を行なつ て、 PCR増幅産物(目的の DNA)をスライドガラス上に固定化し、マイクロアレイ(M. イントラセルラーレゲノム由来 DNAの Whoule Genome Shotgun clone libraryを材料と したマイクロアレイ、合計 1100クローン)を作製した。
[0281] 前記 (1)で得られたポジティブコントロール用 DNA試料 (rpsl、 IS6110 element, KA TS2 sequence)、及びネガティブコントロール用 DNA試料(MAV19K、大腸菌由来 D NA)についても、同様に前記 (2)の Whole Genome Shotgun libraryの作製及び上記 (3 )のマイクロアレイの作製を行い、スライドガラス上に夫々のマイクロアレイを作製した。
[0282] (4)標的ゲノム DNAの蛍光色素標識とマイクロアレイ'ハイブリダィゼーシヨン
i)標的ゲノム DNAの蛍光色素標識
BioPrime DNA labeling system (インビトロジェン社製)を利用し、標的ゲノム DNAフ ラグメントの蛍光色素標識を行った。
まず、 M.intracellulare (ATCC16950)から常法により柚出'精製したゲノム DNA 2 μ gに、製品中の random primer solution 20 μ Lを混合した後、熱変性(95°C、 5分間) 処理を行い、サンプル溶液を得た。別に、 Mycobacterium bovis (ゥシ型結核菌、 日本 細菌学会力 供与された。)、及び MJS ≤ (ATCC12478)力も常法により夫々ゲノ ム DNAを抽出 '精製し (対照用ゲノム DNA)、各々についても同様に処理を行い、 サンプル溶液を得た。
[0283] 次いで、得られたサンプル溶液夫々に、 0.1M DTT 2 L、 dATP/dCTP/dGTP (各 5 mM)の混合液 2 Lゝ 2.5mM dTTP 0.8 μ Lゝ 5mM Ha- dUTP 1.6 L、 Klenow酵素 (4 OU/ μ L) l μ Lを添加し、 total volume=50 μ Lとなるように脱イオン化滅菌水を加え、 3 7°Cで 3時間の伸長反応を行った。マイクロコン YM-30 (ミリポア社製)の限外ろ過カラ ムを付属の 1.5mLチューブにセットし、上記で得られた反応産物をカラムにのせ、 140 OOrpmで 4分遠心した後、濃縮液をマイクロチューブに回収して、真空乾燥遠心機( CentriVap concentrator; LABCONCO社製)で完全に乾燥させた。
[0284] 乾燥させた上記反応産物に、 50mM NaHCO を 10 μ L加え混合し、 2〜3分常温
3
で静置した (以下、「反応産物溶液」と称する。 ) o
[0285] 別に、 lmgの Cy3 (アマシャムバイオサイエンス株式会社)又は Cy5 (アマシャムバイ ォサイエンス株式会社)を 105 Lの DMSOに溶かしたものを調製した(Cy-dye Solut ion Cy3、 Cy-dye Solution Cy5)。この Cy- dye Solution Cy3 lO ^ Lを対照用ゲノム D NAフラグメント (M. bovis由来、 M.kansasii由来)を用いて得られたサンプル溶液夫々 にカロえ、 40°Cで 60分インキュベート(遮光)を行った。また、 Cy- dye Solution Cy5 10 /z Lを M.イントラセルラーレ由来ゲノム DNAを用いて得られた上記サンプル溶液に 加え、 40°Cで 60分インキュベート(遮光)を行った。
[0286] さらに、インキュベート後の、夫々の上記反応産物溶液に、 4M NH OH (使う直前に
2
調製する)を 10 μ L加え、攪拌後、 15分インキュベート (遮光)を行 、、夫々の標識産 物、即ち Μ^_ω≤由来の対照用ゲノム DNAを Cy3で標識した標識産物、 M.kansasii 由来の対照用ゲノム DNAを Cy3で標識した標識産物、及び M.イントラセルラーレ由 来ゲノム DNAを Cy5で標識した標識産物を得た。
[0287] マイクロコン YM-30 (ミリポア社製)の限外ろ過カラムを付属の 1.5mLチューブにセッ トし、上記で得られた各ゲノム DNAの標識産物をカラムにのせ、 14000rpmで 4分遠 心した後、濃縮液をマイクロチューブに回収して、真空乾燥遠心機 (CentriVap conce ntrator; LABCONCO社製)で完全に乾燥させた。
[0288] ii)標識産物の断片化工程
上記 (4) 0で得られた乾燥状態のゲノム DNAの標識産物に対して、終濃度が 0.04M Tris- acetate(pH8.1)、 0.1M酢酸カリウム、 0.03M酢酸マグネシウム四水和物の糸且成 の溶液 40 Lを調製したものを加え、懸濁混和させた。次いで 94°Cで 15分間加熱処 理し、 100base〜300 baseの、ゲノム DNAの標識産物を断片化した生成物を得た。
[0289] 尚、 BcaBEST DNA Polymerase (タカラバイオ社製)及び rBst DNA Polymerase (EPI CENTRE社製)を用いてラベル化効率 (baseZdye)を調べた結果、 Cy3標識の実験 結果では M^^exk由来の対照用ゲノム DNA、MJS ≤ 由来の対照用ゲノム DNAと もに、約 20塩基に dye 1分子が取り込まれていることを確認している。また、 Cy5標識 の実験結果では、 M.イントラセルラーレゲノム DNAの約 10塩基に dye 1分子が取り 込まれて 、ることを確認して 、る。
[0290] 得られた Cy3標識産物溶液及び Cy5標識産物溶液を混合し、マイクロコン YM- 10 (ミ リポア社製)の限外ろ過カラムにのせ 14000rpmで 4分遠心した後、濃縮液をマイクロ チューブに回収して、真空乾燥遠心機 (CentriVap concentrator; LABCONCO社製) で完全に乾燥させた。次いで、マイクロチューブに以下の試薬を加え、懸濁混和して 標識産物を溶解させ、
Figure imgf000061_0001
ラセルラーレゲノム由来 DNAの Cy5標識産物の Cy3Cy5標識産物混合溶液と、 MJia Π2 ίί由来の対照用ゲノム DNAの Cy3標識産物と Μ.イントラセルラーレゲノム由来 D NAの Cy5標識産物の Cy3Cy5標識産物混合溶液を得た。
[0291] ArrayHyb Hybridization buffer (SIGMA社製) ; 40 μ L
salmon sperm DNA (10mg/ mL) ; 0.5 μ L
formamide ; 5 μ L
Total 40〜50 μ L
得られた Cy3Cy5標識産物混合溶液を、 95°Cで 5分インキュベートし、ハイブリダィ ゼーシヨンまで 70°Cに保ってぉ 、た。
[0292] iii)マイクロアレイ'ノヽィブリダィゼーシヨン
前記 (3)の工程により、 M.イントラセルラーレの Whole Genome shotgun clone,ポジ ティブコントロール及びネガティブコントロールとして用いる DNAフラグメントの各々の スポットを同一のスライドガラス上に集積したマイクロアレイ (DNAチップ)が作製され る。
上記 (4)ii)で得られた Cy3Cy5標識産物混合溶液をマイクロアレイ上にのせ、気泡が 入らないようにカバーガラスをかぶせた。これをノヽイブリカセットにセットし、タッパーに 蒸留水で湿らせたキムタオルをひいたものの上にのせて密閉し、遮光下に 65°Cで 8 時間以上反応させてハイブリダィゼーシヨンを行った。ハイブリダィゼーシヨン後、 DN Aチップをカバーガラスごと 2 X SSC-0.1%SDS溶液に室温で浸し、溶液中で DNAチ ップを静かに揺らしてカバーグラスをはずした。次いで 1 X SSC、 0.03%SDS溶液(60 °C)で 10分間洗浄、 0.2 X SSC溶液 (42°C)で 10分間洗浄、 0.05 X SSC溶液(室温) で 10分間洗浄した後、新しい乾いたラックに DNAチップをすばやく移し、すぐに 800 prmで 5分間遠心を行って乾燥させた。
[0293] (5)蛍光強度の測定:シグナル検出から数量ィヒまで
蛍光読み取りスキャナー(Protein Array Scanner;日本レーザ電子社製)を用いて、 マイクロアレイ ·ノヽイブリダィゼーシヨン処理したマイクロアレイ(DNAチップ)上の蛍 光強度を測定した。この際、 Cy3標識産物と Cy5標識産物を用いた競合ハイブリダィ ゼーシヨンの結果を解析するため、 2チャンネル、即ち 2ch(Cy3、 Cy5)での蛍光検出 データを得た。
[0294] 蛍光シグナルの数量化は日立ソフト社製の DNASIS™-Array (DNAチップ発現ィメ ージ解析ソフトウェア)を用い、ソフトの操作手順に従って、スポット自動認識、ノ ック グラウンド計算、蛍光強度比の正規化を行った。また、信頼性限界ラインを定め、そ れ以下の領域のデータは扱わない事で正規化され信頼性のある蛍光強度比を求め た。
[0295] マイクロアレイチップ上には、 M.イントラセルラーレの菌体由来の DNA、ポジティブ コントロール(rpsl :M.イントラセルラーレに特異的な配列の DNAフラグメント、 IS6110 element: M. bovisに特異的な配列の DNAフラグメント、 KATS2 sequence: M.kansasii に特異的な配列の DNAフラグメント)及びネガティブコントロール(MAV19K :Μ^ ϋ mに特異的な配列の DNAフラグメント、大腸菌由来ゲノム DNAの断片)がスポットさ れている。
[0296] まず、 Μ^^Λ由来の対照用ゲノム DNAの Cy3標識産物と M.イントラセルラーレ由 来ゲノム DNAの Cy5標識産物の混合物を用いてマイクロアレイ'ハイブリダィゼーショ ンを行い、蛍光強度を測定して、 Cy3/Cy5の蛍光強度比(Ratio)を求めた。即ち、あ るマイクロアレイ上のスポットの Cy3に対する Cy5の蛍光強度比が高い場合は、そのス ポットの DNA断片(PCR増幅産物)は、 Cy5標識産物、即ち M.イントラセルラーレ由 来ゲノム DNAとより強くハイブリダィズしたことを示す。他方、あるマイクロアレイ上の スポットの Cy3に対する Cy5の蛍光強度比が低い場合は、そのスポットの DNA断片は 、 M.イントラセルラーレ由来ゲノム DNAに対する特異性が弱ぐ Cy3標識産物、即ち M^2Xk由来の対照用ゲノム DNAとより強くハイブリダィズしたことを示す。この方法 で、マイクロアレイの全てのスポットの蛍光強度比を算出し、蛍光強度が高ぐ且つ Cy 3に対する Cy5の蛍光強度比が高いスポットの上位 50スポットを選択した。
[0297] 同じマイクロアレイについて、 M.kansasii由来の対照用ゲノム DNAの Cv3標識産物 と M.イントラセルラーレ由来ゲノム DNAの Cy5標識産物の混合物を用いて同様にマ イクロアレイ'ハイブリダィゼーシヨン、蛍光強度の測定及び蛍光強度比を測定した。 この場合は、あるスポットの Cy3に対する Cy5の蛍光強度比が高い場合は、そのスポッ トの DNA断片(PCR増幅産物)は、 Cy5標識産物、即ち M.イントラセルラーレゲノム 由来 DNAとより強くハイブリダィズしたことを示す。他方、あるスポットの Cy3に対する Cy5の蛍光強度比が低い場合は、そのスポットの DNA断片は、 M.イントラセルラー レ由来ゲノム DNAに対する特異性が弱ぐ Cy3標識産物、即ち M.kansasi油来の針 照用ゲノム DNAとより強くハイブリダィズしたことを示す。マイクロアレイの全てのスポ ットの蛍光強度比を算出し、蛍光強度が高ぐ且つ Cy3に対する Cy5の蛍光強度比が 高 、スポットの上位 50スポットを選択した。
[0298] Μ^_ω≤由来の対照用ゲノム DNAの Cy3標識産物を用いた場合に選択された上 位 50スポットと、 MJi rf由来の対照用ゲノム DNAの Cy3標識産物を用いた場合 に選択された上位 50スポットを比較し、両方の場合に共通するスポットで、 rpsl (M.ィ ントラセルラーレに特異的な配列)のスポットよりも更に強い Cy5の蛍光が検出された スポット 16個を選択した。このスポットは、 M. bovisよりも、 M.kansasiはりも、更に rpsl よりも M.イントラセルラーレに対する特異性が高いと判断された。そこで、この 16クロ ーンを先ず一次候補クローンとして選定した。
[0299] (6)—次候補クローンの塩基配列決定
次に、選択された一次候補の 16クローンについて、下記の方法で塩基配列決定を 行った。 [0300] 即ち、 Big Dye Terminatorキット(アプライドバイオシステムズ社製)を使用し、製品 プロトコールに従い以下の手順でシークェンス解析を行った。
[0301] 一次候補 DNA (—次候補クローン) ;2 /ζ ΐ ΐ00η§)
Μ 13 Primer Ml ; 1 μ L(5pmoL)
premix ; 8 (し
[0302] 上記の混合物に、総 volume=20 μ Lとなるように脱イオン化滅菌水をカ卩え、 MJ Resea rch社の DNAサーマルサイクラ一(DNA Engine PTC200)を使用して、下記の反応条 件で 30サイクルのシークェンス反応を行った。
[0303] 96°C 2 min→ (96°C 10sec→50°C 5sec→60°C 4min) X 25→4°C
[0304] 得られたシークェンス反応産物を QIAGEN社製ゲルろ過カラムで精製後、 MJ Resea rch社製のシークェンサ一(BaseStation)を用い、機器付属の手順書に従 、候補配列 すべてのシークェンス (塩基配列)解読を完了した。
[0305] 得られた結果をデータベース(NCBI BLAST及び CHEMICAL ABSTRACT)で検索 した結果、 M.イントラセルラーレがゲノム配列未解読の生物種であるにも起因するが
、データベース上では一次候補の 16クローン全てが、未登録の新規な配列であった
[0306] (7)二次候補クローンの選択
1) PCRプライマーの合成
まず、決定された一次候補 16クローンのシークェンスの解析結果に基づき、夫々の 一次候補クローンにつ 、て、プライマーデザイン用の Webツール Primer3(Whitehead Institute for Biomedical Research.)を用いて PCR増幅検出のためのプライマー配列 を設計し、更にその結果を基に PCRに使用可能と推測されるフォワードプライマーと リバースプライマーの組合せを設計した。
[0307] ABI社 DNAシンセサイザー 392型を用いて、ホスホアミダイト法にて、設計したオリ ゴヌクレオチドを合成した。合成手法は ABI社マニュアルに従い、各種オリゴヌクレオ チドの脱保護はオリゴヌクレオチドのアンモニア水溶液を 55°Cで一夜加熱することに より実施した。
[0308] 次 、でフアルマシア社製 FPLCを用いた陰イオン交換カラムクロマトグラフィーによ り、合成オリゴヌクレオチドを精製した。
[0309] 2)プローブの作製
夫々の一次候補クローン毎に設計されたフォワードプライマーとリバースプライマー の組合せを用いた PCRで増幅されると予測される塩基配列から、プローブとして利 用するための配列を設計し、この配列のオリゴヌクレオチドを合成した。このオリゴヌク レオチドの 5'末端にレポーター色素の FAMを、 3'末端にレポーター消光体の TAMRA を結合し、標識オリゴヌクレオチドプローブ(TaqMan™フルオレセント 'プローブ、ァプ ライドバイオシステムズジャパン社製)を得た。
[0310] 3) PCR用 DNA試料の調製
別に、 M.イントラセルラーレから、常法に従いゲノム DNA試料を調製した。また、対 照 して Escherichia coli、及び 18菌種のマイコバクテリゥム属細菌 (M.tuberculosis、 M.kansasiu M.marinum. M.simiae. M.scrofulaceum. M.gordonae. M.szulgau M.aviu M.gastri. M.xenopi. M.nonchromogenicum. M.terrae. M.tnviale. M.fortuitum. M .chelonei. M.abscessus、 M.peregrinum)から、常法に従い DNA試料(対照用)を調製 した。得られた DNA試料について、吸光度を測定して試料中の DNA量を測定した 。得られた DNA量を、既知の各菌体のゲノム DNA量と比較することにより、試料中 のゲノム DNA量(ゲノムコピー数)を決定した。 108コピー Z β Lのゲノム DNAが得ら れた。
[0311] 次いで 10mM Tris- HC1緩衝液、 pH8.9を用いて DNA試料を 105, 104, 103, 102, 10, 5, 2コピー/ Lの希釈系列に希釈したものを調製し、 PCR用 DNA試料とした。
[0312] 4)リアルタイム PCR
上記 1)で調製したフォワードプライマーとリバースプライマーを用い、下記の通りリ アルタイム PCRを行つた。
[0313] 即ち、一次候補クローンひとつ力 設計されたフォワードプライマー及びリバースプ ライマー各 1 μ Μ、 195ηΜの上記 (2)で調製した蛍光標識プローブ、 1.5mM MgCl 、 80
2 mM KC1、 500 μ g/mL BSAゝ 0.1%コール酸ナトリウム、 0.1%TritonX- 100、夫々 0.2mM の dATP、 dCTP、 dGTP、 dTTP及び Taq DNAポリメラーゼ((株) -ツボン'ジーン製) 40 単位/ mLを含有する 10mM Tris-HCl緩衝液 (pH8.9)を調製し、反応液とした。 [0314] 反応液 20 μ Lに各希釈系列の DNA試料 1 μ Lをカ卩えたものを PCR用試料とし、こ れを 96穴反応プレート(マイクロアンプ'ォプチカル · 96ゥエル'リアクション 'プレー ト、アプライドバイオシステムズジャパン社製)のゥエルに入れ、 TaqMan™ PCR専用 サーマルサイクラ一.検出器 (ABI7500、アプライドバイォシステムズジャパン社製)を 用いてリアルタイム PCRを行った。反応は、 95°Cで 10分間保温の後、 95°Cで 15秒間 、 60°Cで 1分間の反応を 50サイクル繰り返し、 1サイクル毎にレポーター色素の発光 量を測定した。尚、発光量は、測定に用いたサーマルサイクラ一の、測定に供した 96 穴反応プレート 1プレート毎に相対的な蛍光強度比を数値ィ匕する機能を用いて求め た。
[0315] 尚、ひとつの一次候補クローン毎に、それぞれその塩基配列を本に設計されたフォ ワードプライマー及びリバースプライマーを用い、 M.イントラセノレラーレ由来 DNA試 料、マイコバクテリゥム属菌体由来 DNA試料 18種、及び大腸菌 DNA由来試料を夫 々铸型として 96穴反応プレートを用いて、夫々のリアルタイム PCRを一度に行った。
[0316] 5)二次スクリーニング
上記 4)で得られたリアルタイム PCRの結果から、 M.イントラセルラーレのゲノム由来 DNAを铸型として用いたリアルタイム PCRでは増幅産物が得られ、その他の菌体由 来ゲノム DNA (対照)を铸型として用いたリアルタイム PCRでは増幅産物が得られな 力つたプライマーの組合せを選択した。そして、そのプライマーの組合せを設計した 候補クローンを、最終的な M.イントラセルラーレに特異的な候補クローンとして選択し た。
[0317] 選択された候補クローンは、以下の 8クローンである。尚、特に記載しない限り、以 下、一次スクリーニングで選択された候補クローンを「一次候補クローン」と呼び、二 次スクリーニングで最終的に選択された候補クローンを、単に「候補クローンと」呼ぶ o )
'候補クローン 1:配列番号 1で表されるヌクレオチド配列を持つ 667塩基のオリゴヌ クレオチド
•候補クローン 2:配列番号 2で表されるヌクレオチド配列を持つ 1129塩基のオリゴ ヌクレ才チド '候補クローン 3:配列番号 3で表されるヌクレオチド配列を持つ 1003塩基のオリゴ ヌクレ才チド
'候補クローン 4:配列番号 4で表されるヌクレオチド配列を持つ 748塩基のオリゴヌ クレオチド
'候補クローン 5:配列番号 5で表されるヌクレオチド配列を持つ 619塩基のオリゴヌ クレオチド
'候補クローン 6:配列番号 6で表されるヌクレオチド配列を持つ 511塩基のオリゴヌ クレオチド
'候補クローン 7:配列番号 7で表されるヌクレオチド配列を持つ 1006塩基のオリゴ ヌクレ才チド
'候補クローン 8:配列番号 8で表されるヌクレオチド配列を持つ 702塩基のオリゴヌ クレオチド
[0318] 実施例 1.候補クローンの M.イントラセルラーレ特異性評価
実験例 1で得られた候補 8クローンについて PCR増幅系を利用した評価実験を実 施し、これらの候補クローン力 遺伝子増幅検出系を用いた M.イントラセルラーレの 特異的検出系に利用できるかどうかを調べた。
(1) PCRプライマーの合成
まず、決定された候補クローン 1のシークェンス (塩基配列)の解析結果に基づき、 プライマーデザイン用の Webツール Primer3(Whitehead Institute for Biomedical Rese arch.)を用いて PCR増幅検出のためのプライマー配列、即ち「5'- GTTCAGCAGATC GTCGTAGG-3'J (配列番号 9)及び「5'- CTCTTGACGAGGCAAAACAT- 3'」(配列 番号 10)のオリゴヌクレオチドを設計した。以下、配列番号 9で表される塩基配列のプ ライマーを「02_Fwl」、配列番号 10で表される塩基配列のプライマーを「02_Rvl」とい
[0319] 次いで、 ABI社 DNAシンセサイザー 392型を用いて、ホスホアミダイト法にて、設 計したオリゴヌクレオチドを合成した。合成手法は ABI社マニュアルに従い、各種オリ ゴヌクレオチドの脱保護はオリゴヌクレオチドのアンモニア水溶液を 55°Cで一夜加熱 することにより実施した。次 、でフアルマシア社製 FPLCを用いた陰イオン交換カラム クロマトグラフィーにより、合成オリゴヌクレオチドを精製した。
[0320] (2)試料の調製
Escherichia coli (E. coli、大腸菌)(ATCC11775)、及び 18種のマイコバクテリゥム 属細菌、即ち Mycobacterium tuberculosis (マイコバクテリゥム 'ッベルクローシス、ヒト 型結核菌) (TMC102[H37Rv])、 M.イントラセルラーレ(ATCC13950)、 Mvcobacteriu m kansasii (マイコバクテリゥム.カンサシ) (ATCC12478)、 Mycobacterium marinum (マ ィコバタテリゥム.マリナム)(ATCC927)、 Mycobacterium simiae (マイコバクテリゥム' シミアェ) (ATCC25275) , Mycobacterium scrofiilaceum (マイコバクテリゥム 'スクロフ ラセゥム) (ATCC 19981) , Mycobacterium gordonae (マイコバクテリゥム 'ゴルドネア) ( ATCC 14470) . Mycobacterium szukai (マイコバクテリゥム ·スズルガイ) (ATCC35799 )、 Mycobacterium avium (マイコバクテリゥム ·アビゥム) (ATCC25291)、 Mvcobacteriu m gastri (マイコバクテリゥム ·ガストリ) (ATCC15754)、 Mycobacterium xenoDi (マイコ ノ クテリゥム.ゼノピ) (ATCC19250) , Mycobacterium nonchromogenicum (マイコノ ク テリゥム 'ノンクロモゲ-カム) (ATCC19530)、 Mycobacterium terrae (マイコバクテリウ ム'テレ) (ATCC15755) . Mycobacterium triviale (マイコバクテリゥム 'トリビアレ) (AT CC23292) . Mycobacterium fortuitum (マイコバクテリゥム ·フォーチユイタム) (ATCC6 841)、 Mycobacterium chelonei (マイコバクテリゥム ·セロネィ) (ATCC35752)、 Mvcob acterium abscessus (マイコバクテリゥム ·ァプセッサス) (ATCC 19977)、 Mvcobacteriu m peregrinum (マイコバクテリゥム ·ペレグリナム) (ATCC14467)を用い、下記の方法 で DNAを抽出.精製し、 DNA試料を得た。
[0321] まず、 Mycobacterium tuberculosisは、 Mycos Research, LLCから精製ゲノム DNA を入手し、それを精製 DNAとして用いた。
[0322] それ以外の細菌につ!、ては、 American Type Culture Collection (ATCC)から菌株 を入手し、下記の方法で DNAを抽出 '精製した。細菌はいずれも臨床分離株であり 、培養後、コロニーの形状や従来の各種生化学的試験などによって菌種がすでに鑑 別されているものである。
[0323] すなわち、マイコバクテリゥム(Mycobacterium)属細菌については、まず、小川培地 上のコロニーを精製水に懸濁し、オートクレープ処理(120°C ' 2気圧、 20分)した。 次 ヽで菌体を粉砕処理 (直径 2mmガラスビーズによる物理的破砕)した後、遠心分離 し、上清を得た。得られた上清から、(株)キアゲン製のイオン交換榭脂タイプ DNA抽 出精製キット Genomic-tipを用いて DNAの抽出、精製を行った。
[0324] また、大腸菌については、大腸菌の DNA抽出方法の常法に従い、 DNAを抽出、 精製した。
[0325] 得られたそれぞれの精製 DNAを、最終 IngZ μ L (10mM Tris- HC1緩衝液、 pH8.9
)になるように調製し、 DNA試料とした。
[0326] 得られた精製 DNAを、最終 IngZ μ L (10mM Tris- HC1緩衝液、 pH8.9)になるよう に調製し、 DNA試料とした。
[0327] (3) PCR
候補クローンの塩基配列 (配列番号 1)をもとに、上記 (1)で設計、合成したプライマ 一 02_Fwl及び 02_Rvlを用い、下記の通り PCRを行った。尚、候補クローン 1の塩基 配列上の、各プライマー 02_Fwl及びプライマー 02_Rvlの持つ塩基配列の存在位置 は図 1に示した通りである。
[0328] 1) PCR用反応液の調製
上記 (1)で得られたプライマー 02_Fwl及びプライマー 02_Rvlを各 300nM、発色試薬 として SYBR™ Green I (Molecular Probe社商品名)を原液の 30倍希釈、 1.5mM MgCl
2
、 80mM KC1、 500 μ g/mL BSAゝ 0.1%コール酸ナトリウム、 0.1% TritonX- 100、 dATP 、 dCTP、 dGTP、 dTTPを各 0.2mM、及び Taq DNAポリメラーゼ(-ツボンジーン製) 40 単位/ mLを含有する 10mM Tris- HCl(pH8.9)を調製し、 PCR用反応液とした。
[0329] 2)リアルタイム PCR
PCRにおける増幅ターゲットとなる铸型 DNAとして、上記 (2)で調製したマイコバク テリゥム属細菌由来又は大腸菌由来の DNA試料を用い、以下の方法で、インター力 レーシヨン法での定量モニタリングによる検討評価を行った。
[0330] まず、上記 (3)1)で調製した PCR用反応液 20 L〖こ、前記 (2)で調製した DN A試料 1 1^ ( ^§)を添カ卩して!3じ1^用試料とした。この PCR用試料を、 96穴反応プレート( マイクロアンプ ·ォプチカノレ · 96ウエノレ ·リアクション ·プレート、アプライドバイオシステ ムズジャパン社製)のゥエルに入れ、 TaqMan™ PCR専用サーマルサイクラ一'検出 器 (ABI 7500、アプライドバイオシステムズジャパン社製)を用いてリアルタイム PCR を行った。反応は、 95°Cで 10分間保温の後、 95°Cで 15秒間、 60°Cで 1分間の反 応を 40サイクル繰り返し、増幅産物に対してインターカレーシヨンする SYBR™ Green Iの蛍光量を測定した。
[0331] (4)融解曲線解析
各 DNA試料に対して各々増幅されてきた産物について、横軸をプライマー伸長産 物(2本鎖 DNA)の解離温度、縦軸に蛍光量の 1次微分 (変化量)をとり、融解曲線を 作成し、ピークの検出を行った。
[0332] (5)結果
各 DNA試料について得られた融解曲線解析の結果を 1つのグラフにまとめて、図 9に示す。
[0333] 図 9の結果から明らかな如ぐ本発明のプライマー 02_Fwl、及びプライマー 02_Rvl を用いて、 SYBR Green I存在下で増幅された核酸の融解曲線解析を行った結果、 M .イントラセルラーレ由来の DNA試料を铸型として用いた場合のみに、核酸増幅の結 果生じる蛍光シグナルが確認でき(図 1 :M.intraccellulare)、陽性と判定できた。
[0334] これに対し、図 9から明らかな如ぐ M.イントラセルラーレ以外のマイコバクテリゥム 属細菌や他の属の細菌である大腸菌由来の DNAを铸型として用いて、同じプライマ 一の組合せを用いて同様にリアルタイム PCRを行った場合には、該当する蛍光シグ ナルが確認できず(図 9 : other species)、すべて陰性と判定できた。
[0335] 更に、図 9から明らかな如ぐ M.イントラセルラーレ由来の DNA試料を铸型として用 いた場合の融解曲線解析の結果、単一の明瞭なピークが得られたことから、行った 検出系は、 M.イントラセルラーレに極めて特異性の高い、検出方法であることが分か る。
[0336] 以上のことから、本発明のオリゴヌクレオチドをプライマーとして PCRに用いることに より、 M.イントラセルラーレを特異的に検出することが出来ることが判る。また、 PCR などの核酸増幅による検出は高感度が期待できるため、細菌を単離する必要がなく 、臨床材料をそのまま検出に用いることが可能であるため、従来の細菌を培養してか ら検出する方法では培養に数週間力かっていた M.イントラセルラーレの検出を、長く ても 1日以内に終わらせることができる。
[0337] 実施例 2.候補クローンの M.イントラセルラーレの検出感度の検定
( 1) M.イントラセルラーレ検出用 PCRプライマーの合成
実施例 1 (1)と同じ機器を用い、同様の操作でプライマー 02_Fwl、及びプライマー 0 2_Rvlを合成した。
[0338] (2) M.イントラセルラーレ検出用プローブの作製
02_Fwl及び 02_Rvlをプライマーとして用いた PCRで増幅されると予測される配列番 号 139の塩基配列(155塩基)から、プローブとして利用するための配列「5'-ATACG TGCCCAGAAGCTCTACCGAGAT-3'Jを設計し、この配列のオリゴヌクレオチドを合 成した(配列番号 204。この配列を持つオリゴヌクレオチドプローブを、以下、 INT02— F1R1_FAMTAMと記載する。;)。このオリゴヌクレオチドの 5'末端にレポーター色素 FA Mを、 3'末端にレポーター消光体の TAMRAを結合し、標識オリゴヌクレオチドプロ一 ブ(TaqMan™フルオレセント .プローブ、アプライドバイオシステムズジャパン社製)を 得た。
[0339] (3) PCR用 DNA試料の調製
実験例 1(1)で調製した M.イントラセルラーレ力 得られた M.イントラセルラーレ由来 DNA試料について、吸光度を測定して試料中の DNA量を測定した。得られた DN A量を、既知の M.イントラセルラーレのゲノム DNA量と比較することにより、試料中の ゲノム DNA量(ゲノムコピー数)を決定した。 108コピー Z μ Lのゲノム DNAが得られ た。
[0340] 次いで 10mM Tris- HC1緩衝液、 pH8.9を用いて DNA試料を 105, 104, 103, 102, 10, 5, 2コピー/ Lの希釈系列に希釈したものを調製し、 PCR用 DNA試料とした。
[0341] (4)リアルタイム PCR
上記 (1)で調製した 02_Fwlをフォワードプライマーとして、 02_Rvlをリバースプライマ 一として用い、下記の通りリアルタイム PCRを行った。
[0342] 即ち、各 1 μ Μのプライマー 02_Fwl、及びプライマー 02_Rvl、 195nMの上記 (2)で調 製した蛍光標識プローブ INT02 F1R1 FAMTAM, 1.5mM MgCl 、 80mM KC1、 500
2
μ g/mL BSAゝ 0.1%コール酸ナトリウム、 0.1%TritonX- 100、夫々 0.2mMの dATP、 dC TP、 dGTP、 dTTP及び Taq DNAポリメラーゼ((株)二ツボン'ジーン製) 40単位/ mLを 含有する 10mM Tris-HCl緩衝液 (pH8.9)を調製し、反応液とした。
[0343] 反応液 20 μ Lに各希釈系列の DNA試料 1 μ Lをカ卩えたものを PCR用試料とし、こ れを 96穴反応プレート(マイクロアンプ'ォプチカル · 96ゥエル'リアクション 'プレー ト、アプライドバイオシステムズジャパン社製)のゥエルに入れ、 TaqMan™ PCR専用 サーマルサイクラ一.検出器 (ABI7500、アプライドバイォシステムズジャパン社製)を 用いてリアルタイム PCRを行った。反応は、 95°Cで 10分間保温の後、 95°Cで 15秒間 、 60°Cで 1分間の反応を 50サイクル繰り返し、 1サイクル毎にレポーター色素の発光 量を測定した。尚、発光量は、測定に用いたサーマルサイクラ一の、測定に供した 96 穴反応プレート 1プレート毎に相対的な蛍光強度比を数値ィ匕する機能を用いて求め た。
[0344] (5)結果
得られた実験データから、リアルタイム PCR法にぉ 、て行われて 、る常法に従って 、検量線を作成した。
[0345] 即ち、各 PCR用 DNA試料毎に、 PCRのサイクル数(x軸)に対するレポーター色素 の発光量 (Rn、 y柳をプロットした増幅曲線を作成した。次いで、発光量が指数関数 的に増幅している Rn部を選択し、 Threshold line (Th)を引いた。 Thと各 PCR用 DNA 試料の発光量が交差した点を Threshold cycle (Ct)値とした。次いで用いた各 PCR 用 DNA試料のゲノムのコピー数 (X軸、対数値)に対する Ct値 (y軸)をプロットし、各 C tに対して得られた近似曲線を検量線とした。得られた検量線を図 10に示す。
[0346] y= - 3.825x+ 38.78
R2=0.996
以上のことより、リアルタイム PCRで発光が検出されたことから、本発明のオリゴヌク レオチドをプライマーとして用い、その増幅領域となる配列力 標識プローブを設計 し、リアルタイム PCRを行う事で M.イントラセルラーレが検出できることが判った。
[0347] また、検量線が作成できたことより、本発明のプライマー及びプローブを用いたリア ルタイム PCR法によれば、 M.イントラセルラーレの定量が可能であることが判った。更 に、図 10より、本発明のプライマー及びプローブを用いたリアルタイム PCR法では、 M.イントラセルラーレのゲノム DNAが初期量として 2コピー存在する条件でも M.イント ラセルラーレの検出が可能である事がわかる。
[0348] 更に、リアルタイム PCR法を利用した場合では、この蛍光強度をリアルタイムでモ- タリングするので、铸型 DNAの初期量を正確に定量することができ、 M.イントラセル ラーレの検出に有効である。
産業上の利用可能性
[0349] 本発明のプライマー又は Z及びプローブを用いた M.イントラセルラーレの検出方法 によれば、従来の菌の培養検査等により菌種を同定する方法と比較して、はるかに 迅速且つ高精度に、 M.イントラセルラーレの検出を行うことができる。また、本発明の 検出方法で M.イントラセルラーレの検出を行うことにより、従来のプライマー又は Z及 びプローブを用いた PCR法による診断方法に比較して、診断上の偽陽性が排除可 能となり、より高精度に M.イントラセルラーレの検出及び診断を行うことができる。更に 、本発明の検出方法を用いることにより、 M.イントラセルラーレ菌体の定量も行うことも できるという効果を奏する。

Claims

請求の範囲
[1] 配列番号 1、配列番号 2、配列番号 3、配列番号 4、配列番号 5、配列番号 6、配列番 号 7又は配列番号 8で表される塩基配列(但し、 Aはアデニン、 Cはシトシン、 Gはグァ ニン、 Tはチミンを表す。また、任意の位置の Tはゥラシル (U)と置換されていてもよ い。以下同じ。)の一部若しくは全部、又は配列番号 1、配列番号 2、配列番号 3、配 列番号 4、配列番号 5、配列番号 6、配列番号 7又は配列番号 8で表される塩基配列 に対する相補配列の一部若しくは全部を含有し、且つマイコバクテリゥム 'イントラセ ノレラーレ (Mycobacterium intracellulare)遺伝子の塩基酉己歹 Uとノヽイブリダィズするオリ ゴヌクレオチド。
[2] 配列番号 1、配列番号 2、配列番号 3、配列番号 4、配列番号 5、配列番号 6、配列番 号 7又は配列番号 8で表される塩基配列の一部を含有するオリゴヌクレオチドが、配 列番号 9〜配列番号 203で表される塩基配列の一部若しくは全部を含有するもので あり、
配列番号 1、配列番号 2、配列番号 3、配列番号 4、配列番号 5、配列番号 6、配列番 号 7又は配列番号 8で表される塩基配列に対する相補配列の一部を含有するオリゴ ヌクレオチド力 配列番号 9〜配列番号 203で表される塩基配列に対する相補配列 の一部若しくは全部を含有するものである、請求項 1に記載のオリゴヌクレオチド。
[3] 配列番号 1で表される塩基配列の一部を含有するオリゴヌクレオチドが、配列番号 9 〜22若しくは配列番号 139〜 145で表される塩基配列力も選ばれる配列を含有する ものであり、配列番号 2で表される塩基配列の一部を含有するオリゴヌクレオチドが、 配列番号 23〜40若しくは配列番号 146〜 154で表される塩基配列力も選ばれる配 列を含有するものであり、配列番号 3で表される塩基配列の一部を含有するオリゴヌ クレオチドが、配列番号 41〜58若しくは配列番号 155〜163で表される塩基配列か ら選ばれる配列を含有するものであり、配列番号 4で表される塩基配列の一部を含有 するオリゴヌクレオチド力 配列番号 59〜78若しくは配列番号 164〜173で表される 塩基配列から選ばれる配列を含有するものであり、配列番号 5で表される塩基配列 の一部を含有するオリゴヌクレオチド力 配列番号 79〜92若しくは配列番号 174〜 180で表される塩基配列から選ばれる配列を含有するものであり、配列番号 6で表さ れる塩基配列の一部を含有するオリゴヌクレオチド力 配列番号 93〜104若しくは配 列番号 181〜186で表される塩基配列から選ばれる配列を含有するものであり、配 列番号 7で表される塩基配列の一部を含有するオリゴヌクレオチド力 配列番号 105 〜126若しくは配列番号 187〜197で表される塩基配列から選ばれる配列を含有す るものであり、配列番号 8で表される塩基配列の一部を含有するオリゴヌクレオチドが 、配列番号 127〜138若しくは配列番号 198〜203で表される塩基配列力も選ばれ る配列を含有するものであり、
配列番号 1、配列番号 2、配列番号 3、配列番号 4、配列番号 5、配列番号 6、配列番 号 7又は配列番号 8で表される塩基配列に対する相補配列の一部を含有するオリゴ ヌクレオチド力 配列番号 9〜203で表される塩基配列力 選ばれる配列に対する相 補配列を含有するものである、
請求項 1に記載のオリゴヌクレオチド。
[4] 配列番号 1、配列番号 2、配列番号 3、配列番号 4、配列番号 5、配列番号 6、配列番 号 7又は配列番号 8で表される塩基配列の一部若しくは全部、又は配列番号 1、配列 番号 2、配列番号 3、配列番号 4、配列番号 5、配列番号 6、配列番号 7又は配列番 号 8で表される塩基配列に対する相補配列の一部若しくは全部を含有し、且つマイ コバクテリゥム 'イントラセルラーレ遺伝子の塩基配列とハイブリダィズするオリゴヌタレ ォチドを含有する、マイコバクテリゥム 'イントラセルラーレ検出用プライマー。
[5] 配列番号 1で表される塩基配列の一部を含有するオリゴヌクレオチドが、配列番号 9 〜22で表される塩基配列力 選ばれる配列を含有するものであり、配列番号 2で表 される塩基配列の一部を含有するオリゴヌクレオチド力 配列番号 23〜40で表され る塩基配列から選ばれる配列を含有するものであり、配列番号 3で表される塩基配列 の一部を含有するオリゴヌクレオチド力 配列番号 41〜58で表される塩基配列から 選ばれる配列を含有するものであり、配列番号 4で表される塩基配列の一部を含有 するオリゴヌクレオチド力 配列番号 59〜78で表される塩基配列力も選ばれる配列 を含有するものであり、配列番号 5で表される塩基配列の一部を含有するオリゴヌク レオチド力 配列番号 79〜92で表される塩基配列力も選ばれる配列を含有するもの であり、配列番号 6で表される塩基配列の一部を含有するオリゴヌクレオチド力 配列 番号 93〜 104で表される塩基配列から選ばれる配列を含有するものであり、配列番 号 7で表される塩基配列の一部を含有するオリゴヌクレオチド力 配列番号 105〜 12 6で表される塩基配列力 選ばれる配列を含有するものであり、配列番号 8で表され る塩基配列の一部を含有するオリゴヌクレオチド力 配列番号 127〜 138で表される 塩基配列から選ばれる配列を含有するものであり、
配列番号 1、配列番号 2、配列番号 3、配列番号 4、配列番号 5、配列番号 6、配列番 号 7又は配列番号 8で表される塩基配列に対する相補配列の一部を含有するオリゴ ヌクレオチドが、配列番号 9〜 138dで表される塩基配列に対する相補配列を含有す るものである、
請求項 4に記載のプライマー。
[6] プライマーを構成するヌクレオチドの数が 10〜50個である、請求項 4に記載のプライ マー。
[7] 標識物質で標識された、請求項 4に記載のプライマー。
[8] 標識物質が放射性同位体、酵素、蛍光物質、発光物質又はピオチン力 選択される ものである、請求項 7に記載のプライマー。
[9] 配列番号 1、配列番号 2、配列番号 3、配列番号 4、配列番号 5、配列番号 6、配列番 号 7又は配列番号 8で表される塩基配列の一部若しくは全部、又は配列番号 1、配列 番号 2、配列番号 3、配列番号 4、配列番号 5、配列番号 6、配列番号 7又は配列番 号 8で表される塩基配列に対する相補配列の一部若しくは全部を含有し、且つマイ コバクテリゥム 'イントラセルラーレ遺伝子の塩基配列とハイブリダィズするオリゴヌタレ ォチドを含有する、マイコバクテリゥム 'イントラセルラーレ検出用プローブ。
[10] 標識物質で標識された、請求項 9に記載のプローブ。
[11] 標識物質が放射性同位体、酵素、蛍光物質、発光物質又はピオチン力 選択される ものである、請求項 10に記載のプローブ。
[12] 5'末端がレポーター蛍光色素で標識され、 3'末端がクェンチヤ一色素で標識された
、請求項 9に記載のプローブ。
[13] 配列番号 1、配列番号 2、配列番号 3、配列番号 4、配列番号 5、配列番号 6、配列番 号 7又は配列番号 8で表される塩基配列の一部若しくは全部、又は配列番号 1、配列 番号 2、配列番号 3、配列番号 4、配列番号 5、配列番号 6、配列番号 7又は配列番 号 8で表される塩基配列に対する相補配列の一部若しくは全部を含有し、且つマイ コバクテリゥム 'イントラセルラーレ遺伝子の塩基配列とハイブリダィズするオリゴヌタレ ォチドをプライマー及び Z又はプローブとして用いることを特徴とするマイコバクテリ ゥム.イントラセルラーレの検出方法。
[14] 配列番号 1、配列番号 2、配列番号 3、配列番号 4、配列番号 5、配列番号 6、配列 番号 7又は配列番号 8に記載の塩基配列の一部若しくは全部、又は配列番号 1、配 列番号 2、配列番号 3、配列番号 4、配列番号 5、配列番号 6、配列番号 7又は配列 番号 8で表される塩基配列に対する相補配列の一部若しくは全部を含有し、且つマ ィコバクテリウム.イントラセルラーレ遺伝子の塩基配列とハイブリダィズするオリゴヌク レオチドをプライマーとして用い、試料中の核酸を铸型として核酸増幅反応を行い、 得られたプライマー伸長産物を検出することを特徴とする、請求項 13に記載の検出 方法。
[15] 更に、標識物質で標識された標識プローブを用いる、請求項 14に記載の検出方法。
[16] 下記工程を包含することを特徴とする、請求項 13に記載の検出方法、
(1)配列番号 1、配列番号 2、配列番号 3、配列番号 4、配列番号 5、配列番号 6、 配列番号 7又は配列番号 8に記載の塩基配列の一部若しくは全部、又は配列番号 1 、配列番号 2、配列番号 3、配列番号 4、配列番号 5、配列番号 6、配列番号 7又は配 列番号 8で表される塩基配列に対する相補配列の一部若しくは全部を含有し、且つ マイコバクテリゥム ·イントラセルラーレ遺伝子の塩基配列とハイブリダィズするオリゴヌ クレオチドをプライマーとして用い、試料中の核酸を铸型として核酸増幅反応を行う、
(2) (1)で得られたプライマー伸長産物について電気泳動を行い、その結果に基づ いてマイコバクテリゥム.イントラセルラーレの有無を判定する。
[17] 下記のいずれかの場合に、被検試料がマイコバクテリゥム'イントラセルラーレ陽性で あると判定する、請求項 16に記載の検出方法、
(1)電気泳動を行った後、得られた電気泳動画分について、目的とする塩基対数の プライマー伸長産物の画分を確認し、目的とする塩基対数のプライマー伸長産物が 確認された場合、 (2)電気泳動を行った後、得られた電気泳動画分について、配列番号 1、配列番号 2 、配列番号 3、配列番号 4、配列番号 5、配列番号 6、配列番号 7又は配列番号 8で表 される塩基配列の一部若しくは全部、又は配列番号 1、配列番号 2、配列番号 3、配 列番号 4、配列番号 5、配列番号 6、配列番号 7又は配列番号 8で表される塩基配列 に対する相補配列の一部若しくは全部を含有し、且つマイコバクテリゥム 'イントラセ ルラーレ遺伝子の塩基配列とハイブリダィズするオリゴヌクレオチドを標識物質で標 識した標識プローブに対するノ、イブリダィゼーシヨンを行 、、該標識プローブの標識 を検出することによって該標識プローブとハイブリダィズした画分が確認された場合。
[18] プライマーが標識物質で標識されており、当該プライマーを用いて試料中の核酸を 铸型としたポリメラーゼ連鎖反応を行 ヽ、得られたプライマー伸長産物の標識を測定 する、請求項 13に記載のマイコバクテリゥム 'イントラセルラーレの検出方法。
[19] 核酸増幅連鎖反応を行ったのち、遊離の標識プライマーを除き、プライマー伸長産 物の標識を測定する、請求項 18に記載の検出方法。
[20] 配列番号 1、配列番号 2、配列番号 3、配列番号 4、配列番号 5、配列番号 6、配列番 号 7又は配列番号 8で表される塩基配列の一部若しくは全部、又は配列番号 1、配列 番号 2、配列番号 3、配列番号 4、配列番号 5、配列番号 6、配列番号 7又は配列番 号 8で表される塩基配列に対する相補配列の一部若しくは全部を含有し、且つマイ コバクテリゥム 'イントラセルラーレ遺伝子の塩基配列とハイブリダィズするオリゴヌタレ ォチドを標識物質で標識したものを標識プローブとして用い、該標識プローブを試料 中の核酸とハイブリダィゼーシヨンさせ、遊離の標識プローブを除いた後、ハイブリダ ィズした複合体の標識を検出することを特徴とする、請求項 13に記載のマイコバクテ リウム 'イントラセルラーレの検出方法。
[21] 配列番号 1、配列番号 2、配列番号 3、配列番号 4、配列番号 5、配列番号 6、配列番 号 7又は配列番号 8で表される塩基配列の一部若しくは全部、又は配列番号 1、配列 番号 2、配列番号 3、配列番号 4、配列番号 5、配列番号 6、配列番号 7又は配列番 号 8で表される塩基配列に対する相補配列の一部若しくは全部を含有し、且つマイ コバクテリゥム 'イントラセルラーレ遺伝子の塩基配列とハイブリダィズするオリゴヌタレ ォチドをプライマー及び Z又はプローブとして含んでなる、マイコバクテリゥム 'イント ラセルラーレ検出用試薬キット。
PCT/JP2007/059251 2006-05-02 2007-04-27 マイコバクテリウム・イントラセルラーレ検出用プライマー及びプローブ、並びにこれを用いたマイコバクテリウム・イントラセルラーレの検出方法 WO2007129628A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008514461A JPWO2007129628A1 (ja) 2006-05-02 2007-04-27 マイコバクテリウム・イントラセルラーレ検出用プライマー及びプローブ、並びにこれを用いたマイコバクテリウム・イントラセルラーレの検出方法
US12/298,525 US8188256B2 (en) 2006-05-02 2007-04-27 Primer and probe for detection of Mycobacterium intracellulare
CN2007800157913A CN101432426B (zh) 2006-05-02 2007-04-27 胞内分枝杆菌检测用引物和探针、以及使用该引物和探针的胞内分枝杆菌的检测方法
EP07742686A EP2011871A4 (en) 2006-05-02 2007-04-27 PRIMER AND PROBE FOR THE DETECTION OF MYCOBACTERIUM INTRACELLULARE AND METHOD FOR THE DETECTION OF MYCOBACTERIUM INTRACELLULARE USING THE PRIMER AND THE PROBE
US13/478,869 US20130005595A1 (en) 2006-05-02 2012-05-23 Primer And Probe For Detection Of Mycobacterium Intracellulare, And Method For Detection Of Mycobacterium Intracellulare Using The Same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-128046 2006-05-02
JP2006128046 2006-05-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/478,869 Division US20130005595A1 (en) 2006-05-02 2012-05-23 Primer And Probe For Detection Of Mycobacterium Intracellulare, And Method For Detection Of Mycobacterium Intracellulare Using The Same

Publications (1)

Publication Number Publication Date
WO2007129628A1 true WO2007129628A1 (ja) 2007-11-15

Family

ID=38667737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/059251 WO2007129628A1 (ja) 2006-05-02 2007-04-27 マイコバクテリウム・イントラセルラーレ検出用プライマー及びプローブ、並びにこれを用いたマイコバクテリウム・イントラセルラーレの検出方法

Country Status (5)

Country Link
US (2) US8188256B2 (ja)
EP (1) EP2011871A4 (ja)
JP (2) JPWO2007129628A1 (ja)
CN (1) CN101432426B (ja)
WO (1) WO2007129628A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009145181A1 (ja) 2008-05-28 2009-12-03 和光純薬工業株式会社 マイコバクテリウム・イントラセルラー検出用プライマー及びプローブ、並びにこれを用いたマイコバクテリウム・イントラセルラーの検出方法
US8188256B2 (en) 2006-05-02 2012-05-29 Wako Pure Chemical Industries, Ltd. Primer and probe for detection of Mycobacterium intracellulare
CN114842911A (zh) * 2022-06-21 2022-08-02 深圳市睿法生物科技有限公司 基于精准医疗的基因检测流程的优化方法及装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100129796A1 (en) * 2008-11-24 2010-05-27 Micah Halpern Dye probe fluorescence resonance energy transfer genotyping
CN102533955B (zh) * 2010-12-21 2013-09-25 北京金菩嘉医疗科技有限公司 一种肽核酸探针、含有该肽核酸探针的组合物及其用途
JP2014223026A (ja) * 2013-05-15 2014-12-04 東洋紡株式会社 核酸配列の欠失または導入を判定する方法
CN110699483B (zh) * 2019-11-28 2022-07-19 福建省农业科学院植物保护研究所 一种基于lamp可视化检测玫烟色棒束孢的引物和检测方法及应用
CN112538541B (zh) * 2020-11-26 2022-10-14 中国医学科学院北京协和医院 用于胞内分枝杆菌检测的试剂盒及系统
KR102525206B1 (ko) * 2021-01-07 2023-04-24 경상국립대학교산학협력단 마이코박테리움 인트라셀룰레어 감염 진단용 프라이머 세트 및 이의 용도

Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60281A (ja) 1984-05-18 1985-01-05 松下冷機株式会社 断熱箱体
JPS60500717A (ja) 1982-09-30 1985-05-16 シンジーン,インコーポレイテッド リポ−タ−グル−プを含んでいる一定配列の1本鎖オリゴヌクレオチド、およびその化学的合成法
JPS62265999A (ja) 1986-03-05 1987-11-18 モレキユラ−・ダイアグノステイツクス・インコ−ポレ−テツド 核酸含有試料中の微生物の検出
WO1988010315A1 (en) 1987-06-19 1988-12-29 Siska Diagnostics, Inc. Transcription-based nucleic acid amplification/detection systems
JPS6440099A (en) 1987-08-06 1989-02-10 Matsushita Electric Ind Co Ltd Dehydrating basket
JPH02155589A (ja) 1988-12-09 1990-06-14 Hitachi Ltd 光路調整システム
JPH04211399A (ja) 1990-01-26 1992-08-03 Abbott Lab 核酸の増幅法
US5210015A (en) 1990-08-06 1993-05-11 Hoffman-La Roche Inc. Homogeneous assay system using the nuclease activity of a nucleic acid polymerase
JPH07114718B2 (ja) 1991-01-31 1995-12-13 ベクトン・ディッキンソン・アンド・カンパニー 鎖置換型増幅法
JPH0819394A (ja) 1993-06-04 1996-01-23 Becton Dickinson & Co 複数標的の同時増幅
US5538848A (en) 1994-11-16 1996-07-23 Applied Biosystems Division, Perkin-Elmer Corp. Method for detecting nucleic acid amplification using self-quenching fluorescence probe
JP2650159B2 (ja) 1988-02-24 1997-09-03 アクゾ・ノベル・エヌ・ベー 核酸増幅方法
JPH104984A (ja) 1996-03-15 1998-01-13 Becton Dickinson & Co 鳥型結核菌複合種の増幅および検出
US5801155A (en) 1995-04-03 1998-09-01 Epoch Pharmaceuticals, Inc. Covalently linked oligonucleotide minor grove binder conjugates
JPH116999A (ja) 1997-06-17 1999-01-12 Asahi Glass Co Ltd 液晶基板の製造方法、液晶表示素子および投射型液晶表示装置
JPH1146778A (ja) 1989-07-11 1999-02-23 Gen Probe Inc オリゴヌクレオチド検出プローブ
JPH1169999A (ja) 1997-06-25 1999-03-16 Ortho Clinical Diagnostics Inc 播種性マイコバクテリウム・アビウム複合体感染を検出するための多重化pcrアッセイ
JPH11155589A (ja) 1997-09-25 1999-06-15 Becton Dickinson & Co Mycobacterium kansasiiの検出に潜在的に有効なDNA領域の同定
US5925517A (en) 1993-11-12 1999-07-20 The Public Health Research Institute Of The City Of New York, Inc. Detectably labeled dual conformation oligonucleotide probes, assays and kits
JP3111213B2 (ja) 1994-08-18 2000-11-20 農林水産省家畜衛生試験場長 トリ結核菌群の同定法
JP2001103986A (ja) 1995-08-28 2001-04-17 Becton Dickinson & Co 鳥型結核菌複合種の増幅および検出
JP2001299354A (ja) * 2000-04-21 2001-10-30 Srl Inc マイコバクテリウム属細菌検出用核酸
US6492121B2 (en) 1999-04-20 2002-12-10 Japan Bioindustry Association Method for determining a concentration of target nucleic acid molecules, nucleic acid probes for the method, and method for analyzing data obtained by the method
JP2003135099A (ja) * 2001-10-31 2003-05-13 Mitsubishi Kagaku Bio-Clinical Laboratories Inc 抗酸菌の系統解析による同定法
JP2005204582A (ja) 2004-01-23 2005-08-04 Asahi Kasei Corp オリゴヌクレオチド及びそれを用いた非定型抗酸菌群の検出方法
WO2005103249A1 (ja) * 2004-04-26 2005-11-03 Wako Pure Chemical Industries, Ltd. 結核菌検出用プライマー及びプローブ、並びにこれを用いたヒト型結核菌の検出方法
JP2006061155A (ja) * 2004-07-28 2006-03-09 Bml Inc 抗酸菌属細菌同定キット

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5541308A (en) * 1986-11-24 1996-07-30 Gen-Probe Incorporated Nucleic acid probes for detection and/or quantitation of non-viral organisms
US6582908B2 (en) * 1990-12-06 2003-06-24 Affymetrix, Inc. Oligonucleotides
CA2119188A1 (en) * 1993-04-05 1994-10-06 Patricia A. Spears Detection and identification of mycobacteria
US6022542A (en) * 1995-09-26 2000-02-08 University Of Washington Glycoprotein B of the RFHV/KSHV subfamily of herpes viruses
US7034009B2 (en) * 1995-10-26 2006-04-25 Sirna Therapeutics, Inc. Enzymatic nucleic acid-mediated treatment of ocular diseases or conditions related to levels of vascular endothelial growth factor receptor (VEGF-R)
US5866336A (en) * 1996-07-16 1999-02-02 Oncor, Inc. Nucleic acid amplification oligonucleotides with molecular energy transfer labels and methods based thereon
US6183952B1 (en) * 1996-08-19 2001-02-06 Abbott Laboratories Reagents and methods useful for detecting diseases of the breast
JPH10323189A (ja) 1997-05-23 1998-12-08 Toyobo Co Ltd 抗酸菌属細菌の検出または菌種同定用オリゴヌクレオチドおよびその用途
EP1307587A2 (en) * 2000-03-03 2003-05-07 THE GOVERNMENT OF THE UNITED STATES OF AMERICA, as represented by THE SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICES MULTIPLEX HYBRIDIZATION SYSTEM FOR IDENTIFICATION OF PATHOGENIC i MYCOBACTERIUM /i AND METHOD OF USE
US6706867B1 (en) * 2000-12-19 2004-03-16 The United States Of America As Represented By The Department Of Health And Human Services DNA array sequence selection
US7118870B2 (en) * 2001-09-28 2006-10-10 The State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University Detection of fecal contamination using nucleic acid molecules that recognize bacterial 16S rDNA sequences
US6919180B2 (en) * 2002-03-22 2005-07-19 Sigma Genosys, L.P. Hybridization rate enhancement for substrate-bound specific nucleic acid-binding agents
JP2003284565A (ja) 2002-03-29 2003-10-07 Tosoh Corp 非定型抗酸菌Mycobacteriumintracellulare検出のためのオリゴヌクレオチドおよび検出法
WO2004067702A2 (en) 2003-01-30 2004-08-12 The University Of Warwick Methods, oligonucleotides and kits for the identification of mycobacterium in a sample
WO2006029014A2 (en) 2004-09-02 2006-03-16 The Regents Of The University Of Colorado rRNA OLIGONUCLEOTIDE PROBES FOR SPECIFIC DETECTION OF MYCOBACTERIA AND METHODS OF USE THEREOF
US7323308B2 (en) * 2004-09-03 2008-01-29 Affymetrix, Inc. Methods of genetic analysis of E. coli
US7824858B2 (en) * 2006-01-23 2010-11-02 Quest Diagnostics Investments Incorporated Assay for mycobacterium avium/intracellulare nucleic acid
JPWO2007129628A1 (ja) 2006-05-02 2009-09-17 和光純薬工業株式会社 マイコバクテリウム・イントラセルラーレ検出用プライマー及びプローブ、並びにこれを用いたマイコバクテリウム・イントラセルラーレの検出方法

Patent Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60500717A (ja) 1982-09-30 1985-05-16 シンジーン,インコーポレイテッド リポ−タ−グル−プを含んでいる一定配列の1本鎖オリゴヌクレオチド、およびその化学的合成法
JPS60281A (ja) 1984-05-18 1985-01-05 松下冷機株式会社 断熱箱体
JPS62265999A (ja) 1986-03-05 1987-11-18 モレキユラ−・ダイアグノステイツクス・インコ−ポレ−テツド 核酸含有試料中の微生物の検出
WO1988010315A1 (en) 1987-06-19 1988-12-29 Siska Diagnostics, Inc. Transcription-based nucleic acid amplification/detection systems
JPH02500565A (ja) 1987-06-19 1990-03-01 アクゾ・ノベル・ナムローゼ・フェンノートシャップ 転写に基づいた核酸増幅/検出系
JPS6440099A (en) 1987-08-06 1989-02-10 Matsushita Electric Ind Co Ltd Dehydrating basket
JP2650159B2 (ja) 1988-02-24 1997-09-03 アクゾ・ノベル・エヌ・ベー 核酸増幅方法
JPH02155589A (ja) 1988-12-09 1990-06-14 Hitachi Ltd 光路調整システム
JPH1146778A (ja) 1989-07-11 1999-02-23 Gen Probe Inc オリゴヌクレオチド検出プローブ
JPH04211399A (ja) 1990-01-26 1992-08-03 Abbott Lab 核酸の増幅法
US5210015A (en) 1990-08-06 1993-05-11 Hoffman-La Roche Inc. Homogeneous assay system using the nuclease activity of a nucleic acid polymerase
JPH07114718B2 (ja) 1991-01-31 1995-12-13 ベクトン・ディッキンソン・アンド・カンパニー 鎖置換型増幅法
JPH0819394A (ja) 1993-06-04 1996-01-23 Becton Dickinson & Co 複数標的の同時増幅
US5925517A (en) 1993-11-12 1999-07-20 The Public Health Research Institute Of The City Of New York, Inc. Detectably labeled dual conformation oligonucleotide probes, assays and kits
JP3111213B2 (ja) 1994-08-18 2000-11-20 農林水産省家畜衛生試験場長 トリ結核菌群の同定法
US5538848A (en) 1994-11-16 1996-07-23 Applied Biosystems Division, Perkin-Elmer Corp. Method for detecting nucleic acid amplification using self-quenching fluorescence probe
US5801155A (en) 1995-04-03 1998-09-01 Epoch Pharmaceuticals, Inc. Covalently linked oligonucleotide minor grove binder conjugates
JP2001103986A (ja) 1995-08-28 2001-04-17 Becton Dickinson & Co 鳥型結核菌複合種の増幅および検出
JPH104984A (ja) 1996-03-15 1998-01-13 Becton Dickinson & Co 鳥型結核菌複合種の増幅および検出
JPH116999A (ja) 1997-06-17 1999-01-12 Asahi Glass Co Ltd 液晶基板の製造方法、液晶表示素子および投射型液晶表示装置
JPH1169999A (ja) 1997-06-25 1999-03-16 Ortho Clinical Diagnostics Inc 播種性マイコバクテリウム・アビウム複合体感染を検出するための多重化pcrアッセイ
JPH11155589A (ja) 1997-09-25 1999-06-15 Becton Dickinson & Co Mycobacterium kansasiiの検出に潜在的に有効なDNA領域の同定
US6492121B2 (en) 1999-04-20 2002-12-10 Japan Bioindustry Association Method for determining a concentration of target nucleic acid molecules, nucleic acid probes for the method, and method for analyzing data obtained by the method
JP2001299354A (ja) * 2000-04-21 2001-10-30 Srl Inc マイコバクテリウム属細菌検出用核酸
JP2003135099A (ja) * 2001-10-31 2003-05-13 Mitsubishi Kagaku Bio-Clinical Laboratories Inc 抗酸菌の系統解析による同定法
JP2005204582A (ja) 2004-01-23 2005-08-04 Asahi Kasei Corp オリゴヌクレオチド及びそれを用いた非定型抗酸菌群の検出方法
WO2005103249A1 (ja) * 2004-04-26 2005-11-03 Wako Pure Chemical Industries, Ltd. 結核菌検出用プライマー及びプローブ、並びにこれを用いたヒト型結核菌の検出方法
JP2006061155A (ja) * 2004-07-28 2006-03-09 Bml Inc 抗酸菌属細菌同定キット

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
BOOM R; SOL CJ; SALIMANS MM; JANSEN CL; WERTHEIM-VAN DILLEN PM; VAN DER NOORDAA J, J. CLIN. MICROBIOL., vol. 28, no. 3, March 1990 (1990-03-01), pages 495 - 503
D. M. MORRISON'S, METHOD IN ENZYMOLOGY, vol. 68, 1979, pages 326 - 331
F. POLY ET AL., J. BACTERIOLOGY, vol. 186, no. 14, 2004, pages 4781 - 4795
FEMS MICROBIOLOGY LETTERS, vol. 166, 1998, pages 63 - 70
KENT PT; KUBICA GP: "Pubric Health Mycobacteriology, A Guide for the Level III Laboratory", 1985, CENTER FOR DISEASE CONTROL, ATLANTA, pages: 31 - 55
NUCLEIC ACIDS RES., vol. 14, 1986, pages 6115
RINSHO BYORI, CLINICAL PATHOLOGY, vol. 51, no. 11, November 2003 (2003-11-01), pages 1061 - 1067
See also references of EP2011871A4 *
SYSTEMATIC AND APPLIED MICROBIOLOGY, vol. 24, 2001, pages 109 - 112
TSUGUNORI NOTOMI ET AL., NUCLEIC ACID RES., vol. 28, 2000, pages E63
VENTER ET AL., SCIENCE, vol. 291, no. 5507, 16 February 2001 (2001-02-16), pages 1304 - 1351
VENTER, SCIENCE, vol. 291, no. 5507, 16 February 2001 (2001-02-16), pages 1304 - 1351

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8188256B2 (en) 2006-05-02 2012-05-29 Wako Pure Chemical Industries, Ltd. Primer and probe for detection of Mycobacterium intracellulare
WO2009145181A1 (ja) 2008-05-28 2009-12-03 和光純薬工業株式会社 マイコバクテリウム・イントラセルラー検出用プライマー及びプローブ、並びにこれを用いたマイコバクテリウム・イントラセルラーの検出方法
JPWO2009145181A1 (ja) * 2008-05-28 2011-10-13 和光純薬工業株式会社 マイコバクテリウム・イントラセルラー検出用プライマー及びプローブ、並びにこれを用いたマイコバクテリウム・イントラセルラーの検出方法
JP2014195461A (ja) * 2008-05-28 2014-10-16 和光純薬工業株式会社 マイコバクテリウム・イントラセルラー検出用プライマー及びプローブ、並びにこれを用いたマイコバクテリウム・イントラセルラーの検出方法
EP2853594A1 (en) 2008-05-28 2015-04-01 Wako Pure Chemical Industries, Ltd. Primer and probe for detection of Mycobacterium intracellulare, and method for detection of Mycobacterium intracellulare using the primer or the probe
US10359424B2 (en) 2008-05-28 2019-07-23 Fujifilm Wako Pure Chemical Corporation Primer and probe for detection of Mycobacterium intracellulare, and method for detection of Mycobacterium intracellulare using the primer or the probe
CN114842911A (zh) * 2022-06-21 2022-08-02 深圳市睿法生物科技有限公司 基于精准医疗的基因检测流程的优化方法及装置

Also Published As

Publication number Publication date
CN101432426A (zh) 2009-05-13
US20130005595A1 (en) 2013-01-03
US20090275026A1 (en) 2009-11-05
EP2011871A4 (en) 2010-01-27
JP2013046617A (ja) 2013-03-07
JPWO2007129628A1 (ja) 2009-09-17
CN101432426B (zh) 2012-09-19
US8188256B2 (en) 2012-05-29
EP2011871A1 (en) 2009-01-07
JP5299548B2 (ja) 2013-09-25

Similar Documents

Publication Publication Date Title
JP5299548B2 (ja) マイコバクテリウム・イントラセルラーレ検出用プライマー及びプローブ、並びにこれを用いたマイコバクテリウム・イントラセルラーレの検出方法
JP6448715B2 (ja) マイコバクテリウム・アビウム検出用プライマー及びプローブ、並びにこれを用いたマイコバクテリウム・アビウムの検出方法
US20130065231A1 (en) Primer and Probe for Use In Detection of Mycobacterium Kansasii and Method for Detection of Mycobacterium Kansasii Using The Same
JP5958498B2 (ja) マイコバクテリウム・イントラセルラー検出用プライマー及びプローブ、並びにこれを用いたマイコバクテリウム・イントラセルラーの検出方法
WO2009099037A1 (ja) クラミドフィラ・キャビエ検出用プライマー及びプローブ、並びにこれを用いたクラミドフィラ・キャビエの検出方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07742686

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008514461

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12298525

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007742686

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200780015791.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2525/MUMNP/2008

Country of ref document: IN