WO2007129517A1 - オーディオ信号処理装置及びサラウンド信号生成方法等 - Google Patents

オーディオ信号処理装置及びサラウンド信号生成方法等 Download PDF

Info

Publication number
WO2007129517A1
WO2007129517A1 PCT/JP2007/057650 JP2007057650W WO2007129517A1 WO 2007129517 A1 WO2007129517 A1 WO 2007129517A1 JP 2007057650 W JP2007057650 W JP 2007057650W WO 2007129517 A1 WO2007129517 A1 WO 2007129517A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
surround
audio
channel
audio input
Prior art date
Application number
PCT/JP2007/057650
Other languages
English (en)
French (fr)
Inventor
Keitaro Sugawara
Original Assignee
Pioneer Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corporation filed Critical Pioneer Corporation
Priority to US12/299,866 priority Critical patent/US8194860B2/en
Priority to EP07741086A priority patent/EP2018081A1/en
Priority to JP2008514413A priority patent/JP4797065B2/ja
Publication of WO2007129517A1 publication Critical patent/WO2007129517A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S5/00Pseudo-stereo systems, e.g. in which additional channel signals are derived from monophonic signals by means of phase shifting, time delay or reverberation 
    • H04S5/005Pseudo-stereo systems, e.g. in which additional channel signals are derived from monophonic signals by means of phase shifting, time delay or reverberation  of the pseudo five- or more-channel type, e.g. virtual surround
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S7/00Indicating arrangements; Control arrangements, e.g. balance control
    • H04S7/30Control circuits for electronic adaptation of the sound field
    • H04S7/305Electronic adaptation of stereophonic audio signals to reverberation of the listening space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S1/00Two-channel systems
    • H04S1/002Non-adaptive circuits, e.g. manually adjustable or static, for enhancing the sound image or the spatial distribution

Definitions

  • the present application relates to audio signal processing, and more particularly to the field of technology for generating a surround signal having reflected sound and reverberant sound.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2000-102100
  • the surround signal is generated based on the audio input signal (that is, depending on the signal level of the audio input signal).
  • the signal level of the output signal fluctuates greatly, making it difficult to stabilize the signal level of the output signal. As a result, it is difficult to obtain a natural sound expansion feeling.
  • an audio signal processing apparatus and a surround signal generation method capable of obtaining a stable output signal level and a sense of spread that do not depend on an audio input signal, with solving such a problem as one problem.
  • the purpose is to provide.
  • an audio input signal input means for inputting an audio input signal corresponding to each of a plurality of channels, and a surround signal having reflected sound and reverberant sound.
  • Surround signal generating means for generating a surround signal corresponding to each of the plurality of channels, wherein the surround signal generating means is connected to the audio input signal corresponding to one channel and the one channel.
  • the surround signal corresponding to the first channel based on the variable that changes within the predetermined range according to the signal level of the surround signal corresponding to the predetermined time and the audio input signal corresponding to another channel! Is generated.
  • a step of inputting an audio input signal corresponding to each of a plurality of channels, and a surround signal having reflected sound or reverberation sound and corresponding to each of the plurality of channels is provided.
  • a surround signal generation step for generating a signal wherein the surround signal generation step is performed by adjusting an audio input signal corresponding to one channel and a signal level of the surround signal a predetermined time before corresponding to the one channel. Accordingly, a surround signal corresponding to the one channel is generated based on a variable that changes within a predetermined range and the audio input signal corresponding to another channel.
  • the computer includes audio input signal input means for inputting an audio input signal corresponding to each of a plurality of channels, and a surround signal having reflected sound and reverberation sound
  • the surround signal generating means functions as a surround signal generating means for generating a surround signal corresponding to each of a plurality of channels
  • the surround signal generating means includes an audio input signal corresponding to one channel and a predetermined time before corresponding to the one channel. Based on the variable that changes within a predetermined range according to the signal level of the surround signal and the audio input signal corresponding to another channel, a surround signal corresponding to the channel 1 is generated. It is characterized by that.
  • the surround signal generation processing program is stored in a computer-readable manner.
  • FIG. 1 is a diagram showing a schematic configuration example of an audio playback device according to the present embodiment.
  • FIG. 2 is a diagram showing a signal flow for generating audio output signals Lo and Ro in DSP5.
  • FIG. 3 is a diagram showing details of a generation signal flow of a surround signal Ls in the surround signal generation unit shown in FIG.
  • FIG. 5 is a diagram showing a modification of the generation signal flow of the audio output signals Lo and Ro shown in FIG. 2.
  • FIG. 1 is a diagram illustrating a schematic configuration example of an audio reproduction device according to the present embodiment.
  • the audio playback device S reads recorded information from a disc such as MD (Mini Disc), CD (Compact Disc), or DVD (Digital Versatile Disc), and plays back audio input signals L and R.
  • Disc playback unit 1 to output tuner 2 that receives broadcast waves broadcast from TV broadcasts and radio broadcasts, and reproduces and outputs audio input signals Li and Ri, and audio input signals Li and Ri from tuner 2 AZ D conversion 3 that converts analog Z to digital and outputs the audio input signals Li and Ri from the disc playback unit 1 and audio input signals Li and Ri from the AZD conversion 3 4 and DSP (Digital Signal processor) 5 that performs signal processing described later on the audio input signals Li and Ri from the source switching unit 4 and outputs audio output signals Lo and Ro, and audio output from DSP 5 Signal Lo, Ro is digital Z DZA converters (DAC) 6a and 6b that output after analog conversion, audio output signals from amplifiers 7a and 7b that amplify and output audio output signals Lo and Ro from DZA converters 6a
  • DAC
  • the audio input signal Li corresponds to the left channel (hereinafter referred to as “Lch”)
  • the audio input signal Ri corresponds to the right channel (hereinafter referred to as “Rch”).
  • Li and audio input signal Ri are stereo signals with different recorded sound sources.
  • the system control unit 9 includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a working RAM (Random Access Memory), and the like.
  • the CPU executes a predetermined program, and the operation unit 10
  • the overall operation of the audio playback device S is controlled in response to an instruction (eg, audio playback instruction, tuning instruction, source switching instruction, etc.) signal.
  • an instruction eg, audio playback instruction, tuning instruction, source switching instruction, etc.
  • the DSP 5 is a predetermined product including the surround signal generation processing program of the present application.
  • the audio input signal Li, Ri corresponding to each of the Lch and Rch, and the audio input signal input means, surround signal generation means, and audio output signal generation means of the present application.
  • Surround signals Ls and Rs corresponding to each of Lch and Rch, which are reflected signals and reverberant sounds, are generated, and the audio input signals Li and Ri and the surround signals Ls and Rs are added for each channel.
  • audio output signals Lo and Ro are generated (for example, audio input signal Li and surround signal Ls corresponding to the channel of audio input signal Li are added to generate audio output signal Lo) and output respectively. It ’s like that!
  • the surround signal generation processing program of the present application may be stored in advance in, for example, a ROM or the like provided in the audio playback device S, or may be stored and stored in a predetermined server connected to the Internet or the like, for example.
  • the DSP 5 may be configured to be provided separately for the Lch and the Rch.
  • the surround signals Ls and Rs are generated based on the following equations (1) and (2).
  • Ls (t) Li (t) + Ri (t) cos ( ⁇ 1- ⁇ 2
  • t indicates time
  • I Ls (t-1) I is the signal level of the surround signal Ls (t-1) a predetermined time before the surround signal Ls (t) (for example, one sampling time)
  • I Rs (t-1) I is the surround signal Rs (t before the surround signal Rs (t) for a predetermined time (for example, one sampling time).
  • the absolute value of the signal level (amplitude) of t-1) is shown.
  • the amplitudes of the surround signals Ls and Rs are adjusted so as to vary within a range of ⁇ 2 (minimum value) to 2 (maximum value).
  • ⁇ 1, 0 2 can be set arbitrarily according to the desired sound field. It can be specified (for example, when the user operates the operation button).
  • the surround signal Ls is determined according to the signal level of the audio input signal Li and the surround signal Ls (surround signal corresponding to Lch) before a predetermined time (for example, one sampling time). It can be seen that it is generated based on the variable (cos ( ⁇ 1 — 0 2 I Ls I)) that changes within the range and the audio input signal Ri.
  • the surround signal Rs is determined according to the signal level of the audio input signal Ri and the surround signal Rs (surround signal corresponding to Rch) before a predetermined time (for example, one sampling before). It can be seen that it is generated based on the variable (cos ( ⁇ 1 — 0 2 I Rs I)) that changes within the range and the audio input signal Li.
  • a variable that changes within a predetermined range according to the signal level of the surround signal is a variable obtained by a cosine function (cos ⁇ ), and the predetermined range is from 1 to Any range between + 1.
  • the surround signals L s and Rs are limited to a predetermined time before the range is stabilized by the cosine function (cos ⁇ ).
  • Rs is generated based on Rs (does not depend only on the audio input signal L).
  • the surround signal Ls can be obtained by subtracting (subtracting) the audio input signal L ⁇ component from the audio input signal R ⁇ component of the other channel by the ratio of w. Realize the control of how much the input signal R ⁇ is drawn by cos ⁇ ! (This is the same for the surround signal Rs.)
  • the audio output signals Lo and Ro are generated based on the following equations (5) and (6).
  • the audio output signal Lo is the audio input signal Li and the It can be seen that the generated signal Ls is added and generated.
  • FIG. 2 is a diagram showing a signal flow for generating audio output signals Lo and Ro in DSP5, which shows a specific signal flow based on the above equations (5) and (6).
  • FIG. 3 is a diagram showing the details of the signal flow for generating the surround signal Ls in the surround signal generation unit shown in FIG. 2, and this shows a specific signal flow based on the above equation (1). is there.
  • the signal flow for generating the surround signal Rs is the same when L and R are reversed in Fig. 3, so the illustration is omitted and the description overlapping the generation of the surround signal Rs is omitted.
  • each part shown in 41 to 43 in FIG. 2 and each part shown in 51 to 59 in FIG. 3 represent an arithmetic processing part executed by the DSP 5.
  • the audio input signal Li input to the DSP 5 is input to the surround signal generation unit 41 and the addition unit 42, and the audio input signal Ri is The signal is input to the surround signal generator 41 and the adder 43.
  • the adder 51 adds the audio input signal Li and the intermediate signal Rim to generate the surround signal Ls, and the surround signal Ls is The signal is branched by the branching unit 52, one of which is output as the surround signal generation unit 41, and the other is fed back.
  • the surround signal Ls before one sampling time is extracted by the previous signal extraction 53.
  • the absolute value of the surround signal Ls before one sampling time is calculated by the absolute value calculation unit 54, and then passed through a first-order low-pass filter 55 as an example of a time constant circuit to be predetermined.
  • the rise of the signal is moderated in accordance with the time constant.
  • the reason why the signal is passed through the low-pass filter 55 is to suppress a sudden change in the surround signal Ls and make it smooth.
  • ⁇ 1 and — ⁇ 2 I Ls I set in advance are added by the adding unit 57, and then cos (0 1 ⁇ 0 2 I Ls
  • the calculated cos (0 1 ⁇ 2 I Ls I) and the audio input signal Ri are multiplied by the multiplication unit 59 to generate an intermediate signal Rim (multiplied signal).
  • the generated intermediate signal Rim is calored by the adder 51 with the audio input signal Li to generate and output a surround signal Ls.
  • the surround signal Ls thus generated and output from the surround signal generation unit 41 is input to the addition unit 42 and added to the audio input signal Li, as shown in FIG. 2, to generate the audio output signal Lo.
  • the DSP 5 outputs (actually, the audio output signal Lo is output after performing known signal processing such as loudness calculation and EQ in the DSP 5 as appropriate).
  • the surround signal Rs output from the surround signal generation unit 41 is input to the addition unit 43 and added to the audio input signal Ri to generate the audio output signal Ro, as shown in FIG. Will be output.
  • the surround signal Ls, Rs is generated in the surround signal generation unit 41 with a long time and a delay occurs, the audio input signal and the surround signal are synchronized, or the audio input signals Li, Ri And the surround signals Ls and Rs, a delay unit is provided in front of the adders 42 and 43, and the audio input signals Li and Ri are transmitted by the delay unit for a predetermined time (so that synchronization can be achieved). It is also possible to configure the delay time to be input to the adders 42 and 43 after being delayed!
  • the above processing is performed in time series for each sampling.
  • Lch will be described as a representative.
  • FIG. 4A is a diagram showing an example of the movement of “cos (0 1 ⁇ 0 2
  • the signal Ls is dominated by the audio input signal L.
  • FIG. 4 (B) is a diagram showing an example of the movement of “cos (0 1— 0 2
  • w increases as the signal level of the surround signal Ls increases (approaching 0.5 to 1), so from the above equation (3), the surround signal Ls is Regardless of whether the signal level is large or small, the differential signal component of Li-Ri becomes dominant and the feeling of spreading can be increased, and further, the feeling of spreading can be increased as the sound becomes louder.
  • the system control unit 9 uses a listener-powered operation / display unit 10 to select a mode selection finger.
  • the selection buttons with the characters of Listening Mode 1, Listening Mode 2 and Listening Mode 3 displayed can be selected on the display panel of the operation 'display unit 10 (any one).
  • the set values of 0 1 and 0 2 are transmitted from the system control unit 9 to the DSP 5 and set in the DSP 5.
  • the listener can select a desired mode according to how he / she wants to enjoy audio in the listening space (in other words, a desired sound field).
  • the audio input signals Li and Ri corresponding to the Lch and Rch are input, the audio input signal Li, and the surround signal Ls before a predetermined time.
  • the audio input signal Ri and the variable that changes within the predetermined range according to the signal level of the audio signal for example, the variable that changes within the predetermined range according to the signal level of the surround signal Ls before the predetermined time
  • a surround signal Ls is generated (by multiplying the input signal Ri and the multiplied signal and the audio input signal Li are added), and the signal level of the audio input signal Ri and the surround signal Rs before a predetermined time is set.
  • the surround signal Rs is generated based on the variable that changes within a predetermined range and the audio input signal Li, and these surround signals Ls and Rs are added to the audio input signals Li and Ri. Since it is output as audio output signals Lo and Ro, stable output signal levels that do not depend on audio input signals Li and Ri (output signal levels of surround signals and audio output signals) and sound spread A feeling (in other words, a sound effect) can be obtained. For example, when enjoying audio in the passenger compartment, it is possible to improve the sound field impression with a sense of closure unique to the passenger compartment and create a natural sound spread and spatiality.
  • the surround signal is further stabilized by stabilizing the range. Can be fed back to generate a surround signal As a result, a more stable surround output signal level and sound expansion can be obtained.
  • the value of ⁇ in the cosine function (cos ⁇ ) can be set arbitrarily, and the predetermined range is determined by the value of ⁇ , so that it depends on the sound field desired by the listener. Optimal audio output can be achieved.
  • FIG. 5 is a modification of the signal flow for generating the audio output signals Lo and Ro shown in FIG. 2 (the same components as in FIG. 2 are given the same reference numerals).
  • the audio input signals Li and Ri input to the DSP 5 are respectively delayed by the delay units 61 and 62 (to synchronize with the surround signal).
  • the surround signals Ls and Rs output from the surround signal generation unit 41 pass through BPFs (bandpass filters) 63 and 64 and pass through a predetermined band (for example, a band in a certain range such as a vocal band). Only the surround signals Ls and Rs are extracted. As a result, it is possible to increase the sense of sound spread only in a predetermined band.
  • reference numerals 65 to 68 denote addition rate determining units for determining the addition rate between the audio input signal and the surround signal.
  • the audio output signal Lo from the delay unit 61 and the BPF63 denote addition rate determining units for determining the addition rate between the audio input signal and the surround signal.
  • the surround signal Ls whose signal level is attenuated to the original half is added (by the adder 42), and the audio output signal Lo is generated. This makes it possible to adjust the sense of sound spread.
  • a delay unit is provided after BPF63, 64, and the delay unit delays the surround signal Ls from BPF63 and the surround signal Ls from BPF64, respectively (that is, The audio input signals Li and R may be intentionally delayed).
  • the variable that changes within a predetermined range in accordance with the signal level of the surround signal is determined by the cosine function (cos ⁇ ).
  • the present invention is not limited to this.
  • it may be configured to be obtained by a sine function (sin ⁇ ).
  • the sine function (sin e) shifting the values of ⁇ 1 and ⁇ 2 by ⁇ ⁇ 2 (for example, moving forward) with respect to the cosine function (cos ⁇ ) produces the same effect.
  • the audio input signals Li and Ri and the surround signals Ls and Rs are added to generate and output the audio output signals Lo and Ro.
  • the generated surround signals Ls and Rs are output as they are (for example, output from a speaker dedicated to surround signals (a speaker corresponding to any two channels in the case of 5. lch)). It may be configured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Stereophonic System (AREA)
  • Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)

Abstract

 オーディオ入力信号に依存しない安定した出力信号レベルと拡がり感を得ることが可能なオーディオ信号処理装置及びサラウンド信号生成方法等を提供する。  複数のチャンネルの夫々に対応するオーディオ入力信号を入力し、反射音や残響音を有するサラウンド信号であって前記複数のチャンネルの夫々に対応するサラウンド信号を生成するDSP5が、1のチャンネルに対応するオーディオ入力信号と、前記1のチャンネルに対応する所定時間前の前記サラウンド信号の信号レベルに応じて所定範囲内で変化する変数と、他のチャンネルに対応する前記オーディオ入力信号とに基づいて前記1のチャンネルに対応するサラウンド信号を生成する。

Description

明 細 書
オーディオ信号処理装置及びサラウンド信号生成方法等
技術分野
[0001] 本願は、オーディオ信号処理に関し、特に、反射音や残響音を有するサラウンド信 号を生成する技術の分野に関する。
背景技術
[0002] 従来から、音楽、映画等のオーディオ信号に反射音や残響音 (リバーブ)を加えて 、臨場感のある空間的な音場イメージを模擬する SFC (サラウンドフィールドコントロー ル)技術が知られている。
[0003] このような技術の一例として、特許文献 1 (図 1参照)に開示されたサラウンド回路で は、左右(レフトチャンネル(Lch)及びライトチャンネル (Rch) )のオーディオ入力信 号カゝらサラウンド信号 LS及び RSが演算され、当該サラウンド信号 LS及び RSは、そ れぞれ減衰回路で減衰された後に、加算回路でそれぞれ左右のオーディオ入力信 号と加算され出力されるようになっている。これにより、聴取者に対してサラウンド効果 のある音を発生させている。
特許文献 1 :特開 2000— 102100号公報
発明の開示
発明が解決しょうとする課題
[0004] し力しながら、このような従来の SFC技術では、上記サラウンド信号は、オーディオ 入力信号に基づいて生成 (つまり、オーディオ入力信号の信号レベルに依存)される ため、オーディオ入力信号の変動が大きいと、出力信号の信号レベルが大きく変動 し、出力信号の信号レベルを安定させることは困難となり、その結果、自然な音の拡 力 Sり感を得ることが困難であった。
[0005] そこで、本願は、このような問題の解消を一つの課題とし、オーディオ入力信号に 依存しない安定した出力信号レベルと拡がり感を得ることが可能なオーディオ信号処 理装置及びサラウンド信号生成方法等を提供することを目的とする。
課題を解決するための手段 [0006] 上記課題を解決するため、本願の一つの観点では、複数のチャンネルの夫々に対 応するオーディオ入力信号を入力するオーディオ入力信号入力手段と、反射音や残 響音を有するサラウンド信号であって前記複数のチャンネルの夫々に対応するサラ ゥンド信号を生成するサラウンド信号生成手段と、を備え、前記サラウンド信号生成 手段は、 1のチャンネルに対応するオーディオ入力信号と、前記 1のチャンネルに対 応する所定時間前の前記サラウンド信号の信号レベルに応じて所定範囲内で変化 する変数と、他のチャンネルに対応する前記オーディオ入力信号とに基づ!ヽて前記 1のチャンネルに対応するサラウンド信号を生成することを特徴とする。
[0007] 本願の他の観点では、複数のチャンネルの夫々に対応するオーディオ入力信号を 入力する工程と、反射音や残響音を有するサラウンド信号であって前記複数のチヤ ンネルの夫々に対応するサラウンド信号を生成するサラウンド信号生成工程と、を備 え、前記サラウンド信号生成工程は、 1のチャンネルに対応するオーディオ入力信号 と、前記 1のチャンネルに対応する所定時間前の前記サラウンド信号の信号レベルに 応じて所定範囲内で変化する変数と、他のチャンネルに対応する前記オーディオ入 力信号とに基づいて前記 1のチャンネルに対応するサラウンド信号を生成することを 特徴とする。
[0008] 本願の更に他の観点では、コンピュータを、複数のチャンネルの夫々に対応するォ 一ディォ入力信号を入力するオーディオ入力信号入力手段、反射音や残響音を有 するサラウンド信号であって前記複数のチャンネルの夫々に対応するサラウンド信号 を生成するサラウンド信号生成手段として機能させ、前記サラウンド信号生成手段は 、 1のチャンネルに対応するオーディオ入力信号と、前記 1のチャンネルに対応する 所定時間前の前記サラウンド信号の信号レベルに応じて所定範囲内で変化する変 数と、他のチャンネルに対応する前記オーディオ入力信号とに基づ!/、て前記 1のチヤ ンネルに対応するサラウンド信号を生成することを特徴とする。
[0009] 本願の更に他の観点では、前記サラウンド信号生成処理プログラムがコンピュータ 読み取り可能に記憶されていることを特徴とする。
図面の簡単な説明
[0010] [図 1]本実施形態に係るオーディオ再生装置の概要構成例を示す図である。 [図 2]DSP5におけるオーディオ出力信号 Lo, Roの生成シグナルフローを示す図で ある。
[図 3]図 2に示すサラウンド信号生成部におけるサラウンド信号 Lsの生成シグナルフ ローの詳細を示す図である。
[図 4](A)は、 01=π, 02=π/4とした場合の「cos(01— 02 I Ls I )」の動きの 一例を示す図であり、(B)は、 01 = 2πΖ3, 02=—兀76とした場合の「。05(01 - Θ 2 I Ls I;)」の動きの一例を示す図である。
[図 5]図 2に示すオーディオ出力信号 Lo, Roの生成シグナルフローの変形例を示す 図である。
符号の説明
[0011] 1 ディスク再生部
2 チューナ
3 AZD変
4 ソース切替部
5 DSP
6a, 6b DZA変
7a, 7b アンプ
8a, 8b スピーカ
9 システム制御部
10 操作,表示部
41 サラウンド信号生成部
S オーディオ再生装置
発明を実施するための最良の形態
[0012] 以下、本願の最良の実施形態を図面に基づいて説明する。なお、以下に説明する 実施の形態は、車室内又は建物の室内等に設置されるオーディオ再生装置に対し て本願を適用した場合の実施形態である。
[0013] 先ず、図 1を参照して、本実施形態に係るオーディオ再生装置の構成,機能につい て説明する。 [0014] 図 1は、本実施形態に係るオーディオ再生装置の概要構成例を示す図である。
[0015] 図 1に示すように、オーディオ再生装置 Sは、 MD (Mini Disc)、 CD (Compact Disc) 又は DVD (Digital Versatile Disc)等のディスクから記録情報を読み出しオーディオ 入力信号 L, Rを再生出力するディスク再生部 1と、テレビ放送やラジオ放送カゝら放送 された放送波を受信しオーディオ入力信号 Li, Riを再生出力するチューナ 2と、チュ ーナ 2からのオーディオ入力信号 Li, Riをアナログ Zデジタル変換して出力する AZ D変翻 3と、ディスク再生部 1からのオーディオ入力信号 Li, Riと AZD変翻 3か らのオーディオ入力信号 Li, Riとを切替出力するソース切替部 4と、ソース切替部 4か らのオーディオ入力信号 Li, Riに対して後述する信号処理を施しオーディオ出力信 号 Lo, Roを出力する DSP (Digital Signal processor) 5と、 DSP5からのオーディオ出 力信号 Lo, Roをデジタル Zアナログ変換して出力する DZA変換器 (DAC) 6a, 6b と、 DZA変換器 6a, 6bからのオーディオ出力信号 Lo, Roを増幅し出力するアンプ 7a, 7bと、アンプ 7a, 7bからのオーディオ出力信号 Lo, Roを音波として出力するス ピー力 8a, 8bと、システム制御部 9と、ユーザからの各種操作指示を受け付ける操作 ボタン、及び各種情報を表示する表示パネルを有する操作'表示部 10と、を備えて 構成されている。
[0016] なお、ディスク再生部 1及びチューナ 2の機能については公知であるので、詳しい 説明を省略する。
[0017] ここで、オーディオ入力信号 Liはレフトチャンネル(以下、「Lch」という)に対応し、 オーディオ入力信号 Riはライトチャンネル (以下、「Rch」という)に対応しており、当該 オーディオ入力信号 Li及びオーディオ入力信号 Riは、互いに収録された音源が異 なるステレオ信号である。
[0018] システム制御部 9は、 CPU (Central Processing Unit) , ROM (Read Only Memory) ,作業用 RAM (Random Access Memory)等を備え、 CPUが所定のプログラムを実 行し、操作部 10からの指示 (例えば、オーディオ再生指示、チューニング指示、ソー ス切替指示等)信号に応じてオーディオ再生装置 S全体の動作制御を行うようになつ ている。
[0019] そして、 DSP5は、本願のサラウンド信号生成処理プログラムを含む所定のプロダラ ムを実行することにより、本願のオーディオ入力信号入力手段、サラウンド信号生成 手段、及びオーディオ出力信号生成手段等として機能し、 Lch及び Rchの夫々に対 応するオーディオ入力信号 Li, Riを入力し、反射音や残響音を有するサラウンド信号 であって Lch及び Rchの夫々に対応するサラウンド信号 Ls, Rsを生成し、チャンネル 毎に、上記オーディオ入力信号 Li, Riと上記サラウンド信号 Ls, Rsとを加算してォー ディォ出力信号 Lo, Roを生成 (例えば、オーディオ入力信号 Liと、当該オーディオ 入力信号 Liのチャンネルに対応するサラウンド信号 Lsとを加算してオーディオ出力 信号 Loを生成)し夫々出力するようになって!/ヽる。
[0020] なお、本願のサラウンド信号生成処理プログラムは、オーディオ再生装置 Sに備え る、例えば ROM等に予め記憶されていても良いし、例えば、インターネット等に接続 された所定のサーバに記憶保存しておき、当該サーバからオーディオ再生装置 Sに ダウンロードして例えば当該オーディオ再生装置 Sに備える不揮発性メモリ又はハー ドディスクに記憶する力、或いは、 CD— ROM等の記録媒体に記録された上記プロ グラムをドライブ等を介してオーディオ再生装置 Sに読み込み不揮発性メモリ又はハ ードディスクに記憶するように構成しても良 、。
[0021] また、 DSP5は、 Lch用と Rch用とを別々に設けられるように構成されても構わない
[0022] 次に、 DSP5におけるサラウンド信号及びオーディオ出力信号生成方法について の基本的な考え方について説明する。
[0023] サラウンド信号 Ls, Rsは、下記(1) , (2)式に基づき生成される。
[0024] Ls(t)=Li(t)+Ri(t)cos ( θ 1 - Θ 2 | Ls(t— 1) | ) · · · (1)
Rs(t)=Ri(t)+Li(t)cos ( θ 1 - Θ 2 | Rs(t— 1) | ) · · · (2)
ここで、 tは時間を示し、 I Ls(t-1) Iはサラウンド信号 Ls(t)の所定時間前 (例えば、 1サンプリング分の時間前)のサラウンド信号 Ls(t- 1)の信号レベル (振幅:音の大きさ に比例)の絶対値を示し、 I Rs(t-1) Iはサラウンド信号 Rs(t)の所定時間前 (例えば、 1サンプリング分の時間前)のサラウンド信号 Rs(t-1)の信号レベル (振幅)の絶対値を 示している。また、サラウンド信号 Ls, Rsの振幅は、— 2 (最小値)〜 2 (最大値)の範 囲で変動するように調整される。また、 Θ 1, 0 2は、所望する音場に応じて任意に設 定可能 (例えば、ユーザが操作ボタンを操作することにより)になっている。
[0025] これにより、サラウンド信号 Lsは、オーディオ入力信号 Liと、所定時間前 (例えば、 1 サンプリング分の時間前)のサラウンド信号 Ls (Lchに対応するサラウンド信号)の信 号レベルに応じて所定範囲内で変化する変数 (cos ( θ 1— 0 2 I Ls I ) )と、オーディ ォ入力信号 Riと、に基づ 、て生成されることがわかる。
[0026] 一方、サラウンド信号 Rsは、オーディオ入力信号 Riと、所定時間前 (例えば、 1サン プリング分の時間前)のサラウンド信号 Rs (Rchに対応するサラウンド信号)の信号レ ベルに応じて所定範囲内で変化する変数 (cos ( θ 1— 0 2 I Rs I ) )と、オーディオ 入力信号 Liと、に基づいて生成されることがわかる。
[0027] なお、この例では、サラウンド信号の信号レベルに応じて所定範囲内で変化する変 数は、余弦関数 (cos Θ )により求められる変数となっており、当該所定範囲は、 1か ら + 1の間の何れかの範囲になる。
[0028] このように、サラウンド信号 Ls, Rsは、余弦関数 (cos Θ )により範囲を限定させて安 定するようにした所定時間前 (例えば、 1サンプリング分の時間前)のサラウンド信号 L s, Rsに基づき生成されるようにしている(オーディオ入力信号 Lのみに依存しない)。
[0029] ところで、「一 cos ( 0 1— 0 2 I Ls(t— 1) | )」を wとし、「一 cos ( 0 1— 0 2 | Rs(t— 1)
L
I )」を wとすると、上記(1) , (2)式は、夫々、下記(3) , (4)式に変形することができ
R
る(簡略のため、 tを省略)。
[0030] Ls =Li-Riw · · · (3)
L
Rs =Ri-Liw
R…(4)
例えば、上記(3)式より、サラウンド信号 Lsは、オーディオ入力信号 L减分力も他方 のチャンネルのオーディオ入力信号 R减分を wしの割合だけ引く(減算する)ことによ り得られ、オーディオ入力信号 R减分をどれだけ引くかという制御を cos Θによって実 現して!/、ることになる(サラウンド信号 Rsにつ 、ても同様の考え)。
[0031] そして、オーディオ出力信号 Lo, Roは、下記(5) , (6)式に基づき生成される。
[0032] Lo(t)=Li(t)+Ls(t) - · · (5)
Ro(t) =Ri(t) +Rs(t)…(6)
例えば、上記(5)式より、オーディオ出力信号 Loは、オーディオ入力信号 Liと、サラ ゥンド信号 Lsとが加算されて生成されることがわかる。
[0033] 次に、図 2及び図 3を参照して、 DSP5におけるより具体的な処理について説明す る。
[0034] 図 2は、 DSP5におけるオーディオ出力信号 Lo, Roの生成シグナルフローを示す 図であり、これは、上記(5) , (6)式を基に、具体的なシグナルフローを表したもので ある。図 3は、図 2に示すサラウンド信号生成部におけるサラウンド信号 Lsの生成シグ ナルフローの詳細を示す図であり、これは、上記(1)式を基に、具体的なシグナルフ ローを表したものである。なお、サラウンド信号 Rsの生成シグナルフローも、図 3にお いて Lと Rとが逆になるだけで同様のフローとなるので、図示を省略し、サラウンド信 号 Rsの生成と重複する説明を省略する。また、図 2における 41乃至 43に示す各部、 及び図 3における 51乃至 59に示す各部は、 DSP5により実行される演算処理部分を 表している。
[0035] 図 2に示すオーディオ出力信号 Lo, Roの生成シグナルフローにおいて、 DSP5に 入力されたオーディオ入力信号 Liは、サラウンド信号生成部 41及び加算部 42に入 力され、オーディオ入力信号 Riは、サラウンド信号生成部 41及び加算部 43に入力さ れる。
[0036] 次に、図 3に示すサラウンド信号 Lsの生成シグナルフローにおいて、加算部 51によ り、オーディオ入力信号 Liと中間信号 Rimが加算されサラウンド信号 Lsが生成され、 当該サラウンド信号 Lsは、分岐部 52にて分岐され、一方はサラウンド信号生成部 41 力 出力され、他方はフィードバックされる。
[0037] そして、他方のサラウンド信号 Lsは、フィードバックされる過程にぉ 、て、先ず、前 信号抽出 53により 1サンプリング分の時間前のサラウンド信号 Lsを抽出する。
[0038] 次いで、 1サンプリング分の時間前のサラウンド信号 Lsは、絶対値算出部 54により 絶対値が算出され、続いて、時定数回路の一例としての 1次のローパスフィルタ 55に 通過されて所定の時定数に応じて信号の立ち上がりが緩やかにされる。ここでローバ スフィルタ 55に通過させるのは、サラウンド信号 Lsの急激な変化を抑え滑らかにする ためである。
[0039] 次いで、ローパスフィルタ 55を通過したサラウンド信号 Lsの絶対値は、乗算部 56に より、予め設定された Θ 2と乗算され、結果、「 Θ 2 I Ls I」が算出される。
[0040] 次いで、予め設定された θ 1と— Θ 2 I Ls Iが加算部 57により加算され、続いて、 c os (コサイン)算出部 58により cos ( 0 1— 0 2 I Ls | )が算出される。
[0041] 次いで、算出された cos ( 0 1 - Θ 2 I Ls I )とオーディオ入力信号 Riとが乗算部 59 により乗算されて中間信号 Rim (乗算された信号)が生成される。
[0042] そして、生成された中間信号 Rimは、加算部 51により、オーディオ入力信号 Liとカロ 算されサラウンド信号 Lsが生成、出力される。
[0043] こうして生成され、サラウンド信号生成部 41から出力されたサラウンド信号 Lsは、図 2に示すように、加算部 42に入力され、オーディオ入力信号 Liと加算されてオーディ ォ出力信号 Loが生成、 DSP5から出力(実際には、オーディオ出力信号 Loは、 DSP 5内でラウドネス計算、 EQ等の公知の信号処理が適宜施された後出力)されることに なる。同じように、サラウンド信号生成部 41から出力されたサラウンド信号 Rsは、図 2 に示すように、加算部 43に入力され、オーディオ入力信号 Riと加算されてオーディ ォ出力信号 Roが生成、 DSP5から出力されることになる。
[0044] なお、サラウンド信号生成部 41におけるサラウンド信号 Ls, Rsの生成に時間がかか り遅延が生じる場合、オーディオ入力信号とサラウンド信号との同期をとるため、また はオーディオ入力信号 Li, Riとサラウンド信号 Ls, Rsとに任意の遅延差を与えるため に、加算部 42及び 43の前段に遅延部を設け、当該遅延部によりオーディオ入力信 号 Li, Riを所定時間(同期がとれるようになる時間、または任意の遅延差となる時間) 遅延させてから加算部 42及び 43に入力させるように構成しても良!、。
[0045] 以上の処理は、各サンプリング毎に時系列的に行われることになる。
[0046] 次に、 Θ 1, Θ 2に具体的な値 (望ましい値)を設定した場合の実施例を説明する。
なお、 Lchを代表として説明する。
[0047] 図 4 (A)は、 0 1 = π , 0 2 = π /4とした場合の「cos ( 0 1— 0 2 | Ls | )」の動きの 一例を示す図である。 θ 1 = π , Θ 2 = π Ζ4とした場合、図 4 (Α)に示すように、 cos ( π π /4 I Ls I )は、 | Ls |の変化(0〜2)に応じて、 1〜0の範囲で変化する ようになっている。
[0048] これにより、例えば、サラウンド信号 Lsの信号レベルが小さいと、 w ( =— cos ( π— π /4 I Ls I )は大きくなる(1に近づく)ことから、上記(3)式より、サラウンド信号 Ls は、 Li Riの差分信号成分が支配的となる。一方、例えば、サラウンド信号 Lsの信号 レベルが大きいと、 wは小さくなる (0に近づく)ことから、上記(3)式より、サラウンド信 し
号 Lsは、オーディオ入力信号 L减分が支配的となる。
[0049] 特に、オーディオ入力信号 Liがオーディオ入力信号 Riと逆相のときに、 wが大き ヽ し
(音が小さい)と、サラウンド信号 Ls = Li— Ri = 2Liに近づき音を大きくすることができ 、 wが小さい (音が大きい)と、サラウンド信号 Ls = Liに近づき、音が大きくなるのを抑 し
えることができる。したがって、サラウンド信号 Lsの信号レベルを安定させるように制 御することが可能となる。
[0050] 図 4 (B)は、 0 1 = 2 π Ζ3, 0 2 =— π /6とした場合の「cos ( 0 1— 0 2 | Ls | )」 の動きの一例を示す図である。 θ 1 = 2 π /3, 0 2 =— π Ζ6とした場合、図 4 (B)に 示すように、 COS (2 TU /3 + TU /6 I Ls | )は、 | Ls | の変化(0〜2)に応じて、 0 . 5〜― 1の範囲で変化(つまり、図 4 (A)よりも狭い範囲で変ィ匕)するようになつてい る。
[0051] これにより、例えば、サラウンド信号 Lsの信号レベルが大きくなるにしたがって wは し 大きくなる(0. 5から 1に近づいていく)ことから、上記(3)式より、サラウンド信号 Lsは 、信号レベルが大きくても小さくても、 Li— Riの差分信号成分が支配的となり拡がり感 を増すことができ、更に、音が大きくなるにしたがってより拡がり感を増すことができる
[0052] なお、上記 0 1, 0 2の値の組み合わせの他にも様々な組み合わせが考えられる。
一例として、「cos ( 0 1 - Θ 2 I Ls I;)」をどのような範囲でどのような方向(つまり、 I Ls Iが 0から 1へ変化することに比例して増加する力、或いは減少する力)に制御す るかを決めた上で、 θ 1と Θ 2の値の組み合わせを考えると良い。例えば、上記 θ 1, Θ 2の値の組み合わせの他にも、望ましい値の組み合わせとして、 0 1 =4 π Ζ5, Θ 2 = π Ζ4とすることが考えられる。
[0053] 以上の 0 1と 0 2の値の組み合わせは、聴取者が操作'表示部 10を操作して選択 可能とすることが望ましい。
[0054] 例えば、システム制御部 9は、聴取者力もの操作 ·表示部 10を介したモード選択指 示に応じて、聴取モード 1、聴取モード 2、及び聴取モード 3の文字が表示された選 択ボタンを夫々、操作'表示部 10における表示パネル上に選択可能 (何れか一つ) に表示させ、聴取モード 1が選択された場合には、当該モード 1に対して対応付けら れて予め記憶された θ 1 = π , Θ 2 = π /4を設定し、聴取モード 2が選択された場合 には、当該モード 2に対して対応付けられて予め記憶された θ 1 = 2 π /3, Θ 2 = - π Ζ6を設定し、聴取モード 3が選択された場合には、当該モード 3に対して対応付 けられて予め記憶された θ 1 =4 π /5, Θ 2 = π Ζ4を設定するように構成する。こう して、設定された 0 1と 0 2の値は、システム制御部 9から DSP5に伝送され、 DSP5 においてセットされる。これにより、聴取者は、聴取する空間でどのようにオーディオを 楽しみたいか (言い換えれば、所望する音場)により所望のモードを選択することがで きる。
[0055] 以上説明したように、上記実施形態によれば、 Lch及び Rchの夫々に対応するォ 一ディォ入力信号 Li, Riを入力し、オーディオ入力信号 Liと、所定時間前のサラゥン ド信号 Lsの信号レベルに応じて所定範囲内で変化する変数と、オーディオ入力信号 Riと、に基づいて (例えば、所定時間前のサラウンド信号 Lsの信号レベルに応じて所 定範囲内で変化する変数をオーディオ入力信号 Riに乗算し、当該乗算された信号と オーディオ入力信号 Liとを加算して)サラウンド信号 Lsを生成し、且つ、オーディオ入 力信号 Riと、所定時間前のサラウンド信号 Rsの信号レベルに応じて所定範囲内で変 化する変数と、オーディオ入力信号 Liと、に基づいてサラウンド信号 Rsを生成するよ うにし、これらのサラウンド信号 Ls, Rsをオーディオ入力信号 Li, Riに加算してォー ディォ出力信号 Lo, Roとして出力するようにしたので、オーディオ入力信号 Li, Riに 依存しない安定した出力信号レベル (サラウンド信号及びオーディオ出力信号の出 力信号レベル)と音の拡がり感 (言い換えれば、効果音)を得ることができる。例えば、 車室内でオーディオを楽しむとき、車室内特有の閉鎖感のある音場印象を改善して 、自然な音の広がり、空間性を創造することが可能となる。
[0056] また、上記サラウンド信号の信号レベルに応じて所定範囲内で変化する変数を、余 弦関数 (cos Θ )により求められるようにしたので、より範囲を限定させてサラウンド信 号を安定させることができ、これをフィードバックしてサラウンド信号を生成するように したので、より一層安定したサラウンド出力信号の信号レベルと音の拡がり感を得るこ とがでさる。
[0057] また、余弦関数 (cos Θ )における Θの値は任意に設定可能であって、上記所定範 囲は当該 Θの値により定まるようにしたので、聴取者が所望する音場に応じた最適な オーディオ出力を実現することができる。
[0058] なお、上記実施形態において、図 2に示すオーディオ出力信号 Lo, Roの生成シグ ナルフローは基本形であり、その他の種々の演算処理部が介在されるようにしても良 い。例えば、図 5は、図 2に示すオーディオ出力信号 Lo, Roの生成シグナルフローの 変形例である(図 2と同様の構成部分にっ 、ては同一の符号を付して 、る)。
[0059] 図 5に示すオーディオ出力信号 Lo, Roの生成シグナルフローにおいて、 DSP5に 入力されたオーディオ入力信号 Li, Riは、遅延部 61, 62により夫々遅延 (サラウンド 信号と同期をとるため)される。一方、サラウンド信号生成部 41から出力されたサラウ ンド信号 Ls, Rsは、 BPF (バンドパスフィルタ) 63, 64を通過し、所定の帯域(例えば 、ボーカル帯域等のある一部の範囲の帯域)のサラウンド信号 Ls, Rsのみが抽出さ れる。これにより、所定の帯域のみの音の拡がり感を増すことができる。
[0060] また、図 5に示す生成シグナルフローにおいて、符号 65乃至 68は、オーディオ入 力信号とサラウンド信号との加算率を決定するための加算率決定部であり、図 5に示 す α と j8 との比率により、遅延部 61からのオーディオ出力信号 Loと BPF63からの し し
サラウンド信号 Lsとの加算率が決定され、一方、図 5に示す α と β との比率により、
R R
遅延部 62からのオーディオ出力信号 Roと BPF64からのサラウンド信号 Rsとの加算 率が決定される。例えば、 α : β = 1 : 0. 5とすると、オーディオ出力信号 Loに対し、 し し
信号レベルが元の半分に減衰されたサラウンド信号 Lsが加算 (加算部 42により)され 、オーディオ出力信号 Loが生成されることになる。これにより、音の拡がり感を調整す ることがでさる。
[0061] また、図 5に示す生成シグナルフローにおいて、 BPF63, 64の後段に遅延部を設 け、当該遅延部により、 BPF63からのサラウンド信号 Ls及び BPF64からのサラウンド 信号 Lsを夫々遅延させ (つまり、オーディオ入力信号 Li, Rはり故意に遅らせ)るよう に構成しても良い。これにより、上記構成とは違った音の拡がり感を得ることができる [0062] また、上記実施形態においては、上記サラウンド信号の信号レベルに応じて所定 範囲内で変化する変数を、余弦関数 (cos Θ )により求められるように構成したが、こ れに限定されるものではなぐ例えば、正弦関数 (sin Θ )により求められるように構成 しても良い。正弦関数 (sin e )を用いる場合には、余弦関数 (cos Θ )の場合に対して 、 θ 1及び Θ 2の値を π Ζ2ずらす (例えば、進める)ことで同様の結果が同様の効果 を得ることができる。
[0063] また、上記実施形態にお!、ては、 Lchと Rchの 2チャンネルの場合を例にとって説 明したが、 3チャンネル以上の場合も、 1のチャンネルのサラウンド信号の信号レベル に応じて所定範囲内で変化する変数と、他のチャンネルのオーディオ入力信号とを 乗算し、当該乗算された信号と、 1のチャンネルのオーディオ入力信号とを加算して サラウンド信号を生成するという基本的な構成は同様である。
[0064] また、上記実施形態においては、オーディオ入力信号 Li, Riとサラウンド信号 Ls, R sとが加算されてオーディオ出力信号 Lo, Roが生成、出力されるように構成した力 こ れに限定されるものではなぐ生成されたサラウンド信号 Ls, Rsがそのまま出力される (例えば、サラウンド信号専用のスピーカ(5. lchの場合、何れか 2つのチャンネルに 対応するスピーカ)から出力)されるように構成しても良い。

Claims

請求の範囲
[1] 複数のチャンネルの夫々に対応するオーディオ入力信号を入力するオーディオ入 力信号入力手段と、
反射音や残響音を有するサラウンド信号であって前記複数のチャンネルの夫々に 対応するサラウンド信号を生成するサラウンド信号生成手段と、
を備え、
前記サラウンド信号生成手段は、 1のチャンネルに対応するオーディオ入力信号と 、前記 1のチャンネルに対応する所定時間前の前記サラウンド信号の信号レベルに 応じて所定範囲内で変化する変数と、他のチャンネルに対応する前記オーディオ入 力信号とに基づいて前記 1のチャンネルに対応するサラウンド信号を生成することを 特徴とするオーディオ信号処理装置。
[2] 請求項 1に記載のオーディオ信号処理装置にお!、て、
前記サラウンド信号生成手段は、
前記 1のチャンネルに対応する所定時間前の前記サラウンド信号の信号レベルに 応じて所定範囲内で変化する変数を、前記他のチャンネルに対応する前記オーディ ォ入力信号に乗算し、当該乗算された信号と、前記 1のチャンネルに対応する前記 オーディオ入力信号とを加算して前記 1のチャンネルに対応するサラウンド信号を生 成することを特徴とするオーディオ信号処理装置。
[3] 請求項 1又は 2に記載のオーディオ信号処理装置において、
前記チャンネル毎に、前記オーディオ入力信号と、当該オーディオ入力信号のチ ヤンネルに対応する前記サラウンド信号とを加算してオーディオ出力信号を生成する オーディオ出力信号生成手段を更に備えることを特徴とするオーディオ信号処理装 置。
[4] 請求項 1に記載のオーディオ信号処理装置にお!、て、
前記変数は、余弦関数又は正弦関数により求められることを特徴とするオーディオ 信号処理装置。
[5] 請求項 4に記載のオーディオ信号処理装置にお 、て、
前記余弦関数又は正弦関数における Θの値は任意に設定可能であって、前記所 定範囲は当該 Θの値により定まることを特徴とするオーディオ信号処理装置。
[6] 請求項 1に記載のオーディオ信号処理装置にお!、て、
前記サラウンド信号生成手段は、
時定数回路に通過させた後の前記 1のチャンネルに対応する所定時間前の前記サ ラウンド信号の信号レベルに応じて所定範囲内で変化する変数を、前記他のチャン ネルに対応する前記オーディオ入力信号に乗算することを特徴とするオーディオ信 号処理装置。
[7] 複数のチャンネルの夫々に対応するオーディオ入力信号を入力する工程と、 反射音や残響音を有するサラウンド信号であって前記複数のチャンネルの夫々に 対応するサラウンド信号を生成するサラウンド信号生成工程と、
を備え、
前記サラウンド信号生成工程は、
1のチャンネルに対応するオーディオ入力信号と、前記 1のチャンネルに対応する 所定時間前の前記サラウンド信号の信号レベルに応じて所定範囲内で変化する変 数と、他のチャンネルに対応する前記オーディオ入力信号とに基づ!/、て前記 1のチヤ ンネルに対応するサラウンド信号を生成することを特徴とするサラウンド信号生成方 法。
[8] コンピュータを、
複数のチャンネルの夫々に対応するオーディオ入力信号を入力するオーディオ入 力信号入力手段、
反射音や残響音を有するサラウンド信号であって前記複数のチャンネルの夫々に 対応するサラウンド信号を生成するサラウンド信号生成手段として機能させ、 前記サラウンド信号生成手段は、
1のチャンネルに対応するオーディオ入力信号と、前記 1のチャンネルに対応する 所定時間前の前記サラウンド信号の信号レベルに応じて所定範囲内で変化する変 数と、他のチャンネルに対応する前記オーディオ入力信号とに基づ!/、て前記 1のチヤ ンネルに対応するサラウンド信号を生成することを特徴とするサラウンド信号生成処 理プログラム。 請求項 8に記載のサラウンド信号生成処理プログラムがコンピュータ読み取り可能 に記憶されて ヽることを特徴とする記録媒体。
PCT/JP2007/057650 2006-05-08 2007-04-05 オーディオ信号処理装置及びサラウンド信号生成方法等 WO2007129517A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/299,866 US8194860B2 (en) 2006-05-08 2007-04-05 Audio signal processing system and surround signal generation method
EP07741086A EP2018081A1 (en) 2006-05-08 2007-04-05 Audio signal processor, surround signal generating method, and so forth
JP2008514413A JP4797065B2 (ja) 2006-05-08 2007-04-05 オーディオ信号処理装置及びサラウンド信号生成方法等

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006129281 2006-05-08
JP2006-129281 2006-05-08

Publications (1)

Publication Number Publication Date
WO2007129517A1 true WO2007129517A1 (ja) 2007-11-15

Family

ID=38667627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/057650 WO2007129517A1 (ja) 2006-05-08 2007-04-05 オーディオ信号処理装置及びサラウンド信号生成方法等

Country Status (4)

Country Link
US (1) US8194860B2 (ja)
EP (1) EP2018081A1 (ja)
JP (1) JP4797065B2 (ja)
WO (1) WO2007129517A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8126172B2 (en) * 2007-12-06 2012-02-28 Harman International Industries, Incorporated Spatial processing stereo system
US9736588B2 (en) * 2015-07-23 2017-08-15 Automotive Data Solutions, Inc. Digital signal router for vehicle replacement sound system
US9820073B1 (en) 2017-05-10 2017-11-14 Tls Corp. Extracting a common signal from multiple audio signals

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5585199A (en) * 1978-12-21 1980-06-26 Mitsubishi Electric Corp Processing circuit for stereo signal
JPH1070799A (ja) * 1996-08-28 1998-03-10 Nec Corp 疑似ステレオ機能付きサラウンド回路
JP2000102100A (ja) 1998-09-28 2000-04-07 Sanyo Electric Co Ltd サラウンド回路
JP2003152484A (ja) * 2001-11-15 2003-05-23 Kenwood Corp 音声信号処理装置、および、音声信号処理方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61266000A (ja) * 1985-05-20 1986-11-25 Sony Corp 複似ステレオ方式
US5892831A (en) * 1995-06-30 1999-04-06 Philips Electronics North America Corp. Method and circuit for creating an expanded stereo image using phase shifting circuitry
US6668061B1 (en) * 1998-11-18 2003-12-23 Jonathan S. Abel Crosstalk canceler
JP4835298B2 (ja) * 2006-07-21 2011-12-14 ソニー株式会社 オーディオ信号処理装置、オーディオ信号処理方法およびプログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5585199A (en) * 1978-12-21 1980-06-26 Mitsubishi Electric Corp Processing circuit for stereo signal
JPH1070799A (ja) * 1996-08-28 1998-03-10 Nec Corp 疑似ステレオ機能付きサラウンド回路
JP2000102100A (ja) 1998-09-28 2000-04-07 Sanyo Electric Co Ltd サラウンド回路
JP2003152484A (ja) * 2001-11-15 2003-05-23 Kenwood Corp 音声信号処理装置、および、音声信号処理方法

Also Published As

Publication number Publication date
JP4797065B2 (ja) 2011-10-19
JPWO2007129517A1 (ja) 2009-09-17
EP2018081A1 (en) 2009-01-21
US20090154714A1 (en) 2009-06-18
US8194860B2 (en) 2012-06-05

Similar Documents

Publication Publication Date Title
JP2006100869A (ja) 音声信号処理装置および音声信号処理方法
JP2010136173A (ja) 音量補正装置、音量補正方法、音量補正プログラムおよび電子機器
JP4841324B2 (ja) サラウンド生成装置
JP5931182B2 (ja) 付加的な出力チャンネルを提供するためのステレオ出力信号を生成する装置、方法およびコンピュータプログラム
JP5472258B2 (ja) 音声信号処理装置
JPH10304498A (ja) ステレオ拡大装置及び音場拡大装置
JP4797065B2 (ja) オーディオ信号処理装置及びサラウンド信号生成方法等
JP6569571B2 (ja) 信号処理装置及び信号処理方法
JP7256164B2 (ja) オーディオ処理装置及びオーディオ処理方法
JP4392040B2 (ja) 音響信号処理装置、音響信号処理方法、音響信号処理プログラムおよびコンピュータに読み取り可能な記録媒体
WO2007108301A1 (ja) 立体音響再生装置及び立体音響再生用プログラム
JP2004343590A (ja) ステレオ音響信号処理方法、装置、プログラムおよび記憶媒体
JP2007067463A (ja) オーディオ装置
JP2009206612A (ja) 音響装置、音声再生方法、音声再生プログラム及びその記録媒体
JP6046433B2 (ja) ミキシング装置
WO2013145156A1 (ja) 音声信号処理装置及び音声信号処理プログラム
JP5812842B2 (ja) オーディオ装置
JP2009171262A (ja) 音響装置、音声再生方法、音声再生プログラム及び記録媒体
JPWO2006092995A1 (ja) 音響再生装置
JPH1138980A (ja) 音声信号処理装置
JPH10336795A (ja) 音場制御装置
JP2009225407A (ja) 音響装置、音声再生方法、音声再生プログラム及び記録媒体
JP2010087783A (ja) 音響装置、音響信号処理方法、音響信号処理プログラム及び記録媒体
JP2009224927A (ja) 音響装置、音声再生方法、音声再生プログラム及びその記録媒体
JP2008028467A (ja) オーディオ再生装置、再生方法及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07741086

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008514413

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007741086

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12299866

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE