WO2007125926A1 - 繊維強化複合材料用エポキシ樹脂組成物 - Google Patents

繊維強化複合材料用エポキシ樹脂組成物 Download PDF

Info

Publication number
WO2007125926A1
WO2007125926A1 PCT/JP2007/058876 JP2007058876W WO2007125926A1 WO 2007125926 A1 WO2007125926 A1 WO 2007125926A1 JP 2007058876 W JP2007058876 W JP 2007058876W WO 2007125926 A1 WO2007125926 A1 WO 2007125926A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
resin
fiber
resin composition
reinforced composite
Prior art date
Application number
PCT/JP2007/058876
Other languages
English (en)
French (fr)
Inventor
Takashi Kousaka
Tomohiro Ito
Mitsuhiro Iwata
Koichiro Miyoshi
Original Assignee
The Yokohama Rubber Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Yokohama Rubber Co., Ltd. filed Critical The Yokohama Rubber Co., Ltd.
Priority to ES07742311.9T priority Critical patent/ES2517565T3/es
Priority to CN2007800149029A priority patent/CN101432359B/zh
Priority to BRPI0709483-3A priority patent/BRPI0709483A2/pt
Priority to KR1020087028770A priority patent/KR101393763B1/ko
Priority to US12/298,040 priority patent/US8137786B2/en
Priority to CA2650559A priority patent/CA2650559C/en
Priority to EP20070742311 priority patent/EP2014721B1/en
Priority to AU2007244332A priority patent/AU2007244332B2/en
Publication of WO2007125926A1 publication Critical patent/WO2007125926A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/10Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material
    • B32B3/12Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material characterised by a layer of regularly- arranged cells, e.g. a honeycomb structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/243Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/08Cars
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24149Honeycomb-like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24149Honeycomb-like
    • Y10T428/24157Filled honeycomb cells [e.g., solid substance in cavities, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249994Composite having a component wherein a constituent is liquid or is contained within preformed walls [e.g., impregnant-filled, previously void containing component, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2918Rod, strand, filament or fiber including free carbon or carbide or therewith [not as steel]
    • Y10T428/292In coating or impregnation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2927Rod, strand, filament or fiber including structurally defined particulate matter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2964Artificial fiber or filament
    • Y10T428/2967Synthetic resin or polymer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2971Impregnation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/30Self-sustaining carbon mass or layer with impregnant or other layer

Definitions

  • the present invention relates to an epoxy resin composition for fiber-reinforced composite materials, and more particularly to an epoxy resin composition used for a self-adhesive prepreader for a honeycomb panel face plate.
  • Fiber-reinforced composite materials that use an epoxy resin composition as a matrix resin are widely used in aircraft, automobiles, and industrial applications due to their excellent mechanical properties. Particularly in aircraft structural materials and interior materials, there are an increasing number of cases where fiber reinforced composite materials are used as face plates for her cam panels from the viewpoint of light weight.
  • a hard cam panel is configured by laminating a pre-preda (uncured fiber reinforced composite resin material) to be a face plate on both sides of a her-cam core with a film adhesive interposed therebetween. It is manufactured by so-called co-curing, which simultaneously cures fat and bonds the face plate and the hard cam core.
  • pre-preda uncured fiber reinforced composite resin material
  • co-curing which simultaneously cures fat and bonds the face plate and the hard cam core.
  • the joint surface between the hard core and the pre-predder is wetted with the pre-predder grease during the heat curing to form a fillet, so-called fillet is formed. It is important to improve shape and strength.
  • the fillet is formed in the thickness direction of the hard cam core from the pre-predder in a state where the fat is dripped or raised along the hard cam wall, and its shape is deeply related to the viscosity of the fat.
  • the strength of the fillet depends on the toughness of the matrix resin constituting the pre-preda.
  • Patent Document 1 describes a thermosetting resin composition comprising a thermosetting resin and a thermoplastic resin so that the cured form becomes a co-continuous phase. It discloses improving the toughness of greaves. However, this thermosetting resin composition improves the toughness of the thermosetting resin to some extent, but is formed when directly bonding the hard cam and the pre-preda. It was not always sufficient to improve the toughness to improve the strength of the fillet formed.
  • Patent Document 1 Japanese Patent Laid-Open No. 2-305860
  • An object of the present invention is to provide an epoxy resin composition for a fiber-reinforced composite material in which the toughness required for improving the self-adhesion strength of a matrix resin used in a pre-preda for a honeycomb panel face plate is improved. There is to do.
  • the epoxy resin composition for fiber-reinforced composite material according to the present invention that achieves the above object comprises epoxy resin (A), thermoplastic resin (B), solid resin fine particles (C), and a curing agent.
  • the solid resin fine particles (C) are dispersed in at least the continuous phase of the epoxy resin (A) in the co-continuous phase.
  • the epoxy resin composition for fiber-reinforced composite material of the present invention has a co-continuous phase having a three-dimensional network structure in which the epoxy resin (A) and the thermoplastic resin (B) are mixed finely.
  • the solid and fine resin particles (C) dissolved and refined are finely dispersed in at least the continuous phase of the epoxy resin (A). It is possible to improve the toughness. Therefore, the self-adhesive strength of the pre-preda can be further improved by using this epoxy resin composition for matrix resin.
  • the epoxy resin (A) is not particularly limited, but is not limited to bisphenol A type epoxy resin, bisphenol F type epoxy resin, Naphthalene type epoxy resin, diphenol fluorene type epoxy resin, triglycidyl aminophenol resin, triglycidylaminocresol resin, tetraglycidyl diaminodiphenol -Lumethane resin, Tetraglycidinole m-xylyleneamine, N, N-Diaminocresol resin, phenol novolac epoxy resin, Cresol novolac epoxy resin, biphenyl epoxy resin Preferred examples include dicyclopentagen type epoxy resins and various modified epoxy resins thereof, crystalline epoxy resins, monomolecular crystalline epoxy resins, and the like.
  • liquid epoxy resin can be used in order to increase the compatibility with the thermoplastic resin (B) and to ensure that the thermoplastic resin (B) is dissolved during heating and mixing. It is preferable to select an epoxy resin having a low molecular weight from among the above-mentioned preferable ones.
  • epoxy resin (A) is used alone or in combination of two or more so that the cured form will exhibit the above morphology according to the required properties of the pre-preda. I prefer that.
  • the properties of the epoxy resin (A) are preferably liquid at room temperature, and the viscosity at a temperature of 25 ° C is preferably 1 to: LOO boise, more preferably 5 to 50 boise.
  • the viscosity of the epoxy resin composition can be easily adjusted to an appropriate range when the thermoplastic resin (B) is blended, and a co-continuous phase is obtained after curing. Can be formed.
  • the viscosity at a temperature of 25 ° C is a value measured using a BH type rotational viscometer. Specifically, a can containing epoxy resin is placed in a thermostatic bath at a temperature of 25 ° C and a BH rotational viscometer. This value is measured with a stable scale.
  • a semi-solid or solid epoxy resin may be blended with the epoxy resin (A) as long as the effects of the present invention are not impaired.
  • semi-solid or solid epoxy resin may be blended at a ratio of 20 parts by weight or less with respect to 100 parts by weight of epoxy resin (A).
  • thermoplastic resin (B) dissolves in the epoxy resin (A) when heated and mixed, and phase-separates when cured to form a finely mixed co-continuous phase.
  • the thermoplastic resin (B) is required to have high compatibility with the epoxy resin (A), and preferably has a reactive functional group at the molecular end.
  • the reactive functional group is not particularly limited, but preferably includes a hydroxyl group, a force propyl group, an amino group, and the like, and particularly preferably a hydroxyl group.
  • the type of the thermoplastic resin (B) is not particularly limited, but may be a polyether sulfonate resin, a polyether imide resin, a polyimide resin, a polyamide resin, a polyether resin, It is preferably at least one selected from a polyester resin, a polysulfone resin, a polyamide-imide resin, a polyacrylate resin, a polyether polyol, a polyether ether resin and a polyether ether ketone resin.
  • polyethersulfone resin or polyetherimide resin is preferred, and in particular, polyethersulfone resin has excellent compatibility with epoxy resin and can form a co-continuous phase and improve toughness quickly. I like it because I can.
  • a particulate thermoplastic resin (B) more preferably the particle diameter is 200 / zm or less, and more preferably 5 to: LOO / zm.
  • the thermoplastic resin (B) when blended in epoxy resin, large particles are prevented from remaining undissolved and dissolved quickly and uniformly. It becomes easy to form a co-continuous phase after conversion.
  • the particle size of the fine particles 200 m or less the dissolution of the thermoplastic resin (B) in the epoxy resin (A) becomes uniform, and a co-continuous phase is easily formed and the toughness is sufficiently improved.
  • the method for preparing fine particles having a particle diameter of 200 m or less is not particularly limited, but it is preferable to make fine particles by impact pulverization or spray drying.
  • the epoxy resin composition of the present invention forms a co-continuous phase in which the epoxy resin (A) and the thermoplastic resin (B) interpenetrate after curing, and at least the epoxy resin in the co-continuous phase.
  • Solid resin fine particles (C) are dispersed in a continuous phase of white resin (A). At least in the continuous phase of the epoxy resin (A), the solid resin particles (C) form a finer dispersed phase, so that the stress concentration inside the epoxy resin (A) phase is totally reduced.
  • the toughness can be improved by dispersing. By improving the toughness of the epoxy resin composition, the strength of the fillet is improved, and the self-adhesion strength of the pre-preda can be improved.
  • the solid resin fine particles (C) may be dispersed at least in the continuous phase of the epoxy resin (A), or may be dispersed in the continuous phase of the thermoplastic resin (B). Yo ...
  • the resin constituting the solid resin fine particles (C) may be either a thermosetting resin or a thermoplastic resin as long as it has at least a high affinity with the epoxy resin (A). You may use both.
  • thermosetting resin epoxy resin is more preferable, among which epoxy resin, maleimide resin, cyanate resin and the like are preferable.
  • Yepo Xylose resin is not particularly limited, but bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, talesol novolac type epoxy resin, dicyclopentagen skeleton Type epoxy resin or naphthalene skeleton epoxy resin, and bisphenol A type epoxy resin is particularly preferred.
  • the epoxy resin constituting the solid resin fine particles (C) is prepared by purifying bisphenol-type epoxy resin to increase its purity and increasing its molecular weight, thereby providing an epoxy group at the molecular end.
  • the phenoxy skeleton-type rosin having is more preferable.
  • the affinity with the epoxy resin (A) can be increased, and the phenoxy skeleton type resin is preferably selected from bisphenol A skeleton and bisphenol F skeleton at least. It is a phenoxy-type resin that can be used as a single force, and can increase the softness point and improve toughness.
  • thermoplastic resin constituting the solid resin fine particles (C) is not particularly limited, but those having a reactive functional group at the molecular end are preferred because of their high toughness-improving effect. Yes.
  • the molecular weight of the resin constituting the solid resin fine particles (C) is preferably 10,000 to LOO, 000.
  • the molecular weight is in the range of 10,000 to 100,000, it is possible to prevent the solid resin particles from remaining undissolved when the epoxy resin composition is cured, and to dissolve the solid resin particles uniformly. By uniformly dispersing the fat particles, the toughness of the epoxy resin composition can be improved.
  • the molecular weight is a weight average molecular weight measured by GPC analysis.
  • the epoxy resin constituting the solid resin fine particles (C) is preferably of a high molecular weight type.
  • An epoxy resin having a weight average molecular weight of 10,000 to 35,000 is more preferable.
  • the weight average molecular weight is in the range of 10,000 to 35,000, it is easy to produce fine particles by impact pulverization or the like, and the particles are easily dispersed during the heat curing process of the epoxy resin composition. The reason power is preferable.
  • the weight average molecular weight of the phenoxy skeletonized resin having an epoxy group at the molecular terminal used as the solid resin fine particles (C) is preferably 50,000-60,000.
  • the weight average molecular weight of the phenoxy skeleton type resin is rubbed within the range of 50,000 to 60,000, fine particles are produced by impact pulverization or the like. It is easy to disperse.
  • the epoxy equivalent of the phenoxy skeleton type resin having an epoxy group at the molecular terminal is preferably set to an epoxy equivalent of 8,000 to 20,000 g / eq! /.
  • the epoxy equivalent is 8,000 g / eq or more
  • the epoxy resin (A) has a dispersed phase separated in the continuous phase of the epoxy resin (A) after curing. It is possible to form it, and when it is less than 20, OOOgZeq, it can be easily dissolved in epoxy resin (A) during heat curing.
  • the epoxy resin constituting the solid resin fine particles (C) is preferably composed of a bisphenol A type epoxy resin that is solid at room temperature.
  • a bisphenol A type epoxy resin can be prepared by refining bisphenol type epoxy resin to increase its purity and increase its molecular weight, and has a high soft point and improves the workability of the pre-preda. It is preferable because it improves and improves the toughness.
  • the bisphenol A type epoxy resin preferably has an epoxy equivalent of 1000 to 8000 gZ eq, more preferably 2000 to 6000 g / eq! /.
  • the epoxy equivalent is 1000 g / eq or more
  • the epoxy resin (A) is formed into a dispersed phase in the continuous phase of the epoxy resin (A) after curing that does not completely dissolve before heat curing. If it is 8 OOOgZeq or less, it can be easily dissolved in epoxy resin (A) during heat curing.
  • the solid resin fine particles (C) In order that the solid resin fine particles (C) are completely dissolved in the epoxy resin (A) at the time of heat curing, the solid resin fine particles (C) have a particle diameter of preferably 100 m or less. More preferably 5 ⁇ m to 100 ⁇ m!
  • the particle diameter of the solid resin fine particles (C) By setting the particle diameter of the solid resin fine particles (C) within such a range, the solid resin fine particles (C) are easily dissolved in the epoxy resin (A) when the heat curing process reaches a predetermined temperature. Therefore, the viscosity of the epoxy resin composition can be adjusted appropriately and can be dispersed in the epoxy resin phase to improve the toughness of the cured product.
  • the particle diameter of the solid resin particles (C) is preferably 0.1. ⁇ 2 111, preferably 0.1 to 0.5 m. If the particle diameter of the solid resin fine particles (C) is in the range of 0.1 to 2 m and dispersed in the continuous phase of the epoxy resin (A), the effect of improving the toughness of the cured resin resin is preferably increased.
  • the type of the curing agent (D) is not particularly limited as long as it is a compound having an active group capable of reacting with an epoxy group, but is not limited to aromatic polyamines, aliphatic polyamines, imidazole compounds, Preferred examples include tetramethyldazine, thiourea addition amine, carboxylic acid anhydride, carboxylic acid hydrazide, carboxylic acid amide, polyphenol compound, novolac resin, and polymercabutane.
  • aromatic polyamines are preferred, especially 3, 3 'diaminodiphenyl sulfone (3, 3' — DDS) or 4,4 'diaminodiphenyl sulfone (4 , 4′-DDS) and the like are preferably used.
  • a latent curing agent as the curing agent (D).
  • the latent curing agent is preferably at least one selected from organic acid dihydrazide, dicyandiamide, aminimide, tertiary amine salt, imidazole salt, Lewis acid and Bronsted acid power, especially organic acid dihydrazide or dicyandiamide. I like it.
  • the latent curing agent By using the latent curing agent, the toughness of the cured resin can be improved, that is, the strength of the fillet can be improved and the self-adhesion strength of the pre-preda can be improved.
  • the curing agent (D) it is particularly preferable to use at least one curing agent selected from diaminodiphenyl sulfone and a latent hardener.
  • the epoxy resin composition of the present invention is preferably 20 to 60 parts by weight, more preferably 30 to 50 parts by weight of the thermoplastic resin (B) with respect to 100 parts by weight of the epoxy resin (A).
  • Parts, and the solid sallow fine particles (C) are preferably contained in a proportion of 2 to 20 parts by weight, more preferably 5 to 15 parts by weight.
  • the blending amount of the thermoplastic resin (B) in the range of 20 to 60 parts by weight, the viscosity of the epoxy resin composition can be optimized and the shape of the fillet can be made good. By doing so, workability of the pre-preparer such as tackiness and drape can be improved.
  • the blending amount of the solid fine resin particles (C) is 2 parts by weight or more, the effect of improving the toughness of the cured product is obtained. It is possible to improve the loop property.
  • the curing agent (D) is preferably added in an amount of 25 to 50 parts by weight, more preferably 30 to 45 parts by weight, based on 100 parts by weight of the epoxy resin (A).
  • the blending amount of the curing agent (D) is preferably added to 25 to 50 parts by weight, physical properties such as strength, toughness and heat resistance required for the cured resin can be improved.
  • the epoxy resin composition for fiber-reinforced composite material according to the present invention has the above-mentioned components (A) to (D) as essential forces.
  • Various additives such as known curing agents, fillers, stabilizers, flame retardants, and pigments other than the components (A) to (D) may be blended.
  • the epoxy resin composition of the present invention has a fracture toughness value measured according to ASTM D5045-91 of the cured product, preferably 1.8 MPa'm or more, more preferably 1. 8 to 2.5 MPa 'm, more preferably 2.0 to 2.5 MPa-m. Fracture toughness value of cured product of epoxy resin composition 1. In a peel test after self-adhesion between face plate (prepreda) and hard core, where the toughness of the fillet portion is higher than 8 MPa'm. The peel strength can be improved as the material breakage of the hard cam core occurs.
  • the epoxy resin composition of the present invention has a minimum viscosity of preferably 10 to 150 Pa's, more preferably 20 to 150 Pa's, as measured by dynamic viscoelasticity at a temperature rising rate of 2 ° CZ. Good to have. It is necessary to make the minimum viscosity of dynamic viscoelasticity measured in the temperature rising process within the above range in order to develop the productivity of the prepreg and self-adhesiveness. Fillet can be formed and self-adhesiveness is improved. If it is 150 Pa's or less, the resin composition can be easily impregnated into the reinforcing fiber during the preparation of the pre-preda while maintaining the formability of the fillet.
  • the minimum viscosity by dynamic viscoelasticity measurement is determined by using an epoxy resin composition as a sample, at a temperature from 25 ° C to 200 ° C, at a rate of temperature increase of 2 ° CZ, and at a frequency of lOmdZ seconds.
  • the epoxy resin composition for fiber-reinforced composite material of the present invention has a three-dimensional network in which the epoxy resin (A) and the thermoplastic resin (B) are mixed with each other in the form of the cured product. A continuous phase of the structure is formed, and the solid resin is contained in the continuous phase of at least the epoxy resin (A). Since the fine particles (C) form a fine dispersed phase !, they are significantly better than when the epoxy resin (A) and the thermoplastic resin (B) form a co-continuous phase. Exhibits toughness.
  • the epoxy resin (A) and the thermoplastic resin (B) form a co-continuous phase with a three-dimensional network structure, so that stress is concentrated and the interface between the two resins is three-dimensional.
  • a continuous structure is formed, the stress is easily dispersed as a whole, the adhesive strength of the resin interface is improved by the good compatibility of both resins, and the thermoplastic has excellent toughness.
  • the toughness of the cured resin is improved by making the resin (B) into a continuous phase.
  • solid resin fine particles (C) become a fine dispersed phase and dispersed in the continuous phase of epoxy resin (A)!
  • the toughness of the epoxy resin (A) phase is improved, thereby further increasing the toughness of the cured resin. This is considered to be improving.
  • the raw material used in the epoxy resin composition for fiber-reinforced composite material of the present invention is not particularly limited, but liquid epoxy resin (A) has a reactive functional group at the molecular end. It is also preferable that the thermoplastic resin (B), the solid resin fine particles (C) having a particle diameter of 100 IX m or less, and the curing agent (D) can also be used.
  • the compatibility with the thermoplastic resin (B) is increased, and the thermoplastic resin (B) can be reliably dissolved during heating and mixing.
  • thermoplastic resin having a reactive functional group at the molecular end for the thermoplastic resin (B) the compatibility with the epoxy resin (A) is improved, and the thermoplastic resin (C) is mutually compatible during curing. It becomes easier to form a co-continuous phase.
  • a particulate thermoplastic resin (B) it is preferable to use a particulate thermoplastic resin (B), and it is more preferable that the particle diameter is 200 m or less.
  • the method for producing the epoxy resin composition for fiber-reinforced composite material is not particularly limited.
  • the thermoplastic resin (B) is heated and mixed with the epoxy resin (A) and dissolved. After that, the temperature of the mixed resin is lowered, and it may be blended so that the solid resin fine particles (C) are dispersed therein.
  • the obtained prepredder is heat-cured, the solid fine resin particles (C) are dissolved in the epoxy resin (A) during heating, and after curing, at least the continuous phase of the epoxy resin (A) is used as the sea. It becomes islands (dispersed phase) that are more finely and uniformly dispersed.
  • the temperature at which the thermoplastic resin (B) is heated and mixed with the epoxy resin (A) and dissolved is preferably 95 to 150 ° C, more preferably 100 to 125 ° C. Mix with a planetary mixer for about 0.5 to 3 hours until homogeneous dissolution. After cooling this mixed resin, preferably at a temperature of 60 to 90 ° C, more preferably at a temperature of 70 to 80 ° C, the solid resin fine particles (C) and the curing agent (D) are added, and the mixed resin is mixed. It is preferable to prepare an epoxy resin composition by uniformly dispersing and mixing in it.
  • thermoplastic resin (B) is surely dissolved and the solid resin particles (C) are uniformly dispersed to form a specific form after curing and toughness is improved. This can improve the self-adhesive strength of the pre-preda.
  • the fiber reinforced pre-preda of the present invention is obtained by using the above-described epoxy resin composition for a fiber reinforced composite material as a matrix resin and combining the matrix resin with reinforcing fibers.
  • the reinforcing fiber carbon fiber, graphite fiber, aramid fiber, glass fiber and the like can be preferably mentioned, and carbon fiber and a carbon fiber woven fabric comprising the same are particularly preferable.
  • the fiber reinforced pre-preda is preferably 30 to 50% by weight, more preferably 35 to 45% by weight, of the content of the matrix resin.
  • Matrix resin specific force in fiber reinforced pre-predators S within this range, the self-adhesion of the pre-preda is improved, workability and appearance quality are improved, and the mechanical properties of the carbon fiber reinforced composite material are further improved. It can be fully utilized.
  • a method for producing a fiber-reinforced pre-preder includes a so-called resin film in which the epoxy resin composition of the present invention is applied in a thin film form on a release paper, and is disposed above and below the reinforcing fiber.
  • a hot melt method in which the reinforcing fiber is impregnated with the epoxy resin composition by heating and pressing is preferred. Since the prepredder obtained in this way uses a specific epoxy resin composition, it is excellent in tackiness and draping property, and improves the prepreader workability, so that the prepredder production efficiency can be improved. .
  • a fiber-reinforced composite material is produced by laminating the fiber-reinforced pre-predder thus obtained on both sides of a knot-cam core and thermosetting such as ordinary autoclave molding or hot press molding. be able to.
  • This fiber reinforced composite material has excellent fillet formation, excellent pre-predder's hard core adhesion, excellent pre-predder surface smoothness, excellent appearance and surface with less porosity. Have sex.
  • the hard cam core used in the present invention is preferably aramid hard cam, among which aramid hard cam, aluminum hard cam, paper hammer cam and glass hard cam force are selected.
  • the solid resin fine particles (C) are dispersed with a particle size of 100 ⁇ m or less. It is dissolved uniformly, so that the viscosity of the epoxy resin composition is properly adjusted and dispersed in the epoxy resin phase when the curing is completed to further improve the toughness of the resin resin cured product. Can do.
  • Examples 1 to 5 in Table 1 were compared.
  • an epoxy resin composition was prepared and its properties were evaluated. First, all of the epoxy resin (A) and the thermoplastic resin (B) were stirred and mixed for 75 minutes using a planetary mixer set at a temperature of 125 ° C. until a uniform solution was obtained. Then, the temperature of this planetary mixer was set to 70 ° C, and when the temperature of the resin became uniform, all the solid fine resin particles (C) and the curing agent (D) were added to this solution and stirred and mixed. Epoxy resin composition was prepared.
  • Resin A— 1 N, N, O—Triglycidyl mono-p-aminophenol resin (MY- 0510 manufactured by Normanman Advanced) Materials, liquid at room temperature, viscosity at 25 ° C is 7 Boise.
  • Oil A-2 Triglycidyl alkylaminophenol oil (Sumitomo Chemical ELM—100), liquid at room temperature, viscosity of 10 boise at 25 ° C.
  • Resin A-3 Bisphenol F-type epoxy resin (YDF-170, manufactured by Tohto Kasei Co., Ltd.), liquid at room temperature, viscosity of 25 boise at 25 ° C.
  • Resin B-1 Polyethersulfone resin (Sumitomo Chemical Co., Ltd. Sumika Etacel PES5003P), made into fine particles with a particle size of 100 ⁇ m or less by impact grinding.
  • Particle C-1 Bisphenol A type epoxy resin (YD-019 manufactured by Tohto Kasei Co., Ltd.), made into fine particles with a particle size of 100 ⁇ m or less by impact grinding.
  • Particle C-2 Bisphenol A type epoxy resin (YD-020N manufactured by Toto Kasei Co., Ltd.), made into fine particles with a particle size of 100 ⁇ m or less by impact grinding.
  • Particle C-3 Phenoxy bisphenol epoxy resin (YP-70, manufactured by Tohto Kasei Co., Ltd.), made into fine particles with a particle size of 100 ⁇ m or less by impact grinding.
  • Curing agent D 1, 3, 3 ′ —Diaminodiphenyl sulfone (Nordmann 'advanced' Materials ARADUR9719— 1)
  • Curing agent D-2 Dicyandiamide (Epicure DICY 15 from Japan Epoxy Resin), latent curing agent o
  • a resin film was formed on the release paper, and this film was added to a carbon fiber plain weave fabric (T-300-3K manufactured by Toray Industries Inc.) with a resin content of 41% by weight. Then, it was transferred by heating and pressing to obtain a pre-preda.
  • a carbon fiber plain weave fabric T-300-3K manufactured by Toray Industries Inc.
  • the obtained pre-preda was evaluated with tentacles, and tackiness and drapeability were evaluated according to the following three-stage criteria.
  • the obtained epoxy resin composition was cured in a program oven at a temperature of 180 ° C. for 2 hours to produce a resin-cured product.
  • the obtained cured resin was ruptured with a sharp blade, and the fractured surface was 5,000 times magnified by a scanning electron microscope with an epoxy resin (A) and a thermoplastic resin (B). The morphology was observed with respect to the dispersion diameter of the solid fat microparticles (C).
  • a test sample was prepared from the cured resin obtained above according to ASTM D5045-91, and the fracture toughness value (MPa'm) at 23 ° C (dry state) was measured.
  • the obtained hard cam panel was processed into a predetermined size for the face plates disposed on the upper side and the lower side of the hard core in the heat curing process, and the temperature was 23 ° C (drying The peel strength (lb—inZ3in) of the test pieces on the upper side plate and the lower side plate in the state) was measured.
  • Example 15 of the present invention From the results of Table 1, in Example 15 of the present invention, the epoxy resin (A) and the thermoplastic resin (B) form a fine co-continuous phase, and the solid resin particles (C) It was confirmed that the particles were dispersed in the continuous phase of epoxy resin (A) with a particle size of 0.2 ⁇ .
  • the fracture toughness values of Examples:! To 5 were found to be as extremely high as 2. 1 2. 2 MPa'm.
  • the epoxy resin (A) and the thermoplastic resin (B) form a fine co-continuous phase, but contain the solid resin fine particles (C). Therefore, the epoxy resin (A) is not strengthened and the fracture toughness value is as low as 1.8 MPa'm. Since the thermoplastic resin (B) was not blended, a co-continuous phase was not formed, and the fracture toughness value was even lower.
  • Examples 1 to 5 of the present invention exhibited excellent properties in all of the tackiness and drape of the pre-preda and the peel strength of the honeycomb panel.
  • Comparative Example 1 in which the solid resin fine particles (C) are not compounded and Comparative Example 2 in which the thermoplastic resin (B) is not compounded are found to result in poor peel strength of the hard cam panel. It was.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)
  • Epoxy Resins (AREA)

Abstract

 ハニカムパネルの面板用プリプレグに使用するマトリックス樹脂の自己接着強度の向上に必要な靭性を向上するようにした繊維強化複合材料用エポキシ樹脂組成物を提供する。  エポキシ樹脂(A)、熱可塑性樹脂(B)、固形樹脂微粒子(C)及び硬化剤(D)を含むエポキシ樹脂組成物であって、該エポキシ樹脂組成物の硬化後の形態が、前記エポキシ樹脂(A)及び熱可塑性樹脂(B)が共連続相を形成し、該共連続相における少なくとも前記エポキシ樹脂(A)の連続相中に前記固形樹脂微粒子(C)が分散することを特徴とする。

Description

明 細 書
繊維強化複合材料用エポキシ樹脂組成物
技術分野
[0001] 本発明は、繊維強化複合材料用エポキシ榭脂組成物に関し、さら〖こ詳しくは、ハニ カムパネルの面板用自己接着性プリプレダに使用するエポキシ榭脂組成物に関する
背景技術
[0002] エポキシ榭脂組成物をマトリックス榭脂にする繊維強化複合材料は、その優れた力 学物性などから、航空機、 自動車、産業用途に幅広く使用されている。特に航空機 用構造材料や内装材においては、軽量ィ匕の観点から、ハ-カムパネルの面板として 繊維強化複合材料を用いるケースが増加して 、る。
[0003] 従来、ハ-カムパネルは、ハ-カムコアの両面に、フィルム状接着剤を介在させて、 面板となるプリプレダ (未硬化の繊維強化複合榭脂材料)を積層し、プリプレダを構成 する榭脂の硬化と、面板とハ-カムコアとの接着とを同時に行なう、いわゆるコキュア 成形によって製造されている。近年では、ハ-カムパネルをより一層軽量ィ匕すること 及び成形コストを低減することを目指してハ-カムコアとプリプレダを直接接着させる 、 V、わゆる自己接着技術が求められて 、る。
[0004] プリプレダに自己接着性を発現させるためには、加熱硬化の際にハ-カムコアとプ リプレダの接合面をプリプレダの榭脂で濡らし隅肉を形成すること、いわゆるフィレット を形成し、その形状及び強度を向上することが重要である。フィレットは、プリプレダか らハ-カムコアの厚み方向に、ハ-カムの壁に沿って榭脂が垂れ又はせり上がった 状態で形成され、その形状は榭脂の粘度との関係が深ぐまた、フィレットの強度は、 プリプレダを構成するマトリックス榭脂の靭性に左右される。
[0005] 特許文献 1は、熱硬化性榭脂と熱可塑性榭脂からなる熱硬化性榭脂組成物におい て、硬化した後の形態が共連続相になるようにすることにより、熱硬化性榭脂の靭性 を改善することを開示している。しかし、この熱硬化性榭脂組成物は、熱硬化性榭脂 の靭性をある程度改良するもののハ-カムとプリプレダとを直接接着させる場合に形 成されるフィレットの強度を向上するための靭性向上のためには必ずしも十分ではな かった。
特許文献 1 :日本国特開平 2— 305860号公報
発明の開示
発明が解決しょうとする課題
[0006] 本発明の目的は、ハニカムパネルの面板用プリプレダに使用するマトリックス榭脂 の自己接着強度の向上に必要な靭性を向上するようにした繊維強化複合材料用ェ ポキシ榭脂組成物を提供することにある。
課題を解決するための手段
[0007] 上記目的を達成する本発明の繊維強化複合材料用エポキシ榭脂組成物は、ェポ キシ榭脂 (A)、熱可塑性榭脂 (B)、固形榭脂微粒子 (C)及び硬化剤 (D)を含むェポ キシ榭脂組成物であって、該エポキシ榭脂組成物の硬化後の形態が、前記エポキシ 榭脂 (A)及び熱可塑性榭脂 (B)が共連続相を形成し、該共連続相における少なくと も前記エポキシ榭脂 (A)の連続相中に前記固形榭脂微粒子 (C)が分散することを特 徴とする。
発明の効果
[0008] 本発明の繊維強化複合材料用エポキシ榭脂組成物は、エポキシ榭脂 (A)と熱可 塑性榭脂 (B)がそれぞれ微細に入り交じった、 3次元網目構造の共連続相を形成す ることにより靭性を向上する上に、さらに、溶解、微細化した固形榭脂微粒子 (C)が、 少なくともエポキシ榭脂 (A)の連続相中に微細に分散して 、るので、 V、つそう靭性を 向上することが可能になる。したがって、このエポキシ榭脂組成物をマトリックス榭脂 に使用することにより、プリプレダの自己接着強度を一層向上することができる。 発明を実施するための最良の形態
[0009] 本発明のエポキシ榭脂組成物にぉ 、て、エポキシ榭脂 (A)は、特に限定されるも のではないが、ビスフエノール A型エポキシ榭脂、ビスフエノール F型エポキシ榭脂、 ナフタレン型エポキシ榭脂、ジフエ-ルフルオレン型エポキシ榭脂、トリグリシジルアミ ノフエノール榭脂、トリグリシジルァミノクレゾール榭脂、テトラグリシジルジアミノジフエ -ルメタン榭脂、テトラグリシジノレ m—キシリレンアミン榭月旨、 N, N—ジァミノクレゾ一 ル榭脂、フエノールノボラック型エポキシ榭脂、クレゾ一ルノボラック型エポキシ榭脂、 ビフエ-ル型エポキシ榭脂、ジシクロペンタジェン型エポキシ榭脂及びこれらの各種 変性エポキシ榭脂、並びに結晶性エポキシ榭脂、単分子の結晶性エポキシ榭脂等 が好ましく挙げられる。エポキシ榭脂 (A)としては、熱可塑性榭脂 (B)との相溶性を 高くし加熱混合時に熱可塑性榭脂 (B)を確実に溶解するために、液状エポキシ榭脂 を使用することが好ましぐ上述した中から分子量が低いタイプのエポキシ榭脂を適 宜選択するとよい。また、エポキシ榭脂 (A)は、プリプレダの要求特性に合わせて、こ れらの中から、硬化後の形態が上記のモルフォロジ一を発現するように、単独又は 2 種以上の組み合わせで使用することが好ま 、。
[0010] エポキシ榭脂 (A)の性状は、好ましくは常温で液状であり、温度 25°Cの粘度が、好 ましくは 1〜: LOOボイズ、より好ましくは 5〜50ボイズにするとよい。粘度をこのような範 囲内にすることにより、熱可塑性榭脂 (B)を配合したときにエポキシ榭脂組成物の粘 度を容易に適正な範囲にすることができ、また硬化後に共連続相を形成することが 可能になる。ただし、温度 25°Cの粘度は、 BH型回転粘度計を用いて測定する値で あり、具体的にはエポキシ榭脂の入った缶を温度 25°Cの恒温槽に入れ BH回転粘 度計の負荷が安定した目盛りをもって測定する値である。
[0011] なお、エポキシ榭脂 (A)に対して、半固形又は固形のエポキシ榭脂を、本発明の 効果を損なわない範囲で配合してもよい。例えば、半固形又は固形のエポキシ榭脂 を、エポキシ榭脂 (A) 100重量部に対して、 20重量部以下の割合で配合してもよい
[0012] 熱可塑性榭脂 (B)は、エポキシ榭脂 (A)に加熱混合時に溶解し、硬化時に相分離 して微細に入り交じった共連続相を形成する。このため、熱可塑性榭脂(B)は、ェポ キシ榭脂 (A)との相溶性が高いことが求められ分子末端に反応性官能基を有するこ とが好ましい。反応性官能基は、特に限定されるものではないが、ヒドロキシル基、力 ルポキシル基、アミノ基等が好ましく挙げられ、特にヒドロキシル基が好ましい。
[0013] 熱可塑性榭脂 (B)の種類は、特に限定されるものではな ヽが、ポリエーテルスルホ ン榭脂、ポリエーテルイミド榭脂、ポリイミド榭脂、ポリアミド榭脂、ポリエーテル榭脂、 ポリエステル榭脂、ポリスルホン樹脂、ポリアミドイミド榭脂、ポリアタリレート榭脂、ポリ ァリールエーテル榭脂、ポリフエ-ルエーテル榭脂及びポリエーテルエーテルケトン 榭脂から選ばれる少なくとも 1種以上であることが好ましい。なかでもポリエーテルス ルホン樹脂又はポリエーテルイミド榭脂が好ましぐとりわけポリエーテルスルホン榭 脂が、エポキシ榭脂との相溶性に優れ、共連続相を形成しやすぐかつ靭性を向上 することができるため好まし 、。
[0014] 熱可塑性榭脂 (B)は、粒子状のものを使用することが好ましぐより好ましくはその 粒子径を 200 /z m以下、さらに好ましくは 5〜: LOO /z mにするとよい。熱可塑性榭脂( B)として、このような粒子径を有する微細粒子を使用することにより、エポキシ榭脂に 配合するときに大きな粒子が解け残ることを回避して素早く均一に溶解するため、硬 化後に共連続相を形成しやすくなる。すなわち、微細粒子の粒子径を 200 m以下 にすることにより、エポキシ榭脂 (A)への熱可塑性榭脂(B)の溶解が均一となり、共 連続相を形成しやすくなり靭性を十分に向上させることができる。粒子径 200 m以 下の微細粒子を調整する方法は、特に制限されることはないが衝撃粉砕法、噴霧乾 燥法により微細化することが好ま 、。
[0015] 本発明のエポキシ榭脂組成物は、硬化後にエポキシ榭脂 (A)と熱可塑性榭脂 (B) とが相互に入り交じった共連続相を形成し、この共連続相における少なくともェポキ シ榭脂 (A)の連続相中に固形榭脂微粒子 (C)が分散することを特徴とする。少なくと もエポキシ榭脂 (A)の連続相の中に、固形榭脂微粒子 (C)がより微細な分散相を形 成するので、エポキシ榭脂 (A)相の内部の応力集中を全体に分散させるようにして、 靭性を向上することができる。このエポキシ榭脂組成物の靭性の向上により、フィレツ トの強度が改良され、プリプレダの自己接着強度を向上することができる。なお、固形 榭脂微粒子 (C)は、少なくともエポキシ榭脂 (A)の連続相の中に分散して ヽればよく 、熱可塑性榭脂 (B)の連続相中に分散して 、てもよ 、。
[0016] 固形榭脂微粒子 (C)を構成する榭脂は、少なくともエポキシ榭脂 (A)と親和性が高 ぃ榭脂であればよぐ熱硬化性榭脂又は熱可塑性榭脂のどちらでもよぐ両者を共に 使用してもよい。具体的に、熱硬化性榭脂としては、エポキシ榭脂、マレイミド榭脂、 シァネート榭脂等力もなることが好ましぐなかでもエポキシ榭脂がより好ましい。ェポ キシ榭脂としては、特に制限されるものではないが、ビスフエノール A型エポキシ榭脂 、ビスフエノール F型エポキシ榭脂、フエノールノボラック型エポキシ榭脂、タレゾール ノボラック型エポキシ榭脂、ジシクロペンタジェン骨格型エポキシ榭脂又はナフタレン 骨格のエポキシ榭脂が挙げられ、とりわけビスフエノール A型エポキシ榭脂が好まし い。
[0017] 固形榭脂微粒子 (C)を構成するエポキシ榭脂としては、ビスフエノール型エポキシ 榭脂を精製し純度を高めると共にその分子量を高くして調製することにより、分子末 端にエポキシ基を有するフエノキシ骨格型榭脂がより好ましい。分子末端にエポキシ 基を有することによりエポキシ榭脂 (A)との親和性を高めることができ、フエノキシ骨 格型榭脂は、好ましくはビスフエノール A骨格及びビスフエノール F骨格カゝら選ばれる 少なくとも 1つ力もなるフエノキシ型榭脂であり、軟ィ匕点を高くすると共に、靭性を向上 することができる。
[0018] また、固形榭脂微粒子 (C)を構成する熱可塑性榭脂としては、特に限定されるもの ではないが、分子末端に反応性官能基を有するものが、靭性向上効果が高く好まし い。
[0019] 固形榭脂微粒子 (C)を構成する榭脂の分子量は、 10, 000〜: LOO, 000であること が好ましい。分子量が 10, 000-100, 000の範囲内にあると、エポキシ榭脂組成物 の硬化時に固形榭脂粒子が溶け残ることを防止して均一に溶解することが可能にな ると共に、固形榭脂粒子が均一に分散することによりエポキシ榭脂組成物の靭性を 向上させることができる。なお、本発明において、分子量は、 GPC分析により測定し た重量平均分子量である。
[0020] 固形榭脂微粒子 (C)を構成するエポキシ榭脂は、高分子量タイプのものが好ましく
、重量平均分子量が 10, 000〜35, 000のエポキシ榭脂がより好ましい。重量平均 分子量が 10, 000-35, 000の範囲内にあると、衝撃粉砕法などにより、微細な粒 子を製造しやすいことやエポキシ榭脂組成物の加熱硬化過程で粒子が分散しやす いという理由力 好ましい。
[0021] 固形榭脂微粒子 (C)として使用する分子末端にエポキシ基を有するフエノキシ骨 格型榭脂は、その重量平均分子量を、好ましくは 50, 000-60, 000にするとよい。 フエノキシ骨格型榭脂の重量平均分子量を 50, 000〜60, 000の範囲内〖こすると、 衝撃粉砕法などにより微細な粒子を製造しやすぐエポキシ榭脂組成物の加熱硬化 過程でこの粒子が分散しやす 、からである。
[0022] また、分子末端にエポキシ基を有するフエノキシ骨格型榭脂は、そのエポキシ当量 を、好ましくは 8, 000〜20, 000g/eqにするとよ!/、。エポキシ当量を 8, 000g/eq 以上にするとエポキシ榭脂 (A)〖こ加熱硬化前に完全に相溶することがなぐ硬化後 にエポキシ榭脂 (A)の連続相中で分離した分散相を形成することが可能になり、 20 , OOOgZeq以下にするとエポキシ榭脂 (A)に加熱硬化時に容易に溶解することが できる。
[0023] 固形榭脂微粒子 (C)を構成するエポキシ榭脂は、常温で固形のビスフエノール A 型エポキシ榭脂からなることが好まし 、。このようなビスフエノール A型エポキシ榭脂 は、ビスフエノール型エポキシ榭脂を精製し純度を高めると共にその分子量を高くす ることにより調製することができ、軟ィ匕点が高くプリプレダの作業性を改善すると共に、 靭性を改善する効果が高く好ましい。
[0024] ビスフエノール A型エポキシ榭脂は、エポキシ当量が、好ましくは 1000〜8000gZ eq、より好ましくは 2000〜6000g/eqであるとよ!/、。エポキシ当量を 1000g/eq以 上にするとエポキシ榭脂 (A)〖こ加熱硬化前に完全に相溶することがなぐ硬化後に エポキシ榭脂 (A)の連続相中で分離した分散相を形成することが可能になり、また 8 OOOgZeq以下にするとエポキシ榭脂 (A)に加熱硬化時に容易に溶解することがで きる。
[0025] 固形榭脂微粒子 (C)が、加熱硬化時にエポキシ榭脂 (A)に完全に溶解するように するため、固形榭脂微粒子 (C)は、粒子径が、好ましくは 100 m以下、より好ましく は 5 μ m〜100 μ mのものを使用するとよ!/、。固形榭脂微粒子(C)の粒子径をこのよ うな範囲内にすることで、加熱硬化工程で所定の温度になると、固形榭脂微粒子 (C )がエポキシ榭脂 (A)に容易に溶解するので、エポキシ榭脂組成物の粘度を適正に 調整すると共に、エポキシ榭脂相の中に分散し、硬化物の靭性を向上することができ る。
[0026] エポキシ榭脂組成物の硬化後、固形榭脂微粒子 (C)の粒子径は、好ましくは 0. 1 〜2 111、ょり好ましくは0. 1〜0. 5 mであるとよい。固形榭脂微粒子(C)の粒子径 を、 0. 1〜2 mの範囲内にしエポキシ榭脂 (A)の連続相中に分散すると榭脂硬化 物の靭性を向上する効果が高くなり好ましい。
[0027] 硬化剤 (D)の種類は、エポキシ基と反応し得る活性基を有する化合物であれば、 特に限定されるものではないが、芳香族ポリアミン、脂肪族ポリアミン、イミダゾールイ匕 合物、テトラメチルダァ-ジン、チォ尿素付加ァミン、カルボン酸無水物、カルボン酸 ヒドラジド、カルボン酸アミド、ポリフエノール化合物、ノボラック榭脂、ポリメルカブタン 等が好ましく挙げられる。とりわけ榭脂硬化物の機械的特性を向上する観点から、芳 香族ポリアミンが好ましぐ特に 3, 3' ジアミノジフエ-ルスルホン(3, 3' — DDS)又 は 4,4' ジアミノジフエ-ルスルホン(4, 4' —DDS)等のジアミノジフエ-ルスルホン を使用することが好ましい。
[0028] また、硬化剤 (D)は、さらに、潜在性硬化剤を使用することが好ましい。潜在性硬化 剤は、有機酸ジヒドラジド、ジシアンジアミド、ァミンイミド、第三アミン塩、イミダゾール 塩、ルイス酸及びブレンステッド酸力 選ばれる少なくとも 1つであることが好ましぐと りわけ有機酸ジヒドラジド又はジシアンジアミドが好まし 、。潜在性硬化剤を使用する ことにより、榭脂硬化物の靭性を向上すること、すなわちフィレットの強度を向上して プリプレダの自己接着強度を向上することができる。なかでも硬化剤 (D)としては、ジ アミノジフエニルスルホン及び潜在性硬ィ匕剤カゝら選ばれる少なくとも 1つの硬化剤を 使用するのが特に好ましい。
[0029] 本発明のエポキシ榭脂組成物は、エポキシ榭脂 (A) 100重量部に対して、熱可塑 性榭脂(B)を好ましくは 20〜60重量部、より好ましくは 30〜50重量部、固形榭脂微 粒子 (C)を好ましくは 2〜20重量部、より好ましくは 5〜 15重量部の配合割合で含む とよい。
[0030] 熱可塑性榭脂 (B)の配合量を 20〜60重量部の範囲内にすることにより、エポキシ 榭脂組成物の粘度を適正化してフィレットの形状を良好にでき、 60重量部以下にす ることによりタック性及びドレープ性等のプリプレダの作業性を向上することができる。 固形榭脂微粒子 (C)の配合量を 2重量部以上にすると硬化物の靭性の向上効果が 得られ、また 20重量部以下にするとプリプレダを適度な硬さにしてタック性及びドレ ープ性が向上することが可能になる。
[0031] 硬化剤 (D)は、上記エポキシ榭脂 (A) 100重量部に対して、好ましくは 25〜50重 量部、より好ましくは 30〜45重量部を配合するのがよい。硬化剤(D)の配合量を 25 〜50重量部にすることにより、榭脂硬化物が面板として要求される強度、靭性、耐熱 性などの物性を向上することができる。
[0032] 本発明の繊維強化複合材料用エポキシ榭脂組成物は、上記 (A)〜 (D)成分を必 須とするものである力 本発明の効果を損なわない範囲で、必要に応じて上記 (A) 〜(D)成分以外の公知の硬化剤、充填剤、安定剤、難燃剤、顔料等の各種添加剤 を配合してもよい。
[0033] 本発明のエポキシ榭脂組成物は、その硬化物の破壊靭性値力 ASTM D5045 —91に準拠して測定する破壊靭性値で、好ましくは 1. 8MPa' m以上、より好まし くは 1. 8〜2. 5MPa' m、さらに好ましくは 2. 0〜2. 5MPa- mであるとよい。ェ ポキシ榭脂組成物の硬化物の破壊靭性値力 1. 8MPa' m以上であると、フィレツ ト部分の靭性が高ぐ面板 (プリプレダ)とハ-カムコアの自己接着後の剥離試験にお いて、ハ-カムコアの材料破断が生じるほど、剥離強度を向上することができる。
[0034] 本発明のエポキシ榭脂組成物は、昇温速度 2°CZ分における動的粘弾性測定によ る最低粘度が、好ましくは 10〜150Pa' s、より好ましくは 20〜150Pa' sであるとよい 。昇温過程で測定する動的粘弾性の最低粘度を上記の範囲内にすることは、プリプ レグの生産性及び自己接着性を発現する上で必要であり、 lOPa' s以上にすると良 好なフィレットを形成することができ自己接着性が向上し、 150Pa' s以下にするとフィ レットの形成性を保ちつつ、プリプレダ製造時に強化繊維に榭脂組成物を容易に含 浸させることができる。なお、本発明において動的粘弾性測定による最低粘度は、ェ ポキシ榭脂組成物を試料にして、温度 25°Cから 200°Cまでの間で、昇温速度 2°CZ 分、周波数 lOmdZ秒、ひずみ 1%の動的粘弾性測定における複素粘性率の最低 値をいうものとする。
[0035] 本発明の繊維強化複合材料用エポキシ榭脂組成物は、その硬化物の形態が、ェ ポキシ榭脂 (A)及び熱可塑性榭脂 (B)がそれぞれ相互に入り交じった 3次元網目構 造の連続相を形成し、さら〖こ少なくともエポキシ榭脂 (A)の連続相の中に固形榭脂 微粒子 (C)が微細な分散相を形成して!/ヽるため、単にエポキシ榭脂 (A)と熱可塑性 榭脂 (B)が共連続相を形成している場合と比べ、著しく優れた靭性を発揮する。すな わち、エポキシ榭脂 (A)と熱可塑性榭脂 (B)が 3次元の網目構造を有する共連続相 を形成することにより、応力が集中しゃす 、両榭脂の界面が 3次元的に連続した構 造を形成し、応力が全体的に分散されやすくなること、榭脂界面の接着力が両榭脂 の良好な相溶性により向上して ヽること、また靭性に優れた熱可塑性榭脂 (B)を連続 相にすることにより、榭脂硬化物の靭性を改良する。さらに、それに加えて固形榭脂 微粒子 (C)が微細な分散相となって、エポキシ榭脂 (A)の連続相の中に分散して!/、 ることにより、エポキシ榭脂 (A)の相の内部に負荷する応力を分散させ、エポキシ榭 脂 (A)相の靭性を向上させ、これによつて榭脂硬化物全体の靭性をさらに向上して いるものと考えられる。
[0036] 本発明の繊維強化複合材料用エポキシ榭脂組成物に用いる原材料は、特に制限 されるものではないが、液状のエポキシ榭脂 (A)、分子末端に反応性官能基を有す る熱可塑性榭脂 (B)、粒子径 100 IX m以下の固形榭脂微粒子 (C)及び硬化剤 (D) 力もなることが好ましい。エポキシ榭脂 (A)に液状エポキシ榭脂を用いることにより、 熱可塑性榭脂 (B)との相溶性を高くし加熱混合時に熱可塑性榭脂 (B)を確実に溶 解することができる。
[0037] また、熱可塑性榭脂 (B)に分子末端に反応性官能基を有する熱可塑性榭脂を使 用することにより、エポキシ榭脂 (A)との相溶性を向上し、硬化時に相互に入り交じつ た共連続相を形成しやすくなる。さらに、熱可塑性榭脂 (B)は、粒子状のものを使用 することが好ましぐその粒子径を 200 m以下にすることがより好ましい。このような 熱可塑性榭脂の微細粒子を使用すること〖こより、エポキシ榭脂に配合するときに解け 残りを回避して素早く均一に溶解するため、硬化後に共連続相を形成しやすくするこ とがでさる。
[0038] また、固形榭脂微粒子 (C)の粒子径を 100 μ m以下にすることにより、固形榭脂微 粒子 (C)が加熱硬化工程で所定の温度になると確実に、かつ均一に溶解するので、 エポキシ榭脂組成物の粘度を調整すると共に硬化後にエポキシ榭脂相の中に分散 し靭性をさらに向上することができる。 [0039] 繊維強化複合材料用エポキシ榭脂組成物の製造方法は、特に限定されるもので はな ヽが、好ましくはエポキシ榭脂 (A)に熱可塑性榭脂 (B)を加熱混合し溶解した 後に、その混合樹脂の温度を下げ、それに固形榭脂微粒子 (C)を分散させるように 配合するとよい。これによりエポキシ榭脂組成物の粘度を適正に保ち、プリプレダの 成形時に強化繊維に含浸しやすくするため好ま ヽ。次に得られたプリプレダを熱硬 化すると、加熱中に固形榭脂微粒子 (C)は、エポキシ榭脂 (A)に溶解し、硬化後に 少なくともエポキシ榭脂 (A)の連続相を海として、その中にさらに微細に均一に分散 する島 (分散相)となるのである。
[0040] 具体的には、熱可塑性榭脂 (B)をエポキシ榭脂 (A)に加熱混合し溶解させる温度 は、好ましくは温度 95〜150°C、より好ましくは温度 100〜125°Cがよぐプラネタリミ キサを用いて、均一に溶解するまで約 0. 5〜3時間、撹拌'混合するとよい。この混 合榭脂を冷却し、好ましくは温度 60〜90°C、より好ましくは温度 70〜80°Cにした後 、固形榭脂微粒子 (C)及び硬化剤 (D)を加え、混合榭脂中に均一に分散'混合して エポキシ榭脂組成物を調製することが好ましい。このような製造方法により、熱可塑 性榭脂 (B)を確実に溶解し、かつ固形榭脂微粒子 (C)をむらなく均一に分散するこ とにより、硬化後に特定の形態を形成し靭性を向上して、プリプレダの自己接着強度 を向上することができる。
[0041] 本発明の繊維強化プリプレダは、上述した繊維強化複合材料用エポキシ榭脂組成 物をマトリックス榭脂とし、このマトリックス榭脂を強化繊維と複合させたものである。強 化繊維は、炭素繊維、黒鉛繊維、ァラミド繊維、ガラス繊維等を好ましく挙げることが でき、なかでも炭素繊維及びそれからなる炭素繊維織物が特に好ま 、。
[0042] 繊維強化プリプレダは、マトリックス榭脂の含有量力 好ましくは 30〜50重量%、よ り好ましくは 35〜45重量%にするとよい。繊維強化プリプレダにおけるマトリックス榭 脂の比率力 Sこのような範囲内であれば、プリプレダの自己接着性を向上すると共に作 業性及び外観品質を向上させ、さらに炭素繊維強化複合材料の機械的特性を十分 に発揮させることができる。
[0043] 繊維強化プリプレダを製造する方法は、本発明のエポキシ榭脂組成物を離型紙の 上に薄いフィルム状に塗布したいわゆる榭脂フィルムを、強化繊維の上下に配置し、 加熱及び加圧することでエポキシ榭脂組成物を強化繊維に含浸させるホットメルト法 が好ましい。このようにして得られたプリプレダは、特定のエポキシ榭脂組成物を使用 することから、タック性及びドレープ性に優れ、プリプレダ作業性を良好にするため、 プリプレダの生産効率を向上させることができる。
[0044] このようにして得られた繊維強化プリプレダをノヽ-カムコアの両面に積層して、通常 のオートクレープ成形又はホットプレス成形等の熱硬化成形することにより、繊維強 化複合材料を製造することができる。この繊維強化複合材料は、良好なフィレットが 形成され、プリプレダのハ-カムコア接着性に優れるば力りでなぐプリプレダの表面 の平滑性に優れ、ポロシティ(表面の凹凸)が少ない優れた外観と表面性を有する。
[0045] 本発明に使用するハ-カムコアは、好ましくはァラミドハ-カム、アルミハ-カム、ぺ 一パーハ-カム、ガラスハ-カム力も選ばれるいずれかであるとよぐ中でもァラミドハ 二カムが好ましい。
[0046] 繊維強化プリプレダは、固形榭脂微粒子 (C)を、粒子径 100 μ m以下で分散させ ているので、加熱硬化工程で所定の温度になると、固形榭脂微粒子 (C)が確実に、 かつ均一に溶解するので、エポキシ榭脂組成物の粘度を適正に調整すると共に、硬 化が完了したときにエポキシ榭脂相の中に分散し、榭脂硬化物の靭性をさらに向上 することができる。
[0047] 以下、実施例によって本発明をさらに説明する力 本発明の範囲をこれらの実施例 に限定されるものではない。
実施例
[0048] 〔実施例 1〜5及び比較例 1〜2〕
エポキシ榭脂 (A)、熱可塑性榭脂 (B)、固形榭脂微粒子 (C)及び硬化剤 (D)を下 記に列記されたものの中から、それぞれ表 1の実施例 1〜5、比較例 1〜2に記載する 配合割合において、エポキシ榭脂組成物を調製し、その特性を評価した。先ずェポ キシ榭脂 (A)及び熱可塑性榭脂 (B)の全量を、温度 125°Cに設定したプラネタリミキ サを用いて、均一な溶液になるまで 75分間、撹拌'混合した。その後、このプラネタリ ミキサの温度を 70°Cに設定し、榭脂温度が均一になったところで、固形榭脂微粒子( C)及び硬化剤 (D)の全量をこの溶液中に加え、撹拌'混合してエポキシ榭脂組成物 を調製した。
[0049] ·エポキシ榭脂(A)
榭脂 A— 1 :N, N, O—トリグリシジル一 p—ァミノフエノール榭脂(ノヽンッマン'アドバ ンスト'マテリアルズ社製 MY— 0510)、常温で液状、温度 25°Cの粘度が 7ボイズ。 榭脂 A— 2:トリグリシジルイ匕アルキルアミノフエノール榭脂 (住友化学社製 ELM— 10 0)、常温で液状、温度 25°Cの粘度が 10ボイズ。
榭脂 A - 3:ビスフエノール F型エポキシ榭脂 (東都化成社製 YDF—170)、常温で 液状、温度 25°Cの粘度が 35ボイズ。
[0050] ,熱可塑性榭脂 (B)
榭脂 B— 1:ポリエーテルスルホン榭脂(住友ィ匕学社製スミカエタセル PES5003P)、 衝撃粉砕により粒子径 100 μ m以下の微細粒子にしたもの。
[0051] ,固形榭脂微粒子 (C)
粒子 C— 1:ビスフエノール A型エポキシ榭脂 (東都化成社製 YD— 019)、衝撃粉砕 により粒子径 100 μ m以下の微細粒子にしたもの。
粒子 C - 2:ビスフエノール A型エポキシ榭脂 (東都化成社製 YD -020N)、衝撃粉 砕により粒子径 100 μ m以下の微細粒子にしたもの。
粒子 C - 3:フエノキシ型ビスフエノールエポキシ榭脂 (東都化成社製 YP - 70)、衝 撃粉砕により粒子径 100 μ m以下の微細粒子にしたもの。
[0052] '硬化剤 )
硬化剤 D— 1 : 3, 3' —ジアミノジフエ-ルスルホン(ノヽンッマン'アドバンスト'マテリ アルズ社製 ARADUR9719— 1)
硬化剤 D - 2:ジシアンジアミド(ジャパンエポキシレジン社製ェピキュア DICY 15) 、潜在性硬化剤 o
[0053] 上述のようにして得られた 7種類のエポキシ榭脂組成物(実施例 1〜5、比較例 1〜 2)について、それぞれ下記に示す方法で、エポキシ榭脂組成物の最低粘度、プリプ レグのタック性及びドレープ性、硬化物の形態観察及び破壊靱性値、ハ-カムパネ ルの剥離強度を評価し、その結果を表 1に示す。
[0054] 〔エポキシ榭脂組成物の最低粘度〕 得られたエポキシ榭脂組成物を試料にして、温度 25°Cから 200°Cまでの間で、昇 温速度 2°CZ分、周波数 lOradZ秒、ひずみ 1%の条件の動的粘弾性測定における 複素粘性率の最低値を測定した。
[0055] 〔プリプレダのタック性及びドレープ性〕
得られたエポキシ榭脂組成物を用いて離型紙上に榭脂フィルムを形成し、このフィ ルムを炭素繊維平織織物 (東レ社製 T— 300— 3K)に、榭脂含有量が 41重量%とな るように加熱加圧して転写しプリプレダを得た。
[0056] 得られたプリプレダを触手により、タック性及びドレープ性を以下の三段階基準によ り、評価した。
プリプレダのタック性評価
〇: 十分な粘着性が感じられたもの
Δ : やや粘着性が感じられたもの
X: ほぼ粘着性が感じられな力 たもの
プリプレダのドレープ性評価
〇: 十分な柔軟性が感じられたもの
Δ : やや柔軟性が感じられたもの
X: ほぼ柔軟性が感じられなカゝつたもの
[0057] 〔硬化物の形態観察〕
得られたエポキシ榭脂組成物を使用して、プログラムオーブンにて温度 180°Cで、 2時間硬化し、榭脂硬化物を作製した。
[0058] 得られた榭脂硬化物を、鋭利な刃物を用いて破断し、その破断面を走査型電子顕 微鏡により、 5000倍でエポキシ榭脂 (A)及び熱可塑性榭脂 (B)の形態、固形榭脂 微粒子 (C)の分散径につ ヽて形態観察した。
[0059] 〔硬化物の破壊靱性〕
上記で得られた榭脂硬化物を、 ASTM D5045-91に準拠して、試験サンプル を作製し、 23°C (乾燥状態)における破壊靭性値 (MPa' m)を測定した。
[0060] 〔ハニカムパネルの剥離強度〕
得られたエポキシ榭脂組成物カゝらなるプリプレダを 2枚積層し、これをハ-カムコア( 昭和飛行機工業社製ノーメックスハ-カム SAH— 1Z8— 8. 0)の両面に配置した後 、ノッグに入れ、これをォ—トクレ―ブ内で温度 180°C、 2時間(昇温速度 2. 8°CZ 分)加熱し、硬化させてハ-カムパネルを作製した。この間、オートクレープ内を圧空 で 0. 32MPaにカロ圧した。
[0061] 得られたハ-カムパネルを、 ASTM D1781に準拠して、加熱硬化工程にハ-カ ムコアの上側及び下側に配置された面板をそれぞれ所定の寸法に加工し温度 23°C (乾燥状態)における上側面板及び下側面板の試験片の剥離強度 (lb— inZ3in)を 測定した。
[0062] [表 1]
o o CM co
CO I o I I CM I CO CM CO 〇 〇 I O o σ> 較例較実施例実施例実実例実比比 2315142 ο o o o σ> 例施例施施例 O I I I I CO CM ιο 〇 〇 I 00
樹脂重量部 A 1- o CSJ CN
O 樹脂部重量 A2 I- o o I I o
CO CNJ NJ 〇 〇 σ CM ιο
CSJ
樹脂重量部 A3-
ΙΟ
ο o CM CM
O I o 塑熱可 o
樹脂部重量 Β1- I I CM CO 〇 〇 o CM CM 性脂樹
樹脂部重量 C 1- 樹固形 CM J CO >
I o o σ 脂
ΙΛ I 重量部 CM I C O CM iri
粒子 CO CM sl 〇 〇
微 csl SJ 脂重量部樹 C3- o ο 剤硬重量部化 D 1— C CM σ>
O I o I 00 I CO剤硬化 CSJ o
CM 〇 〇 O CSJ CM Csl 剤部硬化重量 D 2—
最粘度低 Pas' < CO o I I CM O CM
O I o ο 00
CM ププ 〇グ特性タクリレのッ 〇 O in LO
CM CSJ
プププグ特性ドリレのレー
ポ塑性キ樹脂熱樹脂シと可エ
続連続連続連続連続連続共連共共共共共態形の
散樹脂分径固微粒形子のm
破壊靭性値V MPam
板側離強度上剥面の/ lbi3inn- ¾} ϊ¾l i[iffli丄/ (qii)!s! uu-
Figure imgf000016_0001
[0063] 表 1の結果から、本発明の実施例 1 5は、エポキシ榭脂 (A)と熱可塑性榭脂 (B) が微細な共連続相を形成し、固形榭脂微粒子 (C)はエポキシ榭脂 (A)の連続相中 に粒子径 0. 2 μ πιで分散する形態であることが認められた。また、実施例:!〜 5の破 壊靭性値は、 2. 1 2. 2MPa' mと非常に高いことが認められた。
[0064] 一方、比較例 1の榭脂硬化物は、エポキシ榭脂 (A)と熱可塑性榭脂 (B)が微細な 共連続相を形成するが、固形榭脂微粒子 (C)を配合していないため、エポキシ榭脂 (A)が強化されず破壊靭性値が 1. 8MPa' mと低く、比較例 2の榭脂硬化物は、 熱可塑性榭脂 (B)を配合していないため、共連続相を形成せず、さらに低い破壊靭 性値であった。
また、本発明の実施例 1〜5は、プリプレダのタック性及びドレープ性、ハニカムパ ネルの剥離強度のすべてに優れた特性を示した。これに対し、固形榭脂微粒子 (C) を配合しない比較例 1と、熱可塑性榭脂 (B)を配合しない比較例 2は、ハ-カムパネ ルの剥離強度が劣る結果になることが認められた。

Claims

請求の範囲
[1] エポキシ榭脂 (A)、熱可塑性榭脂 (B)、固形榭脂微粒子 (C)及び硬化剤 (D)を含 むエポキシ榭脂組成物であって、該エポキシ榭脂組成物の硬化後の形態が、前記 エポキシ榭脂 (A)及び熱可塑性榭脂 (B)が共連続相を形成し、該共連続相におけ る少なくとも前記エポキシ榭脂 (A)の連続相中に前記固形榭脂微粒子 (C)が分散す る繊維強化複合材料用エポキシ榭脂組成物。
[2] 前記熱可塑性榭脂 (B)が、分子末端に反応性官能基を有する請求項 1に記載の 繊維強化複合材料用エポキシ榭脂組成物。
[3] 前記熱可塑性榭脂 (B)が、ポリエーテルスルホン樹脂の粒子及び Z又はポリエー テルイミド榭脂の粒子であり、その粒子径が 200 m以下である請求項 1又は 2に記 載の繊維強化複合材料用エポキシ榭脂組成物。
[4] 前記固形榭脂微粒子 (C)が、常温で固形のエポキシ榭脂、マレイミド榭脂、又はシ ァネート榭脂からなる請求項 1、 2又は 3に記載の繊維強化複合材料用エポキシ榭脂 組成物。
[5] 前記固形榭脂微粒子 (C)が、熱可塑性榭脂からなる請求項 1、 2又は 3に記載の繊 維強化複合材料用エポキシ榭脂組成物。
[6] 前記固形榭脂微粒子 (C)を構成する榭脂の分子量が 10, 000〜100, 000である 請求項 1〜5のいずれかに記載の繊維強化複合材料用エポキシ榭脂組成物。
[7] 前記固形榭脂微粒子 (C)が、分子量 10, 000〜35, 000のエポキシ榭脂からなる 請求項 1〜4のいずれか〖こ記載の繊維強化複合材料用エポキシ榭脂組成物。
[8] 前記固形榭脂微粒子(C) 1S エポキシ当量 1000〜8000gZeqのビスフエノール
A型エポキシ榭脂からなる請求項 1、 2、 3、 4、 6又は 7に記載の繊維強化複合材料 用エポキシ榭脂組成物。
[9] 前記固形榭脂微粒子 (C)が、分子末端にエポキシ基を有するフエノキシ骨格型榭 脂からなる請求項 1、 2、 3、 4、 6、 7又は 8に記載の繊維強化複合材料用エポキシ榭 脂組成物。
[10] 前記フエノキシ骨格型榭脂の分子量が、 50, 000-60, 000である請求項 9に記 載の繊維強化複合材料用エポキシ榭脂組成物。
[11] 前記フエノキシ骨格型榭脂のエポキシ当量力 8, 000-20, OOOgZeqである請 求項 9又は 10に記載の繊維強化複合材料用エポキシ榭脂組成物。
[12] 前記固形榭脂微粒子 (C)の粒子径が、前記エポキシ榭脂組成物の硬化後の形態 において、 0. 1〜2 /ζ πιである請求項 1〜: L 1のいずれかに記載の繊維強化複合材 料用エポキシ榭脂組成物。
[13] 前記硬化剤 (D)力 ジァミノジフヱニルスルホン及び Ζ又は潜在性硬化剤カゝらなる 請求項 1〜12のいずれか〖こ記載の繊維強化複合材料用エポキシ榭脂組成物。
[14] 前記エポキシ榭脂組成物の硬化後に、 ASTM D5045— 91に準拠して測定され る破壊靭性値が、 1. 8MPa' m以上である請求項 1〜13のいずれかに記載の繊 維強化複合材料用エポキシ榭脂組成物。
[15] 前記エポキシ榭脂組成物が、前記エポキシ榭脂 (A) 100重量部に対し、前記熱可 塑性榭脂 (B)を 20〜60重量部、前記熱硬化性榭脂の粒子 (C)を 2〜20重量部配 合する請求項 1〜14のいずれかに記載の繊維強化複合材料用エポキシ榭脂組成 物。
[16] 前記エポキシ榭脂組成物の昇温速度 2°CZ分における動的粘弾性測定による最 低粘度が 10〜 150Pa · sである請求項 1〜 15の 、ずれかに記載の繊維強化複合材 料用エポキシ榭脂組成物。
[17] 請求項 1〜16のいずれかに記載のエポキシ榭脂組成物をマトリックス榭脂として、強 化繊維と複合させた繊維強化プリプレダ。
[18] 前記固形榭脂微粒子 (C)の粒子径カ 100 μ m以下である請求項 17に記載の繊 維強化プリプレダ。
[19] 前記マトリックス榭脂の含有量が 30〜50重量%である請求項 17又は 18に記載の 繊維強化プリプレダ。
[20] 前記強化繊維が炭素繊維である請求項 17、 18又は 19に記載の繊維強化プリプレ グ。
[21] 請求項 17〜20のいずれかに記載の繊維強化プリプレダとハ-カムコアとを積層し たハ-カムサンドイッチパネル。
[22] 前記ハ-カムコアが、ァラミドハ-カム、アルミハ-カム、ペーパーハ-カム、ガラス ハ-カム力 選ばれるいずれかである請求項 21に記載のハ-カムサンドイッチパネ ノレ。
PCT/JP2007/058876 2006-04-25 2007-04-24 繊維強化複合材料用エポキシ樹脂組成物 WO2007125926A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
ES07742311.9T ES2517565T3 (es) 2006-04-25 2007-04-24 Composición de resina de epoxi para materiales compuestos reforzados con fibras
CN2007800149029A CN101432359B (zh) 2006-04-25 2007-04-24 纤维强化复合材料用环氧树脂组合物
BRPI0709483-3A BRPI0709483A2 (pt) 2006-04-25 2007-04-24 composição de resina epóxi para material composto de fibra reforçada; pré-impregnado de fibra reforçada e painel impresado colméia
KR1020087028770A KR101393763B1 (ko) 2006-04-25 2007-04-24 섬유 강화 복합 재료용 에폭시 수지 조성물
US12/298,040 US8137786B2 (en) 2006-04-25 2007-04-24 Epoxy resin composition for fiber-reinforced composite material
CA2650559A CA2650559C (en) 2006-04-25 2007-04-24 Epoxy resin composition for fiber-reinforced composite material
EP20070742311 EP2014721B1 (en) 2006-04-25 2007-04-24 Epoxy resin composition for fiber-reinforced composite material
AU2007244332A AU2007244332B2 (en) 2006-04-25 2007-04-24 Epoxy resin composition for fiber-reinforced composite material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006120698 2006-04-25
JP2006-120698 2006-04-25
JP2006264577A JP4141487B2 (ja) 2006-04-25 2006-09-28 繊維強化複合材料用エポキシ樹脂組成物
JP2006-264577 2006-09-28

Publications (1)

Publication Number Publication Date
WO2007125926A1 true WO2007125926A1 (ja) 2007-11-08

Family

ID=38655452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/058876 WO2007125926A1 (ja) 2006-04-25 2007-04-24 繊維強化複合材料用エポキシ樹脂組成物

Country Status (11)

Country Link
US (1) US8137786B2 (ja)
EP (1) EP2014721B1 (ja)
JP (1) JP4141487B2 (ja)
KR (1) KR101393763B1 (ja)
CN (1) CN101432359B (ja)
AU (1) AU2007244332B2 (ja)
BR (1) BRPI0709483A2 (ja)
CA (1) CA2650559C (ja)
ES (1) ES2517565T3 (ja)
TW (1) TWI457394B (ja)
WO (1) WO2007125926A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008156486A (ja) * 2006-12-25 2008-07-10 Yokohama Rubber Co Ltd:The 繊維強化複合材料用エポキシ樹脂組成物
JP2011018814A (ja) * 2009-07-10 2011-01-27 Nippon Chemicon Corp コンデンサ
CN101608050B (zh) * 2008-06-20 2011-06-08 中国科学院化学研究所 具有三层结构的环氧树脂改性材料及其制备方法
JP2016148050A (ja) * 2010-06-14 2016-08-18 ヘクセル コンポジッツ、リミテッド 複合材料の改善
WO2017114416A1 (en) * 2015-12-31 2017-07-06 Byd Company Limited Composite honeycomb sandwich board and method for preparing the same

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4829766B2 (ja) * 2006-12-13 2011-12-07 横浜ゴム株式会社 繊維強化複合材料用エポキシ樹脂組成物
JPWO2008133054A1 (ja) * 2007-04-13 2010-07-22 東邦テナックス株式会社 樹脂組成物、及びプリプレグ
TWI435887B (zh) 2008-02-26 2014-05-01 Toray Industries 環氧樹脂組成物、預浸透物及纖維強化複合材料
CN104119645B (zh) 2008-09-29 2016-10-26 东丽株式会社 环氧树脂组合物、预浸料坯及纤维增强复合材料
EP2366742A4 (en) * 2008-11-13 2013-01-02 Toho Tenax Co Ltd THERMOSETTING RESIN COMPOSITION AND PREPREGATION USING THE SAME
WO2010107022A1 (ja) * 2009-03-16 2010-09-23 東レ株式会社 繊維強化樹脂組成物、成形材料および繊維強化樹脂組成物の製造方法
ES2686497T3 (es) * 2009-08-31 2018-10-18 Cytec Technology Corporation Composiciones adhesivas de alto desempeño
KR101425334B1 (ko) * 2011-03-25 2014-08-01 도레이 카부시키가이샤 프리프레그 및 섬유 강화 복합 재료
ITTO20110283A1 (it) * 2011-03-29 2012-09-30 Avio Spa Formulazioni polimeriche a reologia chimicamente regolabile per la fabbricazione di preimpregnati e articoli in materiale composito
JP2013145839A (ja) * 2012-01-16 2013-07-25 Nitto Denko Corp 中空封止用樹脂シートおよびその製法、並びに中空型電子部品装置の製法および中空型電子部品装置
KR101649432B1 (ko) 2012-02-06 2016-08-18 헥시온 인코포레이티드 복합재 이용분야에서 직물, 매트 및 다른 섬유성 강화재를 위한 에폭시 수지 포뮬레이션
EP2623561A1 (en) * 2012-02-06 2013-08-07 Momentive Specialty Chemicals Research Belgium S.A. Epoxy resin formulations for textiles, mats and other fibrous reinforcements for composite applications
GB2505032B (en) * 2012-05-18 2016-05-04 Hexcel Composites Ltd Fast cure epoxy resins and prepregs obtained therefrom
US9840058B2 (en) * 2012-10-31 2017-12-12 Dunlop Sports Co. Ltd. Fiber-reinforced epoxy resin material, prepreg and, tubular body made of fiber-reinforced epoxy resin material
EP2781539A1 (en) * 2013-03-19 2014-09-24 Siemens Aktiengesellschaft Fibre reinforced plastic composite, method of manufacturing thereof, plastic composite starting material for manufacturing the fibre reinforced plastic composite, and component of a wind turbine comprising the fibre reinforced plastic composite
WO2016067736A1 (ja) * 2014-10-29 2016-05-06 東レ株式会社 エポキシ樹脂組成物、樹脂硬化物、プリプレグおよび繊維強化複合材料
JP6149995B1 (ja) * 2016-09-28 2017-06-21 富士ゼロックス株式会社 非架橋樹脂組成物、及び非架橋樹脂成形体
WO2019027746A1 (en) * 2017-07-31 2019-02-07 3M Innovative Properties Company CURABLE COMPOSITION COMPRISING EPOXY RESIN AND CURABLE SOLID CHARGE
CN112673055A (zh) * 2018-09-06 2021-04-16 洛桑联邦理工学院 一种复合材料

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63221122A (ja) * 1987-03-11 1988-09-14 Toho Rayon Co Ltd プリプレグ及びその製造方法
JPH0267333A (ja) * 1988-07-15 1990-03-07 Amoco Corp 樹脂粒を充填した繊維強化複合材
JPH02305860A (ja) 1989-02-10 1990-12-19 Toray Ind Inc プリプレグ
JPH1143546A (ja) * 1997-07-30 1999-02-16 Toray Ind Inc クロスプリプレグおよびハニカム構造体
JP2003238657A (ja) * 2002-02-14 2003-08-27 Toray Ind Inc エポキシ樹脂組成物、樹脂硬化物、プリプレグおよび繊維強化複合材料
JP2004277481A (ja) * 2003-03-13 2004-10-07 Toho Tenax Co Ltd エポキシ樹脂組成物
JP2004346092A (ja) * 2003-04-28 2004-12-09 Yokohama Rubber Co Ltd:The プリプレグ用樹脂組成物

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5447785A (en) * 1993-03-02 1995-09-05 Toray Industries, Inc. Cloth prepreg, process for producing the same and reinforcing fabric
KR930019736A (ko) * 1992-03-30 1993-10-18 마에다 카쯔노수케 프리프레그 및 섬유강화 복합재료
DE69834800T2 (de) * 1997-07-11 2007-05-16 Toray Industries, Inc. Prepreggewebe und wabenförmige sandwichplatte
WO2001027190A1 (fr) * 1999-10-13 2001-04-19 Toray Industries, Inc. Composition de resine epoxy pour matiere composite renforcee par des fibres, pre-impregne et matiere composite renforcee par des fibres ainsi obtenue
JP2003041123A (ja) * 2001-05-25 2003-02-13 Nippon Petrochemicals Co Ltd 熱硬化性樹脂組成物、その製造方法及び懸濁液状混合物
JP2004027043A (ja) * 2002-06-26 2004-01-29 Toray Ind Inc 繊維強化複合材料用エポキシ樹脂組成物及び繊維強化複合材料
KR101238514B1 (ko) * 2004-04-05 2013-02-28 세키스이가가쿠 고교가부시키가이샤 중공 수지 미립자, 유기·무기 하이브리드 미립자 및 중공수지 미립자의 제조 방법
JP2006213797A (ja) * 2005-02-02 2006-08-17 Nippon Paint Co Ltd 熱硬化性誘電体樹脂組成物及び熱硬化性誘電体樹脂フィルム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63221122A (ja) * 1987-03-11 1988-09-14 Toho Rayon Co Ltd プリプレグ及びその製造方法
JPH0267333A (ja) * 1988-07-15 1990-03-07 Amoco Corp 樹脂粒を充填した繊維強化複合材
JPH02305860A (ja) 1989-02-10 1990-12-19 Toray Ind Inc プリプレグ
JPH1143546A (ja) * 1997-07-30 1999-02-16 Toray Ind Inc クロスプリプレグおよびハニカム構造体
JP2003238657A (ja) * 2002-02-14 2003-08-27 Toray Ind Inc エポキシ樹脂組成物、樹脂硬化物、プリプレグおよび繊維強化複合材料
JP2004277481A (ja) * 2003-03-13 2004-10-07 Toho Tenax Co Ltd エポキシ樹脂組成物
JP2004346092A (ja) * 2003-04-28 2004-12-09 Yokohama Rubber Co Ltd:The プリプレグ用樹脂組成物

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008156486A (ja) * 2006-12-25 2008-07-10 Yokohama Rubber Co Ltd:The 繊維強化複合材料用エポキシ樹脂組成物
CN101608050B (zh) * 2008-06-20 2011-06-08 中国科学院化学研究所 具有三层结构的环氧树脂改性材料及其制备方法
JP2011018814A (ja) * 2009-07-10 2011-01-27 Nippon Chemicon Corp コンデンサ
JP2016148050A (ja) * 2010-06-14 2016-08-18 ヘクセル コンポジッツ、リミテッド 複合材料の改善
WO2017114416A1 (en) * 2015-12-31 2017-07-06 Byd Company Limited Composite honeycomb sandwich board and method for preparing the same
CN106926516A (zh) * 2015-12-31 2017-07-07 比亚迪股份有限公司 复合蜂窝夹芯板及其制备方法
CN106926516B (zh) * 2015-12-31 2019-07-26 比亚迪股份有限公司 复合蜂窝夹芯板及其制备方法

Also Published As

Publication number Publication date
JP4141487B2 (ja) 2008-08-27
US8137786B2 (en) 2012-03-20
EP2014721A4 (en) 2012-07-11
CA2650559A1 (en) 2007-11-08
US20090098335A1 (en) 2009-04-16
CA2650559C (en) 2015-04-14
TWI457394B (zh) 2014-10-21
CN101432359B (zh) 2011-09-07
JP2007314753A (ja) 2007-12-06
TW200804502A (en) 2008-01-16
AU2007244332A1 (en) 2007-11-08
EP2014721B1 (en) 2014-10-08
ES2517565T3 (es) 2014-11-03
EP2014721A1 (en) 2009-01-14
AU2007244332B2 (en) 2010-08-05
KR20090015082A (ko) 2009-02-11
KR101393763B1 (ko) 2014-05-12
CN101432359A (zh) 2009-05-13
BRPI0709483A2 (pt) 2011-07-19

Similar Documents

Publication Publication Date Title
WO2007125926A1 (ja) 繊維強化複合材料用エポキシ樹脂組成物
JP4141478B2 (ja) 繊維強化複合材料用エポキシ樹脂組成物
JP4141479B2 (ja) 繊維強化複合材料用エポキシ樹脂組成物
WO2007125929A1 (ja) 繊維強化複合材料用エポキシ樹脂組成物
JP4821163B2 (ja) 繊維強化複合材料用エポキシ樹脂組成物
JP2007297549A (ja) エポキシ樹脂組成物
JP4141481B2 (ja) 繊維強化複合材料用エポキシ樹脂組成物
JP4428978B2 (ja) エポキシ樹脂組成物
JP4894339B2 (ja) 繊維強化複合材料用エポキシ樹脂組成物
JP5017794B2 (ja) 繊維強化複合材料用エポキシ樹脂組成物
JP4857587B2 (ja) 繊維強化複合材料用エポキシ樹脂組成物
JP4141480B2 (ja) 繊維強化複合材料用エポキシ樹脂組成物
JP2017088652A (ja) エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JP2007238762A (ja) 熱硬化性樹脂組成物、プリプレグ及び繊維強化複合材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07742311

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007244332

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 12298040

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200780014902.9

Country of ref document: CN

Ref document number: 2650559

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2007244332

Country of ref document: AU

Date of ref document: 20070424

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2007742311

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020087028770

Country of ref document: KR

ENP Entry into the national phase

Ref document number: PI0709483

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20081008