WO2007125824A1 - 基質との親和性が向上したクレアチニンアミドヒドロラーゼ改変体、および、クレアチニン測定用試薬組成物 - Google Patents

基質との親和性が向上したクレアチニンアミドヒドロラーゼ改変体、および、クレアチニン測定用試薬組成物 Download PDF

Info

Publication number
WO2007125824A1
WO2007125824A1 PCT/JP2007/058594 JP2007058594W WO2007125824A1 WO 2007125824 A1 WO2007125824 A1 WO 2007125824A1 JP 2007058594 W JP2007058594 W JP 2007058594W WO 2007125824 A1 WO2007125824 A1 WO 2007125824A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrolase
creatinine
modified
creatunamide
amide hydrolase
Prior art date
Application number
PCT/JP2007/058594
Other languages
English (en)
French (fr)
Inventor
Rie Nagai
Masao Kitabayashi
Yoshiaki Nishiya
Original Assignee
Toyo Boseki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Boseki Kabushiki Kaisha filed Critical Toyo Boseki Kabushiki Kaisha
Priority to EP07742029A priority Critical patent/EP2011868B1/en
Priority to CN2007800145598A priority patent/CN101426911B/zh
Priority to US12/297,572 priority patent/US7816116B2/en
Priority to AT07742029T priority patent/ATE541035T1/de
Publication of WO2007125824A1 publication Critical patent/WO2007125824A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/34Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/78Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
    • C12N9/80Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5) acting on amide bonds in linear amides (3.5.1)

Definitions

  • the present invention relates to a modified creatunamide hydrolase with improved affinity for a substrate, a gene encoding the modified creatunamide hydrolase, a method for producing the modified creatunamide hydrolase, and the method
  • the present invention relates to various applications of a modified creatunamide hydrolase to a reagent for measuring Creatun. Background art
  • Creatun is found in the blood or urine, and its rapid and accurate detection and measurement is a disease, such as uremia, chronic nephritis, acute nephritis, giantism, ankylosing myopathy It is very important to diagnose such as.
  • creatinine amide hydrolase (EC 3.5.2.10) has been used as an enzyme for measuring creatinine in body fluid, which has been clinically used as an index for diagnosis of muscle diseases and kidney diseases, such as creatine amidinohydrolase, Used with sarcosine oxidase and peroxidase.
  • Creatunamide hydrolase is an enzyme that catalyzes a reversible reaction that acts on creatinine in the presence of water to produce creatine.
  • Non-Patent Document 1 Journal of Biochemistry, Vol. 86, 1109-1117 (1979)
  • Non-Patent Document 2 Chemical and Pharmaceutical Bulletin, Vol. 34, No. 1, 26
  • Patent Document 1 Japanese Patent Application Laid-Open No. 51-115989
  • Patent Document 2 JP-A 47-43281
  • Patent Document 3 Japanese Patent No. 2527035
  • creatunamide hydrolase produced from various known microbial cells has a large Km value for creatun as a clinical screening enzyme, and a large amount of enzyme is added to the reagent composition.
  • an enzyme derived from Alkaligenes' Fucharis TE3581 has a Km value of about 42 mM for Creathun.
  • the enzyme derived from Arthrobacter sp. TE1826 has a Km value of about 66 mM with respect to Creathun (Patent Document 5).
  • Patent Document 4 Japanese Patent Laid-Open No. 9-154574
  • Patent Document 5 Japanese Patent Laid-Open No. 10-215874
  • creatunamide hydrolase As a quantification method for creatun, creatunamide hydrolase, creatine amidinohydrolase and sarcosine oxidase are allowed to act on creatun in a sample, and the generated hydrogen peroxide is measured by a hydrogen peroxide measurement means.
  • a method for measuring and quantifying creatinine in a sample is known.
  • the reagent is divided into two or more parts and each is added to the reaction cell in a predetermined order of addition, and the reaction is allowed to proceed for several minutes to 20 minutes in all steps.
  • a general-purpose automatic analyzer is often used, which measures the increase or decrease in absorbance over time and obtains the concentration of the target substance by analyzing and calculating the results.
  • Various reagents prepared so as to be applicable to these automatic analyzers are known.
  • Non-Patent Document 3 Medical Technology, Vol. 10, No. 7, 575-579 (1982)
  • FIG. 1 shows the reactivity evaluation results of the reagent of the present invention and a comparative example reagent. ⁇ ; the preparation of the present invention,
  • FIG. 2 shows the results of reactivity evaluation of the reagent of the present invention and the comparative example reagent. ⁇ ; the preparation of the present invention,
  • An object of the present invention is to provide a creatinine amide hydrolase that overcomes the drawbacks of the known creatinine amide hydrolase as described above and has an improved affinity for creatinine, that is, a reduced Km value for creatinine. .
  • an object of the present invention is to provide a reagent composition for measuring creatinine that is compatible with an automatic analyzer and is excellent in accuracy, precision and economy in view of the above-mentioned present situation.
  • the present inventors have used the above-mentioned creatine aminohydrolase gene derived from Pseudomonas plutida and obtained a Km value for creatinine by a protein engineering technique. Succeeded in creating smaller creatinine aminohydrolase variants. The inventors have found that if the Km value of creatinine amide hydrolase is reduced, the time required for the reaction to reach the end point is shortened in the determination of creatine, and the present invention has been completed.
  • the present invention has the following configuration.
  • amino acids that constitute a protein having creatinine amide hydrolase activity before modification amino acids that are within a radius of 10 angstroms from the binding site with the substrate and within 5 residues from both ends of the helix A modified creatunamide hydrolase with improved affinity for the substrate by deleting, substituting or adding one or several amino acids compared to before modification.
  • the modified creatunamide hydrolase according to item 1 wherein at least one amino acid force of the amino acid sequence constituting the protein having creatunamide hydrolase activity before modification is substituted with another amino acid as compared with the wild type.
  • Item 3 The modified creatinine amide hydrolase according to any one of Items 1 and 2, having 50% or more homology with the amino acid sequence described in SEQ ID NO: 2 in the Sequence Listing.
  • Item 3 The modified creatunamide hydrolase according to any one of Items 1 and 2, having 80% or more homology with the amino acid sequence described in SEQ ID NO: 2 in the Sequence Listing.
  • Item 3 The modified creatine amide hydrolase according to item 1 or 2, wherein the protein having creatunamide hydrolase activity before modification has the amino acid sequence described in SEQ ID NO: 2 in the sequence listing.
  • At least one amino acid selected from the group consisting of position 44, position 122, position 179, position 180, position 18 and position 1 or equivalent to the amino acid sequence shown in SEQ ID NO: 2 in the sequence listing is substituted with another amino acid. 6.
  • the modified creatinine amide hydrolase according to any one of items 3 to 5.
  • Item 6 The modified creatinine amide hydrolase according to any one of Items 3 to 5, wherein glycine at position 179 of the amino acid sequence described in SEQ ID NO: 2 of the sequence listing or a position equivalent thereto is substituted with serine.
  • Item 6 The modified creatinine amidohydrolase according to any one of items 3 to 5, wherein glycine at position 179 of the amino acid sequence shown in SEQ ID NO: 2 of the sequence listing or a position equivalent thereto is substituted with alanine.
  • Item 6 The modified creatunamide hydrolase according to any one of Items 3 to 5, wherein glycine at position 180 of the amino acid sequence described in SEQ ID NO: 2 in the sequence listing or a position equivalent thereto is substituted with alanine.
  • the Km value force against creatinine after modification is 1 / 2.5 or less as compared with that before modification, Any one of Items 1 to 9, wherein the modified creatunamide hydrolase according to Item 1.
  • Item 13 A vector comprising the gene according to Item 12.
  • Item 14 A transformant transformed with the vector according to Item 13.
  • Item 15 A method for producing a modified creatinine amide hydrolase, wherein the transformant according to item 14 is cultured, and creatine amide hydrolase is collected from the culture.
  • Item 1 A reagent for measuring creatine comprising the modified creatinine amide hydrolase according to any one of 11 above.
  • a novel creatinine amidohydrolase having a low Km value that is useful as an enzyme for clinical examinations can be created, and the creatunamide hydrolase can be produced industrially in large quantities.
  • the amount of enzyme used in creatinine quantification can be reduced to 1/4 of the conventional amount, and if the amount used is the same as the conventional amount, the time for the reaction to reach the end point is short. Measurement time can be shortened and the number of processed samples can be increased.
  • Creatinine amide hydrolase is an enzyme classified as EC3. 5. 2. 10.
  • the modified creatinine amide hydrolase of the present invention has improved affinity for a substrate as compared to the creatinine amide hydrolase before modification.
  • An increase in affinity with a substrate specifically means a decrease in Km value for Creatun.
  • the modified creatunamide hydrolase of the present invention is preferably a modified creatunamide hydrolase having a Km value for modified creatinine of 1 / 2.5 or less compared to that before modification. More preferably, the modified creatunamide hydrolase has a Km value for Creatun after modification of 1Z5 or less as compared with that before modification.
  • the modified creatunamide hydrolase of the present invention is preferably a modified creatunamide hydrolase having a Km value (value measured by the method shown below) of 70 mM or less with respect to the modified creatun. More preferably, it is a modified creatinine amide hydrolase having a Km value S for modified creatinine of S, 55 mM or less.
  • the modified creatinine amide hydrolase of the present invention has 50% or more (preferably 80% or more) homology with the amino acid sequence shown in SEQ ID NO: 2 in the Sequence Listing.
  • the Km value is measured using one of the following methods.
  • the concentration and concentration of taleatinin, the substrate of which is R2 are determined by the reaction ⁇ ⁇ [55.6, 37.0, 22.2, 15.9, 11. ImM [this]. Measure the activity using each R2.
  • the Km value is obtained from the measured value using the Lineweaber-Burk plot.
  • the concentration of creatun which is the substrate of the second reagent, is adjusted to 50, 30, 20, 15, 10 mM each during the reaction (error within 10% of soil is acceptable) Measure the activity using each R2.
  • the Km value is obtained from the measured value using the Lineweaber-Burk plot.
  • amino acids are represented by one-letter symbols or three-letter symbols. Amino The position of the acid mutation is expressed as follows. For example, “G179S” means that G (Gly) at position 179 is replaced with S (Ser).
  • Creatamide amide hydrolase which is the basis for modification of the modified creatinine amide hydrolase of the present invention, is derived from microorganisms such as Corynebacterium genus, Pseudomonas genus, Arthrobacter genus, Flavobacterium genus, Micrococcus genus, etc.
  • the power exemplified by is not particularly limited.
  • amino acid sequence thereof is represented by SEQ ID NO: 2
  • amino acid sequence is represented by SEQ ID NO: 1, respectively.
  • SEQ ID NO: 2 the amino acid notation is numbered with 1 being methionine.
  • Creatamide amide hydrolase which is the basis for modification of the modified creatunamide hydrolase of the present invention, is not limited to the wild type and has been subjected to some modification as long as it has creatinine amide hydrolase activity. It may be a thing. Modifications include, for example, those in which amino acids have been deleted, substituted or added, those that have undergone intermolecular or intramolecular crosslinking, or those that have been chemically modified with sugar chains or other functional groups. There is no particular limitation.
  • modification may be made to “CNH-311” manufactured by Toyobo, “Creatininase (Cl-E)” manufactured by Kikkoman. .
  • the modified creatinine amide hydrolase of the present invention is an amino acid sequence that constitutes a protein having creatinine amide hydrolase activity and is within a radius of 10 angstroms from the binding site with the substrate. Compared to the wild type, the amino acid sequence within 5 residues from both ends of the helix was converted, and the affinity with the substrate was improved.
  • the binding site with the substrate is a site defined by the three-dimensional structure data in which creatine and creatine amide hydrolase are bound using Swiss-Pdb Viewer (SPDBV). The distance from the binding site with the substrate can also be defined using the same software.
  • a creatinine amide hydrolase amino acid sequence (SEQ ID NO: 2) derived from Pseudomonas' Putida (PS-7) strain: Cys41, Met42, Asn43, Val44, Asp45, His 120, Tyrl21, Asnl 23, Serl24, Asp 15 5, Glul77, Hisl78, Glyl 79, Glyl80, Vall81 force sequences can be displayed.
  • PS-7 Pseudomonas' Putida
  • amino acid at position 44 in SEQ ID NO: 2 is preferably substituted with arginine, glycine or serine.
  • the amino acid at position 44 in SEQ ID NO: 2 is preferably substituted with asparagine.
  • the amino acid at position 122 in SEQ ID NO: 2 is preferably substituted with aspartic acid.
  • amino acid at position 179 in SEQ ID NO: 2 is preferably substituted with serine or alanine.
  • amino acid at position 180 in SEQ ID NO: 2 is preferably substituted with serine or alanine.
  • amino acid at position 181 in SEQ ID NO: 2 is substituted with isoleucine.
  • the amino acids at the 122th, 179th, 180th and 181th positions are preferably substituted with other amino acids. It is preferable. More preferably, the amino acids at positions 179 and 180 are substituted with other amino acids.
  • One or several of these modified sites may be modified.
  • the modification may be any of deletion, substitution, or addition of amino acids, or a combination thereof.
  • substitution position may be an equivalent position in the amino acid sequence of creatunamide hydrolase of origin other than Pseudomonas putida (PS_7) strain. Equivalent Whether it is a position can be determined based on the knowledge of the primary structure and the three-dimensional structure.
  • Non-Patent Document 4 Joumal of Molecular Biology, Vol337, 399 -416 (2004)
  • Non-Patent Document 5 Joumal of Molecular Biology, Vol332, 287-301 (2004)
  • positions 44 and 122 were located within 5 residues from the end of the helix, and position 179. , 180th and 181th are found in the flap region.
  • Non-Patent Document 3 the steric structure of creatunamide hydrolase consists of seven helices and four ⁇ structures.
  • the flap region (of ⁇ 5 and ⁇ 6 It is described that there is a change in arrangement. If this description and the present inventors consider the combined results specifically obtained experimentally, occurs a change in the arrangement of the flap region by changing the structure between the alpha 5 and alpha 6, affinity with the substrate It is thought to improve.
  • the binding site to the substrate is a site defined from the three-dimensional structure data in a state where creatine and creatinine amide hydrolase are bound using Swiss-Pdb Viewer (SPDB V).
  • SPDB V Swiss-Pdb Viewer
  • the distance of the binding site force with the substrate can also be defined using the same software.
  • Helix is one of the secondary structures of proteins and polypeptides.
  • GENETYX-WIN can be used to calculate the percentage of matching sequences by homology search of two sequences.
  • modified creatunamide hydrolase of the present invention is such that a part of other amino acid residues is further deleted or substituted / inserted, etc., as long as its creativity is essentially maintained.
  • modified creatine amide hydrolase of the present invention is essentially maintained in its creatinine activity.
  • creatinine amide hydrolase is bound or inserted with a tag such as a histidine tag
  • creatinine amide hydrolase is fused with another peptide or other protein (for example, streptavidin-cytochrome), sugar chain Or chemically modified with other compounds, creatinine amide hydrolase molecules and / or It may include aspects, such as those linked via a work and in its linker one peptide cross-linked by such disulphide bond between a child. Alternatively, it may include a combination of fragments of wild-type creatunamide hydrolase from several sources.
  • the present invention further includes a gene encoding a modified creatunamide hydrolase.
  • the gene encoding the modified creatunamide hydrolase of the present invention can be obtained by modifying a DNA fragment containing a gene encoding a wild type creatunamide hydrolase obtained from various sources (origins) such as microorganisms. Obtainable. Specifically, for example, Alcaligenes faecalis, Arthrobacter espis 1 (Arthrobacter sp.), Flavonocterium sp., Flavobacterium sp. (Bacteria such as Micrococcus luteus eight shydomonas' Puchidomonas put ida).
  • the gene encoding the modified creatunamide hydrolase of the present invention preferably hybridizes with DNA comprising a base sequence complementary to the base sequence shown in SEQ ID NO: 1 under stringent conditions, and creatunamide hydrolase It is a DNA that encodes an active protein.
  • the gene of the present invention further improves expression of creatunamide hydrolase with respect to a gene encoding modified creatunamide hydrolase obtained by modifying a gene encoding wild-type creatunamide hydrolase. As such, it may further include a modified codon usage.
  • a method for modifying a gene encoding wild-type creatine amide hydrolase a commonly performed technique for modifying genetic information is used. That is, a DNA having genetic information of a modified protein is created by converting a specific base of DNA having genetic information of the protein, or by inserting or deleting a specific base. Specific methods for converting bases in DNA include, for example, the use of a commercially available kit (Transformer Site-Directed Mutagenesis Kit; made by Lonetecn, QuickChange Site Directed Mutagenesis Kit; made by Stratagene, etc.), or polymerase chain reaction. Method (PCR).
  • PCR Polymerase chain reaction.
  • the present invention further includes a vector containing a gene encoding a modified creatunamide hydrolase, and a transformant transformed with the vector.
  • the prepared DNA having the genetic information of the modified protein is transferred into the host microorganism in a state linked to a plasmid, and becomes a transformant producing the modified protein.
  • a plasmid as a vector
  • pBluescript, pUC18, etc. can be used, for example, when Escherichia coli is used as a host microorganism.
  • host microorganisms include Escherichia coli W3110, Escherichia coli C600, Escherichia coli.
  • Ericha 'Cory JM109, Escherichia' Collie DH5 a, etc. can be used.
  • a method for transferring the recombinant vector into the host microorganism for example, when the host microorganism belongs to the genus Escherichia, a method of transferring the recombinant DNA in the presence of calcium ions can be employed. You can also use the Elect mouth position method. Furthermore, it is also possible to use commercially available combi- tive cells (for example, combitent high JM109; manufactured by Toyobo).
  • Such a gene can be extracted from these strains or chemically synthesized. Furthermore, it is also possible to obtain a DNA fragment containing the creatine amide hydrolase gene by using the PCR method.
  • the following method may be used as a method for obtaining a gene encoding creatunamide hydrolase.
  • PS-7 strain After isolating and purifying chromosomes from Pseudomonas' Putida (PS-7) strain, the DNA was cleaved using sonication, restriction enzyme treatment, etc., linear expression vectors and blunt ends of both DNAs or A recombination vector is constructed by binding and closing the sticky ends with DNA ligase or the like.
  • a microorganism holding the recombinant vector is cultured, the recombinant vector is separated and purified from the cells of the cultured microorganism, and creatinine amide hydrolase is encoded from the expression vector.
  • Genes can be collected.
  • the chromosomal DNA of Pseudomonas putida (PS-7), a gene donor, is specifically collected as follows.
  • the culture medium obtained by stirring and culturing the gene-donating microorganism for 3 days is collected by centrifugation, and then lysed to obtain a lysate containing the creatunamide hydrolase gene.
  • a method for lysis for example, treatment is performed with a lytic enzyme such as lysozyme, and a protease or other enzyme or a surfactant such as sodium dodecyl sulfate (SDS) is used in combination as necessary.
  • SDS sodium dodecyl sulfate
  • it may be combined with a physical crushing method such as freeze-thawing or French press treatment.
  • a method such as deproteinization by phenol treatment or protease treatment, ribonuclease treatment, alcohol precipitation treatment, or the like is appropriately performed according to a conventional method. It can be done by combining.
  • a method of cleaving DNA separated and purified from microorganisms can be performed by, for example, ultrasonic treatment, restriction enzyme treatment, or the like. Type II restriction enzymes that act on specific nucleotide sequences are suitable.
  • a vector constructed for gene recombination from a phage or plasmid capable of autonomously growing in a host microorganism is suitable.
  • the fage include Lambda gtlO and Lambda gtl l when Escherichia coli is used as a host microorganism.
  • plasmids include pBR322, pUC19, and pBluescript when Escherichia coli is used as a host microorganism.
  • the vector S can be obtained by cleaving the vector as described above with the restriction enzyme used for cleaving the microbial DNA that is the gene donor encoding the creatinine amide hydrolase described above. It is not always necessary to use the same restriction enzyme as that used to cleave the microbial DNA.
  • the microbial DNA fragment and the vector DNA fragment can be combined by any known DNA ligase method.For example, after annealing of the microbial DNA fragment and the vector fragment, the appropriate DNA is used. Recombination vector of microbial DNA fragment and vector DNA fragment is prepared by using ligase. If necessary, after annealing, it can be transferred to a host microorganism and a recombinant vector can be prepared using in vivo DNA ligase.
  • the host microorganism used for cloning is not particularly limited as long as the recombinant vector is stable, can autonomously proliferate, and can express a foreign gene.
  • Escherichia coli W3110, Escherichia coli C600, Escherichia coli HB101, Escherichia coli JM109, Escherichia coli DH5, etc. can be used.
  • the competent cell method using calcium treatment or the electoral bole is used as a method for transferring the recombinant vector into the host microorganism.
  • the case method can be used.
  • the microorganism which is a transformant obtained as described above, can stably produce a large amount of creatinine amide hydrolase by being cultured in a nutrient medium. To select whether or not to transfer a recombinant vector to a host microorganism, it is only necessary to search for a microorganism that expresses a single drug resistance marker that holds the target DNA.
  • transfer from a recombinant vector carrying the creatunamide hydrolase gene once selected to a recombinant vector that can be replicated in a microorganism capable of producing creatunamide hydrolase is performed using creatunamide. It can be easily carried out by collecting DNA, which is a creatinine amide hydrolase gene, from a recombinant vector carrying the hydrolase gene by restriction enzymes or PCR and ligating it with other vector fragments.
  • the transformation of microorganisms having the ability to produce creatinine amide hydrolase using these vectors can be carried out by using the calcium treatment, the elicitor-poration method, or the like.
  • the present invention further relates to a method for producing a modified creatinine amide hydrolase, which comprises culturing a transformant transformed with a vector containing a gene encoding the modified creatine amide hydrolase.
  • another embodiment of the present invention provides a Km value for Creathun, which comprises performing an amino acid mutation according to any one of Claims 1 to 9 on Creatamide amide hydrolase.
  • the creatunamide hydrolase of the present invention can be produced by culturing the thus obtained transformant.
  • a microorganism which is a transformant obtained as described above can stably produce a large amount of a modified protein by being cultured in a nutrient medium.
  • the culture form of the main microorganism should be selected in consideration of the nutritional and physiological properties of the host, and in most cases, it is carried out in liquid culture. Industrially, it is advantageous to perform aeration and agitation culture.
  • nutrient sources for the culture medium those commonly used for culturing microorganisms can be widely used.
  • Any carbon compound that can be assimilated can be used as the carbon source.
  • glucose, sucrose, ratatoses, maltose, ratatoses, molasses, pyruvic acid and the like are used.
  • the nitrogen source may be any available nitrogen compound.
  • peptone, meat extract, yeast extract, casein hydrolyzate, soybean koji alkaline extract and the like are used.
  • phosphates, carbonates, sulfates, magnesium, calcium, potassium, iron, manganese, zinc and other salts, specific amino acids, specific vitamins and the like are used as necessary.
  • the culture temperature can be appropriately changed within the range in which the fungus grows and produces modified creatunamide hydrolase, but in the case of a microorganism having the ability to produce creatunamide hydrolase as described above, it is preferably 20 to 42. It is about ° C.
  • the culture time varies slightly depending on the conditions, it is usually about 6 to 48 hours if the culture is completed at an appropriate time in consideration of the time when the modified creatunamide hydrolase reaches the maximum yield.
  • the pH of the medium is preferably in the range of about ⁇ 6.0 to 9.0 in the range where bacteria can grow and produce modified creatunamide hydrolase.
  • the modified creatinine amide hydrolase is generally contained in the culture liquid according to a conventional method. If it is present in the water, it is used after separating the modified creatunamide hydrolase-containing solution and the microbial cells by filtration, centrifugation, etc.
  • the modified creatunamide hydrolase is present in the microbial cells
  • the microbial cells are collected from the obtained culture by means such as filtration or centrifugation, and then the microbial cells are collected by a mechanical method or an enzyme such as lysozyme. If necessary, add a chelating agent such as EDTA and a surfactant to solubilize creatunamide hydrolase, and separate and collect it as an aqueous solution.
  • the creatunamide hydrolase-containing solution obtained as described above is subjected to, for example, concentration under reduced pressure, membrane concentration, salting-out treatment with ammonium sulfate, sodium sulfate, etc. It may be precipitated by a fractional precipitation method using an aqueous organic solvent such as methanol, ethanol or acetone. Heat treatment and isoelectric point treatment are also effective purification means. Then, purified clarified amide hydrolase can be obtained by performing gel filtration with an adsorbent or gel filtration agent, adsorption chromatography, ion exchange chromatography, and affinity chromatography.
  • the purified enzyme preparation can be obtained by separation and purification by column chromatography.
  • the purified enzyme preparation is preferably purified to such an extent that it shows a single band on electrophoresis (SDS-PAGE).
  • the purified enzyme obtained as described above can be pulverized and distributed by, for example, freeze drying, vacuum drying, spray drying, or the like.
  • the purified enzyme can be dissolved in phosphate buffer, Tris-HCl buffer or GOOD buffer.
  • Preferred are GOOD buffers, with PIPES, MES or MOPS buffers being particularly preferred.
  • creatinine amide hydrolase can be further stabilized by adding amino acids such as glutamic acid, glutamine, and lysine, and serum albumin.
  • the method for producing the modified protein of the present invention is not particularly limited, but it can be produced by the following procedure.
  • a method for modifying the amino acid sequence constituting the protein a commonly used method for modifying genetic information is used. That is, DNA having genetic information of a modified protein is produced by converting a specific base of DNA having the genetic information of the protein, or by inserting or deleting a specific base.
  • Another embodiment of the present invention is a creatinine measurement reagent including a creatinine amide hydrolase, a creatine amidinohydrolase, a sarcosine oxidase, and a hydrogen peroxide detection reagent having a Km value of 55 mM or less for creatine. .
  • hydrogen peroxide detection reagent examples include peroxidase, 4-aminoantipyrine, and a Trinder reagent.
  • One form of the reagent for measuring creatinine includes a composition for measuring creatine comprising the modified creatine amide hydrolase according to any one of claims 1 to 13.
  • One form of the creatine assay reagent includes a creatinine assay kit containing the modified creatinine amide hydrolase according to any one of claims 1 to 13.
  • the measurement method of the present invention utilizes the following reaction.
  • creatinine amide hydrolase having a Km value of 55 mM or less with respect to creatine is used.
  • creatunamide hydrolase examples include those derived from microorganisms such as Pseudomonas, Alkaligenes, Corynebacterium, Arthrobacter, Flavobacterium, and Micrococcus. Although not limited thereto, those described later in [0012] to [0055] and Reference Examples of the present specification can be suitably used.
  • the sample to be subjected to the Creathun measurement in the present invention is a force including biological samples such as serum, urine, and plasma.
  • the composition can take various forms such as liquid (aqueous solution, suspension, etc.), powder, lyophilized and the like.
  • the freeze-drying method is not particularly limited and may be performed according to a conventional method.
  • the composition containing the enzyme of the present invention is not limited to a lyophilized product, and may be in a solution state in which the lyophilized product is redissolved.
  • the reagent composition of the present invention may be in a purified state depending on the form and method of use, and if necessary, other components such as a surfactant, a stabilizer.
  • Various additives such as an agent and an excipient may be added.
  • the method of blending these additives into the reagent of the present invention is not particularly limited.
  • a method in which a stabilizer is added to a buffer containing creatinine amide hydrolase a method in which creatine amide hydrolase is added to a buffer containing a stabilizer, or creatinine amide hydrolase and a stabilizer are simultaneously added to a buffer.
  • the origin of the creatine amidinohydrolase used in the present invention is not particularly limited. Nare ,.
  • those derived from Arthrobacter 1 or Alkaligenes can be used.
  • Commercially available products include Toyobo "11-221", Kikkoman "6 & 1 1 &36"
  • the origin of sarcosine oxidase used in the present invention is not particularly limited.
  • OD-TE "or the like can be used.
  • the enzyme concentration of creatunamide hydrolase used in the present invention is not particularly limited as long as it is a concentration suitable for measurement, but it is preferably used in the range of l — 1000 U / mL.
  • the enzyme concentration of creatine amidinohydrolase is not particularly limited as long as it is a concentration suitable for measurement, but is preferably used in the range of 1 to 1000 U / mL.
  • the enzyme concentration of zanolecosinoxidase is not particularly limited as long as it is a concentration suitable for measurement, but it is preferably used in the range of 1 to 1000 U / mL.
  • the origin of the peroxidase used in the present invention is not particularly limited.
  • those derived from horseradish rust can be used.
  • Commercially available products such as “PE 0 301” manufactured by Toyobo Co., Ltd. can be used.
  • the creatinine measurement reagent of the present invention contains a buffer such as phosphate, GOOD buffer, or tris buffer.
  • chelating agents such as EDTA and O-Danicidin that capture ions that interfere with the enzyme reaction, ascorbate oxidase that eliminates ascorbic acid, which is an obstacle to the determination of hydrogen peroxide, Triton X-100 and NP—
  • surfactants such as 40, various antibacterial agents such as streptomycin and sodium azide, and preservatives may also be included. For these, various commercially available reagents can be obtained.
  • reagents may be composed of a single reagent or two or more kinds of reagents, but a simple single reagent is more preferable in order to take advantage of the present invention.
  • a liquid reagent that is easy to handle is preferred.
  • the buffer solution to be contained is not particularly limited, but includes Tris buffer solution, phosphate buffer solution, borate buffer solution, Good buffer solution and the like.
  • the pH of the buffer is 5.0-10. It is adjusted according to the purpose of use within a range of about 0.
  • the content of the buffering agent in the lyophilized product is not particularly limited, but is preferably 0.1% (weight ratio) or more, particularly preferably 0.:! To 30% (weight) Ratio).
  • serum albumin may be further contained.
  • the content is preferably 0.05 to 0.5% by weight.
  • albumin examples include bovine serum albumin (BSA) and ovalbumin (OVA). BSA is particularly preferable.
  • the albumin content is preferably 1 to 80% (weight ratio), more preferably 5 to 70% (weight ratio).
  • the modified creatine amide hydrolase, the composition for measuring taleatin and the kit for creatine measurement of the present invention are configured not to contain a protein component other than the host-derived protein component. You can also.
  • protein components other than host-derived protein components include biological materials such as BSA.
  • any commonly used buffer is usually used.
  • buffering agents such as boric acid and acetic acid, BES, Bicine, Bis-Tris, CHES, EPPS, HEPES, HEPPSO, MES, MOPS, MOPSO, PIPES, POPSO, TAPS, TAPS ⁇ , TES, Good buffer such as Tricine.
  • the content (W / W) of the buffering agent is preferably 1.0% to 50%.
  • an amino acid or an organic acid may be further added to the composition basically composed of modified creatunamide hydrolase and a buffer. Moreover, as long as it contains these, an aqueous composition and a lyophilizate are not ask
  • any buffer having a sufficient buffer capacity in the pH range of 6.5 to 8.5 can be used particularly preferably.
  • Buffers in this pH range include phosphate, tris, bis-trispropane, N-tris (hydroxymethyl) methyl-2- Minoethanesulfonic acid (TES), and 3- [N-tris (hydroxymethyl) methylamino] -2-hydroxypropanesulfonic acid (TAPSO).
  • the preferred buffer is phosphate because of its low cost and high stability.
  • a preferred concentration range is 20-200 mM phosphate, pH 7-8.
  • the reagent for detecting hydrogen peroxide derived from creatinine is not particularly limited as long as it is a reagent for detecting hydrogen peroxide derived from creatinine, but is preferably peroxidase.
  • hydrogen peroxide coloring reagent is not limited at all. Preferred indicators are stable in solution and have low pyrilvin interference.
  • Examples of the hydrogen peroxide coloring reagent include
  • phenol derivative examples include 2-clonal phenol, 4-clonal phenol, 1,2-dichlorophenol and the like.
  • 10-X-methylcarbamoyl-1,3,7-dimethylamino-10H-phenothiazine, bis [8-bis (4-cyclophenyl) methyl-4-dimethylaminophenyl] amine, 1, 4 -Leuco dyes such as bis (dimethylamino) diphenyl (2,7-dihydroxy-4-naphthyl) methane may be used.
  • preferable indicators for detecting hydrogen peroxide derived from creatinine include benzidines, leuco dyes, 4-aminoantipyrine, phenols, naphthols and aniline derivatives. More preferred indicators are 4-aminoaminopyrine and N-ethyl_N_ (2-hydroxy_3-sulfopropyl) _m-toluidine (TOO S). The preferred concentration ranges are 0.05-10 mM, TOOS tO. 05-10 mM for 4-aminoantipyrine.
  • the peroxidase used for detecting hydrogen peroxide derived from Creathun in the present invention is preferably a peroxidase derived from horseradish rust because it is commercially available with high purity and low price.
  • the enzyme concentration must be high enough for a rapid and complete reaction, preferably 1,000-50,000 U / L.
  • Ferrocyanide may be added to the reagent to minimize bilirubin interference.
  • the presence of metal ions such as ferrocyanide can destabilize indicators and enzymes.
  • the stability of the reagent of the present invention is high enough to allow the addition of ferrocyanide.
  • the preferred concentration range of ferrocyanide is 1-400 ⁇ , and the maximum concentration is the concentration that inhibits enzyme activity.
  • Inactive proteins may be added to further increase stability.
  • Inactive proteins include serum albumins, globulins and fibrous proteins.
  • a preferred protein is rabbit serum albumin, with a preferred concentration in wt / vol of 0 ⁇ 05-1%. Lower concentrations can be useful.
  • Preferred inactive proteins are those that are free of protease impurities that will cause enzymatic degradation.
  • the measurement of the creatinine concentration is performed using a specific volume of the sample and a specific volume of the reagent. Absorbance measurements are taken as soon as possible after mixing to determine the sample blank and before significant absorbance changes due to Creatun metabolism occur. 0. The first absorbance measurement after 5-5 seconds is appropriate. The second absorbance measurement is typically 3-5 minutes at 37 ° C at a Creattune concentration of 5 mg ZdL after the absorbance has become steady.
  • the reagent is standardized with an aqueous or serum solution having a known creatinine concentration.
  • a method for measuring creatine using the reagent composition for measuring creatine according to the present invention includes: preparing a sample from creatine amide hydrolase, creatine amidinohydrolase, sarcosine oxidase, peroxidase, 4-aminoantipyrine, and a Trinder reagent. It is a method of measuring the color development amount of the quinone dye produced by reacting with the contained reagent.
  • Another embodiment of the present invention includes a method for measuring creatine comprising the modified creatinine amide hydrolase according to any one of claims 1 to 13.
  • the invention of the present application also includes a creatine amide hydrolase subjected to the amino acid mutation according to any one of claims 1 to 13 in a creatine measurement system using creatunamide hydrolase. Includes methods to improve measurement responsiveness in a Chun measurement system.
  • the invention of the present application also includes a creatine amide hydrolase subjected to the amino acid mutation according to any one of claims 1 to 13 in a creatine measurement system using creatinine amide hydrolase. It includes a method for producing a composition for measuring creatinine with improved reactivity.
  • the Km value for creatinine is significantly lower than that of wild-type creatinine amide hydrolase. This means that, for example, the amount of creatinine amide hydrolase can be significantly reduced compared to the measurement of creatinine in clinical sampnore, and cost reduction can be expected.
  • chromosomal DNA of Pseudomonas' Putida PS-7 strain was prepared, Then, an expression plasmid PCNH513 containing the creatinine amide hydrolase gene derived from the strain was prepared.
  • the wild-type creatinine amide hydrolase expression plasmid pCNH5-13 is obtained by inserting a structural gene encoding a creatinine amide hydrolase derived from Pseudomonas' Putida PS-7 into the multiple cloning site of the vector pBluescript SK (—).
  • the base sequence is shown in SEQ ID NO: 2 in the sequence listing, and the amino acid sequence of creatinine amide hydrolase deduced from the base sequence is shown in SEQ ID NO: 1 in the sequence listing.
  • a recombinant cell of pCNHMl, pCNHM2, pCNHM3, pCNHM4, pCNHM5, pCNHM6, pCNH M7, pCNHM8, pCNHM9 was transformed into a competent cell of Escherichia coli DH5a, and each of the transformants was obtained.
  • CNH production medium 1% polypeptone, 2% yeast extract, 1% sodium chloride, 5 mM manganese chloride
  • pCNHMl Escherichia coli DH5
  • the cells are collected by centrifugation, suspended in 50 mM potassium phosphate buffer ( PH 7.5), crushed by sonication, further centrifuged, and the supernatant is used as a crude enzyme solution. Obtained .
  • This mutant was named CNHM1.
  • Purified enzyme preparations were obtained in the same manner as described above for the Escherichia coli DH5 transformants using the respective recombinant plasmids pCNHM2, pCNHM3, pCNHM4, pCNHM5, pCNHM6, pCNHM7, pCNHM8, pCNHM9, and pCNHM10.
  • the obtained enzyme preparations were named CNHM2, CNHM3, CNHM4, CNHM5, CNHM6, CNHM7, CNHM8, and CNHM9, respectively.
  • a purified enzyme preparation before modification was obtained in the same manner as described above for the Escherichia coli DH5 transformant by PCNH5-13.
  • the mutant creatunamide hydrolase (CNHM1, CNHM2, CNHM3, CNHM4, CNHM5, CNHM6, CNHM7, CNHM8, CNHM9) obtained in Example 2 and the various creatunamide hydrolases obtained in Comparative Example 1 were each 50 mM. Creatinine amide hydrolase was measured by the activity measurement method described above in addition to 1.67 U / ml in potassium phosphate buffer (PH 7.5). The results are shown in Table 1. As can be seen from Table 1, it was confirmed that the modified creatinine amide hydrolase of the present invention had a lower Km value than before the modification.
  • Rl 200 ⁇
  • R2 60 ⁇ 1
  • enzyme f night 10 ⁇ 1 were prepared, reacted at 37 ° C. for 10 minutes, and the change in absorbance at 505 nm was measured using a HITACHI 7060 automatic analyzer.
  • Table 1 summarizes the Km values for creatine of the novel creatine amidinohydrolase and wild type creatine amidinohydrolase of the present invention. As is clear from Table 1, it can be seen that the Km value of the novel creatine amidinohydrolase of the present invention was lower than that of the wild-type creatine amidinohydrolase.
  • Mutant creatinine amide hydrolase (CNHM1) 100 U / mL obtained in Example 2 was added to the second reagent to prepare a liquid creatinine measuring reagent (the reagent of the present invention).
  • wild type creatinine amide hydrolase derived from Pseudomonas' Putida product code: CNH-311, manufactured by Toyobo Co., Ltd.
  • 100 U / mL was added to the above second reagent to prepare a liquid taleatinin measuring reagent (comparative example reagent) did.
  • the reactivity of the reagent of the present invention and the comparative example reagent were compared by measuring 5 mg / dL of creatine. As shown in FIG. 1, the reagent of the present invention had a short time to reach the end point.
  • Example 5 Amount of added caloric amide hydrolase modified with the same reactivity as the wild type
  • the mutant creatine amide hydrolase (CNHM1) 100 U / mL obtained in Example 2 was added to the second reagent to prepare a liquid creatinine measurement reagent (the reagent of the present invention).
  • a liquid creatinine measurement reagent the reagent of the present invention.
  • 400 U / mL of S. pulmonida-derived wild-type creatunamide hydrolase (product code: CNH-311, manufactured by Toyobo Co., Ltd.) is added to the second reagent, and a liquid taleatin determination reagent (comparative example reagent) is added. It was adjusted.
  • the reactivity of the reagent of the present invention and the comparative example reagent were compared by measuring 5 mg / dL of creatine.
  • the creatinine amide hydrolase addition unit of the reagent of the present invention was 1/4 of the creatinine amide hydrolase of the comparative example reagent and had the same reactivity.
  • 5 mg / dl creatinine was measured by the following method using a first reagent and a second reagent having the following composition.
  • a Hitachi 7060 automatic analyzer was used. 270 x L of the first reagent was added to sample 6 / L and incubated at 37 ° C for 5 minutes to make the first reaction. Thereafter, 90 / L of the second reagent was added and incubated for 5 minutes to form the second reaction. Absorbance at 546 nm was measured by a two-endpoint method, which took the difference between the absorbances obtained by correcting the absorbance of the first reaction and the second reaction. The creatinine concentration of the sample with unknown creatine concentration was calculated from the absorbance of purified water and 5 mg / dL creatinine aqueous solution.
  • creatunamide hydrolase having improved affinity with a substrate.
  • This modified creatunamide hydrolase can be used as a creatine assay reagent.
  • the amount of enzyme used can be reduced to the conventional 1Z4 in the quantification of creatinine. It can be shortened and the number of processed samples can be increased.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

【課題】公知のクレアチニンアミドヒドロラーゼの欠点を克服し、よりクレアチニンに対する親和性が向上した、すなわちクレアチニンに対するKm値の低下したクレアチニンアミドヒドロラーゼを提供すること、さらには、自動分析装置に適合し、正確性・精密性および経済性に優れたクレアチニン測定用試薬組成物を提供すること。 【解決手段】改変前と比較して、基質との親和性が向上したクレアチニンアミドヒドロラーゼ改変体、もしくは、該クレアチニンアミドヒドロラーゼ改変体、クレアチンアミジノヒドロラーゼ、ザルコシンオキシダーゼ、過酸化水素の検出用試薬を含むクレアチニン測定試薬。

Description

明 細 書
基質との親和性が向上したクレアチュンアミドヒドロラーゼ改変体、および 、クレアチニン測定用試薬組成物
技術分野
[0001] 本発明は、基質との親和性が向上したクレアチュンアミドヒドロラーゼ改変体、該ク レアチュンアミドヒドロラーゼ改変体をコードする遺伝子、該クレアチュンアミドヒドロラ ーゼ改変体の製造法及び該クレアチュンアミドヒドロラーゼ改変体のクレアチュン測 定試薬への種々の適用に関する。 背景技術
[0002] クレアチュンは血液または尿中に見出され、その量を迅速かつ正確に検出測定す ることは、疾病、例えば尿毒症、慢性腎炎、急性腎炎、巨人症、強直性筋異栄養症 などを診断するのに非常に重要である。
従来から、クレアチニンアミドヒドロラーゼ (EC 3.5.2.10)は、臨床的に筋疾患、腎疾 患の診断の指標となっている体液中のクレアチニンの測定用酵素として、他の酵素、 例えばクレアチンアミジノヒドロラーゼ、ザルコシンォキシダーゼおよびペルォキシダ ーゼと共に使用されている。クレアチュンアミドヒドロラーゼは、水の存在下にクレアチ ニンに作用してクレアチンを生成する可逆的反応を触媒する酵素である。
[0003] このようなクレアチニンアミドヒドロラーゼは、シユードモナス属(非特許文献 1)あるい はアルカリゲネス属(非特許文献 2)の細菌が生産することが知られている。さらに、こ れら以外の細菌としては、フラボバクテリウム属、コリネバクテリウム属、マイクロコッカ ス属(特許文献 1)、ぺニシリウム属(特許文献 2)等の細菌が生産することが知られて いるにすぎない。このうち、シユードモナス'プチダ(Pseudomonas putida) PS— 7 が産生するクレアチュンアミドヒドロラーゼをコードする遺伝子は既に分離され、ァミノ 酸配列が公開されてレ、る(特許文献 3)。
非特許文献 1 Journal of Biochemistry, Vol. 86, 1109 - 1117 (1979) 非特許文献 2 : Chemical and Pharmaceutical Bulletin, Vol. 34, No. 1 , 26
9 - 274 (1986) 特許文献 1:特開昭 51— 1 15989号公報
特許文献 2 :特開昭 47— 43281号公報
特許文献 3:特許第 2527035号公報
[0004] し力、しながら、公知の各種菌体から製造されたクレアチュンアミドヒドロラーゼは臨床 検查薬用酵素としてはクレアチュンに対する Km値が大きぐ試薬組成中に大量の酵 素を添カ卩する必要があった。例えばアルカリゲネス 'フエカリス TE3581由来の酵素( 特許文献 4)は、クレアチュンに対する Km値は約 42mMであることが報告されている 。さらにアースロバクタ一'エスピー TE1826由来の酵素は、クレアチュンに対する K m値は約 66mMと大きレ、 (特許文献 5)。
特許文献 4:特開平 9一 154574号公報
特許文献 5:特開平 10— 215874号公報
[0005] クレアチュンの定量法としては、試料中のクレアチュンにクレアチュンアミドヒドロラ ーゼ、クレアチンアミジノヒドロラーゼおよびザルコシンォキシダーゼを作用させ、生 成する過酸化水素を過酸化水素測定手段により測定して、試料中のクレアチニンを 定量する方法が知られている。
このような方法を実施するために、試薬を 2つ以上の部分に分けてそれぞれを予め 決められた添加順で反応セルに添加し、全工程で数分〜 20分程度反応させて、そ の間の吸光度の増減を経時的に測定し、その結果を解析計算することにより目的物 質の濃度を求める、汎用の自動分析機がよく用いられる。これらの自動分析機に適 用されうるように調製された種々の試薬が公知である。
非特許文献 3: Medical Technology, Vol. 10, No. 7, 575 - 579 ( 1982 )
[0006] しかし、従来の方法によれば、反応がエンドポイントに達するまでの時間が長いた め、測定に時間がかかり、処理できる検体数が少なかった。一方、短時間で反応を終 わらせるには酵素の添加量を増やす必要があり、経済性に問題があった。
図面の簡単な説明
[0007] [図 1]図 1は、本発明試薬と比較例試薬の反応性評価結果を示す。秦;本発明製剤,
〇;比較例製剤 [図 2]図 2は、本発明試薬と比較例試薬の反応性評価結果を示す。秦;本発明製剤,
〇;比較例製剤
発明の開示
発明が解決しょうとする課題
[0008] 本発明の目的は、上述のような公知のクレアチニンアミドヒドロラーゼの欠点を克服 し、よりクレアチニンに対する親和性が向上した、すなわちクレアチニンに対する Km 値の低下したクレアチニンアミドヒドロラーゼを提供することである。
さらに、本発明の目的は、上記現状に鑑み、 自動分析装置に適合し、正確性 '精密 性および経済性に優れたクレアチニン測定用試薬組成物を提供することである。 課題を解決するための手段
[0009] 本発明者らは上記目的を達成するために、鋭意検討した結果、シユードモナス 'プ チダ由来の上記クレアチュンアミノヒドロラーゼ遺伝子を用レ、、蛋白質工学的手法に より、クレアチニンに対する Km値のより小さいクレアチニンアミノヒドロラーゼ改変体を 創出することに成功した。そして、クレアチニンアミドヒドロラーゼの Km値を小さくすれ ば、クレアチュンの定量において、反応がエンドポイントに達するまでの時間が短くな ることを見いだし、本発明を完成した。
[0010] すなわち、本発明は以下の構成からなる。
[項 1]
改変前のクレアチニンアミドヒドロラーゼ活性を有する蛋白質を構成するアミノ酸配列 のうち、基質との結合部位から半径 10オングストローム以内の距離にあるアミノ酸で あり、かつ、 ひへリックス両端から 5残基以内のアミノ酸において、 1もしくは数個のアミ ノ酸を欠失、置換もしくは付加することにより、改変前と比較して、基質との親和性が 向上したクレアチュンアミドヒドロラーゼ改変体。
[項 2]
改変前のクレアチュンアミドヒドロラーゼ活性を有する蛋白質を構成するアミノ酸配列 の少なくとも 1個のアミノ酸力 野生型と比較して、他のアミノ酸に置換している項 1記 載のクレアチュンアミドヒドロラーゼ改変体。 配列表の配列番号 2に記載されるアミノ酸配列と 50%以上の相同性を有する、項 1、 2のいずれかに記載のクレアチニンアミドヒドロラーゼ改変体。
[項 4コ
配列表の配列番号 2に記載されるアミノ酸配列と 80%以上の相同性を有する、項 1、 2のいずれか 1項に記載のクレアチュンアミドヒドロラーゼ改変体。
[項 5]
改変前のクレアチュンアミドヒドロラーゼ活性を有する蛋白質が配列表の配列番号 2 に記載されるアミノ酸配列を有する、項 1、 2のいずれ力、 1項に記載のクレアチュンアミ ドヒドロラーゼ改変体。
[項 6コ
配列表の配列番号 2に記載されるアミノ酸配列の 44位、 122位、 179位、 180位、 18 1位またはそれらと同等の位置からなる群より選ばれる少なくとも 1つのアミノ酸が他の アミノ酸に置換されている項 3〜5のいずれか 1項に記載のクレアチニンアミドヒドロラ ーゼ改変体。
[項 7]
配列表の配列番号 2に記載されるアミノ酸配列の 179位またはそれと同等の位置の グリシンがセリンに置換されている項 3〜5のいずれか 1項に記載のクレアチニンアミド ヒドロラーゼ改変体。
[項 8コ
配列表の配列番号 2に記載されるアミノ酸配列の 179位またはそれと同等の位置の グリシンがァラニンに置換されている項 3〜5のいずれか 1項に記載のクレアチニンァ ミドヒドロラーゼ改変体。
[項 9コ
配列表の配列番号 2に記載されるアミノ酸配列の 180位またはそれと同等の位置の グリシンがァラニンに置換されている項 3〜5のいずれか 1項に記載のクレアチュンァ ミドヒドロラーゼ改変体。
[項 10]
改変後のクレアチュンに対する Km値力 S、改変前に比べて 1/5以下であることを特 徴とする項 1〜9のいずれ力 1項に記載されるクレアチニンアミドヒドロラーゼ改変体。
[項 11]
改変後のクレアチニンに対する Km値力 改変前に比べて 1/2. 5以下であることを 特徴とする項 1〜9のいずれ力、 1項に記載されるクレアチュンアミドヒドロラーゼ改変体 。 [項 12]
項 1〜9のいずれか 1項に記載されるクレアチュンアミドヒドロラーゼ改変体をコードす る; mis子。
[項 13]
項 12に記載の遺伝子を含むベクター。
[項 14]
項 13に記載のベクターで形質転換された形質転換体。
[項 15]
項 14に記載の形質転換体を培養し、該培養物からクレアチュンアミドヒドロラーゼを 採取するクレアチニンアミドヒドロラーゼ改変体の製造法。
[項 16]
項 1〜: 11のいずれか 1項に記載されるクレアチニンアミドヒドロラーゼ改変体を含むク レアチュン測定用試薬。
[項 17]
項 1〜: 11のいずれか 1項に記載されるクレアチニンアミドヒドロラーゼ改変体を用いる クレアチュン測定方法。 発明の効果
本発明により臨床検查薬用酵素として有用な、 Km値の小さい新規クレアチニンァ ミドヒドロラーゼを創出し、工業的に大量に該クレアチュンアミドヒドロラーゼを生産で きる。
また、本発明により、クレアチニンの定量において、使用酵素量を従来の 1/4に減ら すことができ、また従来と同等の使用量であれば反応がエンドポイントに達する時間 が短レ、ため、測定時間を短縮でき処理検体数を増加させることができる。
発明を実施するための最良の形態 [0012] 以下、本発明を詳細に説明する。
[0013] クレアチニンアミドヒドロラーゼは、 EC3. 5. 2. 10に分類される酵素である。
[0014] 本発明のクレアチニンアミドヒドロラーゼ改変体は、改変前のクレアチニンアミドヒド 口ラーゼよりも基質に対する親和性が向上したものである。基質との親和性の向上と は、具体的にはクレアチュンに対する Km値の低下を意味する。
[0015] 本発明のクレアチュンアミドヒドロラーゼ改変体は、好ましくは、改変後のクレアチニ ンに対する Km値力 改変前に比べて 1/2. 5以下であるクレアチュンアミドヒドロラ ーゼ改変体である。さらに好ましくは、改変後のクレアチュンに対する Km値が、改変 前に比べて 1Z5以下であるクレアチュンアミドヒドロラーゼ改変体である。
[0016] あるいは、本発明のクレアチュンアミドヒドロラーゼ改変体は、好ましくは、改変後の クレアチュンに対する Km値(以下に示す方法で測定した値) 70mM以下である クレアチュンアミドヒドロラーゼ改変体である。さらに好ましくは、改変後のクレアチニ ンに対する Km値力 S、 55mM以下であるクレアチニンアミドヒドロラーゼ改変体である
[0017] あるいは、本発明のクレアチニンアミドヒドロラーゼ改変体は、配列表の配列番号 2 に記載されるアミノ酸配列と 50%以上 (好ましくは 80%以上)の相同性を有する。
[0018] Km値は、以下のいずれかの方法を用いて測定する。
実施例 1なレ、し 3につレ、ては、以下のように測定した。
後述のクレアチニンアミドヒドロラーゼの活性測定法において、 R2を基質であるタレ ァチニンの濃、 度を、反応卩寺【こ 55. 6、 37. 0、 22. 2、 15. 9、 11. ImM【こなるよう調 製し、それぞれの R2を用いて活性を測定する。得られた測定値を、 Lineweaber- Burkプロットを用いて Km値を求める。
[0019] また、実施例 4および 5については、 Km値は以下のように測定した。
後述のクレアチュンアミドヒドロラーゼの活性測定法において、第二試薬の基質で あるクレアチュンの濃度を、反応時に各 50、 30、 20、 15、 10mMになるよう調製(土 10%以内の誤差は許容されるものとする。)し、それぞれの R2を用いて活性を測定 する。得られた測定値を、 Lineweaber— Burkプロットを用いて Km値を求める。
[0020] 本願明細書において、アミノ酸は 1文字記号または 3文字記号で表す。また、ァミノ 酸の変異の位置については次のように表記する。例えば「G179S」は、 179位の G ( Gly)を S (Ser)に置換することを意味する。
[0021] 本発明の改変型クレアチニンアミドヒドロラーゼの改変の基になるクレアチュンアミド ヒドロラーゼは、コリネバクテリウム属、シユードモナス属、アースロバクター属、フラボ バクテリウム属、ミクロコッカス属などの微生物由来のもの等が例示される力 特に限 定されるものではない。
具体的には例えば、シユードモナス'プチダ (PS— 7)株に由来するものが挙げられ 、そのアミノ酸配列は配列番号 2、当該アミノ酸配列をコードする遺伝子は配列番号 1 でそれぞれ示される。これらはいずれも特許第 2527035号公報に記載されている。 なお、配列番号 2において、アミノ酸の表記は、メチォニンを 1として番号付けされて いる。
[0022] 本発明の改変型クレアチュンアミドヒドロラーゼの改変の基になるクレアチュンアミドヒ ドロラーゼは、クレアチニンアミドヒドロラーゼ活性を有するものであれば、野生型のも のに限らず何らかの改変が施されたものであっても良い。改変としては、例えばァミノ 酸を欠失、置換もしくは付加されたもの、分子間または分子内架橋が施されたもの、 あるいは、糖鎖やその他の官能基により化学修飾されたものなどが含まれる力 特に 限定されない。
具体的には例えば、シユードモナス属、アルカリゲネス属由来のもの、あるいは巿販 品では、東洋紡績製「CNH— 311」、キッコ一マン製「Creatininase (Cl—E)」等に 改変を施しても良い。
[0023] 本発明の改変型クレアチニンアミドヒドロラーゼは、クレアチニンアミドヒドロラーゼ活 性を有する蛋白質を構成するアミノ酸配列のうち、基質との結合部位から半径 10ォ ングストローム以内の距離にあるアミノ酸配列であり、 ひへリックス両端から 5残基以内 のアミノ酸配列が変換された、野生型と比較して、基質との親和性が向上したもので ある。なお、基質との結合部位とは、 Swiss -Pdb Viewer (SPDBV)を使用してク レアチンとクレアチュンアミドヒドロラーゼが結合した状態の立体構造データより定義 される部位である。基質との結合部位からの距離も同ソフトを用いることで、定義でき る。 このような改変部位として具体的には、例えば、シユードモナス'プチダ(PS— 7)株 に由来するクレアチニンアミドヒドロラーゼアミノ酸配列(配列番号 2)では、 Cys41, Met42, Asn43, Val44, Asp45, His 120, Tyrl21, Asnl 23, Serl24, Asp 15 5, Glul77, Hisl78, Glyl 79, Glyl80, Vall81力 列示できる。
な力、でも、 44位、 122位、 179位、 180位、及び 181位に木目当する咅 M立のうち少ヽな くとも 1つ以上のアミノ酸が他のアミノ酸に置換されてなるもの力 本発明の改変型ク レアチュンアミドヒドロラーゼとして好ましレ、。
[0024] とりわけ、 配列番号 2における 44位のアミノ酸はアルギニンまたはグリシンまたは セリンに置換されていることが好ましい。
配列番号 2における 44位のアミノ酸はァスパラギンに置換されていることが好ましい 配列番号 2における 122位のアミノ酸はァスパラギン酸に置換されていることが好ま しい。
配列番号 2における 179位のアミノ酸はセリンまたはァラニンに置換されていること が好ましい。
配列番号 2における 180位のアミノ酸はセリンまたはァラニンに置換されていること が好ましい。
配列番号 2における 181位のアミノ酸はイソロイシンに置換されていることが好まし レ、。
[0025] また、 44位、 122位、 179位、 180位、及び 181位に相当する部位のうち、好ましく は 122位、 179位、 180位、及び 181位のアミノ酸が他のアミノ酸に置換されているこ とが好ましい。さらに好ましくは 179位、 180位のアミノ酸が他のアミノ酸に置換されて レ、ることが好ましい。
[0026] これらの改変部位は、 1もしくは数個が改変されたものであっても良い。また、改変 はアミノ酸を欠失、置換もしくは付カ卩のいずれでも良いし、それらの組合せであっても 良い。
[0027] なお、上記の置換位置は、シユードモナス.プチダ(PS _ 7)株以外の起源のクレア チュンアミドヒドロラーゼのアミノ酸配列における同等の位置であっても良レ、。同等の 位置かどうかは、一次構造、立体構造の知見を基に判断することができる。
[0028] シユードモナス 'プチダ由来のクレアチュンアミドヒドロラーゼの立体構造は既に明 らかになつていた力 S、蛋白質工学的手法によりクレアチュンアミドヒドロラーゼの Km 値を低下させることを示唆する記載はなかった(非特許文献 4、 5)。
非特許文献 4 :Joumal of Molecular Biology, Vol337, 399 -416 (2004) 非特許文献 5 :Joumal of Molecular Biology, Vol332, 287 - 301 (2004)
[0029] 発明者らが見出したシユードモナス'プチダ由来のクレアチュンアミドヒドロラーゼの
44位、 122位、 179位、 180位、及び 181位の変異箇所をこの立体構造に照らし合 わせたところ、 44位及び 122位はひへリックス末端から 5残基以内に位置し、 179位 、 180位、及び 181位は the flap regionにあることがわかった。
非特許文献 3には、クレアチュンアミドヒドロラーゼの立体構造は 7つのひへリックス と 4つの β構造からなりたつており、クレアチュンアミドヒドロラーゼが基質と結合すると , the flap region ( α 5と α 6の間)の配置変化がおきることが記載されている。 この記載と本発明者らが具体的に得た実験結果を合わせて考えると、 α 5と α 6の 間の構造を変えることにより the flap regionの配置に変化がおこり、基質との親和 性が向上するものと考えられる。
[0030] したがって、当業者であれば、上記 44位、 122位、 179位、 180位、及び 181位に 限らずその周辺を包含する範囲のアミノ酸(具体的には、 the flap regionの α 5と α 6の末端から数えて 5残基以内のアミノ酸、さらには、 the flap regionだけでなく 基質との結合部位から近レ、、具体的には 10オングストローム以内の αヘリックスの末 端力 数えて 5残基以内のアミノ酸)を変異することにより、 the flap regionの配置 に変化がおこり基質との親和性を向上させる効果を有する改変体を、過度の検討な くして得ることができる。
他の起源のクレアチュンアミドヒドロラーゼについても、一次構造、立体構造の情報 を元に、変異すべきアミノ酸位置を推定した上で、基質との親和性を向上させる効果 を有する改変体を、過度の検討なくして得ることが可能である。
このように本発明の技術的思想は、具体的に上記で得られた改変型クレアチュンァ ミドヒドロラーゼに限定されるものではない。 [0031] なお、上記説明において、基質との結合部位とは、 Swiss— Pdb Viewer (SPDB V)を使用してクレアチンとクレアチニンアミドヒドロラーゼが結合した状態の立体構造 データより定義される部位である。基質との結合部位力 の距離も同ソフトを用いるこ とで、定義できる。
[0032] また、 ひへリックスとは、タンパク質やポリペプチドのとる 2次構造の一つで、アミノ酸
3. 6残基ごとに 1回転し、ピッチ 5. 4オングストロームのらせん構造である。ペプチド 結合が平面をなすこと、ペプチド結合の一 NH —、 一 CO—はすベて水素結合をす る。
[0033] 相同性は GENETYX—WINを使用して、 2種類の配列の homology searchによ り一致する配列の割合(%)を計算することができる。
[0034] なお、本発明の改変型クレアチュンアミドヒドロラーゼは、クレアチュンに対する作 用性が本質的に維持される限り、さらに他のアミノ酸残基の一部が欠失または置換- 挿入等されてレ、てもよく、また他のアミノ酸残基が付加または置換等されてレ、てもよレヽ さらに、本発明の改変型クレアチュンアミドヒドロラーゼは、クレアチニンに対する作 用性が本質的に維持される限り、クレアチニンアミドヒドロラーゼにヒスチジンタグなど のタグを結合または挿入させた態様、クレアチニンアミドヒドロラーゼの少なくとも一方 の末端に他のペプチドや他の蛋白質(たとえばストレプトアビジンゃシトクロム)を融合 させた態様、糖鎖や他の化合物により化学修飾された態様、クレアチニンアミドヒドロ ラーゼ分子内および/または分子間でジスルフイド結合などにより架橋されたものや リンカ一ペプチドなどを介して連結されたもの等の態様を含みうる。あるいは、いくつ かの由来の野生型クレアチュンアミドヒドロラーゼの断片を組み合わせて構成したも のを含みうる。
[0035] 本発明はさらに、改変型クレアチュンアミドヒドロラーゼをコードする遺伝子を含む。
本発明の改変型クレアチュンアミドヒドロラーゼをコードする遺伝子は、例えば、微 生物など種々の起源(由来)より得られる野生型クレアチュンアミドヒドロラーゼをコ一 ドする遺伝子を含む DNA断片を改変することにより得ることができる。具体的には、 例えばアルカリゲネス'フエカリス(Alcaligenes faecalis)、アースロバクタ一'エスピ 一 (Arthrobacter sp. )、フラボノくクテリゥム.エスピー (Flavobacterium sp. )、 コリネバタテリゥム 'ウレァファシエンス (Corinebacterium ureafaciens)、コリネバ クテリゥム ·クレアテノボランス (Corinebacterium creatinovorans)、マ クロコッ刀 ス'ノレアウス (Micrococcus luteus八シユードモナス'フチタ (Pseudomonas put ida)等の細菌を挙げることができる。
本発明の改変型クレアチュンアミドヒドロラーゼをコードする遺伝子は、好ましくは、 配列番号 1に記載の塩基配列と相補的な塩基配列からなる DNAとストリンジェントな 条件下でハイブリダィズし、かつクレアチュンアミドヒドロラーゼ活性を有するタンパク 質をコードする DNAである。
[0036] 本発明の遺伝子は、さらに、野生型クレアチュンアミドヒドロラーゼをコードする遺伝 子の改変により得られた改変型クレアチュンアミドヒドロラーゼをコードする遺伝子に ついて、クレアチュンアミドヒドロラーゼの発現を向上させるように、さらにコドンユーセ ージ(Codon usage)を変更したものを含みうる。
[0037] 野生型クレアチュンアミドヒドロラーゼをコードする遺伝子を改変する方法としては、 通常行われる遺伝情報を改変する手法が用いられる。すなわち、タンパク質の遺伝 情報を有する DNAの特定の塩基を変換することにより、或いは特定の塩基を挿入ま たは欠失させることにより、改変蛋白質の遺伝情報を有する DNAが作成される。 DN A中の塩基を変換する具体的な方法としては、例えば市販のキット(Transformer Site— Directed Mutagenesis Kit;し lonetecn製, QuickChange Site Dire cted Mutagenesis Kit ; Stratagene製など)の使用、或いはポリメラーゼ連鎖反 応法(PCR)の利用が挙げられる。
[0038] 本発明はさらに、改変型クレアチュンアミドヒドロラーゼをコードする遺伝子を含む ベクター、さらには該ベクターで形質転換された形質転換体を含む。
作製された改変タンパク質の遺伝情報を有する DNAは、プラスミドと連結された状 態にて宿主微生物中に移入され、改変タンパク質を生産する形質転換体となる。 ベクターとしてプラスミドを用いる場合、例えば、ェシエリヒア'コリー(Escherichia coli)を宿主微生物とする場合には pBluescript, pUC18などが使用できる。宿主微 生物としては、例えば、ェシエリヒア'コリー W3110、ェシエリヒア'コリー C600、ェシ エリヒア 'コリー JM109、ェシエリヒア'コリー DH5 aなどが利用できる。宿主微生物に 組換えベクターを移入する方法としては、例えば宿主微生物がェシエリヒア属に属す る微生物の場合には、カルシウムイオンの存在下で組換え DNAの移入を行なう方法 などを採用することができ、更にエレクト口ポレーシヨン法を用いても良レ、。更には、巿 販のコンビテントセル (例えば、コンビテントハイ JM109 ;東洋紡績製)を用いても良 レ、。
[0039] このような遺伝子はこれらの菌株より抽出してもよぐまた化学的に合成することもで きる。さらに、 PCR法の利用により、クレアチュンアミドヒドロラーゼ遺伝子を含む DN A断片を得ることも可能である。
[0040] 本発明において、クレアチュンアミドヒドロラーゼをコードする遺伝子を得る方法とし ては、次のような方法が挙げられる。例えばシユードモナス'プチダ (PS— 7)株由来 の染色体を分離、精製した後、超音波処理、制限酵素処理等を用いて DNAを切断 したものと、リニア一な発現ベクターと両 DNAの平滑末端または付着末端において DNAリガーゼなどにより結合閉鎖させて組換えベクターを構築する。該組換えべクタ 一を複製可能な宿主微生物に移入した後、ベクターのマーカーと酵素活性の発現を 指標としてスクリーニングして、クレアチニンアミドヒドロラーゼをコードする遺伝子を含 有する組換えベクターを保持する微生物を得る。
[0041] 次いで、上記組換えベクターを保持する微生物を培養して、該培養微生物の菌体 から該組換えベクターを分離、精製し、該発現べクタ一からクレアチニンアミドヒドロラ ーゼをコードする遺伝子を採取することができる。例えば、遺伝子供与体であるシュ ードモナス ·プチダ(PS— 7)の染色体 DNAは、具体的には以下のようにして採取さ れる。
[0042] 該遺伝子供与微生物を例えば:!〜 3日間攪拌培養して得られた培養液を遠心分離 により集菌し、次いで、これを溶菌させることによりクレアチュンアミドヒドロラーゼ遺伝 子の含有溶菌物を調製することができる。溶菌の方法としては、例えばリゾチーム等 の溶菌酵素により処理が施され、必要に応じてプロテアーゼゃ他の酵素ゃドデシル 硫酸ナトリウム(SDS)等の界面活性剤が併用される。さらに、凍結融解やフレンチプ レス処理のような物理的破砕方法と組み合わせてもよい。 [0043] 上記のようにして得られた溶菌物から DNAを分離精製するには、常法に従って、 例えばフエノール処理やプロテアーゼ処理による除蛋白処理や、リボヌクレアーゼ処 理、アルコール沈殿処理などの方法を適宜組み合わせることにより行うことができる。
[0044] 微生物から分離、精製された DNAを切断する方法は、例えば超音波処理、制限 酵素処理などにより行うことができる。好ましくは特定のヌクレオチド配列に作用する II 型制限酵素が適している。
[0045] クローニングする際のベクターとしては、宿主微生物内で自律的に増殖し得るファ ージまたはプラスミドから遺伝子組換え用として構築されたものが適している。ファー ジとしては、例えばェシエリヒア'コリを宿主微生物とする場合には Lambda gtlO 、 Lambda gtl l などが例示される。また、プラスミドとしては、例えば、ェシエリヒア- コリを宿主微生物とする場合には、 pBR322、 pUC19 、 pBluescript などが例示 される。
[0046] クローユングの際、上記のようなベクターを、上述したクレアチニンアミドヒドロラーゼ をコードする遺伝子供与体である微生物 DNAの切断に使用した制限酵素で切断し てベクター断片を得ることができる力 S、必ずしも該微生物 DNAの切断に使用した制 限酵素と同一の制限酵素を用いる必要はなレ、。微生物 DNA断片とベクター DNA断 片とを結合させる方法は、公知の DNAリガーゼを用いる方法であればよぐ例えば 微生物 DNA断片の付着末端とベクター断片の付着末端とのアニーリングの後、適 当な DNAリガーゼの使用により微生物 DNA断片とベクター DNA断片との組換えべ クタ一を作製する。必要に応じて、アニーリングの後、宿主微生物に移入して生体内 の DNAリガーゼを利用し組換えベクターを作製することもできる。
[0047] クローユングに使用する宿主微生物としては、組換えベクターが安定であり、かつ 自律増殖可能で外来性遺伝子の形質発現できるものであれば特に制限されない。 一般的には、ェシエリヒア'コリ W3110 、ェシエリヒア'コリ C600、ェシエリヒア'コリ H B101 、ェシエリヒア ·コリ JM109 、ェシエリヒア'コリ DH5ひなどを用いることができ る。
[0048] 宿主微生物に組換えベクターを移入する方法としては、例えば宿主微生物がェシ エリヒア.コリの場合には、カルシウム処理によるコンビテントセル法やエレクト口ボーレ ーシヨン法などを用いることができる。
[0049] 上記のように得られた形質転換体である微生物は、栄養培地で培養されることによ り、多量のクレアチニンアミドヒドロラーゼを安定に生産し得る。宿主微生物への目的 組換えベクターの移入の有無についての選択は、 目的とする DNAを保持するべクタ 一の薬剤耐性マーカー発現する微生物を検索すればよい。
[0050] 上記の方法により得られたクレアチュンアミドヒドロラーゼ遺伝子の塩基配列は、 Scie nce ,第 214卷, 1205 (1981)に記載されたジデォキシ法により解読した。また、ク レアチュンアミドヒドロラーゼのアミノ酸配列は上記のように決定された塩基配列より 推定した。
[0051] 上記のようにして、一度選択されたクレアチュンアミドヒドロラーゼ遺伝子を保有する 組換えベクターより、クレアチュンアミドヒドロラーゼ生産能を有する微生物にて複製 できる組換えベクターへの移入は、クレアチュンアミドヒドロラーゼ遺伝子を保持する 組換えベクターから制限酵素や PCR法によりクレアチニンアミドヒドロラーゼ遺伝子で ある DNAを回収し、他のベクター断片と結合させることにより容易に実施できる。また 、これらのベクターによるクレアチニンアミドヒドロラーゼ生産能を有する微生物の形 質転換は、カルシウム処理によるコンビテントセル法やエレクト口ポーレーシヨン法な どを用いることができる。
[0052] 本発明はさらに、改変型クレアチュンアミドヒドロラーゼをコードする遺伝子を含む ベクターで形質転換された形質転換体を培養することを含む改変型クレアチニンアミ ドヒドロラーゼの製造法に関する。
[0053] また、本発明のさらに別の一つの態様は、クレアチュンアミドヒドロラーゼに請求項 1 〜9のうちいずれかに記載のアミノ酸変異を行うことを含む、クレアチュンに対する K m値を、対応する野生型酵素と比較して低下させたクレアチュンアミドヒドロラーゼを 製造する方法を含む。
[0054] こうしてできた形質転換体を培養することにより、本発明のクレアチュンアミドヒドロラ ーゼを製造することができる。
例えば上記のようにして得られた形質転換体である微生物は、栄養培地で培養さ れることにより、多量の改変タンパク質を安定して生産し得る。形質転換体である宿 主微生物の培養形態は、宿主の栄養生理的性質を考慮して培養条件を選択すれば よぐ多くの場合は液体培養で行う。工業的には通気攪拌培養を行うのが有利である
[0055] 培地の栄養源としては,微生物の培養に通常用いられるものが広く使用され得る。
炭素源としては資化可能な炭素化合物であればよぐ例えば、グルコース、シユーク ロース、ラタトース、マルトース、ラタトース、糖蜜、ピルビン酸などが使用される。また、 窒素源としては利用可能な窒素化合物であればよぐ例えば、ペプトン、肉エキス、 酵母エキス、カゼイン加水分解物、大豆粕アルカリ抽出物などが使用される。その他 、リン酸塩、炭酸塩、硫酸塩、マグネシウム、カルシウム、カリウム、鉄、マンガン、亜鉛 などの塩類、特定のアミノ酸、特定のビタミンなどが必要に応じて使用される。
[0056] 培養温度は菌が成育し、改変型クレアチュンアミドヒドロラーゼを生産する範囲で適 宜変更し得るが、上記のようなクレアチュンアミドヒドロラーゼ生産能を有する微生物 の場合、好ましくは 20〜42°C程度である。培養時間は条件によって多少異なるが、 改変型クレアチュンアミドヒドロラーゼが最高収量に達する時期を見計らって適当時 期に培養を完了すればよぐ通常は 6〜48時間程度である。培地の pHは菌が発育 し、改変型クレアチュンアミドヒドロラーゼを生産する範囲で適宜変更し得る力 好ま しくは ρΗ6· 0〜9· 0程度の範囲である。
[0057] 培養物中の改変型クレアチニンアミドヒドロラーゼを生産する菌体を含む培養液を そのまま採取し、利用することもできるが、一般には、常法に従って、改変型クレアチ ニンアミドヒドロラーゼが培養液中に存在する場合はろ過、遠心分離などにより、改変 型クレアチュンアミドヒドロラーゼ含有溶液と微生物菌体とを分離した後に利用される
。改変型クレアチュンアミドヒドロラーゼが菌体内に存在する場合には、得られた培養 物からろ過または遠心分離などの手段により菌体を採取し、次いで、この菌体を機械 的方法またはリゾチームなどの酵素的方法で破壊し、また、必要に応じて、 EDTA等 のキレート剤及び界面活性剤を添加してクレアチュンアミドヒドロラーゼを可溶化し、 水溶液として分離採取する。
[0058] 上記のようにして得られたクレアチュンアミドヒドロラーゼ含有溶液を、例えば減圧 濃縮、膜濃縮、さらに硫酸アンモニゥム、硫酸ナトリウムなどの塩析処理、あるいは親 水性有機溶媒、例えばメタノール、エタノール、アセトンなどによる分別沈殿法により 沈殿せしめればよい。また、加熱処理や等電点処理も有効な精製手段である。その 後、吸着剤あるいはゲルろ過剤などによるゲルろ過、吸着クロマトグラフィー、イオン 交換クロマトグラフィー、ァフィ二ティクロマトグラフィーを行うことにより、精製されたク レアチュンアミドヒドロラーゼを得ることができる。
[0059] 例えば、セフアデックス(Sephadex)ゲル(GEヘルスケアバイオサイエンス)などに よるゲルろ過、 DEAEセファロース CL_6B (GEヘルスケアバイオサイエンス)、オタ チルセファロース CL— 6B (GEヘルスケアバイオサイエンス)等のカラムクロマトグラ フィ一により分離、精製し、精製酵素標品を得ることができる。該精製酵素標品は、電 気泳動(SDS— PAGE)的に単一のバンドを示す程度に純化されていることが好まし レ、。
[0060] 上記のようにして得られた精製酵素を、例えば凍結乾燥、真空乾燥やスプレードラ ィなどにより粉末化して流通させることが可能である。その際、精製酵素はリン酸緩衝 液、トリス塩酸緩衝液や GOODの緩衝液に溶解しているものを用いることができる。 好適なものは GOODの緩衝液であり、なかでも、 PIPES, MESもしくは MOPS緩衝 液が特に好ましい。また、グルタミン酸、グルタミン、リジン等のアミノ酸類、さらに血清 アルブミン等を添加することによりクレアチニンアミドヒドロラーゼをより安定化すること ができる。
[0061] 本発明の改変タンパク質の製造方法は、特に限定されないが、以下に示すような 手順で製造することが可能である。タンパク質を構成するアミノ酸配列を改変する方 法としては、通常行われる遺伝情報を改変する手法が用いられる。すなわち、タンパ ク質の遺伝情報を有する DNAの特定の塩基を変換することにより、或いは特定の塩 基を揷入または欠失させることにより、改変蛋白質の遺伝情報を有する DNAが作製 される。 DNA中の塩基を変換する具体的な方法としては、例えば市販のキット (Tra nsformerMutagenesis Kit ; Clonetech製, EXOIII/Mung Bean Deletion Kit ; Stratagene製, QuickChange Site Directed Mutagenesis Kit; Stra tagene製など)の使用、或いはポリメラーゼ連鎖反応法(PCR)の利用が挙げられる [0062] 本発明では、配列番号 2に示されるクレアチニンアミドヒドロラーゼの 44位、 122位 、 179位、 180位、及び 181位に着目し、これらのアミノ酸部位へ上記変異導入キット を用いてランダムに変異を導入したライブラリーを作製し、基質特異性の変化を指標 にスクリーニングしたところ、クレアチュンに対する Km値が低減したクレアチュンアミ ドヒドロラーゼ改変体を得ることができた。
[0063] 本発明の別の一形態は、クレアチュンに対する Km値が 55mM以下であるクレアチ ニンアミドヒドロラーゼ、クレアチンアミジノヒドロラーゼ、ザルコシンォキシダーゼ、過 酸化水素の検出用試薬を含むクレアチニン測定試薬である。
過酸化水素の検出用試薬としては、例えば、ペルォキシダーゼ、 4—ァミノアンチピ リン、トリンダー試薬を含む。
[0064] 上記クレアチニン測定試薬の一形態は、請求項 1〜: 13のうちいずれかに記載の改 変型クレアチュンアミドヒドロラーゼを含むクレアチュン測定用組成物を含む。
上記クレアチュン測定試薬の一形態は、請求項 1〜: 13のうちいずれかに記載の改 変型クレアチニンアミドヒドロラーゼを含むクレアチニン測定キットを含む。
[0065] 本発明の測定法は、下記反応を利用するものである。
(a)クレアチニンと水から、クレアチニンアミドヒドロラーゼによりクレアチンを生成する 反応
(クレアチニンアミドヒドロラーゼ)
クレアチュン + H〇→クレアチン
2
(b) (a)で得られたクレアチンと水から、クレアチンアミジノヒドロラーゼによりザルコシ ンと尿素を生成する反応
(クレアチンアミジノヒドロラーゼ)
クレアチン + H 0→ザルコシン +尿素
(c) (b)で得られたザルコシンと水と酸素から、ザルコシンォキシダーゼによりグリシン とホルムアルデヒドと過酸化水素を生成する反応
(ザルコシンォキシダーゼ) ザルコシン + H O + O → グリシン +ホルムアルデヒド +過酸化水素
2 2
(d) (c)で得られた過酸化水素を検出する反応
例えば、(c)で得られた過酸化水素と 4—ァミノアンチピリンとトリンダー試薬から、ぺ ルォキシダーゼによりキノン色素と水を生成する反応
(ペルォキシダーゼ)
過酸化水素 + 4—ァミノアンチピリン +トリンダー試薬 → キノン色素 + 4H O
2
[0066] 本発明の測定法には、クレアチュンに対する Km値が 55mM以下であるクレアチニ ンアミドヒドロラーゼを用いる。
そのようなクレアチュンアミドヒドロラーゼの起源は、シユードモナス属、アルカリゲネ ス属、コリネバクテリウム属、アースロバクター属、フラボバクテリウム属、ミクロコッカス 属などの微生物由来のもの等が例示されるが、特に限定されるものではないが、本 願明細書の [0012]〜 [0055]および参考例に後述するものが好適に使用できる。
[0067] 本発明におけるクレアチュン測定の対象となる試料としては、血清、尿、血漿などの 生体試料が挙げられる力 これに特定されない。
[0068] 本発明の試薬にぉレ、て、組成物は、液状 (水溶液、懸濁液等)、粉末、凍結乾燥な ど種々の形態をとることができる。凍結乾燥法としては、特に制限されるものではなく 常法に従って行えばよい。本発明の酵素を含む組成物は凍結乾燥物に限られず、 凍結乾燥物を再溶解した溶液状態であつてもよい。
[0069] さらに上記各形態において、本発明の試薬組成物は、その形態や使用方法に応じ て、精製された状態であっても良いし、必要により他の成分、例えば界面活性剤、安 定化剤、賦形剤など種々の添加物が加えられていても良い。
本発明の試薬へのそれらの添加物の配合法は特に制限されるものではなレ、。例え ばクレアチニンアミドヒドロラーゼを含む緩衝液に安定化剤を配合する方法、安定化 剤を含む緩衝液にクレアチュンアミドヒドロラーゼを配合する方法、あるいはクレアチ ニンアミドヒドロラーゼと安定化剤を緩衝液に同時に配合する方法などが挙げられる
[0070] 本発明に使用するクレアチンアミジノヒドロラーゼの起源は特に限定されるものでは なレ、。例えば、アースロバクタ一由来、アルカリゲネス由来のものを用いることができ る。市販品では、東洋紡績製「 11— 221」、キッコーマン製「 6& 11&36 (〇2—八
T)」等を用いることができる。
[0071] 本発明に使用するザルコシンォキシダーゼの起源は特に限定されるものではない
。例えば、コリネバタテリゥム由来、アースロバクタ一由来のものを用いることができる。 市販品では、東洋紡績製「SAO_ 341」、キッコ一マン製「Sarcosine Oxidase (S
OD—TE)」等を用いることができる。
[0072] 本発明に使用するクレアチュンアミドヒドロラーゼの酵素濃度は、測定に適した濃度 であれば特に限定するものではなレ、が、好ましくは l _ 1000U/mLの範囲で好適 に用いられる。
クレアチュンアミジノヒドロラーゼの酵素濃度は、測定に適した濃度であれば特に限 定するものではなレ、が、好ましくは 1 _ 1000U/mLの範囲で好適に用レ、られる。 ザノレコシンォキシダーゼの酵素濃度は、測定に適した濃度であれば特に限定する ものではないが、好ましくは l— 1000U/mLの範囲で好適に用いられる。
[0073] 本発明に使用するペルォキシダーゼの起源は特に限定されるものではない。例え ば、西洋ヮサビ由来のものを用いることができる。市販品では、東洋紡績製「PE〇一 301」等を用いることができる。
[0074] 本発明のクレアチニン測定試薬は、上記以外に、リン酸塩や GOODバッファー、ト リスバッファーなどの緩衝剤を含有する。更には、酵素反応を妨害するイオンを捕捉 する EDTAや O—ジァニシジンなどのキレート試薬や、過酸化水素の定量の妨害物 質であるァスコルビン酸を消去するァスコルビン酸ォキシダーゼ、トリトン X— 100や NP— 40などの各種界面活性剤、ストレプトマイシンやアジィ匕ナトリウムなどの各種抗 菌剤ゃ防腐剤などを含んでもよい。これらは、種々の市販の試薬を入手できる。 これらの試薬は、単一試薬でも 2種類以上の試薬からなるものであってもよレ、が、本 発明の利点を活かすためには簡便な単一試薬がより好ましい。また、本発明の利点 を活かすためには取扱いの簡便な液状試薬が好ましレ、。
[0075] 含有される緩衝液としては特に限定されるものではなレ、が、トリス緩衝液、リン酸緩 衝液、ホウ酸緩衝液、グッド緩衝液などが挙げられる。該緩衝液の pHは 5. 0〜10. 0程度の範囲で使用目的に応じて調整される。凍結乾燥物中においては緩衝剤の 含有量は、特に限定されるものではなレ、が、好ましくは 0. 1% (重量比)以上、特に好 ましくは 0.:!〜 30% (重量比)の範囲で使用される。
[0076] また、さらに血清アルブミンを含有させてもよレ、。前記の水性組成物に血清アルブミ ンを添カ卩する場合、その含有量は 0. 05-0. 5重量%であることが好ましい。
使用できるアルブミンとしては、牛血清アルブミン (BSA)、卵白アルブミン(〇VA) などが挙げられる。特に BSAが好ましい。該アルブミンの含有量は、好ましくは 1〜8 0% (重量比)、より好ましくは 5〜70% (重量比)の範囲で使用される。
[0077] 一方、上記各形態において、本発明の改変型クレアチュンアミドヒドロラーゼ、タレ ァチニン測定用組成物ならびにクレアチュン測定用キットは、宿主由来のタンパク質 成分以外のタンパク質成分を含有しない構成とすることもできる。
宿主由来のタンパク質成分以外のタンパク質成分としては、例えば BSA等の生体 由来物質が挙げられる。
このような構成にすることにより、クレアチニン測定系における非特異反応が低減す る可能性が考えられる。
[0078] 緩衝剤としては、一般的に使用されるものであれば良ぐ通常、組成物の pHを 5〜
10とするものが好ましい。緩衝剤としてさらに好ましくは、ホウ酸や酢酸といった緩衝 剤や、 BES、 Bicine、 Bis— Tris、 CHES、 EPPS、 HEPES、 HEPPSO、 MES、 M OPS、 MOPSO、 PIPES, POPSO、 TAPS, TAPS〇、 TES、 Tricineといったグッ ド緩衝剤が挙げられる。
また、粉末組成物において、緩衝剤の含有量 (W/W)は、 1. 0%〜50%であるこ とが望ましい。
[0079] また、改変型クレアチュンアミドヒドロラーゼと緩衝剤から基本的に成る組成物に、 アミノ酸、あるいは有機酸をさらに加えてもかまわなレ、。また、これらを含有するもので あれば、水性組成物、凍結乾燥物を問わない。
[0080] 本発明に使用する緩衝剤として特に好ましくは、 6. 5 - 8. 5の pH範囲において充 分な緩衝能力を有する任意の緩衝剤を使用することができる。この pH範囲の緩衝剤 は、リン酸塩、トリス、ビス—トリスプロパン、 N—トリス(ヒドロキシメチル)メチル—2—ァ ミノエタンスルホン酸 (TES)、および 3—〔N—トリス(ヒドロキシメチル)メチルァミノ〕 - 2—ヒドロキシプロパンスルホン酸(TAPSO)を含む。低価格および高い安定性のた め、好ましい緩衝剤はリン酸塩である。好ましい濃度範囲は、 20— 200mMのリン酸 塩であり、 pH7〜8である。
[0081] 本発明においてクレアチニンに由来する過酸化水素の検出用試薬とは、クレアチ ニンに由来する過酸化水素を検出するための試薬であれば特に限定されるものでは ないが、好ましくは、ペルォキシダーゼおよび過酸化水素発色試薬をいう。使用する ペルォキシダーゼおよび過酸化水素発色試薬は何ら制限されるものではなレ、。好ま しい指示薬は溶液において安定であり、かつピリルビン干渉が低いものである。
[0082] 過酸化水素発色試薬としては、例えば
(1) 4—ァミノアンチピリンまたは 3 _メチル _ 2_ベンゾチアゾリンヒドラゾン(MBTH )と、
(2)フエノールまたはその誘導体、もしくは、ァニリンまたはその誘導体
を組み合わせて使用する。
フエノール誘導体としては、 2 クロ口フエノール、 4 クロ口フエノール、 1, 2 ジク ロロフヱノール等が挙げられる。
ァニリン誘導体としては、 N, N ジメチルァニリン、 N, N ジェチルァニリン、 N, N ジェチル— m—トルイジン、 N, N ジメチル— m—ァニシジン、 N ェチル N - (3—メチルフエニル) N'—ァセチルエチレンジァミン、 N ェチル N— ( β - ヒドロキシェチル) m—トルィジン、 N ェチル N— (2—ヒドロキシ一 3—スルホプ 口ピル)—m—トルィジン、 N ェチル—N—スルホプロピル— m—トルイジン、 N— ェチル一N—スルホプロピル一 3, 5—ジメトキシァニリン、 N—ェチル一 N— (2—ヒド 口キシ一 3—スルホプロピル)一3, 5—ジメトキシァニリン、 N—ェチル一N—スルホプ 口ピル一 m—ァニシジン、 N—ェチル一 N— (3—メチルフエニル)一 N,一サクシニル エチレンジァミン、 N—ェチル一 N— (2—ヒドロキシ一 N—スルホプロピル)一 m—ァ ニシジン等が挙げられる。
また、 10— X—メチルカルバモイル一 3, 7—ジメチルァミノ一10H—フエノチアジン 、ビス〔8—ビス(4—クロ口フエニル)メチル一4—ジメチルァミノフエニル〕ァミン、 1 , 4 —ビス(ジメチルァミノ)ジフエ二ルー(2, 7—ジヒドロキシ一 4—ナフチル)メタン等の ロイコ色素を使用してもよい。
これらは、種々の市販の試薬を入手できる。
[0083] 本発明においてクレアチニンに由来する過酸化水素を検出する際の好ましい指示 薬は、ベンジジン類、ロイコ染料類、 4—ァミノアンチピリン、フヱノール類、ナフトール 類およびァニリン誘導体類を含む。より好ましい指示薬は、 4—ァミノアンチピリンおよ び N—ェチル _N_ (2—ヒドロキシ _ 3—スルフォプロピル) _m—トルィジン(TOO S)である。好ましい濃度範囲は、 4—ァミノアンチピリンについては、 0. 05- 10mM , TOOS tO. 05— 10mMである。
[0084] 本発明においてクレアチュンに由来する過酸化水素を検出する際に用いるペルォ キシダーゼは、高純度かつ低価格のものが商業的に入手可能であることから西洋ヮ サビ由来のペルォキシダーゼが好ましい。酵素濃度は、迅速かつ完全な反応のため に充分高くなければならず、好ましくは、 1 , 000— 50, 000U/Lである。
[0085] ビリルビンの干渉を最少とするためにフエロシアニドを試薬に添加してもよい。しかし ながら、フエロシアニド等の金属イオンの存在は、指示薬および酵素を不安定化する こともある。本発明の試薬の安定性は、フエロシアニドの添加を許容する程に充分高 レ、。フエロシアニドの好ましい濃度範囲は、 1— 400 μ Μであり、最大濃度は、酵素活 性を阻害する濃度である。
[0086] 不活性タンパク質を、更に安定性を増すために添加してもよい。不活性タンパク質 は、血清アルブミン類、グロブリン類および繊維性タンパク質類を含む。好ましいタン パク質は、ゥシ血清アルブミンであり、 wt/volにおける好ましい濃度は、 0· 05- 1 %である。より低い濃度が有用であり得る。好ましい不活性タンパク質は、酵素分解を 起こすであろうプロテアーゼ不純物を含まないものである。
[0087] クレアチニン濃度の測定は、試料の特定体積および試薬の特定体積を用いて行わ れる。吸光度測定は、試料ブランクを測定するために、混合後、かつクレアチュンの 代謝による有意な吸光度変化が起こる前にできるだけ速やかに行われる。 0. 5〜5 秒後の第 1の吸光度測定が適当である。第 2の吸光度測定は、吸光度が定常的にな つた後、典型的には 5mgZdLのクレアチュン濃度において 37°Cにて 3〜5分間であ る。典型的には、該試薬は既知のクレアチニン濃度を有する水性または血清溶液に て標準化される。
[0088] 本発明のクレアチュン測定用試薬組成物を用いて、クレアチュンを測定する方法 は、試料をクレアチュンアミドヒドロラーゼ、クレアチンアミジノヒドロラーゼ、ザルコシン ォキシダーゼ、ペルォキシダーゼ、 4—ァミノアンチピリン、トリンダー試薬を含有する 該試薬と反応させて、生成するキノン色素の発色量を測定する方法である。
[0089] 本発明の別の一形態は、請求項 1〜: 13のうちいずれかに記載の改変型クレアチニ ンアミドヒドロラーゼを含むクレアチュン測定方法を含む。
本願発明は、また、クレアチュンアミドヒドロラーゼを用いるクレアチュン測定系にお いて、請求項 1〜: 13のうちいずれかに記載のアミノ酸変異を行ったクレアチュンアミド ヒドロラーゼを含有することを含む、クレアチュン測定系における、測定の反応性を向 上させる方法を含む。
本願発明は、また、クレアチニンアミドヒドロラーゼを用いるクレアチュン測定系にお いて、請求項 1〜: 13のうちいずれかに記載のアミノ酸変異を行ったクレアチュンアミド ヒドロラーゼを含有させることを含む、測定の反応性が向上したクレアチニン測定用 組成物を、製造する方法を含む。
[0090] 後述の実施例にも記載されているように、本願発明の改変型クレアチニンアミドヒド 口ラーゼではクレアチニンに対する Km値が野生型クレアチニンアミドヒドロラーゼに 対して著しく低下している。このことは、例えば、臨床サンプノレにおけるクレアチニン 測定にぉレ、てクレアチニンアミドヒドロラーゼ量を著しく低下させることができ、低コスト 化が見込める。
実施例
[0091] 以下、本発明を実施例により具体的に説明する。
実施例 1改変型クレアチュンアミドヒドロラーゼ遺伝子の作製
特許第 2527035号、および、 Biosci. Biotech. Biochem. , 59卷 7号、 133 1 1332ページ(1995)に記載の方法を参照して、シユードモナス'プチダ PS— 7 株の染色体 DNAを調製し、次いで、該株由来のクレアチニンアミドヒドロラーゼ遺伝 子を含む発現プラスミド PCNH5 13を調製した。 野生型クレアチニンアミドヒドロラーゼの発現プラスミド pCNH5— 13は、ベクター pBl uescript SK (—)のマルチクローニング部位にシユードモナス'プチダ PS— 7株由 来のクレアチニンアミドヒドロラーゼをコードする構造遺伝子を挿入したものである。そ の塩基配列は配列表の配列番号 2に、また該塩基配列から推定されるクレアチニン アミドヒドロラーゼのアミノ酸配列は配列表の配列番号 1に示される。
次に、 PCNH5— 13と、配列表の配列番号 3記載の合成オリゴヌクレオチドおよびこ れと相補的な合成オリゴヌクレオチドを用いて QuickChange™ Site -Directed Mutagenesis Kit (商標 STRATAGENE製)を用いて、そのプロトコールに従つ て変異処理操作を行い、更に塩基配列を決定して、配列番号 2記載のアミノ酸配列 の 179番目のグリシンがセリンに置換された変異型クレアチュンアミドヒドロラーゼをコ ードする組換えプラスミド(pCNHMl)を取得した。
PCNH5— 13と、配列表の配列番号 4記載の合成オリゴヌクレオチドおよびこれと 相補的な合成オリゴヌクレオチドを用いて、 QuickChange™ Site -Directed Mu tagenesis Kit (STRATAGENE製)を用いて、上記と同様の操作により、配列番 号 2記載のアミノ酸配列の 179番目のグリシンがァラニンに置換された変異型クレア チニンアミドヒドロラーゼをコードする組換えプラスミド(PCNHM2)を取得した。
PCNH5— 13と、配列表の配列番号 5記載の合成オリゴヌクレオチドおよびこれと相 補的な合成オリゴヌクレオチドを用いて、上記と同様の操作により、配列番号 2記載の アミノ酸配列の 180番目のグリシンがァラニンに置換された変異型クレアチニンアミド ヒドロラーゼをコードする組換えプラスミド(PCNHM3)を取得した。
PCNH5— 13と、配列表の配列番号 6記載の合成オリゴヌクレオチドおよびこれと相 補的な合成オリゴヌクレオチドを用いて、上記と同様の操作により、配列番号 2記載の アミノ酸配列の 180番目のグリシンがセリンに置換された変異型クレアチュンアミドヒド 口ラーゼをコードする組換えプラスミド(pCNHM4)を取得した。
PCNH5— 13と、配列表の配列番号 7記載の合成オリゴヌクレオチドおよびこれと相 補的な合成オリゴヌクレオチドを用いて、上記と同様の操作により、配列番号 2記載の アミノ酸配列の 181番目のバリンカ Sイソロイシンに置換された変異型クレアチュンアミ ドヒドロラーゼをコードする組換えプラスミド(pCNHM5)を取得した。 pCNH5— 13と、配列表の配列番号 8記載の合成オリゴヌクレオチドおよびこれと相 補的な合成オリゴヌクレオチドを用いて、上記と同様の操作により、配列番号 2記載の アミノ酸配列の 44番目のァスパラギン酸がアルギニンに置換された変異型クレアチ ニンアミドヒドロラーゼをコードする組換えプラスミド(PCNHM6)を取得した。
PCNH5— 13と、配列表の配列番号 9記載の合成オリゴヌクレオチドおよびこれと相 補的な合成オリゴヌクレオチドを用いて、上記と同様の操作により、配列番号 2記載の アミノ酸配列の 44番目のァスパラギン酸がグリシンに置換された変異型クレアチュン アミドヒドロラーゼをコードする組換えプラスミド(PCNHM7)を取得した。
PCNH5— 13と、配列表の配列番号 10記載の合成オリゴヌクレオチドおよびこれと 相補的な合成オリゴヌクレオチドを用いて、上記と同様の操作により、配列番号 2記 載のアミノ酸配列の 44番目のァスパラギン酸がセリンに置換された変異型クレアチニ ンアミドヒドロラーゼをコードする組換えプラスミド(pCNHM8)を取得した。
PCNH5— 13と、配列表の配列番号 12記載の合成オリゴヌクレオチドおよびこれと 相補的な合成オリゴヌクレオチドを用いて、上記と同様の操作により、配列番号 2記 載のアミノ酸配列の 122番目のグルタミン酸がァスパラギン酸に置換された変異型ク レアチニンアミドヒドロラーゼをコードする組換えプラスミド(PCNHM9)を取得した。 実施例 2改変型クレアチュンアミドヒドロラーゼの作製
pCNHMl、 pCNHM2、 pCNHM3、 pCNHM4、 pCNHM5、 pCNHM6、 pCNH M7、 pCNHM8、 pCNHM9、の各組み換えプラスミドでェシエリヒアコリー DH5 a のコンビテントセルを形質転換し、該形質転換体をそれぞれ取得した。
5mlの CNH生産培地(1%ポリペプトン、 2%酵母エキス、 1 %塩化ナトリウム、 5m M塩化マンガン)を試験管に分注し、 121°C、 20分間オートクレープを行い、放冷後 別途無菌濾過したアンピシリンを 100 μ 1/mlになるように添加した。この培地に 100 μ 1/mlのアンピシリンを含む LB寒天培地で予め 37°C、 16時間培養したェシエリヒ アコリー DH5ひ(pCNHMl)のシングルコロニーを接種し、 37°Cで 22時間通気攪 拌培養した。
上記菌体を遠心分離により集菌し、 50mMリン酸カリウム緩衝液 (PH7. 5)に懸濁し た後、超音波処理により破砕し、更に遠心分離を行い、上清液を粗酵素液として得た 。また、この変異体を CNHM1と命名した。
pCNHM2、 pCNHM3、 pCNHM4、 pCNHM5、 pCNHM6、 pCNHM7、 pCN HM8、 pCNHM9、 pCNHMlOの各組み換えプラスミドによるェシエリヒアコリー DH 5ひ形質転換体についても上記方法と同様にして精製酵素標品を取得した。得られ た酵素標品をそれぞれ CNHM2、 CNHM3、 CNHM4、 CNHM5、 CNHM6、 CN HM7、 CNHM8、 CNHM9と命名した。
[0093] 比較例 1野生型クレアチュンアミドヒドロラーゼの作製
比較例として、 PCNH5— 13によるェシエリヒアコリー DH5ひ形質転換体について、 上記方法と同様にして、改変前の精製酵素標品を取得した。
[0094] 実施例 3改変型クレアチュンアミドヒドロラーゼの評価 1
実施例 2で取得した変異型クレアチュンアミドヒドロラーゼ(CNHM1、 CNHM2、 C NHM3、 CNHM4、 CNHM5、 CNHM6、 CNHM7、 CNHM8、 CNHM9)およ び比較例 1で取得した各種クレアチュンアミドヒドロラーゼをそれぞれ、 50mMリン酸 カリウム緩衝液 (PH7. 5)中に 1. 67U/mlになるように加え、前述した活性測定法 によりクレアチニンアミドヒドロラーゼを測定した。その結果を表 1に示す。表 1から判る ように本発明のクレアチニンアミドヒドロラーゼ改変体は改変前と比べて Km値が小さ くなつていることが確認された。
[0095] 実施例 1ないし 3中、クレアチュンアミドヒドロラーゼの活性測定は以下のようにして 行った。なお、本発明の酵素活性の定義は、下記条件下に 1分間に 1 μモルのタレ ァチンを生成する酵素量を 1単位 (U)とする。
反応混液組成
R1
0. 58Μ HEPES ρΗ8
0. 005% 4アミノアンチピリン
0. 015%フエノーノレ
60UZmlクレアチンアミジノヒドロラーゼ
12U/mlザルコシンォキシダーゼ
6U/mlペルォキシダーゼ R2
0. 25Mクレアチニン
0. 27N HC1
Rl: 200 μ 1に、 R2: 60 μ 1及び酵素 f夜 10 μ 1をカロえ、 37°Cで 10分間反応させ、 505 nmの吸光度変化を HITACHI7060型自動分析装置を用いて測定した。
[0096] 下記表 1に本発明の新規なクレアチンアミジノヒドロラーゼと野生型クレアチンアミジ ノヒドロラーゼのクレアチンに対する Km値をまとめた。表 1からも明らかなように本発 明の新規なクレアチンアミジノヒドロラーゼが野生型クレアチンアミジノヒドロラーゼに 比べて、 Km値が低下したことが判る。
[0097] [表 1]
Figure imgf000028_0001
実施例 4 クレアチュンアミドヒドロラーゼ改変体を使用したクレアチュン測定試薬の 反応性評価
実施例 2で取得した変異型クレアチニンアミドヒドロラーゼ(CNHM1) 100U/mL を上記第二試薬に添加して、液状クレアチニン測定試薬 (本発明試薬)を調整した。 対象としてシユードモナス'プチダ由来野生型クレアチニンアミドヒドロラーゼ(商品コ ード: CNH— 311、東洋紡社製) 100U/mLを上記第二試薬に添加して、液状タレ ァチニン測定試薬 (比較例試薬)を調整した。
本発明試薬と比較例試薬の反応性を 5mg/dLのクレアチュンを測定して比較した 。図 1に示すように本発明試薬はエンドポイントに達する時間が短くなつていた。 実施例 5 野生型と同一反応性を示すクレアチュンアミドヒドロラーゼ改変体の添カロ 量
実施例 2で取得した変異型クレアチュンアミドヒドロラーゼ(CNHM1) 100U/mL を上記第二試薬に添加して、液状クレアチニン測定試薬 (本発明試薬)を調整した。 対象としてシユードモナス 'プチダ由来野生型クレアチュンアミドヒドロラーゼ(商品コ ード: CNH— 311、東洋紡社製) 400U/mLを上記第二試薬に添加して、液状タレ ァチニン測定試薬 (比較例試薬)を調整した。
本発明試薬と比較例試薬の反応性を 5mg/dLのクレアチュンを測定して比較した 。図 2に示すように本発明試薬のクレアチニンアミドヒドロラーゼ添加 Unitは比較例試 薬のクレアチニンアミドヒドロラーゼの 1/4で同一の反応性であった。 実施例 4および 5中、 5mg/dlクレアチニンを次の組成を有する第一試薬及び第二 試薬を用いて下記方法により測定した。 第一試薬
50mM MOPS緩衝液(pH7. 5)
10mM NaCl
0. 1 % 卜];卜ン X— 100
0. 14g/l TOOS
60U/ml クレアチンアミジノヒドロラーゼ (東洋紡社製 CRH— 221)
16U/ml ザルコシンォキシダーゼ (東洋紡社製 SAO— 351) 第二試薬
50mM MOPS緩衝液(ρΗ7· 5)
0. 1 % 卜];卜ン X— 100
lOU/ml ペルォキシダーゼ (東洋紡社製 PEO— 301)
0. 6g/l 4—ァミノアンチピリン 略号は以下を意味する。
TOOS : N—ェチル一N— (2—ヒドロキシ一 3—スルホプロピル)一 3—メトキシァニ リン 測定方法
日立 7060形自動分析機を用いた。試料 6 / Lに第一試薬 270 x L添加し、 37°Cに て 5分間インキュベーションし、第一反応とした。その後第二試薬 90 / L添加し 5分間 インキュベーションし、第二反応とした。第一反応および第二反応の吸光度を液量補 正した各吸光度の差をとる 2エンドポイント法で 546nmにおける吸光度を測定した。 クレアチュン濃度未知試料のクレアチニン濃度の算出は、精製水および 5mg/dLク レアチニン水溶液の吸光度より算出して求めた。
産業上の利用可能性
本発明によれば、基質との親和性が向上したクレアチュンアミドヒドロラーゼを得る こと力 Sできる。このクレアチュンアミドヒドロラーゼ改変体は、クレアチュン測定試薬に 利用できる。また、本発明により、クレアチニンの定量において、使用酵素量を従来 の 1Z4に減らすことができ、また従来と同等の使用量であれば反応がエンドポイント に達する時間が短レ、ため、測定時間を短縮でき処理検体数を増加させることができ る。

Claims

請求の範囲
[1] 配列表の配列番号 2に記載されるアミノ酸配列の 44位、 122位、 179位、 180位、 18 1位またはそれらと同等の位置からなる群より選ばれる少なくとも 1つのアミノ酸が他の アミノ酸に置換されているクレアチュンアミドヒドロラーゼ改変体。
[2] 配列表の配列番号 2に記載されるアミノ酸配列の 179位またはそれと同等の位置の グリシンがセリンに置換されている請求項 1に記載のクレアチュンアミドヒドロラーゼ改 変体。
[3] 配列表の配列番号 2に記載されるアミノ酸配列の 179位またはそれと同等の位置の グリシンがァラニンに置換されている請求項 1に記載のクレアチニンアミドヒドロラーゼ 改変体。
[4] 配列表の配列番号 2に記載されるアミノ酸配列の 180位またはそれと同等の位置の グリシンがァラニンに置換されている請求項 1に記載のクレアチニンアミドヒドロラーゼ 改変体。
[5] 請求項 1〜4のいずれ力 1項に記載されるクレアチニンアミドヒドロラーゼ改変体をコ ードする遺伝子。
[6] 請求項 5に記載の遺伝子を含むベクター。
[7] 請求項 6に記載のベクターで形質転換された形質転換体。
[8] 請求項 7に記載の形質転換体を培養し、該培養物からクレアチニンアミドヒドロラーゼ を採取するクレアチュンアミドヒドロラーゼ改変体の製造法。
[9] 請求項 1〜4のいずれ力 4項に記載されるクレアチュンアミドヒドロラーゼ改変体を含 むクレアチュン測定用試薬。
[10] 請求項 1〜4のいずれ力 4項に記載されるクレアチュンアミドヒドロラーゼ改変体を用 レ、るクレアチュン測定方法。
PCT/JP2007/058594 2006-04-25 2007-04-20 基質との親和性が向上したクレアチニンアミドヒドロラーゼ改変体、および、クレアチニン測定用試薬組成物 WO2007125824A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP07742029A EP2011868B1 (en) 2006-04-25 2007-04-20 Modified creatinine amide hydrolase having improved affinity for substrate, and reagent composition for determination of creatinine
CN2007800145598A CN101426911B (zh) 2006-04-25 2007-04-20 具有对底物提高的亲和性的修饰的肌酸酐酰胺水解酶,和用于测定肌酸酐的试剂组合物
US12/297,572 US7816116B2 (en) 2006-04-25 2007-04-20 Modified creatinine amide hydrolase having improved affinity for substrate, and reagent composition for determination of creatinine
AT07742029T ATE541035T1 (de) 2006-04-25 2007-04-20 Modifizierte creatininamid-hydrolase mit verbesserter substrataffinität und reagenszusammensetzung zur bestimmung von creatinin

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2006-120313 2006-04-25
JP2006120313 2006-04-25
JP2006247681 2006-09-13
JP2006-247681 2006-09-13
JP2006-303451 2006-11-09
JP2006303451 2006-11-09

Publications (1)

Publication Number Publication Date
WO2007125824A1 true WO2007125824A1 (ja) 2007-11-08

Family

ID=38655350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/058594 WO2007125824A1 (ja) 2006-04-25 2007-04-20 基質との親和性が向上したクレアチニンアミドヒドロラーゼ改変体、および、クレアチニン測定用試薬組成物

Country Status (6)

Country Link
US (1) US7816116B2 (ja)
EP (1) EP2011868B1 (ja)
JP (1) JP4214264B2 (ja)
CN (1) CN101426911B (ja)
AT (1) ATE541035T1 (ja)
WO (1) WO2007125824A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104133057B (zh) * 2009-07-23 2016-09-07 深圳迈瑞生物医疗电子股份有限公司 一种消除临床检验中抗坏血酸干扰的方法、试剂及试剂盒

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009041409A1 (ja) * 2007-09-27 2009-04-02 Toyo Boseki Kabushiki Kaisha クレアチニンアミドヒドロラーゼ改変体
WO2010074591A1 (ru) * 2008-12-24 2010-07-01 Закрытое Акционерное Общество "Beptekc" Амиды креатина, способ их получения, средство, обладающее нейропротекторным действием
CN101587076B (zh) * 2009-06-05 2011-12-14 深圳大学 定量检测肌氨酸含量的方法及反应试剂盒
CN103013941A (zh) * 2012-12-28 2013-04-03 卫生部北京医院 一种制备肌氨酸氧化酶的方法及应用
JP6514849B2 (ja) * 2014-03-03 2019-05-15 学校法人東京薬科大学 低温における酵素活性を向上させた好熱菌由来酵素の改変体の取得方法、及び低温における酵素活性が向上しているサーマス・サーモフィラス由来3−イソプロピルリンゴ酸脱水素酵素の改変体
JP6049795B2 (ja) * 2014-04-10 2016-12-21 ヤマサ醤油株式会社 L−グルタミン測定キット
WO2019122138A1 (en) * 2017-12-21 2019-06-27 Meon Medical Solutions Gmbh & Co. Kg Creatinine deiminase and uses thereof
JP2019195300A (ja) * 2018-05-10 2019-11-14 東洋紡株式会社 測定感度を改善した生体成分測定キット及び生体成分測定方法
WO2019216407A1 (ja) * 2018-05-10 2019-11-14 東洋紡株式会社 生体成分測定試薬キットの感度低下抑制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51115989A (en) 1975-04-05 1976-10-13 Noda Sangyo Kagaku Kenkyusho Process for preparing creatinine amide hydrolase
JPH0319690A (ja) * 1989-06-16 1991-01-28 Toyobo Co Ltd クレアチニン・アミドヒドロラーゼをコードする遺伝子を含有するdna断片、該dna断片を有する組換えベクター及び該組換えベクターを有する形質転換体、並びにクレアチニン・アミドヒドロラーゼの製造方法
JP2003180352A (ja) * 2001-09-20 2003-07-02 F Hoffmann La Roche Ag Erwiniaタイプクレアチナーゼバリアント

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51115989A (en) 1975-04-05 1976-10-13 Noda Sangyo Kagaku Kenkyusho Process for preparing creatinine amide hydrolase
JPH0319690A (ja) * 1989-06-16 1991-01-28 Toyobo Co Ltd クレアチニン・アミドヒドロラーゼをコードする遺伝子を含有するdna断片、該dna断片を有する組換えベクター及び該組換えベクターを有する形質転換体、並びにクレアチニン・アミドヒドロラーゼの製造方法
JP2527035B2 (ja) 1989-06-16 1996-08-21 東洋紡績株式会社 クレアチニン・アミドヒドロラ―ゼをコ―ドする遺伝子を含有するdna断片、該dna断片を有する組換えベクタ―及び該組換えベクタ―を有する形質転換体、並びにクレアチニン・アミドヒドロラ―ゼの製造方法
JP2003180352A (ja) * 2001-09-20 2003-07-02 F Hoffmann La Roche Ag Erwiniaタイプクレアチナーゼバリアント

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
BIOSCI. BIOTECH. BIOCHEM., vol. 59, no. 7, 1995, pages 1331 - 1332
CHEMICAL AND PHARMACEUTICAL BULLETIN, vol. 34, no. 1, 1986, pages 269 - 274
JOURNAL OF BIOCHEMISTRY, vol. 86, 1979, pages 1109 - 1117
JOURNAL OF MOLECULAR BIOLOGY, vol. 332, 2004, pages 287 - 301
JOURNAL OF MOLECULAR BIOLOGY, vol. 337, 2004, pages 399 - 416
MEDICAL TECHNOLOGY, vol. 10, no. 7, 1982, pages 575 - 579
YAMAMOTO K. ET AL.: "Cloning of the creatinine amidohydrolase gene from Pseudomonas sp. PS-7", BIOSCI. BIOTECHNOL. BIOCHEM., vol. 59, no. 7, 1995, pages 1331 - 1332, XP003018889 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104133057B (zh) * 2009-07-23 2016-09-07 深圳迈瑞生物医疗电子股份有限公司 一种消除临床检验中抗坏血酸干扰的方法、试剂及试剂盒

Also Published As

Publication number Publication date
JP4214264B2 (ja) 2009-01-28
CN101426911B (zh) 2013-05-01
EP2011868B1 (en) 2012-01-11
CN101426911A (zh) 2009-05-06
ATE541035T1 (de) 2012-01-15
US20090170145A1 (en) 2009-07-02
EP2011868A4 (en) 2009-04-29
JP2008136477A (ja) 2008-06-19
EP2011868A1 (en) 2009-01-07
US7816116B2 (en) 2010-10-19

Similar Documents

Publication Publication Date Title
JP4214264B2 (ja) 基質との親和性が向上したクレアチニンアミドヒドロラーゼ改変体、および、クレアチニン測定用試薬組成物
JP6726243B2 (ja) フルクトシルヘキサペプチドに作用する改変型アマドリアーゼ
JP2020141690A (ja) 糖化ペプチドに作用するアマドリアーゼを用いたHbA1c測定法
JP6843740B2 (ja) 比活性が向上したアマドリアーゼ
JP5289801B2 (ja) ウリカーゼ活性を有する蛋白質
JP4890133B2 (ja) 安定な尿酸測定試薬
JP2009000084A (ja) フルクトシルリジンの測定方法及び試薬
JP4890132B2 (ja) ウリカーゼの比活性を向上させる方法、および比活性の向上した改変型ウリカーゼ
EP2202304B1 (en) Modified creatinine amidohydrolase
JP6764219B2 (ja) グッド緩衝液に対して安定なアマドリアーゼ
JP5130479B2 (ja) クレアチニンアミドヒドロラーゼの比活性を向上させる方法
JP5130480B2 (ja) キレート剤耐性が向上したクレアチニンアミドヒドロラーゼ改変体
JP2004159565A (ja) 基質特異性に優れたザルコシンオキシダーゼ、その製造法およびそれを用いた試薬組成物
JP4419044B2 (ja) 改変型ザルコシンオキシダーゼ
JP2009055919A (ja) 改変型ザルコシンオキシダーゼ
JP2009072196A (ja) 改変型ザルコシンオキシダーゼ
JP2009077682A (ja) キレート剤耐性が向上したクレアチニンアミドヒドロラーゼ改変体
JP2009077684A (ja) キレート剤耐性が向上したクレアチニンアミドヒドロラーゼ改変体
JP2009095348A (ja) 改変型ザルコシンオキシダーゼ
JP2009034112A (ja) 改変型ザルコシンオキシダーゼ
JP2009055916A (ja) 改変型ザルコシンオキシダーゼ
JP2009055918A (ja) 改変型ザルコシンオキシダーゼ
JP2009055917A (ja) 改変型ザルコシンオキシダーゼ
JP2009082132A (ja) 安定化されたザルコシンオキシダーゼ
JP2009022304A (ja) 安定化されたザルコシンオキシダーゼ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07742029

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12297572

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007742029

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200780014559.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE