WO2007122931A1 - Ni基超合金とその製造方法 - Google Patents

Ni基超合金とその製造方法 Download PDF

Info

Publication number
WO2007122931A1
WO2007122931A1 PCT/JP2007/055451 JP2007055451W WO2007122931A1 WO 2007122931 A1 WO2007122931 A1 WO 2007122931A1 JP 2007055451 W JP2007055451 W JP 2007055451W WO 2007122931 A1 WO2007122931 A1 WO 2007122931A1
Authority
WO
WIPO (PCT)
Prior art keywords
owt
base superalloy
less
chemical composition
balance
Prior art date
Application number
PCT/JP2007/055451
Other languages
English (en)
French (fr)
Inventor
Tadaharu Yokokawa
Yutaka Koizumi
Hiroshi Harada
Toshiharu Kobayashi
Original Assignee
National Institute For Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute For Materials Science filed Critical National Institute For Materials Science
Priority to JP2008512028A priority Critical patent/JP5299899B2/ja
Priority to EP07738896.5A priority patent/EP2006402B1/en
Priority to US12/225,710 priority patent/US8696979B2/en
Publication of WO2007122931A1 publication Critical patent/WO2007122931A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/02Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working in inert or controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon

Definitions

  • the present invention relates to a Ni-base superalloy and a method for producing the same. More specifically, the present invention is a new Ni-based ordinary forged alloy that has excellent creep characteristics at high temperatures and is suitable as a member used under high temperatures and high stresses such as turbine blades and turbine vanes of jet engines and gas turbines. , Ni-based unidirectionally solidified superalloy or Ni-based single crystal superalloy and its manufacturing method.
  • Ni-base superalloys have been used as moving and stationary blade materials that are high-temperature members for aircraft engines, gas turbine engines, and the like.
  • the Ni-base superalloy has a ⁇ (gamma) matrix phase that is an austenite phase and a ⁇ ′ (gamma prime) phase that is an ordered phase dispersed and precipitated in the matrix phase, and the y ′ phase is mainly Ni A1
  • the high temperature strength of the superalloy is improved.
  • Ni-base superalloy excellent in high-temperature strength is desired. Improvements in alloy composition and manufacturing processes have led to Ni-based ordinary forged alloys, Ni-based unidirectionally solidified superalloys, and Ni-based single crystal superalloys. In recent years, Ni-based single crystal superalloys and Ni-based unidirectionally solidified superalloys, which are said to be the third generation whose composition ratio of Re (rhenium) exceeds 5 wt%, have been developed (Patent Document 1).
  • TCP phase Topicologically Close Packed phase
  • Ru platinum group elements
  • Patent Document 1 US Patent 4643782
  • Patent Document 2 US Patent 6929868
  • the present invention has been made to solve the above-described problem.
  • a Ni-base superalloy having excellent high-temperature strength and low specific gravity while preventing the formation of a TCP phase and a method for producing the same The challenge is to provide the law.
  • the present invention is to solve the above problems
  • one of the characteristics of the first to fourth forces is as follows: Al: 5.7 wt%, Ta: l.6 wt%, Nb: l.5 wt%, Ti: 0.5 wt%, Mo: 2.8 wt %, W: 5.6wt%, Re: 6.5wt%, Hf: 0. lwt%, Cr: 3.2wt%, Co: 5.8wt%, Ru: 3.6wt%, the balance from Ni and inevitable impurities It has the chemical component composition which becomes.
  • Al 5.6wt%
  • Nb 2.3wt%
  • Ti 0.9wt%
  • Mo 6.7wt%
  • Re 3. Owt%
  • Cr 7.6 It is characterized by containing wt%, with the remainder having a chemical composition composed of Ni and inevitable impurities.
  • Al 5.6 wt%
  • Ta 3.4 wt%
  • Ti 0.5 wt%
  • Mo 3.8 wt%
  • W 8.5 wt%
  • Re 2.4 It is characterized by containing wt%, Hf: 0.09wt%, Cr: 4.7wt%, Co: 7.5wt%, and the balance having a chemical composition that has inevitable impurity power with Ni.
  • Al 6. Owt%, Nb: 3.2wt%, Mo: 2. Owt%, W: 6. Owt%, Re: 5. Owt% Hf: 0. lwt%, Cr: 3. Owt%, Co: 12.0 wt%, with the balance being a chemical composition composed of Ni and inevitable impurities It is a sign.
  • C 0.05% or less
  • Zr 0.1% by weight or less
  • V 0.5% by weight or less
  • B 0. It is characterized by containing 02 wt% or less, Si: 0.1 lwt% or less, Y: 0.2 wt% or less, La: 0.2 wt% or less, Ce: 0.2 wt% or less alone or in combination.
  • the thirteenth is characterized in that a Ni-base superalloy having any one of the first to twelfth characteristics is formed by a normal forging method, a unidirectional solidification method or a single crystal solidification method.
  • the specific gravity of the Ni-base superalloy tends to increase as Ru is contained as a platinum group element. Therefore, in the present invention, the composition ratio of Ta + Nb + Ti is set in the range of 0.1 to 4. Owt%, and Ta is less than 4 wt%, thereby suppressing increase in specific gravity without sacrificing high temperature strength. In addition, a Ni-based single crystal superalloy with high specific strength (strength per unit specific gravity) will be realized. When used in turbine blades such as jet engines and gas turbine bins, turbine vanes, turbine disks, etc., it can be used in higher-temperature combustion gases, etc., and is effective in improving the efficiency and reducing fuel in jet engines and gas turbines. It becomes.
  • Ni-based ordinary forged alloy and a Ni-based unidirectionally solidified superalloy are also realized. Like the Ni-based single crystal superalloy, it has excellent high temperature strength, improved forged characteristics, and product yield. Becomes better. Ni-based ordinary forged alloys and Ni-based unidirectionally solidified superalloys are useful for applications similar to Ni-based single crystal superalloys.
  • FIG. 1 is a diagram comparing the tape life of the Ni-based single crystal superalloys of Examples 1 to 3 and the conventional Ni-based single crystal alloys for each test condition.
  • FIG. 2 is a diagram comparing the tape life and specific gravity of the Ni-based single crystal superalloys of Examples 1 to 7 and the conventional Ni-based single crystal alloys. BEST MODE FOR CARRYING OUT THE INVENTION
  • Ni-based single crystal superalloy, Ni-based unidirectionally solidified superalloy, and Ni-based ordinary forged alloy provided by the present invention like the conventional Ni-based superalloy, are ⁇ (gamma) phase ( And a ⁇ '(gamma prime) phase (precipitated phase) which is a regular phase dispersed and precipitated in the matrix.
  • ⁇ 'phase is mainly composed of intermetallic compound force expressed by Ni A1.
  • Cr chromium
  • the Cr content is 2.0 to: LO. Owt%. If Cr is less than 2. Owt%, the desired high-temperature corrosiveness cannot be ensured. If it exceeds 10. Owt%, the precipitation of the ⁇ 'phase is suppressed and the ⁇ (sigma) and (mu) phases are suppressed. A harmful phase such as is generated and the high-temperature strength decreases.
  • Mo mobdenum
  • W tungsten
  • Ta tantalum
  • the Mo content is 1.0 to 8.0%. If the Mo content is less than 1. Owt%, the desired high-temperature strength cannot be ensured, and if it exceeds 8.0 ⁇ %, the high-temperature strength decreases and the high-temperature corrosion resistance also decreases.
  • W tungsten improves high-temperature strength by the action of solid solution strengthening and precipitation hardening in the presence of Mo and Ta.
  • the W content is 0.0 to: LO. 0%. If the W content exceeds 10. Owt%, the formation of harmful phases is promoted and the high-temperature corrosion resistance decreases.
  • Ta tantalum
  • Nb niobium
  • Ti titanium
  • the content of Ta + Nb + Ti is 0.1 to 4. Owt% by adjusting each content, and Ta is less than 4. Owt%. If the content of Ta + Nb + Ti is less than 0.1 wt%, it will be difficult to improve the high temperature strength. If it exceeds 4.0%, the specific gravity of the alloy will be secured while ensuring the desired high temperature strength. 9. It becomes difficult to make Og Zcm3 or less.
  • Al aluminum
  • Ni nickel
  • the intermetallic compound represented by Ni A1 constituting the ⁇ 'phase is converted into a volume fraction of 60 to 70. % Shape
  • the composition ratio of A1 is 4.5-7. If the A1 content is less than 4.5 wt%, the amount of precipitation of the ⁇ 'phase becomes insufficient and the desired high-temperature strength cannot be ensured. If it exceeds 7.0%, the coarseness called the eutectic ⁇ ' phase Many ⁇ 'phases are formed, so that solution solution treatment becomes impossible and high-temperature strength cannot be secured.
  • Hf hafnium
  • Ni-based single crystal superalloys it may or may not be added in small amounts, but especially in the case of Ni-based ordinary forged alloys and Ni-based unidirectionally solidified superalloys, if Hf is not included, grain boundary strengthening As a result, the desired high-temperature strength cannot be ensured. If the Hf content exceeds 1. Owt%, local melting may occur and the high-temperature strength may be reduced.
  • Co increases the solid solution limit of Al, Ta, and other parent phases at high temperatures, disperses and precipitates fine ⁇ 'phases by heat treatment, and improves high-temperature strength.
  • the Co content is 0.0 to 15. Owt%. If the solid solubility limit is sufficient to prevent the harmful phase from precipitating, high-temperature strength can be ensured even without Co, 15. The balance with other elements such as Al, Ta, Mo, W, Hf, and Cr is lost, and a harmful phase precipitates, reducing the high-temperature strength.
  • Re rhenium
  • Re is a large amount of solid solution in the ⁇ phase, which is the parent phase, and improves high temperature strength by solid solution strengthening. It also has the effect of improving corrosion resistance.
  • the TCP phase which is a harmful phase, precipitates at high temperatures, which may reduce the high-temperature strength.
  • the content of Re is 2.0 to 8. Owt%. 2. If it is less than Owt%, the solid solution strengthening of the ⁇ phase becomes insufficient and the desired high-temperature strength cannot be secured. If it exceeds 8.0 ⁇ %, the TCP phase is precipitated at a high temperature, resulting in high high-temperature strength. Cannot be secured.
  • Ru ruthenium suppresses the precipitation of the TCP phase, thereby improving the high temperature strength.
  • the content of Ru is 0.0 to 5. Owt%.
  • the Ru content has an optimum composition range for the contents of the main elements forming the TCP phase, such as Re, W, Mo, Cr, etc. If there is no precipitation, it is not necessary to add Ru. Since Ru is an expensive metal, if it exceeds 5. Owt%, the cost increases.
  • the composition range is preferably specified.
  • Ni-base superalloy having the third feature Al: 4.5-7. Owt%, Ta + Nb + Ti: 0.1-
  • Ni-base superalloy having the fourth feature Al: 4.7 to 6.5 wt%, Ta + Nb + Ti: 0.1 to
  • A1 5.6wt%, Ta: 3.4wt%, Ti: 0.5wt %, Mo: 3.8wt%, W: 8.5wt%, Re: 2.4wt%, Hf: 0.09wt%, Cr: 4.7wt%,
  • Ni-base superalloy having the eleventh feature Al: 6. Owt%, Nb: 3.2wt%, Mo: 2.0wt%, W: 6. Owt%, Re: 5. Owt%, Hf: 0. lwt%, Cr: 3. Owt%, Co: 12. Owt
  • the balance is made of Ni and inevitable impurities.
  • the Ni-base superalloy of the present invention having any one of the above first to eleventh features can further contain the following elements alone or in combination within a specific range.
  • C carbon contributes to grain boundary strengthening, and the C content is 0.05 wt% or less. If C is not contained, the effect of strengthening the grain boundary cannot be ensured, so that if the C content exceeds 0.05 wt%, ductility is impaired, which is not preferable.
  • Zr zirconium reinforces grain boundaries in the same way as B (boron) and C. On the other hand, excessive addition reduces the creep strength, so the content should be 0.1 wt% or less.
  • V vanadium
  • B boron
  • B content should be 0.02wt% or less. Exceeding 0.02 wt% is not preferable because it impairs ductility.
  • Si silicon forms a Si02 film on the alloy surface and improves the acid resistance as a protective film.
  • Si02 oxide coating is less susceptible to cracking than other protective oxide coatings, and has the effect of improving creep and fatigue properties.
  • adding a large amount of Si also reduces the solid solubility limit of other elements, so the upper limit of the content is set to 0.
  • Y yttrium
  • La lanthanum
  • Ce cerium
  • the Y content is 0.2wt% or less.
  • the La content is 0.2 wt% or less
  • the Ce content is 0.2 wt% or less.
  • Ni-base superalloy of the present invention having the chemical component composition as described above is manufactured by melting and forging as a material having a predetermined chemical component composition in consideration of the manufacturing conditions known in the art. can do.
  • a Ni-base superalloy can be manufactured as a unidirectionally solidified alloy or a single crystal alloy by, for example, a unidirectional solidification method or a single crystal solidification method.
  • the unidirectional solidification method an ingot prepared to have a desired chemical composition is produced, but the mold temperature is heated to a solidification temperature of about 1500 ° C or higher, and after being poured into the mold, For example, it is a method in which a large number of crystals are grown in one direction by gradually moving away from the heating furnace force to give a temperature gradient.
  • the single crystal solidification method is almost the same as the unidirectional solidification method.
  • a zigzag or spiral type selector part is provided on the near side of solidification, and a number of crystals that solidify in one direction are combined into one selector part. This is a method for producing a desired product by crystallizing.
  • the Ni-base superalloy of the present invention exhibits high creep strength by heat treatment after fabrication.
  • Standard heat treatment is as follows. Pre-heat treatment is performed at 1200-1300 ° C for 20 minutes to 2 hours, followed by solution treatment at 1280-1350 ° C for 3-10 hours.
  • the primary aging treatment for the precipitation of the ⁇ ′ phase is performed at a temperature range of 1050 to 1150 ° C. for 2 to 8 hours and air-cooled.
  • the primary aging treatment can be combined with a coating treatment for heat resistance and oxidation resistance.
  • the secondary aging treatment for the purpose of stabilizing the ⁇ 'phase is subsequently performed at 800 to 900 ° C for 10 to 24 hours and air cooled. Air cooling in the primary aging treatment and the secondary aging treatment can be performed by replacing the atmosphere with an inert gas.
  • Ni-based superalloy of the present invention manufactured in this way makes it possible to realize high-temperature parts such as turbine blades and turbine vanes of jet engines and gas turbines.
  • the single crystal structure was preheated in vacuum at 1300 ° C for 1 hour, then heated to 1330 ° C, held at this temperature for 10 hours, and then subjected to solution treatment by air cooling, A primary aging treatment was performed in which vacuum was maintained for 4 hours at a temperature of 1100 ° C in vacuum and a secondary aging treatment was performed in vacuum for 20 hours at a temperature of 870 ° C for air cooling. Then, the single crystal alloy structure was processed into a test piece with a parallel part diameter of 4 mm and a length of 20 mm, 800. C-1100. Creep test was conducted under the conditions of C and 137 MPa to 735 MPa.
  • the primary aging treatment is carried out by holding for 4 hours at a temperature of 1100 ° C in a vacuum and then air-cooled in vacuum, and the secondary aging treatment is carried out at a temperature of 870 ° C for 20 hours in a vacuum and air-cooled. And went. Then, the single crystal alloy structure was processed into a test piece with a parallel part diameter of 4 mm and a length of 20 mm, 800. C-1100. Creep test was conducted under the conditions of C and 137 MPa to 735 MPa.
  • Co 5.8 wt%, Cr: 3.2 wt%, Mo: 2.8 wt%, W: 5.6 wt%, Al: 5.7 wt%, Ti: 0.5 wt%, Nb: l. 5 wt %, Ta: l. 6 wt%, Hf: 0. lwt%, Re: 6.5 wt%, Ru: 3.6 wt%, the balance is a Ni-base superalloy having a chemical composition composed of Ni and inevitable impurities.
  • a single crystal forged product was obtained by melting and forging at a solidification rate of 200 mmZh in vacuum.
  • the obtained single crystal structure is preheated in vacuum at a temperature of 1300 ° C for 1 hour, then raised to a temperature of 1330 ° C, held at this temperature for 10 hours and air-cooled.
  • After the drought treatment hold in air at 1100 ° C for 4 hours and air-cooled by primary aging, and hold in vacuum at 870 ° C for 20 hours and air-cooled in secondary Aging treatment was performed.
  • a single crystal alloy forged product is then processed into a test piece with a parallel part diameter of 4 mm and a length of 20 mm, and a creep test is performed under conditions of 800 ° C to 1100 ° C and 137 MPa to 735 MPa. went.
  • the obtained single crystal structure is preheated in vacuum at a temperature of 1260 ° C for 1 hour, then raised to a temperature of 1280 ° C, held at this temperature for 4 hours and then air-cooled.
  • the primary aging treatment is carried out by holding in air for 98 hours at a temperature of 982 ° C for 5 hours, and the secondary aging treatment is carried out for 20 hours in vacuum by holding at a temperature of 870 ° C for 20 hours. And processed.
  • the single crystal alloy forged product was processed into a test piece having a parallel part diameter of 4 mm and a length of 20 mm, and a creep test was conducted under conditions of 900 ° C. to 1100 ° C. and 137 MPa to 392 MPa.
  • Ni-base superalloy having the chemical composition composed of Ni and unavoidable impurities in the balance is melted at a solidification rate of 200 mmZh in vacuum. And a single crystal forged product was obtained. Next, the obtained single crystal structure is preheated in air at 1300 ° C for 1 hour, then raised to 1320 ° C, held at this temperature for 5 hours, and then air-cooled.
  • the single crystal alloy structure was processed into a test piece having a parallel part diameter of 4 mm and a length of 20 mm, and a creep test was performed under conditions of 900 ° C. to 1100 ° C. and 137 MPa to 392 MPa.
  • the obtained single crystal structure is After preheating in air at 1320 ° C for 1 hour, the temperature rises to 1340 ° C and is kept at this temperature for 5 hours, followed by air solution cooling, and then in vacuum at 1100 ° C.
  • the primary aging treatment was carried out at a temperature of 4 hours for force-air cooling, and the secondary aging treatment was carried out in vacuum at a temperature of 870 ° C for 20 hours and the force was air-cooled.
  • the single crystal alloy structure was processed into a test piece having a parallel part diameter of 4 mm and a length of 20 mm, and a creep test was performed under the conditions of 900 ° C. to 1100 ° C. and 137 MPa to 392 MPa.
  • the obtained single crystal structure is preheated in vacuum at a temperature of 1300 ° C for 1 hour, then raised to a temperature of 1320 ° C, held at this temperature for 5 hours, and then air-cooled solution After that, hold it at a temperature of 1100 ° C for 4 hours in a vacuum and force air-cooling, and hold it at a temperature of 870 ° C for 20 hours in a vacuum and then air-cool 2 Next aging treatment was performed. Then, the single crystal alloy forged product was processed into a test piece having a parallel part diameter of 4 mm and a length of 20 mm, and a creep test was performed under conditions of 900 ° C. to 1100 ° C. and 137 MPa to 392 MPa.
  • Table 1 shows the chemical composition of the Ni-based single crystal superalloy prepared in Examples 1 to 7 and the conventional Ni-based single crystal superalloy.
  • CMSX-4 alloy used as a comparison target is an existing alloy that is most frequently used. For example, it is disclosed in US Pat. No. 4643782.
  • MX4 (PWA1497) alloy is a fourth generation alloy disclosed in US Pat. No. 6,929,868 and containing 3 wt% of Ru (ruthenium).
  • the results of the tape tests (1000 ° C, 245MPa) of the Ni-based single crystal superalloys of Examples 1 to 7 and the conventional Ni-based single crystal superalloy and their specific gravity are compared in FIG. Indicated. As shown in Fig. 2, the Ni-based single crystal superalloys of Examples 1 to 7 have a low specific gravity and a long creep life.
  • a Ni-based single crystal superalloy having a high specific strength (strength per unit specific gravity) that suppresses an increase in specific gravity without sacrificing high-temperature strength is realized.
  • turbine blades such as jet engines and gas turbines in turbine vanes and turbine discs
  • it can be used in higher-temperature combustion gases, etc., to improve efficiency and reduce fuel consumption of jet engines and gas turbines. It becomes effective.
  • Ni-based ordinary forged alloys and Ni-based unidirectionally solidified superalloys have also been realized. Like Ni-based single crystal superalloys, they have excellent high-temperature strength, improved forged properties, and good product yield. Become. Ni-based ordinary forged alloys and Ni-based unidirectionally solidified superalloys are useful for applications similar to Ni-based single crystal superalloys.

Abstract

 化学成分組成が、Al:4.5~7.0wt%、Ta+Nb+Ti:0.1~4.0wt%で、Taが4.0wt%未満、Mo:1.0~8.0wt%、W:0.0~10.0wt%、Re:2.0~8.0wt%、Hf:0.0~1.0wt%、Cr:2.0~10.0wt%、Co:0.0~15.0wt%、Ru:0.0~5.0wt%を含有し、残部がNiと不可避的不純物からなる。

Description

明 細 書
Ni基超合金とその製造方法
技術分野
[0001] 本発明は、 Ni基超合金とその製造方法に関する。さらに詳しくは、本発明は、高温 でのクリープ特性に優れ、ジェットエンジンやガスタービンなどのタービンブレードや タービンベーンなどの高温、高応力下で使用される部材として好適な、新しい Ni基 普通铸造合金、 Ni基一方向凝固超合金または Ni基単結晶超合金とその製造方法 に関する。
背景技術
[0002] 従来、 Ni基超合金は、航空機エンジンやガスタービン機関などの高温部材である 動静翼材料として用いられている。 Ni基超合金は、オーステナイト相である γ (ガン マ)母相と、この母相中に分散析出した規則相である γ ' (ガンマプライム)相とを有し 、 y '相は主として Ni A1で表される金属間化合物力 なり、この γ '相の存在により
3
超合金の高温強度が向上する。
[0003] ガスタービン機関の効率を高めるためには燃焼ガス温度を高めることが最も効果的 であるため、さらに高温強度に優れた Ni基超合金が望まれている。合金の組成比お よび製造プロセスの改良により、 Ni基普通铸造合金、 Ni基一方向凝固超合金および Ni基単結晶超合金が実現されている。近年、 Re (レニウム)の組成比が 5wt%を超え る第 3世代といわれる Ni基単結晶超合金および Ni基一方向凝固超合金が開発され ているが(特許文献 1)、 Reの γ相への固溶量が限界を超えると、高温下でいわゆる TCP相 (Topologically Close Packed相)が析出し、高温特性を悪化するという問題が あった。また、 Ru (ルテニウム)などの白金族元素を添加することにより、 TCP相の生 成を抑制し、高温強度の向上を図った第 4、第 5世代の Ni基単結晶超合金および Ni 基一方向凝固超合金の開発も行われている(特許文献 2)。
特許文献 1: US特許 4643782公報
特許文献 2: US特許 6929868公報
発明の開示 発明が解決しょうとする課題
[0004] Ni基超合金の強度改善に効果的な高融点合金元素の添加量の増大は、一方で 合金の比重を大きくし、動翼材に用いると、自らの遠心力が増大し、クリープ寿命を 低下させ、さらにはタービンディスクへの負荷を大きくし、ディスクの寿命低下を生じる など、航空機エンジンやガスタービン機関への適用を困難にしている。
[0005] そこで、本発明は、上記問題を解決するためになされたものであり、 TCP相の生成 を防止しつつ、優れた高温強度をもち、かつ比重の小さい Ni基超合金とその製造方 法を提供することを課題として 、る。
課題を解決するための手段
[0006] 本発明は、上記課題を解決するためのものとして、
第 1に ίま、 Al:4.5〜7. Owt%, Ta+Nb+Ti:0. 1〜4. Owt0/0で、 Ta力4. Owt %未満、 Mo:l.0〜8. Owt%、 W:0.0〜: LO.0wt%、Re:2.0〜8. Owt%、 Hf: 0.0〜1. Owt%、 Cr:2.0〜: LO. Owt%、 Co:0.0〜15. Owt%、Ru:0.0〜5.0 wt%を含有し、残部が Niと不可避的不純物からなる化学成分組成を有することを特 徴としている。
[0007] 第 2【こ ίま、第 1の特徴【こお ヽて、 Al:4.5〜7. Owt%, Ta+Nb+Ti:0.1〜4. Ow t%で、 Ta力 Owt%未満、 Mo:l.5〜7.5wt%、W:0.0〜9.0wt%、Re:2.0 〜8. Owt%、 Hf:0.0〜1. Owt%、 Cr:2.5〜8. Owt%、 Co:0.0〜12. Owt%、 Ru:0.0〜4.6wt%を含有し、残部が Niと不可避的不純物からなる化学成分組成 を有することを特徴として 、る。
[0008] 第 3には、第 1または第 2の特徴において、 Al:4.5〜7. Owt%、 Ta+Nb+Ti:0.
1〜4. Owt%で、 Ta力 Owt%未満、 Mo:l.0〜5.0wt%、 W:4.0〜7. Owt%、 Re :3.5〜8. Owt%、 Hf:0.01〜: L Owt%、 Cr:2.0〜4.5wt%、 Co:4.0〜8. 0wt%、Ru:2.0〜5.
Figure imgf000004_0001
残部が Niと不可避的不純物からなる化学成 分組成を有することを特徴として 、る。
[0009] 第 4に ίま、第 2の特徴にお!/、て、 Al:4.7〜6.5wt%, Ta+Nb+Ti:0.1〜4. Ow t%で、 Taが 4. Owt%未満、 Mo:l.8〜4.0wt%、 W:4.6〜6.6wt%、Re:5.4 〜8. Owt%、Hf:0.01〜: L 0wt%、Cr:2.2〜4.2wt%、Co:4.8〜6.8wt%、 Ru:2.6〜4.6wt%を含有し、残部が Niと不可避的不純物力もなる化学成分組成 を有することを特徴として 、る。
[0010] 第 5には、第 1ないし第 4いずれ力 1つの特徴において、 Al:5.7wt%、 Ta:l.6wt %、Nb:2.0wt%、Mo:2.8wt%、W:5.6wt%、Re:6.9wt%、Hf:0. lwt%、 Cr:3.2wt%, Co :5.8wt%、Ru:3.6wt%を含有し、残部が Niと不可避的不純 物からなる化学成分組成を有することを特徴としている。
[0011] 第 6には、第 1ないし第 4いずれ力 1つの特徴において、 Al:5.7wt%、 Ta:l.6wt %、 Nb:2. Owt%、 Mo :3. Owt%、 W:5.6wt%、 Re :6.4wt%、 Hf:0. lwt%、 Cr:3.2wt%, Co :5.8wt%、Ru:3.6wt%を含有し、残部が Niと不可避的不純 物からなる化学成分組成を有することを特徴としている。
[0012] 第 7には、第 1ないし第 4いずれ力 1つの特徴において、 Al:5.7wt%、 Ta:l.6wt %、Nb:l.5wt%、Ti:0.5wt%、Mo:2.8wt%、W:5.6wt%、Re:6.5wt%、 Hf :0. lwt%、 Cr:3.2wt%、 Co :5.8wt%、 Ru:3.6wt%を含有し、残部が Niと 不可避的不純物からなる化学成分組成を有することを特徴としている。
[0013] 第 8には、第 1または 2の特徴において、 Al:5.6wt%、 Nb:2.3wt%、 Ti:0.9wt %、 Mo :6.7wt%、 Re :3. Owt%、 Cr:7.6wt%を含有し、残部が Niと不可避的不 純物からなる化学成分組成を有することを特徴としている。
[0014] 第 9には、第 1または第 2の特徴において、 Al:5.6wt%、 Ta:3.4wt%、 Ti:0.5 wt%、 Mo :3.8wt%、 W:8.5wt%、 Re :2.4wt%、 Hf:0.09wt%、 Cr:4.7wt %、 Co :7.5wt%を含有し、残部が Niと不可避的不純物力もなる化学成分組成を有 することを特徴としている。
[0015] 第 10には、第 1または 2の特徴において、 Al:5.4wt%、 Ta:3.5wt%、 Ti:0.5w t%、Mo:3.9wt%、W:8.7wt%, Re :2.4wt%、Hf:0. lwt%、 Cr:4.9wt%、 Co :7.8wt%を含有し、残部が Niと不可避的不純物力もなる化学成分組成を有す ることを特徴としている。
[0016] 第 11には、第 1または第 2の特徴において、 Al:6. Owt%、 Nb:3.2wt%、 Mo :2 . Owt%、 W:6. Owt%、 Re :5. Owt%、 Hf:0. lwt%、 Cr:3. Owt%、 Co: 12.0 wt%を含有し、残部が Niと不可避的不純物からなる化学成分組成を有することを特 徴としている。
[0017] 第 12には、第 1ないし 11いずれか 1つの特徴において、さらに、 C : 0. 05 %以 下、 Zr: 0. lwt%以下、 V: 0. 5wt%以下、 B : 0. 02wt%以下、 Si: 0. lwt%以下、 Y: 0. 2wt%以下、 La: 0. 2wt%以下、 Ce : 0. 2wt%以下を単独または複合して含 有することを特徴としている。
[0018] 第 13には、第 1ないし第 12いずれか 1つの特徴を有する Ni基超合金を、普通铸造 法、一方向凝固法または単結晶凝固法により铸造することを特徴としている。
[0019] 第 14には、铸造後に、 1200〜1300°Cで 20分〜 2時間の予備熱処理を施し、 12 80〜1360°〇での3〜10時間の溶体化処理、 1050〜1150°Cでの 2〜8時間の 1次 時効処理および 800〜900°Cでの 10〜24時間の 2次時効処理を施すことを特徴と している。
発明の効果
[0020] 白金族元素である Ruを含むほど、 Ni基超合金の比重は大きくなる傾向にある。そ こで、本発明では、 Ta+Nb+Tiの組成比を 0. 1〜4. Owt%の範囲とし、 Taを 4wt %未満とすることによって、高温強度を犠牲にせず、比重増大を抑えた、高比強度( 単位比重あたりの強度)の Ni基単結晶超合金を実現する。ジェットエンジンやガスタ 一ビンなどのタービンブレードやタービンベーン、タービンディスクなどに用いた場合 、より高温の燃焼ガス中等での使用が可能になり、ジェットエンジンやガスタービンな どの効率向上および燃料削減に有効となる。
[0021] また、本発明では、 Ni基普通铸造合金および Ni基一方向凝固超合金も実現され、 Ni基単結晶超合金と同様に高温強度に優れるとともに、铸造特性が向上し、製品の 歩留まりが良好となる。 Ni基普通铸造合金および Ni基一方向凝固超合金は、 Ni基 単結晶超合金と同様の用途に有用である。
図面の簡単な説明
[0022] [図 1]図 1は、実施例 1〜3の Ni基単結晶超合金および従来の Ni基単結晶合金のタリ ープ寿命を試験条件ごとに比較した図である。
[図 2]図 2は、実施例 1〜7の Ni基単結晶超合金および従来の Ni基単結晶合金のタリ ープ寿命と比重を比較した図である。 発明を実施するための最良の形態
[0023] 本発明が提供する Ni基単結晶超合金、 Ni基一方向凝固超合金および Ni基普通 铸造合金は、従来の Ni基超合金と同様に、オーステナイト相である γ (ガンマ)相(母 相)と、この母相中に分散析出した規則相である γ ' (ガンマプライム)相 (析出相)とを 有する。 Ύ '相は主として Ni A1で表される金属間化合物力もなり、この γ '相の存在
3
により高温強度が向上する。
[0024] その上で、本発明の Ni基超合金では、化学成分組成を以下の通り特定している。
[0025] すなわち、第 1の特徴を有する Ni基超合金において、 Cr (クロム)は、耐酸化性に優 れた元素であり、高温耐食性を向上させる。 Crの含有量は、 2. 0〜: LO. Owt%であ る。 Crが 2. Owt%未満であると、所望の高温腐食性を確保できなくなり、 10. Owt% を超えると、 γ '相の析出物が抑制されるとともに σ (シグマ)相や (ミュー)相などの 有害相が生成し、高温強度が低下する。
[0026] Mo (モリブデン)は、 W (タングステン)および Ta (タンタル)との共存下において、母 相である γ相に固溶して高温強度を増カロさせるとともに析出硬化により高温強度に 寄与する。 Moの含有量は 1. 0〜8. 0 %である。 Moの含有量が 1. Owt%未満で あると、所望の高温強度を確保できず、また、 8. 0^%を超えても高温強度が低下し 、さらには高温耐食性も低下する。
[0027] W (タングステン)は、 Moおよび Taとの共存下において固溶強化と析出硬化の作 用により、高温強度を向上させる。 Wの含有量は 0. 0〜: LO. 0 %である。 Wの含有 量が 10. Owt%を超えると、有害相の生成を助長するとともに高温耐食性が低下す る。
[0028] Ta (タンタル)、 Nb (ニオブ)、 Ti (チタン)は、いずれも、 Moおよび Wとの共存下に おいて固溶強化と析出硬化の作用により、高温強度を向上させ、また、一部が γ '相 に対して析出硬化し、高温強度を向上させる。 Ta + Nb+Tiの含有量は、それぞれ の含有量の調整によって 0. 1〜4. Owt%であり、 Taについては 4. Owt%未満であ る。 Ta + Nb+Tiの含有量が 0. lwt%未満であると、高温強度を向上させることが困 難となり、 4. 0^%を超えると、所望の高温強度を確保しつつ、合金の比重を 9. Og Zcm3以下にすることが困難となる。 [0029] Al (アルミニウム)は、 Ni (ニッケル)と化合し、母相中に微細均一に分散析出する γ '相を構成する Ni A1で表される金属間化合物を、体積分率 60〜70%の割合で形
3
成し、高温強度を向上させる。 A1の組成比は 4. 5〜7.
Figure imgf000008_0001
A1の含有量が 4. 5wt%未満であると、 γ '相の析出量が不十分となり、所望の高温強度を確保でき なくなり、 7. 0 %を超えると、共晶 γ '相と呼ばれる粗大な γ '相が多く形成され、 溶体ィ匕処理が不可能となり、高い高温強度を確保できなくなる。
[0030] Hf (ハフニウム)は粒界偏析元素であり、 y相と γ '相の粒界に偏祈して粒界を強 化し、特に Ni基普通铸造合金および Ni基一方向凝固超合金の高温強度を向上さ せる。 Hfの含有量は 0. 0〜1. 0 %である。 Ni基単結晶超合金の場合には微量添 カロか、または含まなくてもよいが、特に Ni基普通铸造合金および Ni基一方向凝固超 合金の場合は Hfを含まないと、結晶粒界強化が不十分となり、所望の高温強度を確 保できなくなる。 Hfの含有量が 1. Owt%を超えると、局部溶融を引き起こして高温強 度を低下させるおそれがある。
[0031] Co (コバルト)は、 Al、 Taなどの母相に対する高温下での固溶限度を大きくし、熱 処理によって微細な γ '相を分散析出させ、高温強度を向上させる。 Coの含有量は 0. 0〜15. Owt%である。有害相を析出させないような固溶限が十分広い場合には Coを含まなくても高温強度の確保が可能であり、 15.
Figure imgf000008_0002
Al、 Ta、 M o、 W、 Hf、 Crなどの他の元素とのバランスが崩れ、有害相が析出して高温強度が低 下する。
[0032] Re (レニウム)は、母相である γ相に多く固溶し、固溶強化により高温強度を向上さ せる。また、耐食性を向上させる効果もある。一方、 Reを多量に添加すると、高温時 に有害相である TCP相が析出し、高温強度が低下するおそれがある。 Reの含有量 は 2. 0〜8. Owt%である。 2. Owt%未満であると、 γ相の固溶強化が不十分となつ て所望の高温強度が確保できなくなり、 8. 0^%を超えると、高温時に TCP相が析 出し、高い高温強度を確保できなくなる。
[0033] Ru (ルテニウム)は、 TCP相の析出を抑え、これにより高温強度を向上させる。 Ru の含有量は 0. 0〜5. Owt%である。 Ruの含有量は、 TCP相を形成する主要な元素 、たとえば Re、 W、 Mo、 Crなどの含有量に対して最適な組成範囲があり、 TCP相の 析出がない場合には Ruを添カ卩しなくともよい。 Ruは高価な金属であるため、 5. Owt %を超えるとコストが高くなる。
[0034] そして、上記第 2〜第 11の特徴を有する Ni基超合金では、好ま 、組成範囲を規 定している。
[0035] すなわち、第 2の特徴を有する Ni基超合金では、 Al:4.5〜7. Owt%、 Ta+Nb +
Ti:0.1〜4. Owt%で、 Ta力 Owt%未満、 Mo:l.5〜7.5wt%、W:0.0〜9.
Owt%、 Re :2.0〜8. Owt%、 Hf :0.0〜1. Owt%、 Cr:2.5〜8. Owt%、 Co:0.
0〜12. Owt%、Ru:0.0〜4.6wt%として!/ヽる。
[0036] 第 3の特徴を有する Ni基超合金では、 Al:4.5〜7. Owt%、 Ta+Nb+Ti:0.1〜
4. Owt%で、 Ta力 Owt%未満、 Mo:l.0〜5.0wt%、 W:4.0〜7. Owt%、 Re
:3.5〜8. Owt%、 Hf :0.01〜: L Owt%、 Cr:2.0〜4.5wt%、 Co:4.0〜8.0 wt%、Ru:2.0〜5. Owt%としている。
[0037] 第 4の特徴を有する Ni基超合金では、 Al: 4.7〜6.5wt%、 Ta+Nb+Ti:0.1〜
4. Owt%で、 Ta力 Owt%未満、 Mo:l.8〜4.0wt%、 W:4.6〜6.6wt%、 Re
:5.4〜8. Owt%、 Hf :0.01〜: L Owt%、 Cr:2.2〜4.2wt%、 Co:4.8〜6.8 wt%、Ru:2.6〜4.6wt%としている。
[0038] 第 5の特徴を有する Ni基超合金では、 A1: 5.7wt%、 Ta:l.6wt%、 Nb: 2. Owt
%、Mo:2.8wt%、W:5.6wt%、Re:6.9wt%、 Hf:0. lwt%、Cr:3.2wt%、
Co:5.8wt%、Ru:3.6wt%としている。
[0039] 第 6の特徴を有する Ni基超合金では、 A1: 5.7wt%、 Ta:l.6wt%、 Nb: 2. Owt
%、 Mo:3. Owt%、 W:5.6wt%、 Re :6.4wt%、 Hf:0. lwt%、 Cr:3.2wt%、
Co:5.8wt%、Ru:3.6wt%としている。
[0040] 第 7の特徴を有する Ni基超合金では、 A1: 5.7wt%、 Ta:l.6wt%、 Nb: 1.5wt
%、Ti:0.5wt%、Mo:2.8wt%、W:5.6wt%、Re:6.5wt%、Hf:0. lwt%、 C r:3.2wt%、Co:5.8wt%、Ru:3.6wt%としている。
[0041] 第 8の特徴を有する Ni基超合金では、 Al:5.6wt%、 Nb:2.3wt%、 Ti:0.9wt
%、 Mo:6.7wt%、Re:3. Owt%、 Cr:7.6wt%としている。
[0042] 第 9の特徴を有する Ni基超合金では、 A1: 5.6wt%、 Ta:3.4wt%、 Ti: 0.5wt %、 Mo:3.8wt%、 W:8.5wt%、 Re :2.4wt%、 Hf:0.09wt%、 Cr:4.7wt%、
Co :7.5wt%としている。
[0043] 第 10の特徴を有する Ni基超合金では、 A1: 5.4wt%、 Ta:3.5wt%、 Ti:0.5wt
%、 Mo:3.9wt%、 W:8.7wt%、 Re :2.4wt%、 Hf:0. lwt%、 Cr:4.9wt%、
Co :7.8wt%としている。
[0044] 第 11の特徴を有する Ni基超合金では、 Al:6. Owt%、 Nb:3.2wt%、 Mo :2.0 wt%、 W:6. Owt%、 Re :5. Owt%、 Hf:0. lwt%、 Cr:3. Owt%、 Co: 12. Owt
%としている。
[0045] なお、上記第 1ないし第 11のいずれか一つの特徴を有する本発明の Ni基超合金 では、残部が Niおよび不可避的不純物からなる。また、上記第 1ないし第 11のいず れか一つの特徴を有する本発明の Ni基超合金は、さらに以下の元素を特定範囲で 単独または複合して含有することができる。
[0046] C (炭素)は粒界強化に寄与し、 Cの含有量は 0.05wt%以下である。 Cを含まな 、 と粒界強化の効果が確保できなくなるので好ましくなぐ Cの含有量が 0.05wt%を 超えると延性を害するので好ましくない。
[0047] Zr (ジルコニウム)は B (ホウ素)や Cと同様に粒界を強化する。一方、過度の添加は クリープ強度を下げるため、含有量は 0. lwt%以下とする。
[0048] V (バナジウム)は γ '相に固溶し、 y '相を強化する。一方、過度の添カ卩はクリープ 強度を下げるため、 0.5wt%以下とする。
[0049] B (ホウ素)は Cと同様に粒界強化に寄与する。 Bの含有量は 0.02wt%以下とする 。 0.02wt%を超えると延性を害するので好ましくない。
[0050] Si (シリコン)は、合金表面に Si02皮膜を生成させて保護皮膜として耐酸ィ匕性を向 上させる。また、 Si02酸ィ匕被膜は他の保護酸ィ匕被膜と比較して割れが発生しにくぐ クリープや疲労特性を向上させる効果もある。一方、 Siを大量に添加することは他の 元素の固溶限を低下させることにもなるため、含有量の上限を 0.
Figure imgf000010_0001
[0051] Y (イットリウム)、 La (ランタン)、 Ce (セリウム)は、 Ni基超合金に高温での使用中に 形成するアルミナ、クロミアなどの保護酸化被膜の密着性を向上させる。一方、過度 の添カ卩は他の元素の固溶限を低下させることになるため、 Yの含有量は 0.2wt%以 下、 Laの含有量は 0. 2wt%以下、 Ceの含有量は 0. 2wt%以下とする。
[0052] 以上の通りの化学成分組成を有する本発明の Ni基超合金は、従来公知の製造プ 口セスゃ製造条件を勘案して、所定の化学成分組成を有するものとして溶解、铸造 により製造することができる。铸造に際しては、たとえば一方向凝固法または単結晶 凝固法によって、一方向凝固合金または単結晶合金として Ni基超合金を製造するこ とができる。一方向凝固法は、所望の化学成分組成に調合されたインゴットを用いて 铸造するが、铸型温度を凝固温度である約 1500°C以上に加熱しておき、铸型に铸 込んだ後に、たとえば加熱炉力 徐々に遠ざけて温度勾配を与え、多数の結晶を一 方向に成長させる方法である。単結晶凝固法は、一方向凝固法とほぼ同様であるが 、凝固する手前側にジグザグまたは螺旋型のセレクタ一部を設け、一方向で凝固し てくる多数の結晶をセレクタ一部で一つの結晶にし、所望の製品を製造する方法で ある。
[0053] 本発明の Ni基超合金は、铸造後、熱処理を施すことにより、高クリープ強度を発現 する。標準的な熱処理は以下の通りである。 1200〜1300°Cで 20分〜 2時間の予備 熱処理を施した後、 1280〜1350°Cで 3〜10時間の溶体化処理を行う。次いで、 γ '相の析出を目的にした 1次時効処理を 1050〜1150°Cの温度範囲で 2〜8時間行 い、空冷する。 1次時効処理は、耐熱'耐酸化を目的としたコーティング処理と兼ねる ことが可能である。空冷後、引き続き γ '相の安定ィ匕を目的とした 2次時効処理を 80 0〜900°Cで 10〜24時間行い、空冷する。 1次時効処理および 2次時効処理におけ る空冷は、雰囲気を不活性ガスに置き換えて行うことができる。
[0054] このようにして製造される本発明の Ni基超合金により、ジェットエンジンやガスター ビンのタービンブレードやタービンベーンなどの高温部品が実現可能となる。
[0055] 次に実施例を示す。以下の実施例によって本発明が限定されることはない。
実施例 1
[0056] Co: 5. 8wt%、 Cr: 3. 2wt%、 Mo: 2. 8wt%、 W: 5. 6wt%、 Al: 5. 7wt%、 Nb
: 2. Owt%、Ta : l. 6wt%、Hf : 0. lwt%、Re : 6. 9wt%、Ru: 3. 6wt%、残部が Niと不可避的不純物からなる化学成分組成を有する Ni基超合金を、真空中にお ヽ て 200mmZhの凝固速度で溶解、铸造して単結晶铸造物を得た。次に、得られた 単結晶铸造物を真空中において 1300°Cの温度で 1時間予熱した後、 1330°Cの温 度に上昇して、この温度に 10時間保持してから空冷する溶体化処理を行い、その後 、真空中において 1100°Cの温度で 4時間保持して力 空冷する 1次時効処理と、真 空中において 870°Cの温度で 20時間保持して力も空冷する 2次時効処理とを行った 。そして、単結晶合金铸造物を平行部直径 4mm、長さ 20mmのテストピースに加工 し、 800。C〜1100。C、 137MPa〜735MPaの条件でクリープ試験を行った。
実施例 2
[0057] Co: 5. 8wt%、 Cr: 3. 2wt%、 Mo: 3. Owt%、 W: 5. 6wt%、 Al: 5. 7wt%、 Nb
: 2. Owt%、Ta : l. 6wt%、Hf : 0. lwt%、Re : 6. 4wt%、Ru: 3. 6wt%、残部が Niと不可避的不純物からなる化学成分組成を有する Ni基超合金を、真空中にお ヽ て 200mmZhの凝固速度で溶解、铸造して単結晶铸造物を得た。次に、得られた 単結晶铸造物を真空中において 1300°Cの温度で 1時間予熱した後、 1330°Cの温 度に上昇して、この温度に 10時間保持してから空冷する溶体化処理を行い、その後 、真空中において 1100°Cの温度で 4時間保持して力 空冷する 1次時効処理と、真 空中において 870°Cの温度で 20時間保持して力も空冷する 2次時効処理とを行った 。そして、単結晶合金铸造物を平行部直径 4mm、長さ 20mmのテストピースに加工 し、 800。C〜1100。C、 137MPa〜735MPaの条件でクリープ試験を行った。
実施例 3
[0058] Co: 5. 8wt%、 Cr: 3. 2wt%、 Mo: 2. 8wt%、 W: 5. 6wt%、 Al: 5. 7wt%、 Ti: 0. 5wt%、Nb : l. 5wt%、Ta : l. 6wt%、Hf : 0. lwt%、Re : 6. 5wt%、Ru: 3. 6 wt%、残部が Niと不可避的不純物からなる化学成分組成を有する Ni基超合金を、 真空中にお 、て 200mmZhの凝固速度で溶解铸造して単結晶铸造物を得た。次 に、得られた単結晶铸造物を真空中において 1300°Cの温度で 1時間予熱した後、 1 330°Cの温度に上昇して、この温度に 10時間保持して力も空冷する溶体ィ匕処理を 行い、その後、真空中において 1100°Cの温度で 4時間保持して力 空冷する 1次時 効処理と、真空中において 870°Cの温度で 20時間保持して力も空冷する 2次時効 処理とを行った。そして、単結晶合金铸造物を平行部直径 4mm、長さ 20mmのテス トピースに加工し、 800°C〜1100°C、 137MPa〜735MPaの条件でクリープ試験を 行った。
実施例 4
[0059] Cr: 7. 6wt%、 Mo: 6. 7wt%、 Al : 5. 6wt%、 Ti : 0. 9wt%、 Nb : 2. 3wt%、 Re
: 3. Owt%、残部が Niと不可避的不純物からなる化学成分組成を有する Ni基超合 金を、真空中において 200mmZhの凝固速度で溶解、铸造して単結晶铸造物を得 た。次に、得られた単結晶铸造物を真空中において 1260°Cの温度で 1時間予熱し た後、 1280°Cの温度に上昇して、この温度に 4時間保持してから空冷する溶体化処 理を行い、その後、真空中において 982°Cの温度で 5時間保持して力 空冷する 1 次時効処理と、真空中において 870°Cの温度で 20時間保持して力も空冷する 2次 時効処理とを行った。そして、単結晶合金铸造物を平行部直径 4mm、長さ 20mmの テストピースに加工し、 900°C〜1100°C、 137MPa〜392MPaの条件でクリープ試 験を行った。
実施例 5
[0060] Co : 7. 5wt%、 Cr: 4. 7wt%、 Mo: 3. 8wt%、 W: 8. 5wt%、 Al: 5. 6wt%、 Ti: 0. 5wt%、 Ta : 3. 4wt%、 Hf : 0. 09wt%、 Re : 2. 4wt%、残部が Niと不可避的不 純物からなる化学成分組成を有する Ni基超合金を、真空中にお ヽて 200mmZhの 凝固速度で溶解、铸造して単結晶铸造物を得た。次に、得られた単結晶铸造物を真 空中において 1300°Cの温度で 1時間予熱した後、 1320°Cの温度に上昇して、この 温度に 5時間保持してから空冷する溶体化処理を行い、その後、真空中において 11 00°Cの温度で 4時間保持して力 空冷する 1次時効処理と、真空中において 870°C の温度で 20時間保持して力も空冷する 2次時効処理とを行った。そして、単結晶合 金铸造物を平行部直径 4mm、長さ 20mmのテストピースに加工し、 900°C〜1100 °C、 137MPa〜392MPaの条件でクリープ試験を行つた。
実施例 6
[0061] Co : 7. 8wt%、 Cr: 4. 9wt%、 Mo: 3. 9wt%、 W: 8. 7wt%、 Al: 5. 4wt%、 Ti: 0. 5wt%、Ta : 3. 5wt%、Hf : 0. lwt%、Re : 2. 4wt%、残部が Niと不可避的不 純物からなる化学成分組成を有する Ni基超合金を、真空中にお ヽて 200mmZhの 凝固速度で溶解、铸造して単結晶铸造物を得た。次に、得られた単結晶铸造物を真 空中において 1320°Cの温度で 1時間予熱した後、 1340°Cの温度に上昇して、この 温度に 5時間保持してから空冷する溶体化処理を行い、その後、真空中において 11 00°Cの温度で 4時間保持して力 空冷する 1次時効処理と、真空中において 870°C の温度で 20時間保持して力も空冷する 2次時効処理とを行った。そして、単結晶合 金铸造物を平行部直径 4mm、長さ 20mmのテストピースに加工し、 900°C〜1100 °C、 137MPa〜392MPaの条件でクリープ試験を行つた。
実施例 7
[0062] Co: 12. Owt%、 Cr: 3. Owt%、 Mo: 2. Owt%、 W: 6. Owt%、 Al: 6. Owt%、 N b : 3. 2wt%、Hf : 0. lwt%、Re : 5. Owt%、残部が Niと不可避的不純物からなる 化学成分組成を有する Ni基超合金を、真空中にお 1ヽて 200mmZhの凝固速度で 溶解铸造して単結晶铸造物を得た。次に、得られた単結晶铸造物を真空中におい て 1300°Cの温度で 1時間予熱した後、 1320°Cの温度に上昇して、この温度に 5時 間保持してから空冷する溶体化処理を行い、その後、真空中において 1100°Cの温 度で 4時間保持して力 空冷する 1次時効処理と、真空中において 870°Cの温度で 2 0時間保持してから空冷する 2次時効処理とを行った。そして、単結晶合金铸造物を 平行部直径 4mm、長さ 20mmのテストピースに加工し、 900°C〜1100°C、 137MP a〜392MPaの条件でクリープ試験を行った。
[0063] 以上の実施例 1〜7で作製した Ni基単結晶超合金および従来の Ni基単結晶超合 金の化学成分組成を表 1に示した。
[0064] [表 1]
Figure imgf000015_0001
[0065] 比較対象とした CMSX—4合金は、最も多く使われている既存の合金であり、たと えば、 US特許 4643782公報に開示されている。また、 MX4(PWA1497)合金は、 US特許 6929868公報に開示されてレ、る Ru (ルテニウム)を 3wt%含有する第 4世 代合金である。
[0066] 実施例 1〜3の Ni基単結晶超合金および従来の Ni基単結晶超合金のクリープ破 断寿命、伸びおよび絞りは、表 2に示す結果となった。
[0067] [表 2]
Figure imgf000015_0002
ラ一ゾンミ - —バラメ --タを用 ί· t拊^鐘 [0068] 実施例 1〜3の Ni基単結晶超合金の比重は 9. 0より小さぐまた、優れたクリープ破 断寿命をもっている。
[0069] また、実施例 1〜3の Ni基単結晶超合金および従来の Ni基単結晶超合金のタリー プ試験条件ごとのクリープ破断寿命は、図 1に示す結果となった。
[0070] さらに、実施例 1〜7の Ni基単結晶超合金および従来の Ni基単結晶超合金のタリ ープ試験結果(1000°C、 245MPa)とそれぞれの比重を比較して図 2に示した。図 2 に示したように、実施例 1〜7の Ni基単結晶超合金は比重が小さぐクリープ寿命が 長い。
産業上の利用可能性
[0071] 高温強度を犠牲にせず、比重増大を抑えた、高比強度 (単位比重あたりの強度)の Ni基単結晶超合金が実現される。ジェットエンジンやガスタービンなどのタービンブ レードゃタービンベーン、タービンディスクなどに用いた場合、より高温の燃焼ガス中 等での使用が可能になり、ジェットエンジンやガスタービンなどの効率向上および燃 料削減に有効となる。
[0072] また、 Ni基普通铸造合金および Ni基一方向凝固超合金も実現され、 Ni基単結晶 超合金と同様に高温強度に優れるとともに、铸造特性が向上し、製品の歩留まりが良 好となる。 Ni基普通铸造合金および Ni基一方向凝固超合金は、 Ni基単結晶超合金 と同様の用途に有用である。

Claims

請求の範囲
[1] Al:4.5〜7. Owt%、 Ta+Nb+Ti:0.1〜4. Owt%で、 Ta力 Owt%未満、 M o:l.0〜8. Owt%、W:0.0〜: LO.0wt%、Re:2.0〜8. Owt%、Hf:0.0〜1.0 wt%、 Cr:2.0〜: LO. Owt%、 Co:0.0〜15. Owt%、Ru:0.0〜5. Owt%を含有 し、残部が Niと不可避的不純物力もなる化学成分組成を有することを特徴とする Ni 基超合金。
[2] 請求項 1に記載の Ni基超合金において、 Al:4.5〜7. Owt%、 Ta+Nb+Ti:0.
1〜4. Owt%で、 Ta力 Owt%未満、 Mo:l.5〜7.5wt%、W:0.0〜9. Owt% 、 Re :2.0〜8. Owt%、 Hf:0.0〜1. Owt%、 Cr:2.5〜8. Owt%、 Co:0.0〜12 . Owt%、Ru:0.0〜4.6wt%を含有し、残部が Niと不可避的不純物力 なる化学 成分組成を有することを特徴とする Ni基超合金。
[3] 請求項 1または 2に記載の Ni基超合金において、 Al:4.5〜7. Owt%、 Ta+Nb
+Ti:0.1〜4. Owt%で、 Ta力 Owt%未満、 Mo:l.0〜5.0wt%、 W:4.0〜7 . Owt%、 Re :3.5〜8. Owt%、 Hf :0.01〜: L 0wt%、 Cr:2.0〜4.5wt%、 Co: 4.0〜8.0wt%、Ru:2.0〜5.0wt%を含有し、残部が Niと不可避的不純物から なる化学成分組成を有することを特徴とする Ni基超合金。
[4] 請求項 2に記載の Ni基超合金において、 Al:4.7〜6.5wt%、 Ta+Nb+Ti:0.
1〜4.0wt%で、 Ta力 0wt%未満、 Mo:l.8〜4.0wt%、 W:4.6〜6.6wt%、 Re :5.4〜8.0wt%、 Hf:0.01〜: L 0wt%、 Cr:2.2〜4.2wt%、 Co:4.8〜6. 8wt%、Ru:2.6〜4.6wt%を含有し、残部が Niと不可避的不純物からなる化学成 分組成を有することを特徴とする Ni基超合金。
[5] 請求項 1ないし 4いずれか 1項に記載の Ni基超合金において、 A1: 5.7wt%、 Ta:
1.6wt%、Nb:2.0wt%、Mo:2.8wt%、W:5.6wt%、Re:6.9wt%、Hf:0.1 wt%、Cr:3.2wt%、Co:5.8wt%、Ru:3.6wt%を含有し、残部が Niと不可避的 不純物からなる化学成分組成を有することを特徴とする Ni基超合金。
[6] 請求項 1ないし 4いずれか 1項に記載の Ni基超合金において、 A1: 5.7wt%、 Ta:
1.6wt%、 Nb:2.0wt%、 Mo :3.0wt%、 W:5.6wt%、 Re :6.4wt%、 Hf :0.1 wt%、Cr:3.2wt%、Co:5.8wt%、Ru:3.6wt%を含有し、残部が Niと不可避的 不純物からなる化学成分組成を有することを特徴とする Ni基超合金。
[7] 請求項 1ないし 4いずれか 1項に記載の Ni基超合金において、 A1: 5.7wt%、 Ta:
1.6wt%、Nb:l.5wt%、Ti:0.5wt%、Mo:2.8wt%、W:5.6wt%、Re:6.5 wt%、Hf:0. lwt%、Cr:3.2wt%、Co:5.8wt%、Ru:3.6wt%を含有し、残部 が Niと不可避的不純物からなる化学成分組成を有することを特徴とする Ni基超合金
[8] 請求項 1または 2に記載の Ni基超合金において、 Al:5.6wt%、 Nb:2.3wt%、 T i:0.9wt%、Mo:6.7wt%、Re:3.0wt%、Cr:7.6wt%を含有し、残部が Niと不 可避的不純物からなる化学成分組成を有することを特徴とする Ni基超合金。
[9] 請求項 1または 2に記載の Ni基超合金において、 A1: 5.6wt%、 Ta: 3.4wt%、 T i:0.5wt%、 Mo:3.8wt%、 W:8.5wt%、 Re :2.4wt%、 Hf:0.09wt%、 Cr:4 .7wt%、Co:7.5wt%を含有し、残部が Niと不可避的不純物力もなる化学成分組 成を有することを特徴とする Ni基超合金。
[10] 請求項 1または 2に記載の Ni基超合金において、 A1: 5.4wt%、 Ta: 3.5wt%、 T i:0.5wt%、Mo:3.9wt%、W:8.7wt%, Re :2.4wt%、Hf:0. lwt%、 Cr:4. 9wt%、 Co :7.8wt%を含有し、残部が Niと不可避的不純物力もなる化学成分組成 を有することを特徴とする Ni基超合金。
[11] 請求項 1または 2に記載の Ni基超合金において、 Al:6. Owt%、 Nb:3.2wt%、 Mo :2. Owt%、 W:6. Owt%、 Re :5. Owt%、 Hf :0. lwt%、 Cr:3. Owt%、 Co: 12. Owt%を含有し、残部が Niと不可避的不純物力 なる化学成分組成を有するこ とを特徴とする Ni基超合金。
[12] 請求項 1ないし 11いずれ力 1項に記載の Ni基超合金において、さらに、 C:0.05w t%以下、 Zr:0. lwt%以下、 V:0.5wt%以下、 B:0.02wt%以下、 Si:0. lwt% 以下、 Y:0.2wt%以下、 La:0.2wt%以下、 Ce:0.2wt%以下を単独または複合 して含有することを特徴とする Ni基超合金。
[13] 請求項 1ないし 12いずれか 1項に記載の Ni基超合金を、普通铸造法、一方向凝固 法または単結晶凝固法により铸造することを特徴とする Ni基超合金の製造方法。
[14] 铸造後に、 1200〜1300。Cで 20分〜 2時間の予備熱処理を施し、 1280~1360 °Cでの 3〜10時間の溶体化処理、 1050〜1150°Cでの 2〜8時間の 1次時効処理 および 800〜900°Cでの 10〜24時間の 2次時効処理を施すことを特徴とする請求 項 13に記載の Ni基超合金の製造方法。
PCT/JP2007/055451 2006-03-31 2007-03-16 Ni基超合金とその製造方法 WO2007122931A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008512028A JP5299899B2 (ja) 2006-03-31 2007-03-16 Ni基超合金及びその製造方法
EP07738896.5A EP2006402B1 (en) 2006-03-31 2007-03-16 Ni-BASE SUPERALLOY AND METHOD FOR PRODUCING SAME
US12/225,710 US8696979B2 (en) 2006-03-31 2007-03-16 Ni-base superalloy and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-096594 2006-03-31
JP2006096594 2006-03-31

Publications (1)

Publication Number Publication Date
WO2007122931A1 true WO2007122931A1 (ja) 2007-11-01

Family

ID=38624841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/055451 WO2007122931A1 (ja) 2006-03-31 2007-03-16 Ni基超合金とその製造方法

Country Status (4)

Country Link
US (1) US8696979B2 (ja)
EP (1) EP2006402B1 (ja)
JP (1) JP5299899B2 (ja)
WO (1) WO2007122931A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010037658A (ja) * 2008-08-06 2010-02-18 General Electric Co <Ge> ニッケル基超合金、その一方向凝固プロセス並びに得られる鋳造品
WO2011019018A1 (ja) * 2009-08-10 2011-02-17 株式会社Ihi Ni基単結晶超合金及びタービン翼
JP2012177372A (ja) * 2012-04-24 2012-09-13 Hitachi Ltd タービンロータ

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8038764B2 (en) * 2009-11-30 2011-10-18 General Electric Company Rhenium recovery from superalloys and associated methods
US8708659B2 (en) * 2010-09-24 2014-04-29 United Technologies Corporation Turbine engine component having protective coating
CN102212720B (zh) * 2011-05-16 2013-05-15 北京航空航天大学 一种Cr改性的高Mo的Ni3Al基单晶高温合金及其制备方法
US20160214350A1 (en) 2012-08-20 2016-07-28 Pratt & Whitney Canada Corp. Oxidation-Resistant Coated Superalloy
US20160222815A1 (en) * 2013-10-01 2016-08-04 United Technologies Corporation High Efficiency Geared Turbofan
US9352391B2 (en) * 2013-10-08 2016-05-31 Honeywell International Inc. Process for casting a turbine wheel
CN104975248B (zh) * 2015-06-30 2017-01-25 西北工业大学 一种第三代镍基单晶高温合金的固溶处理方法
JP6746457B2 (ja) * 2016-10-07 2020-08-26 三菱日立パワーシステムズ株式会社 タービン翼の製造方法
FR3091708B1 (fr) * 2019-01-16 2021-01-22 Safran Superalliage à base de nickel à faible densité et avec une tenue mécanique et environnementale élevée à haute température
CN112877781A (zh) * 2021-01-13 2021-06-01 中国航发北京航空材料研究院 镍基单晶合金、其制备方法、用途和热处理方法
CN115747687B (zh) * 2022-10-31 2024-02-20 浙江大学 一种提高第二代镍基单晶高温合金高温持久寿命的热处理工艺
CN117512404B (zh) * 2024-01-05 2024-04-02 中国航发北京航空材料研究院 析出相弥散强化抗氢脆镍基单晶高温合金及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4643782A (en) 1984-03-19 1987-02-17 Cannon Muskegon Corporation Single crystal alloy technology
JP2002302724A (ja) * 2001-01-10 2002-10-18 Mtu Aero Engines Gmbh 単結晶として固化した、構造部材を鋳造法によって製造するためのニッケルをベースにした合金
JP2005097649A (ja) * 2003-09-22 2005-04-14 National Institute For Materials Science Ni基超合金
US6929868B2 (en) 2002-11-20 2005-08-16 General Electric Company SRZ-susceptible superalloy article having a protective layer thereon

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5489194A (en) * 1990-09-14 1996-02-06 Hitachi, Ltd. Gas turbine, gas turbine blade used therefor and manufacturing method for gas turbine blade
EP1184473B1 (en) * 2000-08-30 2005-01-05 Kabushiki Kaisha Toshiba Nickel-base single-crystal superalloys, method of manufacturing same and gas turbine high temperature parts made thereof
CA2479774C (en) * 2002-03-27 2012-09-04 National Institute For Materials Science Ni-base directionally solidified and single-crystal superalloy
US20040011650A1 (en) * 2002-07-22 2004-01-22 Frederic Zenhausern Method and apparatus for manipulating polarizable analytes via dielectrophoresis
US20040042927A1 (en) * 2002-08-27 2004-03-04 O'hara Kevin Swayne Reduced-tantalum superalloy composition of matter and article made therefrom, and method for selecting a reduced-tantalum superalloy
US6911132B2 (en) * 2002-09-24 2005-06-28 Duke University Apparatus for manipulating droplets by electrowetting-based techniques
CA2508698C (en) * 2002-12-06 2012-05-15 Independent Administrative Institution National Institute For Materials Science Ni-based single crystal super alloy
US6989174B2 (en) * 2004-03-16 2006-01-24 General Electric Company Method for aluminide coating a hollow article
US20050221473A1 (en) * 2004-03-30 2005-10-06 Intel Corporation Sensor array integrated circuits

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4643782A (en) 1984-03-19 1987-02-17 Cannon Muskegon Corporation Single crystal alloy technology
JP2002302724A (ja) * 2001-01-10 2002-10-18 Mtu Aero Engines Gmbh 単結晶として固化した、構造部材を鋳造法によって製造するためのニッケルをベースにした合金
US6929868B2 (en) 2002-11-20 2005-08-16 General Electric Company SRZ-susceptible superalloy article having a protective layer thereon
JP2005097649A (ja) * 2003-09-22 2005-04-14 National Institute For Materials Science Ni基超合金

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2006402A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010037658A (ja) * 2008-08-06 2010-02-18 General Electric Co <Ge> ニッケル基超合金、その一方向凝固プロセス並びに得られる鋳造品
WO2011019018A1 (ja) * 2009-08-10 2011-02-17 株式会社Ihi Ni基単結晶超合金及びタービン翼
US9932657B2 (en) 2009-08-10 2018-04-03 Ihi Corporation Method of making a Ni—based single crystal superalloy and turbine blade incorporating same
JP2012177372A (ja) * 2012-04-24 2012-09-13 Hitachi Ltd タービンロータ

Also Published As

Publication number Publication date
EP2006402A4 (en) 2012-02-01
US8696979B2 (en) 2014-04-15
JP5299899B2 (ja) 2013-09-25
EP2006402B1 (en) 2013-10-30
EP2006402A2 (en) 2008-12-24
JPWO2007122931A1 (ja) 2009-09-03
US20090317288A1 (en) 2009-12-24
EP2006402A9 (en) 2009-07-22

Similar Documents

Publication Publication Date Title
WO2007122931A1 (ja) Ni基超合金とその製造方法
JP5177559B2 (ja) Ni基単結晶超合金
US7169241B2 (en) Ni-based superalloy having high oxidation resistance and gas turbine part
JP5344453B2 (ja) 耐酸化性に優れたNi基超合金
JP4885530B2 (ja) 高強度高延性Ni基超合金と、それを用いた部材及び製造方法
CA2479774C (en) Ni-base directionally solidified and single-crystal superalloy
US7597843B2 (en) Nickel based superalloys with excellent mechanical strength, corrosion resistance and oxidation resistance
JP3892831B2 (ja) 単結晶タービンベーン用の超合金
JP5186215B2 (ja) ニッケルベース超合金
JP5133453B2 (ja) Ni基単結晶超合金及びタービン翼
JP3840555B2 (ja) Ni基単結晶超合金
WO2010119709A1 (ja) Ni基単結晶超合金及びこれを用いたタービン翼
JP5024797B2 (ja) コバルトフリーのNi基超合金
JP5063550B2 (ja) ニッケル基合金及びそれを用いたガスタービン翼
US7306682B2 (en) Single-crystal Ni-based superalloy with high temperature strength, oxidation resistance and hot corrosion resistance
JP5427642B2 (ja) ニッケル基合金及びそれを用いたランド用ガスタービン部品
JPH09268337A (ja) 鍛造製高耐食超耐熱合金
JP4184648B2 (ja) 強度及び耐食性に優れたNi基単結晶合金とその製造法
CN108504903B (zh) Ni基超合金
JP2011001590A (ja) Ni基超合金
JP6803573B2 (ja) Ni基一方向凝固合金
JP2013185210A (ja) ニッケル基合金及びそれを用いたガスタービン翼
JP5396445B2 (ja) ガスタービン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07738896

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2008512028

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007738896

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12225710

Country of ref document: US

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)