WO2007121842A1 - Verfahren und vorrichtung zum beleimen von zur herstellung von faserplatten vorgesehenen, getrockneten fasern - Google Patents

Verfahren und vorrichtung zum beleimen von zur herstellung von faserplatten vorgesehenen, getrockneten fasern Download PDF

Info

Publication number
WO2007121842A1
WO2007121842A1 PCT/EP2007/003083 EP2007003083W WO2007121842A1 WO 2007121842 A1 WO2007121842 A1 WO 2007121842A1 EP 2007003083 W EP2007003083 W EP 2007003083W WO 2007121842 A1 WO2007121842 A1 WO 2007121842A1
Authority
WO
WIPO (PCT)
Prior art keywords
fibers
fiber
air
pressure lines
stream
Prior art date
Application number
PCT/EP2007/003083
Other languages
English (en)
French (fr)
Other versions
WO2007121842A8 (de
Inventor
Fritz Schneider
Original Assignee
Flakeboard Company Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Flakeboard Company Limited filed Critical Flakeboard Company Limited
Priority to EP07724024.0A priority Critical patent/EP2018254B1/de
Publication of WO2007121842A1 publication Critical patent/WO2007121842A1/de
Publication of WO2007121842A8 publication Critical patent/WO2007121842A8/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N1/00Pretreatment of moulding material
    • B27N1/02Mixing the material with binding agent
    • B27N1/0263Mixing the material with binding agent by spraying the agent on the falling material, e.g. with the material sliding along an inclined surface, using rotating elements or nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N1/00Pretreatment of moulding material
    • B27N1/02Mixing the material with binding agent
    • B27N1/029Feeding; Proportioning; Controlling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N1/00Pretreatment of moulding material

Definitions

  • the invention relates to a method and a device for gluing provided for the production of fiberboard, dried fibers.
  • the fibers are preferably of lignocellulosic and / or cellulosic materials.
  • the fiberboards are lightweight, medium density or high density fiberboard.
  • blow-line gluing It is customary to glue fibers, which are intended for the production of MDF or HDF boards, in the wet state.
  • blow-line gluing has disadvantages. These are described, for example, in WO 02/14038 A1.
  • the disadvantages of the Blow-Iine gluing can be avoided by gluing the fibers in the dry state.
  • a method and a device for gluing wherein fibers are fed from a metering device through a supplied with vacuum feed chute of a fiber roll, which is provided on its surface with a plurality of pins.
  • the fibers are deflected into a chute section and accelerated by the pins and a stream of air generated by the pins to approximately the peripheral speed of the fiber roll.
  • the manhole section is bounded by a section of the circumference of the fiber roll and an opposite wall. At an outlet opening of the shaft section, the fibers emerge essentially in the horizontal direction of movement and are then sucked downwards or upwards and thereby deflected.
  • the fibers are glued by means of at least one spray nozzle.
  • two symmetrically arranged opposite fiber streams may be provided, wherein the fiber streams after exiting the shaft section collide.
  • the spray nozzles can be aligned both laterally on the combined fiber flow as well as in a suction down from above on the two partial streams.
  • the fiber roll serves to transport the fibers, to remove nonuniformities such as fiber agglomerates, and at the same time to stretch the fiber stream due to acceleration of the fibers in the direction of flow.
  • the fibers settle in the curved shaft section before they emerge from this.
  • a hollow fiber circular stream is produced in order to produce as large a surface as possible of the fiber stream available for sizing and to achieve the most uniform possible sizing of the fibers.
  • the fibers are glued in a chute or Faserabsaugrohr with vertical orientation and placed on a wire belt.
  • a jacket air stream can be provided, which surrounds the freshly glued fibers. The jacket air serves to prevent caking on the walls of the chute.
  • Glueing units with alternately exchangeable chute or suction tube. That is, while a gluing unit is in use, the disused gluing unit may be subjected to cleaning. Of the Fiber flow is switched by two changeover to one or the other gluing unit.
  • the invention is therefore based on the object to provide an effective and not aufwaendige method of the type mentioned. Furthermore, the invention has for its object to provide an associated device.
  • the object concerning the method is solved by the features of claim 1.
  • the fibers are fed from a fiber metering device of a transport device.
  • the transport device has at least two pressure lines. In these pressure lines is generated by at least one fan, which is arranged between a discharge of the metering device and a respective outlet opening of the pressure lines, pneumatic pressure. Preferably, a fan is provided for each pressure line.
  • the fibers are transported to gluing spray nozzles by means of the pressure lines.
  • the fibers are at least partially guided in two separate partial fiber streams and exit in the form of two partial streams from outlet openings of the pressure lines. It can be provided that a plurality of pressure lines have a common outlet opening.
  • the exiting partial flows are shallow partial flows, ie they have a relatively large width in relation to the thickness.
  • the partial streams emerging from the pressure lines are arranged so that they meet at an angle of less than 180 ° and combine to form a fiber stream.
  • this angular arrangement of the two juxtaposed partial flows referred to as V-shape, although the two partial flows after exiting the respective pressure line do not have to have a straight course, but may be slightly curved and although the angle may be significantly larger or smaller than the legs of a "V".
  • the two partial streams after leaving the respective pressure line have a substantially straight course, and the angle between the colliding partial streams can be in particular 45 ° to 135 °.
  • the angle is 50 ° to 110 °.
  • the fibers are glued with at least one gluing spray nozzle directed at the partial flow inner surfaces, that is, the two opposite surfaces of the V-shape, between the exit from the pressure lines and the merging into a stream.
  • the fibers of each broad side of the fiber stream are glued with in each case at least one gluing spray nozzle.
  • the fibers of the combined fiber stream are sucked off. This can be done in particular by means of a further fan.
  • a row of gluing spray nozzles arranged across the width can be provided in each case.
  • the pressure lines are at least substantially closed except for respective inlet openings and the outlet openings.
  • the fiber stream because it is based on air flow, for example, be sucked upwards.
  • a corresponding gluing unit can be installed in such an angular position that the freshly glued fibers of the combined fiber stream do not have to be deflected on the first path immediately after gluing, where the fibers still have the highest degree of cold tack, as a result of which gluing of the freshly glued leaves Fibers can be prevented on the walls of a transport device.
  • the fibers are subjected to an air-fiber direction on the way from the metering device to the glueing by means of the glue spray nozzles.
  • coarse wood particles sino-called "shives”
  • shives coarse wood particles
  • Such irregularities lead to defects in the fiber board to be produced and can thus lead to plate rejection.
  • the air-fiber separator is integrated into the process so that no additional fiber metering device and no additional pneumatic transport device for the air-fiber direction are required.
  • the fibers pass from a metering device first for sighting and then for gluing, and it can take place after the gluing an extraction in a uniform pneumatic transport device.
  • the Sighting of the fibers substantially immediately after leaving the at least one metering instead.
  • the sighting may in particular be a sighting, as described in WO 01/89783 A1, the content of which concerning the sighting is to be incorporated by reference herein.
  • the fibers are fed through a shaft, which may in particular be a discharge shaft of the metering device, to an opening roller which is provided on its surface with a large number of pins and rotated in such a way that the fibers are deflected by the pins.
  • the fibers are guided essentially along a shaft section bounded by a partial section of the circumference of the opening roller and an opposite wall, before they emerge essentially horizontally at an outlet opening of the shaft section.
  • the fibers pass into a downwardly directed airflow generated by negative pressure. The airflow breaks
  • the fibers undergo a curvature of the respective pressure line before they emerge from this.
  • the curvature is arranged in the direction of flow such that the fibers emerge in a compressed manner from the pressure line, as a result of centrifugal force being applied to a wall of the pressure line which is external to the curvature.
  • the curvature may in particular have the shape of a partial circle.
  • the centrifugal force acting in the curvature also causes a separation of transport air and fibers, so that essentially flows on the inner wall relative to the curvature of the transport air. This airflow can be used after exiting the pressure lines to inner surfaces of a wall a collecting shaft in which the combined fiber stream is guided to protect against contact with freshly glued fibers.
  • a single fiber metering device is used and a fiber stream, which is discharged from the metering device, divided into the two partial streams.
  • the effort is kept low, for example, in comparison to the known device according to WO 02/14038 A1, in which two metering devices are provided.
  • the speed of the fibers emerging from the pressure lines can be adjusted by means of a variable speed of the at least one fan which generates the pressure in the pressure lines.
  • the speed of the exiting fibers may be in particular 10-100 m / s and preferably 40 m / s.
  • the fiber density of the partial flows present in front of a planned curvature of the pressure lines is regulated by way of the fiber speed.
  • the fiber speed is set as a function of a defined amount of fiber discharged from the metering device per unit of time in order to keep the fiber density constant at a desired value.
  • the spray nozzles which are directed onto a surface of the combined fiber flow, flows around in the spraying direction of air, which serves for the extraction of the combined fiber flow.
  • the sucked air has substantially the same flow direction as the glue spray. This effectively prevents backflow of the spray and associated contamination of the nozzles. It can be provided that the flow rate of the intake air can be adjusted by changing a free cross-section of a suction duct in which the gluing nozzles are arranged.
  • the at least one spray nozzle which is directed to the inner surfaces of the partial flows between the escape from the pressure lines and the merging into a fiber stream, is preferably flows in the direction of spray of air, which serves for the extraction of the combined fiber stream, wherein the sucked air to prevent a Backflow of the gluing spray has substantially the same flow direction as the spray.
  • the air drawn in through the intake ducts should only have a certain maximum temperature in order to avoid glue hardening inside the spray nozzles. Because the inner walls of the spray nozzles heat up to the operating temperature of the air.
  • the aspirated air can for example have a temperature of only about a maximum of 50 0 C, there may occur at higher temperatures Leimaushärtungen within the spray nozzles.
  • the temperature of the air, which is passed through the pressure lines may be higher than the above-mentioned maximum temperature, for example, higher than 50 0 C, since the together with the still unprimed fibers from the pressure lines exiting air does not come into contact with the spray nozzles , Because the degree of drying of the glue mist is directly related to is the air temperature, it is desirable to work with the highest possible temperatures exiting the pressure lines air.
  • the intake air through the intake duct or the intake ducts has a lower temperature than the air emerging from the outlet openings of the pressure lines.
  • the spray nozzles may be liquid pressure nozzles. Such nozzles spray glue by pressurizing. Alternatively, however, liquid-air atomizing nozzles can also be used. In these nozzles, the glue is atomized by air.
  • the above object is achieved with respect to the device by the features of claim 17.
  • the method can be carried out with the device.
  • the device has at least one metering device for fibers.
  • a transport device is provided, which serves to transport discharged from the metering device fibers to Beleimungsffenn.
  • the transport device has at least two pressure lines, in which pneumatic pressure is generated by means of a fan.
  • the fan is arranged between a discharge of the metering device and a respective outlet opening of the pressure lines. At least two pressure lines are provided at least over a certain distance, in which separate partial fiber streams are guided.
  • Two partial fiber streams emerge at outlet openings of the pressure lines as a flat partial flow in such a way that the two partial flows meet at an angle of less than 180 ° and combine to form a fiber stream.
  • a fan is provided for each pressure line. This fan may in particular be a medium to high pressure fan.
  • the pressure lines are at least substantially closed except for respective inlet openings and the outlet openings. It can be provided that a plurality of pressure lines share a common outlet opening.
  • the sizing means comprise at least one spray nozzle directed towards the inner surfaces of the sub-streams between exit from the pressure lines and merging into a stream.
  • the gluing means have on both sides of the combined fiber stream at least one gluing spray nozzle. These spray nozzles are directed to the broad sides of the combined fiber stream. In general, a plurality of juxtaposed spray nozzles are provided over the width of the fiber stream in each case. As spray nozzles, which are directed onto the inner surfaces of the partial flows, separate spray nozzles are preferably provided for each of the two opposite inner surfaces.
  • the device comprises means for sucking off the fibers of the combined fiber stream. These means may in particular comprise a fan which generates a negative pressure in a suction duct through which the combined fiber stream is guided.
  • the device has substantially the same advantages as previously described in connection with the method. This also applies to the preferred embodiments of the device described below.
  • an air-fiber separator is arranged between the at least one fiber metering device and the gluing means.
  • the air-fiber viewer In particular, it can be connected substantially directly to the metering device.
  • the air-fiber separator may in particular be a separator, as described in WO 01/89783 A1.
  • a feed chute which may in particular be a discharge chute of the metering device, extends to an opening roller.
  • the opening roller has a plurality of pins on its surface and is rotatable so that incident fibers are deflected by the pins.
  • a chute section bounded by a portion of the calf periphery and an opposite wall extends from an outlet of the feed chute in the direction of rotation of the opening roller.
  • An exit opening of the chute section is arranged such that the fibers emerge substantially horizontally in an expanded fiber stream into an air passageway which carries a downwardly or upwardly directed airflow created by vacuum.
  • a coarse material discharge shaft which has an inlet that is opposite the outlet opening of the shaft section and a coarse material outlet arranged below the inlet, is connected to the air channel.
  • the fiber stream is pulled apart by the opening roller due to acceleration, which improves the visual effect.
  • the opening roller is preferably adjustable in its speed. As a result, the speed with which fibers are ejected from the shaft section can be varied, which influences the parcel trajectory, in particular of the large parts, which should reach the coarse material shaft during the visual process.
  • the pressure lines each have a curvature which is arranged near the respective outlet opening of the pressure line.
  • the curvature is designed in the direction of flow in such a way that the fibers, due to centrifugal force, make contact with a wall of the pressure line which is external to the curvature and thereby exit from the pressure lines in a compressed manner.
  • the curvature may in particular have the shape of a partial circle. It could also be provided that the fibers after passing through the curvature still a relatively short travel straight along the outer wall before exiting the exit opening.
  • a collecting duct in which the partial flows unite, and the outlet openings of the pressure lines can be arranged to one another such that air, which moves along an inner wall through the curvature of the pressure lines, after emerging from the pressure lines between the combined fiber flow and Wandungsinnen vom the collection shaft moves.
  • the inner surfaces of the collection shaft can be protected from contamination by the freshly glued fibers.
  • the fibers are discharged from a single metering device and a material divider divides the exiting fiber stream into the partial streams.
  • a material divider divides the exiting fiber stream into the partial streams.
  • Dosage device can be located. If a single fiber separator is provided, the material divider is preferably located adjacent to the viewing process in the air channel of the fiber separator or downstream of the fiber separator.
  • the pressure lines may be formed in the region of their respective outlet opening as a flat jet nozzle.
  • the curvature described above may be part of the flat jet nozzle, so that the respective pressure line tapers approximately in the transition region to the curvature in cross section. It can be provided that a plurality of pressure lines have a common flat jet nozzle. The outlet opening of the flat jet nozzle is then a common outlet opening of the associated pressure lines.
  • the speed of the at least one fan for pressure generation in the pressure lines is variable, preferably continuously. In this way, the speed of emerging from the pressure lines fibers can be adjusted.
  • the fiber density in the Beleimungszone be set.
  • the amount of fiber discharged from the metering device can be predetermined in particular by means of a gravimetric metering in which a weighing device is used.
  • a regulation can take place in which the fiber speed is changed as a function of the known amount of fiber discharged from the metering device.
  • the control can relate to the fiber density of the partial flows before the curvatures.
  • the at least one spray nozzle which faces a surface extending across the width of the combined fiber stream, is disposed within a respective intake duct. Air is drawn in through the intake shaft, which serves to extract the fibers of the combined fiber stream.
  • the spray nozzles are aligned so that the spray direction substantially coincides with the direction of the air flow.
  • the flow velocity of the air flowing through the two laterally arranged intake ducts can be adjustable in that a free cross-section of the respective intake duct is changeable.
  • the at least one spray nozzle which are directed onto the inner surfaces of the partial flows, is preferably also arranged in a further suction duct so that it is surrounded by air for suction of the combined fiber flow and is oriented substantially in the flow direction.
  • Means can be provided for heating the air flowing through the intake ducts. These means may in particular be a heat exchanger or an air heater. These heating means may also be provided to heat the air flowing into the metering device.
  • these means which in turn may in particular be a heat exchanger or an air heater, preferably designed so that the emerging from the pressure lines air can be heated to a higher temperature than the temperature of the intake duct or the intake ducts flowing air.
  • the spray nozzles may be liquid pressure nozzles or liquid-air atomizing nozzles.
  • the enclosure of the gluing device is dimensioned such that the fiber streams have a distance from the walls which prevents fiber contact from occurring with the walls.
  • FIG. 2 is a perspective view of a portion of the gluing device shown in Fig. 1, in which the gluing takes place,
  • FIG. 3 shows a schematic partial view of a gluing device, in which in each case two pressure lines have a common outlet opening,
  • Fig. 4 shows schematically a further gluing device, in which two air heaters are provided for heating air.
  • the gluing device according to FIG. 1 has a dosing bunker 1.
  • the dosing hopper 1 has an inlet 2 for filling with dried wood fibers 3 according to arrow 37.
  • the fibers 3 are fed to a discharge 4 with discharge rollers 4a.
  • the discharge rollers 4a larger clumps of the fibers 3 are dissolved.
  • the bottom band 29 passes over a weighing device 5, which continuously detects the current fiber throughput weight (weight per unit time).
  • the metering device 1 has an air supply 7.
  • a fan 9 is arranged, which supplies heated air by means of an air heater 10.
  • the fibers 3 pass through a discharge chute 11 of the metering device 1 as a fiber stream 6 to the direction of an air-fiber separator 70.
  • an opening roller 72 In the region of an outlet 71 of the discharge chute 11 of the fiber stream 6 strikes an opening roller 72, on the surface of a plurality of pins 73 is arranged , The pins 73 taper with increasing distance to the axis of rotation of the opening roller 72 conically to a point.
  • the opening roller can rotate at about 1000 rpm.
  • the speed of the opening roller 72 is adjustable so that it can adapt to different materials to be dissolved.
  • the fiber stream 6 is deflected by the pins 73 into a shaft section 74.
  • the shaft section 74 is delimited by a section of the opening roller circumference and a wall 75.
  • the shaft section 74 extends approximately from the outlet 71 to the lowest point of the opening roller 72 and has an outlet opening 76 there.
  • the outlet opening 76 of the shaft section 74 opens into an air channel 77 of the fiber separator 70.
  • air is supplied via an air supply 78, the amount of which can be regulated by means of an air supply slide, not shown.
  • an inlet 79 of a coarse material discharge shaft 80 is arranged.
  • the size of the inlet 79 may be adjustable by an adjustable slider (not shown).
  • the coarse material discharge shaft 80 extends substantially in the vertical direction and has a coarse material discharge 81 at its lower end.
  • a material divider 12 is arranged in the air channel 77.
  • the material divider 12 opens into two suction lines 13 and 14. These go into pressure lines 15 and 16, with a respective fan 17 and 18 is arranged therebetween.
  • the parallel-connected fans 17, 18 may in particular be medium to high-pressure fans.
  • the pressure lines 15, 16, which serve to transport fibers in partial flows 19 and 20, have a completely closed wall and are formed at their outlet end as a flat jet nozzle 21 and 22 respectively.
  • the flat jet nozzles 21, 22 have at a respective outlet a part-circular curvature 23 and 24.
  • the curvature 23 and 24 causes the fibers create by centrifugal force to an outer curvature 25 and 26, ie on the wall, the flat fan nozzle 21, 22 limited over their width at the larger radius of curvature.
  • the outlet width of the flat jet nozzles 21, 22 is arbitrary. It depends on the desired fiber throughput.
  • the flat jet nozzles 21, 22 open with an outlet opening 31 or 32 in a collecting shaft 33.
  • the collecting shaft 33 has walls 43 and 44, which adjoin the outlet openings 31, 32 directly in the flow direction.
  • the collecting shaft 33 passes into a suction duct 34, which has a larger cross-section than the collecting shaft 33.
  • In the transition region between the collecting shaft 33 and the suction duct 34 respectively opens a suction duct 35 and 36th
  • Walls 38 and 39 of the intake duct 35 and walls 40th and 41 of the intake duct 36 are adjustable to change the free cross section of the respective intake duct 35, 36.
  • a further intake shaft 42 adjoins the collecting shaft 33, adjacent to the flow direction, adjacent to the outlet openings 31, 32.
  • the thin fiber partial flows 27, 28 meet in the collecting shaft 33 in a V-shaped manner and combine to form a fiber stream 45.
  • a series of gluing spray nozzles 46 (only one shown) are aligned over the width of the partial flow 27, aligned with the partial flow 27. Accordingly, a series of spray nozzles 47 is arranged aligned with the partial flow 28 over its width.
  • a series of spray nozzles 48 are arranged, which are directed onto a surface of the fiber stream 45.
  • a number of other spray nozzles 49 is arranged, which are directed to the opposite surface of the fiber stream 45.
  • the spray nozzles 48, 49 are located in the areas where the intake ducts 35, 36 open into the suction duct 34.
  • Air which has been sucked in by suction means 57 and heated by means of the air heater 10 is, via an air line 52, in which a further fan 53 is arranged, and via further air lines 54, 55 and 56, the intake ducts 35, 42 and 36, respectively fed.
  • a fan between the suction means 57 and the air heater 10 could be provided.
  • a Faserabsaugrohr 88 connects, which leads to a cyclone 89 with a rotary valve 93.
  • Exhaust air of the cyclone 89 is a powerful fan 51 is arranged.
  • Cyclone exhaust air is usually fed to an air filter (not shown). A portion of the exhaust air of the cyclone 89 can via an air line 91 as the intake air
  • Fasersichter 70 are supplied, in addition to air as indicated by arrow 92.
  • the guided through the air filter, not shown exhaust air, which still has a residual heat from the process, at least partially as the intake air
  • Heat exchangers 10 are supplied (not shown).
  • FIG. 2 the area roughly designated by reference numeral 58 in Fig. 1, in which the gluing takes place, is shown in greater detail. The fibers are not shown.
  • An entire forward end wall region of the intake duct 42, the collection duct 33, the intake ducts 35, 36 and the exhaust duct 34 are designated by the reference numeral 60. Of the opposite end wall region is designated 61. From Fig. 2 it can be seen that the width of the flat jet nozzles 21, 22 is smaller than the width of the suction ducts 42, 35, 36 and the collecting shaft 33 and the suction duct 34. In this way it can be achieved that freshly glued fibers or glue come in contact with the walls of said shafts.
  • the described gluing device is based on the following mode of operation:
  • the fiber stream 6 metered in and guided by the opening roller 72 is accelerated by the opening roller 72 and thereby pulled apart. Impurities and irregularities, in particular coarse wood particles, are mainly dissolved or reduced.
  • the fibers enter the air channel 77.
  • Lightweight normal material 83 ie average single fibers, describe a short parcel of parcels after exiting the shaft section 74 due to their relatively low kinetic energy, and then move downstream from the air flow in the air channel 77 to be taken downstairs.
  • Coarse material 84 which is heavier than the normal 83, describes by its higher kinetic energy a longer throw parabola and thus passes into the Grobgutaustragsschacht 80. Heavy parts of the coarse material 84 fall into the Grobgutaustrag 81st
  • the fibers discharged from the fiber separator 70 as normal material 83 are fed pneumatically through the pressure lines 15, 16 to the gluing area 58 under pressure by means of the fans 17, 18.
  • the pressure lines 15, 16 are closed except for the outlet openings 31, 32 of the flat jet nozzles 21, 22.
  • the speed with which the fibers emerge from the flat jet nozzles 21, 22 is adjustable by way of a variable speed of the fans 17, 18.
  • the speed is preferably set in such a regulated manner that the density of the partial fiber streams 19, 20 before passing through the curves 23, 24 is constant.
  • the weighing device 5 gravimetrically measured the amount of discharged from the metering device 1 fibers.
  • the opposite inner surfaces of the fiber sub-streams 27, 28 are wetted by the Sprühd ⁇ sen 46, 47 with glue.
  • the combined fiber stream 45 is wetted at its broad sides by means of the spray nozzles 48, 49 with glue.
  • Both the spray nozzles 46, 47 and the spray nozzles 48, 49 are flowed around by warm intake air from the air lines 54, 55 and 56, respectively.
  • the advantages of the flow-through or the spray-drying of the glue mist due to the warm air in the intake ducts 35, 42, 36 have been described above.
  • the spray nozzles 46-49 are liquid pressure nozzles or liquid-air atomizer nozzles.
  • the spray nozzles 46-49 are each aligned substantially in the flow direction of the sucked air.
  • the glueing device according to FIGS. 1 and 2 is intended for fiber capacities which can be handled by a single metering device and a single fiber separator upstream of the dry glueing.
  • a gluing device with two metering devices and two air-fiber separators. In such a gluing device, the material divider 12 is eliminated.
  • a material divider 12 ' is arranged, which opens into four intake pipes 13, 14, 13' and 14 '. These pass into pressure lines 15, 16, 15 'and 16', with a respective fan 17, 18, 17 'and 18' arranged therebetween.
  • the two pressure lines 15, 16 are formed at their common outlet end as a flat jet nozzle 21 and the pressure lines 15 'and 16' at its common outlet end as a flat jet nozzle 22.
  • the two pressure lines 15, 16 and 15 ', 16' which each have a round cross-section, have a common flat-jet nozzle 21 or 22, it is achieved that the fibrous material extends across the width the respective flat jet nozzle is distributed as evenly as possible.
  • FIG. 4 differs from the gluing device according to FIGS. 1 and 2 in that further suction means 57 'and a further air heater 10' are provided.
  • Aspirator 57 and the air heater 10 provide in this embodiment, only for the warm intake air, which is guided through the air ducts 54, 55 and 56, respectively.
  • the air passing through the fan 9 in the air supply 8 of the Metering device 1 and the air channel 77 is supplied, however, is sucked by the suction means 57 'and heated by means of the air heater 10'.
  • the air heater 10 is designed so that the air flowing around the spray nozzles 46-49 has a temperature of, for example, a maximum of 50 C C.
  • the air heater 10 ' is such that it more strongly heats the air supplied to the metering device 1 or the air duct 77, so that the air emerging from the flat jet nozzles 21, 22 has a higher temperature than, for example, 50 ° C.
  • the exhaust air from the cyclone 89 conducted through the air filter could be at least partially supplied as an intake air to the heat exchanger 10 as well as the heat exchanger 10 '(not shown).
  • the device according to FIG. 4 does not differ from the device according to FIGS. 1 and 2.
  • the device partially shown in FIG. 3 could of course otherwise have both the features of the device according to FIGS. 1 and 2 as the device according to FIG. 4.

Abstract

Die Erfindung bezieht sich auf ein Verfahren bzw. eine Vorrichtung zum Beleimen von zur Herstellung von Faserplatten vorgesehenen, getrockneten Fasern. Die Fasern (3) werden von einer Faser-Dosiereinrichtung (1) durch eine Transporteinrichtung mit Druckleitungen (15,16), in denen durch mindestens einen Ventilator (17,18) pneumatischer Druck erzeugt wird, so transportiert, dass die Fasern in zwei getrennten Faserteilströmen (27,28) aus Austrittsöffnungen (31 ,32) der Druckleitungen austreten. Die Fasern treten als flacher Teilstrom (27,28) so aus den Druckleitungen aus, dass die beiden Teilströme in einem Winkel von weniger als 180° aufeinandertreffen und sich zu einem Faserstrom (45) vereinigen. Anschließend werden die Fasern mit mindestens einer Beleimungssprühdüse (46,47), die auf die Innenflächen der Teilströme zwischen dem Austreten aus den Druckleitungen und dem Vereinigen zu einem Strom (45) gerichtet ist, und mit jeweils mindestens einer Beleimungssprühdüse (48,49), die auf jede von zwei sich über die Faserstrombreite erstreckenden Oberflächen des vereinigten Faserstroms gerichtet sind, beleimt.

Description

B E S C H R E I B U N G
Verfahren und Vorrichtung zum Beleimen von zur Herstellung von Faserplatten vorgesehenen, getrockneten Fasern
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum Beleimen von zur Herstellung von Faserplatten vorgesehenen, getrockneten Fasern. Die Fasern sind vorzugsweise aus lignozellulose- und/oder zellulosehaltigen Materialien. Bei den Faserplatten handelt es sich um leichte, mitteldichte oder hochdichte Faserplatten.
Es ist üblich, Fasern, die zur Herstellung von MDF- oder HDF-Platten vorgesehen sind, im nassen Zustand zu beleimen. Eine solche sogenannte Blow- line-Beleimung weist jedoch Nachteile auf. Diese sind beispielsweise in der WO 02/14038 A1 beschrieben. Die Nachteile der Blow-Iine-Beleimung können durch eine Beleimung der Fasern im trockenen Zustand vermieden werden.
Aus der WO 02/14038 A1 ist ein Verfahren bzw. eine Vorrichtung zur Beleimung bekannt, wobei Fasern von einer Dosiereinrichtung durch einen mit Unterdruck beaufschlagten Zuführschacht einer Faserwalze zugeführt werden, die auf ihrer Oberfläche mit einer Vielzahl von Stiften versehen ist. Durch Rotation der Faserwalze werden die Fasern in einen Schachtabschnitt umgelenkt und durch die Stifte und einen durch die Stifte erzeugten Luftstrom auf annähernd die Umfangsgeschwindigkeit der Faserwalze beschleunigt. Der Schachtabschnitt ist durch einen Teilabschnitt des Umfangs der Faserwalze und eine gegenüberliegende Wandung begrenzt. An einer Austrittsöffnung des Schachtabschnitts treten die Fasern im Wesentlichen in horizontaler Bewegungsrichtung aus und werden anschließend nach unten oder nach oben abgesaugt und dadurch umgelenkt. Im Umlenkbereich werden die Fasern mittels mindestens einer Sprühdüse beleimt. Dabei können zwei symmetrisch einander gegenüberliegend angeordnete Faserströme vorgesehen sein, wobei die Faserströme nach dem Austreten aus dem Schachtabschnitt aufeinander prallen. Die Sprühdüsen können sowohl seitlich auf den vereinigten Faserstrom als auch bei einer Absaugung nach unten von oben auf die beiden Teilströme ausgerichtet sein.
Die Faserwalze dient dazu, die Fasern zu transportieren, Ungleichmäßigkeiten wie Faseragglomerate zu beseitigen und gleichzeitig aufgrund einer Beschleunigung der Fasern in Strömungsrichtung den Faserstrom zu strecken. Dabei legen sich die Fasern in dem gekrümmten Schachtabschnitt an, bevor sie aus diesem austreten.
Auch aus der WO 03/106127 A1 ist es bekannt, Fasern durch einen pneumatischen Transportschacht mit einer Krümmung zu führen, wobei die Fasern aufgrund der Zentrifugalkraft gegen eine äußere Wandung der Krümmung ge- presst werden und anschließend über ein rampenartig geneigtes Leitblech geführt werden, bevor sie durch Sprühdüsen beleimt werden. Dabei ist auch die Möglichkeit vorgesehen, die Fasern zwischen dem Verlassen einer Dosiereinrichtung und dem Beleimen zu sichten.
Einander ähnliche Beleimungsvorrichtungen sind in den Druckschriften
DE 102 47 412 A1 , DE 102 47 413 A1 sowie DE 102 47 414 A1 beschrieben. Dabei wird ein Faser-Hohlrundstrahl erzeugt, um eine möglichst große zur Be- leimung zur Verfügung stehende Oberfläche des Faserstroms zu erzeugen und eine möglichst gleichmäßige Beleimung der Fasern zu erreichen. Die Fasern werden in einem Fallschacht oder Faserabsaugrohr mit vertikaler Orientierung beleimt und auf einem Siebband abgelegt. In dem Fallschacht kann ein Mantelluftstrom vorgesehen sein, der die frisch beleimten Fasern umgibt. Die Mantelluft dient dazu, Anbackungen an den Wänden des Fallschachts zu verhindern.
Die DE 102 47 413 A1 offenbart in Figur 9 zwei in Serie angeordnete
Beleimungseinheiten mit wechselweise austauschbarem Fallschacht bzw. Absaugrohr. Das heißt, während eine Beleimungseinheit im Einsatz ist, kann die stillgelegte Beleimungseinheit einer Reinigung unterzogen werden. Der Faserstrom wird dabei durch zwei Umschaltklappen auf die eine oder andere Beleimungseinheit umgeschaltet.
Aus der DE 102 24 090 A1 ist bekannt, Teilströme beleimter Fasern inein- anderzuführen. Dadurch wird eine Verdichtung der Fasern bewirkt, und es entstehen Relativbewegungen der Fasern, die zu einer Vergleichmäßigung der Verteilung des Bindemittels führen.
Der Erfindung liegt daher die Aufgabe zugrunde, ein effektives und nicht auf- wändiges Verfahren der eingangs genannten Art zur Verfügung zu stellen. Ferner liegt der Erfindung die Aufgabe zugrunde, eine zugehörige Vorrichtung vorzusehen.
Die Aufgabe betreffend das Verfahren wird durch die Merkmale des Anspruchs 1 gelöst. Dabei werden die Fasern von einer Faser-Dosiereinrichtung einer Transporteinrichtung zugeführt. Die Transporteinrichtung weist zumindest zwei Druckleitungen auf. In diesen Druckleitungen wird durch mindestens einen Ventilator, der zwischen einem Austrag der Dosiereinrichtung und einer jeweiligen Austrittsöffnung der Druckleitungen angeordnet ist, pneumatischer Druck erzeugt. Vorzugsweise ist für jede Druckleitung ein Ventilator vorgesehen. Mittels der Druckleitungen werden die Fasern zu Beleimungssprüh- düsen transportiert. Dabei werden die Fasern zumindest streckenweise in zwei getrennten Faserteilströmen geführt und treten in Form zweier Teilströme aus Austrittsöffnungen der Druckleitungen aus. Es kann vorgesehen sein, dass mehrere Druckleitungen eine gemeinsame Austrittsöffnung aufweisen. Bei den austretenden Teilströmen handelt es sich um flache Teilströme, d.h. sie weisen eine relativ große Breite im Verhältnis zur Dicke auf. Die aus den Druckleitungen austretenden Teilströme sind so angeordnet, dass sie in einem Winkel von weniger als 180° aufeinandertreffen und sich zu einem Faserstrom vereinigen. Im Folgenden wird zur Vereinfachung diese Winkelanordnung der beiden aufeinandertreffenden Teilströme als V-Form bezeichnet, obwohl die beiden Teilströme nach dem Austritt aus der jeweiligen Druckleitung keinen geraden Verlauf haben müssen, sondern etwas gekrümmt sein können und obwohl der Winkel auch deutlich größer oder kleiner als bei den Schenkeln eines "V" sein kann.
Vorzugsweise haben die beiden Teilströme nach dem Austritt aus der jeweili- gen Druckleitung einen im Wesentlichen geraden Verlauf, und der Winkel zwischen den aufeinandertreffenden Teilströmen kann insbesondere 45° bis 135° betragen. Vorzugsweise beträgt der Winkel 50° bis 110°.
Die Fasern werden mit mindestens einer Beleimungssprühdüse, die auf die Teilstrom-Innenflächen, also die beiden einander gegenüberliegenden Flächen der V-Form, gerichtet sind, zwischen dem Austreten aus den Druckleitungen und dem Vereinigen zu einem Strom beleimt. Nach dem Zusammenführen der beiden Teilströme zu einem Strom werden die Fasern von jeder Breitseite des Faserstroms mit jeweils mindestens einer Beleimungssprühdüse beleimt. Die Fasern des vereinigten Faserstroms werden abgesaugt. Dies kann insbesondere mittels eines weiteren Ventilators geschehen. Entsprechend der Breite des Faserstroms kann jeweils eine Reihe von über die Breite angeordneten Beleimungssprühdüsen vorgesehen sein. Die Druckleitungen sind zumindest im Wesentlichen bis auf jeweilige Eintrittsöffnungen und die Austrittsöffnungen geschlossen.
Mit diesem Verfahren können Hochgeschwindigkeits-Faservliese mit großer Oberfläche erzeugt werden. Dadurch, dass zwei Faservliese V-förmig aufeinandertreffen, steht Sprühdüsen, die dazwischen angeordnet sind, eine doppelt so große Oberfläche zur Verfügung wie bei Erzeugung nur eines Faservlieses. Vergleichsweise kann bei einer gewünschten Faserdurchsatzleistung die Breite des Faservlieses und damit die Baubreite einer entsprechenden Vorrichtung entsprechend verringert sein. Insgesamt stehen zur Beleimung vier Faserstrom- Oberflächen zur Verfügung. Das Verfahren ist wenig aufwändig, da insbesondere keine Faserwalze gemäß der WO 02/14038 A1 erforderlich ist. Dies trägt auch zu einem günstigen Energieaufwand bei. Die Richtung des abgesaugten vereinigten Faserstroms muss nicht vertikal sein, sondern ist beliebig. Die Richtung des vereinigten Faserstroms hängt also insbesondere nicht von der Gravitationskraft ab. Der Faserstrom kann, da er auf Luftströmung basiert, z.B. auch nach oben abgesaugt werden. Dadurch kann eine entsprechende Beleimungseinheit in solch einer Winkellage eingebaut werden, dass die frisch beleimten Fasern des vereinigten Faserstroms auf der ersten Wegstrecke, unmittelbar nach der Beleimung, wo die Fasern noch den Höchstgrad an Kaltklebrigkeit aufweisen, nicht umgelenkt werden müssen, wodurch Anbackungen der frisch beleimten Fasern an den Wänden einer Transporteinrichtung verhindert werden können.
Vorzugsweise ist vorgesehen, dass die Fasern auf dem Weg von der Dosiereinrichtung zu dem Beleimen mittels der Beleimungssprühdüsen einer Luft-Fasersichtung unterzogen werden. Durch eine solche vor der Beleimung stattfindende Vorsichtung können grobe Holzpartikel (sogenannte "Shives") oder ähnliche Ungleichmäßigkeiten des Faserstroms, die bei der Faserherstellung entstehen, relativ sicher aus dem Faserstrom herausgesichtet werden. Solche Ungleichmäßigkeiten führen in der herzustellenden Faserplatte zu Fehlstellen und können somit zu Plattenauschuss führen. Auf Grund der erhöhten Haftfähigkeit trocken beleimter Fasern, deren Beleimung im Gegensatz zu der Blow-Iine-Beleimung nach der Trocknung stattfindet, ist es jedoch zumindest sehr schwierig, wenn nicht unmöglich, solche groben Ungleichmäßigkeiten aus dem trocken beleimten Faserstoff herauszusichten.
Mit dem erfindungsgemäßen Verfahren ist es mit relativ wenig Aufwand möglich, eine Sichtung der Fasern vor der Beleimung vorzunehmen. Der Grund liegt darin, dass der Luft-Fasersichter so in das Verfahren integriert ist, dass keine zusätzliche Faser-Dosiereinrichtung und keine zusätzliche pneumatische Transporteinrichtung für die Luft-Fasersichtung erforderlich sind. Die Fasern gelangen aus einer Dosiereinrichtung zunächst zur Sichtung und dann zur Beleimung, und es kann nach der Beleimung eine Absaugung in einer einheitlichen pneumatischen Transporteinrichtung stattfinden. Vorzugsweise findet die Sichtung der Fasern im Wesentlichen unmittelbar nach Verlassen der mindestens einen Dosiereinrichtung statt.
Bei der Sichtung kann es sich insbesondere um eine Sichtung handeln, wie sie in der WO 01/89783 A1 , deren Inhalt betreffend die Sichtung durch Bezugnahme hier einbezogen sein soll, beschrieben ist. Dabei werden die Fasern durch einen Schacht, bei dem es sich insbesondere um einen Austragsschacht der Dosiereinrichtung handeln kann, einer Auflösewalze zugeführt, die auf ihrer Oberfläche mit einer Vielzahl von Stiften versehen ist und so rotiert, dass die Fasern durch die Stifte umgelenkt werden. Dadurch werden die Fasern im Wesentlichen entlang einem durch einen Teilabschnitt des Umfangs der Auflösewalze und eine gegenüberliegende Wandung begrenzten Schachtabschnitt geführt, bevor sie an einer Austrittsöffnung des Schachtabschnitts im Wesentlichen horizontal austreten. Anschließend gelangen die Fasern in einen durch Unterdruck erzeugten abwärts gerichteten Luftstrom. Der Luftstrom reißt
Fasern mit, die wie gewünscht vereinzelt vorliegen und damit als Teilchen ein relativ geringes Gewicht aufweisen, während Verunreinigungen in Form von Grobgut durch die Gravitationskraft einem Grobgutaustrag zugeführt werden. Es kann auch anstelle des abwärts gerichteten Luftstroms ein aufwärts gerichteter Luftstrom vorgesehen sein.
Vorzugsweise ist vorgesehen, dass die Fasern eine Krümmung der jeweiligen Druckleitung durchlaufen, bevor sie aus dieser austreten. Die Krümmung ist in Strömungsrichtung so angeordnet, dass die Fasern verdichtet aus der Druck- leitung austreten, indem sie sich aufgrund von Zentrifugalkraft an eine bezogen auf die Krümmung äußere Wandung der Druckleitung anlegen. Auf diese Weise kann der Faserstrom zu einem sehr dünnen Faserstrom, der beispielsweise wenige Millimeter dünn ist, verdichtet werden. Die Krümmung kann insbesondere die Form eines Teilkreises aufweisen. Die in der Krümmung wirkende Zentrifugalkraft bewirkt auch eine Trennung von Transportluft und Fasern, so dass an der bezogen auf die Krümmung inneren Wandung im Wesentlichen die Transportluft strömt. Dieser Luftstrom kann nach dem Austritt aus den Druckleitungen verwendet werden, um Innenflächen einer Wandung eines Sammelschachtes, in dem der vereinigte Faserstrom geführt wird, vor Kontakt mit frisch beleimten Fasern zu schützen.
Vorzugsweise wird eine einzige Faser-Dosiereinrichtung verwendet und ein Faserstrom, der aus der Dosiereinrichtung ausgetragen wird, in die zwei Teilströme geteilt. Auf diese Weise wird der Aufwand gering gehalten, beispielsweise im Vergleich zu der bekannten Vorrichtung gemäß WO 02/14038 A1 , bei der zwei Dosiereinrichtungen vorgesehen sind.
Vorzugsweise kann die Geschwindigkeit der aus den Druckleitungen austretenden Fasern mittels einer veränderbaren Drehzahl des mindestens einen Ventilators, der den Druck in den Druckleitungen erzeugt, eingestellt werden. Die Geschwindigkeit der austretenden Fasern kann insbesondere 10-100 m/s und vorzugsweise 40 m/s betragen.
Es kann ferner vorgesehen sein, dass die vor einer vorgesehenen Krümmung der Druckleitungen vorhandene Faserdichte der Teilströme über die Fasergeschwindigkeit geregelt wird. Dabei wird die Fasergeschwindigkeit in Abhängigkeit einer definierten, pro Zeiteinheit aus der Dosiereinrichtung ausgetragenen Fasermenge eingestellt, um die Faserdichte bei einem gewünschten Wert konstant zu halten.
Vorzugsweise werden die Sprühdüsen, die auf eine Oberfläche des vereinigten Faserstroms gerichtet sind, in Sprührichtung von Luft umströmt bzw. umspült, die zur Absaugung des vereinigten Faserstroms dient. Die angesaugte Luft weist im Wesentlichen die gleiche Strömungsrichtung auf wie der Beleimungs- sprühnebel. Damit wird wirkungsvoll ein Rückstau des Sprühnebels und eine damit verbundene Verschmutzung der Düsen verhindert. Es kann vorgesehen sein, dass die Strömungsgeschwindigkeit der angesaugten Luft durch eine Veränderung eines freien Querschnitts eines Ansaugschachts, in dem die Beleimungsdüsen angeordnet sind, eingestellt werden kann. Auch die mindestens eine Sprühdüse, die auf die Innenflächen der Teilströme zwischen dem Austreten aus den Druckleitungen und dem Vereinigen zu einem Faserstrom gerichtet ist, wird vorzugsweise in Sprührichtung von Luft umströmt, die zur Absaugung des vereinigten Faserstroms dient, wobei die angesaugte Luft zur Verhinderung eines Rückstaus des Beleimungssprühnebels im Wesentlichen die gleiche Strömungsrichtung aufweist wie der Sprühnebel.
Bei der durch die Ansaugschächte hindurch angesaugten Luft kann es sich um warme bzw. heiße Luft handeln. Auch die durch die Druckleitungen geführte Luft kann entsprechend erwärmt sein. Dadurch, dass die Sprühdüsen von warmer Luft umströmt werden, wird eine Sprühtrocknung des Leimnebels bezweckt. Die warme bzw. heiße Luft sorgt für eine rasche Oberflächenabtrocknung der Leimtröpfchen des Leimnebels in seiner expandierten Form, wodurch eine Kaltklebrigkeit des Leimes reduziert wird. Auf diese Weise können Anbackungen frisch beleimter Fasern an den Innenwänden einer entsprechenden Beleimungsvorrichtung verhindert werden. Insbesondere werden auf diese Weise Anbackungen von Leim in Schächten, in denen die Sprühdüsen angeordnet sind, vermieden.
Die durch die Ansaugschächte hindurch angesaugte Luft sollte nur eine bestimmte maximale Temperatur haben, um Leimaushärtungen innerhalb der Sprühdüsen zu vermeiden. Denn die inneren Wandungen der Sprühdüsen heizen sich auf die Betriebstemperatur der Luft auf. Die angesaugte Luft kann beispielsweise nur eine Temperatur von etwa maximal 50 0C aufweisen, da es bei höheren Temperaturen zu Leimaushärtungen innerhalb der Sprühdüsen kommen kann.
Die Temperatur der Luft, die durch die Druckleitungen geführt wird, kann jedoch höher als die oben genannte maximale Temperatur sein, beispielsweise höher als 50 0C, da die zusammen mit den noch unbeleimten Fasern aus den Druckleitungen austretende Luft nicht mit den Sprühdüsen in Kontakt kommt. Weil der Grad der Trocknung des Leimnebels in direktem Zusammenhang mit der Lufttemperatur steht, ist es wünschenswert, mit möglichst hohen Temperaturen der aus den Druckleitungen austretenden Luft zu arbeiten.
Somit ist vorzugsweise vorgesehen, dass die durch den Ansaugschacht bzw. die Ansaugschächte hindurch angesaugte Luft eine niedrigere Temperatur hat als die Luft, die aus den Austrittsöffnungen der Druckleitungen austritt.
Bei den Sprühdüsen kann es sich um Flüssigkeits-Druckdüsen handeln. Solche Düsen versprühen Leim durch Druckbeaufschlagung. Alternativ können aber auch Flüssigkeit-Luft-Zerstäuberdüsen verwendet werden. Bei diesen Düsen wird der Leim mittels Luft zerstäubt.
Die obengenannte Aufgabe wird hinsichtlich der Vorrichtung durch die Merkmale des Anspruchs 17 gelöst. Mit der Vorrichtung kann das Verfahren durchgeführt werden. Die Vorrichtung weist mindestens eine Dosiereinrichtung für Fasern auf. Ferner ist eine Transporteinrichtung vorhanden, die dazu dient, aus der Dosiereinrichtung ausgetragene Fasern zu Beleimungsmitteln zu transportieren. Die Transporteinrichtung besitzt zumindest zwei Druckleitungen, in denen pneumatischer Druck mittels eines Ventilators erzeugt wird. Der Ventilator ist zwischen einem Austrag der Dosiereinrichtung und einer jeweiligen Austrittsöffnung der Druckleitungen angeordnet. Es sind zumindest über eine bestimmte Strecke hinweg mindestens zwei Druckleitungen vorgesehen, in denen getrennte Faserteilströme geführt werden. Zwei Faserteilströme treten an Austrittsöffnungen der Druckleitungen als flacher Teilstrom so aus, dass die beiden Teilströme in einem Winkel von weniger als 180° aufeinandertreffen und sich zu einem Faserstrom vereinigen. Insbesondere hierzu wird auf die Ausführungen betreffend das Verfahren Bezug genommen. Es kann insbesondere vorgesehen sein, dass für jede Druckleitung ein Ventilator vorgesehen ist. Dieser Ventilator kann insbesondere ein Mittel- bis Hochdruckventilator sein. Die Druckleitungen sind zumindest im Wesentlichen bis auf jeweilige Eintrittsöffnungen und die Austrittsöffnungen geschlossen. Es kann vorgesehen sein, dass sich mehrere Druckleitungen eine gemeinsame Austrittsöffnung teilen. Die Beleimungsmittel weisen mindestens eine Sprühdüse auf, die auf die Innenflächen der Teilströme zwischen dem Austreten aus den Druckleitungen und dem Vereinigen zu einem Strom gerichtet sind. Betreffend die genauere Beschreibung der Innenflächen der Teilströme wird auf die obigen Ausführungen hinsichtlich des Verfahrens verwiesen. Ferner weisen die Beleimungsmittel beidseitig des vereinigten Faserstroms jeweils mindestens eine Beleimungssprühdüse auf. Diese Sprühdüsen sind auf die Breitseiten des vereinigten Faserstroms gerichtet. In der Regel werden jeweils mehrere nebeneinander angeordnete Sprühdüsen über die Breite des Faserstroms vorgesehen sein. Als Sprühdüsen, die auf die Innenflächen der Teilströme gerichtet sind, sind vorzugsweise für jede der beiden gegenüberliegenden Innenflächen separate Sprühdüsen vorgesehen. Ferner weist die Vorrichtung Mittel zum Absaugen der Fasern des vereinigten Faserstroms vor. Diese Mittel können insbesondere einen Ventilator aufweisen, der in einem Absaugschacht, durch den der vereinigte Faserstrom geführt wird, einen Unterdruck erzeugt.
Denkbar ist auch, dass mehr als zwei Teilströme, beispielsweise vier Teilströme vorgesehen sind, von denen jeweils zwei wie oben beschrieben V-förmig zusammengeführt und beleimt werden. Diese Paare von Teilströmen könnten nebeneinander über die Breite eines Gesamtfaservlieses angeordnet sein, wobei eine entsprechende Anzahl von Druckleitungen vorgesehen wäre. Auch solch eine Vorrichtung bzw. ein entsprechendes Verfahren ist gemäß Anspruch 17 bzw. 1 erfasst.
Bei der Vorrichtung ergeben sich im Wesentlichen die gleichen Vorteile, wie sie zuvor im Zusammenhang mit dem Verfahren beschrieben worden sind. Dies gilt auch für die im Folgenden beschriebenen bevorzugten Ausgestaltungen der Vorrichtung.
Vorzugsweise ist zwischen der mindestens einen Faser-Dosiereinrichtung und den Beleimungsmitteln ein Luft-Fasersichter angeordnet. Der Luft-Fasersichter kann sich insbesondere im Wesentlichen unmittelbar an die Dosiereinrichtung anschließen.
Bei dem Luft-Fasersichter kann es sich insbesondere um einen Sichter han- dein, wie er in der WO 01/89783 A1 beschrieben ist. Ein Zuführschacht, bei dem es sich insbesondere um einen Austragsschacht der Dosiereinrichtung handeln kann, erstreckt sich dabei zu einer Auflösewalze. Die Auflösewalze weist auf ihrer Oberfläche eine Vielzahl von Stiften auf und ist so rotierbar, dass auftreffende Fasern durch die Stifte umgelenkt werden. Ein Schachtabschnitt, der durch einen Teilabschnitt des Wadenumfangs und eine gegenüberliegende Wandung begrenzt ist, erstreckt sich von einem Auslass des Zuführschachtes in Drehrichtung der Auflösewalze. Eine Austrittsöffnung des Schachtabschnitts ist so angeordnet, dass die Fasern im Wesentlichen horizontal in einem auseinander gezogenen Faserstrom in einen Luftkanal austreten, der einen durch Unterdruck erzeugten abwärts oder aufwärts gerichteten Luftstrom führt. Dabei ist ein Grobgutaustragsschacht, der einen der Austrittsöffnung des Schachtabschnitts gegenüber liegenden Einlass und einen unterhalb des Einlasses angeordneten Grobgutaustrag aufweist, mit dem Luftkanal verbunden. Der Faserstrom wird durch die Auflösewalze aufgrund von Beschleunigung auseinander gezogen, wodurch der Sichteffekt verbessert wird. Die Auflösewalze ist in ihrer Drehzahl vorzugsweise regelbar. Dadurch kann die Geschwindigkeit, mit der Fasern aus dem Schachtabschnitt ausgestoßen werden, variiert werden, was die Wurfparabel insbesondere der Großteile beeinflusst, welche beim Sichtvorgang in den Grobgutschacht gelangen sollen.
Bei der Vorrichtung ist vorzugsweise vorgesehen, dass die Druckleitungen jeweils eine Krümmung aufweisen, die nahe der jeweiligen Austrittsöffnung der Druckleitung angeordnet ist. Die Krümmung ist in Strömungsrichtung derartig ausgelegt, dass die Fasern sich aufgrund von Zentrifugalkraft an eine bezogen auf die Krümmung äußere Wandung der Druckleitung anlegen und dadurch verdichtet aus den Druckleitungen austreten. Die Krümmung kann insbesondere die Form eines Teilkreises aufweisen. Es könnte auch vorgesehen sein, dass die Fasern nach Durchlaufen der Krümmung noch eine relativ kurze gerade Strecke entlang der äußeren Wandung zurücklegen, bevor sie aus der Austrittsöffnung austreten.
Ein Sammelschacht, in dem sich die Teilströme vereinigen, und die Austritts- Öffnungen der Druckleitungen können so zueinander angeordnet sein, dass Luft, die sich entlang einer inneren Wandung durch die Krümmung der Druckleitungen bewegt, nach dem Austritt aus den Druckleitungen zwischen dem vereinigten Faserstrom und Wandungsinnenflächen des Sammelschachts bewegt. Dadurch können die Innenflächen des Sammelschachts vor Verun- reinigungen durch die frisch beleimten Fasern geschützt werden.
Ferner ist vorzugsweise vorgesehen, dass die Fasern aus einer einzigen Dosiereinrichtung ausgetragen werden und ein Materialteiler den austretenden Faserstrom in die Teilströme teilt. Insbesondere wenn kein Fasersichter vorgesehen ist, kann sich der Materialteiler in einem Austragsschacht der
Dosiereinrichtung befinden kann. Wenn ein einzelner Fasersichter vorgesehen ist, ist der Materialteiler vorzugsweise im Anschluss an den Sichtvorgang in dem Luftkanal des Fasersichters oder stromabwärts benachbart zu dem Fasersichter angeordnet.
Die Druckleitungen können im Bereich ihrer jeweiligen Austrittsöffnung als Flachstrahldüse ausgebildet sein. Die oben beschriebene Krümmung kann Teil der Flachstrahldüse sein, so dass sich die jeweilige Druckleitung etwa im Übergangsbereich zu der Krümmung im Querschnitt verjüngt. Es kann vorgesehen sein, dass mehrere Druckleitungen eine gemeinsame Flachstrahldüse aufweisen. Die Austrittsöffnung der Flachstrahldüse ist dann eine gemeinsame Austrittsöffnung der zugehörigen Druckleitungen.
Es ist vorteilhaft, wenn die Drehzahl des mindestens einen Ventilators zur Druckerzeugung in den Druckleitungen veränderbar ist, vorzugsweise stufenlos. Auf diese Weise kann die Geschwindigkeit der aus den Druckleitungen austretenden Fasern eingestellt werden. Dadurch kann bei pro Zeiteinheit aus der Dosiereinrichtung ausgetragener Fasermenge die Faserdichte in der Beleimungszone eingestellt werden. Die aus der Dosiereinrichtung ausgetragene Fasermenge kann insbesondere durch eine gravimetrische Dosierung, bei der eine Wiegeeinrichtung verwendet wird, definiert vorgegeben werden. Um die Faserdichte in der Beleimungszone konstant zu halten, kann insbesondere eine Regelung stattfinden, bei der die Fasergeschwindigkeit in Abhängigkeit der bekannten aus der Dosiereinrichtung ausgetragenen Fasermenge verändert wird. Bei einer vorgesehenen Krümmung der Druckleitungen kann die Regelung sich auf die Faserdichte der Teilströme vor den Krümmungen beziehen.
Vorzugsweise ist die mindestens eine Sprühdüse, die auf eine sich über die Breite des vereinigten Faserstroms erstreckende Oberfläche gerichtet ist, innerhalb eines jeweiligen Ansaugschachts angeordnet. Durch den Ansaugschacht wird Luft angesaugt, die zur Absaugung der Fasern des vereinigten Faserstroms dient. Dabei sind die Sprühdüsen so ausgerichtet, dass die Sprührichtung im Wesentlichen mit der Richtung des Luftstroms übereinstimmt. Vorzugsweise kann die Strömungsgeschwindigkeit der Luft, die durch die beiden seitlich angeordneten Ansaugschächte strömt, dadurch einstellbar sein, dass ein freier Querschnitt des jeweiligen Ansaugschachts veränderbar ist.
Die mindestens eine Sprühdüse, die auf die Innenflächen der Teilströme gerichtet sind, ist vorzugsweise in einem weiteren Ansaugschacht ebenfalls so angeordnet, dass sie von Luft zur Absaugung des vereinigten Faserstroms umströmt wird und im Wesentlichen in Strömungsrichtung ausgerichtet ist.
Es können Mittel zur Erwärmung der durch die Ansaugschächte strömenden Luft vorgesehen sein. Bei diesen Mitteln kann es sich insbesondere um einen Wärmetauscher bzw. einen Lufterhitzer handeln. Diese Erwärmungsmittel können auch vorgesehen sein, um die Luft, die in die Dosiereinrichtung einströmt, zu erwärmen.
Es können aber auch Mittel vorgesehen sein, die eigens zur Erwärmung der durch die Druckleitungen geführten Luft dienen. Die Gründe hierfür sind im Zusammenhang mit dem Verfahren beschrieben. Daher sind diese Mittel, bei denen es sich wiederum insbesondere um einen Wärmetauscher bzw. einen Lufterhitzer handeln kann, vorzugsweise so ausgelegt, dass die aus den Druckleitungen austretende Luft auf eine höhere Temperatur erwärmt werden kann als die Temperatur der durch den Ansaugschacht bzw. die Ansaugschächte strömenden Luft.
Bei den Sprühdüsen kann es sich um Flüssigkeits-Druckdüsen oder um Flüssigkeit-Luft-Zerstäuberdüsen handeln.
Vorzugsweise ist die Umhausung der Beleimungsvorrichtung so dimensioniert, dass die Faserströme zu den Wandungen einen Abstand aufweisen, der verhindert, dass Faserkontakt mit den Wandungen stattfindet.
Im Folgenden wird die Erfindung anhand mehrerer Ausführungsbeispiele näher erläutert, wobei auf die Figuren Bezug genommen wird. Es zeigen:
Fig. 1 schematisch eine erfindungsgemäße Vorrichtung,
Fig. 2 in perspektivischer Darstellung einen Teilbereich der in Fig. 1 gezeigten Beleimungsvorrichtung, in dem die Beleimung stattfindet,
Fig. 3 eine schematische Teildarstellung einer Beleimungsvorrichtung, bei der jeweils zwei Druckleitungen eine gemeinsame Austrittsöffnung besitzen,
Fig. 4 schematisch eine weitere Beleimungsvorrichtung, bei der zwei Lufterhitzer zur Erwärmung von Luft vorgesehen sind.
Die Beleimungsvorrichtung gemäß Fig. 1 weist einen Dosierbunker 1 auf. Der Dosierbunker 1 besitzt einen Einlass 2 zur Befüllung mit getrockneten Holzfasern 3 gemäß Pfeil 37. Mittels eines Bodenbandes 29 werden die Fasern 3 einem Austrag 4 mit Austragswalzen 4a zugeführt. Durch die Austragswalzen 4a werden größere Verklumpungen der Fasern 3 aufgelöst. Das Bodenband 29 läuft über eine Wiegeeinrichtung 5, die in kontinuierlicher Weise das laufende Faserdurchsatzgewicht (Gewicht pro Zeiteinheit) erfasst. Die Dosiereinrichtung 1 besitzt eine Luftzuführung 7. In einer Luftzuführleitung 8 ist ein Ventilator 9 angeordnet, der mittels eines Lufterhitzers 10 erwärmte Luft zuführt.
Die Fasern 3 gelangen durch einen Austragsschacht 11 der Dosiereinrichtung 1 als Faserstrom 6 zur Vorsichtung zu einem Luft-Fasersichter 70. Im Bereich eines Auslasses 71 des Austragsschacht 11 trifft der Faserstrom 6 auf eine Auflösewalze 72, auf deren Oberfläche eine Vielzahl von Stiften 73 angeordnet ist. Die Stifte 73 verjüngen sich mit größer werdendem Abstand zur Drehachse der Auflösewalze 72 konisch zu einer Spitze. Die Auflösewalze kann mit circa 1000 U/min rotieren. Die Drehzahl der Auflösewalze 72 ist regelbar, damit diese sich unterschiedlichen aufzulösenden Materialien anpassen kann.
Indem die Auflösewalze 73 in Blickrichtung der Fig. 1 links herum rotiert, wird der Faserstrom 6 durch die Stifte 73 in einen Schachtabschnitt 74 umgelenkt. Der Schachtabschnitt 74 ist durch einen Teilabschnitt des Auflösewalzen- umfangs und eine Wandung 75 begrenzt. Der Schachtabschnitt 74 erstreckt sich etwa von dem Auslass 71 bis zu dem tiefsten Punkt der Auflösewalze 72 und weist dort eine Austrittsöffnung 76 auf.
Die Austrittsöffnung 76 des Schachtabschnitts 74 mündet in einen Luftkanal 77 des Fasersichters 70. Im Luftkanal 77 wird über eine Luftzuführung 78 Luft zugeführt, deren Menge über einen nicht gezeigten Luftzufuhrschieber geregelt werden kann.
Gegenüber von der Austrittsöffnung 76 des Schachtabschnitts 74 ist ein Einlass 79 eines Grobgutaustragsschachtes 80 angeordnet. Die Größe des Einlasses 79 kann durch einen verstellbaren Schieber (nicht gezeigt) einstellbar sein. Der Grobgutaustragsschacht 80 erstreckt sich im Wesentlichen in vertikaler Richtung und weist an seinem unteren Ende einen Grobgutaustrag 81 auf. Stromabwärts des Fasersichters 70 ist in dem Luftkanal 77 ein Materialteiler 12 angeordnet. Der Materialteiler 12 mündet in zwei Ansaugleitungen 13 und 14. Diese gehen in Druckleitungen 15 und 16 über, wobei dazwischen jeweils ein Ventilator 17 bzw. 18 angeordnet ist. Bei den parallel geschalteten Ventilatoren 17, 18 kann es sich insbesondere um Mittel- bis Hochdruckventilatoren handeln. Die Druckleitungen 15, 16, die zum Transport von Fasern in Teilströmen 19 und 20 dienen, weisen eine rundum geschlossene Wandung auf und sind an ihrem Austrittsende als Flachstrahldüse 21 bzw. 22 ausgebildet. Die Flachstrahldüsen 21 , 22 besitzen an einem jeweiligen Auslauf eine teilkreisförmige Krümmung 23 bzw. 24. Die Krümmung 23 bzw. 24 bewirkt, dass sich die Fasern durch Zentrifugalkraft an eine äußere Krümmungswandung 25 bzw. 26 anlegen, also an die Wandung, die die Flachstrahldüse 21 , 22 über ihre Breite am größeren Krümmungsradius begrenzt. Dadurch verdichten sich die Fasern jeweils zu einem dünnen Faserteilstrom 27 und 28. Die Austrittsbreite der Flachstrahldüsen 21 , 22 ist frei wählbar. Sie ist abhängig von der gewünschten Faserdurchsatzleistung.
Die Flachstrahldüsen 21 , 22 münden mit einer Austrittsöffnung 31 bzw. 32 in einen Sammelschacht 33. Der Sammelschacht 33 weist Wandungen 43 und 44 auf, die sich unmittelbar in Strömungsrichtung an die Austrittsöffnungen 31 , 32 anschließen. Der Sammelschacht 33 geht in einen Absaugschacht 34 über, welcher einen größeren Querschnitt besitzt als der Sammelschacht 33. In den Übergangsbereich zwischen dem Sammelschacht 33 und dem Absaugschacht 34 mündet jeweils ein Ansaugschacht 35 bzw. 36. Wände 38 und 39 des Ansaugschachts 35 sowie Wände 40 und 41 des Ansaugschachts 36 sind zur Veränderung des freien Querschnitts des jeweiligen Ansaugschachts 35, 36 verstellbar. Ein weiterer Ansaugschacht 42 schließt sich entgegen der Strömungsrichtung an den Sammelschacht 33 angrenzend an die Austrittsöffnungen 31 , 32 an.
Die dünnen Faserteilströme 27, 28 treffen im Sammelschacht 33 V-förmig aufeinander und vereinigen sich zu einem Faserstrom 45. Innerhalb des Ansaugschachts 42 ist über die Breite des Teilstroms 27 eine Reihe von Beleimungssprühdüsen 46 (nur eine ist gezeigt) ausgerichtet auf den Teilstrom 27 angeordnet. Entsprechend ist eine Reihe von Sprühdüsen 47 ausgerichtet auf den Teilstrom 28 über dessen Breite angeordnet. Ferner ist über die Breite des vereinigten Faserstroms 45 eine Reihe von Sprühdüsen 48 angeordnet, die auf eine Oberfläche des Faserstroms 45 gerichtet sind. Gegenüberliegend ist eine Reihe weiterer Sprühdüsen 49 angeordnet, die auf die gegenüberliegende Oberfläche des Faserstroms 45 gerichtet sind. Die Sprühdüsen 48, 49 befinden sich in den Bereichen, wo die Ansaugschächte 35, 36 in den Absaugschacht 34 münden.
Luft, die durch Ansaugmittel 57 angesaugt und mittels des Lufterhitzers 10 erwärmt worden ist, wird über eine Luftleitung 52, in der ein weiterer Ventilator 53 angeordnet ist, und über weitere Luftleitungen 54, 55 und 56 den Ansaug- schachten 35, 42 bzw. 36 zugeführt. Statt der Ventilatoren 9 und 53 könnte auch ein Ventilator zwischen den Ansaugmitteln 57 und dem Lufterhitzer 10 vorgesehen sein.
An den Absaugschacht 34 schließt sich ein Faserabsaugrohr 88 an, welches zu einem Zyklon 89 mit einer Zellradschleuse 93 führt. In einer Leitung 90 für
Abluft des Zyklons 89 ist ein leistungsstarker Ventilator 51 angeordnet.
Zyklonabluft wird in der Regel einem Luftfilter (nicht gezeigt) zugeführt. Ein Teil der Abluft des Zyklons 89 kann über eine Luftleitung 91 als Ansaugluft dem
Fasersichter 70 zugeführt werden, zusätzlich zu Luft gemäß Pfeil 92. Die durch den nicht gezeigten Luftfilter geleitete Abluft, welche noch eine Restwärme aus dem Prozess besitzt, kann zumindest teilweise als Ansaugluft dem
Wärmetauscher 10 zugeführt werden (nicht gezeigt).
In Fig. 2 ist der in Fig. 1 mit dem Bezugszeichen 58 grob bezeichnete Bereich, in dem die Beleimung stattfindet, detaillierter gezeigt. Dabei sind die Fasern nicht dargestellt. Ein in Blickrichtung vorderer gesamter Stirnwandbereich des Ansaugschachts 42, des Sammelschachts 33, der Ansaugschächte 35, 36 sowie des Absaugschachts 34 ist mit dem Bezugszeichen 60 bezeichnet. Der gegenüberliegende Stirnwandbereich ist mit 61 bezeichnet. Aus Fig. 2 ist ersichtlich, dass die Breite der Flachstrahldüsen 21 , 22 geringer ist als die Breite der Ansaugschächte 42, 35, 36 sowie des Sammelschachts 33 und des Absaugschachts 34. Auf diese Weise kann erreicht werden, dass frisch beleimte Fasern bzw. Leim in Kontakt mit den Wandungen der genannten Schächte kommen.
Der beschriebenen Beleimungsvorrichtung liegt folgende Funktionsweise zugrunde: Der der Auflösewalze 72 dosiert und geführt aufgegebene Faserstrom 6 wird durch die Auflösewalze 72 beschleunigt und dadurch auseinandergezogen. Verunreinigungen und Ungleichmäßigkeiten, insbesondere grobe Holzpartikel, werden überwiegend aufgelöst bzw. verkleinert. Als auseinandergezogener Faserstrom gelangen die Fasern in den Luftkanal 77. Leichtes Normalgut 83, also durchschnittlich schwere einzelne Fasern, beschreiben aufgrund ihrer relativ geringen kinetischen Energie nach dem Austritt aus dem Schachtabschnitt 74 ansatzweise eine kurze Wurfparabel, um dann von dem Luftstrom in dem Luftkanal 77 nach unten mitgenommen zu werden.
Grobgut 84, welches schwerer als das Normalgut 83 ist, beschreibt durch seine höhere kinetische Energie eine längere Wurfparabel und gelangt dadurch in den Grobgutaustragsschacht 80. Schwerteile des Grobgutes 84 fallen in den Grobgutaustrag 81.
Die aus dem Fasersichter 70 als Normalgut 83 ausgetragenen Fasern werden unter Druckbeaufschlagung mittels der Ventilatoren 17, 18 pneumatisch durch die Druckleitungen 15, 16 zu dem Beleimungsbereich 58 geführt. Die Druckleitungen 15, 16 sind bis auf die Austrittsöffnungen 31 , 32 der Flachstrahldüsen 21 , 22 geschlossen. Die Geschwindigkeit, mit der die Fasern aus den Flachstrahldüsen 21 , 22 austreten, ist über eine veränderbare Drehzahl der Ventilatoren 17, 18 einstellbar. Die Geschwindigkeit wird vorzugsweise derartig geregelt eingestellt, dass die Dichte der Faserteilströme 19, 20 vor Durchlaufen der Krümmungen 23, 24 konstant ist. Dazu wird über die Wiegeeinrichtung 5 gravimetrisch die Menge der aus der Dosiereinrichtung 1 ausgetragenen Fasern gemessen. Durch die Drehzahleinstellung der Ventilatoren 17, 18 wird die Geschwindigkeit und somit die Dichte der Teilströme 19, 20 bzw. 27, 28 beeinflusst. Eine zugehörige Kontrolleinheit ist nicht dargestellt. Die Teilströme 27, 28, die einen flachen rechteckigen Querschnitt aufweisen, treten derartig aus den Austrittsöffnungen 31 , 32 aus, dass sie V-förmig aufeinandertreffen und sich zu dem Faserstrom 45 vereinigen. Die einander gegenüberliegenden Innenflächen der Faserteilströme 27, 28 werden durch die Sprühdϋsen 46, 47 mit Leim benetzt. Der vereinigte Faserstrom 45 wird an seinen Breitseiten mittels der Sprühdüsen 48, 49 mit Leim benetzt.
Sowohl die Sprühdüsen 46, 47 als auch die Sprühdüsen 48, 49 werden von warmer Ansaugluft aus den Luftleitungen 54, 55 bzw. 56 umströmt. Die Vorteile des Umströmens bzw. der Sprühtrocknung des Leimnebels durch die warme Luft in den Ansaugschächten 35, 42, 36 sind oben beschrieben worden. Bei den Sprühdüsen 46-49 handelt es sich um Flüssigkeits-Druckdüsen oder Flüssigkeit-Luft-Zerstäuberdüsen. Die Sprühdüsen 46-49 sind jeweils im Wesentlichen in Strömungsrichtung der angesaugten Luft ausgerichtet. Durch eine Verstellung der Wände 38, 39 bzw. 40, 41 der Ansaugschächte 35, 36 kann die Geschwindigkeit der durch diese Schächte hindurch angesaugten Luft eingestellt werden, um die Wirkung der angesaugten Luft zur Verhinderung eines Rückstaus des Sprühnebels zu optimieren.
Entlang inneren Wandungen 62 und 63 der Krümmungen 23 und 24 strömt im Wesentlichen lediglich Luft, da die verdichteten Faserteilströme 27, 28 an der jeweiligen äußeren Krümmungswandung 25, 26 anliegen. Wie durch Pfeile 64 und 65 gezeigt ist, strömt die Luft zwischen den Faserströmen 27, 28, 45 und den Wandungen 43, 44 des Sammelschachts 33, so dass diese vor Anbackungen von frisch beleimten Fasern geschützt sind.
Die Beleimungsvorrichtung gemäß den Fig. 1 und 2 ist für Faserkapazitäten vorgesehen, die von einer einzigen Dosiereinrichtung und einem einzigen der Trockenbeleimung vorgeschalteten Fasersichter bewältigt werden können. Für größere Faserkapazitäten kann auch eine Beleimungsvorrichtung mit zwei Dosiereinrichtungen und zwei Luft-Fasersichtern eingesetzt werden. Bei solch einer Beleimungsvorrichtung entfällt der Materialteiler 12.
Bei der in Fig. 3 teilweise gezeigten weiteren Ausführungsform einer erfindungsgemäßen Beleimungsvorrichtung sind verglichen mit der oben beschriebenen Beleimungsvorrichtung gleiche Merkmale mit gleichen Bezugszeichen versehen. In einem Luftkanal 77 eines Luft-Fasersichters ist ein Materialteiler 12' angeordnet, der in vier Ansaugleitungen 13, 14, 13' und 14' mündet. Diese gehen in Druckleitungen 15, 16, 15' und 16' über, wobei dazwischen jeweils ein Ventilator 17, 18, 17' und 18' angeordnet ist. Die beiden Druckleitungen 15, 16 sind an ihrem gemeinsamen Austrittsende als Flachstrahldüse 21 und die Druckleitungen 15' und 16' an ihrem gemeinsamen Austrittsende als Flachstrahldüse 22 ausgebildet.
Dadurch, dass bei der Beleimungsvorrichtung gemäß Fig. 3 jeweils die zwei Druckleitungen 15, 16 bzw. 15', 16', die jeweils einen runden Querschnitt besitzen, eine gemeinsame Flachstrahldüse 21 bzw. 22 aufweisen, ist erreicht, dass der Faserstoff über die Breite der jeweiligen Flachstrahldüse möglichst gleichmäßig verteilt ist. Je größer der Unterschied zwischen dem Durchmesser der Druckleitungen und der Breite der jeweiligen Flachstrahldüse ist, desto vorteilhafter ist eine Anordnung einer Reihe von Druckleitungen, um eine gleichmäßige Faserverteilung in den Flachstrahldüsen zu erreichen.
Auch bei der in Fig. 4 gezeigten weiteren Ausführungsform einer erfindungsgemäßen Beleimungsvorrichtung sind verglichen mit der Beleimungsvorrichtung gemäß den Fig. 1 und 2 gleiche Merkmale mit gleichen Bezugszeichen versehen. Die Beleimungsvorrichtung gemäß Fig. 4 unterscheidet sich von der Beleimungsvorrichtung gemäß den Fig. 1 und 2 dadurch, dass weitere Ansaugmittel 57' und ein weiterer Lufterhitzer 10' vorgesehen sind. Die
Ansaugmittel 57 und der Lufterhitzer 10 sorgen bei dieser Ausführungsform nur für die warme Ansaugluft, die durch die Luftleitungen 54, 55 bzw. 56 geführt wird. Die Luft, die durch den Ventilator 9 in der Luftzuführleitung 8 der Dosiereinrichtung 1 bzw. dem Luftkanal 77 zugeführt wird, wird hingegen durch die Ansaugmittel 57' angesaugt und mittels des Lufterhitzers 10' erwärmt.
Der Lufterhitzer 10 ist so ausgelegt, dass die die Sprühdüsen 46-49 um- strömende Luft eine Temperatur von beispielsweise maximal 50 CC aufweist. Hingegen ist der Lufterhitzer 10' so beschaffen, dass er die der Dosiereinrichtung 1 bzw. dem Luftkanal 77 zugeführte Luft stärker erhitzt, so dass die aus den Flachstrahldüsen 21 , 22 austretende Luft eine höhere Temperatur als beispielsweise 50 0C aufweist.
Durch die beschriebenen unterschiedlichen Lufttemperaturen kann erreicht werden, dass einerseits keine Leimaushärtungen innerhalb der Leimsprühdüsen entstehen und andererseits der Grad der Abtrockung des Leimnebels möglichst hoch ist.
Bei dieser Ausführungsform könnte die durch den nicht gezeigten Luftfilter geleitete Abluft des Zyklons 89 sowohl zumindest teilweise als Ansaugluft dem Wärmetauscher 10 als auch dem Wärmetauscher 10' zugeführt werden (nicht gezeigt).
Abgesehen von den genannten abweichenden Merkmalen unterscheidet sich die Vorrichtung gemäß Fig. 4 nicht von der Vorrichtung gemäß den Fig. 1 und 2.
Die in Fig. 3 teilweise dargestellte Vorrichtung könnte ansonsten selbstverständlich sowohl die Merkmale der Vorrichtung gemäß den Fig. 1 und 2 als der Vorrichtung gemäß Fig. 4 aufweisen.

Claims

A N S P R Ü C H E
1. Verfahren zum Beleimen von zur Herstellung von Faserplatten vorgesehenen, getrockneten Fasern,
wobei die Fasern (3) von mindestens einer Faser-Dosiereinrichtung (1 ) durch eine Transporteinrichtung mit mindestens zwei Druckleitungen
(15,15',16,Ie1), in denen durch mindestens einen Ventilator (17, 17',18,18') pneumatischer Druck erzeugt wird, so transportiert werden, dass die Fasern in zwei getrennten Faserteilströmen (27,28) aus Austrittsöffnungen (31 ,32) der Druckleitungen (15, 15', 16, 16') austreten,
wobei der mindestens eine Ventilator (17,17',18,18') zwischen einem Austrag (4) der mindestens einen Dosiereinrichtung (1 ) und einer der Austrittsöffnungen (31 ,32) der Druckleitungen (15,15',16,16') angeordnet ist,
wobei die Fasern als flacher Teilstrom (27,28) so aus den Druckleitungen
(15,15', 16,16') austreten, dass die beiden Teilströme (27,28) in einem Winkel von weniger als 180° aufeinandertreffen und sich zu einem Faserstrom (45) vereinigen,
wobei die Fasern anschließend mit mindestens einer Beleimungssprühdüse
(46,47), die auf die Innenflächen der Teilströme (27,28) zwischen dem Austreten aus den Druckleitungen (15,15',16,16') und dem Vereinigen zu einem Faserstrom (45) gerichtet ist, und mit jeweils mindestens einer Beleimungssprühdüse (48,49), die auf jede von zwei sich über die Faserstrombreite erstreckenden Oberflächen des vereinigten Faserstroms
(45) gerichtet sind, beleimt werden
und wobei die Fasern des vereinigten Faserstroms (45) abgesaugt werden.
2. Verfahren nach Anspruch 1 ,
dadurch gekennzeichnet, dass die Fasern zwischen der mindestens einen Dosiereinrichtung (1 ) und dem Beleimen einer Luft-Fasersichtung (70) unterzogen werden.
3. Verfahren nach Anspruch 2,
dadurch gekennzeichnet, dass die Fasern (6) gleich nach Verlassen der mindestens einen Dosiereinrichtung (1 ) gesichtet werden.
4. Verfahren nach Anspruch 2 oder 3,
dadurch gekennzeichnet, dass die Fasern (6) durch einen Schacht (11 ) einer Auflösewalze (72) zugeführt werden, die auf ihrer Oberfläche mit einer
Vielzahl von Stiften (73) versehen ist und so rotiert, dass die Fasern (6) durch die Stifte (73) umgelenkt und im Wesentlichen entlang einem durch einen Teilabschnitt des Umfangs der Auflösewalze (72) und eine gegenüberliegende Wandung (75) begrenzten Schachtabschnitt (74) unter Auseinanderziehung des Faserstroms (6) zu einem dünnen Film geführt werden und an einer Austrittsöffnung (76) des Schachtabschnitts (74) im Wesentlichen horizontal austreten, und dass die Fasern (6) nach dem Austreten aus dem Schachtabschnitt (74) gesichtet werden, indem ein durch Unterdruck erzeugter, abwärts oder aufwärts gerichteter Luftstrom auf die Fasern ausgeübt wird, der Fasern (83) mitreißt, und Verunreinigungen in
Form von Grobgut (84) durch die Gravitationskraft einem Grobgutaustrag (81 ) zugeführt werden.
5. Verfahren nach einem der vorhergehenden Ansprüche,
dass die Fasern jeweils eine Krümmung (23,24) der Druckleitungen (15,15M6,16') durchlaufen, so dass die Fasern (27,28) sich aufgrund von Zentrifugalkraft an eine äußere Wandung (25,26) der Druckleitungen (15,15',16,16') anlegen und dadurch verdichtet aus den Druckleitungen (15,15',16,161) austreten.
6. Verfahren nach Anspruch 5,
dadurch gekennzeichnet, dass die Krümmung (23,24) die Form eines Teilkreises aufweist.
7. Verfahren nach Anspruch 5 oder 6,
dadurch gekennzeichnet, dass Luft (64,65), die sich entlang einer inneren Wandung (62,63) durch die Krümmung (23,24) der Druckleitungen (15,15',16,16') bewegt, nach dem Austritt aus den Druckleitungen (15,15',16,16') verwendet wird, um Innenflächen von Wandungen (43,44) eines Sammelschachts (33), in dem der vereinigte Faserstrom (45) geführt wird, vor Kontakt mit beleimten Fasern (27,28,45) zu schützen.
8. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass die beiden Teilströme (27,28) erzeugt werden, indem ein Strom (6) von Fasern, die aus einer einzigen Faser- Dosiereinrichtung (1) ausgetragen worden sind, in die Teilströme (27,28) geteilt wird.
9. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass die Geschwindigkeit der aus den Druckleitungen (15,15',16,Ie1) austretenden Fasern (27,28) mittels einer veränderbaren Drehzahl des mindestens einen Ventilators (17,17',18,18') eingestellt werden kann.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass in Abhängigkeit einer definierten, pro Zeiteinheit aus der mindestens einen Dosiereinrichtung (1 ) ausgetragenen Fasermenge die Faserdichte der sich durch die Druckleitungen (15,15',16,16') bewegenden Teilströme (19,20) über die
Fasergeschwindigkeit geregelt wird.
11. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass die jeweils mindestens eine Sprühdüse
(48,49), die auf eine Oberfläche des vereinigten Faserstroms (45) gerichtet ist, in Sprührichtung von Luft umströmt wird, die zur Absaugung des vereinigten Faserstroms (45) angesaugt wird.
12. Verfahren nach Anspruch 11 ,
dadurch gekennzeichnet, dass die Strömungsgeschwindigkeit der angesaugten Luft durch eine Veränderung eines freien Querschnitts eines Ansaugschachts (35,36), durch den die Luft geführt wird, eingestellt werden kann.
13. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass die mindestens eine Sprühdüse (46,47), die auf die Innenflächen der Teilströme (27,28) gerichtet ist, in Sprührichtung von Luft umströmt wird, die zur Absaugung des vereinigten Faserstroms (45) angesaugt wird.
14. Verfahren nach einem der Ansprüche 11 bis 13,
dadurch gekennzeichnet, dass es sich bei der angesaugten Luft um Warmluft handelt.
15. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass es sich bei der durch die Druckleitungen (15,15\16,16') geführten Luft um Warmluft handelt.
16. Verfahren nach den Ansprüchen 14 und 15,
dadurch gekennzeichnet, dass die angesaugte Luft eine niedrigere Temperatur hat als die Luft, die aus den Austrittsöffnungen (31 ,32) der
Druckleitungen (15,15',16,16') austritt.
17. Vorrichtung zum Beleimen von zur Herstellung von Faserplatten vorgesehenen, getrockneten Fasern, aufweisend
- mindestens eine Faser-Dosiereinrichtung (1 ),
- eine Transporteinrichtung, die zum pneumatischen Transport der aus der mindestens einen Dosiereinrichtung (1 ) ausgetragenen Fasern (3) hin zu Beleimungsmitteln (46-49) dient und mindestens zwei Druckleitungen
(15,15',16,16') aufweist, die so ausgelegt sind, dass die Fasern in zwei getrennten Faserteilströmen (27,28) aus Austrittsöffnungen (31 ,32) der Druckleitungen (15,15',16,Ie1) austreten, wobei
zur Erzeugung des pneumatischen Drucks mindestens ein Ventilator
(17,17', 18,18') zwischen einem Austrag (4) der mindestens einen Dosiereinrichtung (1 ) und einer der Austrittsöffnungen (31 ,32) der Druckleitungen (15,15',16,16') angeordnet ist,
die Fasern aus der jeweiligen Austrittsöffnung (31 ,32) der Druckleitungen
(15,15',16,16') als flacher Teilstrom (27,28) so austreten, dass die beiden Teilströme (27,28) in einem Winkel von weniger als 180° aufeinandertreffen und sich zu einem Faserstrom (45) vereinigen, und die Beleimungsmittel (46,49) mindestens eine Beleimungssprühdüse (46,47), die auf die Innenflächen der Teilströme (27,28) zwischen dem Austreten aus den Druckleitungen (15,15',16,16') und dem Vereinigen zu einem Strom (45) gerichtet ist, und jeweils mindestens eine
Beleimungssprühdüse (48,49), die auf jede von zwei sich über die Faserstrombreite erstreckenden Oberflächen des vereinigten Faserstroms (45) gerichtet sind, aufweisen,
- Mittel (33-36,42,51 ) zum Absaugen der Fasern des vereinigten Faserstroms (45).
18. Vorrichtung nach Anspruch 17,
dadurch gekennzeichnet, dass zwischen der mindestens einen
Dosiereinrichtung (1 ) und den Beleimungsmitteln (46-49) ein Luft-Faser- sichter (70) angeordnet ist.
19. Vorrichtung nach Anspruch 18,
dadurch gekennzeichnet, dass der Luft-Fasersichter (70) benachbart zu der mindestens einen Dosiereinrichtung (1 ) angeordnet ist.
20. Vorrichtung nach Anspruch 18 oder 19,
dadurch gekennzeichnet, dass sich unterhalb eines Austrage (4) der Dosiereinrichtung (1 ) ein Zuführschacht (11 ) von dem Austrag (4) zu einer Auflösewalze (72) erstreckt, die auf ihrer Oberfläche eine Vielzahl von Stiften (73) aufweist und so rotierbar ist, dass auf die Auflösewalze (72) treffende Fasern (6) durch die Stifte (73) umgelenkt werden,
und dass sich ein Schachtabschnitt (74), der durch einen Teilabschnitt des Wadenumfangs und eine gegenüberliegende Wandung (75) begrenzt ist, von einem Auslass (71 ) des Zuführschachtes (11 ) in Drehrichtung der Auflösewalze (72) erstreckt und mit einer Austrittsöffnung (76) für die Fasern (6) versehen ist, welche so angeordnet ist, dass die Fasern (6) im Wesentlichen horizontal in einem auseinandergezogenen Faserstrom (6) in einen Luftkanal (77) austreten, der einen durch Unterdruck erzeugten, abwärts oder aufwärts gerichteten Luftstrom führt, wobei ein Grobgutaustragsschacht (81 ), der einen der Austrittsöffnung (76) des Schachtabschnitts (74) gegenüberliegenden Einlass (79) und einen unterhalb des Einlasses (79) angeordneten Grobgutaustrag (81 ) aufweist, mit dem Luftkanal (77) verbunden ist.
21. Vorrichtung nach einem der Ansprüche 17 bis 20,
dadurch gekennzeichnet, dass die Druckleitungen (15,15',16,16') jeweils eine Krümmung (23,24) aufweisen, die benachbart zu der jeweiligen
Austrittsöffnung (31 ,32) der Druckleitung (15,15',16,16') derartig angeordnet ist, dass die Fasern (27,28) sich aufgrund von Zentrifugalkraft an eine äußere Wandung (25,26) der Druckleitungen (15,15',16,16') anlegen und dadurch verdichtet aus den Druckleitungen (15,15', 16,16') austreten.
22. Vorrichtung nach Anspruch 21 ,
dadurch gekennzeichnet, dass die Krümmung (23,24) die Form eines Teilkreises besitzt.
23. Vorrichtung nach Anspruch 21 oder 22,
dadurch gekennzeichnet, dass ein zur Führung des vereinigten Faserstroms (45) vorgesehener Sammelschacht (33) und die Austrittsöffnungen (31 ,32) der Druckleitungen (15,15',16,16') so zueinander angeordnet sind, dass Luft
(64,65), die sich entlang einer inneren Wandung (62,63) durch die Krümmung (23,24) der Druckleitungen (15,15',16,16') bewegt, nach dem Austritt aus den Druckleitungen (15,15',16,16') zwischen dem vereinigten Faserstrom (45) und Innenflächen von Sammelschachtwandungen (43,44) bewegt.
24. Vorrichtung nach einem der Ansprüche 17 bis 23,
dadurch gekennzeichnet, dass eine einzige Faser-Dosiereinrichtung (1 ) und ein Materialteiler (12,12') vorgesehen sind, der zum Teilen eines Faser- Gesamtstroms (83) in die Teilströme (19,20) dient.
25. Vorrichtung nach einem der Ansprüche 17 bis 24,
dadurch gekennzeichnet, dass die Druckleitungen (15, 15', 16, 16') im Bereich ihrer jeweiligen Austrittsöffnung (31 ,32) als Flachstrahldüse (21 ,22) ausgebildet sind.
26. Vorrichtung nach Anspruch 25,
dadurch gekennzeichnet, dass für jeden Teilstrom (27,28) eine Flachstrahldüse (21 ,22) vorgesehen ist, welche die Austrittsöffnung (31 ,32) von mehreren Druckleitungen (15,15',16,16') bildet.
27. Vorrichtung nach einem der Ansprüche 17 bis 26,
dadurch gekennzeichnet, dass die Drehzahl des mindestens einen Ventilators (17,17',18,18') veränderbar ist, um die Geschwindigkeit der aus den Druckleitungen (15, 15', 16, 16') austretenden Fasern (27,28) einstellen zu können.
28. Vorrichtung nach Anspruch 27,
dadurch gekennzeichnet, dass in Abhängigkeit einer definierten, pro Zeiteinheit aus der mindestens einen Dosiereinrichtung (1 ) ausgetragenen Fasermenge die Faserdichte der sich durch die Druckleitungen (15,15',16,Ie1) bewegenden Teilströme (19,20) über die Fasergeschwindigkeit regelbar ist.
29. Vorrichtung nach einem der Ansprüche 17 bis 28,
dadurch gekennzeichnet, dass die jeweils mindestens eine Sprühdüse (48,49), die auf eine Oberfläche des vereinigten Faserstroms (45) gerichtet ist, innerhalb eines jeweiligen Ansaugschachts (35,36), durch den Luft zur Absaugung der Fasern des vereinigten Faserstroms (45) strömt, angeordnet ist, wobei die Sprührichtung im Wesentlichen mit der Richtung des Luftstroms übereinstimmt.
30. Vorrichtung nach Anspruch 29,
dadurch gekennzeichnet, dass ein freier Querschnitt des Ansaugschachts
(35,36) zur Einstellung der Strömungsgeschwindigkeit der angesaugten Luft veränderbar ist.
31. Vorrichtung nach einem der Ansprüche 17 bis 30,
dadurch gekennzeichnet, dass die mindestens eine Sprühdüse (46,47), die auf die Innenflächen der Teilströme (27,28) gerichtet ist, innerhalb eines Ansaugschachts (42), durch den Luft zur Absaugung der Fasern des vereinigten Faserstroms (45) strömt, angeordnet ist, wobei die Sprührichtung im Wesentlichen mit der Richtung des Luftstroms übereinstimmt.
32. Vorrichtung nach einem der Ansprüche 29 bis 31 ,
dadurch gekennzeichnet, dass Mittel (10) zur Erwärmung der durch den An- saugschacht (35,36,42) strömenden Luft vorgesehen sind.
33. Vorrichtung nach einem der Ansprüche 17 bis 32, dadurch gekennzeichnet, dass Mittel (10') zur Erwärmung der durch die Druckleitungen (15, 15', 16, 16') geführten Luft vorgesehen sind.
34. Vorrichtung nach den Ansprüchen 32 und 33,
dadurch gekennzeichnet, dass die Mittel (10') zur Erwärmung der aus den Druckleitungen (15,15',16,16') austretenden Luft ausgelegt sind, die austretende Luft auf eine höhere Temperatur zu erwärmen als die
Temperatur der durch den Ansaugschacht (35,36,42) strömenden Luft.
PCT/EP2007/003083 2006-04-18 2007-04-05 Verfahren und vorrichtung zum beleimen von zur herstellung von faserplatten vorgesehenen, getrockneten fasern WO2007121842A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP07724024.0A EP2018254B1 (de) 2006-04-18 2007-04-05 Verfahren und vorrichtung zum beleimen von zur herstellung von faserplatten vorgesehenen, getrockneten fasern

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102006018103.4 2006-04-18
DE102006018103 2006-04-18
DE102006040044A DE102006040044B3 (de) 2006-04-18 2006-08-26 Verfahren und Vorrichtung zum Beleimen von zur Herstellung von Faserplatten vorgesehenen, getrockneten Fasern
DE102006040044.5 2006-08-26

Publications (2)

Publication Number Publication Date
WO2007121842A1 true WO2007121842A1 (de) 2007-11-01
WO2007121842A8 WO2007121842A8 (de) 2008-11-13

Family

ID=38047887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/003083 WO2007121842A1 (de) 2006-04-18 2007-04-05 Verfahren und vorrichtung zum beleimen von zur herstellung von faserplatten vorgesehenen, getrockneten fasern

Country Status (3)

Country Link
EP (1) EP2018254B1 (de)
DE (1) DE102006040044B3 (de)
WO (1) WO2007121842A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012167991A1 (de) * 2011-06-07 2012-12-13 Fritz Egger Gmbh & Co. Og Vorrichtung und verfahren zur benetzung von holzpartikeln
WO2018150041A3 (de) * 2017-02-20 2018-10-11 Dieffenbacher GmbH Maschinen- und Anlagenbau Steuervorrichtung und -verfahren zum dosieren eines bindemittels, eine einbringvorrichtung und -verfahren zum einbringen eines bindemittels in einen materialstrom sowie ein system zur herstellung von werkstoffplatten
CN114809536A (zh) * 2022-04-11 2022-07-29 广东博智林机器人有限公司 涂敷机器人

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008052961B4 (de) * 2008-10-23 2016-07-28 SWISS KRONO Tec AG Verfahren zum Herstellen von Holzwerkstoffen
UA108139C2 (uk) 2010-12-23 2015-03-25 Кроноплас Текнікел Аг Пристрій і спосіб повітряної сепарації деревної стружки та нанесення на неї клею
DE102016010539B3 (de) * 2016-05-28 2017-05-04 Fritz Schneider Verfahren und Vorrichtung zum Beleimen von zur Herstellung von Faserplatten vorgesehenen, getrockneten Fasern
DE102016006499B3 (de) * 2016-05-28 2017-12-28 Fritz Schneider Verfahren und Vorrichtung zum Trocknen von zur Herstellung von Faserplatten vorgesehenen, mit Leim benetzten Fasern
DE102017103458B4 (de) 2017-02-20 2019-05-29 Dieffenbacher GmbH Maschinen- und Anlagenbau Vorrichtung und Verfahren zum Benetzen eines Materialstroms mit einem Bindemittel und einem System zur Herstellung von Werkstoffplatten
DE202017100934U1 (de) 2017-02-20 2018-03-21 Dieffenbacher GmbH Maschinen- und Anlagenbau Vorrichtung zum Benetzen eines Materialstroms mit einem Bindemittel und einem System zur Herstellung von Werkstoffplatten
EP3630431A1 (de) * 2017-05-22 2020-04-08 Dieffenbacher GmbH Maschinen- und Anlagenbau Beleimungseinrichtung zum beleimen von partikeln, vorrichtung einer oder für eine anlage zur herstellung von pressplatten, verfahren zur verhinderung von ablagerung von leim und/oder partikeln und verfahren zum beleimen von partikeln

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001089783A1 (de) * 2000-05-24 2001-11-29 Flakeboard Company Limited VERFAHREN UND VORRICHTUNG ZUR AUFLÖSUNG VON UNGLEICHMÄssIGKEITEN IN HOLZFASERSTRÖMEN
WO2002014038A1 (de) * 2000-08-11 2002-02-21 Flakeboard Company Limited Verfahren und vorrichtung zum beleimen von zur herstellung von faserplatten vorgesehenen, getrockneten fasern
EP1262293A1 (de) * 2000-03-07 2002-12-04 Nichiha Corporation Formkörper auf holzbasis sowie verfahren zu dessen herstellung
DE10224090A1 (de) * 2002-05-31 2003-12-11 Metso Paper Inc Verfahren und Vorrichtung zur Benetzung faseriger Rohstoffe mit Bindemittel
WO2003106127A1 (de) * 2002-06-15 2003-12-24 Flakeboard Company Limited Verfahren und vorrichtung zum aufbringen eines stoffes auf zur herstellung von faserplatten vorgesehene, getrocknete fasern
DE10247413A1 (de) * 2002-10-11 2004-04-29 Siempelkamp Maschinen- Und Anlagenbau Gmbh & Co. Kg Anlage zum Beleimen von Fasern für die Herstellung von Faserplatten, insbesondere MDF-Platten oder dergleichen Holzwerkstoffplatten
DE10247412A1 (de) * 2002-10-11 2004-04-29 Siempelkamp Maschinen- Und Anlagenbau Gmbh & Co. Kg Anlage und Verfahren zum Beleimen von Fasern für die Herstellung von Faserplatten, insbesondere MDF-Platten und dergleichen Holzwerkstoffplatten
DE10247414A1 (de) * 2002-10-11 2004-04-29 Siempelkamp Maschinen- Und Anlagenbau Gmbh & Co. Kg Anlage zum Beleimen von Fasern für die Herstellung von Faserplatten, insbesondere MDF-Platten o. dgl. Holzwerkstoffplatten
DE102004054162B3 (de) * 2004-11-10 2006-05-04 Flakeboard Company Limited, St.Stephen Verfahren und Vorrichtung zur Verhinderung von Verunreinigungen einer Transporteinrichtung aufgrund frischbeleimter Fasern

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1262293A1 (de) * 2000-03-07 2002-12-04 Nichiha Corporation Formkörper auf holzbasis sowie verfahren zu dessen herstellung
WO2001089783A1 (de) * 2000-05-24 2001-11-29 Flakeboard Company Limited VERFAHREN UND VORRICHTUNG ZUR AUFLÖSUNG VON UNGLEICHMÄssIGKEITEN IN HOLZFASERSTRÖMEN
WO2002014038A1 (de) * 2000-08-11 2002-02-21 Flakeboard Company Limited Verfahren und vorrichtung zum beleimen von zur herstellung von faserplatten vorgesehenen, getrockneten fasern
DE10224090A1 (de) * 2002-05-31 2003-12-11 Metso Paper Inc Verfahren und Vorrichtung zur Benetzung faseriger Rohstoffe mit Bindemittel
WO2003106127A1 (de) * 2002-06-15 2003-12-24 Flakeboard Company Limited Verfahren und vorrichtung zum aufbringen eines stoffes auf zur herstellung von faserplatten vorgesehene, getrocknete fasern
DE10247413A1 (de) * 2002-10-11 2004-04-29 Siempelkamp Maschinen- Und Anlagenbau Gmbh & Co. Kg Anlage zum Beleimen von Fasern für die Herstellung von Faserplatten, insbesondere MDF-Platten oder dergleichen Holzwerkstoffplatten
DE10247412A1 (de) * 2002-10-11 2004-04-29 Siempelkamp Maschinen- Und Anlagenbau Gmbh & Co. Kg Anlage und Verfahren zum Beleimen von Fasern für die Herstellung von Faserplatten, insbesondere MDF-Platten und dergleichen Holzwerkstoffplatten
DE10247414A1 (de) * 2002-10-11 2004-04-29 Siempelkamp Maschinen- Und Anlagenbau Gmbh & Co. Kg Anlage zum Beleimen von Fasern für die Herstellung von Faserplatten, insbesondere MDF-Platten o. dgl. Holzwerkstoffplatten
DE102004054162B3 (de) * 2004-11-10 2006-05-04 Flakeboard Company Limited, St.Stephen Verfahren und Vorrichtung zur Verhinderung von Verunreinigungen einer Transporteinrichtung aufgrund frischbeleimter Fasern

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012167991A1 (de) * 2011-06-07 2012-12-13 Fritz Egger Gmbh & Co. Og Vorrichtung und verfahren zur benetzung von holzpartikeln
RU2557204C1 (ru) * 2011-06-07 2015-07-20 Фриц Эггер Гмбх Унд Ко. Ог Устройство и способ для покрытия частиц древесины
WO2018150041A3 (de) * 2017-02-20 2018-10-11 Dieffenbacher GmbH Maschinen- und Anlagenbau Steuervorrichtung und -verfahren zum dosieren eines bindemittels, eine einbringvorrichtung und -verfahren zum einbringen eines bindemittels in einen materialstrom sowie ein system zur herstellung von werkstoffplatten
CN114809536A (zh) * 2022-04-11 2022-07-29 广东博智林机器人有限公司 涂敷机器人
CN114809536B (zh) * 2022-04-11 2024-01-26 广东博智林机器人有限公司 涂敷机器人

Also Published As

Publication number Publication date
DE102006040044B3 (de) 2007-06-06
EP2018254B1 (de) 2018-01-03
EP2018254A1 (de) 2009-01-28
WO2007121842A8 (de) 2008-11-13

Similar Documents

Publication Publication Date Title
EP2018254B1 (de) Verfahren und vorrichtung zum beleimen von zur herstellung von faserplatten vorgesehenen, getrockneten fasern
EP2736655B1 (de) Kompakte lackieranlage
DE10247412C5 (de) Anlage zum Beleimen von Fasern für die Herstellung von Faserplatten, insbesondere MDF-Platten und dergleichen Holzwerkstoffplatten
EP1307325B1 (de) Verfahren und vorrichtung zum beleimen von zur herstellung von faserplatten vorgesehenen, getrockneten fasern
DE10247413B4 (de) Anlage zum Beleimen von Fasern für die Herstellung von Faserplatten, insbesondere MDF-Platten oder dergleichen Holzwerkstoffplatten
EP1809454B1 (de) Verfahren und vorrichtung zur verhinderung von verunreinigungen einer transporteinrichtung aufgrund frischbeleimter fasern
DE1802161A1 (de) Verfahren und Vorrichtung zum Klassieren und Abgeben von Material
DE102016010539B3 (de) Verfahren und Vorrichtung zum Beleimen von zur Herstellung von Faserplatten vorgesehenen, getrockneten Fasern
WO2005065905A1 (de) Anlage und verfahren zum beleimen von fasern für die herstellung von faserplatten, insbesondere mdf-platten u. dgl. holzwerkstoffplatten
DE10226820B3 (de) Verfahren und Vorrichtung zum Beleimen von zur Herstellung von Faserplatten vorgesehenen, getrockneten Fasern
CH666065A5 (de) Verfahren und vorrichtung zur kontinuierlichen herstellung einer faservliesbahn.
WO2001089783A1 (de) VERFAHREN UND VORRICHTUNG ZUR AUFLÖSUNG VON UNGLEICHMÄssIGKEITEN IN HOLZFASERSTRÖMEN
EP1442855B1 (de) Vorrichtung zum Streuen von Streugut auf eine kontinuierlich bewegte Unterlage
EP3630431A1 (de) Beleimungseinrichtung zum beleimen von partikeln, vorrichtung einer oder für eine anlage zur herstellung von pressplatten, verfahren zur verhinderung von ablagerung von leim und/oder partikeln und verfahren zum beleimen von partikeln
EP4100223A1 (de) Windstreukammer und verfahren zum streuen und formen eines rieselfähigen materials auf einem formband
EP2347874B1 (de) Verfahren und Vorrichtung zum Vermischen eines Partikelgemisches mit einem Klebstoff
EP3976333A1 (de) Vorrichtung und verfahren zur herstellung eines vlieses
EP3976334B1 (de) Vorrichtung und verfahren zur herstellung eines vlieses
DE10156070B4 (de) Verfahren und Vorrichtung zur Auflösung von Ungleichmäßigkeiten in Holzfaserströmen
DE10061072A1 (de) Verfahren und Vorrichtung zum Beleimen von zur Herstellung von Faserplatten vorgesehenen, getrockneten Fasern
DE10039226C1 (de) Verfahren und Vorrichtung zum Beleimen von zur Herstellung von Faserplatten vorgesehenen, getrockneten Fasern
EP1537968B1 (de) Verfahren und Anlagen zur Beleimung von Fasern und eine Faserbeleimungsvorrichtung
DE102016006499B3 (de) Verfahren und Vorrichtung zum Trocknen von zur Herstellung von Faserplatten vorgesehenen, mit Leim benetzten Fasern
DE102009054148B4 (de) Verfahren und Vorrichtung zur Trocknung und Sichtung von trocken beleimten Fasern
DE202020100552U1 (de) Mischvorrichtung zur Erzeugung einer Mischung aus Mineralfasern und Bindemitteln und eine Anlage zur Erzeugung einer Mineralfasermatte

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07724024

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007724024

Country of ref document: EP