WO2007121823A1 - Heisskanaldüse - Google Patents

Heisskanaldüse Download PDF

Info

Publication number
WO2007121823A1
WO2007121823A1 PCT/EP2007/002875 EP2007002875W WO2007121823A1 WO 2007121823 A1 WO2007121823 A1 WO 2007121823A1 EP 2007002875 W EP2007002875 W EP 2007002875W WO 2007121823 A1 WO2007121823 A1 WO 2007121823A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot runner
runner nozzle
temperature sensor
sleeve
nozzle according
Prior art date
Application number
PCT/EP2007/002875
Other languages
English (en)
French (fr)
Inventor
Herbert Günther
Original Assignee
Günther Heisskanaltechnik Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Günther Heisskanaltechnik Gmbh filed Critical Günther Heisskanaltechnik Gmbh
Priority to US12/226,474 priority Critical patent/US20090311359A1/en
Priority to CA002649202A priority patent/CA2649202A1/en
Priority to MX2008012680A priority patent/MX2008012680A/es
Priority to JP2009505738A priority patent/JP2009534211A/ja
Priority to BRPI0709455-8A priority patent/BRPI0709455A2/pt
Priority to EP07723817A priority patent/EP2012995A1/de
Publication of WO2007121823A1 publication Critical patent/WO2007121823A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/27Sprue channels ; Runner channels or runner nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/1782Mounting or clamping means for heating elements or thermocouples
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/27Sprue channels ; Runner channels or runner nozzles
    • B29C45/2737Heating or cooling means therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/14Supports; Fastening devices; Arrangements for mounting thermometers in particular locations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/16Special arrangements for conducting heat from the object to the sensitive element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/27Sprue channels ; Runner channels or runner nozzles
    • B29C45/2737Heating or cooling means therefor
    • B29C2045/274Thermocouples or heat sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76003Measured parameter
    • B29C2945/7604Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76177Location of measurement
    • B29C2945/76254Mould
    • B29C2945/76274Mould runners, nozzles
    • B29C2945/76277Mould runners, nozzles nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76451Measurement means
    • B29C2945/76454Electrical, e.g. thermocouples

Definitions

  • the invention relates to a hot runner nozzle for an injection mold according to the preamble of claim 1.
  • Hot runner nozzles are used in injection molds to produce a flowable mass, e.g. a plastic melt to supply at a predetermined temperature under high pressure a separable mold insert. They usually have a material tube with a flow channel that ends in a nozzle orifice. The latter forms on the end a nozzle outlet opening, which opens via a gate in the mold insert (mold cavity). So that the flowable mass does not cool prematurely within the material tube, a heater is provided, which has to ensure a uniform as possible temperature distribution into the nozzle mouthpiece. Thermal separation between the hot nozzle and the cold tool prevents the nozzle from freezing and heating the tool or mold insert.
  • the requirements for the temperature control in a hot runner nozzle are very high, because the plastics to be processed often have a very narrow processing window and are extremely sensitive to temperature fluctuations. For example, a temperature change of only a few degrees can already lead to spray defects and rejects. Precise temperature control is therefore important for a well-functioning and fully automatic hot runner tool. In addition, it is important that for multiple tools with eg 24, 32 or 64 cavities the temperature to be set is the same for all mold cavities. This requires that the set Temperature must match very closely with the actual temperature in the nozzle.
  • Temperature sensors are usually used to monitor and control the temperature. These are - as disclosed for example in EP-A1-0 927 617 or DE-U-201 00 840 - introduced as separate elements in grooves or holes, which are provided in the nozzle body or in the heater. The problem, however, is that even a slight change in position of the temperature sensor can lead to significant measurement errors, which has an unfavorable effect on the reproducibility of the temperatures.
  • the aim of the invention is to avoid these and other disadvantages of the prior art and to provide a hot runner nozzle whose temperature is accurately measurable and controllable.
  • the aim is also a permanently reliable and precise determinability of the temperature, in particular in the end region of the material tube.
  • the nozzle should overall be simple and inexpensive to implement.
  • a hot runner nozzle for an injection mold with a material tube in which at least one flow channel is formed for a flowable material, with a heater for the flowable material and with a temperature sensor arranged in the region of the heater, the invention provides that the temperature sensor on the material pipe is fixed. This ensures that the temperature of the nozzle and thus the temperature of the flowable material within the flow channel is always measured in the same place.
  • the entire hot runner system can thus be controlled precisely; The temperature can be kept exactly at the same level even with a variety of nozzles in a tool.
  • the temperature sensor is fixed in the end area of the material pipe. In this way, the temperature in the area of the nozzle tip or the nozzle tip is measured, ie where the greatest heat losses can occur.
  • the temperature sensor is provided at the end with a sleeve which is attached to the material pipe.
  • the temperature sensor is thus permanent reliably determined. Furthermore, the sensor end can no longer move relative to the material pipe or to the heater, which makes the process control safer.
  • the sleeve is pressed with the temperature sensor, soldered or glued. It advantageously consists of a good heat-conducting material, so that always optimal results are achieved.
  • the sleeve is a crimp sleeve and that it is welded, soldered or glued to the material tube. This results in a generally simple construction and the nozzle can be realized inexpensively.
  • the heater takes on the temperature sensor, wherein the measuring point is accessible from the outside.
  • the temperature sensor can be quickly and easily set on the material pipe. Contributes in particular to when the measuring point of the temperature sensor is in the region of a recess formed in the heater, wherein the temperature sensor is always securely fixed in the region of the recess on the outer circumference of the material tube.
  • Fig. 1 is a sectional view of a hot runner nozzle
  • FIG. 2 is an enlarged partial side view of the hot runner nozzle of FIG. 1.
  • the hot runner nozzle generally designated 10 in FIG. 1 is intended for use in an injection mold. It has a material tube 20 which is provided at its upper end with a flange-like connection head 22. This sits detachably in a housing 12 which can be fixed from below to a distributor plate (not shown). A radially formed step 13 centers the housing 12 and thus the nozzle 10 in the tool.
  • a flow channel 30 for a molten material is centrally introduced.
  • the preferably formed as a bore channel 30 has in the connection head 22, a material supply port 32 and opens at its lower end in a nozzle mouthpiece 34, which is formed for example as a nozzle tip.
  • the latter has a material outlet opening 35, so that the flowable material melt can get into a (not shown) mold cavity.
  • the nozzle mouthpiece 34 which is preferably made of highly heat-conductive material, is inserted on the end side into the material tube 20, preferably screwed in. But it can also - depending on the application - axially displaceably mounted with the same operation or be integral with the material tube 20.
  • a sealing ring 25 is provided in the connection head 22 of the material tube 20 concentrically with the material feed opening 32. Also conceivable is the formation of an additional (not shown) annular centering approach, which can facilitate the installation of the nozzle 10 on the tool.
  • a heater 40 is placed on the outer circumference 26 of the material tube 20, a heater 40 is placed.
  • This is formed by a sleeve 42 made of a highly thermally conductive material, such as copper or brass, which extends over almost the entire axial length of the material tube 20.
  • a sleeve 42 made of a highly thermally conductive material, such as copper or brass, which extends over almost the entire axial length of the material tube 20.
  • a (not shown) electrical heating coil formed whose (also not visible) connections are led out laterally from the housing 12.
  • the entire heater 40 is enclosed by a protective tube 43.
  • a temperature sensor 50 is provided, which is guided through the heater 40 through into the end portion 27 of the material tube 20.
  • the sleeve 42 of the heater 40 is provided for this purpose with a preferably parallel to the flow channel 30 extending bore 44 which receives the probe 50 (see Fig. 2).
  • the lower end 45 of the bore 44 terminates in a U-shaped recess 46 which is formed in the edge of the wall of the sleeve 42 and in the protective tube 43.
  • the total rod-shaped temperature sensor 50 ends with its tip forming an end 52 in the recess 46 of the sleeve 42 and is fixed there on the outer circumference 26 of the material tube 20.
  • the externally accessible free end 52 of the probe 50 contributes to a sleeve 54 made of a good heat-conducting material, such as a crimp sleeve, which is pressed firmly with the probe 50.
  • the crimping sleeve 54 is located within the recess 46 on the outer circumference 26 of the material tube 20 fastened, preferably by laser welding. The access required for this purpose is expediently carried out through the recess 46.
  • the position of the crimping sleeve 54 and thus the position of the temperature sensor 50 are thus accurately defined relative to the material tube 20, so that the temperature measurement is always carried out at one and the same point.
  • the sensor 50 can not move, so that the temperature detection is not affected.
  • the temperature at the outer end of the material tube 23 and thus in the region of the nozzle mouthpiece 34 can rather be permanently measured exactly, as a result of which the entire nozzle 10 can be precisely controlled.
  • the (not shown) terminals of the temperature sensor 50 are led out laterally from the housing 12 together with the connections for the heater 40.
  • the heater 40 may be integrated, for example, in the material pipe 20 or formed as a flat radiator.
  • the heating element used in the heater 40 may alternatively comprise one of a heating medium, e.g. Be water or oil, through-flow pipe piece, for example, if an electric heater is not desired or not feasible.
  • the invention is readily applicable to cold runner nozzles.
  • a hot runner nozzle 10 for an injection mold has a material tube 20 in which at least one flow channel 30 is formed for a flowable material.
  • a heater 40 for the flowable material in the region of a temperature sensor 50 is arranged. This is fixed to the outer circumference 26 of the material tube 20, in particular with its one Meßspitze or a measuring point forming end 52.
  • the measuring point of the temperature sensor 50 in the end portion 27 of the material tube and in the region of a formed in the heater 40 recess 40.
  • the temperature sensor 50 end provided with a sleeve 54, in particular pressed, which is fixed to the material pipe 20.
  • the sleeve 54 consists of a good heat-conducting material and is preferably a crimp sleeve.

Abstract

Die Erfindung betrifft eine Heißkanaldüse (10) für ein Spritzgießwerkzeug, in dessen Materialrohr (20) wenigstens ein Strömungskanal (30) für ein fließfähiges Material ausgebildet ist. Des Weiteren ist die Heißkanaldüse (10) mit einer Heizung (40) für das fließfähige Material und mit einem im Bereich der Heizung (40) angeordneten, am Materialrohr (20) fixierten, Temperaturfühler (50) ausgestattet. Durch diese Anordnung sowie den einfachen Aufbau der Heißkanaldüse wird eine dauerhafte, zuverlässige und kostengünstige Mess- und Regelung der Temperatur der Heißkanaldüse (10) insbesondere im Endbereich des Materialrohrs (20) realisiert.

Description

Heißkanaldüse
Die Erfindung betrifft eine Heißkanaldüse für ein Spritzgießwerkzeug gemäß dem Oberbegriff von Anspruch 1.
Heißkanaldüsen werden in Spritzgießwerkzeugen eingesetzt, um eine fließfähige Masse, z.B. eine Kunststoffschmelze, bei einer vorgebbaren Temperatur unter hohem Druck einem trennbaren Formeinsatz zuzuführen. Sie haben meist ein Materialrohr mit einem Strömungskanal, das in einem Düsenmundstück endet. Letzteres bildet end- seitig eine Düsenaustrittsöffnung, die über eine Angußöffnung im Formeinsatz (Formnest) mündet. Damit sich die fließfähige Masse innerhalb des Materialrohrs nicht vorzeitig abkühlt, ist eine Heizung vorgesehen, die bis in das Düsenmundstück hinein für eine möglichst gleichmäßige Temperaturverteilung zu sorgen hat. Eine thermische Trennung zwischen der heißen Düse und dem kalten Werkzeug verhindert, daß die Düse einfriert und daß sich das Werkzeug bzw. der Formeinsatz erwärmt.
Die Anforderungen an die Temperaturführung in einer Heißkanaldüse sind sehr hoch, weil die zu verarbeitenden Kunststoffe oft ein sehr enges Verarbeitungsfenster haben und äußerst empfindlich auf Temperaturschwankungen reagieren. So kann beispielsweise eine Temperaturänderung von nur wenigen Grad bereits zu Spritzfehlern und Ausschuß führen. Eine präzise Temperaturführung ist daher wichtig für ein gut funktionierendes und vollautomatisch arbeitendes Heißkanalwerkzeug. Darüber hinaus ist es wichtig, daß bei Mehrfach-Werkzeugen mit z.B. 24, 32 oder 64 Kavitäten die einzustellende Temperatur für alle Formnester gleich ist. Dies bedingt, daß die eingestellte Temperatur mit der tatsächlichen Temperatur in der Düse sehr genau übereinstimmen muß.
Zur Überwachung und Regelung der Temperatur verwendet man gewöhnlich Temperaturfühler. Diese werden - wie beispielsweise in EP-A1-0 927 617 oder DE-U-201 00 840 offenbart - als separate Elemente in Nuten bzw. Bohrungen eingebracht, die im Düsenkörper oder in der Heizung vorgesehen sind. Problematisch ist jedoch, daß bereits eine geringfügige Lageveränderung des Temperaturfühlers zu erheblichen Meßfehlern führen kann, was sich ungünstig auf die Reproduzierbarkeit der Temperaturen auswirkt.
Ziel der Erfindung ist es, diese und weitere Nachteile des Standes der Technik zu vermeiden und eine Heißkanaldüse zu schaffen, deren Temperatur exakt meßbar und regelbar ist. Angestrebt wird ferner eine dauerhaft zuverlässige und präzise Bestimmbarkeit der Temperatur, insbesondere im Endbereich des Materialrohrs. Die Düse soll insgesamt einfach aufgebaut und kostengünstig zu realisieren sein.
Hauptmerkmale der Erfindung sind in Anspruch 1 angegeben. Ausgestaltungen sind Gegenstand der Ansprüche 2 bis 11.
Bei einer Heißkanaldüse für ein Spritzgießwerkzeug, mit einem Materialrohr, in dem wenigstens ein Strömungskanal für ein fließfähiges Material ausgebildet ist, mit einer Heizung für das fließfähige Material und mit einem im Bereich der Heizung angeordneten Temperaturfühler, sieht die Erfindung vor, daß der Temperaturfühler am Materialrohr fixiert ist. Dadurch ist sicher gestellt, daß die Temperatur der Düse und damit die Temperatur des fließfähigen Materials innerhalb des Strömungskanals stets an der gleichen Stelle gemessen wird. Das gesamte Heißkanalsystem läßt sich somit präzise regeln; die Temperatur kann selbst bei einer Vielzahl von Düsen in einem Werkzeug exakt auf gleichem Niveau gehalten halten werden.
Wichtig ist, daß der Temperaturfühler im Endbereich des Materialrohrs fixiert ist. Auf diese Weise wird die Temperatur im Bereich des Düsenmundstücks bzw. der Düsenspitze gemessen, also dort, wo die größten Wärmeverluste auftreten können.
Konstruktiv ist es günstig, wenn der Temperaturfühler endseitig mit einer Hülse versehen ist, die am Materialrohr befestigt ist. Der Temperaturfühler ist damit dauerhaft zuverlässig festgelegt. Ferner kann sich das Fühlerende nicht mehr relativ zum Materialrohr oder zur Heizung bewegen, was die Prozeßführung sicherer gestaltet.
Bevorzugt ist die Hülse mit dem Temperaturfühler verpreßt, verlötet oder verklebt. Sie besteht vorteilhaft aus einem gut wärmeleitenden Material, so daß stets optimale Ergebnisse erzielt werden.
Eine weitere wichtige Ausbildung der Erfindung sieht vor, daß die Hülse eine Crimp- hülse ist und daß diese mit dem Materialrohr verschweißt, verlötet oder verklebt ist. Dadurch ergibt sich ein insgesamt einfacher Aufbau und die Düse läßt sich kostengünstig realisieren.
Zweckmäßig nimmt die Heizung den Temperaturfühler auf, wobei dessen Meßpunkt von außen zugänglich ist. Dies hat den Vorteil, daß der Temperaturfühler rasch und bequem am Materialrohr festgelegt werden kann. Dazu trägt insbesondere bei, wenn der Meßpunkt des Temperaturfühlers im Bereich einer in der Heizung ausgebildeten Aussparung liegt, wobei der Temperaturfühler im Bereich der Aussparung am Außenumfang des Materialrohr stets sicher fixiert ist.
Weitere Merkmale, Einzelheiten und Vorteile der Erfindung ergeben sich aus dem Wortlaut der Ansprüche sowie aus der folgenden Beschreibung von Ausführungsbeispielen anhand der Zeichnungen. Es zeigen:
Fig. 1 eine Schnittansicht einer Heißkanaldüse und
Fig. 2 eine vergrößerte Teil-Seitenansicht der Heißkanaldüse von Fig. 1.
Die in Fig. 1 allgemein mit 10 bezeichnete Heißkanaldüse ist für den Einsatz in einem Spritzgießwerkzeug vorgesehen. Sie hat ein Materialrohr 20, das an seinem oberen Ende mit einem flanschartigen Anschlußkopf 22 versehen ist. Dieser sitzt lösbar in einem Gehäuse 12, das von unten an einer (nicht dargestellten) Verteilerplatte festlegbar ist. Eine radial ausgebildete Stufe 13 zentriert das Gehäuse 12 und damit die Düse 10 im Werkzeug.
Innerhalb des sich in Axialrichtung A erstreckenden Materialrohrs 20 ist mittig ein Strömungskanal 30 für eine Materialschmelze eingebracht. Der bevorzugt als Bohrung ausgebildete Kanal 30 besitzt im Anschlußkopf 22 eine Material-Zuführöffnung 32 und mündet an seinem unteren Ende in einem Düsenmundstück 34, das beispielsweise als Düsenspitze ausgebildet ist. Letztere hat eine Material-Austrittsöffnung 35, damit die fließfähige Materialschmelze in ein (nicht dargestelltes) Formnest gelangen kann. Das bevorzugt aus hochwärmeleitendem Material gefertigte Düsenmundstück 34 ist end- seitig in das Materialrohr 20 eingesetzt, vorzugsweise eingeschraubt. Es kann aber auch - je nach Anwendungsfall - bei gleicher Funktionsweise axialverschieblich gelagert oder mit dem Materialrohr 20 einstückig sein.
Zur Abdichtung der Heißkanaldüse 10 gegenüber der Verteilerplatte ist im Anschlußkopf 22 des Materialrohrs 20 konzentrisch zur Material-Zuführöffnung 32 ein Dichtring 25 vorgesehen. Denkbar ist auch die Ausbildung eines zusätzlichen (nicht gezeichneten) ringförmigen Zentrieransatzes, was die Montage der Düse 10 am Werkzeug erleichtern kann.
Auf dem Außenumfang 26 des Materialrohrs 20 ist eine Heizung 40 aufgesetzt. Diese wird von einer Hülse 42 aus einem gut wärmeleitenden Material, beispielsweise Kupfer oder Messing, gebildet, die sich über nahezu die gesamte axiale Länge des Materialrohrs 20 erstreckt. In der (nicht näher bezeichneten) Wandung der Hülse 42 ist koaxial zum Strömungskanal 30 eine (nicht dargestellte) elektrische Heizleiterwendel ausgebildet, deren (ebenfalls nicht sichtbaren) Anschlüsse seitlich aus dem Gehäuse 12 herausgeführt sind. Die gesamte Heizung 40 wird von einem Schutzrohr 43 umschlossen.
Für die Erfassung der von der Heizung 40 erzeugten Temperatur ist ein Temperaturfühler 50 vorgesehen, der durch die Heizung 40 hindurch bis in den Endbereich 27 des Materialrohrs 20 geführt ist. Die Hülse 42 der Heizung 40 ist hierzu mit einer bevorzugt parallel zum Strömungskanal 30 verlaufenden Bohrung 44 versehen, welche den Meßfühler 50 aufnimmt (siehe Fig. 2). Das untere Ende 45 der Bohrung 44 endet in einer U-förmigen Aussparung 46, die randseitig in der Wandung der Hülse 42 sowie im Schutzrohr 43 ausgebildet ist.
Man erkennt in Fig.2, daß der insgesamt stabförmige Temperaturfühler 50 mit seinem eine Meßspitze bildenden Ende 52 in der Aussparung 46 der Hülse 42 endet und dort am Außenumfang 26 des Materialrohrs 20 fixiert ist. Das von außen zugängliche freie Ende 52 des Meßfühlers 50 trägt dazu eine Hülse 54 aus einem gut wärmeleitenden Material, beispielsweise eine Crimphülse, die fest mit dem Meßfühler 50 verpreßt ist. Die Crimphülse 54 ist innerhalb der Aussparung 46 am Außenumfang 26 des Material- rohrs 20 befestigt, vorzugsweise durch Laserschweißen. Der hierfür erforderliche Zugang erfolgt zweckmäßig durch die Aussparung 46 hindurch.
Die Lage der Crimphülse 54 und damit die Position des Temperaturfühlers 50 sind damit relativ zum Materialrohr 20 exakt festgelegt, so daß die Temperaturmessung stets an ein und demselben Punkt erfolgt. Der Meßfühler 50 kann sich nicht bewegen, so daß die Temperaturerfassung nicht beeinträchtigt wird. Die Temperatur am äußeren Ende des Materialrohrs 23 und damit im Bereich des Düsenmundstücks 34 ist vielmehr dauerhaft exakt meßbar, wodurch die gesamte Düse 10 präzise regelbar ist.
Die (nicht gezeigten) Anschlüsse des Temperaturfühlers 50 sind gemeinsam mit den Anschlüssen für die Heizung 40 seitlich aus dem Gehäuse 12 herausgeführt.
Die Erfindung ist nicht auf eine der vorbeschriebenen Ausführungsformen beschränkt, sondern in vielfältiger Weise abwandelbar. So kann die Heizung 40 beispielsweise im Materialrohr 20 integriert oder als Flachheizkörper ausgebildet sein. Das in der Heizung 40 verwendete Heizelement kann alternativ ein von einem Heizmedium, z.B. Wasser oder Öl, durchströmbares Rohrleitungsstück sein, wenn beispielsweise eine elektrische Heizung nicht gewünscht oder nicht realisierbar ist. Die Erfindung ist ohne weiteres auch bei Kaltkanaldüsen anwendbar.
Man erkennt, daß eine Heißkanaldüse 10 für ein Spritzgießwerkzeug ein Materialrohr 20 hat, in dem wenigstens ein Strömungskanal 30 für ein fließfähiges Material ausgebildet ist. Auf dem Materialrohr 20 sitzt eine Heizung 40 für das fließfähige Material, in deren Bereich ein Temperaturfühler 50 angeordnet ist. Dieser ist am Außenumfang 26 des Materialrohrs 20 fixiert, insbesondere mit seinem eine Meßspitze bzw. einen Meßpunkt bildenden Ende 52. Vorzugsweise liegt der Meßpunkt des Temperaturfühlers 50 im Endbereich 27 des Materialrohrs und im Bereich einer in der Heizung 40 ausgebildeten Aussparung 40. Zur verbesserten Lagefixierung und zur besseren Wärmeübertragung ist der Temperaturfühler 50 endseitig mit einer Hülse 54 versehen, insbesondere verpreßt, die an dem Materialrohr 20 befestigt ist. Die Hülse 54 besteht aus einem gut wärmeleitenden Material und ist bevorzugt eine Crimphülse.
Sämtliche aus den Ansprüchen, der Beschreibung und der Zeichnung hervorgehenden Merkmale und Vorteile, einschließlich konstruktiver Einzelheiten, räumlicher Anordnungen und Verfahrensschritten, können sowohl für sich als auch in den verschiedensten Kombinationen erfindungswesentlich sein. Bezugszeichen liste
Axialrichtung 34 Düsenmundstück
35 Material-Austrittsöffnung
Nadelverschlußdüse
Gehäuse 40 Heizung
Stufe 42 Hülse
43 Schutzrohr
Materialrohr 44 Bohrung
Anschlußkopf 45 Ende
Dichtring 46 Aussparung
Außenumfang
Endbereich 50 Temperaturfühler
52 Ende / Meßspitze Strömungskanal 54 Crimphülse Material-Zuführöffnung

Claims

Patentansprüche
1. Heißkanaldüse (10) für ein Spritzgießwerkzeug, mit einem Materialrohr (20), in dem wenigstens ein Strömungskanal (30) für ein fließfähiges Material ausgebildet ist, mit einer Heizung (40) für das fließfähige Material und mit einem im Bereich der Heizung (40) angeordneten Temperaturfühler (50), dadurch gekennzeichnet, daß der Temperaturfühler (50) am Materialrohr (20) fixiert ist.
2. Heißkanaldüse nach Anspruch 1, dadurch gekennzeichnet, daß der Temperaturfühler (50) im Endbereich (27) des Materialrohrs (20) fixiert ist.
3. Heißkanaldüse nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Temperaturfühler (50) endseitig mit einer Hülse (54) versehen ist, die an dem Materialrohr (20) befestigt ist.
4. Heißkanaldüse nach Anspruch 3, dadurch gekennzeichnet, daß die Hülse (54) mit dem Temperaturfühler (50) verpreßt, verlötet oder verklebt ist.
5. Heißkanaldüse nach Anspruch 3 oder 4, dadurch gekennzeichnet, daß die Hülse (54) aus einem gut wärmeleitenden Material besteht.
6. Heißkanaldüse nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, daß die Hülse (54) eine Crimphülse ist.
7. Heißkanaldüse nach einem der Ansprüche 3 bis 6, dadurch gekennzeichnet, daß die Hülse (54) mit dem Materialrohr (20) verschweißt, verlötet oder verklebt ist.
8. Heißkanaldüse nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Heizung (40) den Temperaturfühler (50) aufnimmt.
9. Heißkanaldüse nach Anspruch 8, dadurch gekennzeichnet, daß der Meßpunkt des Temperaturfühlers (50) von außen zugänglich ist.
10. Heißkanaldüse nach Anspruch 8 oder 9, dadurch gekennzeichnet, daß der Meßpunkt des Temperaturfühlers (50) im Bereich einer in der Heizung (40) ausgebildeten Aussparung (46) liegt.
11. Heißkanaldüse nach Anspruch 10, dadurch gekennzeichnet, daß der Temperaturfühlers (50) im Bereich der Aussparung (46) am Außenumfang (26) des Materialrohrs (20) fixiert ist.
PCT/EP2007/002875 2006-04-21 2007-03-30 Heisskanaldüse WO2007121823A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US12/226,474 US20090311359A1 (en) 2006-04-21 2007-03-30 Hot Runner Nozzle
CA002649202A CA2649202A1 (en) 2006-04-21 2007-03-30 Hot runner nozzle
MX2008012680A MX2008012680A (es) 2006-04-21 2007-03-30 Boquilla de canal de material fundido.
JP2009505738A JP2009534211A (ja) 2006-04-21 2007-03-30 ホットランナノズル
BRPI0709455-8A BRPI0709455A2 (pt) 2006-04-21 2007-03-30 injetor de canal a quente
EP07723817A EP2012995A1 (de) 2006-04-21 2007-03-30 Heisskanaldüse

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE202006006671.3 2006-04-21
DE202006006671U DE202006006671U1 (de) 2006-04-21 2006-04-21 Heißkanaldüse

Publications (1)

Publication Number Publication Date
WO2007121823A1 true WO2007121823A1 (de) 2007-11-01

Family

ID=38169546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/002875 WO2007121823A1 (de) 2006-04-21 2007-03-30 Heisskanaldüse

Country Status (11)

Country Link
US (1) US20090311359A1 (de)
EP (1) EP2012995A1 (de)
JP (1) JP2009534211A (de)
KR (1) KR20090008378A (de)
CN (1) CN101426633A (de)
BR (1) BRPI0709455A2 (de)
CA (1) CA2649202A1 (de)
DE (1) DE202006006671U1 (de)
MX (1) MX2008012680A (de)
TW (1) TW200800562A (de)
WO (1) WO2007121823A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2177338A1 (de) * 2008-10-15 2010-04-21 Türk + Hillinger GmbH Rohrförmiges Heizelement mit Temperaturfühler
US9144930B2 (en) 2013-04-09 2015-09-29 Otto Männer Innovation GmbH Heater and thermocouple assembly

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE544573T1 (de) * 2006-12-29 2012-02-15 Mold Masters 2007 Ltd SPRITZGIEßVORRICHTUNG MIT SEITLICHER ANGUSSÖFFNUNG
DE102008055640A1 (de) 2008-11-03 2010-05-06 Günther Heisskanaltechnik Gmbh Heißkanaldüse
JP5800660B2 (ja) * 2011-10-05 2015-10-28 株式会社ニフコ バッテリー用温度センサーの取付用クリップ
KR101508118B1 (ko) * 2014-09-01 2015-04-08 주식회사 톱텍 레진 슬릿 코팅장치 및 이를 이용한 레진 슬릿 코팅방법
CN109315884B (zh) * 2018-11-15 2020-09-04 浙江天宏鞋业有限公司 一种防胶丝黏连的制鞋加工用涂胶装置
DE102021117549A1 (de) * 2021-07-07 2023-01-12 Meusburger Deutschland Gmbh Anordnung zum einspritzen von kunststoff in eine kavität einer kunststoffspritzmaschine
CN115958761B (zh) * 2022-12-16 2023-11-07 苏州博莱斯精密机械有限公司 一种基于物联网智能温控技术的热流道装置及其温控方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1077876A (en) * 1965-02-03 1967-08-02 Mullard Ltd Method and apparatus for mounting thermocouples
JPS6071924A (ja) * 1983-09-29 1985-04-23 Hitachi Zosen C B I Kk 熱電対の取付方法
EP0326016A2 (de) * 1988-01-25 1989-08-02 Husky Injection Molding Systems Ltd. Heisskanaldüse
DE4400816A1 (de) * 1993-01-27 1994-07-28 Gellert Jobst U Spritzgußdüse mit einem Thermoelementrohr
JPH0788894A (ja) * 1993-09-22 1995-04-04 Fanuc Ltd 射出成形機用ノズル
EP0927617A1 (de) * 1997-12-19 1999-07-07 Günther Heisskanaltechnik GmbH Heisskanaldüse
JP2000055744A (ja) * 1998-08-07 2000-02-25 Matsushita Electric Ind Co Ltd サーミスタ温度センサ

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5360333A (en) * 1992-09-30 1994-11-01 Husky Injection Molding Systems Ltd. Band heater clamp arrangement for an injection molding machine
US5326251A (en) * 1993-12-06 1994-07-05 Gellert Jobst U Heated injection molding nozzle with alternate thermocouple bores
CA2358187A1 (en) * 2001-10-03 2003-04-03 Mold-Masters Limited Nozzle seal
ITTO20040240A1 (it) * 2004-04-20 2004-07-20 Piero Enrietti Gruppo ugello riscaldato per lo stampaggio di materiali plastici

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1077876A (en) * 1965-02-03 1967-08-02 Mullard Ltd Method and apparatus for mounting thermocouples
JPS6071924A (ja) * 1983-09-29 1985-04-23 Hitachi Zosen C B I Kk 熱電対の取付方法
EP0326016A2 (de) * 1988-01-25 1989-08-02 Husky Injection Molding Systems Ltd. Heisskanaldüse
DE4400816A1 (de) * 1993-01-27 1994-07-28 Gellert Jobst U Spritzgußdüse mit einem Thermoelementrohr
JPH0788894A (ja) * 1993-09-22 1995-04-04 Fanuc Ltd 射出成形機用ノズル
EP0927617A1 (de) * 1997-12-19 1999-07-07 Günther Heisskanaltechnik GmbH Heisskanaldüse
JP2000055744A (ja) * 1998-08-07 2000-02-25 Matsushita Electric Ind Co Ltd サーミスタ温度センサ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2177338A1 (de) * 2008-10-15 2010-04-21 Türk + Hillinger GmbH Rohrförmiges Heizelement mit Temperaturfühler
US8247739B2 (en) 2008-10-15 2012-08-21 Türk & Hillinger GmbH Tubular heating element with temperature sensor
US9144930B2 (en) 2013-04-09 2015-09-29 Otto Männer Innovation GmbH Heater and thermocouple assembly
US9802348B2 (en) 2013-04-09 2017-10-31 Otto Männer Innovation GmbH Heater and thermocouple assembly

Also Published As

Publication number Publication date
EP2012995A1 (de) 2009-01-14
CA2649202A1 (en) 2007-11-01
DE202006006671U1 (de) 2007-09-06
KR20090008378A (ko) 2009-01-21
US20090311359A1 (en) 2009-12-17
TW200800562A (en) 2008-01-01
CN101426633A (zh) 2009-05-06
JP2009534211A (ja) 2009-09-24
MX2008012680A (es) 2008-10-15
BRPI0709455A2 (pt) 2011-07-12

Similar Documents

Publication Publication Date Title
WO2007121823A1 (de) Heisskanaldüse
EP1223017B1 (de) Heisskanaldüse
DE19620002B4 (de) Verfahren zum Ausbilden eines Spritzgießteils, welches ein Einlegeteil enthält
DE60319876T2 (de) Spritzgiessdüse
DE60319637T2 (de) Mit Gewinde versehenes abnehmbares Heizelement für eine Heisskanal-Düse
EP2091714A1 (de) Heisskanaldüse mit temperaturfühler
DE202007002817U1 (de) Spritzgießdüse
US4514160A (en) Injection nozzle with direct electric heating
DE2539785C3 (de) Heißkanalspritzdüse
DE10353696B4 (de) Mikrodüse mit Wärmeleitvorrichtung
DE102008055640A1 (de) Heißkanaldüse
EP2229268A2 (de) Spritzgiessdüse
DE102011080314A1 (de) Elektrische Heizvorrichtung
DE19723374A1 (de) Heißkanaldüse
EP1623810B1 (de) Heisskanaldüse
DE202006009056U1 (de) Beheizte Spritzgießdüse
DE602004009632T2 (de) Spritzgiess-Heisskanal-Düse mit abnehmbarem Düsenkopf und Düsenkopfhalterung und Verfahren zur Herstellung einer Spritzgiess-Heisskanal-Düse
EP2781332B1 (de) Spritzgießdüse mit zweiteiligem Materialrohr
DE602004012648T2 (de) Übertragbare Dichtung für eine abnehmbare Düsenspitze einer Spritzgiessvorrichtung
EP2386402B1 (de) Heisskanaldüse und Spritzgießwerkzeug mit einer Heisskanaldüse
DE4439872C2 (de) Mundstückkörper für eine Warmkammer-Druckgießmaschine
DE202007015873U1 (de) Spritzgießdüse
DE102009026562B4 (de) Extrusionskopf
EP1258333B1 (de) Einspritzdüse zur Führung von Schmelzemasse in einer Kunststoffspritzgiessform od. dgl.
WO2008040416A1 (de) SPRITZGIEßDÜSE

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07723817

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007723817

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/a/2008/012680

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2181/MUMNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2649202

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2009505738

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200780014272.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087028327

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 12226474

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0709455

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20081002