EP2091714A1 - Heisskanaldüse mit temperaturfühler - Google Patents

Heisskanaldüse mit temperaturfühler

Info

Publication number
EP2091714A1
EP2091714A1 EP07819520A EP07819520A EP2091714A1 EP 2091714 A1 EP2091714 A1 EP 2091714A1 EP 07819520 A EP07819520 A EP 07819520A EP 07819520 A EP07819520 A EP 07819520A EP 2091714 A1 EP2091714 A1 EP 2091714A1
Authority
EP
European Patent Office
Prior art keywords
temperature sensor
sleeve
runner nozzle
free end
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07819520A
Other languages
English (en)
French (fr)
Inventor
Herbert Günther
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guenther Heisskanaltechnik GmbH
Original Assignee
Guenther Heisskanaltechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guenther Heisskanaltechnik GmbH filed Critical Guenther Heisskanaltechnik GmbH
Publication of EP2091714A1 publication Critical patent/EP2091714A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/1782Mounting or clamping means for heating elements or thermocouples
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/27Sprue channels ; Runner channels or runner nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/27Sprue channels ; Runner channels or runner nozzles
    • B29C45/2737Heating or cooling means therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/14Supports; Fastening devices; Arrangements for mounting thermometers in particular locations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/27Sprue channels ; Runner channels or runner nozzles
    • B29C45/2737Heating or cooling means therefor
    • B29C2045/274Thermocouples or heat sensors

Definitions

  • the invention relates to a hot-runner nozzle for an injection mold according to the preamble of claim 1.
  • Hot runner nozzles are used in injection molds to form a flowable mass, for.
  • a plastic melt to supply a separable mold insert at a predetermined temperature under high pressure. They usually have a material tube with a flow channel that ends in a nozzle orifice. The latter forms a nozzle outlet opening at the end, which opens via a gate in the mold insert (mold cavity). So that the flowable mass does not cool prematurely within the material tube, a heater is provided, which has to ensure a uniform as possible temperature distribution into the nozzle mouthpiece. Thermal separation between the hot nozzle and the cold tool prevents the nozzle from freezing and heating the tool or mold insert.
  • the requirements for the temperature control in a hot runner nozzle are very high, because the plastics to be processed often have a very narrow processing window and are extremely sensitive to temperature fluctuations. For example, a temperature change of only a few degrees can lead to spray defects and rejects. Precise temperature control is therefore important for a well-functioning and fully automatic hot runner tool.
  • it is important that the temperature to be set for all mold cavities is the same for multiple tools with, for example, 24, 32 or 64 cavities. This requires that the set temperature must be very close to the actual temperature at the nozzle.
  • Temperature sensors are usually used to monitor the actual temperature.
  • the output signals of the temperature sensor can then be supplied to a corresponding control, which regulates the temperature based on a SolMst temperature compensation.
  • a hot runner nozzle for an injection mold with such a temperature sensor is described for example in EP-A-1-623 810.
  • a heat-conducting sleeve is pushed onto the material tube, which is provided with an axially extending slot in which a temperature sensor is arranged.
  • a clamping sleeve is arranged, which has on its inner side a recess which is accessible by an access from the outside. The free end of the temperature sensor is guided through the access into the recess, whereupon the clamping sleeve is rotated on the material tube and the free end of the temperature sensor is clamped in the clamping sleeve.
  • This embodiment is for example to the disadvantage that in addition to the politiciansleitdüse another component in the form of the clamping sleeve must be provided, which is not desirable in terms of the production of the hot runner nozzle and on their installation.
  • the present invention provides a hot runner nozzle for an injection molding tool according to claim 1.
  • the dependent claims relate to individual embodiments of the present invention.
  • the hot runner nozzle comprises a material pipe, which is preferably made of a steel, wherein in the material pipe at least one flow channel for a flowable material is formed. Furthermore, the hot runner nozzle preferably comprises a thermally conductive material, for example copper or made of a copper alloy, produced sleeve which is pushed onto the material pipe. In addition, a heater for heating the material pipe and a temperature sensor for detecting a temperature are provided.
  • the sleeve of the hot-runner nozzle near one of its end regions has a passage opening extending substantially radially through a wall of the sleeve, through which the material tube is visible or accessible from the outside when the sleeve is pushed onto the material tube.
  • this passage opening serving as a measuring point of the temperature sensor free end of the temperature sensor or a corresponding portion of the temperature sensor extends near its free end in the state in which the sleeve is pushed onto the material pipe.
  • the heat energy generated by the heater can not act directly on the temperature sensor or on the measuring point.
  • the latter can thereby detect the temperature of the material tube and thus the temperature of the melt guided therein much more accurately, i. the outside temperature detected by the temperature sensor corresponds much more closely to the temperature of the melt guided in the material pipe.
  • the above-described construction of the hot runner nozzle according to the present invention is further advantageous in that it is very simple and consists of only a few components. Furthermore, the temperature sensor in a simple manner - possibly together with the sleeve and the heater - be replaced.
  • the sleeve Along an outer surface of the sleeve is preferably formed at least one groove in which the heating and / or the temperature sensor is receivable / are. According to a particularly preferred embodiment, both a groove for the heating and a further groove for the temperature sensor are formed in the outer surface of the sleeve. In this way, the heater and the temperature sensor are integrated into the sleeve, which is particularly advantageous during assembly of the hot runner nozzle according to the invention.
  • the heater and / or the temperature sensor are preferably held by means of a press connection in the respective groove.
  • the heater and the temperature sensor can also be glued, soldered or otherwise secured in the grooves provided in the sleeve.
  • the hot-runner nozzle according to the invention provided in the sleeve through opening on the outer surface of the sleeve has a groove or slot-like extension, which is designed such that serving as a measuring point of the temperature sensor free end of the temperature sensor is fastened in this, wherein the attachment can be produced by means of a press connection, a solder connection, an adhesive connection or the like.
  • the free end of the temperature sensor is fixed, so that the position of the temperature-receiving portion of the temperature sensor near its free end is constant even under extreme external conditions due to the fixation. Due to the constant positioning of the temperature sensor and the heater relative to each other, the temperature of the material pipe can always be detected properly.
  • a free end of the temperature sensor may protrude into the through-opening in a defined manner.
  • the free end of the temperature sensor is advantageously fixed in such a way by a holding element, that in the installed state, a contact between the free end of the temperature sensor and the material tube is ensured.
  • the holding element is preferably a clamp made of a temperature-resistant (up to about 500 0 C) spring steel.
  • the free end of the temperature sensor can also be guided through the passage opening provided in the sleeve and received in a recess formed on an outer surface of the material tube and / or on an inner surface of the sleeve such that, when the sleeve pushed onto the material pipe, communicates with the through hole.
  • the free end can then be fixed by means of a press connection, an adhesive bond, a solder joint or the like, so that here too a constant position of the temperature-receiving portion of the temperature sensor is ensured even under extreme external conditions.
  • Figure 1 is a front view of a first embodiment of a sleeve of the hot runner nozzle according to the invention.
  • Fig. 2 is a sectional view of the sleeve shown in Fig. 1;
  • Fig. 3 is an enlarged partial view of the in Figs. 1 and 2 illustrated sleeve with inserted temperature sensor;
  • FIG. 4 shows an enlarged partial view similar to FIG. 3 of an alternative embodiment of a sleeve of the hot-runner nozzle according to the invention with inserted temperature sensor;
  • FIG. 5 shows an enlarged partial view similar to FIG. 3 of a further alternative embodiment of a sleeve of the hot-runner nozzle according to the invention with inserted temperature sensor;
  • FIG. 6 shows an enlarged partial view similar to FIG. 3 of yet another alternative embodiment of a sleeve of the hot-runner nozzle according to the invention with inserted temperature sensor;
  • FIG. 7 shows a partial cross-sectional view of the embodiment of a sleeve of the hot-runner nozzle according to the invention shown in FIG. 6 with inserted temperature sensor;
  • FIG. 8 shows an enlarged partial view similar to FIG. 3 of yet another alternative embodiment of a sleeve of the hot-runner nozzle according to the invention with inserted temperature sensor;
  • Fig. 9 is a sectional view of a hot runner nozzle according to the invention with the sleeve shown in Figs. 1 and 2.
  • FIGS. 3 to 8 show alternative embodiments of a sleeve of the hot-runner nozzle according to the invention.
  • the sleeve 10 is formed substantially tubular and made of a material having a good thermal conductivity, such as copper, a copper alloy or the like.
  • a spiral-like groove 12 is formed in the axial direction of the sleeve 10 in the outer surface 14 of the sleeve 10 and serves to receive a wire-shaped heater 16, as shown in Fig. 9.
  • the wire-shaped heater 16 is fixed in the groove 12 by means of a press connection, wherein the heater 16 may alternatively be attached by means of gluing, soldering or the like in the groove 12.
  • a further groove 18 is formed in the outer surface 14 of the sleeve 10, which also extends in a spiral manner in the axial direction of the sleeve 10. This further groove 18 serves to receive a wire-shaped temperature sensor 20, as shown in Fig. 9.
  • a through hole 24 is provided in the form of a bore which extends from the outer surface 14 of the sleeve 10 substantially radially inwardly through the wall of the sleeve 10. In this through hole 24 opens the temperature sensor 20 receiving groove 18th
  • a groove-like extension 26 formed on the through hole 24, in which in the state in which the temperature sensor 20 is received in the groove 18, the free end of the temperature sensor 20 is inserted , as shown in the enlarged partial view of FIG. 3.
  • the free end of the temperature sensor 20 is clamped in the extension 26.
  • the free end of the temperature sensor 20 may also be fixed in the extension 26 by means of an adhesive bond, soldered connection or the like.
  • a portion near the free end of the temperature sensor 20 extends through the through hole 24 when the temperature sensor 20 is inserted into the groove 18.
  • sleeve 10 may also be provided in the figures, not shown, additional holes into which a puller or the like may engage, in particular to facilitate the disassembly of the sleeve 10 of the material tube 32.
  • Figures 4 to 8 show alternative embodiments of the sleeve of the hot runner nozzle according to the invention.
  • a groove-like extension 26 a is formed at the passage opening 24 opposite to the end opening in the passage opening 24 of the groove 18, which extends to the lower free end of the sleeve 10 a and in a free end of the Sleeve 10a formed recess 25 opens.
  • the free end of the temperature sensor 20 is inserted, which is clamped in the extension 26a, wherein the free end of the temperature sensor protrudes into the recess 25.
  • the free end of the temperature sensor 20 or the like by means of an adhesive bond, solder joint. be fixed in the extension 26a.
  • the temperature sensor 20 is arranged closer to the free end of the material tube 32, without extending the subsystem consisting of the sleeve 10 and the heater 16 and without the free end of the temperature sensor 20 protrudes from the sleeve and projects from this.
  • the free end of the temperature sensor 20 projects from the end of the groove 18 opening into the passage opening 24 into the passage opening 24 and ends there.
  • the free end of the temperature sensor 20 protrudes from the opening in the passage opening 24 opening end of the groove 18 defined in the through hole 24 and ends there, wherein the free end of the temperature sensor 20 by means of a clamp 27 is held such that a Contact the free end of the temperature sensor 20 with the material tube 32 is ensured.
  • a clamp 27 pushes the temperature sensor 20 in the manner of a hold down in the direction of the material tube, not shown.
  • the free ends of the bracket 27 engage in corresponding expansion areas 29 of the through hole 24 to set the bracket 27 in the recess 24.
  • the bracket 27 is made of a temperature resistant (up to about 500 0 C and higher) spring steel to produce the force required to press the free end of the temperature sensor 20 to the material pipe.
  • Fig. 8 shows a further embodiment similar to that shown in Fig. 4, except that in the present case, the free end of the temperature sensor 20 as in the in Figs. 6 and 7 embodiment is pressed with a bracket 27 in the direction of the material tube to make contact between the temperature sensor 20 and the material tube.
  • the principle of the determination of the clip 27 in the recess 25 corresponds in this case to that which is shown in Fig. 7.
  • Fig. 9 shows a hot runner nozzle 30, in which the sleeve 10 shown in Figs. 1 and 2 is installed.
  • the hot runner nozzle 30 is for use in an injection mold intended. It comprises a material tube 32, which is provided at its upper end with a flange-like connection head 34. This sits detachably in a housing 36 which can be fixed from below to a distributor plate (not shown). A radially formed step 38 centers the housing 36 and thus the hot runner nozzle 30 in the tool.
  • a flow channel 40 for a molten material is centrally introduced.
  • the preferably formed as a bore flow channel 40 has in the connection head 34, a material supply port 42 and opens at its lower end in a nozzle orifice 44, which is formed for example as a nozzle tip.
  • the latter has a material outlet opening 46, so that the flowable material melt can get into a (not shown) mold cavity.
  • the nozzle mouthpiece 44 preferably made of highly heat-conductive material is inserted into the material tube 32 at the end, preferably screwed in. But it can also - depending on the application - axially displaceably mounted with the same operation or formed integrally with the material tube 32.
  • a sealing ring 48 is provided concentrically with the material feed opening 42 in the connection head 34 of the material tube 32. It is also conceivable the formation of an additional (not shown) annular centering approach, which can facilitate the installation of the hot runner nozzle 30 on the tool.
  • the sleeve 10 shown in FIGS. 1 and 2 is placed on the outer circumference 50 of the material tube 32, with the wire-shaped heater 16 and the wire-shaped temperature sensor 20 being correspondingly fixed in the grooves 12, 18 of the sleeve 10.
  • the respective connections of the heater 16 and the temperature sensor 20 are led out laterally from the housing 36, which is not shown here, however.
  • the entire sleeve 10 is enclosed by a protective tube 52 which is pushed onto the sleeve 10.
  • the passage opening 24 provided in the sleeve 10 is arranged in the end region 54 of the material tube 32, where the temperature of the material tube 32 is to be detected.
  • the passage opening 24 generates a direct connection between the outer circumference 50 of the material tube 32 and a section 56 of the temperature sensor 20, which is arranged near the free end of the temperature sensor 20 defined in the extension 26 of the passage opening 24. Thanks to this direct connection, the temperature detected by the temperature sensor 20 is not or only insignificantly influenced by the temperature of the sleeve 10, which differs from that of the material tube 32. reduces or falsifies, so that the temperature sensor 20 can detect the exact temperature of the material tube 32 and thus that of the melt located therein.
  • the extension 26 which is provided on the outer surface 14 of the sleeve 10 in the embodiment shown in FIGS. 1 to 3, also optionally on the inner surface of the sleeve or on the outer periphery of Material tube are formed, which is not shown in Figs. 1 to 3. Accordingly, the end portion of the temperature sensor is first passed through the through hole before the free end of the temperature sensor is inserted into the correspondingly arranged extension of the through hole. The temperature sensor can then be fixed in the extension and / or between the sleeve and the material tube.
  • the fixing of the free end of the temperature sensor between these components can likewise be effected by pressing. In this way, the relative position between the heater and the material tube is fixed at the same time.
  • the structure of the sleeve of the hot runner nozzle according to the invention is characterized by its simple construction. In particular, no additional components are required to set the temperature sensor or the heater to the sleeve. Due to the exact and permanent positioning of the temperature sensor relative to the heater optimal reproducibility of the data detected by the temperature sensor is also achieved.
  • Extension 52 Protective tube a extension 54 end area

Abstract

Eine Heisskanaldüse (30) für ein Spritzgießwerkzeug, hat ein Materialrohr (32), in dem wenigstens ein Strömungskanal (40) für ein fließfähiges Material ausgebildet ist, eine Hülse (10), die auf das Materialrohr (32) aufschiebbar ist, eine Heizung (16) zum Erwärmen des Materialrohrs (32) und einen Temperaturfühler (20) zum Erfassen einer Temperatur. Um die Temperatur des in dem Materialrohr geführten fließfähigen Materials genauer erfassen zu können, sieht die Erfindung vor, dass die Hülse (10) nahe einem ihrer Endbereiche eine sich im Wesentlichen radial durch eine Wandung der Hülse (10) erstreckende Durchgangsöffnung (24) aufweist, in die ein freies Ende des Temperaturfühlers (20) oder ein Temperaturfühlerabschnitt (56), der nahe dem freien Ende des Temperaturfühlers (20) angeordnet ist, geführt ist, wenn die Hülse (10) auf das Materialrohr (32) aufgeschoben ist.

Description

Heisskanaldüse mit Temperaturfühler
Die Erfindung betrifft eine Heisskanaldüse für ein Spritzgießwerkzeug gemäß dem Oberbegriff von Anspruch 1.
Heisskanaldüsen werden in Spritzgießwerkzeugen eingesetzt, um eine fließfähige Masse, z. B. eine Kunststoffschmelze, bei einer vorgebbaren Temperatur unter hohem Druck einem trennbaren Formeinsatz zuzuführen. Sie haben meist ein Materialrohr mit einem Strömungskanal, der in einem Düsenmundstück endet. Letzteres bildet endseitig eine Düsenaustrittsöffnung, die über eine Angussöffnung im Formeinsatz (Formnest) mündet. Damit sich die fließfähige Masse innerhalb des Materialrohrs nicht vorzeitig abkühlt, ist eine Heizung vorgesehen, die bis in das Düsenmundstück hinein für eine möglichst gleichmäßige Temperaturverteilung zu sorgen hat. Eine thermische Trennung zwischen der heißen Düse und dem kalten Werkzeug verhindert, dass die Düse einfriert und dass sich das Werkzeug bzw. der Formeinsatz erwärmt.
Die Anforderungen an die Temperaturführung in einer Heisskanaldüse sind sehr hoch, weil die zu verarbeitenden Kunststoffe oft ein sehr enges Verarbeitungsfenster haben und äußerst empfindlich auf Temperaturschwankungen reagieren. So kann beispielsweise eine Temperaturänderung von nur wenigen Grad zu Spritzfehlern und Ausschuss führen. Eine präzise Temperaturführung ist daher wichtig für ein gut funktionierendes und vollautomatisch arbeitendes Heisskanalwerkzeug. Darüber hinaus ist es wichtig, dass bei Mehrfach-Werkzeugen mit beispielsweise 24, 32 oder 64 Kavitäten die einzustellende Temperatur für alle Formnester gleich ist. Dies bedingt, dass die eingestellte Temperatur mit der tatsächlichen Temperatur an der Düse sehr genau übereinstimmen muss.
Zur Überwachung der Ist-Temperatur verwendet man gewöhnlich Temperaturfühler. Die Ausgangssignale des Temperaturfühlers können dann einer entsprechenden Regelung zugeführt werden, welche die Temperatur anhand eines SolMst-Temperaturabgleichs regelt.
Eine Heisskanaldüse für ein Spritzgießwerkzeug mit einem solchen Temperaturfühler ist beispielsweise in der EP-A-1-623 810 beschrieben. Bei dieser Heisskanaldüse ist auf das Materialrohr eine Wärmeleithülse aufgeschoben, die mit einem sich axial erstreckenden Schlitz versehen ist, in dem ein Temperaturfühler angeordnet ist. Unterhalb der Wärmeleithülse ist eine Klemmhülse angeordnet, welche an ihrer Innenseite eine Ausnehmung aufweist, die durch einen Zugang von außen zugänglich ist. Das freie Ende des Temperaturfühlers wird durch den Zugang in die Ausnehmung geführt, woraufhin die Klemmhülse auf dem Materialrohr verdreht und das freie Ende des Temperaturfühlers in der Klemmhülse klemmend gehalten wird. Diese Ausgestaltung ist beispielsweise dahingehend von Nachteil, dass zusätzlich zur Wärmeleitdüse ein weiteres Bauteil in Form der Klemmhülse vorgesehen werden muss, was im Bezug auf die Fertigung der Heisskanaldüse sowie auf deren Montage nicht wünschenswert ist.
Ausgehend von diesem Stand der Technik ist es eine Aufgabe der vorliegenden Erfindung, eine einen Temperaturfühler aufweisende Heisskanaldüse für ein Spritzgießwerkzeug mit einem alternativen Aufbau zu schaffen, welche die zuvor genannten Probleme zumindest teilweise beseitigt.
Zur Lösung dieser Aufgabe schafft die vorliegende Erfindung eine Heisskanaldüse für ein Spritzgießwerkzeug nach Anspruch 1. Die abhängigen Ansprüche beziehen sich auf individuelle Ausgestaltungen der vorliegenden Erfindung.
Die Heisskanaldüse gemäß der vorliegenden Erfindung umfasst ein Materialrohr, das bevorzugt aus einem Stahl hergestellt ist, wobei in dem Materialrohr wenigstens ein Strömungskanal für ein fließfähiges Material ausgebildet ist. Ferner umfasst die Heisskanaldüse eine bevorzugt aus wärmeleitfähigem Material, beispielsweise aus Kupfer oder aus einer Kupferlegierung, hergestellte Hülse, die auf das Materialrohr aufschiebbar ist. Zudem sind eine Heizung zum Erwärmen des Materialrohrs und ein Temperaturfühler zum Erfassen einer Temperatur vorgesehen.
Erfindungsgemäß weist die Hülse der Heisskanaldüse nahe einem ihrer Endbereiche eine sich im Wesentlichen radial durch eine Wandung der Hülse erstreckende Durchgangsöffnung auf, durch die das Materialrohr, wenn die Hülse auf das Materialrohr aufgeschoben ist, von außen sichtbar bzw. zugänglich ist. In und/oder durch diese Durchgangsöffnung erstreckt sich ein als Messpunkt des Temperaturfühlers dienendes freies Ende des Temperaturfühlers oder ein entsprechender Abschnitt des Temperaturfühlers nahe seines freien Endes in demjenigen Zustand, in dem die Hülse auf das Materialrohr aufgeschoben ist. Mit Hilfe der Durchgangsöffnung wird mithin ein Freiraum zwischen Materialrohr, Hülse und Temperaturfühler geschaffen, so dass der Messpunkt des Temperaturfühlers nicht in direktem Kontakt mit der aus einem wärmeleitfähigen Material gefertigten Hülse steht. Die von der Heizung erzeugte Wärmeenergie kann dadurch nicht unmittelbar auf den Temperaturfühler bzw. auf dessen Messpunkt einwirken kann. Letzterer kann dadurch die Temperatur des Materialrohrs und damit die Temperatur der darin geführten Schmelze sehr viel genauer erfassen, d.h. die von dem Temperaturfühler erfasste Temperatur im Außenbereich entspricht sehr viel genauer der Temperatur der in dem Materialrohr geführten Schmelze.
Der zuvor beschriebene Aufbau der Heisskanaldüse gemäß der vorliegenden Erfindung ist weiter dahingehend vorteilhaft, dass er sehr einfach ist und nur aus wenigen Bauteilen besteht. Ferner kann der Temperaturfühler in einfacher Art und Weise - ggf. zusammen mit der Hülse und der Heizung - ausgetauscht werden.
Entlang einer Außenfläche der Hülse ist bevorzugt zumindest eine Nut ausgebildet, in welcher die Heizung- und/oder der Temperaturfühler aufnehmbar ist/sind. Gemäß einer besonders bevorzugten Ausführungsform sind in der Außenfläche der Hülse sowohl eine Nut für die Heizung als auch eine weitere Nut für den Temperaturfühler ausgebildet. Auf diese Weise werden die Heizung und der Temperaturfühler in die Hülse integriert, was insbesondere bei der Montage der erfindungsgemäßen Heisskanaldüse von Vorteil ist.
Zur Fixierung der Heizung und/oder des Temperaturfühlers an der Hülse sind diese bevorzugt mit Hilfe einer Pressverbindung in der jeweiligen Nut gehalten. Alternativ können die Heizung und der Temperaturfühler auch in den in der Hülse vorgesehen Nuten verklebt, verlötet oder in anderer Art und Weise befestigt werden. Gemäß einer Variante der erfindungsgemäßen Heisskanaldüse weist die in der Hülse vorgesehene Durchgangsöffnung an der Außenfläche der Hülse eine nut- oder schlitzartige Erweiterung auf, die derart ausgebildet ist, dass das als Messpunkt des Temperaturfühlers dienende freie Ende des Temperaturfühlers in dieser befestigbar ist, wobei die Befestigung mit Hilfe einer Pressverbindung, einer Lötverbindung, einer Klebverbindung oder dergleichen erzeugt werden kann. Somit wird das freie Ende des Temperaturfühlers fixiert, so dass die Position des die Temperatur aufnehmenden Abschnittes des Temperaturfühlers nahe seines freien Endes auch bei extremen äußeren Bedingungen aufgrund der Fixierung konstant ist. Aufgrund der gleich bleibenden Positionierung des Temperaturfühlers und der Heizung relativ zueinander kann die Temperatur des Materialrohrs stets ordnungsgemäß erfasst werden.
Alternativ kann ein freies Ende des Temperaturfühlers definiert in die Durchgangsöffnung ragen. Das freie Ende des Temperaturfühlers ist dabei vorteilhaft derart durch ein Halteelement fixiert, dass im eingebauten Zustand ein Kontakt zwischen dem freien Ende des Temperaturfühlers und dem Materialrohr gewährleistet ist. Das Halteelement ist bevorzugt eine Klammer aus einem temperaturbeständigen (bis ca. 500 0C) Federstahl.
Gemäß einer weiteren Alternative kann das freie Ende des Temperaturfühlers auch durch die in der Hülse vorgesehene Durchgangsöffnung geführt und in einer Aussparung aufgenommen sein, die an einer Außenfläche des Materialrohrs und/oder an einer Innenfläche der Hülse derart ausgebildet ist, dass sie, wenn die Hülse auf das Materialrohr aufgeschoben ist, mit der Durchgangsöffnung kommuniziert. In dieser Aussparung kann das freie Ende dann mit Hilfe einer Pressverbindung, einer Klebverbindung, einer Lötverbindung oder dergleichen fixiert sein, so dass auch hier eine konstante Position des die Temperatur aufnehmenden Abschnittes des Temperaturfühlers selbst bei extremen äußeren Bedingungen sichergestellt ist.
Nachfolgend wird die vorliegende Erfindung anhand von Ausführungsbeispielen der erfindungsgemäßen Heisskanaldüse unter Bezugnahme auf die Zeichnung genauer beschrieben. Daran ist:
Fig. 1 eine Vorderansicht einer ersten Ausführungsform einer Hülse der erfindungsgemäßen Heisskanaldüse;
Fig. 2 eine Schnittansicht der in Fig. 1 dargestellten Hülse; Fig. 3 eine vergrößerte Teilansicht der in den Fign. 1 und 2 dargestellten Hülse mit eingesetztem Temperaturfühler;
Fig. 4 eine vergrößerte Teilansicht ähnlich Fig. 3 einer alternativen Ausführungsform einer Hülse der erfindungsgemäßen Heisskanaldüse mit eingesetztem Temperaturfühler;
Fig. 5 eine vergrößerte Teilansicht ähnlich Fig. 3 einer weiteren alternativen Ausführungsform einer Hülse der erfindungsgemäßen Heisskanaldüse mit eingesetztem Temperaturfühler;
Fig. 6 eine vergrößerte Teilansicht ähnlich Fig. 3 noch einer weiteren alternativen Ausführungsform einer Hülse der erfindungsgemäßen Heisskanaldüse mit eingesetztem Temperaturfühler;
Fig. 7 eine Teilquerschnittansicht der in Fig. 6 gezeigten Ausführungsform einer Hülse der erfindungsgemäßen Heisskanaldüse mit eingesetztem Temperaturfühler;
Fig. 8 eine vergrößerte Teilansicht ähnlich Fig. 3 noch einer weiteren alternativen Ausführungsform einer Hülse der erfindungsgemäßen Heisskanaldüse mit eingesetztem Temperaturfühler; und
Fig. 9 eine Schnittansicht einer erfindungsgemäßen Heisskanaldüse mit der in den Fig. 1 und 2 dargestellten Hülse.
Gleiche Bezugsziffern beziehen sich nachfolgend auf gleichartige Bauteile.
Nachfolgend wird der Aufbau einer Ausführungsform einer Hülse 10 der Heisskanaldüse gemäß der vorliegenden Erfindung unter Bezugnahme auf die Fig. 1 , 2, 3 und 7 genauer beschrieben, wobei Fig. 1 eine Vorderansicht der Hülse 10 ist, Fig. 2 eine Schnittansicht derselben ist, Fig. 3 eine vergrößerte Teilansicht der Hülse 10 ist und Fig. 9 eine Schnittansicht der Hülse 10 im in eine Heisskanaldüse eingebauten Zustand ist. Die Fig. 3 bis 8 zeigen alternative Ausführungsformen einer Hülse der erfindungsgemäßen Heisskanaldüse. Die Hülse 10 ist im Wesentlichen rohrförmig ausgebildet und aus einem Material mit einer guten Wärmeleitfähigkeit hergestellt, wie beispielsweise Kupfer, eine Kupferlegierung oder dergleichen.
Eine spiralartige Nut 12 ist in Axialrichtung der Hülse 10 in der Außenfläche 14 der Hülse 10 ausgebildet und dient zur Aufnahme einer drahtförmigen Heizung 16, wie in Fig. 9 gezeigt ist. Die drahtförmige Heizung 16 ist in der Nut 12 mit Hilfe einer Pressverbindung fixiert, wobei die Heizung 16 alternativ auch mittels Kleben, Löten oder dergleichen in der Nut 12 befestigt werden kann. Ferner ist eine weitere Nut 18 in der Außenfläche 14 der Hülse 10 ausgebildet, die sich ebenfalls spiralartig in Axialrichtung der Hülse 10 erstreckt. Diese weitere Nut 18 dient zur Aufnahme eines drahtförmigen Temperaturfühlers 20, wie in Fig. 9 dargestellt ist. An einem Endbereich 22 der Hülse 10 ist eine Durchgangsöffnung 24 in Form einer Bohrung vorgesehen, die sich von der Außenfläche 14 der Hülse 10 im Wesentlichen radial einwärts durch die Wandung der Hülse 10 erstreckt. In diese Durchgangsöffnung 24 mündet die den Temperaturfühler 20 aufnehmende Nut 18.
Im Wesentlichen gegenüber dem in der Durchgangsöffnung 24 mündenden Ende der Nut 18 ist eine nutartige Erweiterung 26 an der Durchgangsöffnung 24 ausgebildet, in die in demjenigen Zustand, in dem der Temperaturfühler 20 in der Nut 18 aufgenommen ist, das freie Ende des Temperaturfühlers 20 eingesetzt ist, wie es in der vergrößerten Teilansicht gemäß Fig. 3 gezeigt ist. Dabei wird das freie Ende des Temperaturfühlers 20 klemmend in der Erweiterung 26 gehalten. Alternativ kann das freie Ende des Temperaturfühlers 20 auch mittels einer Klebverbindung, Lötverbindung oder dergleichen in der Erweiterung 26 fixiert sein. Somit erstreckt sich ein Abschnitt nahe dem freien Ende des Temperaturfühlers 20 durch die Durchgangsöffnung 24, wenn der Temperaturfühler 20 in die Nut 18 eingesetzt ist.
In der Hülse 10 können ferner in den Figuren nicht dargestellte zusätzliche Bohrungen vorgesehen sein, in die ein Abziehwerkzeug oder dergleichen eingreifen kann, um insbesondere die Demontage der Hülse 10 von dem Materialrohr 32 zu erleichtern.
Die Figuren 4 bis 8 zeigen alternative Ausführungsformen der Hülse der erfindungsgemäßen Heisskanaldüse.
Wie Fig. 4 zeigt, ist gegenüber dem in der Durchgangsöffnung 24 mündenden Ende der Nut 18 eine nutartige Erweiterung 26a an der Durchgangsöffnung 24 ausgebildet, die sich bis zum unteren freien Ende der Hülse 10a erstreckt und in einer am freien Ende der Hülse 10a ausgebildeten Aussparung 25 mündet. In die nutartige Erweiterung 26a ist das freie Ende des Temperaturfühlers 20 eingesetzt, das klemmend in der Erweiterung 26a gehalten ist, wobei das freie Ende des Temperaturfühlers in die Aussparung 25 ragt. Alternativ kann das freie Ende des Temperaturfühlers 20 auch mittels einer Klebverbindung, Lötverbindung o.dgl. in der Erweiterung 26a fixiert sein. Bei dieser Ausführungsform ist der Temperaturfühler 20 näher am freien Ende des Materialrohrs 32 angeordnet, ohne das Teilsystem bestehend aus der Hülse 10 und der Heizung 16 zu verlängern und ohne dass das freie Ende des Temperaturfühlers 20 aus der Hülse herausragt bzw. von dieser vorsteht.
Bei der Ausführungsform gemäß Fig. 5 ragt das freie Ende des Temperaturfühlers 20 von dem in der Durchgangsöffnung 24 mündenden Ende der Nut 18 in die Durchgangsöffnung 24 definiert hinein und endet dort.
Gemäß Fig. 6 ragt das freie Ende des Temperaturfühlers 20 von dem in der Durchgangsöffnung 24 mündenden Ende der Nut 18 in die Durchgangsöffnung 24 definiert hinein und endet dort, wobei das freie Ende des Temperaturfühlers 20 mit Hilfe einer Klammer 27 derart gehalten ist, dass ein Kontakt des freien Endes des Temperaturfühlers 20 mit dem Materialrohr 32 sichergestellt ist. Dies wird bei der vorliegenden Ausführungsform erzielt, wie es genauer in der Querschnittansicht gemäß Fig. 7 zu erkennen ist, indem die Klammer 27 den Temperaturfühler 20 nach Art eines Niederhalters abwärts in Richtung des nicht dargestellten Materialrohrs drückt. Die freien Enden der Klammer 27 greifen dabei in entsprechende Erweiterungsbereiche 29 der Durchgangsöffnung 24, um die Klammer 27 in der Aussparung 24 festzulegen. Die Klammer 27 ist aus einem temperaturbeständigen (bis ca. 500 0C und höher) Federstahl hergestellt, um die zum Andrücken des freien Endes des Temperaturfühlers 20 an das Materialrohr erforderliche Kraft zu erzeugen.
Fig. 8 zeigt eine weitere Ausführungsform ähnlich derjenigen, die in Fig. 4 gezeigt ist, nur dass vorliegend das freie Ende des Temperaturfühlers 20 wie bei der in den Fign. 6 und 7 gezeigten Ausführungsform mit einer Klammer 27 in Richtung des Materialrohrs gedrückt wird, um einen Kontakt zwischen dem Temperaturfühler 20 und dem Materialrohr herzustellen. Das Prinzip der Festlegung der Klammer 27 in der Aussparung 25 entspricht vorliegend demjenigen, das in Fig. 7 dargestellt ist.
Fig. 9 zeigt eine Heisskanaldüse 30, in welche die in den Fig. 1 und 2 dargestellte Hülse 10 eingebaut ist. Die Heisskanaldüse 30 ist für den Einsatz in einem Spritzgießwerkzeug vorgesehen. Sie umfasst ein Materialrohr 32, das an seinem oberen Ende mit einem flanschartigen Anschlusskopf 34 versehen ist. Dieser sitzt lösbar in einem Gehäuse 36, das von unten an einer (nicht dargestellten) Verteilerplatte festlegbar ist. Eine radial ausgebildete Stufe 38 zentriert das Gehäuse 36 und damit die Heisskanaldüse 30 im Werkzeug. Innerhalb des sich in Axialrichtung A erstreckenden Materialrohrs 32 ist mittig ein Strömungskanal 40 für eine Materialschmelze eingebracht. Der bevorzugt als Bohrung ausgebildete Strömungskanal 40 besitzt im Anschlusskopf 34 eine Material-Zuführöffnung 42 und mündet an seinem unteren Ende in einem Düsenmundstück 44, das beispielsweise als Düsenspitze ausgebildet ist. Letztere hat eine Material-Austrittsöffnung 46, damit die fließfähige Materialschmelze in ein (nicht dargestelltes) Formnest gelangen kann. Das bevorzugt aus hochwärmeleitendem Material gefertigte Düsenmundstück 44 ist endseitig in das Materialrohr 32 eingesetzt, vorzugsweise eingeschraubt. Es kann aber auch - je nach Anwendungsfall - bei gleicher Funktionsweise axial verschieblich gelagert oder mit dem Materialrohr 32 einstückig ausgebildet sein. Zur Abdichtung der Heisskanaldüse 30 gegenüber der Verteilerplatte ist im Anschlusskopf 34 des Materialrohrs 32 konzentrisch zur Material-Zuführungsöffnung 42 ein Dichtring 48 vorgesehen. Denkbar ist auch die Ausbildung eines zusätzlichen (nicht gezeigten) ringförmigen Zentrieransatzes, was die Montage der Heisskanaldüse 30 am Werkzeug erleichtern kann.
Auf dem Außenumfang 50 des Materialrohres 32 ist die in den Fig. 1 und 2 dargestellte Hülse 10 aufgesetzt, wobei entsprechend die drahtförmige Heizung 16 und der draht- förmige Temperaturfühler 20 in den Nuten 12, 18 der Hülse 10 fixiert sind. Die jeweiligen Anschlüsse der Heizung 16 und des Temperaturfühlers 20 sind seitlich aus dem Gehäuse 36 herausgeführt, was vorliegend jedoch nicht dargestellt ist. Die gesamte Hülse 10 wird von einem Schutzrohr 52 umschlossen, das auf die Hülse 10 aufgeschoben ist.
In dem in Fig. 9 dargestellten zusammengebauten Zustand der Heisskanaldüse 30 ist die in der Hülse 10 vorgesehene Durchgangsöffnung 24 im Endbereich 54 des Materialrohres 32 angeordnet, wo die Temperatur des Materialrohrs 32 erfasst werden soll. Die Durchgangsöffnung 24 erzeugt dabei eine direkte Verbindung zwischen dem Außenumfang 50 des Materialrohrs 32 und einem Abschnitt 56 des Temperaturfühlers 20, der nahe dem in der Erweiterung 26 der Durchgangsöffnung 24 festgelegten freien Ende des Temperaturfühlers 20 angeordnet ist. Dank dieser direkten Verbindung wird die von dem Temperaturfühler 20 erfasste Temperatur nicht oder nur unwesentlich von der Temperatur der Hülse 10, die sich von der des Materialrohrs 32 unterscheidet, be- einträchtigt bzw. verfälscht, so dass der Temperaturfühler 20 die genaue Temperatur des Materialrohrs 32 und damit die der sich in diesem befindenden Schmelze erfassen kann.
Zum Austausch des Temperaturfühlers 20 oder der Heizung 16 muss lediglich die Hülse 10 von dem Materialrohr 32 demontiert und durch eine Hülse mit daran befestigtem Temperaturfühler und daran befestigter Heizung ersetzt werden, was nur wenig Zeit in Anspruch nimmt.
Gemäß einer alternativen Ausführungsform der Hülse der erfindungsgemäßen Heiss- kanaldüse kann die Erweiterung 26, die bei der in den Fig. 1 bis 3 dargestellten Ausführungsform an der Außenfläche 14 der Hülse 10 vorgesehen ist, auch wahlweise an der Innenfläche der Hülse oder an dem Außenumfang des Materialrohrs ausgebildet werden, was in den Fig. 1 bis 3 jedoch nicht dargestellt ist. Entsprechend wird der Endabschnitt des Temperaturfühlers zunächst durch die Durchgangsöffnung geführt, bevor das freie Ende des Temperaturfühlers in die entsprechend angeordnete Erweiterung der Durchgangsöffnung eingeführt wird. Der Temperaturfühler kann dann in der Erweiterung und/oder zwischen der Hülse und dem Materialrohr festgelegt werden. Wird die Hülse beispielsweise mittels einer Presspassung an dem Materialrohr befestigt, so kann die Festlegung des freien Endes des Temperaturfühlers zwischen diesen Bauteilen ebenfalls durch ein Verpressen erfolgen. Auf diese Weise wird gleichzeitig auch die relative Lage zwischen der Heizung und dem Materialrohr fixiert.
Insgesamt zeichnet sich der Aufbau der Hülse der erfindungsgemäßen Heisskanaldüse durch seine einfache Konstruktion aus. Insbesondere sind keine zusätzlichen Bauteile erforderlich, um den Temperaturfühler oder die Heizung an der Hülse festzulegen. Durch die exakte und dauerhafte Positionierung des Temperaturfühlers relativ zur Heizung wird ferner eine optimale Reproduzierbarkeit der von dem Temperaturfühler erfassten Daten erzielt.
Es sollte klar sein, dass die zuvor beschriebenen Ausführungsformen der erfindungsgemäßen Heisskanaldüse in keiner Weise einschränkend sind. Vielmehr sind Modifikationen und Änderungen möglich, ohne den Schutzbereich der vorliegenden Erfindung zu verlassen, der durch die beiliegenden Ansprüche definiert ist. Bezugszeichenliste
Axialrichtung 30 Heisskanaldüse
Hülse 32 Materialrohra Hülse 34 Anschlusskopf
Nut 36 Gehäuse
Außenfläche 38 Stufe
Heizung 40 Strömungskanal
Nut 42 Materialzuführöffnung
Temperaturfühler 44 Düsenmundstück
Endbereich 46 Materialaustrittsöffnung
Durchgangsöffnung 48 Dichtring
Aussparung 50 Außenumfang
Erweiterung 52 Schutzrohr a Erweiterung 54 Endbereich
Klammer 56 Abschnitt

Claims

Patentansprüche
1. Heisskanaldüse (30) für ein Spritzgießwerkzeug, mit einem Materialrohr (32), in dem wenigstens ein Strömungskanal (40) für ein fließfähiges Materia! ausgebildet ist, einer Hülse (10; 10a), die auf das Materialrohr (32) aufschiebbar ist, einer Heizung (16) zum Erwärmen des Materialrohrs (32) und einem Temperaturfühler (20) zum Erfassen einer Temperatur, dadurch gekennzeichnet, dass die Hülse (10; 10a) nahe einem ihrer Endbereiche eine sich im Wesentlichen radial durch eine Wandung der Hülse (10) erstreckende Durchgangsöffnung (24) aufweist, in und/oder durch die ein freies Ende des Temperaturfühlers (20) oder ein Temperaturfühlerabschnitt (56), der nahe dem freien Ende des Temperaturfühlers (20) angeordnet ist, geführt ist, wenn die Hülse (10; 10a) auf das Materialrohr (32) aufgeschoben ist.
2. Heisskanaldüse (30) nach Anspruch 1 , dadurch gekennzeichnet, dass das Materialrohr (32) aus einem Stahl hergestellt ist.
3. Heisskanaldüse (30) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das die Hülse (10; 10a) aus Kupfer oder aus einer Kupferlegierung hergestellt ist.
4. Heisskanaldüse (30) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass entlang einer Außenfläche (14) der Hülse (10; 10a) zumindest eine Nut (12; 18) ausgebildet ist, welche die Heizung (16) und/oder den Temperaturfühler (20) aufnimmt.
5. Heisskanaldüse (30) nach Anspruch 4, dadurch gekennzeichnet, dass die Heizung (16) und/oder der Temperaturfühler (20) in der zumindest einen Nut (12; 18) mit Hilfe einer Pressverbindung angeordnet ist/sind.
6. Heisskanaldüse (30) nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass in der Außenfläche (14) der Hülse (10; 10a) eine Nut (12) für die Heizung (16) und eine weitere Nut (18) für den Temperaturfühler (20) ausgebildet sind.
7. Heisskanaldüse (30) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Durchgangsöffnung (24) an der Außenfläche (14) der Hülse (10) eine nut- oder schlitzartige Erweiterung (26; 26a) aufweist, die derart ausgebildet ist, dass das freie Ende des Temperaturfühlers (20) in dieser befestigbar ist.
8. Heisskanaldüse (30) nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass ein freies Ende des Temperaturfühlers (20) definiert in die Durchgangsöffnung (24) ragt.
9. Heisskanaldüse (30) nach Anspruch 8, dadurch gekennzeichnet, dass das freie Ende des Temperaturfühlers (20) derart durch ein Halteelement fixiert ist, dass im eingebauten Zustand ein Kontakt zwischen dem freien Ende des Temperaturfühlers (20) und dem Materialrohr (32) gewährleistet ist.
10. Heisskanaldüse (30) nach Anspruch 9, dadurch gekennzeichnet, dass das Halteelement eine Klammer (27) aus einem temperaturbeständigen Federstahl ist.
11. Heisskanaldüse nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass an einer Außenfläche des Materialrohrs (32) und/oder an einer Innenfläche der Hülse eine Aussparung zur Aufnahme des freien Endes des Temperaturfühlers ausgebildet ist, die, wenn die Hülse auf das Materialrohr aufgeschoben ist, mit der Durchgangsöffnung kommuniziert.
12. Heisskanaldüse nach Anspruch 11 , dadurch gekennzeichnet, dass die Aussparung derart ausgebildet ist, dass das freie Ende des Temperaturfühlers in dieser befestigbar ist.
EP07819520A 2006-12-06 2007-10-31 Heisskanaldüse mit temperaturfühler Withdrawn EP2091714A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE202006018576U DE202006018576U1 (de) 2006-12-06 2006-12-06 Heisskanaldüse mit Temperaturfühler
PCT/EP2007/009491 WO2008067883A1 (de) 2006-12-06 2007-10-31 Heisskanaldüse mit temperaturfühler

Publications (1)

Publication Number Publication Date
EP2091714A1 true EP2091714A1 (de) 2009-08-26

Family

ID=39108101

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07819520A Withdrawn EP2091714A1 (de) 2006-12-06 2007-10-31 Heisskanaldüse mit temperaturfühler

Country Status (11)

Country Link
US (1) US20100092595A1 (de)
EP (1) EP2091714A1 (de)
JP (1) JP2010511535A (de)
KR (1) KR20090097154A (de)
CN (1) CN101535025A (de)
BR (1) BRPI0716310A2 (de)
CA (1) CA2670785A1 (de)
DE (1) DE202006018576U1 (de)
MX (1) MX2009004544A (de)
TW (1) TW200916297A (de)
WO (1) WO2008067883A1 (de)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202008013626U1 (de) 2008-10-15 2009-02-19 Türk & Hillinger GmbH Rohrförmiges Heizelement mit Temperaturfühler
DE102008055640A1 (de) 2008-11-03 2010-05-06 Günther Heisskanaltechnik Gmbh Heißkanaldüse
KR101263979B1 (ko) * 2009-07-24 2013-05-13 주식회사 디엠씨 냉각 장치가 구비된 노즐 텝
DE202010010581U1 (de) * 2010-07-23 2010-10-14 Hotset Heizpatronen U. Zubehör Gmbh Elektrisches Heizelement
GB2483265B (en) * 2010-09-01 2018-03-28 Pillarhouse Int Ltd Soldering nozzle
DE102012103839A1 (de) 2012-05-02 2013-11-07 Günther Heisskanaltechnik Gmbh Heißkanaldüse mit Thermofühler
DE102014005284B4 (de) 2013-04-09 2022-10-20 Otto Männer Innovation GmbH Heizer-Thermoelement-Anordnung und Anordnung mit einer Heizer-Thermoelement-Anordnung und einer Hülse
TWI519403B (zh) * 2013-06-24 2016-02-01 緯創資通股份有限公司 量測熔體溫度的熱澆道結構
CN204222111U (zh) * 2013-09-10 2015-03-25 奥托门纳创新有限责任公司 具有分区段式加热器的热流道喷嘴
US11081245B2 (en) 2015-10-23 2021-08-03 Atomic Energy Of Canada Limited Test apparatus and instrumented conduit for use with same
CN109059606A (zh) * 2018-05-31 2018-12-21 嘉兴懿铄精密模具有限公司 一种分级式冷却装置的喷嘴
AT523312B1 (de) * 2019-12-27 2022-12-15 Austria Email Ag Haltevorrichtung für einen Temperaturfühler, Tauchrohr mit einer solchen Haltevorrichtung sowie Vorrichtung mit einem solchen Tauchrohr
CN111413003B (zh) * 2020-03-23 2021-04-27 天津大学 一种音速喷嘴管壁热场分布测量系统
JP7451261B2 (ja) 2020-03-27 2024-03-18 キヤノン株式会社 ホットランナーノズル、射出成形装置、および樹脂成形品の製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3505517C1 (de) * 1985-02-18 1986-09-04 Türk & Hillinger GmbH, 7200 Tuttlingen Elektrische Heizeinrichtung, insbesondere für Kunststoff-Spritzdüsen
EP0326016A3 (de) * 1988-01-25 1991-01-30 Husky Injection Molding Systems Ltd. Heisskanaldüse
CA2032728A1 (en) * 1990-12-19 1992-06-20 Jobst Ulrich Gellert Injection molding probe with varying heat profile
US5324191A (en) * 1992-09-30 1994-06-28 Husky Injection Molding Systems Ltd. Sealed edge gate
CA2127211C (en) * 1994-06-30 2004-09-21 Jobst Ulrich Gellert Injection molding nozzle with removable collar portion
DE19514487A1 (de) * 1994-12-01 1996-06-05 Schoettli Ag Heizkörper für einen Düsenhalter
FR2737008A1 (fr) * 1995-07-18 1997-01-24 Dieterlen Dominique Sonde permettant de mesurer la temperature d'un corps en la captant a sa surface
DE59812891D1 (de) * 1997-09-16 2005-08-04 Siemens Schweiz Ag Zuerich Temperaturfühler
US6769901B2 (en) * 2000-04-12 2004-08-03 Mold-Masters Limited Injection nozzle system for an injection molding machine
US6962492B2 (en) * 2001-10-05 2005-11-08 Mold-Masters Limited Gap seal between nozzle components
JP2003200474A (ja) * 2002-01-09 2003-07-15 Japan Steel Works Ltd:The 射出成形機のチップノズルおよびアダプタ
JP4221056B2 (ja) * 2002-01-29 2009-02-12 株式会社尾関ホットランナープラン 射出成形金型用のゲートノズル
ITTO20040240A1 (it) * 2004-04-20 2004-07-20 Piero Enrietti Gruppo ugello riscaldato per lo stampaggio di materiali plastici
EP1724090B1 (de) * 2005-05-19 2010-07-21 Mold-Masters (2007) Limited Spritzgießdüse mit einer wärmeleitenden Hülse und Verfahren zu deren Herstellung
DE202006009056U1 (de) * 2006-06-07 2006-08-10 Günther Heisskanaltechnik Gmbh Beheizte Spritzgießdüse

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008067883A1 *

Also Published As

Publication number Publication date
TW200916297A (en) 2009-04-16
WO2008067883A1 (de) 2008-06-12
BRPI0716310A2 (pt) 2015-05-19
US20100092595A1 (en) 2010-04-15
MX2009004544A (es) 2009-05-12
KR20090097154A (ko) 2009-09-15
CN101535025A (zh) 2009-09-16
CA2670785A1 (en) 2008-06-12
JP2010511535A (ja) 2010-04-15
DE202006018576U1 (de) 2008-04-17

Similar Documents

Publication Publication Date Title
WO2008067883A1 (de) Heisskanaldüse mit temperaturfühler
EP2177339B1 (de) Spritzgiessdüse
EP2177338B1 (de) Rohrförmiges Heizelement mit Temperaturfühler
WO2019057542A1 (de) Dosiersystem mit aktoreinheit und lösbar koppelbarer fluidikeinheit
DE60113454T2 (de) Anordnung zur detektierung von temperaturänderungen und deren aufnahme für den zugehörigen sensor
EP2012995A1 (de) Heisskanaldüse
DE2539785C3 (de) Heißkanalspritzdüse
WO2019149695A1 (de) Bauteil mit toleranzausgleichsfunktion
DE102011080314B4 (de) Elektrische Heizvorrichtung
DE102008055640A1 (de) Heißkanaldüse
DE19723374A1 (de) Heißkanaldüse
EP1623810B1 (de) Heisskanaldüse
EP2781332B1 (de) Spritzgießdüse mit zweiteiligem Materialrohr
EP2248657A2 (de) Vorrichtung zum Verbinden von Gegenständen über wenigstens ein durch Wärme plastifizierbares Verbindungselement
DE202007017136U1 (de) Verschlussnadel für eine Nadelverschlussdüse
WO2007140878A1 (de) Spritzgussdüse, insbesondere heisskanaldüse, zur anordnung in einem spritzgiesswerkzeug
DE202006009056U1 (de) Beheizte Spritzgießdüse
DE202007015873U1 (de) Spritzgießdüse
DE60308469T2 (de) Spritzgiessdüse mit einer abnehmbaren und ersetzbaren Heizvorrichtung
EP2401134B1 (de) Handschweissextruder mit einstückigem schweissschuh aus kunststoff
DE102009025164A1 (de) Heizvorrichtung
DE202005002043U1 (de) Spritzgießvorrichtung
WO2008040416A1 (de) SPRITZGIEßDÜSE
EP2414107B1 (de) HANDSCHWEIßEXTRUDER
DE102009019099B3 (de) Spritzgießdüse

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090604

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20090916

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20120511