WO2007119778A1 - 光モジュール、光モジュールの製造方法、光伝送モジュール、および電子機器 - Google Patents

光モジュール、光モジュールの製造方法、光伝送モジュール、および電子機器 Download PDF

Info

Publication number
WO2007119778A1
WO2007119778A1 PCT/JP2007/058054 JP2007058054W WO2007119778A1 WO 2007119778 A1 WO2007119778 A1 WO 2007119778A1 JP 2007058054 W JP2007058054 W JP 2007058054W WO 2007119778 A1 WO2007119778 A1 WO 2007119778A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
optical element
light
sealant
support substrate
Prior art date
Application number
PCT/JP2007/058054
Other languages
English (en)
French (fr)
Inventor
Akihiko Sano
Hiroto Nozawa
Toshiaki Okuno
Junichi Tanaka
Naru Yasuda
Hayami Hosokawa
Original Assignee
Omron Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corporation filed Critical Omron Corporation
Priority to US12/296,495 priority Critical patent/US8696216B2/en
Priority to CN2007800135026A priority patent/CN101421651B/zh
Publication of WO2007119778A1 publication Critical patent/WO2007119778A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4251Sealed packages
    • G02B6/4253Sealed packages by embedding housing components in an adhesive or a polymer material
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4255Moulded or casted packages

Definitions

  • OPTICAL MODULE OPTICAL MODULE MANUFACTURING METHOD
  • OPTICAL TRANSMISSION MODULE OPTICAL TRANSMISSION MODULE
  • AND ELECTRONIC DEVICE OPTICAL MODULE, OPTICAL MODULE MANUFACTURING METHOD, OPTICAL TRANSMISSION MODULE, AND ELECTRONIC DEVICE
  • the present invention relates to an optical module for optical data transmission, and more particularly, to an optical transmission module having a flexible optical transmission path and a method for manufacturing the same.
  • optical communication networks capable of high-speed and large-capacity data communication have been expanded. In the future, this optical communication network is expected to be installed in consumer devices.
  • optical I / O optical data transmission cable optical cable
  • This optical cable it is desirable to use a film optical waveguide in consideration of flexibility.
  • An optical waveguide is formed by a core having a high refractive index and a clad having a low refractive index provided in contact with the periphery of the core, and optical signals incident on the core are all transmitted at the boundary between the core and the clad. It propagates while repeating reflection.
  • the film optical waveguide has flexibility because the core and the clad are made of a flexible polymer material.
  • optical element is an element that converts an electrical signal into an optical signal and transmits it, receives an optical signal and converts it into an electrical signal.
  • a light emitting element is used on the light input side, and a light receiving element is used on the light output side. Since this alignment affects the optical coupling efficiency, high accuracy is required.
  • FIG. 21 shows an example of a configuration for optically coupling a film optical waveguide and an optical element by aligning them in an optical module.
  • An optical module 100 shown in FIG. 21 includes an optical waveguide 101, an optical element 102, and a support substrate 103 at the light incident side or light emission side end.
  • the optical waveguide 101 is fixed to the support substrate 103 by adhesion or the like in the vicinity of the end thereof, The relative positional relationship between the end of the optical waveguide 101 and the optical element 102 is fixed.
  • the support substrate 103 has a level difference such that the mounting surface of the optical element 102 and the fixing surface (adhesion surface) of the optical waveguide 101 are different. Further, the end face of the optical waveguide 101 is not perpendicular to the optical axis (the central axis along the longitudinal direction of the core portion), but is cut obliquely to form an optical path conversion mirror. Thus, the signal light transmitted through the core portion of the optical waveguide 101 is reflected by the optical path conversion mirror, and is emitted toward the optical element 102 while changing its traveling direction.
  • a gap is generated between the lower surface of the optical waveguide 101 and the upper surface of the optical element 102.
  • the emitted light emitted from the end of the optical waveguide 101 and directed to the light receiving element 102 is not parallel light but diffused light. Therefore, if there is a gap between the lower surface of the optical waveguide 101 and the upper surface of the optical element, light that protrudes from the light receiving surface of the light receiving element 102 is generated, which leads to optical loss. Further, illustration is omitted.
  • incident light from the light emitting element 102 diffuses, and light that is not coupled to the core portion of the optical waveguide 101 increases, leading to optical loss.
  • Patent Documents 1 and 2 disclose a configuration in which a gap having a high refractive index is filled in a gap between a light emitting element and an optical waveguide, and the optical waveguide is bonded and fixed by this grease. In this configuration, undesired interface reflection is suppressed by the above-mentioned resin layer, and the optical coupling efficiency can be improved. In addition, a configuration in which a high refractive index resin is filled in the gap between the light emitting element and the optical waveguide can reduce the diffusion of light between the light emitting element and the optical waveguide. It is thought that efficiency can be improved.
  • Patent Document 1 Japanese Patent Publication “JP 2000-214351 (Publication Date: August 4, 2000)”
  • Patent Document 2 Japanese Published Patent Publication “JP 2000-9968 Publication (Publication Date: January 2000) Disclosure of the invention
  • the optical waveguide 101 facing the optical element 102 comes into contact with the resin 103 to be filled, the light guide is caused by curing shrinkage when the resin 103 is cured.
  • the position of the waveguide 101 changes, and the alignment accuracy with the optical element 102 is adversely affected.
  • the optical waveguide 101 is a film optical waveguide having high flexibility, the above-described problem occurs remarkably.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to align the optical waveguide and the optical element with high accuracy, and to detect light between the optical waveguide and the optical element.
  • the purpose is to realize an optical module capable of suppressing optical loss in coupling.
  • an optical module is an optical module comprising an optical transmission path and at least one optical element having a light receiving function or a light emitting function on a support substrate.
  • the light emitting surface of the light transmission path or the light incident surface of the light transmission path is opposite to the light receiving surface or light emitting surface of the optical element.
  • the optical element is sealed with a sealant, and the surface of the sealant on the light receiving surface or the light emitting surface of the optical element; and the light An air gap is provided between the transmission line and the transmission line.
  • the method for manufacturing an optical module according to the present invention is a method for manufacturing an optical module comprising an optical transmission line and at least one optical element having a light receiving function or a light emitting function on a support substrate. Then, an optical element is mounted on the support substrate, and after applying a sealant to the predetermined thickness from above, a first step of curing is performed, and an optical transmission line is bonded and fixed on the support substrate. And the optical transmission path has an optical path conversion mirror, and the light exit surface of the optical transmission path or the light incident face to the optical transmission path is the optical element.
  • the thickness of the sealant is set at a position where the optical element and the optical transmission path are optically coupled to the light receiving surface or the light emitting surface. , Above light It is characterized in that the thickness is set such that a space exists between the light receiving surface of the element or the surface of the sealing agent on the light emitting surface and the optical transmission path.
  • the optical element means a light emitting element on the light incident side to the optical transmission path and a light receiving element on the light exit side from the optical transmission path.
  • FIG. 1, showing an embodiment of the present invention is a cross-sectional view showing a main configuration of an optical module.
  • FIG. 2 is a view showing the unevenness of the sealing resin generated in the optical module, wherein (a) is a sectional view and (b) is a top view.
  • FIG. 3 is a graph showing the relationship between the thickness of the sealing resin and the shrinkage ratio.
  • FIG. 4 showing an embodiment of the present invention, is a cross-sectional view showing the main configuration of an optical module.
  • FIG. 5, showing an embodiment of the present invention is a cross-sectional view showing a main part configuration of an optical module.
  • FIG. 6, showing an embodiment of the present invention is a cross-sectional view showing the main configuration of an optical module.
  • FIG. 7, showing an embodiment of the present invention, is a cross-sectional view showing the main configuration of an optical module.
  • FIG. 8, showing an embodiment of the present invention is a cross-sectional view showing a main part configuration of an optical module.
  • FIG. 9 shows an embodiment of the present invention and is a cross-sectional view showing a main configuration of an optical module.
  • FIG. 10 showing an embodiment of the present invention, is a cross-sectional view showing the main configuration of an optical module.
  • FIG. 11 shows an embodiment of the present invention and is a cross-sectional view showing a configuration of a main part of an optical module.
  • FIG. 12 showing an embodiment of the present invention, is a cross-sectional view showing a main configuration of an optical module.
  • FIG. 13 shows an embodiment of the present invention and is a cross-sectional view showing a main configuration of an optical module.
  • FIG. 14 is a cross-sectional view illustrating a configuration of a main part of an optical module according to an embodiment of the present invention.
  • FIG. 15, showing an embodiment of the present invention is a cross-sectional view showing the main configuration of an optical module.
  • FIG. 16 shows an embodiment of the present invention and is a cross-sectional view showing a main configuration of an optical module.
  • FIG. 17 is a diagram showing a schematic configuration of an optical transmission module according to the present embodiment.
  • FIG. 18 (a) is a perspective view showing the external appearance of a foldable mobile phone provided with the optical transmission module according to the present embodiment, and (b) is a view of the foldable mobile phone shown in (a). It is a block diagram of the part to which the said optical transmission line is applied, (c) is a perspective top view of the hinge part in the foldable mobile phone shown to (a).
  • FIG. 19 (a) is a perspective view showing an appearance of a printing apparatus provided with the optical transmission module according to the present embodiment
  • FIG. 19 (b) is a block diagram showing a main part of the printing apparatus shown in FIG. (C) and (d) are perspective views showing the curved state of the optical transmission line when the printer head is moved (driven) in the printing apparatus.
  • FIG. 20 is a perspective view showing an external appearance of a hard disk recording / reproducing apparatus including the optical transmission module according to the present embodiment.
  • FIG. 21 is a cross-sectional view showing the main configuration of a conventional optical module.
  • FIG. 22 shows signal light diffusion in a conventional optical module.
  • FIG. 23 is a cross-sectional view showing a main configuration of a conventional optical module.
  • the optical module 1 shown in FIG. 1 is generally configured to include an optical transmission path 10, an optical element 11, a sealing agent 12, and a support substrate 13 in the vicinity of the end portion.
  • the optical waveguide 10 is used as the optical transmission line
  • the sealing resin 12 is used as the sealing agent.
  • the end of the optical waveguide 10 is fixed to the support substrate 13 by adhesion or the like, and the relative positional relationship between the end of the optical waveguide 10 and the optical element 11 is fixed.
  • the optical module 1 may include an electrical wiring or an electrical connection portion in order to facilitate extraction of an electrical signal output from the optical element 11.
  • the optical element 11 is a light emitting element such as a laser diode (an optical element having a light emitting function) at the light incident side end to the optical waveguide 10, and a light emitting element at the light emitting side end from the optical waveguide 10.
  • a light receiving element such as a diode (an optical element having a light receiving function).
  • the optical waveguide 10 is constituted by a core portion 10A, an upper cladding layer 10B, and a lower cladding layer 10C. That is, the optical waveguide 10 has a laminated structure in which the core portion 10A is sandwiched between the upper cladding layer 10B and the lower cladding layer 10C.
  • the optical signal transmitted through the optical waveguide 10 travels in the core portion 10A while being reflected at the interface between the core portion 10A and the upper cladding layer 10B or the interface between the core portion 10A and the lower cladding layer 10C. .
  • the longitudinal direction (optical axis direction) of the optical waveguide 10 is the X-axis direction, and the stacking direction of the core portion 10A, the upper cladding layer 10B, and the lower cladding layer 10C. Is the Y-axis direction.
  • the Y-axis direction also coincides with the normal direction of the mounting surface of the optical element 11 on the support substrate 13.
  • the signal emitted from the light emitting element 11 is incident on the incident surface of the optical path conversion mirror 10D, then reflected by the optical path conversion mirror 10D, and changes its traveling direction to change the core. Transmitted part 10.
  • the light exit surface (or incident surface) of the optical waveguide 10 is provided on the outer surface of the lower cladding layer 10C (or the upper cladding layer 10B) by providing the optical path conversion mirror 10D.
  • the light receiving surface (or light emitting surface) of the optical element 11 is disposed so as to face the light emitting surface (or incident surface) of the optical waveguide 10.
  • the inclination angle ⁇ of the optical path conversion mirror 10D is normally set to 45 ° so that the optical path conversion mirror 10D and the optical element 11 can be easily aligned.
  • the optical path conversion mirror may be one in which a mirror part is externally attached to the end of the optical waveguide 10.
  • sealing resin 12 One of the roles of the sealing resin 12 is to protect the optical element 11 from dust and moisture by sealing the optical element 11 and to improve the reliability of the optical module 1.
  • the other important role of the sealing resin 12 is to prevent the diffusion of the optical signal transmitted between the optical waveguide 10 and the optical element 11 and to suppress the optical loss due to the diffusion of the optical signal. is there.
  • a transparent resin such as epoxy, acrylic, silicone, or urethane having a high refractive index can be suitably used.
  • a remarkable point is that the sealing resin 12 does not fill the entire gap between the optical waveguide 10 and the optical element 11. This is a point where a gap is provided. That is, a gap is provided between the surface of the sealing resin 12 on the light receiving surface or the light emitting surface of the optical element 11 and the exit surface or the incident surface of the optical waveguide 10.
  • the optical element 11 is mounted on the surface 13a of the support substrate 13, and the upper surface of the optical module 11 is coated with the sealing resin 12 to a predetermined thickness. After curing. Thereafter, the optical waveguide 10 is bonded on the surface 13b of the support substrate 13 and fixed.
  • the surface of the optical waveguide 10 facing the optical element 11 is sealed. Since it has a structure without contact with the resin 12, the curing shrinkage of the sealing resin 12 does not affect the optical waveguide 10. Therefore, high positional accuracy can be realized when the optical waveguide 10 is bonded and fixed to the support substrate 13.
  • most of the gap between the optical waveguide 10 and the optical element 11 can be filled with the sealing resin 12. Thereby, the diffusion of light between the optical waveguide 10 and the optical element 11 can be reduced, and the optical coupling efficiency can be improved by this action.
  • the gap provided between the sealing resin 12 and the optical waveguide 10 has a width (width in the Y-axis direction) that does not allow the optical waveguide 10 and the sealing resin 12 to contact each other. It is preferable to make it as small as possible.
  • the width of the gap provided between the sealing resin 12 and the optical waveguide 10 is preferably in the range of 5 to 50 m in view of the current manufacturing accuracy.
  • the surface of the optical module 1 is cured by shrinkage of the sealing resin 12 on the surface as shown in FIGS.
  • the difference in height (unevenness) as shown is generated. That is, since the layer thickness of the sealing resin 12 is different between the region where the optical element 11 is present and the region where the optical element 11 is not present, the above-described unevenness is caused by the difference in the shrinkage amount of the sealing resin 12.
  • the thickness of the optical element 11 is 150 / zm and the thickness of the sealing resin 12 is 200 m
  • the surface is deformed around the optical element 11 and a difference in height is generated. (Shown by hatching in Fig. 2 (b)).
  • the width of the region where this height difference occurred was about 30 ⁇ m.
  • the surface of the sealing resin 12 serves as an incident or exit surface for light, if such irregularities occur on the surface of the sealing resin 12, undesired light diffusion occurs, resulting in optical diffusion. This can cause loss and cause noise in the optical signal. For this reason, on the surface of the sealing resin 12, it is preferable to suppress the occurrence of the unevenness as described above and bring it close to a flat surface. Next, various configurations and methods for obtaining flatness on the surface of the sealing resin 12 will be described.
  • the thickness of the sealing resin 12 in the Y-axis direction is sufficiently larger than the thickness of the optical element 11.
  • the sealing resin 12 is cured, if there is a difference in layer thickness between adjacent regions, the curing is completed first in the region where the layer thickness is thin. For this reason, when curing is performed in a thin layer area, the shrinkage of the sealing resin 12 is increased in the adjacent thick layer area. The reduction of the layer thickness is less likely to be compensated by drawing in powerful resin. On the other hand, in the thick layer region that hardens later, the layer thickness decreases due to the curing shrinkage of the sealing resin 12, so that the unevenness as shown in FIGS. 2 (a) and 2 (b) occurs.
  • the sealing resin 12 may be formed by laminating a plurality of layers in the Y-axis direction.
  • FIG. 4 shows an example in which the sealing resin 12 has a two-layer structure of a first resin layer 12A and a second resin layer 12B.
  • the sealing resin 12 has a laminated structure of a plurality of layers, after the lower resin layer (the first resin layer 12A in FIG. 4) is cured, the upper resin layer (In FIG. 4, the second resin layer 12B) is applied and cured.
  • the unevenness generated in the lower resin layer that has been cured first can be flattened in the upper resin layer that is formed later.
  • the number of laminations of the sealing resin 12 is limited to two layers as in the example of FIG. It may be more than 3 layers. Further, in order to prevent undesired reflection of light at the interface between the laminated resin layers, it is preferable that the refractive index of each sealing resin layer be as close as possible. However, it is effective if the refractive index is closer to that of air.
  • the height of the substrate surface of the support substrate 13 is increased in the peripheral region of the optical element 11, It is conceivable that the height of the raised support substrate and the surface of the support substrate should be almost uniform in the Y-axis direction. In other words, the problem of unevenness as shown in Fig. 2 is due to the difference in layer thickness between adjacent regions as described above. Raise the height of the support substrate 13 in the peripheral area of the optical element 11. Thus, if the periphery of the light receiving / emitting surface of the optical element 11 is made substantially uniform, the difference in the layer thickness of the sealing resin 12 around the light receiving / emitting surface can be eliminated. In addition, it is possible to suppress the occurrence of irregularities in the surface of the transmission region of the optical signal transmitted between the optical waveguide 10 and the optical element 11.
  • the support substrate 13 may be raised over the entire periphery of the light receiving / emitting surface as shown in FIG. 5, or may be performed over a part of the periphery of the light receiving / emitting surface as shown in FIG. Ideally, it is preferable that the light receiving surface of the optical element 11 and the surface of the support substrate 13 with increased force be continuous. However, in order to facilitate the mounting of the optical element 11 on the support substrate 13, a certain gap (the gap L in FIGS. 5 and 6) is provided between the optical element 11 and the force-raised portion of the support substrate 13. ) May be provided.
  • the occurrence of the unevenness as shown in FIG. 2 is also attributed to the pulling in of the resin having a thick region strength adjacent to the region having a thin layer thickness during curing.
  • the rib 14 it is possible to suppress the pulling of such a resin, that is, the movement of the sealing resin 12 at the time of curing shrinkage.
  • a flat plate 15 is applied on the applied sealing resin 12 so that the surface of the sealing resin 12 does not become uneven when the sealing resin 12 is cured. It is conceivable to cure the sealing resin 12 in a state where the is placed. The flat plate 15 can be removed after the sealing resin 12 is cured. If the flat plate 15 is a transparent resin plate or glass plate, the flat plate 15 remains after the sealing resin 12 is cured. Well, okay.
  • FIG. 10 shows an example in which a part of the support substrate 13 is thinned and deformed following the curing shrinkage of the sealing resin 12. Rubber, thinned resin, metal plate, etc. can be used for the deformed part.
  • FIG. 11 shows that at least a part of the supporting substrate 13 in contact with the sealing resin 12 is made of a deformable material such as rubber or silicone resin, and follows the curing shrinkage of the sealing resin 12.
  • a deformable material such as rubber or silicone resin
  • FIG. 12 shows an example in which a deformable member 16 that deforms following the curing shrinkage of the sealing resin 12 is provided in at least a part of the contact portion with the sealing resin 12.
  • a deformable member 16 that deforms following the curing shrinkage of the sealing resin 12 is provided in at least a part of the contact portion with the sealing resin 12.
  • a thin metal plate or a resin plate can be suitably used.
  • the thickness of the sealing resin 12 is made sufficiently thinner than the thickness of the optical element 11. That is, since the surface of the sealing resin 12 is made lower than the height of the optical element 11, the shrinkage of the sealing resin 12 around the optical element 11 causes the sealing resin on the optical element 11 to shrink. 12 can be prevented from being affected. In this case, a thin film of the sealing resin 12 is formed on the surface of the optical element 11 at a portion higher than the surface of the sealing resin 12 due to the wettability of the sealing resin 12. The optical element 11 can be sealed by the resin film
  • the first to fifth methods prevent the occurrence of irregularities on the surface of the resin resulting from the curing shrinkage of the sealing resin 12. .
  • the surface of the support substrate 13 is uneven due to the effect of the surface tension of the seal resin 12 when the sealing resin 12 is applied onto the support substrate 13. May occur.
  • the surface of the application surface of the sealing resin 12 on the support substrate 13 is wetted. It is preferable to increase the property. As a method of increasing the wettability of the support substrate 13,
  • the contact surface with the sealing resin 12 on the support substrate 13 (X-axis) A step may be provided on the surface perpendicular to the surface. In this case, the unevenness can be prevented by making the stepped surface substantially coincide with the surface of the sealing resin 12.
  • each configuration and method described in FIGS. 1 to 15 is a force illustrating the case where it is applied at the end of the support substrate 13.
  • the present invention is not limited to this in FIG. As shown, the present invention can be applied to any part of the support substrate 13.
  • a plurality of application portions of the present invention may be provided on one support substrate 13.
  • the optical module 1 can function as the optical transmission module 1 by including a light receiving element and a light emitting element at both ends of the optical waveguide 10 that is an optical transmission path.
  • FIG. 17 shows a schematic configuration of the optical transmission module 1 according to the present embodiment. As shown in the figure, the optical transmission module 1 includes an optical transmission processing unit 2, an optical reception processing unit 3, and an optical waveguide 10.
  • the optical transmission processing unit 2 includes a light emission drive unit 5 and a light emission unit 6.
  • the light emission drive unit 5 drives the light emission of the light emission unit 6 based on the electrical signal input from the external force.
  • the light emission drive unit 5 is constituted by, for example, an IC (Integrated Circuit) for light emission drive. Although not shown in the figure, the light emission drive unit 5 is provided with an electrical connection part with an electrical wiring for transmitting an electrical signal from the outside.
  • the light emitting unit 6 emits light based on drive control by the light emission driving unit 5.
  • the light emitting unit 6 is composed of a light emitting element such as VCSEL (Vertical Cavity-Surface Emitting Laser). The light emitted from the light emitting unit 6 is applied to the light incident side end of the optical waveguide 10 as an optical signal.
  • VCSEL Vertical Cavity-Surface Emitting Laser
  • the optical reception processing unit 3 includes an amplification unit 7 and a light receiving unit 8.
  • the light receiving unit 8 receives light as an optical signal emitted from the light emitting side end of the optical transmission path 4 and outputs an electrical signal by photoelectric conversion.
  • the light receiving unit 8 is composed of a light receiving element such as a PD (Photo-Diode).
  • the amplifying unit 7 amplifies the electrical signal output from the light receiving unit 8 and outputs the amplified signal to the outside.
  • the amplifier 7 is constituted by an amplification IC, for example.
  • the amplifying unit 7 is provided with an electrical connection portion with electrical wiring for transmitting an electrical signal to the outside.
  • the optical waveguide 10 is a medium that transmits the light emitted from the light emitting unit 6 to the light receiving unit 8 as described above.
  • optical transmission module of the present invention can be applied to the following application examples, for example.
  • the optical transmission module of the present invention only the optical waveguide 10 is illustrated, and the other portions are not illustrated.
  • a hinge unit in a foldable electronic device such as a foldable mobile phone, a foldable PHS (Personal Handyphone System), a foldable PDA (Personal Digital Assistant), or a foldable notebook personal computer. Can be used.
  • a foldable electronic device such as a foldable mobile phone, a foldable PHS (Personal Handyphone System), a foldable PDA (Personal Digital Assistant), or a foldable notebook personal computer.
  • FIG. 18 shows an example in which the optical transmission module including the optical waveguide 10 is applied to the foldable mobile phone 40. That is, FIG. 18A is a perspective view showing the external appearance of a foldable mobile phone 40 incorporating the optical waveguide 10.
  • FIG. 18 (b) is a block diagram of a portion to which the optical waveguide 10 is applied in the foldable mobile phone 40 shown in FIG. 18 (a).
  • the control unit 41 provided on the main body 40a side in the foldable mobile phone 40, and the lid (drive unit) 40b provided on one end of the main body so as to be rotatable about the hinge part are provided.
  • An external memory 42, a camera unit (digital camera) 43, and a display unit (liquid crystal display display) 44 are connected by an optical waveguide 10, respectively.
  • FIG. 18 (c) is a perspective plan view of the hinge portion (portion surrounded by a broken line) in FIG. 18 (a).
  • the optical waveguide 10 is wound around a support rod in the hinge portion and bent to thereby control the control portion provided on the main body side, the external memory 42 provided on the lid side, and the camera.
  • the unit 43 and the display unit 44 are connected to each other.
  • optical waveguide 10 By applying the optical waveguide 10 to these foldable electronic devices, high-speed and large-capacity communication can be realized in a limited space. Therefore, for example, it is particularly suitable for a device that requires high-speed and large-capacity data communication such as a foldable liquid crystal display device and requires downsizing.
  • the optical transmission module including the optical waveguide 10 can be applied to a device having a drive unit such as a printer head in a printing device (electronic device) or a reading unit in a hard disk recording / reproducing device.
  • FIG. 19 shows an example in which the optical waveguide 10 is applied to the printing apparatus 50.
  • FIG. 19A is a perspective view showing the appearance of the printing apparatus 50.
  • the printing apparatus 50 includes a printer head 51 that performs printing on the paper 52 while moving in the width direction of the paper 52.
  • One end of the optical waveguide 10 is connected to the printer head 51. It has been.
  • FIG. 19B is a block diagram of a portion of the printing apparatus 50 to which the optical waveguide 10 is applied. As shown in this figure, one end of the optical waveguide 10 is connected to the printer head 51, and the other end is connected to the main body side substrate in the printing apparatus 50. The main body side substrate is provided with control means for controlling the operation of each part of the printing apparatus 50.
  • FIGS. 19C and 19D are perspective views showing the curved state of the optical waveguide 10 when the printer head 51 is moved (driven) in the printing apparatus 50.
  • FIG. As shown in this figure, when the optical waveguide 10 is applied to a drive unit such as the printer head 51, the curved state of the optical waveguide 10 is changed by driving the printer head 51, and each position of the optical waveguide 10 is changed. It is curved repeatedly.
  • the optical waveguide 10 according to the present embodiment is suitable for these drive units.
  • the optical waveguide 10 is applied to these drive units, high-speed and large-capacity communication using the drive units can be realized.
  • FIG. 20 shows an example in which the optical waveguide 10 is applied to a node disk recording / reproducing apparatus 60.
  • the hard disk recording / reproducing device 60 includes a disk (node disk) 61, a head (read / write head) 62, a substrate introduction part 63, a drive part (drive motor) 6 4, an optical A waveguide 10 is provided.
  • the drive unit 64 drives the head 62 along the radial direction of the disk 61.
  • the head 62 reads information recorded on the disk 61 and writes information on the disk 61.
  • the head 62 is connected to the substrate introducing portion 63 via the optical waveguide 10, and propagates information read from the disk 61 to the substrate introducing portion 63 as an optical signal, and is also propagated from the substrate introducing portion 63. It also receives an optical signal of information to be written on the disc 61.
  • the optical module according to the present invention is an optical module including an optical transmission path and at least one optical element having a light receiving function or a light emitting function on a support substrate,
  • the light emitting surface of the light transmission path or the light incident surface to the light transmission path is optically coupled to the light receiving surface or light emitting surface of the light element.
  • the optical element is sealed with a sealant, and the surface of the sealant on the light-receiving surface or the light-emitting surface of the optical element and the optical transmission line It is characterized in that a gap is provided between them.
  • the method for manufacturing an optical module according to the present invention is a method for manufacturing an optical module comprising an optical transmission path and at least one optical element having a light receiving function or a light emitting function on a support substrate. Then, an optical element is mounted on the support substrate, and after applying a sealant to the predetermined thickness from above, a first step of curing is performed, and an optical transmission line is bonded and fixed on the support substrate. And the optical transmission path has an optical path conversion mirror, and the light exit surface of the optical transmission path or the light incident face to the optical transmission path is the optical element.
  • the thickness of the sealant is set at a position where the optical element and the optical transmission path are optically coupled to the light receiving surface or the light emitting surface.
  • the thickness is set such that a space exists between the light receiving surface of the element or the surface of the sealing agent on the light emitting surface and the optical transmission path.
  • the optical element means a light emitting element on the light incident side to the optical transmission path and a light receiving element on the light exit side from the optical transmission path.
  • the sealant may be formed by laminating a plurality of layers in the normal direction of the mounting surface of the optical element on the support substrate. .
  • the sealing agent is formed by laminating a plurality of layers, and a layer formed later is laminated after the layer formed earlier is cured. It can be configured.
  • the sealing agent has a laminated structure of a plurality of layers, so that the lower resin layer is cured and then the upper resin layer is applied and cured. As a result, the unevenness generated in the lower resin layer that has been cured first can be flattened in the upper resin layer formed later.
  • the substrate surface of the support substrate is increased in at least a part of the peripheral region of the optical element, and the increased substrate surface of the support substrate and the light
  • the light emitting / receiving surface of the element can be configured to have a substantially uniform height with respect to the normal direction of the mounting surface of the optical element on the support substrate.
  • the height of the support substrate is increased in the peripheral region of the optical element, and the periphery of the light receiving and emitting surface of the optical element is made substantially uniform, so that Of sealant The difference in layer thickness can be eliminated, and the occurrence of unevenness on the surface of the sealant can be suppressed.
  • the optical module it is ideal that no space is provided between the optical transmission line and the optical transmission line on the sealing agent. Considering the mounting of the optical element, it is preferable that the optical elements are mounted with an interval approximately equal to the thickness of the sealant.
  • the sealing agent in the first step, is cured in a state where a flat plate is placed on the sealing agent applied on the support substrate. It can be configured.
  • the sealant is cured in a state where the flat plate is placed on the applied sealant, so that no unevenness is generated on the surface when the sealant is cured. Can be done.
  • the flat plate may be removed after the sealant is cured, but if the flat plate is made of a light-transmitting member, it may be left after the sealant is cured! /.
  • At least a part of the support substrate in contact with the sealing agent is provided with a region that deforms following the curing shrinkage of the sealing agent. It can be configured.
  • At least a part of the support substrate in contact with the sealant is provided with a region that deforms following the curing shrinkage of the sealant. Curing shrinkage during curing of the agent can be absorbed by deformation of the above region. As a result, it is possible to prevent such a problem that a gap is generated between the sealing agent and the flat plate, or a density difference is generated in the cured sealing agent, so that a uniform refractive index cannot be obtained.
  • the optical module may have a configuration in which a member having higher wettability than the support substrate is sandwiched between the support substrate and the sealant.
  • a process for improving wettability on the surface of the support substrate for example, Substrate surface treatment such as corona discharge, plasma treatment, and UV cleaning, and primer application to the substrate surface.
  • Substrate surface treatment such as corona discharge, plasma treatment, and UV cleaning
  • the surface of the sealing agent on the light receiving surface or the light emitting surface of the optical element may be subjected to a flattening treatment.
  • the layer thickness of the sealant is 1.5 times or more the thickness of the optical element with respect to the normal direction of the mounting surface of the optical element on the support substrate. It is possible to adopt the configuration as follows.
  • the film thickness ratio T2ZT1 can be reduced by making the layer thickness of the sealant sufficiently thicker than the thickness of the optical element, and when the sealant is cured, Unevenness due to curing shrinkage can be suppressed.
  • the layer thickness of the sealant is thinner than the thickness of the optical element with respect to the normal direction of the mounting surface of the optical element on the support substrate. That's right.
  • the surface of the sealing resin is made to be lower than the height of the optical element, so that the shrinkage of the sealing resin around the optical element causes the sealing on the optical element. It can be made not to affect anti-fouling oil.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Semiconductor Lasers (AREA)
  • Light Receiving Elements (AREA)

Abstract

 光モジュール(1)は、支持基板(13)上に、光導波路(10)と光素子(11)とを備えており、光素子(11)は封止樹脂(12)で封止されている。光素子(11)の受光面または発光面の上の封止樹脂(12)の表面と、光導波路(10)における出射面または入射面との間には空隙が設けられている。

Description

光モジュール、光モジュールの製造方法、光伝送モジュール、および電 子機器
技術分野
[0001] 本発明は、光データ伝送用光モジュールに関するものであって、特に柔軟性を有 する光伝送路を備えた光伝送モジュールおよびその製造方法に関する。
背景技術
[0002] 近年、高速で大容量のデータ通信が可能な光通信網が拡大して 、る。今後、この 光通信網は民生機器への搭載が予想されている。そして、データ転送の高速大容量 ィ匕、ノイズ対策、機器内の基板間をデータ伝送する用途として、現在の電気ケーブル と変わりなく使用することができる電気入出力の光データ伝送ケーブル (光ケーブル) が求められている。この光ケーブルとしては、フレキシブル性を考慮すると、フィルム 光導波路を用いることが望まし 、。
[0003] 光導波路とは、屈折率の大きいコアと、該コアの周囲に接して設けられる屈折率の 小さいクラッドとにより形成され、コアに入射した光信号を該コアとクラッドとの境界で 全反射を繰り返しながら伝搬するものである。また、フィルム光導波路は、コアおよび クラッドが柔軟な高分子材料力 なるため柔軟性を有している。
[0004] この柔軟性を有するフィルム光導波路を光ケーブルとして用いる場合、光電変換素 子 (光素子)と位置合わせをして光結合する必要がある。光素子とは、電気信号を光 信号に変換して発信し、光信号を受信して電気信号に変換するものであり、光入力 側では発光素子、光出力側では受光素子が用いられる。この位置合わせは、光結合 効率に影響を与えるため、高い精度が要求される。
[0005] 図 21に、光モジュールにおける、フィルム光導波路と光素子とを位置合わせして光 結合するための一構成例を示す。
[0006] 図 21に示す光モジュール 100は、その光入射側もしくは光出射側端部において、 光導波路 101、光素子 102、支持基板 103を備えて構成されている。光導波路 101 は、その端部付近において支持基板 103に対して接着等によって固定されており、 光導波路 101の端部と光素子 102との相対的な位置関係は固定された状態にある。
[0007] 支持基板 103は、光素子 102の搭載面と光導波路 101の固定面 (接着面)とが異 なる面となるような段差を有している。また、光導波路 101の端面は、光軸 (コア部の 長手方向に沿った中心軸)に対して垂直とならず、斜めに切断されて光路変換ミラー を形成している。これにより、光導波路 101のコア部を伝達されてきた信号光は、上 記光路変換ミラーにて反射され、その進行方向を変えて光素子 102に向けて出射さ れる。
[0008] 上記図 21の構成では、光導波路 101の下面と光素子 102の上面との間に隙間が 発生する。また、光導波路 101の光出射側では、図 22に示すように、光導波路 101 の端部から出射されて受光素子 102に向かう出射光は平行光ではなく拡散光となる 。このため、光導波路 101の下面と光素子の上面との間に隙間があると、受光素子 1 02の受光面からはみ出す光が発生し、光学的損失に繋がる。また、図示は省略する 力 光導波路 101の光入射側では、発光素子 102からの入射光が拡散し、光導波路 101のコア部に結合しない光が増大し、光学的損失に繋がる。
[0009] このような光学的損失を抑制する方法としては、光素子と光導波路との距離を近づ けて配置する方法や、レンズやプリズム等の光学部材を用いて光を集光させる方法 等がある。し力しながら、前者の方法では、実装バラツキによる影響が大きぐかつ、 光素子に対するボンディングワイヤのスペースが確保しづらいといった問題がある。 また、後者の方法では、部品点数が増加するといつた問題がある。
[0010] また、特許文献 1および 2には、発光素子と光導波路との隙間に屈折率の高い榭脂 を充填し、この榭脂によって光導波路を接着固定する構成が開示されている。この構 成においては、上記榭脂層によって不所望の界面反射が抑制され、光結合効率の 向上が図れる。また、発光素子と光導波路との隙間に屈折率の高い榭脂を充填する 構成は、発光素子と光導波路との間での光の拡散を低減することもでき、この作用に よっても光結合効率の向上が図れると考えられる。
特許文献 1 :日本国公開特許公報「特開 2000— 214351号公報 (公開日: 2000年 8 月 4日)」
特許文献 2 :日本国公開特許公報「特開 2000— 9968号公報 (公開日: 2000年 1月 発明の開示
[0011] し力しながら、上記特許文献 1および 2の構成では、発光素子と光導波路との隙間 に充填される榭脂の濡れ性や硬化収縮により、光素子と光導波路との間で高精度に 位置決めを行うことが困難になるといった問題が生じる。
[0012] すなわち、図 23に示すように、光導波路 101における光素子 102との対向面が充 填される榭脂 103と接触する場合、該榭脂 103が硬化する際の硬化収縮によって光 導波路 101の位置が変化し、光素子 102との位置合わせ精度に悪影響を与えること になる。特に、光導波路 101が高柔軟性を有するフィルム光導波路の場合、上記問 題が顕著に発生する。
[0013] 本発明は、上記の問題点に鑑みてなされたものであり、その目的は、光導波路と光 素子とを高精度に位置合わせでき、かつ光導波路と光素子との間での光結合におけ る光学的損失を抑制できる光モジュールを実現することにある。
[0014] 本発明に係る光モジュールは、上記目的を達成するために、支持基板上に、光伝 送路と、受光機能または発光機能を有する少なくとも一つの光素子とを備えた光モジ ユールであって、上記光伝送路における光の出射面、または該光伝送路への光の入 射面が、上記光素子における受光面または発光面に対して、上記光素子と上記光 伝送路とが光学的に結合される位置に配置されており、上記光素子は、封止剤で封 止されており、上記光素子の受光面または発光面の上の上記封止剤の表面と、上記 光伝送路との間に空隙が設けられて 、ることを特徴として 、る。
[0015] また、本発明に係る光モジュールの製造方法は、支持基板上に、光伝送路と、受 光機能また発光機能を有する少なくとも一つの光素子とを備えた光モジュールの製 造方法であって、上記支持基板上に光素子を搭載し、その上から封止剤を所定厚さ に塗布した後、硬化させる第 1の工程と、支持基板上に光伝送路を接着し、固定する 第 2の工程とを備えており、上記光伝送路は光路変換ミラーを有しており、該光伝送 路における光の出射面、または該光伝送路への光の入射面が、上記光素子におけ る受光面または発光面に対して、上記光素子と上記光伝送路とが光学的に結合され る位置に配置されており、上記第 2の工程において、上記封止剤の厚さは、上記光 素子の受光面または発光面の上の上記封止剤の表面と、上記光伝送路との間に空 隙が存在する厚さに設定されることを特徴としている。
[0016] 上記の構成によれば、光伝送路と光素子との隙間においては、その大半に封止剤 を充填することができる。これにより、光伝送路と光素子との間での光の拡散を防止 することができ、この作用によって光結合効率の向上を図ることができる。
[0017] また、光素子の受光面または発光面の上の封止剤の表面と、光伝送路における出 射面または入射面との間に空隙が設けられていることで、光伝送路における光素子 との対向面が封止剤と接触しない構造となっている。これにより、封止剤の硬化収縮 が光伝送路に対して影響を与えない。したがって、光伝送路を支持基板に接着'固 定するときに高い位置精度を実現することができる。
[0018] 尚、上記光素子とは、光伝送路への光入射側では発光素子であり、光伝送路から の光出射側では受光素子であることを意味する。
図面の簡単な説明
[0019] [図 1]本発明の実施形態を示すものであり、光モジュールの要部構成を示す断面図 である。
[図 2]上記光モジュールにおいて発生する封止榭脂の凹凸を示す図であり、 (a)は断 面図、(b)は上面図である。
[図 3]封止榭脂の厚みと収縮比との関係を示すグラフである。
[図 4]本発明の実施形態を示すものであり、光モジュールの要部構成を示す断面図 である。
[図 5]本発明の実施形態を示すものであり、光モジュールの要部構成を示す断面図 である。
[図 6]本発明の実施形態を示すものであり、光モジュールの要部構成を示す断面図 である。
[図 7]本発明の実施形態を示すものであり、光モジュールの要部構成を示す断面図 である。
[図 8]本発明の実施形態を示すものであり、光モジュールの要部構成を示す断面図 である。 圆 9]本発明の実施形態を示すものであり、光モジュールの要部構成を示す断面図 である。
圆 10]本発明の実施形態を示すものであり、光モジュールの要部構成を示す断面図 である。
圆 11]本発明の実施形態を示すものであり、光モジュールの要部構成を示す断面図 である。
圆 12]本発明の実施形態を示すものであり、光モジュールの要部構成を示す断面図 である。
圆 13]本発明の実施形態を示すものであり、光モジュールの要部構成を示す断面図 である。
圆 14]本発明の実施形態を示すものであり、光モジュールの要部構成を示す断面図 である。
圆 15]本発明の実施形態を示すものであり、光モジュールの要部構成を示す断面図 である。
圆 16]本発明の実施形態を示すものであり、光モジュールの要部構成を示す断面図 である。
[図 17]本実施形態に係る光伝送モジュールの概略構成を示す図である。
[図 18] (a)は、本実施形態に係る光伝送モジュールを備えた折り畳み式携帯電話の 外観を示す斜視図であり、(b)は、(a)に示した折り畳み式携帯電話における、上記 光伝送路が適用されている部分のブロック図であり、(c)は、(a)に示した折り畳み式 携帯電話における、ヒンジ部の透視平面図である。
[図 19] (a)は、本実施形態に係る光伝送モジュールを備えた印刷装置の外観を示す 斜視図であり、(b)は、(a)に示した印刷装置の主要部を示すブロック図であり、 (c) および (d)は、印刷装置においてプリンタヘッドが移動 (駆動)した場合の、光伝送路 の湾曲状態を示す斜視図である。
[図 20]本実施形態に係る光伝送モジュールを備えたハードディスク記録再生装置の 外観を示す斜視図である。
[図 21]従来の光モジュールの要部構成を示す断面図である。 [図 22]従来の光モジュールにおいて信号光の拡散を示す図である。
[図 23]従来の光モジュールの要部構成を示す断面図である。
発明を実施するための最良の形態
[0020] 本発明の一実施形態について図面に基づいて説明すると以下の通りである。先ず 、本実施の形態に係る光モジュールの一構造例を図 1を参照して説明する。
[0021] 図 1に示す光モジュール 1は、その端部付近において、大略的に、光伝送路 10、光 素子 11、封止剤 12、支持基板 13を備えて構成されている。尚、以下の説明におい ては、光伝送路として光導波路 10を用い、封止剤として封止榭脂 12を用いている。 光導波路 10の端部は支持基板 13に対して接着等によって固定されており、光導波 路 10の端部と光素子 11との相対的な位置関係は固定された状態にある。さらに、光 モジュール 1は、光素子 11が出力する電気信号の取り出しを容易にするため、電気 配線や電気接続部を備えていてもよい。また、光素子 11は、光導波路 10への光入 射側端部ではレーザダイオード等の発光素子 (発光機能を備えた光素子)であり、光 導波路 10からの光出射側端部ではフォトダイオード等の受光素子 (受光機能を備え た光素子)である。
[0022] 先ず、光導波路 10は、コア部 10A、上クラッド層 10B、および下クラッド層 10Cによ り構成されている。すなわち、光導波路 10は、上クラッド層 10Bおよび下クラッド層 10 Cによってコア部 10Aを挟み込む積層構造を有している。光導波路 10によって伝達 される光信号は、コア部 10Aと上クラッド層 10Bとの界面、またはコア部 10Aと下クラ ッド層 10Cとの界面で反射を受けながら、コア部 10A内を進行する。尚、図 1におい ては、光導波路 10の端部付近において、光導波路 10の長手方向(光軸方向)を X 軸方向、コア部 10A、上クラッド層 10B、および下クラッド層 10Cの積層方向を Y軸方 向とする。また、この Y軸方向は、支持基板 13における光素子 11の搭載面の法線方 向とも一致する。
[0023] 光導波路 10における端面は光軸 (X軸)に対して垂直とならず、斜めに切断されて 光路変換ミラー 10Dを形成する。具体的には、光導波路 10の端面は、 XY平面に対 して垂直であり、かつ、 X軸に対しては角度 0 ( 0 < 90° )をなすように傾斜されてい る。 [0024] これにより、光導波路 10における光の出射側では、コア部 10を伝達されてきた信 号光は、光路変換ミラー 10Dにて反射され、その進行方向を変えて光路変換ミラー 1 ODの出射面力 受光素子 11に向けて出射される。また、光導波路 10における光の 入射側では、発光素子 11から出射された信号が光路変換ミラー 10Dの入射面から 入射された後、光路変換ミラー 10Dにて反射され、その進行方向を変えてコア部 10 を伝達される。ここで、光導波路 10における光の出射面 (または入射面)は、光路変 換ミラー 10Dが設けられて 、ることによって下クラッド層 10C (上クラッド層 10Bでもよ い)の外表面において存在し、光素子 11の受光面 (または発光面)は、光導波路 10 における光の出射面 (または入射面)と対向するように配置される。
[0025] 尚、光路変換ミラー 10Dの傾斜角度 Θは、該光路変換ミラー 10Dと光素子 11との 位置合わせが容易となるように、通常は 45° に設定されている。尚、光路変換ミラー は、光導波路 10の端部に対してミラー部を外付けするものであってもよい。
[0026] 封止榭脂 12の役割の一つは、光素子 11を封止することによって、光素子 11を埃 や湿気から守り、光モジュール 1の信頼性を高めることにある。それ以外の封止榭脂 12の重要な役割は、光導波路 10と光素子 11との間で伝達される光信号の拡散を防 止し、光信号の拡散による光学的損失を抑制することにある。このため、封止榭脂 12 においては、高い屈折率を有するエポキシ系、アクリル系、シリコーン系、ウレタン系 等の透明樹脂が好適に使用できる。
[0027] 光モジュール 1において注目すべき点は、封止榭脂 12が光導波路 10と光素子 11 との隙間全体を充填しているものではなぐ封止榭脂 12と光導波路 10との間に空隙 が設けられている点である。すなわち、光素子 11の受光面または発光面の上の封止 榭脂 12の表面と、光導波路 10における出射面または入射面との間には空隙が設け られている。
[0028] 図 1に示す構成の光モジュール 1の製造手順としては、先ず、支持基板 13における 面 13a上に光素子 11を搭載し、その上力も封止榭脂 12を所定厚さに塗布した後、 硬化させる。その後、支持基板 13における面 13b上に光導波路 10を接着し、固定す る。
[0029] 上記構成の光モジュール 1では、光導波路 10における光素子 11との対向面が封 止榭脂 12と接触しな!、構造であるため、封止榭脂 12の硬化収縮が光導波路 10に 対して影響を与えない。したがって、光導波路 10を支持基板 13に接着 ·固定すると きに高い位置精度を実現することができる。
[0030] また、光導波路 10と光素子 11との隙間においては、その大半に封止榭脂 12を充 填することができる。これにより、光導波路 10と光素子 11との間での光の拡散を低減 することができ、この作用によって光結合効率の向上を図ることができる。
[0031] また、封止榭脂 12と光導波路 10との間に設けられる空隙については、その幅 (Y軸 方向の幅)は、光導波路 10と封止榭脂 12とを接触させない程度にできるだけ小さく することが好ましい。封止榭脂 12と光導波路 10との間に設けられる空隙の幅は、現 在の製造精度を考えれば、 5〜50 mの範囲とすることが好適である。
[0032] 上記説明における光モジュール 1では、光素子 11上の封止榭脂 12を硬化させるに あたって、封止榭脂 12の硬化収縮によってその表面に図 2の(a) (b)に示すような高 低差(凹凸)が発生する。すなわち、光素子 11の存在領域と光素子 11の非存在領域 とでは封止榭脂 12の層厚が異なるため、封止榭脂 12の収縮量の差によって上記凹 凸が生じる。具体例を挙げれば、光素子 11の厚みが 150 /z mで、封止榭脂 12の層 厚が 200 mである場合に、光素子 11の周辺に、表面が変形して高低差の発生す る領域(図 2の(b)において斜線ハッチングにて示す)が存在した。また、この高低差 の発生する領域の幅は約 30 μ mであった。
[0033] 封止榭脂 12の表面は光の入射または出射面となるため、封止榭脂 12の表面にこ のような凹凸が発生すると、不所望な光の拡散を生じさせて光学的損失を発生させ たり、光信号にノイズを発生させたりする要因となりうる。このため、封止榭脂 12の表 面においては、上述のような凹凸の発生を抑制し、平坦面に近づけることが好ましい 。続いては、封止榭脂 12の表面において平坦性を得るための種々の構成および方 法について説明する。
[0034] 第 1の方法としては、封止榭脂 12の Y軸方向の層厚を、光素子 11の厚みに対して 十分に大きくとることが考えられる。封止榭脂 12が硬化する時に、隣接する領域間で 層厚の差が存在すると、層厚の薄い領域で先に硬化が完了する。このため、層厚の 薄い領域での硬化時には、封止榭脂 12の硬化収縮分は隣接する層厚の厚い領域 力もの樹脂の引き込みによって補われ層厚の減少は生じにくい。一方、後から硬化 する層厚の厚い領域では、封止榭脂 12の硬化収縮によって層厚の減少が生じるた め、図 2の(a) (b)に示すような凹凸が発生する。すなわち、このような凹凸は、封止 榭脂 12における層厚の薄い領域と層厚の厚い領域とでの硬化に力かる時間差に起 因すると思われる。また、硬化に力かる時間差は膜厚比との関連が強いと思われる。 すなわち、封止榭脂 12の層厚が全体に厚くなれば、層厚の薄い領域での層厚 T1に 対する厚い領域での層厚 T2の膜厚比 T2ZT1が小さくなり、硬化に力かる時間差が 少なくなるので、上記凹凸が抑制されることとなる。
[0035] 図 3は、光素子 11の厚みが 150 μ mである時の、封止榭脂 12の厚みと収縮比との 関係を示すグラフである。封止榭脂 12の厚みは、光素子 11の Y軸方向の厚みの 1. 5倍以上とすることが好ま 、。
[0036] 第 2の方法としては、封止榭脂 12を Y軸方向に複数の層を積層して形成することが 考えられる。図 4には、封止榭脂 12を第 1の榭脂層 12Aと第 2の榭脂層 12Bの 2層構 造とした例を示している。このように、封止榭脂 12を複数層による積層構造とする場 合、下側の榭脂層(図 4においては第 1の榭脂層 12A)を硬化させた後に、上側の榭 脂層(図 4においては第 2の榭脂層 12B)を塗布'硬化させる。これにより、先に硬化' 形成される下側の榭脂層において発生する凹凸を、後から形成される上側の榭脂層 にて平坦ィ匕することができる。
[0037] 尚、封止榭脂 12を複数の層を積層して形成する上記第 2の方法では、封止榭脂 1 2の積層数は、図 4の例のように 2層に限定されるものではなく 3層以上であってもよ い。また、積層されたそれぞれの榭脂層の境界面での不所望な光の反射を防止する ため、各封止榭脂層の屈折率はできるだけ近いものとすることが好ましい。但し、対 空気よりも屈折率が近ければ効果はある。
[0038] 第 3の方法としては、図 5および図 6に示すように、光素子 11の周辺領域において 支持基板 13の基板面の高さを力さ上げし、光素子 11の受発光面と、力さ上げされた 支持基板の基板面とを Y軸方向にほぼ一様な高さとしておくことが考えられる。すな わち、図 2に示すような凹凸の問題は、上述したように隣接する領域間で層厚の差が 存在することによる。光素子 11の周辺領域において支持基板 13の高さをかさ上げし て、光素子 11の受発光面周辺をほぼ一様な高さとすれば、受発光面周辺での封止 榭脂 12の層厚の差を解消できるため、封止榭脂 12の表面 (少なくとも、光導波路 10 と光素子 11との間で伝達される光信号の透過領域での表面)における凹凸の発生を 抑制できる。
[0039] 尚、支持基板 13のかさ上げは、図 5に示すように受発光面周辺全体で行ってもよい し、図 6に示すように受発光周辺の一部で行ってもよい。また、理想的には光素子 11 の受光面と支持基板 13の力さ上げされた表面とが連続した面となるようにすることが 好ましい。但し、支持基板 13上への光素子 11の搭載を容易にするために、光素子 1 1と支持基板 13の力さ上げ部分との間にある程度の隙間(図 5および図 6における隙 間 L)を設けてもよい。
[0040] また、第 3の方法の変形例としては、図 7に示すように、光素子 11の周辺にリブ 14 を設けることも考えられる。すなわち、リブ 14によっても光素子 11の周辺領域の高さ をかさ上げできるので、受発光面周辺での封止榭脂 12の層厚の差を解消できる、封 止榭脂 12の表面における凹凸の発生を抑制できる。
[0041] また、図 2に示すような凹凸の発生は、層厚の薄い領域での硬化時に隣接する層 厚の厚い領域力もの樹脂の引き込みにも起因している。リブ 14によっては、このよう な榭脂の引き込み、すなわち硬化収縮時の封止榭脂 12の移動を抑制でき、この作 用によっても上記凹凸の発生を抑制できる。
[0042] 第 4の方法としては、硬化後の封止榭脂 12の表面に対して平坦ィ匕処理を行うことが 考えられる。例えば、図 8に示すように、硬化後の封止榭脂 12の表面に対して研磨 や溶融等の平坦ィ匕処理を行えば、封止榭脂 12の硬化収縮によって発生した凹凸を 除去して平坦面を得ることができる。
[0043] 第 5の方法としては、図 9に示すように、封止榭脂 12の硬化時においてその表面に 凹凸が発生しないように、塗布された封止榭脂 12の上に平坦板 15を載置した状態 で封止榭脂 12を硬化させることが考えられる。平坦板 15は、封止榭脂 12の硬化後 に取り除いてもよぐ平坦板 15を透明の榭脂板またはガラス板等とすれば封止榭脂 1 2の硬化後も平坦板 15を残して 、てもよ 、。
[0044] また、上記第 5の方法においても、封止榭脂 12の硬化時において硬化収縮は発生 するため、封止榭脂 12の硬化収縮率が大きい場合には封止榭脂 12と平坦板 15との 間に空隙が発生することも考えられる。あるいは、硬化した封止榭脂 12において粗 密差が発生し、均一な屈折率の得られな 、と 、つた問題が生じることも考えられる。
[0045] このような空隙や粗密差を発生させないためには、支持基板 13における封止榭脂 12との接触部分の少なくとも一部にお 、て、封止榭脂 12の硬化収縮に追従して変 形する領域を設けておくことが考えられる。図 10〜12において、封止榭脂 12の硬化 収縮に追従して変形する領域を設ける場合の構成例を示す。
[0046] 図 10は、支持基板 13の一部の板厚を薄くし、封止榭脂 12の硬化収縮に追従して 変形する形状とした例を示している。この変形する部分は、ゴムや薄くした榭脂、金 属板等が使用できる。
[0047] 図 11は、支持基板 13における封止榭脂 12との接触部分の少なくとも一部に、ゴム 、シリコーン榭脂等の変形しやすい材料を用い、封止榭脂 12の硬化収縮に追従して 変形する材料とした例を示して ヽる。
[0048] 図 12は、封止榭脂 12との接触部分の少なくとも一部に、封止榭脂 12の硬化収縮 に追従して変形する変形部材 16を備えた例を示している。変形部材 16は、薄い金 属板ゃ榭脂板等が好適に利用できる。
[0049] 第 6の方法としては、図 13に示すように、封止榭脂 12の層厚を光素子 11の厚さより も十分に薄くすることが考えられる。すなわち、封止榭脂 12の表面が光素子 11の高 さよりも低くなるようにされることで、光素子 11周辺の封止榭脂 12の収縮が、光素子 1 1上の封止榭脂 12に影響を与えないようにすることができる。尚、この場合、封止榭 脂 12の表面よりも高い部分における光素子 11の表面には、封止榭脂 12の濡れ性に よって薄い封止榭脂 12の膜が形成されるので、この榭脂膜によって光素子 11の封 止が可能となる
封止榭脂 12の平坦性を得るための上記各方法のうち、第 1ないし第 5の方法では、 封止榭脂 12の硬化収縮に起因する榭脂表面の凹凸の発生を防止している。しかし ながら、支持基板 13の表面の濡れ性が低い場合には、該支持基板 13上に封止榭 脂 12を塗布した段階で、該封止榭脂 12の表面張力の影響でその表面に凹凸が発 生する恐れがある。 [0050] このような封止榭脂 12の表面張力の影響で発生する凹凸を防止するには、図 14 に示すように、支持基板 13における封止榭脂 12の塗布面において、表面の濡れ性 を高めることが好ましい。支持基板 13の濡れ性を高める方法としては、
(1)支持基板 13の表面に、 UV洗浄、コロナ放電、プラズマ処理を施し表面の濡れ性 を高める方法 (界面活性処理)
(2)支持基板 13の表面に、濡れ性を向上させる材料 (いわゆるプライマ)を塗布する 方法
(3)支持基板 13と封止榭脂 12との界面に、支持基板 13よりも濡れ性の高い部材 (ガ ラスや金属等)を挟み込む方法
などが適用可能である。
[0051] また、封止榭脂 12の表面張力の影響で発生する凹凸を防止する他の方法として、 図 15に示すように、支持基板 13における封止榭脂 12との接触面 (X軸に対して垂直 な面)に段差を設けても良い。この場合、上記段差面を封止榭脂 12の表面とほぼ一 致させることにより、上記凹凸を防止することが可能となる。
[0052] 尚、図 1ないし図 15で説明した各構成および方法は、支持基板 13の端部にて適用 した場合を例示している力 本発明はこれに限定されるものではなぐ図 16に示すよ うに、支持基板 13の任意の部分にぉ 、て適用することが可能である。
[0053] また、基板上での回路の接続に光導波路を用いて回路の集積ィ匕を行うにあたって は、 1枚の支持基板 13に本発明の適用箇所を複数設けてもよい。
[0054] 光モジュール 1は、光伝送路である光導波路 10の両端に受光素子および発光素 子を備えることで、光伝送モジュール 1として機能できる。図 17は、本実施形態に係 る光伝送モジュール 1の概略構成を示している。同図に示すように、光伝送モジユー ル 1は、光送信処理部 2、光受信処理部 3、および光導波路 10を備えている。
[0055] 光送信処理部 2は、発光駆動部 5および発光部 6を備えた構成となっている。発光 駆動部 5は、外部力 入力された電気信号に基づいて発光部 6の発光を駆動する。 この発光駆動部 5は、例えば発光駆動用の IC (Integrated Circuit)によって構成され る。なお、図示はしていないが、発光駆動部 5には、外部からの電気信号を伝送する 電気配線との電気接続部が設けられて ヽる。 [0056] 発光部 6は、発光駆動部 5による駆動制御に基づいて発光する。この発光部 6は、 例えば VCSEL (Vertical Cavity-Surface Emitting Laser)などの発光素子によって構 成される。発光部 6から発せられた光は、光信号として光導波路 10の光入射側端部 に照射される。
[0057] 光受信処理部 3は、増幅部 7および受光部 8を備えた構成となっている。受光部 8 は、光伝送路 4の光出射側端部から出射された光信号としての光を受光し、光電変 換によって電気信号を出力する。この受光部 8は、例えば PD (Photo-Diode)などの 受光素子によって構成される。
[0058] 増幅部 7は、受光部 8から出力された電気信号を増幅して外部に出力する。この増 幅部 7は、例えば増幅用の ICによって構成される。なお、図示はしていないが、増幅 部 7には、外部へ電気信号を伝送する電気配線との電気接続部が設けられて!/、る。
[0059] 光導波路 10は、上述したように発光部 6から出射された光を受光部 8まで伝送する 媒体である。
[0060] 本発明の光伝送モジュールは、例えば以下のような応用例に適用することが可能 である。尚、以下に説明する応用例では、本発明の光伝送モジュールにおいて、光 導波路 10のみを図示しており、他の部分は図示を省略している。
[0061] まず、第一の応用例として、折り畳み式携帯電話,折り畳み式 PHS (Personal Hand yphone System) ,折り畳み式 PDA (Personal Digital Assistant) ,折り畳み式ノートパ ソコン等の折り畳み式の電子機器におけるヒンジ部に用いることができる。
[0062] 図 18は、光導波路 10を含む光伝送モジュールを折り畳み式携帯電話 40に適用し た例を示している。すなわち、図 18の(a)は光導波路 10を内蔵した折り畳み式携帯 電話 40の外観を示す斜視図である。
[0063] 図 18の (b)は、(a)に示した折り畳み式携帯電話 40における、光導波路 10が適用 されている部分のブロック図である。この図に示すように、折り畳み式携帯電話 40に おける本体 40a側に設けられた制御部 41と、本体の一端にヒンジ部を軸として回転 可能に備えられる蓋 (駆動部) 40b側に設けられた外部メモリ 42,カメラ部(デジタル カメラ) 43,表示部 (液晶ディスプレイ表示) 44とが、それぞれ光導波路 10によって接 続されている。 [0064] 図 18の(c)は、(a)におけるヒンジ部 (破線で囲んだ部分)の透視平面図である。こ の図に示すように、光導波路 10は、ヒンジ部における支持棒に巻きつけて屈曲させ ることによって、本体側に設けられた制御部と、蓋側に設けられた外部メモリ 42,カメ ラ部 43,表示部 44とをそれぞれ接続している。
[0065] 光導波路 10を、これらの折り畳み式電子機器に適用することにより、限られた空間 で高速、大容量の通信を実現できる。したがって、例えば、折り畳み式液晶表示装置 などの、高速、大容量のデータ通信が必要であって、小型化が求められる機器に特 に好適である。
[0066] 第 2の応用例として、光導波路 10を含む光伝送モジュールは、印刷装置 (電子機 器)におけるプリンタヘッドやハードディスク記録再生装置における読み取り部など、 駆動部を有する装置に適用できる。
[0067] 図 19は、光導波路 10を印刷装置 50に適用した例を示している。図 19の(a)は、印 刷装置 50の外観を示す斜視図である。この図に示すように、印刷装置 50は、用紙 5 2の幅方向に移動しながら用紙 52に対して印刷を行うプリンタヘッド 51を備えており 、このプリンタヘッド 51に光導波路 10の一端が接続されて 、る。
[0068] 図 19の (b)は、印刷装置 50における、光導波路 10が適用されている部分のブロッ ク図である。この図に示すように、光導波路 10の一端部はプリンタヘッド 51に接続さ れており、他端部は印刷装置 50における本体側基板に接続されている。なお、この 本体側基板には、印刷装置 50の各部の動作を制御する制御手段などが備えられる
[0069] 図 19の(c)および (d)は、印刷装置 50においてプリンタヘッド 51が移動(駆動)した 場合の、光導波路 10の湾曲状態を示す斜視図である。この図に示すように、光導波 路 10をプリンタヘッド 51のような駆動部に適用する場合、プリンタヘッド 51の駆動に よって光導波路 10の湾曲状態が変化するとともに、光導波路 10の各位置が繰り返し 湾曲される。
[0070] したがって、本実施形態に力かる光導波路 10は、これらの駆動部に好適である。ま た、光導波路 10をこれらの駆動部に適用することにより、駆動部を用いた高速、大容 量通信を実現できる。 [0071] 図 20は、光導波路 10をノ、ードディスク記録再生装置 60に適用した例を示している
[0072] この図に示すように、ハードディスク記録再生装置 60は、ディスク (ノヽードディスク) 6 1、ヘッド (読み取り、書き込み用ヘッド) 62、基板導入部 63、駆動部 (駆動モータ) 6 4、光導波路 10を備えている。
[0073] 駆動部 64は、ヘッド 62をディスク 61の半径方向に沿って駆動させるものである。へ ッド 62は、ディスク 61上に記録された情報を読み取り、また、ディスク 61上に情報を 書き込むものである。なお、ヘッド 62は、光導波路 10を介して基板導入部 63に接続 されており、ディスク 61から読み取った情報を光信号として基板導入部 63に伝搬さ せ、また、基板導入部 63から伝搬された、ディスク 61に書き込む情報の光信号を受 け取る。
[0074] このように、光導波路 10をノヽードディスク記録再生装置 60におけるヘッド 62のよう な駆動部に適用することにより、高速、大容量通信を実現できる。
[0075] 以上のように、本発明に係る光モジュールは、支持基板上に、光伝送路と、受光機 能または発光機能を有する少なくとも一つの光素子とを備えた光モジュールであって 、上記光伝送路における光の出射面、または該光伝送路への光の入射面が、上記 光素子における受光面または発光面に対して、上記光素子と上記光伝送路とが光 学的に結合される位置に配置されており、上記光素子は、封止剤で封止されており、 上記光素子の受光面または発光面の上の上記封止剤の表面と、上記光伝送路との 間に空隙が設けられて 、ることを特徴として 、る。
[0076] また、本発明に係る光モジュールの製造方法は、支持基板上に、光伝送路と、受 光機能また発光機能を有する少なくとも一つの光素子とを備えた光モジュールの製 造方法であって、上記支持基板上に光素子を搭載し、その上から封止剤を所定厚さ に塗布した後、硬化させる第 1の工程と、支持基板上に光伝送路を接着し、固定する 第 2の工程とを備えており、上記光伝送路は光路変換ミラーを有しており、該光伝送 路における光の出射面、または該光伝送路への光の入射面が、上記光素子におけ る受光面または発光面に対して、上記光素子と上記光伝送路とが光学的に結合され る位置に配置されており、上記第 2の工程において、上記封止剤の厚さは、上記光 素子の受光面または発光面の上の上記封止剤の表面と、上記光伝送路との間に空 隙が存在する厚さに設定されることを特徴としている。
[0077] 上記の構成によれば、光伝送路と光素子との隙間においては、その大半に封止剤 を充填することができる。これにより、光伝送路と光素子との間での光の拡散を防止 することができ、この作用によって光結合効率の向上を図ることができる。
[0078] また、光素子の受光面または発光面の上の封止剤の表面と、光伝送路における出 射面または入射面との間に空隙が設けられていることで、光伝送路における光素子 との対向面が封止剤と接触しない構造となっている。これにより、封止剤の硬化収縮 が光伝送路に対して影響を与えない。したがって、光伝送路を支持基板に接着'固 定するときに高い位置精度を実現することができる。
[0079] 尚、上記光素子とは、光伝送路への光入射側では発光素子であり、光伝送路から の光出射側では受光素子であることを意味する。
[0080] また、上記光モジュールにおいては、上記封止剤は、上記支持基板における上記 光素子の搭載面の法線方向に、複数の層を積層して形成されている構成とすること ができる。
[0081] あるいは、上記光モジュールの製造方法において、上記封止剤は複数の層を積層 して形成されており、先に形成される層の硬化後に、後から形成される層が積層され る構成とすることがでさる。
[0082] 上記の構成によれば、封止剤を複数層による積層構造とすることで、下側の榭脂層 を硬化させた後に、上側の榭脂層を塗布'硬化させる。これにより、先に硬化'形成さ れる下側の榭脂層において発生する凹凸を、後から形成される上側の榭脂層にて平 坦ィ匕することができる。
[0083] また、上記光モジュールにおいては、上記光素子の周辺領域の少なくとも一部に おいて支持基板の基板面が力さ上げされ、力さ上げされた支持基板の基板面と、上 記光素子の受発光面とが、上記支持基板における上記光素子の搭載面の法線方向 に対してほぼ一様な高さとなっている構成とすることができる。
[0084] 上記の構成によれば、光素子の周辺領域において支持基板の高さを力さ上げし、 光素子の受発光面周辺をほぼ一様な高さとすることで、受発光面周辺での封止剤の 層厚の差を解消でき、封止剤の表面における凹凸の発生を抑制できる。
[0085] また、上記光モジュールにお 、ては、上記封止剤上に、光透過性を有する平坦板 力 光伝送路と光素子との間に間隔を設けないことが理想であるが、光素子の実装 を考えると、封止剤の厚さと同程度の間隔をあけて載置する構成とすることがよい。
[0086] あるいは、上記光モジュールの製造方法では、上記第 1の工程において、上記支 持基板上に塗布された上記封止剤に平坦板を載置した状態で、上記封止剤を硬化 させる構成とすることができる。
[0087] 上記の構成によれば、塗布された封止剤の上に平坦板を載置した状態で封止剤を 硬化させることで、封止剤の硬化時においてその表面に凹凸が発生しないようにする ことができる。平坦板は、封止剤の硬化後に取り除いてもよいが、平坦板を光透過性 の部材とすれば封止剤の硬化後も残して!/、てもよ 、。
[0088] また、上記光モジュールにお 、ては、支持基板における封止剤との接触部分の少 なくとも一部に、封止剤の硬化収縮に追従して変形する領域が設けられている構成と することができる。
[0089] あるいは、上記光モジュールの製造方法では、支持基板における封止剤との接触 部分の少なくとも一部に、封止剤の硬化収縮に追従して変形する領域が設けられた 状態で、上記封止剤を硬化させる構成とすることができる。
[0090] 上記の構成によれば、支持基板における封止剤との接触部分の少なくとも一部に おいて、封止剤の硬化収縮に追従して変形する領域を設けておくことで、封止剤の 硬化時における硬化収縮を上記領域の変形によって吸収できる。これにより、封止剤 と平坦板との間に空隙が発生したり、硬化した封止剤において粗密差が発生し、均 一な屈折率の得られなくなる、といった不具合を防止できる。
[0091] また、上記光モジュールにおいては、上記支持基板と上記封止剤との界面に、支 持基板よりも濡れ性の高い部材が挟み込まれている構成とすることができる。
[0092] あるいは、上記光モジュールの製造方法では、上記第 1の工程において、上記支 持基板上への上記封止剤の塗布前に、上記支持基板の表面に濡れ性を向上させる 処理 (例えば、コロナ放電、プラズマ処理、 UV洗浄などの基板表面処理、および基 板表面へのプライマ塗布)を行う構成とすることができる。 [0093] 支持基板の表面の濡れ性が低!ヽ場合には、該支持基板上に封止剤を塗布した段 階で、該封止剤の表面張力の影響でその表面に凹凸が発生する恐れがある。上記 の構成によれば、支持基板における封止剤の塗布面において、その表面の濡れ性 を高め、上記凹凸の発生を低減することができる。
[0094] また、上記光モジュールの製造方法においては、上記第 1の工程後、かつ、上記第
2の工程前に、上記光素子の受光面または発光面の上の上記封止剤の表面に対し て平坦ィ匕処理を行う構成とすることができる。
[0095] 上記の構成によれば、硬化後の封止剤の表面に対して、平坦ィ匕処理 (例えば、研 磨や溶融等)を行えば、封止剤の硬化収縮によって発生した凹凸を除去して平坦面 を得ることができる。
[0096] また、上記光モジュールにおいては、上記支持基板における上記光素子の搭載面 の法線方向に対して、上記封止剤の層厚は、上記光素子の厚さの 1. 5倍以上であ る構成とすることがでさる。
[0097] 封止剤が硬化する時に、隣接する領域間で層厚の差が存在すると、層厚の薄い領 域で先に硬化が完了する。このため、層厚の薄い領域での硬化時には、封止剤の硬 化収縮分は隣接する層厚の厚い領域力 の榭脂の引き込みによって補われ層厚の 減少は生じにくい。一方、後から硬化する層厚の厚い領域では、封止剤の硬化収縮 によって層厚の減少が生じる。光素子上の封止剤においては、該光素子の厚みによ つて封止剤の層厚差が生じるため、封止剤の表面に凹凸が発生し、光伝送路と光素 子との間での光信号の伝達に悪影響を与える。この凹凸は、層厚の薄い領域での層 厚 T1に対する厚い領域での層厚 T2の膜厚比 T2ZT1が大きくなるほど、顕著に発 生する。
[0098] 上記の構成によれば、上記封止剤の層厚を上記光素子の厚さよりも十分に厚くす ることで、上記膜厚比 T2ZT1を小さくでき、上記封止剤の硬化時に、硬化収縮によ る凹凸の発生を抑制できる。
[0099] また、上記光モジュールにおいては、上記支持基板における上記光素子の搭載面 の法線方向に対して、上記封止剤の層厚は、上記光素子の厚さよりも薄い構成とす ることがでさる。 [0100] 上記の構成によれば、封止榭脂の表面が光素子の高さよりも低くなるようにされるこ とで、光素子周辺の封止榭脂の収縮が、光素子上の封止榭脂に影響を与えないよう にすることができる。
[0101] 本発明は上述した実施形態に限定されるものではなぐ請求項に示した範囲で種 々の変更が可能である。すなわち、請求項に示した範囲で適宜変更した技術的手段 を組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。

Claims

請求の範囲
[1] 支持基板上に、光伝送路と、受光機能または発光機能を有する少なくとも一つの光 素子とを備えた光モジュールであって、
上記光伝送路における光の出射面、または該光伝送路への光の入射面が、上記 光素子における受光面または発光面に対して、上記光素子と上記光伝送路とが光 学的に結合される位置に配置されており、
上記光素子は、封止剤で封止されており、
上記光素子の受光面または発光面の上の上記封止剤の表面と、上記光伝送路と の間に空隙が設けられていることを特徴とする光モジュール。
[2] 上記封止剤は、上記支持基板における上記光素子の搭載面の法線方向に、複数 の層を積層して形成されて ヽることを特徴とする請求項 1に記載の光モジュール。
[3] 上記光素子の周辺領域の少なくとも一部において支持基板の基板面が力さ上げさ れ、力さ上げされた支持基板の基板面と、上記光素子の受発光面とが、上記支持基 板における上記光素子の搭載面の法線方向に対してほぼ一様な高さとなっているこ とを特徴とする請求項 1に記載の光モジュール。
[4] 上記封止剤上に、光透過性を有する平坦板が載置されて!ヽることを特徴とする請 求項 1に記載の光モジュール。
[5] 支持基板における封止剤との接触部分の少なくとも一部に、封止剤の硬化収縮に 追従して変形する領域が設けられて 、ることを特徴とする請求項 1に記載の光モジュ 一ノレ。
[6] 上記支持基板と上記封止剤との界面に、支持基板よりも濡れ性の高 ヽ部材が挟み 込まれて 、ることを特徴とする請求項 1に記載の光モジュール。
[7] 上記支持基板における上記光素子の搭載面の法線方向に対して、上記封止剤の 層厚は、上記光素子の厚さの 1. 5倍以上であることを特徴とする請求項 1に記載の 光モジユーノレ。
[8] 上記支持基板における上記光素子の搭載面の法線方向に対して、上記封止剤の 層厚は、上記光素子の厚さよりも薄!ヽことを特徴とする請求項 1に記載の光モジユー ル。
[9] 上記支持基板における上記封止剤との接触面に段差が設けられており、上記封止 剤の表面高さと上記段差の高さがほぼ等しいことを特徴とする請求項 1に記載の光 モジユーノレ。
[10] 支持基板上に、光伝送路と、受光機能また発光機能を有する少なくとも一つの光 素子とを備えた光モジュールの製造方法であって、
上記支持基板上に光素子を搭載し、その上力ゝら封止剤を所定厚さに塗布した後、 硬化させる第 1の工程と、
支持基板上に光伝送路を接着し、固定する第 2の工程とを備えており、 上記光伝送路は光路変換ミラーを有しており、該光伝送路における光の出射面、ま たは該光伝送路への光の入射面が、上記光素子における受光面または発光面に対 して、上記光素子と上記光伝送路とが光学的に結合される位置に配置されており、 上記第 2の工程において、上記封止剤の厚さは、上記光素子の受光面または発光 面の上の上記封止剤の表面と、上記光伝送路との間に空隙が存在する厚さに設定 されることを特徴とする光モジュールの製造方法。
[11] 上記封止剤は複数の層を積層して形成されており、先に形成される層の硬化後に
、後から形成される層が積層されることを特徴とする請求項 10に記載の光モジュール の製造方法。
[12] 上記第 1の工程後、かつ、上記第 2の工程前に、上記光素子の受光面または発光 面の上の上記封止剤の表面に対して平坦ィ匕処理を行うことを特徴とする請求項 10に 記載の光モジュールの製造方法。
[13] 上記第 1の工程において、上記支持基板上に塗布された上記封止剤に平坦板を 載置した状態で、上記封止剤を硬化させることを特徴とする請求項 10に記載の光モ ジュールの製造方法。
[14] 支持基板における封止剤との接触部分の少なくとも一部に、封止剤の硬化収縮に 追従して変形する領域が設けられた状態で、上記封止剤を硬化させることを特徴と する請求項 13に記載の光モジュールの製造方法。
[15] 上記第 1の工程において、上記支持基板上への上記封止剤の塗布前に、上記支 持基板の表面に濡れ性を向上させる処理を行うことを特徴とする請求項 13に記載の 光モジュールの製造方法。
[16] 上記支持基板における上記封止剤との接触面に段差が設けられており、
上記第 2の工程において、上記封止剤の厚さは、上記封止剤の表面高さが上記段 差の高さとほぼ等しくなる厚さに設定されることを特徴とする請求項 10に記載の光モ ジュールの製造方法。
[17] 光伝送路の端部の一方に発光機能を備えた光素子を備えた請求項 1ないし 9に記 載の光モジュールを備え、他方の端部に受光機能を備えた光素子を備えた請求項 1 な 、し 9に記載の光モジュールを備えたことを特徴とする光伝送モジュール。
[18] 上記請求項 17に記載の光伝送モジュールを備えたことを特徴とする電子機器。
PCT/JP2007/058054 2006-04-14 2007-04-12 光モジュール、光モジュールの製造方法、光伝送モジュール、および電子機器 WO2007119778A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/296,495 US8696216B2 (en) 2006-04-14 2007-04-12 Optical module, method of producing optical module, optical transmission module, and electronic apparatus
CN2007800135026A CN101421651B (zh) 2006-04-14 2007-04-12 光模块、光模块的制造方法、光传送模块以及电子设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-112775 2006-04-14
JP2006112775A JP4367430B2 (ja) 2006-04-14 2006-04-14 光モジュール、光モジュールの製造方法、光伝送モジュール、および電子機器

Publications (1)

Publication Number Publication Date
WO2007119778A1 true WO2007119778A1 (ja) 2007-10-25

Family

ID=38609538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/058054 WO2007119778A1 (ja) 2006-04-14 2007-04-12 光モジュール、光モジュールの製造方法、光伝送モジュール、および電子機器

Country Status (5)

Country Link
US (1) US8696216B2 (ja)
JP (1) JP4367430B2 (ja)
KR (1) KR100994350B1 (ja)
CN (1) CN101421651B (ja)
WO (1) WO2007119778A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101636675B (zh) 2007-03-16 2011-11-23 欧姆龙株式会社 光传输路径封装、光传输模块、电子设备及光传输模块的制造方法
JP5157964B2 (ja) * 2009-02-27 2013-03-06 オムロン株式会社 光伝送モジュール、電子機器、及び光伝送モジュールの製造方法
TWI364122B (en) * 2009-07-06 2012-05-11 Led package structure for increasing light-emitting efficiency and controlling light-projecting angle and method for manufacturing the same
JP5467826B2 (ja) 2009-09-16 2014-04-09 日東電工株式会社 光電気混載モジュールおよびその製造方法
KR20110039017A (ko) * 2009-10-09 2011-04-15 엘지이노텍 주식회사 광인쇄회로기판 및 그 제조방법
EP2556543B1 (en) * 2010-04-06 2020-08-12 OY ICS Intelligent Control Systems Ltd Laminate structure with embedded cavities for use with solar cells and related method of manufacture
TWI600936B (zh) * 2011-10-13 2017-10-01 國立中央大學 光學傳輸系統及其製備方法
JP6070709B2 (ja) * 2012-08-23 2017-02-01 株式会社村田製作所 光伝送モジュール
JP6518113B2 (ja) 2015-04-10 2019-05-22 ヒロセ電機株式会社 光電気変換コネクタ及びその製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0532804Y2 (ja) * 1986-06-06 1993-08-23
JP2004133117A (ja) * 2002-10-09 2004-04-30 Mitsubishi Electric Corp 樹脂封止型光モジュール
JP2005062645A (ja) * 2003-08-19 2005-03-10 Toppan Printing Co Ltd 光接続構造体およびその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2531263Y2 (ja) 1991-10-04 1997-04-02 住友建機株式会社 油圧機器に於ける慣性体制御装置
CN1203374A (zh) * 1997-06-25 1998-12-30 松下电器产业株式会社 光收发信设备及其制造方法以及光半导体组件
JP2000009968A (ja) 1998-06-19 2000-01-14 Matsushita Electric Ind Co Ltd 受光モジュール
JP2001154066A (ja) * 1999-12-01 2001-06-08 Nec Corp 光トランシーバ用光学系ユニット
JP3257776B2 (ja) 1999-01-21 2002-02-18 日本電信電話株式会社 光モジュール実装構造
JP2001059923A (ja) * 1999-06-16 2001-03-06 Seiko Epson Corp 光モジュール及びその製造方法、半導体装置並びに光伝達装置
JP4134499B2 (ja) * 2000-08-07 2008-08-20 住友電気工業株式会社 光学装置
JP2004354532A (ja) 2003-05-27 2004-12-16 Seiko Epson Corp 光モジュール及びその製造方法、光通信装置、電子機器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0532804Y2 (ja) * 1986-06-06 1993-08-23
JP2004133117A (ja) * 2002-10-09 2004-04-30 Mitsubishi Electric Corp 樹脂封止型光モジュール
JP2005062645A (ja) * 2003-08-19 2005-03-10 Toppan Printing Co Ltd 光接続構造体およびその製造方法

Also Published As

Publication number Publication date
JP4367430B2 (ja) 2009-11-18
KR100994350B1 (ko) 2010-11-12
CN101421651A (zh) 2009-04-29
JP2007286289A (ja) 2007-11-01
US8696216B2 (en) 2014-04-15
KR20080085202A (ko) 2008-09-23
CN101421651B (zh) 2010-08-18
US20090274412A1 (en) 2009-11-05

Similar Documents

Publication Publication Date Title
JP4929821B2 (ja) 光伝送モジュール
JP4367430B2 (ja) 光モジュール、光モジュールの製造方法、光伝送モジュール、および電子機器
JP3985848B2 (ja) 光導波路、光導波路モジュール、光伝送装置、光導波路の製造方法
JP4661931B2 (ja) 光伝送モジュール、光伝送モジュールの製造方法、及び電子機器
JP5170080B2 (ja) パッケージの製造方法、パッケージ、及び光モジュール
KR101169854B1 (ko) 광 전송 모듈, 전자 기기 및 광 전송 모듈의 제조 방법
KR101077729B1 (ko) 광전송로 패키지, 광전송 모듈, 전자 기기, 및 광전송 모듈의 제조 방법
JP2012042731A (ja) フレキシブル光電配線板及びフレキシブル光電配線モジュール
US20100303412A1 (en) Optical transmission module and electronic device
JP4404144B2 (ja) 光伝送モジュール、電子機器、及び光伝送モジュールの製造方法
WO2009087882A1 (ja) 光伝送モジュールの基板を補強する補強部品を備えた光伝送モジュールおよび該光伝送モジュールを備えた電子機器
JP5135804B2 (ja) フィルム光導波路、フィルム光導波路モジュール、および電子機器
JP4983269B2 (ja) 光伝送モジュール、電子機器、及び光伝送モジュールの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07741490

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020087019175

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 12296495

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200780013502.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07741490

Country of ref document: EP

Kind code of ref document: A1