WO2007119607A1 - メタクロレイン及び/又はメタクリル酸の製造法 - Google Patents

メタクロレイン及び/又はメタクリル酸の製造法 Download PDF

Info

Publication number
WO2007119607A1
WO2007119607A1 PCT/JP2007/057069 JP2007057069W WO2007119607A1 WO 2007119607 A1 WO2007119607 A1 WO 2007119607A1 JP 2007057069 W JP2007057069 W JP 2007057069W WO 2007119607 A1 WO2007119607 A1 WO 2007119607A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst layer
catalyst
oxidation
reaction
dehydration
Prior art date
Application number
PCT/JP2007/057069
Other languages
English (en)
French (fr)
Inventor
Tatsuhiko Kurakami
Toshitake Kojima
Yoshimasa Seo
Original Assignee
Nippon Kayaku Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Kabushiki Kaisha filed Critical Nippon Kayaku Kabushiki Kaisha
Priority to JP2008510895A priority Critical patent/JP4950986B2/ja
Priority to EP07740505A priority patent/EP2011780B1/en
Priority to CN2007800116059A priority patent/CN101410360B/zh
Priority to US12/223,494 priority patent/US8088947B2/en
Priority to TW096111740A priority patent/TW200800877A/zh
Publication of WO2007119607A1 publication Critical patent/WO2007119607A1/ja
Priority to KR1020087022112A priority patent/KR101218128B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/37Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of >C—O—functional groups to >C=O groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/78Separation; Purification; Stabilisation; Use of additives
    • C07C45/86Use of additives, e.g. for stabilisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/12Silica and alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8876Arsenic, antimony or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8878Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • B01J23/8885Tungsten containing also molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • C07C1/24Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms by elimination of water
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/08Alkenes with four carbon atoms
    • C07C11/09Isobutene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C47/00Compounds having —CHO groups
    • C07C47/20Unsaturated compounds having —CHO groups bound to acyclic carbon atoms
    • C07C47/21Unsaturated compounds having —CHO groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
    • C07C47/22Acryaldehyde; Methacryaldehyde
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/23Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/25Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring
    • C07C51/252Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring of propene, butenes, acrolein or methacrolein
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts

Definitions

  • the present invention relates to a method for producing methacrolein and / or methacrylic acid.
  • tertiary butanol tertiary butyl alcohol
  • Various composite oxide catalysts have been proposed for this purpose.
  • the method using tertiary butanol hereinafter also referred to as t-butanol which is liquid at normal temperature as a raw material is less expensive than isobutylene which is gaseous at normal temperature and is frequently used.
  • An example of the production process of methacrolein and / or methacrylic acid using t-butanol as a raw material is as follows.
  • t-butanol is heated to its boiling point or higher and vaporized, and this is mixed with a gas containing at least oxygen to obtain a raw material mixed gas, or liquid t-butanol is made into a mist or the like at least. Mixing with a gas containing oxygen, the mixture is heated to the boiling point of t-butanol or higher to vaporize t-butanol to obtain a raw material mixed gas.
  • the obtained mixed gas (raw gas) is passed through a dehydration catalyst, and a part of t_butanol is decomposed into isoprene and water by dehydration reaction, or the obtained mixed gas is used. Without passing through the dehydration catalyst, it is directly supplied to the oxidation catalyst layer maintained at a predetermined temperature, and methacrolein and Z or methacrylic acid are obtained by a gas phase catalytic oxidation reaction.
  • vaporized t-butanol is often used in the same way as isoptylene.
  • ⁇ _alumina'silica ( ⁇ -alumina 90%, silica 10%), which is a dehydration catalyst, is charged into a gas mixer, and in the preheated layer of the reaction tube, an inert catalyst is used. It is described that 80 cm (a total length of 2 m of reaction tube) of silica is filled with silica and t-butanol is dehydrated to isobutylene and then converted into methacrolein and methacrylic acid by oxidation reaction.
  • Examples 16 and 17 of Patent Document 2 20 ml of silicon carbide or hyalumina is filled for 3 ml of catalyst for dehydration of t-butanol, and methacrolein and methacrylic acid are obtained by vapor phase catalytic oxidation reaction. An example is given.
  • Patent Document 1 Japanese Patent Laid-Open No. 63-216835
  • Patent Document 2 Japanese Patent Publication No. 51-12605
  • the present inventors have found that an oxidation catalyst layer in a method for producing methacrolein and / or methacrylic acid from t-butanol using a fixed bed multitubular reactor.
  • the inventors have found that the yield can be improved even when the reaction temperature is low by setting the ratio of the packing length of the catalyst and the catalyst packing length of the dehydration catalyst layer to a specific ratio, and the present invention has been completed. That is, the present invention relates to
  • t-butanol as a raw material, this is supplied to a fixed-bed multi-tubular reactor having a dehydration catalyst layer and an oxidation catalyst layer, dehydrating t-butanol to obtain water and isobutylene, and oxidizing isobutylene to methacrolein.
  • / or a method for producing methacrylic acid wherein the catalyst filling length of the dehydration catalyst layer in contact with t-butanol before being supplied to the oxidation catalyst layer is 3 to 20% of the catalyst filling length of the oxidation catalyst layer.
  • the oxidation catalyst is
  • Mo, Bi, Fe and Co represent molybdenum, bismuth, iron and cobalt, respectively.
  • X represents one or more elements selected from alkali metals or T1
  • Y represents one or more elements selected from Ni, Sn, Zn, W, Cr, Ce, Mn, Mg, Sb or Ti.
  • the subscript at the lower right of the element symbol is the atomic ratio of each element.
  • the present invention relates to a method for producing methacrolein and / or methacrylic acid from t-butanol by gas phase catalytic oxidation in a fixed bed multitubular reactor.
  • the ratio is a specific ratio, that is, the length of the dehydration catalyst packed bed (hereinafter also referred to as dehydration catalyst packed length) is 3 to 20% of the length of the oxidation catalyst packed bed (also referred to as oxidation catalyst packed length), preferably 5
  • the yield of methacrolein and Z or methacrylic acid is improved by setting to: 17%, more preferably 6 to 17%.
  • the dewatering catalyst filling length is most preferably about 5 to 15% of the length of the oxidation catalyst packed bed.
  • the dehydration catalyst is preferably filled on the inlet side of the source gas before the oxidation catalyst in the reaction tube usually filled with the oxidation catalyst.
  • another tube having the same inner diameter as the reaction tube filled with the oxidation catalyst is filled, and the reaction gas discharged from this tube is filled with the oxidation catalyst and supplied to the reaction tube. It ’s been good.
  • the catalyst packing length refers to the length of the catalyst packed in the reaction tube from the reaction gas inlet to the outlet.
  • the inner diameter of the reaction tube is usually 15 to 50 mm, preferably about 15 to 40 mm, more preferably Is 18 to 30 mm and has a length of lm to 5 m, preferably about 2 m to 4 m, and is filled with an oxidation catalyst.
  • the reaction tube is filled with the dehydration catalyst together with the oxidation catalyst.
  • the dehydration catalyst layer is provided on the inlet side of the raw material gas rather than the oxidation catalyst layer.
  • the amount of dehydration catalyst used is within the range satisfying the above-mentioned ratio of the present invention in relation to the packing length of the catalyst used for the oxidation reaction, the feed rate of the mixed gas containing t-butanol, the temperature of the dehydration catalyst layer, the type of dehydration catalyst It is preferable to determine the optimum amount as appropriate based on conditions such as the diameter of the dehydration catalyst.
  • the bath temperature of the dehydration catalyst layer is usually the same as the bath temperature of the oxidation catalyst layer for convenience of operation and is preferable. However, in some cases, the bath temperature of the dehydration catalyst layer and the oxidation catalyst layer is controlled separately. Moyore. Normally, even if the temperature of the reaction bath is the same, the temperature of the catalyst layer decreases because the dehydration catalyst layer is endothermic, and the temperature of the oxidation catalyst layer tends to be higher because the oxidation reaction is an exothermic reaction. [0010] When the process of the present invention is carried out industrially, it is usually preferred to operate so as to keep the residual isobutylene in the outlet gas of the reactor constant.
  • the reaction is usually performed at a low oxidation catalyst layer temperature in the early stage of the reaction with high catalytic activity, and the reaction is performed at a higher oxidation catalyst layer temperature in the later reaction stage where the catalyst deteriorates due to long-term use.
  • the reaction bath temperature is increased as the catalyst deteriorates, when both the oxidation catalyst layer and the dehydration catalyst layer are temperature-controlled in the same reaction bath, the temperature of the dehydration catalyst layer is also equal to the reaction bath temperature. Affected by the rise.
  • the temperature of the dehydration catalyst layer is preferably 250 to 400 ° C, more preferably 300 to 370 ° C. More preferably, it is about 330-370 degreeC.
  • the shape of the dehydration catalyst is not particularly limited, and may be a columnar shape, a spherical shape, a lasing ring shape, or the like.
  • the size is not particularly limited, but if it is spherical, the size equivalent to that of the oxidation catalyst is preferred, a diameter of 3 to 10 mm is preferable.
  • the dehydration catalyst used in the present invention is not particularly limited as long as it is a catalyst capable of converting t-butanol into isobutylene by a dehydration reaction.
  • solid acids such as boric acid and solid phosphoric acid
  • silicon compounds such as silicon carbide
  • metal oxides such as alumina and alumina silica
  • alumina silicate H compounds such as natural or synthetic zeolite.
  • alumina or a metal oxide containing alumina is preferable, and a metal oxide containing alumina is more preferable.
  • a Metal oxide containing alumina is generally known as a compound with low dehydration activity of t-butanol, but according to the study by the present inventors, for example, it is more than a compound with high dehydration activity such as ⁇ -alumina.
  • a metal oxide containing ⁇ -alumina is easy to use and is preferable.
  • a compound having a high dehydration activity such as ⁇ -alumina also has a tendency to increase the amount of decomposition by-products of phenol-butanol that can be used in the present invention.
  • alumina is a mixture of silica - silica force Preferably, shed one Anoremina force 60-98 Monore 0/0 mm, more preferably f or 70-95 Monore 0/0, the more preferred f or 70-90 Monore 0/0, silica force 2-40 Monore 0/0 mm, more preferably ⁇ or 5-30 Monore%, more preferably 10 to 30 mol% of alumina - preferably used silica .
  • the contents of alumina and silica can be measured with a commercially available analytical instrument. For example, fluorescence Examples include X-ray analysis and X-ray photoelectron spectroscopy.
  • the ⁇ -alumina-silica has a specific surface area of about 0.02 to about lm 2 / g, more preferably about 0.05 to 0.5 m 2 / g.
  • the feed rate of t-butanol to the dehydration layer is usually 1000 to:! OOOOOOIT ⁇ preferably 3 000 to 50000h— If it is about 1 (from 5 to 10 000 to 000h- 1 ).
  • a raw material gas containing t-butanol and molecular oxygen for example, a raw material gas consisting of 1 to 10 mol% of t-butanol, 2 to 40 mol% of molecular oxygen, and the balance inert gas
  • a raw material gas consisting of 1 to 10 mol% of t-butanol, 2 to 40 mol% of molecular oxygen, and the balance inert gas
  • the dehydration catalyst layer in the reaction tube filled with the dehydration catalyst and the oxidation catalyst so that the packed bed length becomes the above ratio, and then the oxidation catalyst layer in this order, the dehydration reaction and the oxidation reaction are performed, so that methacrolein and / Or for producing methacrylic acid.
  • the inert gas in the above includes gaseous water that is inert in the present reaction.
  • reaction tube for supplying the raw material gas in the above may be divided into a reaction tube for the dehydration catalyst layer and a reaction tube for the oxidation catalyst layer, but in a fixed-bed multitubular reactor filled with both of them.
  • a reaction tube is preferred.
  • Raw material t-butanol usually containing about 10% by weight or more of water
  • molecular oxygen and inert gas are usually air, and if necessary, further Then, an inert gas such as nitrogen or argon is added and passed through a mixing tank to obtain a raw material mixed gas.
  • the raw material mixed gas usually contains 10 to 40 moles of air for 1 mole of t-butanol, and preferably contains an additional inert gas of 0 to 40 moles if necessary.
  • the mixing tank is usually filled with an inert Raschig ring that does not participate in dehydration and oxidation reactions.
  • the raw material mixed gas obtained in the next stage is introduced into the oxidation reactor at a space velocity (per unit volume of oxidation catalyst) of usually 700 to 3000 h— ⁇ , preferably 1000 to 3000 h — 1 .
  • the oxidation reactor usually has a dehydration catalyst layer such as alumina or alumina-silica and an oxidation catalyst layer in the order from the inlet to the outlet of the raw material gas. Is filled at a rate of 3 to 20% of the filling length of the oxidation catalyst layer.
  • the raw material gas introduced into the oxidation reactor is subjected to dehydration reaction and dehydration reaction in the dehydration catalyst layer and oxidation catalyst layer. Through the oxidation reaction, the desired methacrolein and / or methacrylic acid is obtained.
  • the oxidation reaction in the present invention is usually performed at 320 to 400 ° C, preferably 340 to 380 ° C, more preferably about 340 to 360 ° C.
  • the reaction tube in the oxidation reactor is covered with a jacket or jacket contained in the reaction bath for controlling the reaction temperature, so that the reaction temperature is kept close to the reaction bath temperature. Since the dehydration reaction is an endothermic reaction, the actual reaction temperature is lower than the bath temperature and the oxidation catalyst layer is slightly higher.
  • the catalytic oxidation reaction can be performed under pressure or under reduced pressure, but generally a pressure around atmospheric pressure is suitable.
  • the raw material gas supplied to the oxidation reactor includes, as described above, t_butanol, molecular oxygen, the balance inert gas, and substantially does not contain isobutylene.
  • the raw material gas is passed through a dehydration reactor provided separately from the oxidation reactor, and t-butanol is partially decomposed into isoprene and water, and then supplied to the oxidation reactor. May be.
  • a commonly used dehydration catalyst may be used in a separately provided dehydration reactor.
  • any catalyst can be used as long as it is used for obtaining methacrolein (and methacrylic acid) by vapor-phase catalytic oxidation of t-butanol or isobutylene.
  • a catalyst generally referred to as a composite oxidation catalyst is used, preferably a composite metal oxide containing molybdenum, bismuth, iron, and cobalt as constituent elements.
  • the catalyst has the following general formula
  • X is one or more elements selected from alkali metals or T1
  • Y is Ni, Sn, Zn, W, Cr, Ce
  • It represents one or more elements selected from Mn, Mg, Sb or Ti
  • Examples include a catalyst as an active ingredient.
  • Cs is preferable as the alkali metal.
  • Cs is particularly preferable as X.
  • Y it is preferable to use a force containing one or two of the above metals or not containing them at all.
  • Ni is particularly preferable as Y.
  • the oxidation catalyst can be prepared using methods and raw materials generally used for the preparation of this type of catalyst.
  • the shape of the oxidation catalyst is not particularly limited.
  • shapes such as a columnar shape, a tablet shape, a spherical shape, and a ring shape can be appropriately selected in consideration of operating conditions (space velocity of raw material gas, temperature of oxidation reactor, diameter and length of oxidation reactor).
  • a supported catalyst having a particle diameter of 3 to 6 mm, in which a catalytically active component is supported on an inert carrier such as silica or alumina is more preferably a supported catalyst having a diameter of 3 to 5 mm.
  • the catalyst is obtained by a conventional method by forming a molded catalyst obtained by supporting a pre-calcined powder containing each element corresponding to the catalyst composition on an inert carrier having a particle size of 2 to 5 mm, more preferably 3 to 4 mm.
  • the pre-fired powder can be obtained by pre-baking a powder obtained by spray drying an aqueous solution or suspension of a compound containing each element corresponding to the catalyst composition at a temperature of 350 to 550 ° C.
  • the amount of the pre-fired powder supported in the oxidation catalyst is about 25 to 70% by weight, more preferably 30 to 50% by weight, based on the formed catalyst.
  • the firing temperature of the molded catalyst is usually about 400 to 700 ° C, preferably about 450 to 600 ° C, more preferably 500 to 550. C.
  • the oxidation catalyst can be filled with the above-mentioned catalyst in a single layer, but in order to prevent the maximum peak temperature of the oxidation catalyst layer from increasing, the activity of the catalyst having different activity increases from the raw material inlet toward the outlet. It is also possible to fill multiple layers in such combinations.
  • t-Butanol conversion rate (%) (moles of reacted t-butanol) / (moles of t-butanol fed) X 100
  • Methacrylic acid yield (%) (number of moles of methacrylic acid produced) / (number of moles of t-butanol fed) X 100
  • Isobutylene yield (%) (number of moles of isoptylene contained in the product after reaction) / (number of moles of t-butanol supplied) X 100
  • the pre-fired powder (D) was supported on an inert carrier (alumina, particle size 4. Omm) at a ratio of 35% by weight with respect to the molded catalyst.
  • the molded product thus obtained was calcined at 520 ° C. for 5 hours to obtain an oxidation catalyst (particle size 4.3 mm).
  • a jacket for circulating molten salt as a heating medium and a thermocouple for measuring the temperature of the catalyst layer are installed on the tube axis.
  • One silica spherical particle ⁇ -alumina 80 mol% —silica 20 mono%, diameter 5 mm, specific surface area 0.1 lm 2 , lower layer 265 cm was filled with the above supported oxidation catalyst, and the reaction bath temperature was maintained at 355 ° C.
  • T-Butanol (containing 13 wt% water) 202g / hr, Air 507LZh Nitrogen 234L / hr was passed through the mixing tank, and the resulting raw material mixed gas was passed through the oxidation reactor at a space velocity of lOOOOh- 1 (per oxidation catalyst).
  • the reaction temperature of the dehydration catalyst layer and the reaction temperature of the oxidation catalyst layer were 355 ° C.
  • the conversion rate of t-butanol was 100% and the yield of methacrolein was 79.
  • the yield was 5%
  • the yield of methacrylic acid was 2.7%
  • the yield of isobutylene was 1.2%.
  • Example 1 the reaction was carried out in the same manner except that the dehydration catalyst layer length was changed to 40 cm. As a result, the conversion of t-butanol was 100%, the yield of methacrolein was 79.7%, the yield of methacrylolic acid was 2.8%, and the yield of isobutylene was 1.1%.
  • Example 1 the reaction was performed in the same manner except that the dehydration catalyst layer length was changed to 70 cm. As a result, the conversion rate of t-butanol was 100%, the yield of methacrolein was 78.4%, the yield of methacrynolic acid was 2.3%, and the yield of isobutylene was 1.1%.
  • Example 1 the reaction was carried out by directly introducing the raw material gas into the oxidation catalyst layer except that the dehydration catalyst layer was omitted.
  • the conversion of t-butanol was 100%
  • the yield of methacrolein was 79.4%
  • the yield of methacrylic acid was 1.9%
  • the yield of isobutylene was 1.6%.
  • the pre-fired powder (D) was supported on an inert carrier (alumina, particle size 4.0 mm) at a ratio of 40% by weight based on the molded catalyst.
  • the molded product thus obtained was calcined at 520 ° C. for 5 hours to obtain a supported oxidation catalyst.
  • Stainless steel reactor with an average inner diameter of 21.4 mm (total length: 4 m) with a jacket for circulating molten salt as a heating medium and a thermocouple for measuring the catalyst layer temperature on the tube axis
  • alumina monosilica spherical particles ⁇ -alumina 80 mol% —silica 20 mono%, diameter 5 mm, specific surface area 0.lm 2 / g
  • the temperature was maintained at 355 ° C.
  • t-Butanol (water content: 13% by weight) 202g / hr, air 507LZhr, nitrogen 234L / hr A feed gas consisting of 234L / hr is separately provided before introducing it into the reactor. Decomposed into water. The gas was introduced into the oxidation reactor at a space velocity of 10001T 1 and reacted. As a result, the conversion rate of t-butanol was 100%, methacrolein yield was 79.0%, methacrylic acid yield was 2.6%, and isobutylene yield was. The rate was 1.0%.
  • Example 3 the reaction was carried out in the same manner except that the dehydration catalyst layer was changed to 70 cm. As a result, the conversion of t-butanol was 100%, the yield of methacrolein was 78.1%, the yield of methacrylic acid was 2.2%, and the yield of isobutylene was 1.0%.
  • the total yield power S of methacrolein and methacrylic acid from t-butanol at a relatively low reaction temperature of 355 ° C, 80 in the conventional method is improved by 1-2%, about 81-82%, so it is very useful in industrial production.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

 本発明はガス状のt-ブタノールを含む原料ガスを、原料ガスの入り口側から出口側に向かって、脱水触媒層及び酸化触媒層をこの順序で有する固定床多管式反応器に供給し、脱水反応及び気相接触酸化反応によりメタクロレイン及び/又はメタクリル酸を製造する方法において、脱水触媒層の触媒充填長を酸化触媒層の触媒充填長の3~20%にすることを特徴とするメタクロレイン及び/又はメタクリル酸の製造方法に関するもので、本発明によれば、反応浴温度が比較的低くても(355°C程度)、従来の80%程度の収率を、81~82%に向上させることができる。

Description

明 細 書 技術分野
[0001] 本発明は、メタクロレイン及び/又はメタクリル酸を製造する方法に関する。
背景技術
[0002] イソブチレンあるいはターシャリーブチルアルコール(以下、ターシャリーブタノ一ノレ という)を原料とし、固定床気相接触酸化反応によりメタクロレイン及び/又はメタタリ ル酸を製造する方法は既によく知られており、そのための複合酸化物触媒も種々提 案されている。このうち常温で液状であるターシャリーブタノール(以下 tーブタノール ともいう)を原料とする方法は、常温で気体であるイソブチレンを原料とするよりも低コ ストであり多用されている。 t—ブタノールを原料とする場合のメタクロレイン及び/又 はメタクリル酸の製造工程を例示すると下記の通りである。
(1)まず tーブタノールをその沸点以上に加温し気化させ、これを少なくとも酸素を含 むガスと混合し、原料混合ガスを得るか、又は液状の t—ブタノールを霧状等にして、 少なくとも酸素を含むガスと混合し、該混合物を、 t—ブタノールの沸点以上に加温し 、 t—ブタノールを気化させ、原料混合ガスを得る。
(2)次いで、得られた混合ガス (原料ガス)を、脱水触媒に通して、一部分の t_ブタノ ールを、脱水反応によりイソプチレンと水に分解した後、又は、得られた混合ガスを、 該脱水触媒に通すことなぐ直接、所定温度に保った酸化触媒層に供給し、気相接 触酸化反応によりメタクロレイン及び Z又はメタクリル酸を得る。
上記のように、気化した t—ブタノールは多くの場合は、イソプチレンと同様に使用さ れている。
[0003] 一般的には、メタクロレイン、メタクリル酸収率については、 t—ブタノールを原料に したときも、イソブチレンを原料にしたときもいずれも同じであるとしている報告が多い 一方、脱水触媒による tーブタノールの脱水反応は吸熱反応であることが知られて おり、該吸熱反応がその後の酸化反応に悪影響を及ぼすとして、それを避けるため の提案もなされている。例えば特許文献 1には予め t—ブタノールの 50%以上を、脱 水触媒による脱水反応によりイソプチレンと水に分解した後、酸化触媒層に供給し、 メタクロレイン及び/又はメタクリル酸を高収率で得る方法が記載されている。該特許 文献においては、具体的には脱水触媒の γ _アルミナ'シリカ(γ—アルミナ 90%、 シリカ 10%)を、ガス混合器に充填すると共に、反応管の予熱層に、不活性なひ—ァ ノレミナ'シリカを 80cm (反応管全長 2m)充填し、 t—ブタノールを脱水してイソブチレ ンとした後、酸化反応によりメタクロレイン及びメタクリル酸にすることが記載されてい る。
また、特許文献 2の実施例 16、 17には触媒 3mlに対し、 20mlのシリコンカーバイド もしくはひ—アルミナを、 t—ブタノールの脱水用に充填して、気相接触酸化反応でメ タクロレイン及びメタクリル酸にしている例が記載されている。
[0004] 特許文献 1 :特開昭 63— 216835号公報
特許文献 2:特公昭 51— 12605号公報
発明の開示
発明が解決しょうとする課題
[0005] t—ブタノールからのメタクロレイン及びメタクリル酸の製造法は工業的にも確立され ており、収率等もかなり限界に近くなつている力 メタクロレイン及びメタクリル酸の生 産量は大きいのでわずかな収率の向上及び反応温度の低下等でも工業的には大き な違いが生じる。そのため更なる収率の向上及び反応温度の低下等が求められてい る。上記特許文献 1の方法においては比較的収率は良いが反応浴温度が高ぐ触媒 寿命の点でやや問題が生じる畏れがあること、上記特許文献 2の方法は反応温度は 350〜360°Cと低くなつているが収率も低ぐ工業的な実施には問題ある。そのため 反応浴温度が低くても、高収率が得られる方法の開発が求められている。
課題を解決するための手段
[0006] 本発明者らは、こうした実状のもと鋭意研究した結果、固定床多管式反応器を用い る t—ブタノールからのメタクロレイン及び/又はメタクリル酸の製造方法において、酸 化触媒層の充填長と脱水触媒層の触媒充填長の割合を特定な割合とすることによつ て、反応温度が低くても収率を改善できることを見出し、本発明を完成した。 [0007] すなわち本発明は、
(1) tーブタノールを原料としこれを、脱水触媒層、酸化触媒層を有する固定床多管 式反応器に供給し、 t—ブタノールを脱水し水とイソブチレンを得、イソブチレンを酸 化してメタクロレイン及び/又はメタクリル酸を製造する方法であって、 t—ブタノール を酸化触媒層に供給する前に接触する脱水触媒層の触媒充填長を酸化触媒層の 触媒充填長の 3〜20%にすることを特徴とするメタクロレイン及び/又はメタクリル酸 の製造方法、
(2) 脱水触媒がアルミナまたはアルミナ—シリカである上記(1)に記載の方法、
(3) 脱水触媒層の温度が 250〜400°Cである上記(1)または上記(2)に記載の方 法、
(4) 酸化触媒がモリブデン、ビスマス、鉄、コバルトを構成元素として含む複合金属 酸化物である上記(1)記載の方法、
(5) 酸化触媒が下記式
Mo Bi Fe Co X Y O
a b c d e f h
(式中 Mo、 Bi、 Fe及び Coはモリブデン、ビスマス、鉄及びコバルトをそれぞれ表す。
Xはアルカリ金属または T1から選ばれる一種以上の元素、 Yは Ni、 Sn、 Zn、 W、 Cr、 Ce、 Mn、 Mg、 Sbまたは Tiから選ばれる一種以上の元素を表す。また、元素記号右 下の添字は各元素の原子比であり、 a= 13とした時、 b = 0. 1— 10、 c = 0. 1— 10、 d= l— 10、 e = 0. 01— 2、 f=0— 2 、 hは各々の元素の酸化状態によって定まる 数値である。)で表される複合酸化物を触媒活性成分とする触媒である上記 (4)に記 載の方法、
に関する。
発明の効果
[0008] 本発明によれば反応浴温度が低くても、簡便な工程で、 tーブタノールからのメタク ロレイン及び/又はメタクリル酸の収率を向上させることができる。従って、本発明の 製造方法は工業的に極めて有用である。
発明を実施するための最良の形態 本発明は、固定床多管式反応器において、気相接触酸化により tーブタノールから メタクロレイン及び/又はメタクリル酸を製造方法において、脱水触媒充填層と酸化 触媒充填層との充填層の長さの割合を特定な割合、即ち、該脱水触媒充填層の長 さ(以下脱水触媒充填長ともいう)を酸化触媒充填層の長さ(酸化触媒充填長ともいう )の 3〜20%、好ましくは 5〜: 17%、更に好ましくは 6〜: 17%にすることにより、メタク ロレイン及び Z又はメタクリル酸の収率を向上させるものである。また、場合により、脱 水触媒充填長は、酸化触媒充填層の長さの 5〜: 15%程度が最も好ましい。
本発明においては、脱水触媒は、通常酸化触媒を充填している反応管の、酸化触 媒より前の原料ガスの入り口側に充填されるのが好ましい。しかし酸化触媒を充填し ている反応管と同一の内径を有する別の管に充填して、この管より出た反応ガスが、 酸化触媒を充填してレ、る反応管へ供給されるよう接続されてレ、ても良レ、。
なお、本発明において、触媒の充填長は反応管中の反応ガス入り口から出口の方 向へ触媒を充填した長さを指す。
通常使用されているメタクロレイン及び/又はメタクリル酸の製造用に使用されてい る固定床多管式反応器においては、通常反応管の内径が 15〜50mm、好ましくは 1 5〜40mm程度、更に好ましくは 18〜30mmであり、長さ lm〜5m、好ましくは 2m〜 4m程度であり、そこに酸化触媒が充填される。本発明においては、該反応管に酸化 触媒と共に脱水触媒が充填されるのが好ましぐその場合、酸化触媒層よりも原料ガ スの入り口側に脱水触媒層が設けられる。
脱水触媒使用量は、酸化反応に使用する触媒充填長との関係で、本発明の上記 の割合を満たす範囲で、 tーブタノールを含む混合ガスの供給速度、脱水触媒層の 温度、脱水触媒の種類、脱水触媒径等の条件から、最適量を適宜決定するのが好 ましい。
脱水触媒層の浴温度は通常は酸化触媒層の浴温度と同じである方が運転操作上 簡便であり、好ましいが、場合により脱水触媒層と酸化触媒層の浴温度を別々に制 御してもよレ、。通常反応浴の温度を同じくしても脱水触媒層は吸熱反応のため触媒 層の温度は下がり、酸化触媒層の温度は酸化反応が発熱反応であることから高くな るィ頃向がある。 [0010] 本発明方法を工業的に実施する場合、通常前記反応器の出口ガス中の残存イソ ブチレンを一定に保つように運転をするのが好ましい。そのため、通常触媒活性の高 い反応初期は低い酸化触媒層温度で反応させ、長期間の使用により触媒が劣化し てくる反応後期では酸化触媒層温度を上げて反応させるのが好ましい。この場合、 反応浴温度を触媒の劣化に伴い上昇させるので、酸化触媒層及び脱水触媒層の両 者が同一の反応浴中で温度制御されている場合、脱水触媒層の温度も反応浴温度 の上昇の影響を受ける。
本発明において脱水触媒層温度は 250〜400°Cが好ましぐ 300〜370°Cがより 好ましレ、。更に好ましくは 330〜370°C程度である。
[0011] 脱水触媒の形状は特に制限はなぐ柱状、球状、ラヒシリング状等のものが使用で きる。その大きさは特に制限はないが、酸化触媒と同等の大きさが好ましぐ球状のも のを例にとれば直径 3〜10mmのものが好ましい。
[0012] 本発明で使用される脱水触媒は tーブタノールを脱水反応によりイソブチレンに変 換する能力のある触媒であれば特に制限はない。例えばホウ酸、固体リン酸等の固 体酸類;炭化ケィ素等のケィ素化合物;アルミナ、アルミナ シリカ等の金属酸化物、 天然または合成ゼォライト等のアルミナシリケー H匕合物等が挙げられる。これらのう ちアルミナまたはアルミナを含む金属酸化物が好ましぐ中でも a アルミナを含む 金属酸化物がより好ましい。 a アルミナを含む金属酸化物は、一般に tーブタノ一 ルの脱水活性が低い化合物として知られているが、本発明者らの検討によれば、例 えば γ アルミナ等の脱水活性が高い化合物よりも本発明においては α アルミナ を含む金属酸化物が使用し易く好ましい。 γ アルミナ等の脱水活性が高い化合物 も本発明において使用できるカ^—ブタノールの分解副生成物の生成量が多くなる ί頃向がある。
a—アルミナを含む金属化合物の場合、シリカとの混合物であるアルミナ—シリカ 力好ましく、 ひ一ァノレミナ力 60〜98モノレ0 /0程度、より好ましく fま 70〜95モノレ0 /0、更 に好ましく fま 70〜90モノレ0 /0、シリカ力 2〜40モノレ0 /0程度、より好ましく ίま 5〜30モノレ %程度、更に好ましくは 10〜30モル%のアルミナ—シリカを使用するのが好ましい。 アルミナ、シリカの含有量は市販の分析機器で測定することができる。例えば、蛍光 X線分析、 X線光電子分光分析等が挙げられる。また、該 α —アルミナ—シリカは比 表面積が、 0. 02〜: lm2/g程度、より好ましくは 0. 05〜0. 5m2/g程度のものがよ り好ましい。
脱水層への tーブタノールの供給速度(空間速度;単位時間当たりのガス供給量( 体積)を触媒層の体積で除した値)は、通常、 1000〜: !OOOOOIT^好ましくは3000 〜50000h— 1程度であり、場合 (こより 5000〜100000h— 1であってもよレヽ。
本発明においては、 t—ブタノールと分子状酸素を含む原料ガス(例えば、 t—ブタ ノール 1〜10モル%、分子状の酸素 2〜40モル%、残部不活性ガスからなる原料ガ ス)を、充填層長が上記割合となるように脱水触媒及び酸化触媒を充填した反応管 の脱水触媒層、次いで酸化触媒層の順序で通し、脱水反応及び酸化反応を行わせ ることにより、メタクロレイン及び/又はメタクリル酸を製造するものである。なお、上記 における不活性ガスには、窒素、アルゴン等の他に、本反応において、不活性である ガス状の水等も含むものである。また、上記における原料ガスを供給する反応管は、 脱水触媒層用の反応管と酸化触媒層用の反応管に分かれていてもよいが、通常両 者を充填した固定床多管式反応器における反応管が好ましい。
上記の製造方法をより具体的に説明すると、原料の t—ブタノール (通常 10数重量 %程度の水を含む)及び、分子状の酸素及び不活性ガスとして、通常は空気、必要 に応じて更に、窒素又はアルゴン等の不活性ガスを追加して、混合槽に通し、原料 混合ガスを得る。原料混合ガスは通常 tーブタノール 1モルに対して、空気 10〜40モ ノレ、必要に応じて追加の不活性ガス 0〜40モル程度の割合で含むものが好ましレ、。 混合槽には通常脱水及び酸化反応に関与しない不活性なラシヒリング等が充填され る。
次レヽで得られた原料混合ガスを、通常 700〜3000h—丄、好ましくは 1000〜3000h —1の範囲の空間速度 (酸化触媒単位体積当たり)で酸化反応器内へ導入する。本発 明においては、通常酸化反応器内は、原料ガスの入り口から出口方向に、アルミナ 又はアルミナ—シリカ等の脱水触媒層と酸化触媒層が、順次前記した充填長 (脱水 触媒層の充填長が酸化触媒層の充填長の、 3〜20%)の割合で充填されている。酸 化反応器に導入された原料ガスは、脱水触媒層及び酸化触媒層での脱水反応及び 酸化反応を経て、 目的のメタクロレイン及び/又はメタクリル酸となる。
本発明における酸化反応は通常 320〜400°C、好ましくは 340〜380°C、より好ま しくは 340〜360°C程度で行われる。通常酸化反応器中における反応管は反応温 度をコントロールするための反応浴中に入っているカ 又はジャケットでカバーされて いるため、反応温度は、反応浴温度に近い温度に保たれる。実際の反応温度は、脱 水反応は吸熱反応で有るので、脱水触媒層は該浴温度より低くなり、酸化触媒層は やや高くなる。
なお、接触酸化反応は加圧下または減圧下でも可能であるが、一般的には大気圧 付近の圧力が適している。
また、本発明で、酸化反応器に供給される原料ガスは、上記したように、 t_ブタノ ール、分子状の酸素、残部不活性ガスを含み、実質的にはイソブチレンを含まない 原料ガスが好ましいが、場合によっては上記原料ガスを、酸化反応器とは別個に設 けられた脱水反応器に通して、 tーブタノールを部分的にイソプチレンと水に分解し た後、酸化反応器に供給してもよい。その場合、別個に設けられた脱水反応器には 、通常使用される脱水触媒を使用すればよい。
本発明で使用する酸化触媒は、 tーブタノールやイソブチレンを気相接触酸化して メタクロレイン (及びメタクリル酸)を得るために使用される触媒であれば何れも使用で きる。通常複合酸化触媒といわれる触媒が使用され、好ましくはモリブデン、ビスマス 、鉄、コバルトを構成元素として含む複合金属酸化物である。
より好ましレ、触媒としては下記一般式
Mo Bi Fe Co X Y O
a b c d e f h
(式中 Mo、 Bi、 Fe及び Coはモリブデン、ビスマス、鉄及びコバルトをそれぞれ表す。 Xはアルカリ金属または T1から選ばれる一種以上の元素、 Yは Ni、 Sn、 Zn、 W、 Cr、 Ce、 Mn、 Mg、 Sbまたは Tiから選ばれる一種以上の元素を表す。また、元素記号右 下の添字は各元素の原子比であり、 a= 13とした時、 b = 0. l _ 10、c = 0. 1— 10、 d= l _ 10、e = 0. 01 _ 2、f=0_ 2 、 hは各々の元素の酸化状態によって定まる 数値である。 )で表される複合酸化物を触媒活性成分とする触媒が挙げられる。 ここでアルカリ金属としては Csが好ましぐ Xとしても Csが特に好ましい。また、 Yとし ては上記金属の一種又は二種を含む力、又は全く含まない場合が好ましい。 Yを含 む場合、 Yとしては Niが特に好ましい。
本発明で使用される酸化触媒の調製方法及び原料については、特に制限はなぐ この種の触媒の調製に一般的に使用されている方法及び原料を用いて調製すること ができる。
[0015] 酸化触媒の形状に特に制限はない。例えば円柱状、打錠状、球状、リング状等の 形状が運転条件 (原料ガスの空間速度、酸化反応器の温度、酸化反応器の径及び 長さ)を考慮して適宜選択可能である。通常球状担体、特にシリカやアルミナ等の不 活性担体に触媒活性成分を担持した、粒径 3〜6mmの担持触媒が好ましぐより好 ましくは 3〜5mmの担持触媒である。該触媒は常法により、粒径 2〜5mm、より好ま しくは 3〜4mmの不活性担体に、触媒組成に対応する各元素含む予備焼成粉末を 坦持させて得られる成形触媒を、常法により焼成することによって得ることができる。 なお予備焼成粉末は、触媒組成に対応する各元素を含む化合物の水溶液又は懸 濁液をスプレードライして得られる粉末を 350〜550°Cの温度で予備焼成することに より得ることができる。また、酸化触媒における予備焼成粉末の坦持量は、成形触媒 に対して 25〜70重量%程度、より好ましくは 30〜50重量%である。成形触媒の焼 成温度 ίま通常 400〜700°C程度であり、好ましく ίま 450〜600°C程度であり、更に好 ましくは 500〜550。Cである。
酸化触媒は上記の触媒を一層で充填することも可能であるが、酸化触媒層の最高 ピーク温度が高くなるのを防止するために活性の異なる触媒を原料入口から出口に 向かって活性が高くなるような組み合わせで多層に充填することも可能である。
実施例
[0016] 次に本発明を更に実施例により具体的に説明する。なお、実施例において、転化 率、収率は以下の式に従って算出した。
tーブタノール転化率(%) = (反応した tーブタノールのモル数) / (供給した tーブタ ノールのモル数) X 100
メタクロレイン収率(0/0) = (生成したメタクロレインのモル数) / (供給した tーブタノ一 ノレのモル数) X 100 メタクリル酸収率(%) = (生成したメタクリル酸のモル数) / (供給した tーブタノール のモル数) X 100
イソブチレン収率(%) = (反応後の生成物中に含まれるイソプチレンのモル数) / ( 供給した t—ブタノールのモル数) X 100
[0017] 実施例 1
(触媒の調製)
蒸留水 2000mlを加熱攪拌しながらモリブデン酸アンモニゥム 450gと硝酸セシウム 15. 3gを溶解して水溶液 (A)を得た。別に、硝酸コバルト 456g、硝酸第二鉄 238g を蒸留水 500mlに溶解して水溶液 (B)を、また濃硝酸 48mlをカ卩えて酸性にした蒸留 水 200mlに硝酸ビスマス 190gを溶解して水溶液(C)をそれぞれ調製した。上記水 溶液 (A)に (B)及び(C)を順次、激しく攪拌しながら混合し、生成した懸濁液をスプレ 一ドライヤーを用いて乾燥し、得られた乾燥粉末を 460°Cで 5時間焼成し予備焼成 粉末 (D)を得た。このときの触媒活性成分の酸素を除いた組成比は原子比で Mo = 13、 Bi= 2. 0、 Fe = 3. 0、 Co=8. 0、 Cs = 0. 4であった。
その後、予備焼成粉末 (D)を不活性担体 (アルミナ、粒径 4. Omm)に、成型後の 触媒に対して 35重量%の割合で、担持した。こうして得た成型物を 520°Cで 5時間 焼成し酸化触媒 (粒径 4. 3mm)を得た。
[0018] (酸化反応試験)
熱媒体として溶融塩を循環させるためのジャケット及び触媒層温度を測定するため の熱電対を管軸に設置した、平均内径 21. 4mmのステンレス製反応器 (全長 4m) の上層 20cmに脱水触媒アルミナ一シリカ球状粒体( α—アルミナ 80モル%—シリカ 20モノレ%、直径 5mm、比表面積 0. lm2、下層 265cmに上記担持酸化触媒を充 填し、反応浴温度を 355°Cに保持した。 t—ブタノール(13重量%含水) 202g/hr、 空気 507LZh 窒素 234L/hrを混合槽に通し、得られた原料混合ガスを、空間速 度 lOOOh—1 (酸化触媒当たり)で酸化反応器内へ導入し、反応を行った。脱水触媒 層の反応温度及び酸化触媒層の反応温度は 355°Cであった。また、反応の結果、 t —ブタノール転化率 100%、メタクロレイン収率 79. 5%、メタクリル酸収率 2. 7%、ィ ソブチレン収率 1. 2%であった。 [0019] 実施例 2
実施例 1において、脱水触媒層長を 40cmに変更した以外は同様にして反応を行 つた。その結果、 t—ブタノール転化率 100%、メタクロレイン収率 79. 7%、メタクリノレ 酸収率 2. 8%、イソブチレン収率 1. 1%であった。
[0020] 比較例 1
実施例 1において、脱水触媒層長を 70cmに変更した以外は同様にして反応を行 つた。その結果、 t—ブタノール転化率 100%、メタクロレイン収率 78. 4%、メタクリノレ 酸収率 2. 3%、イソブチレン収率 1. 1%であった。
[0021] 比較例 2
実施例 1において、脱水触媒層をなくした以外は同様にして、原料ガスを直接酸化 触媒層に導入し反応を行った。その結果、 t—ブタノール転化率 100%、メタクロレイ ン収率 79. 4%、メタクリル酸収率 1. 9%、イソブチレン収率 1. 6%であった。
[0022] 実施例 3
(触媒の調製)
蒸留水 2000mlを加熱攪拌しながらモリブデン酸アンモニゥム 450gと硝酸セシウム 3. 8gを溶解して水溶液 (A)を得た。別に、硝酸コバルト 456g、硝酸第二鉄 158gを 蒸留水 500mlに溶解して水溶液(B)を、また濃硝酸 48mlを加えて酸性にした蒸留 水 200mlに硝酸ビスマス 190gを溶解して水溶液(C)をそれぞれ調製した。上記水 溶液 (A)に (B)、(C)を順次、激しく攪拌しながら混合し、生成した懸濁液をスプレー ドライヤーを用いて乾燥し、 460°Cで 5時間焼成し予備焼成粉末 (D)を得た。このと きの触媒活性成分の酸素を除いた組成比は原子比で Mo= 13、 Bi= 2. 0、 Fe = 2. 0、 Co=8. 0、 Cs = 0. 1であった。
その後、予備焼成粉末 (D)を不活性担体 (アルミナ、粒径 4. 0mm)に成型後の触媒 に対して 40重量%を占める割合で、担持した。こうして得た成型物を 520°Cで 5時間 焼成し担持酸化触媒を得た。
[0023] (酸化反応試験)
熱媒体として溶融塩を循環させるためのジャケット及び触媒層温度を測定するため の熱電対を管軸に設置した、平均内径 21. 4mmのステンレス製反応器 (全長 4m) の上層 20cmに脱水触媒アルミナ一シリカ球状粒体( α—アルミナ 80モル%—シリカ 20モノレ%、直径 5mm、比表面積 0. lm2/g)、下層 265cmに上記担持酸化触媒を 充填し反応浴温度を 355°Cに保持した。
t—ブタノール(13重量%含水) 202g/hr、空気 507LZhr、窒素 234L/hrから なる原料ガスを、反応器に導入する前に別途設けた脱水装置で t—ブタノールの 57 Q/oをイソプチレンと水に分解した。そのガスを空間速度 10001T1で酸化反応器内へ 導入し、反応を行った結果、 t—ブタノール転化率 100%、メタクロレイン収率 79. 0 %、メタクリル酸収率 2. 6%、イソブチレン収率 1. 0%であった。
[0024] 比較例 3
実施例 3において、脱水触媒層を 70cmに変更した以外は同様にして反応を行つ た。その結果、 t—ブタノール転化率 100%、メタクロレイン収率 78. 1%、メタクリル酸 収率 2. 2%、イソブチレン収率 1. 0%であった。
[0025] 以上のように脱水触媒層の充填長が長すぎると、有効収率が低下し、脱水触媒層 が無いと、残存イソプチレンが増加する。
産業上の利用可能性
[0026] 本発明方法によれば反応浴温度 355°Cという比較的低い反応温度において、 t- ブタノールからのメタクロレイン及びメタクリル酸の合計収率力 S、従来法における 80。/o 程度収率が、約 81〜82%と、 1〜2%向上することから、工業的生産での有用性が 非常に大きい。

Claims

請求の範囲
[1] ターシャリーブタノールを原料としこれを、脱水触媒層、酸化触媒層を有する固定 床多管式反応器に供給し、ターシャリーブタノールを脱水し水とイソブチレンを得、ィ ソブチレンを酸化してメタクロレイン及び Z又はメタクリル酸を製造する方法であって 、ターシャリーブタノールを酸化触媒層に供給する前に接触する脱水触媒層の触媒 充填長を酸化触媒層の触媒充填長の 3〜20%にすることを特徴とするメタクロレイン 及び/又はメタクリル酸の製造方法。
[2] 脱水触媒がアルミナまたはアルミナ シリカである請求項 1に記載の方法。
[3] 脱水触媒層の温度が 250〜400°Cである請求項 1または請求項 2に記載の方法。
[4] 酸化触媒がモリブデン、ビスマス、鉄、コバルトを構成元素として含む複合金属酸化 物である請求項 1記載の方法。
[5] 酸化触媒が下記式
Mo Bi Fe Co X Y O
a b c d e f h
(式中 Mo、 Bi、 Fe及び Coはモリブデン、ビスマス、鉄及びコバルトをそれぞれ表す。 Xはアルカリ金属または T1から選ばれる一種以上の元素、 Yは Ni、 Sn、 Zn、 W、 Cr、 Ce、 Mn、 Mg、 Sbまたは Tiから選ばれる一種以上の元素を表す。また、元素記号右 下の添字は各元素の原子比であり、 a= 13とした時、 b = 0. l _ 10、 c = 0. 1— 10、 d= l _ 10、 e = 0. 01 _ 2、 f=0_ 2 、 hは各々の元素の酸化状態によって定まる 数値である。 )で表される複合酸化物を触媒活性成分とする触媒である請求項 4に記 載の方法。
PCT/JP2007/057069 2006-04-03 2007-03-30 メタクロレイン及び/又はメタクリル酸の製造法 WO2007119607A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2008510895A JP4950986B2 (ja) 2006-04-03 2007-03-30 メタクロレイン及び/又はメタクリル酸の製造法
EP07740505A EP2011780B1 (en) 2006-04-03 2007-03-30 Process for producing methacrolein and/or methacrylic acid
CN2007800116059A CN101410360B (zh) 2006-04-03 2007-03-30 甲基丙烯醛和/或甲基丙烯酸的制造方法
US12/223,494 US8088947B2 (en) 2006-04-03 2007-03-30 Method for producing methacrolein and/or methacrylic acid
TW096111740A TW200800877A (en) 2006-04-03 2007-04-03 Method for making methacrolein and/or methacrylic acid
KR1020087022112A KR101218128B1 (ko) 2006-04-03 2008-09-10 메타크롤레인 및/또는 메타크릴산의 제조법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006101459 2006-04-03
JP2006-101459 2006-04-03

Publications (1)

Publication Number Publication Date
WO2007119607A1 true WO2007119607A1 (ja) 2007-10-25

Family

ID=38609375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/057069 WO2007119607A1 (ja) 2006-04-03 2007-03-30 メタクロレイン及び/又はメタクリル酸の製造法

Country Status (7)

Country Link
US (1) US8088947B2 (ja)
EP (1) EP2011780B1 (ja)
JP (1) JP4950986B2 (ja)
KR (1) KR101218128B1 (ja)
CN (1) CN101410360B (ja)
TW (1) TW200800877A (ja)
WO (1) WO2007119607A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013121946A (ja) * 2011-11-07 2013-06-20 Mitsubishi Rayon Co Ltd イソブタノールからメタクロレイン及びメタクリル酸を製造する方法並びに製造装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8722940B2 (en) 2012-03-01 2014-05-13 Saudi Basic Industries Corporation High molybdenum mixed metal oxide catalysts for the production of unsaturated aldehydes from olefins
RU2615762C2 (ru) * 2012-09-28 2017-04-11 Асахи Касеи Кемикалз Корпорейшн Оксидный катализатор и способ его получения, а также способы получения ненасыщенного альдегида, диолефина и ненасыщенного нитрила

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5112605A (ja) 1974-07-22 1976-01-31 Canon Kk
JPS6341431A (ja) * 1986-08-06 1988-02-22 Mitsubishi Rayon Co Ltd イソブチレンの製造法
JPS63216835A (ja) 1987-03-05 1988-09-09 Nippon Kayaku Co Ltd メタクロレイン及び/又はメタクリル酸の製造方法
JPH0847642A (ja) * 1994-05-31 1996-02-20 Nippon Shokubai Co Ltd 不飽和アルデヒドおよび不飽和カルボン酸製造用触媒およびこの触媒を用いた不飽和アルデヒドおよび不飽和カルボン酸の製造方法
JP2004130261A (ja) * 2002-10-11 2004-04-30 Mitsubishi Rayon Co Ltd 不飽和アルデヒドおよび不飽和カルボン酸の合成用触媒の製造方法
JP2005320315A (ja) * 2003-10-22 2005-11-17 Nippon Shokubai Co Ltd 接触気相酸化反応

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1049162C (zh) * 1994-06-09 2000-02-09 中国石化齐鲁石油化工公司 异丁烯或叔丁醇两步氧化制甲基丙烯酸的催化剂
JP4824867B2 (ja) * 2001-05-30 2011-11-30 三菱レイヨン株式会社 メタクロレインおよびメタクリル酸の製造方法
US7161044B2 (en) * 2003-10-22 2007-01-09 Nippon Shokubai Co., Ltd. Catalytic gas phase oxidation reaction

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5112605A (ja) 1974-07-22 1976-01-31 Canon Kk
JPS6341431A (ja) * 1986-08-06 1988-02-22 Mitsubishi Rayon Co Ltd イソブチレンの製造法
JPS63216835A (ja) 1987-03-05 1988-09-09 Nippon Kayaku Co Ltd メタクロレイン及び/又はメタクリル酸の製造方法
JPH0847642A (ja) * 1994-05-31 1996-02-20 Nippon Shokubai Co Ltd 不飽和アルデヒドおよび不飽和カルボン酸製造用触媒およびこの触媒を用いた不飽和アルデヒドおよび不飽和カルボン酸の製造方法
JP2004130261A (ja) * 2002-10-11 2004-04-30 Mitsubishi Rayon Co Ltd 不飽和アルデヒドおよび不飽和カルボン酸の合成用触媒の製造方法
JP2005320315A (ja) * 2003-10-22 2005-11-17 Nippon Shokubai Co Ltd 接触気相酸化反応

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2011780A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013121946A (ja) * 2011-11-07 2013-06-20 Mitsubishi Rayon Co Ltd イソブタノールからメタクロレイン及びメタクリル酸を製造する方法並びに製造装置

Also Published As

Publication number Publication date
CN101410360B (zh) 2012-05-16
TWI378914B (ja) 2012-12-11
KR101218128B1 (ko) 2013-01-03
EP2011780B1 (en) 2011-07-27
TW200800877A (en) 2008-01-01
EP2011780A4 (en) 2010-07-14
EP2011780A1 (en) 2009-01-07
JPWO2007119607A1 (ja) 2009-08-27
US8088947B2 (en) 2012-01-03
KR20080105071A (ko) 2008-12-03
US20090062564A1 (en) 2009-03-05
JP4950986B2 (ja) 2012-06-13
CN101410360A (zh) 2009-04-15

Similar Documents

Publication Publication Date Title
CN104185617B (zh) 使用固定床多管式反应器的丙烯酸的制备方法
US5929275A (en) Catalyst and process for producing unsaturated aldehyde and unsaturated acid
KR101821023B1 (ko) 불포화 알데히드 및/또는 불포화 카르복실산 제조용 촉매의 제조 방법, 및 불포화 알데히드 및/또는 불포화 카르복실산의 제조 방법
CN100551528C (zh) 多金属氧化物催化剂的制备方法、不饱和醛和/或羧酸的制备方法和带式煅烧设备
KR101513300B1 (ko) 불포화 알데히드 및/또는 불포화 카르복실산의 제조법
JP4813758B2 (ja) 複合酸化物触媒およびそれを用いたアクリル酸の製造方法
JPH0784400B2 (ja) 不飽和アルデヒドおよび不飽和酸の製造方法
KR101558941B1 (ko) 메타크롤레인 및/또는 메타크릴산의 제조 방법
KR100660988B1 (ko) 불포화 알데히드의 제조방법
US20150274626A1 (en) Method for producing methacrolein and methacrylic acid
JPH0639470B2 (ja) 無水マレイン酸の製造方法
JP4950986B2 (ja) メタクロレイン及び/又はメタクリル酸の製造法
US4552978A (en) Oxidation of unsaturated aldehydes
CN111936458B (zh) 不饱和醛和不饱和羧酸中的至少一者的制造方法以及制造用催化剂
JP3939187B2 (ja) 不飽和アルデヒドの製造方法
JP3028327B2 (ja) メタクロレイン及びメタクリル酸の製造方法
JP2003146920A (ja) アクロレインおよびアクリル酸の製造方法
JP3523455B2 (ja) 固定床反応器および不飽和カルボン酸の製造方法
JP2005162744A (ja) 不飽和アルデヒド及び不飽和カルボン酸の製造方法
JPH03215441A (ja) メタクロレインおよびメタクリル酸の製造方法
JP4301484B2 (ja) メタクリル酸の製造方法
WO2005049536A1 (ja) 不飽和アルデヒド及び不飽和カルボン酸の製造方法
JP2011102249A (ja) アクリル酸の製造方法
MXPA97003502A (en) Catalyst and process to produce aldehidoinsaturado and acido insatur

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07740505

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008510895

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12223494

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 4045/CHENP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1020087022112

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200780011605.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007740505

Country of ref document: EP