WO2007119439A1 - 情報記録媒体およびその製造方法 - Google Patents

情報記録媒体およびその製造方法 Download PDF

Info

Publication number
WO2007119439A1
WO2007119439A1 PCT/JP2007/055597 JP2007055597W WO2007119439A1 WO 2007119439 A1 WO2007119439 A1 WO 2007119439A1 JP 2007055597 W JP2007055597 W JP 2007055597W WO 2007119439 A1 WO2007119439 A1 WO 2007119439A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
information
recording medium
information recording
transmittance adjusting
Prior art date
Application number
PCT/JP2007/055597
Other languages
English (en)
French (fr)
Inventor
Tomoyasu Takaoka
Yoshitaka Sakaue
Rie Kojima
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to JP2008510819A priority Critical patent/JP4750844B2/ja
Priority to CN200780012407.4A priority patent/CN101496104B/zh
Priority to US12/295,083 priority patent/US8088464B2/en
Publication of WO2007119439A1 publication Critical patent/WO2007119439A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/257Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof
    • G11B7/24035Recording layers
    • G11B7/24038Multiple laminated recording layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/26Apparatus or processes specially adapted for the manufacture of record carriers
    • G11B7/266Sputtering or spin-coating layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/257Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
    • G11B2007/25705Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials
    • G11B2007/25706Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials containing transition metal elements (Zn, Fe, Co, Ni, Pt)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/257Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
    • G11B2007/25705Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials
    • G11B2007/25708Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials containing group 13 elements (B, Al, Ga)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/257Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
    • G11B2007/25705Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials
    • G11B2007/25715Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials containing oxygen
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0045Recording
    • G11B7/00454Recording involving phase-change effects
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/258Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of reflective layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/21Circular sheet or circular blank

Definitions

  • the present invention relates to an information recording medium for recording and reproducing information by laser beam irradiation and a method for manufacturing the same.
  • optical recording media can record signals by modulating the output of a laser beam between at least two power levels. If the power level is selected appropriately, new signals can be recorded at the same time while erasing already recorded signals.
  • the inventor has announced an optical recording medium having two information layers as a technique for increasing the capacity of the optical recording medium.
  • Information can be recorded on and reproduced from the two information layers by a laser beam incident on the optical recording medium from one side of the optical recording medium. With such a configuration, the recording capacity of the optical recording medium can be almost doubled.
  • the laser beam incident side (hereinafter simply referred to as the incident side) may be described.
  • Information is recorded on and reproduced from the information layer (hereinafter referred to as the first information layer) that is located far from the light source) by a laser beam that has passed through the information layer on the incident side (hereinafter referred to as the second information layer). Therefore, it is preferable that the second information layer has as high a transmittance as possible.
  • the inventor is the opposite of the laser beam incident side with respect to the reflective layer in the information layer having the recording layer and the reflective layer in this order from the laser beam incident side. It has been studied to arrange a transmittance adjusting layer having a high refractive index on the side.
  • the transmittance of the second information layer is made larger than 46% by using TiO for the transmittance adjusting layer, and the first Information layer Efficient recording and playback is possible (see pamphlet of International Publication No. 03Z025922).
  • TiO contains Ag which has a small absorption of blue laser with a refractive index of about 2.7 and a small absorption.
  • TiO is the main component and NbO is not used.
  • the refractive index is increased by adding to 2 2 5 (for example, in the range of 2.5 to 11% by weight (4 mol% or less, or Nb is 2.5 atomic% or less)), (See, for example, Japanese Patent Laid-Open Nos. 2003-010201 and 2006-45666).
  • TiO has a low film formation rate during sputtering.
  • the present invention solves the above-described problems, and provides an information recording medium including an excellent transmittance adjusting layer having both a high refractive index comparable to the conventional one and a stable high film formation rate.
  • the purpose is to provide.
  • Another object of the present invention is to provide a method for manufacturing the information recording medium.
  • N information layers (N is an integer of 2 or more) are provided on a substrate, and information is applied to each information layer by irradiation with a laser beam.
  • the L-th information layer (L is an integer satisfying 2 ⁇ L ⁇ N) includes at least a recording layer capable of causing a phase change by laser beam irradiation, a reflective layer, and a transmittance adjusting layer.
  • the transmittance adjusting layer includes at least one element M selected from Ti, Zr, Hf, Y, Cr, ⁇ , Ga, Co, Bi, In, Ta, and Ce.
  • a method of manufacturing an information recording medium of the present invention is a method of manufacturing the information recording medium of the present invention described above, and includes a step of manufacturing the Lth information layer, and the step includes
  • step (iii) a recording layer forming step of forming a recording layer capable of causing a phase change by laser beam irradiation, and the steps (i) to (iii) 1S step (i) and step (ii) , Step (iii), or step (iii), step (ii), step (i).
  • the transmittance adjusting layer having a refractive index as high as the conventional one can be stably and efficiently formed, the Lth information layer (L is Multi-layer information recording media with high transmittance (integer satisfying 2 ⁇ L ⁇ N) and good recording / reproduction characteristics can be obtained efficiently.
  • FIG. 1 is a cross-sectional view showing one structural example of an information recording medium of the present invention.
  • FIG. 2 is a cross-sectional view showing another configuration example of the information recording medium of the present invention.
  • FIG. 3 is a cross-sectional view showing still another configuration example of the information recording medium of the present invention.
  • FIG. 4 is a cross-sectional view showing still another configuration example of the information recording medium of the present invention.
  • FIG. 5 is a cross-sectional view showing still another configuration example of the information recording medium of the present invention.
  • FIG. 6 is a cross-sectional view showing still another configuration example of the information recording medium of the present invention.
  • FIG. 7 is a cross-sectional view showing still another configuration example of the information recording medium of the present invention.
  • FIG. 8 is a cross-sectional view showing still another configuration example of the information recording medium of the present invention.
  • FIG. 9 is a cross-sectional view showing still another configuration example of the information recording medium of the present invention.
  • FIG. 10 is a cross-sectional view showing still another configuration example of the information recording medium of the present invention.
  • FIG. 11 is a cross-sectional view showing still another configuration example of the information recording medium of the present invention.
  • FIG. 12 is a cross-sectional view showing still another configuration example of the information recording medium of the present invention.
  • FIG. 13 shows a record usable for recording / reproducing information on / from the information recording medium of the present invention. It is the schematic which shows an example of a recording / reproducing apparatus.
  • FIG. 14 is a schematic diagram showing an example of a recording pulse waveform used for recording / reproducing information with respect to the information recording medium of the present invention.
  • FIG. 15 is a flowchart showing an example of the method for manufacturing the information recording medium of the present invention, in which the substrate annealing step is omitted when the transmittance adjusting layer is manufactured.
  • FIG. 16 is a flowchart showing an example of a conventional method of manufacturing an information recording medium including a substrate annealing process.
  • FIG. 1 shows a partial sectional view of the information recording medium in the first embodiment.
  • the information recording medium 2 of the present embodiment is an optical information recording medium capable of recording and reproducing information by irradiating the laser beam 4 collected by the objective lens 5.
  • the transparent layer 3 side is the laser beam incident side.
  • FIG. 2 is a partial cross-sectional view showing in detail the film configuration of the first information layer 11 and the second information layer 13 in the information recording medium 2 of the present embodiment.
  • the first information layer 11 has a reflective layer 112, a first dielectric layer 113, a first interface layer 114, a recording layer from the side close to the substrate 1 (the side opposite to the laser beam incident side).
  • the layer 115, the second interface layer 116, and the second dielectric layer 117 are provided in this order.
  • the second information layer 13 disposed across the separation layer 12 includes the transmittance adjusting layer 131, the reflection layer Layer 132, first dielectric layer 133, first interface layer 134, recording layer 135, a second interface layer 136, and a second dielectric layer 137 are provided in this order. That is, the second information layer 13 includes the recording layer 135, the reflective layer 132, and the transmittance adjusting layer 131 in this order from the laser beam incident side.
  • the transparent layer 3 side force laser beam 4 is focused on the information recording medium 2 by the objective lens 5, and the laser is applied to the recording layer 115 of the first information layer 11 or the recording layer 135 of the second information layer 13. Information is recorded and reproduced by irradiating the beam. At this time, the laser beam and its reflected light reaching the first information layer 11 are attenuated by passing through the second information layer 13. Therefore, the first information layer 11 needs to have high recording sensitivity and high reflectance, and the second information layer 13 needs to have high transmittance.
  • the substrate 1 has a disk shape and is provided to hold all layers including the first information layer 11.
  • a guide groove for guiding the laser beam 4 may be formed on the surface of the substrate 1 on the first information layer 11 side.
  • the surface on the first information layer 11 side of the substrate 1 and the surface on the opposite side are preferably smooth.
  • the material of the substrate polycarbonate resin, polymethyl methacrylate resin, polyolefin resin, norbornene resin, glass, or a combination thereof can be used.
  • the recording layer 115 is a layer that can cause a phase change between a crystalline phase and an amorphous phase by irradiation with the laser beam 4.
  • the material used for such a recording layer 115 includes, for example, at least one material selected from Ge—Sb Te, Ge Bi Te, Ge Sn Te, Ge Sb—Sn Te, and Ge Bi—Sn Te force. Things can be used.
  • the recording layer 115 preferably has an amorphous phase that can be easily changed to a crystalline phase when irradiated with a laser beam, and that the recording layer 115 does not change to a crystalline phase when not irradiated with a laser beam.
  • the film thickness of the recording layer 115 is 5 ⁇ ! Preferably within the range of ⁇ 15nm! / ,.
  • the reflective layer 112 has an optical function of increasing the amount of light absorbed by the recording layer 115 and a thermal function when diffusing heat generated in the recording layer 115.
  • a material containing at least one element selected from Ag, Au, Cu, and A1 force should be used. it can.
  • alloys such as Ag—Cu, Ag—Ga—Cu, Ag—Pd—Cu, Ag—Nd—Au, AlNi ⁇ AlCr, Au—Cr, and Ag—In can be used.
  • an Ag alloy is preferable as a material for the reflective layer 112 because of its high thermal conductivity.
  • the first dielectric layer 113 is located between the recording layer 115 and the reflective layer 112, and has a thermal function to adjust thermal diffusion from the recording layer 115 to the reflective layer 112, and reflectivity and absorption. It has an optical function to adjust the rate.
  • Examples of the material for the first dielectric layer include ZrO, HfO, ZnO, Si
  • Sulfuric acid such as S and CdS, or a mixture thereof can be used.
  • the mixtures include ZrO—SiO, ZrO—SiO—CrO, ZrO—SiO—GaO, and HfO—S.
  • the film thickness of the first dielectric layer 113 is preferably in the range of 5 nm to 40 nm.
  • the first interface layer 114 has a function of preventing mass transfer that occurs between the first dielectric layer 113 and the recording layer 115 due to repeated recording.
  • the first interface layer 114 is preferably a material that has a high melting point that does not melt during recording, and has good adhesion to the recording layer 115. Examples of the material of the first interface layer 114 include ZrO, HfO, ZnO, SiO, SnO, and Cr 2 O.
  • the second dielectric layer 117 is arranged on the laser beam incident side with respect to the recording layer 115, and adjusts the function of preventing the recording layer 115 from being corroded, deformed, and the reflectance and absorption rate. With optical functions.
  • the material of the second dielectric layer 117 the same material as that of the first dielectric layer 113 can be used.
  • the film thickness of the second dielectric layer 117 may be determined so that the change in reflectance between the case where the recording layer 115 is in the crystalline phase and the case where it is in the amorphous phase becomes large.
  • the film thickness of the second dielectric layer 117 is preferably in the range of 20 nm to 80 nm.
  • the second interface layer 116 has a function of preventing mass transfer that occurs between the second dielectric layer 117 and the recording layer 115 due to repeated recording. Therefore, it is preferable that the material has the same performance as the first interface layer 114.
  • the film thickness of the second interface layer 116 is preferably in the range of 0.3 nm to 15 nm! /.
  • the first information layer 11 is formed by the reflective layer 112, the first dielectric layer 113, the first interface layer 114, the recording layer 115, the second interface layer 116, and the second dielectric layer 117. Formed!
  • the separation layer 12 is a layer provided to distinguish the focus positions of the first information layer 11 and the second information layer 13.
  • the thickness of the separation layer 12 is preferably equal to or greater than the depth of focus determined by the numerical aperture NA of the objective lens 5 and the wavelength of the laser beam 4.
  • all the information layers separated by the separation layer 12 (in this embodiment, the first information layer 11 and the second information layer 13) must be within a range where light can be collected by the objective lens 5,
  • the separation layer 12 preferably has a small light absorption with respect to the laser beam 4.
  • a guide groove for guiding the laser beam 4 may be formed on the surface of the separation layer 12 on the second information layer 13 side.
  • the material of the separation layer 12 is polycarbonate resin, polymethylmetatalate resin, polyolefin resin, norbornene resin, ultraviolet curable resin, slow-acting thermosetting resin, glass, or these as appropriate. Combinations or the like can be used.
  • the second information layer 13 is close to the first information layer 11, and from the side, the transmittance adjustment layer 131, the reflective layer 132, the first dielectric layer 133, the first interface layer 134, Recording layer 135, second interface layer 136 and a second dielectric layer 137 are provided in this order.
  • the recording layer 135 has the same function as the recording layer 115 of the first information layer 11 described above, and the same material can be used.
  • the film thickness of the recording layer 135 is preferably 15 nm or less, more preferably 9 nm or less.
  • the thickness of the recording layer 135 can be in the range of 1 nm to 15 nm (more preferably in the range of 1 nm to 9 nm).
  • the reflective layer 132 has the same function as the reflective layer 132 of the first information layer 11 described above, and the same material can be used. However, in order to increase the transmittance of the second information layer 13, the thickness of the reflective layer 132 is preferably 18 nm or less, and more preferably in the range of lnm to 15 nm.
  • the first dielectric layer 133 has the same function as the first dielectric layer 113 of the first information layer 11 described above, and the same material can be used.
  • the thickness of the first dielectric layer 133 is 5 ⁇ ! ⁇ 3
  • the first interface layer 134 has a function similar to that of the first interface layer 114 of the first information layer 11 described above, and the same material can be used.
  • the thickness of the first interface layer 134 is 0.3 ⁇ ! Preferably in the range of ⁇ 15 ⁇ m! / ,.
  • the second dielectric layer 137 has a function similar to that of the second dielectric layer 117 of the first information layer 11 described above, and a similar material can be used.
  • the thickness of the first dielectric layer 137 is 15 ⁇ ! ⁇
  • the second interface layer 136 has the same function as the second interface layer 116 of the first information layer 11 described above, and the same material can be used.
  • the thickness of the second interface layer 136 is 0.3 ⁇ ! Preferably in the range of ⁇ 15 ⁇ m! / ,.
  • the transmittance adjusting layer 131 has a function of adjusting the transmittance of the second information layer 13.
  • the transmittance adjusting layer 131 allows the transmittance T c (%) of the second information layer 13 when the recording layer 135 is a crystalline phase and the second information layer 13 when the recording layer 135 is an amorphous phase.
  • the transmittance Ta (%) of both can be increased.
  • the refractive index n and the extinction coefficient k of the transmittance adjusting layer 131 are determined by the transmittance Tc of the first information layer 13.
  • the layer 131 contains the element M, Nb, and oxygen (O).
  • the Nb content in the transmittance adjusting layer 131 is 2.9 atomic% or more. Therefore, a mixture of Nb oxide and element M oxide can be used as the material of the transmittance adjusting layer 131.
  • Nb 2 O which is an oxide of Nb, or a material containing Nb 2 O.
  • the material of the transmittance adjusting layer 131 is made of Nb in order to sufficiently increase the film formation rate and to reduce the film formation rate fluctuation due to moisture (to increase the film formation rate stability). It is desirable to contain 8.6 atomic% or more (for example, 9 atomic% or more or 15 atomic% or more). For example, it is preferable to use a material represented by the following formula (1).
  • Nb M 2 O (atomic%) means “Nb” atom, “M” atom.
  • composition formula expressed based on the total number of “o” atoms (100%).
  • the transmittance adjusting layer 131 when the preferred material of the transmittance adjusting layer 131 is represented by an oxide, the transmittance adjusting layer 131 preferably has a film formation rate that preferably includes 10 mol% or more of NbO, And,
  • a material represented by the following formula (2) is preferably used as the material included in the transmittance adjusting layer 131.
  • M—O represents an oxide of the element M, and z satisfies z ⁇ 30.
  • the transmittance adjustment layer 131 is formed of a material containing elements other than the elements M, Nb, and oxygen (O), which may be formed of a material consisting of only the elements M, Nb, and oxygen (O). May be.
  • the transmittance adjusting layer 131 includes other elements, it is preferable that the total of elements M, Nb, and oxygen (O) is 90 atomic% or more. Further, when expressed in oxide, it is preferable that the transmittance adjusting layer 131 contains 90 mol% or more of Nb oxide and element M oxide in total.
  • the thickness d of the transmittance adjusting layer 131 is ⁇ Z3 in order to increase the transmittance Tc, Ta more effectively.
  • the thickness of the excess ratio adjusting layer 131 is, for example, 5 ⁇ ! It is preferable to be within a range of ⁇ 36 nm.
  • a second information layer 13 is formed.
  • the transparent layer 3 is arranged on the laser beam incident side with respect to the second information layer 13 and plays a role of protecting the information layers 11 and 13.
  • the transparent layer 3 preferably has low light absorption with respect to the laser beam 4.
  • the material of the transparent layer 3 is, for example, polycarbonate resin, polyethylene methacrylate resin, polyolefin resin, norbornene resin, ultraviolet curable resin, slow-acting thermosetting resin, glass, or a combination thereof Etc. can be used. Moreover, you may use the sheet
  • the thickness of the transparent layer is preferably in the range of 5 m to 150 m, more preferably in the range of 15 ⁇ m to 50 ⁇ m. ,.
  • the information recording medium 2 can be manufactured by the method described below.
  • First information layer 11 is laminated on the substrate 1 (thickness is 1.1 mm, for example).
  • First information layer 1 1 is a force composed of a multilayer film. Each of these layers can be formed by sequential sputtering.
  • the substrate 1 has a high hygroscopic property, and therefore, if necessary, the step of annealing the substrate to remove moisture (hereinafter referred to as substrate annealing step, annealing step or substrate annealing) before sputtering. May be implemented).
  • Each layer has a sputtering target of a material constituting each layer in a rare gas atmosphere such as Ar gas, Kr gas, or Xe gas, or a rare gas and a reactive gas (at least one gas selected from oxygen gas and nitrogen gas). And can be formed by sputtering in a mixed gas atmosphere.
  • a rare gas atmosphere such as Ar gas, Kr gas, or Xe gas
  • a rare gas and a reactive gas at least one gas selected from oxygen gas and nitrogen gas.
  • the sputtering method DC sputtering method and RF sputtering method are used properly as necessary. Since the composition of each layer formed by sputtering does not completely match the composition of the original sputtering target, it is necessary to determine the composition of the sputtering target in consideration of the composition shift due to sputtering.
  • a sputtering target having the same composition as that of the target film can be used.
  • oxygen vacancies are likely to occur by sputtering.
  • oxygen vacancies can be compensated by using oxygen gas as the reaction gas.
  • the composition of the sputtering target and the film obtained by forming the sputtering target can be confirmed, for example, by analyzing with an X-ray microanalyzer.
  • the reflective layer 112 is first formed on the substrate 1.
  • the reflective layer 112 can be formed by sputtering a sputtering target made of a metal or an alloy constituting the reflective layer 112 in a rare gas atmosphere or a mixed gas atmosphere of a rare gas and a reactive gas.
  • a first dielectric layer 113 is formed on the reflective layer 112.
  • the first dielectric layer 113 is formed by sputtering a sputtering target having a compound force constituting the first dielectric layer 113 in a rare gas atmosphere or a mixed gas atmosphere of a rare gas and a reactive gas. Can be formed.
  • a first interface layer 114 is formed on the first dielectric layer 113.
  • the first interface layer 11 4 is formed by sputtering a sputtering target made of a compound constituting the first interface layer 114 in a rare gas atmosphere or a mixed gas atmosphere of a rare gas and a reactive gas. .
  • the recording layer 115 is formed on the first interface layer 114.
  • the recording layer 115 can be formed by sputtering a sputtering target having a compound force constituting the recording layer 115 in a rare gas atmosphere or a mixed gas atmosphere of a rare gas and a reactive gas.
  • the second interface layer 116 is formed on the recording layer 115.
  • the second interface layer 116 can be formed by sputtering a sputtering target having a compound force constituting the second interface layer 116 in a rare gas atmosphere or a mixed gas atmosphere of a rare gas and a reactive gas.
  • a second dielectric layer 117 is formed on the second interface layer 116.
  • the second dielectric layer 117 can be formed by sputtering a sputtering target made of a compound constituting the second dielectric layer 117 in a rare gas atmosphere or a mixed gas atmosphere of a rare gas and a reactive gas.
  • the first information layer 11 is laminated on the substrate 1, and then the separation layer 12 is formed.
  • the separation layer 12 is formed, for example, by applying an ultraviolet curable resin or a slow-acting thermosetting resin on the first information layer 11, and then rotating the whole to uniformly extend the resin (spin coating). Then, it can be produced by curing the resin.
  • the second information layer 13 is laminated on the substrate 1 on which the first information layer 11 and the separation layer 12 are laminated from the separation layer 12 side (on the separation layer 12).
  • the second information layer 13 is formed of a multilayer film like the first information layer 11, but each of these layers can be formed by sequential sputtering.
  • the separation layer 12 has a high hygroscopic property depending on the material, so an annealing process should be performed.
  • the transmittance adjusting layer 131 is formed on the separation layer 12 (transmittance adjusting layer forming step).
  • the permeability adjusting layer 131 is formed by sputtering the sputtering target (first sputtering target) having the compound power constituting the transmittance adjusting layer 131 in a rare gas atmosphere or a mixed gas atmosphere of a rare gas and a reactive gas. Can be formed.
  • the material used for 131 is less susceptible to compositional deviation due to sputtering. Therefore, a sputtering target having the same composition as that of the target transmittance adjusting layer 131 can be used.
  • a sputtering target containing the element M, Nb, and oxygen (O) and having a Nb content of 2.9 atomic% or more is used. Therefore, it is possible to use a sputtering target including a mixture of an oxide of Nb and an oxide of element M.
  • Nb O which is an oxide of Nb
  • a material containing NbO can achieve a stable and high deposition rate.
  • Nb should be 8.6 atomic% or more (for example, 9 It is desirable to use a sputtering target containing (at.% Or more). For example, it is preferable to use a material represented by the above formula (1).
  • the sputtering target used for the transmittance adjusting layer 131 is expressed as an oxide, it contains 10 mol% or more of NbO.
  • the sputtering target used here is formed of a material containing other elements other than the elements M, Nb, and oxygen (O), which may be formed of a material having only the power of the elements M, Nb, and oxygen (O). ! When other components are included, it is preferable that the elements M, Nb, and oxygen (O) are included in a total of 90 atomic% or more. In addition, when this sputtering target is expressed as an oxide, it is preferable that the total of the oxide of Nb and the oxide of element M is 90 mol% or more! /.
  • a reflective layer 132 is formed on the transmittance adjusting layer 131 (reflective layer forming step).
  • the reflective layer 132 can be formed by the same method as the reflective layer 112 described in the method of forming the first information layer 11.
  • a sputtering target third sputtering target
  • at least one element selected from Ag, Au, Cu, and A1 can be used.
  • the first dielectric layer 133 is the first dielectric layer 1 described in the method for forming the first information layer 11. It can be formed by the same method as 13.
  • first interface layer 134 is formed on the first dielectric layer 133 (first interface layer forming step).
  • the first interface layer 134 can be formed by the same method as the first interface layer 114 described in the method of forming the first information layer 11.
  • a recording layer 135 is formed on the first interface layer 134 (recording layer forming step).
  • the recording layer 135 can be formed by the same method as the recording layer 115 described in the method of forming the first information layer 11.
  • a sputtering device comprising at least one material selected from Ge—Sb—Te, Ge—Bi—Te, Ge—Sn—Te, Ge—Sb—Sn—Te, and 06—81-311—Ding 6.
  • One get (second sputtering target) can be used.
  • the second interface layer 136 is formed on the recording layer 135 (second interface layer forming step).
  • the second interface layer 136 can be formed by the same method as the second interface layer 116 described in the method of forming the first information layer 11.
  • a second dielectric layer 137 is formed on the second interface layer 136 (second dielectric layer forming step).
  • the second dielectric layer 137 can be formed by the same method as the second dielectric layer 117 described in the method of forming the first information layer 11.
  • the second information layer 13 is laminated on the separation layer 12, and then the transparent layer 3 is formed on the second information layer 13.
  • the transparent layer 3 can be formed, for example, by applying an ultraviolet curable resin or a slow-acting thermosetting resin on the second information layer 13 and spin-coating it, and then curing the resin.
  • the transparent layer 3 can also be formed using a substrate such as a disk-shaped polycarbonate resin, polymethylmetatalate resin, polyolefin resin, norbornene resin, glass or the like.
  • the transparent layer 3 is coated with an ultraviolet curable resin or a slow-acting thermosetting resin on the second information layer 13, and after the substrate is brought into close contact with the second information layer 13, spin coating is performed. It can be formed by curing the resin.
  • each recording layer of the information recording medium 2 is normally in an amorphous state as it is formed, an initialization process for crystallization by irradiating a laser beam or the like is performed as necessary. That's right.
  • the information recording medium 2 of the present embodiment can be manufactured.
  • the transmittance adjusting layer 131 is formed using a material whose fluctuation in film forming rate due to moisture is small.
  • Substrate annealing treatment (substrate annealing process) can be omitted during film formation.
  • the substrate annealing step is omitted when the transmittance adjusting layer 131 is manufactured will be described with reference to the flowchart shown in FIG. First, the substrate 1 is prepared (step S1), and the layers constituting the first information layer 11 are sequentially formed on the substrate 1 by sputtering (step S2).
  • FIG. 16 shows a flowchart of a conventional information recording medium manufacturing method in which the substrate annealing process is essential. As shown in FIG.
  • the substrate 1 is prepared (step S11), the first information layer 11 is formed by sputtering (step S12), and the separation layer 12 is formed (step S13).
  • the same force as in the example of the present embodiment shown in FIG. 15 and then the substrate annealing process (step S14) are required.
  • the transmittance adjusting layer 131 is formed by sputtering, and then each layer of the second information layer 13 is formed in order, thereby producing the second information layer, as in the example of the present embodiment. (Step S15). Further, the production of the transparent layer 3 (step S16) and the initialization process (step S17) are performed.
  • the above-described information recording medium 2 shown in FIGS. 1 and 2 is an information recording medium having two information layers, but the information recording medium of the present embodiment is a four-layer information recording medium as shown in FIG.
  • the information recording medium 6 having the information layer may be used.
  • a configuration example of the information recording medium 6 provided with four information layers 25) is shown.
  • the first information layer 21 of such an information recording medium 6 can have the same configuration as the first information layer 11 shown in FIGS.
  • the second of such information recording medium 6 At least one information layer (information layer corresponding to the Lth information layer in the information recording medium of the present invention) of the information layer 23, the third information layer 24, and the fourth information layer 25 is shown in FIG. 1 or FIG.
  • the second information layer 13 basically has the same film configuration (configuration including a transmittance adjusting layer).
  • all of the second to fourth information layers 23, 24, 25 may have the same basic configuration as the second information layer 13, or an information layer having a film configuration different from that of the second information layer 13 is included. It may be. That is, the second to fourth information layers 23, 24, and 25 may include an information layer that is not provided with a reflective layer or a transmittance adjustment layer.
  • the laser beam reaching the information layer disposed on the substrate 1 side with respect to the fourth information layer 25 and the reflected light thereof are disposed on the laser beam incident side with respect to the information layer. It is attenuated by passing through the information layer. For this reason, the first information layer 21, the second information layer 23, and the third information layer 24 are required to have high recording sensitivity and high reflectance, and the second information layer 23, the third information layer 24, and the fourth information layer 24 are required.
  • the information layer 25 needs to have a high transmittance.
  • the information recording medium of the present embodiment may more generally be an information recording medium provided with N information layers (here, N is an integer of 3 or more).
  • FIG. 4 shows an information recording medium 7 provided with N information layers (first information layer 31, second information layer 33,..., N ⁇ 1 information layer 38 and Nth information layer 39).
  • the first information layer 31 of such an information recording medium 7 can have the same film configuration as the first information layer 11 shown in FIGS.
  • the information layer corresponding to the information layer has basically the same configuration as the second information layer 13 shown in FIG. 1 or 2 (configuration including the transmittance adjusting layer).
  • the second to Nth information layers 33,..., 38, 39 may all have the same configuration as the second information layer 13, and may be different from the second information layer 13.
  • An information layer of configuration may be included.
  • the second to Nth information layers 33, ..., 38, 39 are provided with a reflection layer and a transmittance adjustment layer, and may include an information layer! /, .
  • the laser beam reaching the information layer disposed on the substrate 1 side with respect to the Nth information layer 39 and the reflected light thereof are disposed on the laser beam incident side with respect to the information layer. It attenuates by passing through the information layer. Therefore, the first information layer 31
  • the second information layer 33, ..., the N-1 information layer 38 needs to have high recording sensitivity and high reflectivity, and the second information layer 33, the third information layer 34, ...
  • the Nth-1 information layer 38 and the Nth information layer 39 are required to have high transmittance.
  • the information recording medium 6 having four information layers shown in FIG. 3 can be manufactured by the same method as the information recording medium 2 having two information layers shown in FIG. 1 and FIG. That is, the first information layer 21, the second information layer 23, the third information layer 24, and the fourth information layer 25 are sequentially stacked on the substrate 1 via the separation layer 22, and further on the fourth information layer 25. By forming the transparent layer 3, the information recording medium 6 can be produced.
  • the information recording medium 7 having N information layers shown in FIG. 4 is produced by the same method as the information recording medium 2 having two information layers shown in FIG. 1 and FIG. it can.
  • a first information layer 31 On the substrate 1, a first information layer 31, a second information layer 33,..., An N ⁇ 1th information layer 38 and an Nth information layer 39 are sequentially stacked via a separation layer 32. Thereafter, the information recording medium 7 can be produced by forming the transparent layer 3 on the Nth information layer 39.
  • each recording layer of the information recording medium 6 and the information recording medium 7 is normally in an amorphous state when it is formed, it is crystallized by irradiating a laser beam as necessary. You can do the initialization process.
  • the information recording medium 6 and the information recording medium 7 can be manufactured.
  • At least one information layer includes a recording layer, a reflective layer, and a transmittance adjustment layer that cause phase change in this order from the laser beam incident side. If so,
  • two of the four information layers are read-only information layers, and two of them are a recording layer that causes phase change, a reflective layer, and transmittance adjustment. It can also be an information layer including a layer. Further, the recording layer may be a recording layer that generates a reversible phase change or a recording layer that generates an irreversible phase change.
  • the sputtering method is used as a method for forming each layer constituting the information layer.
  • the present invention is not limited to this, and vacuum deposition, ion plating, MB It is also possible to use E (Molecular Beam Epitaxy) method or the like.
  • FIG. 5 shows a partial cross-sectional view of the information recording medium in the second embodiment.
  • the information recording medium 8 can record and reproduce information by irradiating the laser beam 4 collected by the objective lens 5. Is an optical information recording medium.
  • the second information layer 13 is laminated on the first substrate 53, and the first information layer 11 is laminated on the second substrate 51.
  • the first information layer 11 and the second information layer 13 are stacked.
  • the first substrate 53 side is the laser beam incident side.
  • the first substrate 53 and the second substrate 51 are disk-shaped. Further, the first substrate 53 is substantially transparent.
  • the material of the first substrate 53 and the second substrate 51 is the same as that of the substrate 1 described in the first embodiment, such as polycarbonate resin, polymethylmetallate resin, polyolefin resin, norbornene resin, Glass or a combination of these can be used.
  • Guide grooves for guiding the laser beam 4 may be formed on the surface of the first substrate 53 on the second information layer 13 side and on the surface of the second substrate 51 on the first information layer 11 side. .
  • the thickness of the first substrate 53 and the second substrate 51 is sufficiently strong, and the thickness of the entire information recording medium 8 is about 1.2 mm. It is preferably within a range of 9 mm.
  • the material of the adhesive layer 52 an ultraviolet curable resin or the like can be used.
  • the thickness of the adhesive layer 52 is preferably in the range of 5 m to 50 m for the same reason as the separation layer 12 of the first embodiment.
  • first information layer 11 and second information layer 13 each have the same film configuration as the two information layers provided in information recording medium 2 described in the first embodiment. . Therefore, description of each layer included in the first information layer 11 and the second information layer 13 is omitted here.
  • the information recording medium 8 can be manufactured by the method described below.
  • the second information layer 13 is formed on the first substrate 53 (having a thickness of 0.6 mm, for example). Specifically, on the first substrate 53, the second dielectric layer 137, the second interface layer 136, the recording layer 135, the first interface layer 134, the first dielectric layer 133, the reflection The layer 132 and the transmittance adjusting layer 131 are sequentially formed by sputtering. Each layer can be formed using the same method as in the first embodiment.
  • the first information layer 11 is formed on the second substrate 51 (having a thickness of 0.6 mm, for example). Specifically, on the second substrate 51, the reflective layer 112, the first dielectric layer 113, the first interface layer 114, the recording layer 115, the second interface layer 116, and the second dielectric layer 117 are formed. Are sequentially formed by sputtering. Each layer can be formed using the same method as in the first embodiment.
  • the first substrate 53 and the second substrate 51 on which the respective information layers are stacked are bonded together using the adhesive layer 52. That is, the first information layer 11 and the second information layer 13 are bonded together.
  • the first information layer 11 laminated on the second substrate 51 is coated with an ultraviolet curable resin or the like, and the second information layer 13 laminated on the first substrate 53. After adhering to the first information layer 11 and spin-coating, the resin is cured.
  • step (I) replaces the steps (i) to (iii) in the step of manufacturing the Lth information layer with the step (iii), If step (ii) and step (i) are included in this order, and L satisfies 2 ⁇ L ⁇ m—1, then step (i) is the step in the step of manufacturing the Lth information layer (
  • the method includes steps i) to (iii) in the order of step (i), step (ii), and step (iii).
  • the second information layer 13 corresponds to the m-th information layer and the first information layer 11 corresponds to the m-l information layer.
  • step (i) is the transmittance adjusting layer forming step in the production method of the present invention
  • step (ii) is This is a reflective layer forming step
  • step (iii) is a recording layer forming step.
  • each recording layer of the information recording medium 8 is normally in an amorphous state as it is formed, an initialization process for crystallization by irradiating a laser beam or the like is performed as necessary. That's right.
  • the information recording medium 8 can be manufactured.
  • the information recording medium 8 shown in FIGS. 5 and 6 described above is an information recording medium having two information layers.
  • the information recording medium of the present embodiment is shown in FIG.
  • Such an information recording medium 9 having four information layers may be used.
  • a configuration example of the information recording medium 9 provided with the information layer 25) is shown.
  • the first information layer 21 of such an information recording medium 9 has the same film configuration as the first information layer 11 shown in FIGS.
  • At least one information layer (corresponding to the Lth information layer in the information recording medium of the present invention) of the second information layer 23, the third information layer 24, and the fourth information layer 25 of the information recording medium 9 as described above.
  • the information layer has basically the same configuration as the second information layer 13 shown in FIG. 5 and FIG. 6 (configuration including the transmittance adjustment layer). All of the second to fourth information layers 23, 24, 25 may have the same configuration as the second information layer 13, or include an information layer having a film configuration different from that of the second information layer 13. May be. That is, the second to fourth information layers 23, 24, and 25 may include an information layer that is not provided with a reflective layer or a transmittance adjustment layer.
  • the laser beam reaching the information layer disposed on the second substrate 51 side with respect to the fourth information layer 25 and the reflected light thereof are on the laser beam incident side with respect to the information layer. It attenuates by passing through the information layer arranged in the. For this reason, the first information layer 21, the second information layer 23, and the third information layer 24 must have high recording sensitivity and high reflectance, and the second information layer 23, the third information layer 24, and the fourth information layer Layer 25 needs to have a high transmittance.
  • the information recording medium of the present embodiment may be an information recording medium provided with N information layers (here, N is an integer of 3 or more).
  • N information layers first information layer 31, second information layer 33,..., N ⁇ 1 information layer 38 and Nth information layer 39
  • a configuration example of the recorded information recording medium 10 is shown.
  • the first information layer 31 of such an information recording medium 10 can have the same configuration as the first information layer 11 shown in FIGS.
  • the information layer corresponding to the L information layer has basically the same configuration as the second information layer 13 shown in FIG.
  • All of the 2nd to Nth information layers 33, ..., 38, 39 may have the same configuration as the second information layer 13, and the information of the film configuration different from that of the second information layer 13 A layer may be included.
  • the second to Nth information layers 33, ..., 38, 39 are provided with a reflection layer and a transmittance adjustment layer, and may include an information layer! /, .
  • the laser beam reaching the information layer disposed on the second substrate 51 side relative to the Nth information layer 39 and the reflected light thereof are more incident on the laser beam incident side than the information layer. It attenuates by passing through the information layer arranged in the. Therefore, the first information layer 31, the second information layer 33, ..., the N-1 information layer 38 needs to have high recording sensitivity and high reflectance, and the second information layer 33, ... The N-1th information layer 38 and the Nth information layer 39 are required to have high transmittance.
  • the information recording medium 9 having four information layers shown in FIG. 7 can be manufactured by the same method as the information recording medium 8 having two information layers shown in FIG. 5 and FIG. That is, first, the fourth information layer 25, the third information layer 24, and the second information layer 23 (m-th information layer) are sequentially formed on the first substrate 53 via the separation layer 12.
  • the separation layer 12 is formed by a method similar to the method described in the first embodiment.
  • the first information layer 21 (the m ⁇ 1th information layer) is formed on the second substrate 51.
  • the first substrate 53 and the second substrate 51 on which the respective information layers are stacked are bonded together using the adhesive layer 52.
  • the first information layer 11 laminated on the second substrate 51 is coated with an ultraviolet curable resin or the like, and the first information layer 11 laminated on the first substrate 53 is used. It is preferable to harden the resin after spin-coating the two information layers 13 in close contact with the first information layer.
  • the information recording medium 10 having N information layers shown in FIG. 8 can also be manufactured by the same method as the information recording medium 9 having four information layers shown in FIG. First, on the first substrate 53, the Nth information layer 39, the N ⁇ 1th information layer 38,..., The second information layer 33 (mth information layer) are sequentially passed through the separation layer 12. Form.
  • the separation layer 12 is formed by the same method as described in the first embodiment.
  • the first information layer 31 (the m ⁇ 1th information layer) is formed on the second substrate 51.
  • the first substrate 53 and the second substrate 51 on which the respective information layers are stacked are bonded together using the adhesive layer 52.
  • the first information layer 31 laminated on the second substrate 51 is coated with an ultraviolet curable resin or the like, and the first information layer 31 laminated on the first substrate 53 is coated. It is advisable to harden the resin after spin-coating the two information layers 33 in close contact with the first information layer.
  • each recording layer of the information recording medium 9 and the information recording medium 10 is normally in an amorphous state as it is formed, it is crystallized by irradiating a laser beam as necessary. You can do the initialization process.
  • the information recording medium 9 and the information recording medium 10 can be manufactured.
  • At least one information layer includes a recording layer, a reflective layer, and a transmittance adjustment layer that cause phase change in this order from the laser beam incident side. If so,
  • the four information layers are read-only information layers, and the other two are a recording layer and a reflective layer capable of causing a phase change. It is also possible to use an information layer including a transmittance adjusting layer. Further, the recording layer may be a recording layer that causes a reversible phase change or a recording layer that causes an irreversible phase change.
  • the sputtering method is used as a method of forming each layer constituting the information layer.
  • the present invention is not limited to this, and vacuum deposition, ion plating, MBE (Molecular It is also possible to use a beam epitaxy method or the like.
  • FIG. 9 shows a partial cross-sectional view of the information recording medium in the third embodiment.
  • Information recording medium of the present embodiment 15 Is an optical information recording medium capable of recording / reproducing information by irradiating the laser beam 4 collected by the objective lens 5 similarly to the information recording medium 2 described in the first embodiment. .
  • the substrate 55 side is the laser beam incident side.
  • FIG. 10 is a partial cross-sectional view showing in detail the film configuration of the first information layer 11 and the second information layer 13 in the information recording medium 15 of the present embodiment.
  • the substrate 55 and the dummy substrate 60 are disk-shaped. Further, the substrate 55 is substantially transparent.
  • the material of the substrate 55 and the dummy substrate 60 is the same as that of the substrate 1 described in the first embodiment, such as polycarbonate resin, polymethyl methacrylate resin, polyolefin resin, norbornene resin, glass, or these. Can be used as appropriate.
  • a guide groove for guiding the laser beam 4 may be formed on the surface of the substrate 55 on the second information layer 13 side.
  • the thickness of the substrate 55 and the dummy substrate 60 is within a range of 0.3 mm to 0.9 mm so that the thickness of the substrate 55 and the dummy substrate 60 is sufficient and the total thickness of the information recording medium 15 is about 1.2 mm. It is preferable that
  • the material of the adhesive layer 52 an ultraviolet curable resin or the like can be used.
  • the thickness of the adhesive layer 52 is preferably in the range of 5 m to 50 m for the same reason as the separation layer 12 of the first embodiment.
  • the first information layer 11 and the second information layer 13 have the same film configuration as the two information layers provided in the information recording medium 2 described in the first embodiment. Therefore, description of each layer included in each information layer is omitted here.
  • the information recording medium 15 can be manufactured by the method described below.
  • the second information layer 13 is formed on the substrate 55 (having a thickness of 0.6 mm, for example). Specifically, on the substrate 55, the second dielectric layer 137, the second interface layer 136, the recording layer 135, the first interface layer 134, the first dielectric layer 133, the reflective layer 132, the transmittance Sputtering adjustment layer 131 sequentially To form a film. At this time, if necessary, an annealing process may be performed before sputtering. Each layer can be formed using the same method as in the first embodiment.
  • the second information layer 13 is laminated on the substrate 55, and then the separation layer 12 is formed in the same manner as in the first embodiment.
  • the first information layer 11 is laminated on the separation layer 12. Specifically, the second dielectric layer 117, the second interface layer 116, the recording layer 115, the first interface layer 114, the first dielectric layer 113, and the reflective layer 112 are sequentially formed on the separation layer 12. A film is formed by sputtering. Each layer can be formed using the same method as in the first embodiment.
  • the substrate 55 on which the first information layer 11 and the second information layer 13 are laminated and the dummy substrate 60 are bonded together using the adhesive layer 52.
  • an ultraviolet curable resin or the like is applied on the first information layer 11 laminated on the substrate 55, and the dummy substrate 60 is adhered to the first information layer 11 and spin-coated. It is good to harden fat.
  • each recording layer of the information recording medium 15 is normally in an amorphous state when it is formed, an initialization process is performed for crystallization by irradiating a laser beam, if necessary. It may be any.
  • the information recording medium 15 of the present embodiment can be manufactured.
  • the information recording medium of the present embodiment may be an information recording medium 16 having four information layers as shown in FIG.
  • two of the four information layers are read-only information layers, and the remaining two are a recording layer that can cause a phase change, a reflective layer, and It can be an information layer including a transmittance adjusting layer.
  • the recording layer may be a recording layer that causes a reversible phase change or a recording layer that causes an irreversible phase change.
  • FIG. 13 shows a description for recording and reproducing information on the information recording medium of the present invention.
  • 1 shows a schematic diagram of an example of a recording / playback apparatus.
  • This recording / reproducing apparatus includes a motor 505 for rotating an information recording medium 506, a laser diode 501, a noise mirror 503, an object lens 504, and a photodetector 507.
  • the laser beam 502 emitted from the laser diode 501 is focused on the information layer of the information recording medium 506 rotated by the motor 505 through the half mirror 503 and the objective lens 504.
  • Information reproduction is performed by causing reflected light from the information recording medium 506 to enter the photodetector 507 and detecting the signal.
  • Information recording medium 506 is a medium having any one of the configurations described in the first to third embodiments.
  • the intensity of the laser beam 502 is modulated between a plurality of power levels.
  • current modulation means for modulating the drive current of the laser diode 501 can be used.
  • a single rectangular pulse with a peak power Pp may be applied to the portion where the recording mark is to be formed. However, particularly when a long mark is to be formed, the mark width is made uniform by eliminating excessive heat.
  • a recording pulse train having a plurality of pulse train forces modulated between peak power Pp and bottom power Pb (where Pp> Pb) may be used.
  • a cooling section with cooling power Pc may be provided after the last pulse.
  • the bias power Pe (where Pp> Pe) is kept constant for the part where no mark is formed.
  • Example 1 a sputtering target with Nb 2 O or TiO force
  • Table 1 shows the NbO or TiO force.
  • the deposition rate when sputtering using a sputtering target with a diameter of 200 mm is divided according to whether or not the substrate annealing process is performed.
  • the film formation rate was measured as follows. First, a polycarbonate substrate having a glass piece attached thereto was prepared, and a substrate annealing process was performed as necessary. Next, this polycarbonate substrate was placed in a sputtering apparatus, and a sputtered film was formed by DC sputtering on the side of the polycarbonate substrate on which the glass piece was attached.
  • the DC sputtering conditions were an atmosphere of 0.5 Pa mixed gas of Ar and oxygen (oxygen concentration was 3%), and the input power was 2.5 kW.
  • the glass piece is removed from the polycarbonate substrate, and the sputtered film of the glass piece is scraped with a knife to create a step corresponding to the film thickness of the sputtered film, and this step is measured using a step gauge.
  • the film formation rate was calculated by calculating the relationship between the film thickness of the sputtering film and the film formation time.
  • the polycarbonate substrate was stored in an oven at 80 ° C for 10 hours to remove moisture adsorbed on the polycarbonate substrate, and then subjected to sputtering.
  • sputtering was performed after placing the polycarbonate substrate in the laboratory at room temperature in the atmosphere for 10 hours.
  • the sputtering target with Nb O force has a high film formation rate and the annealing process.
  • the target has a lower deposition rate than NbO, and when the annealing process is performed
  • the deposition rate was 2 nmZsec and the annealing process was not performed, the deposition rate was InmZsec, and the deposition rate varied greatly depending on the presence or absence of the annealing process (Samples 1-3, 1-4). Therefore, sputtering target with TiO power is unstable and unstable.
  • film formation rate stability in this example is “ ⁇ ” if the film formation rate does not change depending on the presence or absence of annealing on the polycarbonate substrate. X ”.
  • Example 2 the information recording medium having the same configuration as the information recording medium 2 shown in FIG. 2 was examined for corrosion under conditions of high temperature and high humidity.
  • the information recording medium used in this example was manufactured as follows. First, a polycarbonate substrate (diameter 120 mm, thickness 1.1 mm) on which a guide groove for guiding a laser beam was formed was prepared as the substrate 1. Then, an Ag—Pd—Cu layer (thickness: 80 nm) was formed as a reflective layer 112 on the polycarbonate substrate by DC sputtering at an input power of 0.2 kW in an atmosphere of Ar gas of 0.5 Pa. However, a substrate annealing process for 10 hours was performed before the formation of the reflective layer 112.
  • a ZrO—SiO—InO layer (thickness: 21 nm) was added as Ar.
  • Films were formed by RF sputtering in an atmosphere of gas of 0.5 Pa and input power of 2 kW. Subsequently, as the recording layer 115, a Ge Sn Bi Te layer (thickness: l lnm) was deposited in an Ar gas 0.5 Pa atmosphere.
  • the film was formed by DC sputtering with an input power of 0.2 kW.
  • a Ge—Sn—Bi—Te sputtering target having a diameter of 200 mm, which was adjusted so as to have a target composition in the film formation state in consideration of the difference in sputtering rate of each atom (hereinafter, referred to as the sputtering target) The same applies to all examples.)
  • the second interface layer 116 ZrO 2 --SiO 2-
  • the film was formed by the etching method. Subsequently, as the second dielectric layer 117, a ZnS—SiO layer (thickness: 48 nm) was formed by RF sputtering at an input power of 5 kW in an Ar gas 0.5 Pa atmosphere, and the first information layer 11 was formed. Formed.
  • an ultraviolet curable resin was applied on the first information layer 11, spin-coated, and then the resin was cured by irradiating with ultraviolet rays, whereby the separation layer 12 (thickness 25 ⁇ m) Formed.
  • a transmittance adjusting layer 131 (thickness: 22 nm) is DC-sputtered with an Ar and oxygen mixed gas of 0.5 Pa (oxygen concentration is 3%) at an input power of 2 kW.
  • the film was formed by the method.
  • the transmittance adjustment layer 131 is NbO, TiO or a mixture of NbO and TiO.
  • an Ag—Pd—Cu layer (thickness: 10 nm) was formed as the reflective layer 132 by DC sputtering in an Ar gas 0.5 Pa atmosphere with an input power of 0.2 kW.
  • a ZrO—SiO—InO layer (thickness: 12 nm) is deposited as the first dielectric layer 133 in an Ar gas 0.5 Pa atmosphere.
  • the film was formed by RF sputtering with an input power of 2kW.
  • the recording layer 135 Ge Sn
  • the film was formed by the etching method.
  • the difference in sputtering rate of each atom is taken into consideration, and the Ge—Sn— with a diameter of 200 mm adjusted so as to have a target composition in the film formation state.
  • a Bi—Te sputtering target was used.
  • a ZrO—SiO—CrO layer (thickness: 5 nm) was used as Ar gas 0.5 Pa.
  • the film was formed by RF sputtering with an input power of 2 kW.
  • a ZnS-SiO layer (thickness: 37 nm) was used in an Ar gas 0.5 Pa atmosphere, and the input power was 5 k.
  • a second information layer 13 was formed by W using RF sputtering.
  • the transparent resin 3 (thickness 75 ⁇ m) was obtained by irradiating UV rays to cure the resin. ) was formed.
  • Example 3 as in Example 2, the corrosion of the information recording medium having the same configuration as that of the information recording medium 2 shown in FIG.
  • the method of manufacturing the information recording medium is the same as that in Example 2.
  • the transmittance adjusting layer 131 is made of Nb 2 O,
  • a film was formed using a sputtering target having a diameter of 200 mm.
  • Example 4 the film formation efficiency and stability of the material used when forming the transmittance adjusting layer in the information recording medium of the present invention by sputtering were examined. It was.
  • Example 4 examined Nb O and element M oxides (Ti, Zr, Hf, Y, Cr, ⁇ , Ga
  • the method for measuring the deposition rate is the same as in Example 1.
  • Table 4 shows the film formation rates when the above sputtering targets were sputtered onto the transmittance adjusting layer.
  • the element M is at least one element selected from Ti, Zr, Hf, Y, Cr, ⁇ , Ga, Bi, In, and Ta.
  • the element M is at least one element selected from Ti, Zr, Hf, Zn, Ga, Bi, In and Ta, and more preferably the element M is Zn, Ga, Bi, It was confirmed that it is at least one element selected from In and Ta, and more preferably at least one element selected from the elements M force Bi and In force.
  • Example 5 the film formation efficiency and stability of the material used when forming the transmittance adjusting layer in the information recording medium of the present invention by sputtering were examined.
  • Nb 2 O, Ta 2 O, or a mixture of Nb 2 O and Ta 2 O was investigated and the composition was (
  • the film formation rate of a sputtering target having a diameter of 200 mm expressed as 0, 100).
  • the method for measuring the deposition rate is the same as in Example 1.
  • Table 5-A shows the deposition rate when the above sputtering target was sputtered onto the transmittance adjusting layer.
  • Target composition target composition
  • Nb is 8.6 atomic% or more (30 mol% or more as Nb oxide (Nb 2 O 3))
  • the inclusion of the inclusion increased the film formation rate and sufficiently suppressed fluctuations in the film formation rate due to the presence / absence of the polycarbonate substrate mark (stable film formation rate).
  • the determination of the film formation rate stability is done with the polycarbonate substrate If the deposition rate does not change depending on whether or not there is a film, “ ⁇ ”, and if the deposition rate ratio exceeds 0.5,
  • Example 6 the transmittance adjusting layer in the information recording medium of the present invention is formed by sputtering. Thus, the film formation efficiency and stability of each of the materials used for film formation were examined.
  • Nb O and TiO were mixed with force, or Nb O, TiO and TiO.
  • Table 6 shows the film formation rate and film formation rate stability when the above sputtering targets were sputtered.
  • the evaluation of film formation rate stability is the same as in Example 5.
  • Example 7 a sample in which only the second information layer 13 and the transparent layer 3 were formed on the substrate 1 without the first information layer 11 and the separation layer 12 of the information recording medium 2 shown in FIG. 2 was manufactured.
  • Samples were produced as follows. First, a polycarbonate substrate 1 (diameter 120 mm, thickness 1.1 mm) on which guide grooves for guiding a laser beam were formed was prepared as the substrate 1.
  • the transmittance adjusting layer 131 was formed on the polycarbonate substrate by a DC sputtering method in an atmosphere of mixed gas of Ar and oxygen of 0.5 Pa (oxygen concentration: 3%) with an input power of 2 kW. .
  • a substrate annealing process for 10 hours was performed before the film formation of the transmittance adjusting layer 131.
  • the composition of the manufactured transmittance adjusting layer is as shown in Table 7.
  • an Ag—Pd—Cu layer (thickness: lOnm) was formed as the reflective layer 132 by DC sputtering in an Ar gas 0.5 Pa atmosphere at an input power of 0.2 kW.
  • a ZrO 2 —SiO 2 —In 2 O layer (thickness: 12 nm) is applied in an Ar gas 0.5 Pa atmosphere.
  • the film was formed by RF sputtering at 2kW.
  • a film was formed by RF sputtering in an atmosphere of gas of 0.5 Pa and an input power of 0.2 kW.
  • a ZnS—SiO layer (thickness: 37 nm) is used in an Ar gas 0.5 Pa atmosphere.
  • the film was formed by RF sputtering with an input power of 2kW. In this way, the second information layer 13 was formed.
  • an ultraviolet curable resin is applied onto the second information layer 13, spin-coated, and then the resin is cured by irradiating with ultraviolet rays, whereby the transparent layer 3 (thickness 100 m) Formed.
  • the transparent layer 3 side force laser beam was irradiated to these samples, and a part of the recording layer was initialized.
  • the transmittance Ta when the recording layer 135 was an amorphous phase, and the transmittance Tc when the recording layer was a crystalline phase were measured.
  • a spectroscope was used to measure the transmittance, and the transmittance at a wavelength of 405 nm was examined.
  • Table 7 shows the refractive index n, extinction coefficient k, and transmittance t t of the second information layer 13 of the transmittance adjustment layer 131.
  • the thickness of the transmittance adjusting layer 131 is 22 nm, and the materials are Nb 2 O, Ta 2 O, TiO, (Nb 2 O 3) (Ta 2 O 3) (mol%), ( Nb O) (Ti
  • the refractive index and extinction coefficient were measured using an ellipsometer.
  • the second information layer 13 has a transmittance Ta and a transmittance Tc of 45% or more. The bigger it is, the higher it is.
  • Table 7 shows that the refractive index n of the transmittance adjusting layer 131 is preferably 2.4 or more in the case of the sample manufactured in this example. Transmittance judgment is t
  • the film thickness is 2 nm and 5 nm.
  • Example 8 the corrosion of the information recording medium 6 shown in FIG. 3 under conditions of high temperature and high humidity was examined.
  • the information recording medium 6 has four information layers.
  • the information recording medium 6 in this example was manufactured as follows. First, the first information layer 21 and the separation layer 12 (thickness: 10 / zm) were formed on the substrate 1 in the same manner as in Example 2. Further, the second information layer 23 was formed on the separation layer 12. Note that the second information layer 23 produced in this example has the same film configuration as the second information layer 13 of the information recording medium 2 shown in FIG. The method for forming the second information layer 23 will be described below in the same manner as the reference numerals of the layers constituting the information layer 13.
  • a transmittance adjusting layer 131 (thickness: 22 nm) was formed by sputtering.
  • the material of the transmittance adjusting layer 131 is Nb 2 O, TiO or a mixture of Nb 2 O and TiO,
  • the reflective layer 132 is an Ag—Pd—Cu layer (thickness: 8 nm)
  • the first dielectric layer 133 is a ZrO—SiO—InO layer (thickness: 10 nm)
  • the recording layer 135 is Ge Sn Bi Te layer (thickness:
  • a ZnS—SiO layer (thickness: 33 nm) is sequentially deposited as the layer 137 by sputtering, and the second
  • An information layer 23 was formed. Thereafter, the separation layer 12 (thickness: 15 / zm) is formed on the second information layer 23, and the third information layer 24, the separation layer 12 (thickness: 20 m), and the fourth information are formed on the separation layer 12.
  • Layer 25 was formed.
  • the third information layer 24 and the fourth information layer 25 thus fabricated are composed of a transmittance adjusting layer and a reflective layer. This is a force that increases the transmittance by reducing the thickness of the recording layer to 4 nm.
  • the rest of the film configuration is the same as that of the second information layer 23.
  • UV curable resin was applied on the fourth information layer 25, spin coated, and then cured by irradiation with UV to form transparent layer 3 (thickness 55 ⁇ m). .
  • Each sample was irradiated with a laser beam from the transparent layer 3 side to initialize the entire surface of the recording layer.
  • Example 9 the information recording medium 7 shown in FIG. 4 was examined for corrosion under high temperature and high humidity conditions.
  • the sample of this example was manufactured as follows. First, the first information layer 31 and the separation layer 12 (thickness: 10 / zm) were formed on the substrate 1 in the same manner as in Example 2. Further, the second information layer 33 was formed on the separation layer 12. Since the second information layer 33 produced in this example has the same film configuration as the second information layer 13 of the information recording medium 2 shown in FIG. 2, the code of each layer is designated as the second information layer of the information recording medium 2. The method for forming the second information layer 33 in the present embodiment will be described below by using the same reference numerals as those of the layers constituting the layer 13.
  • a transmittance adjusting layer 131 (thickness: 22 nm) was formed by sputtering.
  • the material of the transmittance adjusting layer 131 is Nb 2 O, TiO or a mixture of Nb 2 O and TiO.
  • the film was formed using a sputtering target having a diameter of 200 mm represented as 0, 90, 100). However, a substrate annealing process for 10 hours was performed before the film formation of the transmittance adjusting layer 131.
  • an Ag-Pd-Cu layer (thickness: 7 nm) is formed as the reflective layer 132, and the first dielectric layer 133 is formed.
  • ZrO—SiO—In O layer (thickness: lOnm)
  • Ge Sn Bi Te layer (thickness:
  • a ZnS-SiO layer (thickness: 30 nm) was sequentially deposited as the layer 137 by sputtering, and the second information
  • the separation layer 12 (thickness: 12 / zm) is formed on the second information layer 33, the third information layer, the separation layer 12 (thickness: 14 m), the fourth information layer, A separation layer 12 (thickness: 16 m), a fifth information layer, a separation layer 12 (thickness: 18 m), and a sixth information layer were formed.
  • the third information layer, the fourth information layer, the fifth information layer, and the sixth information layer do not have the transmittance adjusting layer and the reflecting layer, and further, the third information layer is provided to increase the transmittance.
  • the recording layer thickness of the 4th information layer and the recording layer thickness of the 5th information layer 38 and the 6th information layer 39 are reduced to 2 nm.
  • UV curable resin was applied on the sixth information layer 39, spin-coated, and then the resin was cured by irradiating with UV to form a transparent layer 3 (thickness 30 m). .
  • the manufactured sample was placed in a furnace at a temperature of 90 ° C and humidity of 80% for 200 hours, and then the surface of the information recording medium was magnified 200 times using an optical microscope to observe corrosion. did.
  • the result is the same as that obtained in Example 2, and the transmittance adjustment layer 131 is formed only from NbO.
  • Example 10 an information recording medium having the same configuration as that of the information recording medium 2 shown in FIG. 2 was manufactured, and the annealing time to be performed before forming the transmittance adjusting layer 131 of the second information layer 13, The relationship with the transmission performance of the second information layer 13 was examined. Specifically, an information recording medium in which the composition of the transmittance adjusting layer 131 is TiO, and an information recording medium in which (Nb 2 O 3) (Bi 2 O 3) (mol%)
  • the annealing process was performed before the film formation of the transmittance adjusting layer 131, and the annealing process was not performed. It was confirmed.
  • the annealing process time was 2 hours, 5 hours, 10 hours and 24 hours.
  • the method of manufacturing the information recording medium in the present embodiment is the same as that in the second embodiment.
  • the film formation rate during sputtering of the transmittance adjustment layer 131 of the second information layer 13 is the rate obtained when the annealing process is performed for 10 hours! /
  • the wavelength of the laser beam 502 was 405 nm
  • the numerical aperture of the objective lens 504 was 0.85
  • the linear velocity of the information recording medium 506 at the time of measurement was 4.9 mZs
  • the shortest mark length (2T) was 0.149 ⁇ m.
  • the reflectance was examined by focusing the laser beam 502 on the first information layer 11 with the objective lens 504, and making the reflected light from the first information layer 11 incident on the photodetector 507 and measuring the signal intensity. Note that the reflectance was examined when the recording layer 115 was in a crystalline phase.
  • the recording sensitivity is a random range up to a mark length of 0.149 m (2T) and a force of 0.596 m (8T) by modulating the laser beam power between 0 and Pp (mW).
  • Pp, Pe, Pc, and Pb were determined so that the average jitter (average value of front end jitter and rear end jitter) was minimized, and the optimum Pp at this time was used as the recording sensitivity.
  • Table 9 shows the recording sensitivity (Pp) and reflectance Rc of the first information layer 11 and the reflectance Rc and transmittance Tc of the second information layer 13 for the manufactured information recording medium.
  • the second information layer 13 and the second information layer 13 are formed on the substrate 1 as in Example 7. A sample in which only the protective layer 3 was formed was manufactured, and the transmittance was examined.
  • the reflectance and transmittance are all values when the recording layer is in a crystalline phase.
  • the measurement was performed on a circle with a radius of 40 mm from the center of the information recording medium 2.
  • the performance stability is judged as “Yes” if the performance of the information recording medium does not change due to the presence or absence of the substrate annealing process.
  • the transmittance adjustment layer 131 is (Nb 2 O 3) (TiO 2) (mol%), recording sensitivity (Pp), reflection
  • the performance becomes stable (Samples 9, 6, 9-7).
  • the substrate annealing process time is less than 10 hours, the substrate charac- teristics are required for all of recording sensitivity (Pp), reflectance Rc and transmittance Tc. Changes due to the presence or absence of the process were observed, and the performance was stable (Samples 9 7 to 9 10).
  • the information recording medium and the method for producing the same of the present invention are useful for efficiently obtaining a multilayer information recording medium having good recording and reproducing characteristics because the transmittance adjusting layer can be stably and efficiently formed. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Manufacturing Optical Record Carriers (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)

Abstract

 本発明の情報記録媒体は、基板(1)上にN個の情報層(Nは2以上の整数)が設けられている。各情報層(11,12)にレーザビーム(4)が照射されることによって、情報の記録および再生が行われる。前記N個の情報層を、レーザビーム入射側と反対側から順に第1情報層~第N情報層とした場合、N個の情報層に含まれる第L情報層(Lは、2≦L≦Nを満たす整数)が、少なくとも、レーザビームの照射によって相変化を起こしうる記録層(135)と、反射層(132)と、透過率調整層(131)とを、レーザビーム入射側からこの順で含んでいる。透過率調整層(131)は、Ti、Zr、Hf、Y、Cr、Zn、Ga、Co、Bi、In、TaおよびCeから選ばれる少なくとも1つの元素Mと、Nbと、酸素(O)とを含んでいる。透過率調整層(131)におけるNbの含有割合は、2.9原子%以上である。

Description

明 細 書
情報記録媒体およびその製造方法
技術分野
[0001] 本発明は、レーザビームの照射によって情報の記録および再生を行う情報記録媒 体とその製造方法に関するものである。
背景技術
[0002] 基板上に成膜したカルコゲン材料等の薄膜にレーザビームを照射し局所的な加熱 を行うとき、照射条件の違いにより光学定数の異なる状態間で相変化させることが可 能であり、この現象を利用した情報記録媒体が広く研究開発 ·商品化されている。
[0003] 相変化を利用した情報記録媒体の中でも、光記録媒体は、レーザビームの出力を 少なくとも 2種類のパワーレベル間で変調することによって信号を記録することができ る。パワーレベルを適当に選べば、すでに記録されている信号を消去しつつ、同時 に新 、信号を記録できる。
[0004] 発明者は、光記録媒体を大容量ィ匕するための技術として、 2つの情報層を有する 光記録媒体を発表した。光記録媒体の片面側から当該光記録媒体に入射するレー ザビームによって、 2つの情報層に対する情報の記録および再生を行うことができる。 このような構成によって、光記録媒体の記録容量をほぼ 2倍にすることが可能となる。
[0005] 片面側力 入射するレーザビームによって 2つの情報層に対して情報を記録およ び再生をする情報記録媒体において、レーザビーム入射側(以下、単に入射側と記 載することがある。)から遠くに配置された情報層(以下、第 1情報層)に対する情報の 記録および再生は入射側の情報層(以下、第 2情報層)を透過したレーザビームによ つて行われる。従って、第 2情報層はできるだけ高い透過率をもつことが好ましい。
[0006] 発明者は、透過率を高くする手段として、レーザビーム入射側から記録層と反射層 とをこの順序で備えた情報層にお 、て、反射層に対してレーザビーム入射側と反対 側に高い屈折率をもつ透過率調整層を配置することを検討してきた。
[0007] 近年発表した青色レーザを用いた 2層書換型光記録媒体では、上記の透過率調 整層に TiOを使用することで第 2情報層の透過率を 46%より大きくし、第 1情報層の 効率的な記録'再生を可能とした(国際公開第 03Z025922号パンフレット参照)。
[0008] TiOは屈折率が 2. 7程度と大きぐ青色レーザに対する吸収が小さぐ Agを含む
2
反射層と直付けしても耐湿度性がよい等の性質があり、透過率調整層として優れた 材料である。
[0009] また、記録層を直接被覆する保護層につ ヽて、 TiOを主成分として Nb Oをわず
2 2 5 かに(例えば 2. 5重量%〜11重量%( 4mol%以下、または Nbが 2. 5原子%以下 )の範囲で)添加することで屈折率が高くなることが報告されて 、る(例えば特開 200 3— 013201号公報および特開 2006— 45666号公報参照)。
[0010] し力しながら、 TiOは、スパッタ時の成膜レートが低ぐまた、水分による成膜レート
2
変動が大きいため、情報記録媒体の製造時間が長くなる、および、 TiO
2の膜厚を一 定に保つことが難 、と 、う課題を有して 、た。
発明の開示
[0011] 本発明は、上記問題点を解決するものであり、従来と同程度の高い屈折率と、安定 した高い成膜レートとを併せ持つ優れた透過率調整層を備えた情報記録媒体を提 供することを目的とする。本発明は、さらに、その情報記録媒体の製造方法を提供す ることち目的とする。
[0012] 本発明の情報記録媒体は、基板上に N個の情報層(Nは 2以上の整数)が設けら れており、レーザビームが照射されることによって前記各情報層に対して情報の記録 および再生が行われる情報記録媒体であって、前記 N個の情報層を、レーザビーム 入射側と反対側から順に第 1情報層〜第 N情報層とした場合、前記 N個の情報層に 含まれる第 L情報層(Lは、 2≤L≤Nを満たす整数)は、少なくとも、レーザビームの 照射によって相変化を起こしうる記録層と、反射層と、透過率調整層とを、レーザビー ム入射側力もこの順で含んでおり、前記透過率調整層が、 Ti、 Zr、 Hf、 Y、 Cr、 Ζη、 Ga、 Co、 Bi、 In、 Taおよび Ceから選ばれる少なくとも 1つの元素 Mと、 Nbと、酸素( O)とを含み、かつ、前記透過率調整層における Nbの含有割合が 2. 9原子%以上 である。なお、特に限定しない限り、本明細書において元素「M」とは、 Ti、 Zr、 Hf、 Y、 Cr、 Ζη、 Ga、 Co、 Bi、 In、 Taおよび Ceから選ばれる少なくとも 1つの元素を表す [0013] 本発明の情報記録媒体の製造方法は、上記の本発明の情報記録媒体を製造する 方法であって、前記第 L情報層を製造する工程を含み、当該工程が、
(i) Ti、 Zr、 Hf、 Y、 Cr、 Ζη、 Ga、 Co、 Bi、 In、 Taおよび Ceから選ばれる少なくとも 1 つの元素 Mと、 Nbと、酸素(O)とを含み、かつ、 Nbの含有割合が 2. 9原子%以上で ある第 1のスパッタリングターゲットを用いて、透過率調整層を成膜する透過率調整 層成膜工程と、
(ii)反射層を成膜する反射層成膜工程と、
(iii)レーザビームの照射によって相変化を起こしうる記録層を成膜する記録層成膜 工程と、を含んでおり、前記工程 (i)〜 (iii) 1S 工程 (i)、工程 (ii)、工程 (iii)の順また は工程 (iii)、工程 (ii)、工程 (i)の順で行われる。
[0014] 本発明の情報記録媒体およびその製造方法によれば、従来と同程度の高い屈折 率を有する透過率調整層を安定的に効率よく成膜できるため、第 L情報層(Lは、 2 ≤L≤Nを満たす整数)の透過率が高ぐ記録再生特性が良好な多層情報記録媒体 が効率よく得られる。
図面の簡単な説明
[0015] [図 1]図 1は、本発明の情報記録媒体の一構成例を示す断面図である。
[図 2]図 2は、本発明の情報記録媒体の別の構成例を示す断面図である。
[図 3]図 3は、本発明の情報記録媒体のさらに別の構成例を示す断面図である。
[図 4]図 4は、本発明の情報記録媒体のさらに別の構成例を示す断面図である。
[図 5]図 5は、本発明の情報記録媒体のさらに別の構成例を示す断面図である。
[図 6]図 6は、本発明の情報記録媒体のさらに別の構成例を示す断面図である。
[図 7]図 7は、本発明の情報記録媒体のさらに別の構成例を示す断面図である。
[図 8]図 8は、本発明の情報記録媒体のさらに別の構成例を示す断面図である。
[図 9]図 9は、本発明の情報記録媒体のさらに別の構成例を示す断面図である。
[図 10]図 10は、本発明の情報記録媒体のさらに別の構成例を示す断面図である。
[図 11]図 11は、本発明の情報記録媒体のさらに別の構成例を示す断面図である。
[図 12]図 12は、本発明の情報記録媒体のさらに別の構成例を示す断面図である。
[図 13]図 13は、本発明の情報記録媒体に対する情報の記録再生に使用可能な記 録再生装置の一例を示す概略図である。
[図 14]図 14は、本発明の情報記録媒体に対する情報の記録再生に用いる記録パル ス波形の一例を示す概略図である。
[図 15]図 15は、本発明の情報記録媒体の製造方法の一例であって、透過率調整層 作製時に基板ァニール工程を省略する例を示すフローチャートである。
[図 16]図 16は、基板ァニール工程を含む従来の情報記録媒体の製造方法の一例を 示すフローチャートである。 発明を実施するための最良の形態
[0016] 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、以下の 実施の形態は一例であり、本発明は以下の実施の形態に限定されない。また、以下 の実施の形態では、同一の部分については同一の符号を付して重複する説明を省 略する場合がある。
[0017] (実施の形態 1)
実施の形態 1では、本発明の情報記録媒体の一例を説明する。実施の形態 1にお ける情報記録媒体の部分断面図を図 1に示す。本実施の形態の情報記録媒体 2は、 対物レンズ 5によって集光されたレーザビーム 4が照射されることにより情報の記録再 生が可能な光学的情報記録媒体である。
[0018] 情報記録媒体 2には、基板 1上に第 1情報層 11、分離層 12、第 2情報層 13、透明 層 3がこの順に設けられている。すなわち、本実施の形態の情報記録媒体 2は、本発 明の情報記録媒体にぉ 、て N = 2および L = 2の場合の例であり、第 2情報層 13が 第 N情報層および第 L情報層に相当する。また、本実施の形態の情報記録媒体 2で は、透明層 3側がレーザビーム入射側となる。
[0019] 図 2は、本実施の形態の情報記録媒体 2について、第 1情報層 11および第 2情報 層 13の膜構成を詳細に示した部分断面図である。図 2に示すように、第 1情報層 11 には、基板 1に近い側(レーザビーム入射側と反対側)から反射層 112、第 1の誘電 体層 113、第 1の界面層 114、記録層 115、第 2の界面層 116および第 2の誘電体層 117がこの順に設けられており、分離層 12をはさんで配置される第 2情報層 13には 、透過率調整層 131、反射層 132、第 1の誘電体層 133、第 1の界面層 134、記録層 135、第 2の界面層 136および第 2の誘電体層 137がこの順に設けられている。すな わち、第 2情報層 13には、レーザビーム入射側から、記録層 135、反射層 132およ び透過率調整層 131がこの順に含まれて 、る。
[0020] この情報記録媒体 2に対して、透明層 3側力 レーザビーム 4を対物レンズ 5で集光 し、第 1情報層 11の記録層 115または第 2情報層 13の記録層 135にレーザビームを 照射することによって、情報の記録再生が行われる。このとき、第 1情報層 11に到達 するレーザビームおよびその反射光は、第 2情報層 13を通過することにより減衰して しまう。そのため、第 1情報層 11は高い記録感度と高い反射率とを持つことが必要で あり、第 2情報層 13は高い透過率を持つことが必要である。
[0021] 本実施の形態では、基板 1は円盤状の形状をしており、第 1情報層 11をはじめ全て の層を保持するために設けられている。基板 1の第 1情報層 11側の面には、レーザ ビーム 4を導くための案内溝が形成されていてもよい。基板 1の第 1情報層 11側の面 およびその反対側の面は、平滑であることが好ましい。基板 1の材料は、ポリカーボネ ート榭脂、ポリメチルメタタリレート榭脂、ポリオレフイン榭脂、ノルボルネン系榭脂、ガ ラス、ある 、はこれらを適宜組み合わせたもの等を用いることができる。
[0022] 次に、第 1情報層 11を構成する各層について説明する。
[0023] 記録層 115は、レーザビーム 4の照射によって結晶相と非晶質相との間で相変化を 起こしうる層である。このような記録層 115に用いられる材料として、例えば、 Ge-Sb Te、 Ge Bi Te、 Ge Sn Te、 Ge Sb— Sn Teおよび Ge Bi— Sn Te 力も選ばれる少なくともいずれか 1つの材料を含んだものを用いることができる。記録 層 115は、非晶質相がレーザビーム照射時に容易に結晶相に変化できることと、レ 一ザビーム非照射時には結晶相に変化しな 、ことが好まし 、。記録層 115の膜厚は 、薄すぎると十分な反射率および反射率変化が得られなくなり、また、厚すぎると熱 容量が大きくなるため記録感度が低下する。そのため、記録層 115の膜厚は 5ηπ!〜 15nmの範囲内であることが好まし!/、。
[0024] 反射層 112は、記録層 115に吸収される光量を増やすという光学的な機能と、記録 層 115で生じた熱を拡散させると 、う熱的な機能とを持つ。反射層 112の材料には、 Ag、 Au、 Cuおよび A1力も選ばれる少なくとも 1つの元素を含んだものを用いることが できる。例えば、 Ag— Cu、 Ag— Ga— Cu、 Ag— Pd— Cu、 Ag— Nd— Au、 AlNiゝ AlCr、 Au— Cr、 Ag— In等の合金を用いることができる。特に Ag合金は熱伝導率が 大きいため、反射層 112の材料として好ましい。反射層 112の膜厚が厚いほど熱拡 散機能を高くできるが、あまり厚くしてしまうと熱拡散機能が高すぎて記録層 115の記 録感度が低下する。そのため、反射層 112の膜厚は、 30nm〜200nmの範囲内で あることが好ましい。
[0025] 第 1の誘電体層 113は、記録層 115と反射層 112との間にあり、記録層 115から反 射層 112への熱拡散を調節する熱的な機能と、反射率や吸収率等を調節する光学 的な機能とを持つ。第 1の誘電体層の材料としては、例えば、 ZrO、 HfO、 ZnO、 Si
2 2
O、 SnO、 Cr O、 TiO、 In O、 Ga O、 Y O、 CeOおよび DyO等の酸化物、 Zn
2 2 2 3 2 2 3 2 3 2 3 2 2
Sおよび CdS等の硫ィ匕物の単体、あるいはこれらの混合物を使用できる。混合物とし ては、例えば ZrO— SiO、 ZrO— SiO— Cr O、 ZrO— SiO— Ga O、 HfO— S
2 2 2 2 2 3 2 2 2 3 2 iO— Cr O、 ZrO— SiO— In O、 ZnS— SiOを用いることができる。第 1の誘電体
2 2 3 2 2 2 3 2
層 113の膜厚が厚すぎると、反射層 112の冷却効果が弱くなり、記録層 115からの熱 拡散が小さくなつてしまうため、記録材料が非晶質ィ匕しに《なってしまう。また、第 1 の誘電体層の膜厚が薄すぎると、反射層 112の冷却効果が強くなり、記録層 115か らの熱拡散が大きくなつて記録感度が低下してしまう。第 1の誘電体層 113の膜厚は 、 5nm〜40nmの範囲内であることが好ましい。
[0026] 第 1の界面層 114は、繰り返し記録によって第 1の誘電体層 113と記録層 115との 間で生じる物質移動を防止する働きを持つ。第 1の界面層 114は、記録の際に溶け な 、程度の高融点を持ち、記録層 115との密着性がょ 、材料であることが好ま 、。 第 1の界面層 114の材料としては、例えば、 ZrO、 HfO、 ZnO、 SiO、 SnO、 Cr O
2 2 2 2 2
、 TiO、 In O、 Ga O、 Y O、 CeOおよび DyO等の酸化物の単体、あるいはこれ
3 2 2 3 2 3 2 3 2 2
らの混合物、例えば ZrO -SiO、 ZrO—SiO— Cr O、 ZrO—SiO— Ga O、 Hf
2 2 2 2 2 3 2 2 2 3
O -SiO— Cr O、 ZrO—SiO—In Oを用いることができる。また、 C等を用いるこ
2 2 2 3 2 2 2 3
ともできる。第 1の界面層 114の膜厚が薄すぎると界面層としての効果を発揮できなく なり、厚すぎると第 1の誘電体層 113の働きをさえぎってしまう。第 1の界面層 114の 膜厚は、 0. 3nm〜15nmの範囲内であることが好ましい。 [0027] 第 2の誘電体層 117は、記録層 115に対してレーザビーム入射側に配置されており 、記録層 115の腐食、変形等を防止する機能と、反射率や吸収率等を調整する光学 的な機能とを持つ。第 2の誘電体層 117の材料としては、第 1の誘電体層 113と同様 のものを用いることができる。第 2の誘電体層 117の膜厚は、記録層 115が結晶相で ある場合と非晶質相である場合との間の反射率の変化が大きくなるように決定すれば よい。第 2の誘電体層 117の膜厚は、 20nm〜80nmの範囲内であることが好ましい
[0028] 第 2の界面層 116は、第 1の界面層 114と同様に、繰り返し記録によって第 2の誘電 体層 117と記録層 115との間で生じる物質移動を防止する働きを持つ。従って、第 1 の界面層 114と同様の性能を持つ材料であることが好ま 、。第 2の界面層 116の膜 厚は 0. 3nm〜 15nmの範囲内であることが好まし!/、。
[0029] 上記、反射層 112、第 1の誘電体層 113、第 1の界面層 114、記録層 115、第 2の 界面層 116および第 2の誘電体層 117によって、第 1情報層 11が形成されて!、る。
[0030] 分離層 12は、第 1情報層 11と第 2情報層 13のフォーカス位置を区別するために設 けられる層である。分離層 12の厚さは、対物レンズ 5の開口数 NAとレーザビーム 4の 波長えとによって決定される焦点深度以上であることが望ましい。一方、分離層 12に より分離されたすベての情報層(本実施の形態では第 1情報層 11および第 2情報層 13)が対物レンズ 5により集光可能な範囲に収まる必要があり、そのためには分離層 12力薄!ヽほう力よ!ヽ。仮に、 λ =405nm、 NA=0. 85とした場合には、分離層 12 の厚さは 5 μ m〜50 μ mの範囲内であることが好ましい。
[0031] 分離層 12は、レーザビーム 4に対して光吸収が小さいことが好ましい。分離層 12の 第 2情報層 13側の面には、レーザビーム 4を導くための案内溝が形成されていてもよ い。分離層 12の材料は、ポリカーボネート榭脂、ポリメチルメタタリレート榭脂、ポリオ レフイン榭脂、ノルボルネン系榭脂、紫外線硬化性榭脂、遅効性熱硬化性榭脂、ガラ ス、あるいはこれらを適宜組み合わせたもの等を用いることができる。
[0032] 次に、第 2情報層 13を構成する各層について説明する。
[0033] 前述したように、第 2情報層 13には第 1情報層 11に近 、側から透過率調整層 131 、反射層 132、第 1の誘電体層 133、第 1の界面層 134、記録層 135、第 2の界面層 136および第 2の誘電体層 137がこの順に設けられている。
[0034] 記録層 135は、前述した第 1情報層 11の記録層 115と同様の機能を持ち、同様の 材料を用いることができる。ただし、第 2情報層 13の透過率を高くするために、記録 層 135の膜厚は 15nm以下であることが好ましぐ 9nm以下であることがより好ましい 。例えば、記録層 135の厚さを lnm〜15nmの範囲内(より好ましくは lnm〜9nmの 範囲内)にすることができる。
[0035] 反射層 132は、前述した第 1情報層 11の反射層 132と同様の機能を持ち、同様の 材料を用いることができる。ただし、第 2情報層 13の透過率を高くするために反射層 132の膜厚は 18nm以下であることが好ましく、 lnm〜 15nmの範囲内であることが より好まし 、。
[0036] 第 1の誘電体層 133は、前述した第 1情報層 11の第 1の誘電体層 113と同様の機 能を持ち、同様の材料を用いることができる。第 1の誘電体層 133の膜厚は 5ηπ!〜 3
Onmの範囲内であることが好まし!/、。
[0037] 第 1の界面層 134は、前述した第 1情報層 11の第 1の界面層 114と同様の機能を 持ち、同様の材料を用いることができる。第 1の界面層 134の膜厚は 0. 3ηπ!〜 15η mの範囲内であることが好まし!/、。
[0038] 第 2の誘電体層 137は、前述した第 1情報層 11の第 2の誘電体層 117と同様の機 能を持ち、同様の材料を用いることができる。第 1の誘電体層 137の膜厚は 15ηπ!〜
60nmの範囲内であることが好まし!/、。
[0039] 第 2の界面層 136は、前述した第 1情報層 11の第 2の界面層 116と同様の機能を 持ち、同様の材料を用いることができる。第 2の界面層 136の膜厚は 0. 3ηπ!〜 15η mの範囲内であることが好まし!/、。
[0040] 透過率調整層 131は、第 2情報層 13の透過率を調整する機能を有する。この透過 率調整層 131によって、記録層 135が結晶相である場合の第 2情報層 13の透過率 T c (%)と、記録層 135が非晶質相である場合の第 2情報層 13の透過率 Ta (%)とを、 共に高くすることができる。
[0041] 透過率調整層 131の屈折率 nおよび消衰係数 kは、第 1情報層 13の透過率 Tcお
t t
よび Taを高くするため、 n≥2. 4、かつ、 k≤0. 1であることが好ましい。透過率調整
t t 層 131は、元素 Mと、 Nbと、酸素(O)とを含んでいる。透過率調整層 131における N bの含有割合は、 2. 9原子%以上である。従って、透過率調整層 131の材料には、 Nbの酸ィ匕物と元素 Mの酸ィ匕物との混合物を用いることができる。特に、 Nbの酸化物 である Nb O、または Nb Oを含む材料を用いることが好ましい。 Nb Oを含む材料
2 5 2 5 2 5
は、屈折率が大きいため第 2情報層 13の透過率を高くする効果が大きぐかつ、安定 した高い成膜レートをもっため、情報記録媒体 2の製造に有利である。さらに、 Nb O
2 5 に元素 Mの酸化物を混ぜると、高温度'高湿度の条件下でも信頼性の高い透過率 調整層 131を実現できる。
[0042] 透過率調整層 131の材料は、成膜レートを十分に高くし、かつ、水分による成膜レ ート変動をより小さくする (成膜レート安定性をより高くする)ために、 Nbを 8. 6原子% 以上 (例えば、 9原子%以上や 15原子%以上)含むことが望ましい。例えば、下記の 式( 1)で表される材料を用いることが好ま 、。
Nb M O
ΙΟΟ (原子%) · · · (!_)
た し、上記式(1)【こお ヽて、 Xおよび yiま、 x≥8. 6、 y>0、 x +y≤37を満たす。 より確実な効果を得るために、 Xが x≥ 9や x≥ 15を満たすような材料を用いてもょ 、。
[0043] なお、本明細書において「Nb M O (原子%)」とは、「Nb」原子、「M」原子お
100
よび「o」原子を合わせた数を基準(100%)として表された組成式であることを示して いる。
[0044] また、透過率調整層 131の好まし ヽ材料を酸化物で表記する場合、透過率調整層 131は Nb Oを 10mol%以上含むことが好ましぐ成膜レートを十分に高くし、かつ、
2 5
成膜レート安定性をより高くするために Nb Oを 30mol%以上含むことがより好まし
2 5
い。この場合、透過率調整層 131に含まれる材料として、例えば下記の式(2)で表さ れる材料を用いることが好まし 、。
(Nb O ) (M-O) (mol%) · · · (2)
2 5 100
ただし、上記式(2)において、 M— Oは元素 Mの酸化物を表しており、 zは z≥30を 満たす。
[0045] なお、「(Nb O ) (M-O) (mol%)」は、 zmol%の Nb Oと(100— z) mol%の
2 5 100 2 5
元素 Mの酸ィ匕物との混合物であることを示している。本明細書では、酸化物の混合 物を同様の表記方法で示す場合がある。
[0046] 透過率調整層 131は、元素 M、 Nbおよび酸素(O)のみからなる材料によって形成 されていてもよぐ元素 M、 Nbおよび酸素(O)以外の他の元素を含む材料によって 形成されていてもよい。透過率調整層 131が他の元素を含む場合、元素 M、 Nbおよ び酸素 (O)を合計で 90原子%以上含むことが好ましい。また、酸化物で表記する場 合は、透過率調整層 131が、 Nbの酸ィ匕物および元素 Mの酸ィ匕物を合計で 90mol %以上含むことが好まし 、。
[0047] 透過率調整層 131の厚さ dは、透過率 Tc, Taをより効果的に高めるために、 λ Z3
2η≤ά≤λ /4ηを満たすことが好ましぐ特に d= λ /8ηを満たすことがより好まし t t t
い。ただし、 λはレーザビーム 4の波長、 ηは透過率調整層 131の屈折率である。透
t
過率調整層 131の厚さは、反射率等他の条件も考慮して、例えば 5ηπ!〜 36nmの範 囲内であることが好ましい。
[0048] 上記、透過率調整層 131、反射層 132、第 1の誘電体層 133、第 1の界面層 134、 記録層 135、第 2の界面層 136および第 2の誘電体層 137によって、第 2情報層 13 が形成される。
[0049] 透明層 3は、第 2情報層 13に対してレーザビーム入射側に配置されており、情報層 11 , 13を保護する役割を果たしている。透明層 3はレーザビーム 4に対する光吸収 が小さいことが好ましい。透明層 3の材料は、例えばポリカーボネート榭脂、ポリメチ ルメタクリレート榭脂、ポリオレフイン榭脂、ノルボルネン系榭脂、紫外線硬化性榭脂、 遅効性熱硬化性榭脂、ガラス、あるいはこれらを適宜組み合わせたもの等を用いるこ とができる。また、これらの材料力もなるシートを用いてもよい。透明層 3の膜厚は、薄 すぎると情報層を保護する機能が発揮できなくなり、また、厚すぎると情報記録媒体 2 のレーザビーム入射側から各情報層までの距離が対物レンズ 5の焦点距離よりも長く なって、記録層にフォーカスできなくなってしまう。仮に、 NA=0. 85とした場合には 、透明層の膜厚は 5 m〜150 mの範囲内であることが好ましぐ 15 μ m〜50 μ m の範囲であることがより好ま U、。
[0050] 情報記録媒体 2は、以下に説明する方法によって製造できる。
[0051] まず、基板 1 (厚さは例えば 1. 1mm)上に第 1情報層 11を積層する。第 1情報層 1 1は多層膜からなる力 それらの各層は、順次スパッタリングすることによって形成で きる。なお、用いる材料によっては基板 1が高い吸湿性を持つので、必要に応じて、 スパッタリングをする前に、水分を除去するために基板をァニールする工程 (以下、 基板ァニール工程、ァニール工程または基板ァニール処理という。)を実施してもよ い。
[0052] 各層は、各層を構成する材料のスパッタリングターゲットを Arガス、 Krガスまたは X eガス等の希ガス雰囲気中または希ガスと反応ガス (酸素ガスおよび窒素ガスから選 ばれる少なくとも一つのガス)との混合ガス雰囲気中でスパッタリングすることによって 、形成できる。スパッタリング方法としては DCスパッタリング法と RFスパッタリング法と を必要に応じて使い分ける。スパッタリングによって成膜される各層の組成はもともと のスパッタリングターゲットの組成と完全には一致しないため、材料によってはスパッ タリングによる組成ずれを考慮してスパッタリングターゲットの組成を決定する必要が ある。ただし、例えば本発明の情報記録媒体における透過率調整層に用いられる材 料のように、スパッタリングによる組成ずれが生じにくい材料の場合は、このような組 成ずれを考慮する必要がない。したがって、このような場合は、所望の組成の膜を得 るために、 目的とする膜の組成と同一組成のスパッタリングターゲットを用いることが できる。また、例えば、酸化物の場合、スパッタリングによって酸素欠損がおこりやす い。その場合、反応ガスとして酸素ガスを用いることで酸素欠損を補うことができる。 なお、スパッタリングターゲットおよびスパッタリングターゲットを成膜して得られた膜は 、例えば X線マイクロアナライザーで分析して組成を確認することができる。
[0053] 第 1情報層 11の製造の手順として、具体的には、まず基板 1上に反射層 112を成 膜する。反射層 112は、反射層 112を構成する金属または合金からなるスパッタリン グターゲットを希ガス雰囲気中または希ガスと反応ガスとの混合ガス雰囲気中でスパ ッタリングすることによって形成できる。
[0054] 続いて、反射層 112上に、第 1の誘電体層 113を成膜する。第 1の誘電体層 113は 、第 1の誘電体層 113を構成する化合物力もなるスパッタリングターゲットを希ガス雰 囲気中または希ガスと反応ガスとの混合ガス雰囲気中でスパッタリングすることによつ て形成できる。 [0055] 続いて、第 1の誘電体層 113上に、第 1の界面層 114を成膜する。第 1の界面層 11 4は、第 1の界面層 114を構成する化合物からなるスパッタリングターゲットを希ガス 雰囲気中または希ガスと反応ガスとの混合ガス雰囲気中でスパッタリングすることによ つて形成でさる。
[0056] 続いて、第 1の界面層 114上に、記録層 115を成膜する。記録層 115は記録層 11 5を構成する化合物力 なるスパッタリングターゲットを希ガス雰囲気中または希ガス と反応ガスとの混合ガス雰囲気中でスパッタリングすることによって形成できる。
[0057] 続いて、記録層 115上に、第 2の界面層 116を成膜する。第 2の界面層 116は、第 2の界面層 116を構成する化合物力もなるスパッタリングターゲットを希ガス雰囲気中 または希ガスと反応ガスとの混合ガス雰囲気中でスパッタリングすることによって形成 できる。
[0058] 続いて、第 2の界面層 116上に、第 2の誘電体層 117を成膜する。第 2の誘電体層 117は、第 2の誘電体層 117を構成する化合物からなるスパッタリングターゲットを希 ガス雰囲気中または希ガスと反応ガスとの混合ガス雰囲気中でスパッタリングすること によって形成できる。
[0059] このようにして、基板 1上に第 1情報層 11を積層し、その後、分離層 12を形成する。
[0060] 分離層 12は、例えば第 1情報層 11上に紫外線硬化性榭脂または遅効性熱硬化性 榭脂を塗布し、次に全体を回転させて榭脂を均一に延ばし (スピンコート)、その後こ の榭脂を硬化させることによって作製できる。
[0061] 次に、第 1情報層 11と分離層 12とが積層された基板 1に、分離層 12の側から (分 離層 12上に)第 2情報層 13を積層する。第 2情報層 13は第 1情報層 11と同じく多層 膜からなるが、それらの各層は、順次スパッタリングすることによって形成できる。分離 層 12も基板 1と同様に、材料によっては高い吸湿性を持つので、ァニール工程を実 施してちょい。
[0062] まず、分離層 12上に透過率調整層 131を成膜する (透過率調整層成膜工程)。透 過率調整層 131は、透過率調整層 131を構成する化合物力もなるスパッタリングター ゲット (第 1のスパッタリングターゲット)を希ガス雰囲気中または希ガスと反応ガスとの 混合ガス雰囲気中でスパッタリングすることによって形成できる。なお、透過率調整層 131に用いられる材料は、スパッタリングによる組成ずれが生じにくい。そのため、目 的とする透過率調整層 131の組成と同様の組成を有するスパッタリングターゲットを 用いることができる。具体的には、元素 Mと、 Nbと、酸素(O)とを含んでおり、 Nbの 含有割合が 2. 9原子%以上であるスパッタリングターゲットを用いる。従って、 Nbの 酸ィ匕物と元素 Mの酸ィ匕物との混合物を含むスパッタリングターゲットを用いることがで きる。特に、 Nbの酸化物である Nb O、または Nb Oを含むスパッタリングターゲット
2 5 2 5
を用いることが好ましい。 Nb Oを含む材料は、安定した高い成膜レートを実現でき
2 5
るため、情報記録媒体 2の透過率調整層 131の成膜に適している。また、水分による 成膜レート変動が小さいため基板ァニール工程を省略することも可能となり、さらなる 高効率化が実現できる。また、成膜レートを十分に高くし、かつ、水分による成膜レー ト変動をより小さくする (成膜レート安定性をより高くする)ために、 Nbを 8. 6原子%以 上 (例えば 9原子%以上)含むスパッタリングターゲットを用いることが望ましい。例え ば、前述の式(1)で表される材料を用いることが好ましい。透過率調整層 131に用い られるスパッタリングターゲットを酸ィ匕物で表記する場合、 Nb Oを 10mol%以上含
2 5
むことが好ましぐ成膜レートを十分に高くし、かつ、成膜レート安定性をより高くする ために Nb Oを 30mol%以上含むことがより好ましい。この場合、例えば前述の式(2
2 5
)で表される材料を用いることが好ま 、。ここで用いられるスパッタリングターゲットは 、元素 M、 Nbおよび酸素(O)のみ力もなる材料によって形成されていてもよぐ元素 M、 Nbおよび酸素(O)以外の他の元素を含む材料によって形成されて!、てもよ!/、。 他の成分が含まれる場合は、元素 M、 Nbおよび酸素(O)が合計で 90原子%以上含 まれることが好ましい。また、このスパッタリングターゲットを酸ィ匕物で表記する場合は 、 Nbの酸化物および元素 Mの酸化物を合計で 90mol%以上含むことが好まし!/、。
[0063] 続いて、透過率調整層 131上に反射層 132を成膜する (反射層成膜工程)。反射 層 132は、第 1情報層 11の形成方法で説明した反射層 112と同様の方法で形成で きる。例えば、 Ag、 Au、 Cuおよび A1から選ばれる少なくとも 1つの元素を含むスパッ タリングターゲット(第 3のスパッタリングターゲット)を用いることができる。
[0064] 続いて、反射層 132上に第 1の誘電体層 133を成膜する(第 1の誘電体層成膜ェ 程)。第 1の誘電体層 133は、第 1情報層 11の形成方法で説明した第 1の誘電体層 1 13と同様の方法で形成できる。
[0065] 続いて、第 1の誘電体層 133上に第 1の界面層 134を成膜する(第 1の界面層成膜 工程)。第 1の界面層 134は、第 1情報層 11の形成方法で説明した第 1の界面層 11 4と同様の方法で形成できる。
[0066] 続いて、第 1の界面層 134上に記録層 135を成膜する(記録層成膜工程)。記録層 135は、第 1情報層 11の形成方法で説明した記録層 115と同様の方法で形成できる 。例えば、 Ge— Sb— Te、 Ge— Bi— Te、 Ge— Sn— Te、 Ge— Sb— Sn— Teおよび 06— 81—311—丁6から選ばれる少なくとも何れカ 1種の材料を含むスパッタリングタ 一ゲット(第 2のスパッタリングターゲット)を用いることができる。
[0067] 続いて、記録層 135上に第 2の界面層 136を成膜する(第 2の界面層成膜工程)。
第 2の界面層 136は、第 1情報層 11の形成方法で説明した第 2の界面層 116と同様 の方法で形成できる。
[0068] 続いて、第 2の界面層 136上に第 2の誘電体層 137を成膜する(第 2の誘電体層成 膜工程)。第 2の誘電体層 137は、第 1情報層 11の形成方法で説明した第 2の誘電 体層 117と同様の方法で形成できる。
[0069] このようにして、分離層 12上に第 2情報層 13を積層し、その後、第 2情報層 13上に 透明層 3を形成する。
[0070] 透明層 3は、例えば、第 2情報層 13上に紫外線硬化性榭脂または遅効性熱硬化 性榭脂を塗布してスピンコートした後、この榭脂を硬化させることによって形成できる 。また、透明層 3は、円盤状のポリカーボネート榭脂、ポリメチルメタタリレート榭脂、ポ リオレフイン榭脂、ノルボルネン系榭脂、ガラス等の基板を用いて形成することもでき る。この場合、透明層 3は、第 2情報層 13上に紫外線硬化性榭脂または遅効性熱硬 化性榭脂を塗布して、基板を第 2情報層 13に密着させてからスピンコートした後、榭 脂を硬化させることによって形成できる。
[0071] 情報記録媒体 2の各記録層は、通常、成膜したままの状態では非晶質状態である ため、必要に応じてレーザビームを照射する等して結晶化する初期化工程を行って ちょい。
[0072] 以上のようにして、本実施の形態の情報記録媒体 2を製造できる。なお、上述したよ うに、本実施の形態の情報記録媒体 2では、水分による成膜レートの変動が小さい材 料を用 ヽて透過率調整層 131を成膜して!/ヽるため、透過率調整層 131の成膜時に 基板ァニール処理 (基板ァニール工程)を省略することが可能である。本実施の形態 における情報記録媒体 2の製造方法において、透過率調整層 131作製時に基板ァ ニール工程を省略する例を、図 15に示すフローチャートを参照しながら説明する。ま ず、基板 1を準備し (ステップ S1)、基板 1上に、第 1情報層 11を構成する各層を順に スパッタリングによって成膜する (ステップ S 2)。次に、作製された第 1情報層 11上に 分離層 12を作製する (ステップ S3)。次に、基板ァニール工程を行うことなぐ分離層 12上に透過率調整層 131をスパッタリングによって成膜し、続いて反射層 132、第 1 の誘電体層 133、第 1の界面層 134、記録層 135、第 2の界面層 136および第 2の誘 電体層 137を順に成膜して、第 2情報層 13を作製する (ステップ S4)。次に、第 2情 報層 13上に透明層 3を作製し (ステップ S5)、最後に初期化を行う (ステップ S6)。比 較のため、図 16に、基板ァニール工程が必須である従来の情報記録媒体の製造方 法のフローチャートを示す。図 16に示すように、従来の方法では、基板 1の準備 (ステ ップ S 11)、スパッタリングによる第 1情報層 11の成膜 (ステップ S12)および分離層 1 2の作製 (ステップ S 13)までは図 15に示した本実施の形態の例と同じである力 そ の後、基板ァニール工程 (ステップ S 14)が必要である。基板ァニール工程終了後は 、本実施の形態の例と同様に、スパッタリングによって透過率調整層 131を成膜し、 その後順に第 2情報層 13の各層を成膜して、第 2情報層を作製する (ステップ S15) 。さらに、透明層 3の作製 (ステップ S16)および初期化工程 (ステップ S17)が行われ る。
以上に説明した図 1および図 2に示す情報記録媒体 2は 2層の情報層を備えた情 報記録媒体であるが、本実施の形態の情報記録媒体は、図 3に示すような 4層の情 報層を備えた情報記録媒体 6であってもよい。図 3には、本発明の情報記録媒体に おいて N=4である場合の構成例、すなわち 4層の情報層(第 1情報層 21、第 2情報 層 23、第 3情報層 24および第 4情報層 25)が設けられた情報記録媒体 6の構成例が 示されている。このような情報記録媒体 6の第 1情報層 21は、図 1および図 2に示した 第 1情報層 11と同じ構成をもつことができる。また、このような情報記録媒体 6の第 2 情報層 23、第 3情報層 24および第 4情報層 25のうち少なくとも 1つの情報層 (本発 明の情報記録媒体における第 L情報層に相当する情報層)は、図 1または図 2に示し た第 2情報層 13と基本的に同じ膜構成 (透過率調整層を含む構成)を有する。なお、 第 2〜第 4情報層 23, 24, 25の全てが第 2情報層 13と同様の基本構成を備えてい てもよいし、第 2情報層 13と異なる膜構成の情報層が含まれていてもよい。すなわち 、第 2〜第 4情報層 23, 24, 25の中に、反射層や透過率調整層が設けられていない 情報層が含まれていてもよい。
[0074] 情報記録媒体 6では、第 4情報層 25よりも基板 1側に配置されている情報層に到達 するレーザビームおよびその反射光は、その情報層よりもレーザビーム入射側に配 置されている情報層を通過することによって減衰してしまう。そのため、第 1情報層 21 、第 2情報層 23および第 3情報層 24は高い記録感度と高い反射率を持つことが必 要であり、第 2情報層 23、第 3情報層 24および第 4情報層 25は高い透過率を持つこ とが必要である。
[0075] また、本実施の形態の情報記録媒体は、より一般的に、 N個の情報層(ここでは、 N は 3以上の整数)を備えた情報記録媒体であってもよい。図 4には、 N個の情報層(第 1情報層 31、第 2情報層 33、 · · ·、第 N— 1情報層 38および第 N情報層 39)が設けら れた情報記録媒体 7の構成例が示されて 、る。このような情報記録媒体 7の第 1情報 層 31は、図 1および図 2に示した第 1情報層 11と同じ膜構成をもつことができる。また 、このような情報記録媒体 7の第 2情報層 33、 ···、第 N— 1情報層 38および第 N情報 層 39のうち少なくとも 1つの情報層 (本発明の情報記録媒体における第 L情報層に 相当する情報層)は、図 1または図 2に示した第 2情報層 13と基本的に同じ構成 (透 過率調整層を含む構成)を有する。なお、第 2〜第 Nの情報層 33, · ··, 38, 39の全 てが第 2情報層 13と同様の構成を備えて 、てもよ 、し、第 2情報層 13と異なる膜構 成の情報層が含まれていてもよい。すなわち、第 2〜第 Nの情報層 33, · ··, 38, 39 の中に、反射層や透過率調整層が設けられて 、な 、情報層が含まれて 、てもよ!/、。
[0076] 情報記録媒体 7では、第 N情報層 39よりも基板 1側に配置されている情報層に到 達するレーザビームおよびその反射光は、その情報層よりもレーザビーム入射側に 配置されている情報層を通過することにより減衰してしまう。そのため、第 1情報層 31 、第 2情報層 33、 ···、第 N— 1情報層 38は高い記録感度と高い反射率を持つことが 必要であり、第 2情報層 33、第 3情報層 34、 ···,第 N— 1情報層 38および第 N情報 層 39は高 、透過率を持つことが必要である。
[0077] 図 3に示す 4個の情報層を備えた情報記録媒体 6は、図 1および図 2に示した 2個の 情報層を備えた情報記録媒体 2と同様の方法によって作製できる。すなわち、基板 1 上に、第 1情報層 21、第 2情報層 23、第 3情報層 24および第 4情報層 25を分離層 2 2を介して順次積層し、さらに第 4情報層 25上に透明層 3を形成することによって、情 報記録媒体 6を作製できる。
[0078] また、図 4に示す N個の情報層を備えた情報記録媒体 7についても、図 1および図 2 に示した 2個の情報層を備えた情報記録媒体 2と同様の方法によって作製できる。基 板 1上に、第 1情報層 31、第 2情報層 33、 ···,第 N— 1情報層 38および第 N情報層 3 9を分離層 32を介して順次積層する。その後、第 N情報層 39上に透明層 3を形成す ることによって、情報記録媒体 7を作製できる。
[0079] 情報記録媒体 6および情報記録媒体 7の各記録層は、通常、成膜したままの状態 では非晶質状態であるため、必要に応じてレーザビームを照射する等して結晶化す る初期化工程をおこなってもよ 、。
[0080] 以上のようにして、情報記録媒体 6および情報記録媒体 7を製造できる。
[0081] 以上に、情報の記録再生が可能な情報層を 2つ以上備えた情報記録媒体および その製造方法を説明したが、本発明の情報記録媒体はこの構成および製造方法に 限定されず、少なくとも 1つの情報層(第 L情報層 (Lは、 2≤L≤Nを満たす整数))が 相変化を生じる記録層、反射層、透過率調整層をレーザビーム入射側からこの順序 で含むものであればょ 、。
[0082] 例えば 4個の情報層を有する情報記録媒体においては、 4個の情報層のうち 2つを 再生専用の情報層とし、 2つを相変化を生じる記録層、反射層、透過率調整層を含 む情報層とすることも可能である。さらに、記録層は可逆的相変化を生じる記録層で あっても、非可逆的相変化を生じる記録層であってもよい。
[0083] なお、本実施の形態にぉ 、ては、情報層を構成する各層の成膜方法としてスパッタ リング法を用いたが、これに限定されず、真空蒸着法、イオンプレーティング法、 MB E (Molecular Beam Epitaxy)法等を用いることも可能である。
[0084] (実施の形態 2)
実施の形態 2では、本発明の情報記録媒体の別の例を説明する。実施の形態 2に おける情報記録媒体の部分断面図を図 5に示す。本実施の形態の情報記録媒体 8 は、実施の形態 1で説明した情報記録媒体 2と同様に、対物レンズ 5で集光されたレ 一ザビーム 4が照射されることによって情報の記録再生が可能な光学的情報記録媒 体である。
[0085] 情報記録媒体 8は、第 1の基板 53上に第 2情報層 13、第 2の基板 51上に第 1情報 層 11をそれぞれ積層し、第 1情報層 11と第 2情報層 13とを接着層 52を介して接合し た構成である。すなわち、本実施の形態の情報記録媒体 8は、本発明の情報記録媒 体にお 、て N= 2および L = 2の場合の例であり、第 2情報層 13が第 N情報層および 第 L情報層に相当する。また、本実施の形態の情報記録媒体 8では、第 1の基板 53 側がレーザビーム入射側となる。
[0086] 第 1の基板 53および第 2の基板 51は、円盤状である。さらに、第 1の基板 53は略透 明である。第 1の基板 53および第 2の基板 51の材料には、実施の形態 1で説明した 基板 1と同様に、ポリカーボネート榭脂、ポリメチルメタタリレート榭脂、ポリオレフイン 榭脂、ノルボルネン系榭脂、ガラス、あるいはこれらを適宜組み合わせたもの等を用 いることができる。第 1の基板 53の第 2情報層 13側の面および第 2の基板 51の第 1 情報層 11側の面には、レーザビーム 4を導くための案内溝が形成されて 、てもよ 、。 なお、第 1の基板 53および第 2の基板 51の厚さは、十分な強度があり、かつ、情報記 録媒体 8の全体の厚さが 1. 2mm程度となるように、 0. 3mm〜0. 9mmの範囲内で あることが好ましい。
[0087] 接着層 52の材料には、紫外線硬化性榭脂等を用いることができる。なお、接着層 5 2の厚さは、実施の形態 1の分離層 12と同じ理由により、 5 m〜50 mの範囲内で あることが好ましい。
[0088] 第 1情報層 11と第 2情報層 13は、図 6に示すように、実施の形態 1で説明した情報 記録媒体 2に設けられた 2つの情報層とそれぞれ同様の膜構成を有する。従って、こ こでは第 1情報層 11および第 2情報層 13にそれぞれ含まれる各層の説明は省略す る。
[0089] 情報記録媒体 8は、以下に説明する方法によって製造できる。
[0090] まず、第 1の基板 53 (厚さが例えば 0. 6mm)上に、第 2情報層 13を形成する。具 体的には、第 1の基板 53上に、第 2の誘電体層 137、第 2の界面層 136、記録層 13 5、第 1の界面層 134、第 1の誘電体層 133、反射層 132および透過率調整層 131を 順次スパッタリングにより成膜する。なお、各層は、実施の形態 1の場合と同様の方法 を用いて成膜できる。
[0091] また、第 2の基板 51 (厚さが例えば 0. 6mm)上に、第 1情報層 11を形成する。具体 的には、第 2の基板 51上に、反射層 112、第 1の誘電体層 113、第 1の界面層 114、 記録層 115、第 2の界面層 116および第 2の誘電体層 117を順次スパッタリングによ り成膜する。なお、各層は、実施の形態 1の場合と同様の方法を用いて成膜できる。
[0092] 最後に、それぞれの情報層が積層された第 1の基板 53および第 2の基板 51を、接 着層 52を用いて貼り合わせる。すなわち、第 1情報層 11と第 2情報層 13とを互いに 貼り合わせる。具体的には、第 2の基板 51上に積層された第 1情報層 11上に、紫外 線硬化性榭脂等を塗布して、第 1の基板 53上に積層された第 2情報層 13を第 1情報 層 11に密着させてスピンコートした後、榭脂を硬化させるとよ 、。
[0093] なお、上記に説明した例は、本発明の情報記録媒体の製造方法が、
(I)第 1の基板上に、第 N情報層〜第 m情報層(mは、 2≤m≤Nを満たす整数)をこ の順に製造する工程と、
(II)第 2の基板上に、第 1情報層〜第 m— 1情報層をこの順に製造する工程と、
(III)第 m情報層と第 m— 1情報層とを互いに貼り合わせる工程と、
を含んでおり、 Lが m≤L≤Nを満たす場合は、前記工程 (I)が、第 L情報層を製造す る工程における前記工程 (i)〜 (iii)を、工程 (iii)、工程 (ii)、工程 (i)の順で含んでお り、 Lが 2≤L≤m— 1を満たす場合は、前記工程 (Π)が、第 L情報層を製造する工程 における前記工程 (i)〜 (iii)を、工程 (i)、工程 (ii)、工程 (iii)の順で含んでいる方法 である場合の具体例である。詳しくは、第 2情報層 13が第 m情報層に相当し、第 1情 報層 11が第 m—l情報層に相当する場合の例である。なお、上記に示したように、ェ 程 (i)とは、本発明の製造方法における透過率調整層成膜工程であり、工程 (ii)とは 反射層成膜工程であり、工程 (iii)とは記録層成膜工程である。
[0094] 情報記録媒体 8の各記録層は、通常、成膜したままの状態では非晶質状態である ため、必要に応じてレーザビームを照射する等して結晶化する初期化工程を行って ちょい。
[0095] 以上のようにして、情報記録媒体 8を製造できる。
[0096] また、以上に説明した図 5および図 6に示す情報記録媒体 8は 2層の情報層を備え た情報記録媒体であるが、本実施の形態の情報記録媒体は、図 7に示すような 4個 の情報層を備えた情報記録媒体 9であってもよい。図 7には、本発明の情報記録媒 体において N=4である場合の構成例、すなわち 4個の情報層(第 1情報層 21、第 2 情報層 23、第 3情報層 24および第 4情報層 25)が設けられた情報記録媒体 9の構 成例が示されている。このような情報記録媒体 9の第 1情報層 21は、図 5および図 6 に示した第 1情報層 11と同じ膜構成をもつ。また、このような情報記録媒体 9の第 2情 報層 23、第 3情報層 24および第 4情報層 25のうち少なくとも 1つの情報層(本発明の 情報記録媒体における第 L情報層に相当する情報層)は、図 5および図 6に示した第 2情報層 13と基本的に同じ構成 (透過率調整層を含む構成)を有する。第 2〜第 4情 報層 23, 24, 25の全てが第 2情報層 13と同様の構成を備えていてもよいし、第 2情 報層 13と異なる膜構成の情報層が含まれていてもよい。すなわち、第 2〜第 4の情報 層 23, 24, 25の中に、反射層や透過率調整層が設けられていない情報層が含まれ ていてもよい。
[0097] 情報記録媒体 9では、第 4情報層 25よりも第 2の基板 51側に配置されている情報 層に到達するレーザビームおよびその反射光は、その情報層よりもレーザビーム入 射側に配置されている情報層を通過することによって減衰してしまう。そのため、第 1 情報層 21、第 2情報層 23および第 3情報層 24は高い記録感度と高い反射率を持つ ことが必要であり、第 2情報層 23、第 3情報層 24および第 4情報層 25は高い透過率 を持つことが必要である。
[0098] また、本実施の形態の情報記録媒体は、より一般的に、 N個の情報層(ここでは、 N は 3以上の整数)を備えた情報記録媒体であってもよい。図 8には、 N個の情報層(第 1情報層 31、第 2情報層 33、 · · ·、第 N— 1情報層 38および第 N情報層 39)が設けら れた情報記録媒体 10の構成例が示されている。このような情報記録媒体 10の第 1情 報層 31は、図 5および図 6に示した第 1情報層 11と同じ構成をもつことができる。また 、このような情報記録媒体 10の第 2情報層 33、 ···、第 N— 1情報層 38および第 N情 報層 39のうち少なくとも 1つの情報層 (本発明の情報記録媒体における第 L情報層 に相当する情報層)は、図 5および図 6に示した第 2情報層 13と基本的に同じ構成( 透過率調整層を含む構成)を有する。第 2〜第 Nの情報層 33, · ··, 38, 39の全てが 第 2情報層 13と同様の構成を備えて ヽてもよ 、し、第 2情報層 13と異なる膜構成の 情報層が含まれていてもよい。すなわち、第 2〜第 Nの情報層 33, · ··, 38, 39の中 に、反射層や透過率調整層が設けられて 、な 、情報層が含まれて 、てもよ!/、。
[0099] 情報記録媒体 10では、第 N情報層 39よりも第 2の基板 51側に配置されている情報 層に到達するレーザビームおよびその反射光は、その情報層よりもレーザビーム入 射側に配置されている情報層を通過することによって減衰してしまう。そのため、第 1 情報層 31、第 2情報層 33、 ···,第 N— 1情報層 38は高い記録感度と高い反射率を 持つことが必要であり、第 2情報層 33、 ···、第 N— 1情報層 38および第 N情報層 39 は高 、透過率を持つことが必要である。
[0100] 図 7に示した 4個の情報層を備えた情報記録媒体 9は、図 5および図 6に示した 2層 の情報層を備えた情報記録媒体 8と同様の方法によって作製できる。すなわち、まず 、第 1の基板 53上に、第 4情報層 25、第 3情報層 24および第 2情報層 23 (第 m情報 層)を分離層 12を介して順次形成する。分離層 12は、実施の形態 1で説明した方法 と同様の方法によって形成される。
[0101] また、第 2の基板 51上に、第 1情報層 21 (第 m—1情報層)を形成する。
[0102] 最後に、それぞれの情報層が積層された第 1の基板 53および第 2の基板 51を、接 着層 52を用いて貼り合わせる。情報記録媒体 8の場合と同様に、第 2の基板 51上に 積層された第 1情報層 11上に、紫外線硬化性榭脂等を塗布して、第 1の基板 53上 に積層された第 2情報層 13を第 1情報層に密着させてスピンコートした後、榭脂を硬 ィ匕させるとよい。
[0103] また、図 8に示した N個の情報層を備えた情報記録媒体 10についても、図 7に示し た 4層の情報層を備えた情報記録媒体 9と同様の方法によって作製できる。 [0104] まず、第 1の基板 53上に、第 N情報層 39、第 N— 1情報層 38、 ···、第 2情報層 33 ( 第 m情報層)を分離層 12を介して順次形成する。分離層 12は実施の形態 1で説明し たものと同様の方法によって形成される。
[0105] また、第 2の基板 51上に、第 1情報層 31 (第 m—1情報層)を形成する。
[0106] 最後に、それぞれの情報層が積層された第 1の基板 53および第 2の基板 51を、接 着層 52を用いて貼り合わせる。情報記録媒体 8の場合と同様に、第 2の基板 51上に 積層された第 1情報層 31上に、紫外線硬化性榭脂等を塗布して、第 1の基板 53上 に積層された第 2情報層 33を第 1情報層に密着させてスピンコートした後、榭脂を硬 ィ匕させるとよい。
[0107] 情報記録媒体 9および情報記録媒体 10の各記録層は、通常、成膜したままの状態 では非晶質状態であるため、必要に応じてレーザビームを照射する等して結晶化す る初期化工程をおこなってもよ 、。
[0108] 以上のようにして、情報記録媒体 9および情報記録媒体 10を製造できる。
[0109] 以上に、情報の記録再生が可能な情報層を 2個以上備えた情報記録媒体および その製造方法を説明したが、本発明の情報記録媒体はこの構成および製造方法に 限定されず、少なくとも 1つの情報層(第 L情報層 (Lは、 2≤L≤Nを満たす整数))が 相変化を生じる記録層、反射層、透過率調整層をレーザビーム入射側からこの順序 で含むものであればょ 、。
[0110] 例えば 4個の情報層を有する情報記録媒体においては、 4個の情報層のうち 2つを 再生専用の情報層とし、残りの 2つを、相変化を起こしうる記録層、反射層、透過率調 整層を含む情報層とすることも可能である。さらに、記録層は可逆的相変化を生じる 記録層であってもよぐ非可逆的相変化を生じる記録層であってもよい。
[0111] なお、本実施の形態においては、情報層を構成する各層の成膜方法としてスパッタ リング法を用いたが、これに限定されず、真空蒸着法、イオンプレーティング法、 MB E (Molecular Beam Epitaxy)法等を用いることも可能である。
[0112] (実施の形態 3)
実施の形態 3では、本発明の情報記録媒体の別の例を説明する。実施の形態 3に おける情報記録媒体の部分断面図を図 9に示す。本実施の形態の情報記録媒体 15 は、実施の形態 1で説明した情報記録媒体 2と同様に、対物レンズ 5で集光されたレ 一ザビーム 4が照射されることによって情報の記録再生が可能な光学的情報記録媒 体である。
[0113] 情報記録媒体 15は、基板 55上に第 2情報層 13、分離層 12、第 1情報層 11を積層 し、第 1情報層 11とダミー基板 60とを接着層 52を介して接合することによって形成さ れている。すなわち、本実施の形態の情報記録媒体 15は、本発明の情報記録媒体 にお 、て N= 2および L = 2の場合の形態であり、第 2情報層 13が第 N情報層および 第 L情報層に相当する。また、本実施の形態の情報記録媒体 15では、基板 55側が レーザビーム入射側となる。図 10は、本実施の形態の情報記録媒体 15について、 第 1情報層 11および第 2情報層 13の膜構成を詳細に示した部分断面図である。
[0114] 基板 55およびダミー基板 60は、円盤状である。さらに、基板 55は略透明である。
基板 55およびダミー基板 60の材料には、実施の形態 1で説明した基板 1と同様に、 ポリカーボネート榭脂、ポリメチルメタタリレート榭脂、ポリオレフイン榭脂、ノルボルネ ン系榭脂、ガラス、あるいはこれらを適宜組み合わせたもの等を用いることができる。 基板 55の第 2情報層 13側の面には、レーザビーム 4を導くための案内溝が形成され ていてもよい。なお、基板 55およびダミー基板 60の厚さは、十分な強度があり、かつ 、情報記録媒体 15の全体の厚さが 1. 2mm程度となるように、 0. 3mm〜0. 9mmの 範囲内であることが好ましい。
[0115] 接着層 52の材料には、紫外線硬化性榭脂等を用いることができる。なお、接着層 5 2の厚さは、実施の形態 1の分離層 12と同じ理由により、 5 m〜50 mの範囲内で あることが好ましい。
[0116] 第 1情報層 11と第 2情報層 13は、図 10に示すように、実施の形態 1で説明した情 報記録媒体 2に設けられた 2つの情報層とそれぞれ同様の膜構成を有するため、ここ ではそれぞれの情報層に含まれる各層の説明は省略する。
[0117] 情報記録媒体 15は、以下に説明する方法によって製造できる。
[0118] まず、基板 55 (厚さが例えば 0. 6mm)上に、第 2情報層 13を形成する。具体的に は、基板 55上に、第 2の誘電体層 137、第 2の界面層 136、記録層 135、第 1の界面 層 134、第 1の誘電体層 133、反射層 132、透過率調整層 131を順次スパッタリング によって成膜していく。このとき、必要であればスパッタリングの前にァニール工程を 実施してもよい。なお、各層は、実施の形態 1の場合と同様の方法を用いて成膜でき る。
[0119] このようにして、基板 55上に第 2情報層 13を積層し、その後、実施の形態 1の場合 と同様に、分離層 12を形成する。
[0120] 次に、分離層 12上に第 1情報層 11を積層する。具体的には、分離層 12上に、第 2 の誘電体層 117、第 2の界面層 116、記録層 115、第 1の界面層 114、第 1の誘電体 層 113、反射層 112を順次スパッタリングによって成膜していく。なお、各層は、実施 の形態 1の場合と同様の方法を用 、て成膜できる。
[0121] 最後に、第 1情報層 11および第 2情報層 13が積層された基板 55とダミー基板 60と を、接着層 52を用いて貼り合わせる。具体的には、基板 55上に積層された第 1情報 層 11上に紫外線硬化性榭脂等を塗布して、ダミー基板 60を第 1情報層 11に密着さ せてスピンコートした後、榭脂を硬化させるとよい。
[0122] 情報記録媒体 15の各記録層は、通常、成膜したままの状態では非晶質状態である ため、必要に応じてレーザビームを照射する等して結晶化する初期化工程をおこな つてもよい。
[0123] 以上のようにして、本実施の形態の情報記録媒体 15を製造できる。
[0124] また、実施の形態 1および 2と同様に、本実施の形態の情報記録媒体は、図 11に 示すような 4個の情報層を備えた情報記録媒体 16であってもよぐ図 12に示すような N個の情報層を備えた情報記録媒体 17であってもよい。例えば 4個の情報層を有す る情報記録媒体においては、 4個の情報層のうち 2つを再生専用の情報層とし、残り の 2つを、相変化を起こしうる記録層、反射層および透過率調整層を含む情報層とす ることも可能である。さらに、記録層は、可逆的相変化を生じる記録層であってもよぐ 非可逆的相変化を生じる記録層であってもよ ヽ。
[0125] (実施の形態 4)
実施の形態 4では、実施の形態 1、 2および 3で説明した情報記録媒体に対して情 報の記録再生を行う方法の一例について説明する。
[0126] 図 13に、本発明の情報記録媒体に対して情報の記録および再生を行うための記 録再生装置の一例の概略図を示す。この記録再生装置には、情報記録媒体 506を 回転させるためのモーター 505と、レーザダイオード 501と、ノヽーフミラー 503と、対 物レンズ 504と、フォトディテクター 507とが含まれている。レーザダイオード 501から 出射されたレーザビーム 502は、ハーフミラー 503および対物レンズ 504を通じて、 モーター 505によって回転されている情報記録媒体 506の情報層上にフォーカスさ れる。情報の再生は、情報記録媒体 506からの反射光をフォトディテクター 507に入 射させ、信号を検出することによって行われる。なお、情報記録媒体 506は、実施の 形態 1〜3で説明した何れかの構成を有する媒体である。
[0127] 情報の記録を行う際には、レーザビーム 502の強度を複数のパワーレベル間で変 調する。レーザビーム 502の強度を変調する手段としては、例えばレーザダイオード 501の駆動電流を変調する電流変調手段を用いることができる。記録マークを形成 する部分に対しては、ピークパワー Ppの単一矩形パルスを印加してもよいが、特に 長いマークを形成する場合は、過剰な熱を省いてマーク幅を均一にする目的で、図 14に示すようにピークパワー Ppおよびボトムパワー Pb (ただし、 Pp >Pb)との間で変 調された複数のパルス列力 なる記録パルス列を用いるとよい。また、最後尾のパル スの後に冷却パワー Pcの冷却区間を設けてもよい。マークを形成しない部分に対し ては、バイアスパワー Pe (ただし、 Pp >Pe)で一定に保つ。
実施例
[0128] 以下、実施例により本発明をさらに具体的に説明する。
[0129] (実施例 1)
実施例 1では、 Nb Oまたは TiO力 なるスパッタリングターゲットについて、それ
2 5 2
ぞれ、成膜の効率および安定性について調べた。表 1に、 Nb Oまたは TiO力 な
2 5 2 る直径 200mmのスパッタリングターゲットを用いてスパッタリングした際の成膜レート を、基板のァニール工程の有無で分けて示す。
[0130] [表 1] サンプル スパッタリング ポリカーボネー卜 成膜レート 成膜レート
No. ターゲットの組成 基板のァニ-ル (nm/sec) 安定性
1-1 Nb205 有 6
1-2 Nb205 無 6
1-3 Ti02 有 2
X
1-4 Ti02 無 1
[0131] 成膜レートの測定は以下のようにしておこなった。まず、ガラス片を貼り付けたポリ力 ーボネート基板を用意し、必要に応じて基板のァニール工程を行った。次に、このポ リカーボネート基板をスパッタリング装置に設置し、ポリカーボネート基板上のガラス 片が貼り付けられた側に DCスパッタリング法によってスパッタ膜を成膜した。なお、 D Cスパッタリングの条件は、 Arと酸素の混合ガス 0. 5Paの雰囲気 (酸素濃度は 3%) で、投入電力 2. 5kWとした。次に、ガラス片をポリカーボネート基板から取り外し、ガ ラス片のスパッタ膜をナイフで削り取ることで、スパッタ膜の膜厚に相当する段差を作 り、この段差を段差計を用いて測ることによって膜厚を測定した。成膜レートは、スパ ッタ膜の膜厚と成膜時間との関係力 計算した。
[0132] 基板ァニール工程を実施する場合は、ポリカーボネート基板を 80°Cかつ乾燥の条 件の炉に 10時間保管してポリカーボネート基板に吸着した水分を除去した後に、ス ノ ッタリングを行った。基板ァニール工程を実施しない場合には、ポリカーボネート基 板を実験室内にて常温で大気中に 10時間おいた後、スパッタリングを行つた。
[0133] Nb O力もなるスパッタリングターゲットは成膜レートが高ぐかつ、ァニール工程の
2 5
有無によって成膜レートが変化しないので、スパッタリングを効率よく安定して行うこと ができることが確認できた(サンプル 1— 1, 1— 2)。一方、 TiO力もなるスパッタリング
2
ターゲットは成膜レートが Nb Oに比べて低ぐかつ、ァニール工程を行った場合は
2 5
成膜レートが 2nmZsec、ァニール工程を行わない場合は成膜レートが InmZsecと 、ァニール工程の有無によって成膜レートが大きく変化した (サンプル 1— 3, 1— 4)。 よって、 TiO力もなるスパッタリングターゲットは、スパッタリングの効率が悪く不安定
2
であることがわ力つた。なお、本実施例における成膜レート安定性の判定は、ポリ力 ーボネート基板のァニールの有無で成膜レートが変わらなければ「〇」、変われば「 X」とした。
[0134] (実施例 2)
実施例 2では、図 2に示した情報記録媒体 2と同様の構成の情報記録媒体につい て、高温度高湿度の条件下における腐食を調べた。
[0135] 本実施例において用いた情報記録媒体は、以下のようにして製造した。まず、基板 1として、レーザビームを導くための案内溝が形成されたポリカーボネート基板 (直径 120mm,厚さ 1. 1mm)を用意した。そして、そのポリカーボネート基板上に、反射 層 112として Ag— Pd— Cu層(厚さ: 80nm)を Arガス 0. 5Paの雰囲気で、投入電力 0. 2kWで DCスパッタリング法により成膜した。ただし、反射層 112の成膜前に 10時 間の基板ァニール工程を実施した。
[0136] 続いて、第 1の誘電体層 113として、 ZrO— SiO— In O層(厚さ: 21nm)を、 Ar
2 2 2 3
ガス 0. 5Pa雰囲気で、投入電力 2kWで RFスパッタリング法により成膜した。続いて、 記録層 115として、 Ge Sn Bi Te 層(厚さ: l lnm)を、 Arガス 0. 5Pa雰囲気で、投
40 5 4 51
入電力 0. 2kWで DCスパッタリング法により成膜した。記録層 115のスパッタリングで は、各原子のスパッタリング率の違いを考慮し、成膜状態で狙いの組成となるように 調節した直径 200mmの Ge— Sn— Bi—Teスパッタリングターゲットを用いた(以下、 すべての実施例も同様である。)。続いて、第 2の界面層 116として、 ZrO -SiO -
2 2
Cr O層(厚さ: 5nm)を、 Arガス 0· 5Pa雰囲気で、投入電力 2kWで RFスパッタリン
2 3
グ法により成膜した。続いて、第 2の誘電体層 117として、 ZnS— SiO層(厚さ: 48nm )を、 Arガス 0. 5Pa雰囲気で、投入電力 5kWで RFスパッタリング法により成膜し、第 1情報層 11を形成した。
[0137] その後、第 1情報層 11上に紫外線硬化性榭脂を塗布し、スピンコートした後、紫外 線を照射して榭脂を硬化させることによって、分離層 12 (厚さ 25 μ m)を形成した。
[0138] さらに、分離層 12上に、透過率調整層 131 (厚さ: 22nm)を、 Arと酸素の混合ガス 0. 5Paの雰囲気(酸素濃度は 3%)で、投入電力 2kWで DCスパッタリング法により 成膜した。透過率調整層 131は、 Nb O、 TiOまたは Nb Oと TiOとの混合物であり
2 5 2 2 5 2
、組成力 ^ (Nb O ) (TiO ) (mol%) (ただし、 z = 0、 2、 5、 10、 20、 30、 40、 50、
2 5 z 2 100-z
60、 70、 80、 90、 95、 98、 100)と表される直径 200mmのスノッタリングターゲット を用いて成膜した。ただし、透過率調整層 131の成膜前に 10時間の基板ァニール 工程を実施した。
[0139] 続いて、反射層 132として、 Ag— Pd— Cu層(厚さ: 10nm)を、 Arガス 0. 5Pa雰囲 気で、投入電力 0. 2kWで DCスパッタリング法により成膜した。次に、第 1の誘電体 層 133として、 ZrO— SiO—In O層(厚さ: 12nm)を、 Arガス 0. 5Pa雰囲気で、投
2 2 2 3
入電力 2kWで RFスパッタリング法により成膜した。次に、記録層 135として Ge Sn
40 5
Bi Te 層(厚さ: 7nm)を Arガス 0· 5Pa雰囲気で、投入電力 0· 2kWで DCスパッタリ
4 51
ング法により成膜した。記録層 135のスパッタリングでは、第 1情報層 11の場合と同 様に、各原子のスパッタリング率の違いを考慮し、成膜状態で狙いの組成となるよう に調節した直径 200mmの Ge— Sn—Bi—Teスパッタリングターゲットを用いた。次 に、第 2の界面層 136として、 ZrO—SiO— Cr O層(厚さ: 5nm)を、 Arガス 0. 5Pa
2 2 2 3
雰囲気で、投入電力 2kWで RFスパッタリング法により成膜した。次に、第 2の誘電体 層 137として、 ZnS— SiO層(厚さ: 37nm)を Arガス 0. 5Pa雰囲気で、投入電力 5k
2
Wで RFスパッタリング法により成膜し、第 2情報層 13を形成した。
[0140] 最後に、紫外線硬化性榭脂を第 2情報層 13上に塗布し、スピンコートした後、紫外 線を照射して榭脂を硬化させることによって、透明層 3 (厚さ 75 μ m)を形成した。
[0141] 以上のように、情報記録媒体 2と同様の膜構成の 15種類のサンプル (サンプル 2—
1〜2— 15)を作製した。これらの各サンプルに対して透明層 3側からレーザビームを 入射し、記録層全面を初期化した。
[0142] 製造したサンプルを温度 90°C、湿度 80%の条件の炉に 200時間置 、た後、透過 率調整層付近の腐食を確認した。なお、腐食の確認は、光学顕微鏡を使用して、情 報記録媒体の表面を 200倍に拡大し観測することで行った。結果を表 2に示す。
[0143] [表 2] スパッタリングターゲットの組成 スパッタリングターゲットの組成
(mol%) (原子 ¾)
サンプル No, (Nb2O5)z(TiO2),00— NbxTay010o-x-y 耐湿性 z X y
2-1 0 0.0 33.3 O
2-2 2 1.3 31.8 O
2-3 5 3.1 29.7 O
2-4 10 5.9 26.5 〇
2-5 20 10.5 21.1 O
2-6 30 14.3 16J 〇
2-7 40 17.3 13.0 〇
2-8 50 20.0 10.0 O
2-9 60 22.2 7.4 〇
2-10 70 24.1 5.2 o
2-1 1 80 25.8 3.2 o
2-12 90 27.3 1.5 〇
2-13 95 27.9 0.7 o
2-14 98 28.3 0.3 o
2-15 100 28.6 0.0 X
[0144] Nb Oのみから透過率調整層が形成されて!ヽる情報記録媒体 (サンプル 2— 15)
2 5
は、腐食が発見された。透過率調整層に TiOが含まれる情報記録媒体 (サンプル 2
2
— 1〜2— 14)は、使用が困難となる程度の腐食の発生は見られな力つた。また、 Nb
2
Oの含有割合を 90mol%以下 (サンプル 2— 1〜2— 12)とすることによって、腐食が
5
より確実に除けることも確認された。なお、耐湿性の判定は、光学顕微鏡で観測して 、情報記録媒体としての使用が困難となる程度に腐食や剥離が発生して!/、れば「 X J 、無ければ「〇」とした。
[0145] (実施例 3)
実施例 3では、実施例 2と同様に、図 2に示した情報記録媒体 2と同様の構成の情 報記録媒体の高温度高湿度の条件下における腐食を調べた。情報記録媒体の製造 方法は実施例 2と同様である。ただし、実施例 3では透過率調整層 131を、 Nb O、
2 5
Bi Oまたは Nb Oと Bi Oとの混合物であり、組成が(Nb O ) (Bi O ) (mol%)
2 3 2 5 2 3 2 5 z 2 3 100-z
(ただし、 z = 0、 2、 5、 10、 20、 30、 40、 50、 60、 70、 80、 90、 95、 98、 100)と表さ れる直径 200mmのスパッタリングターゲットを用 ヽて成膜した。
[0146] 製造したサンプルを温度 90°C、湿度 80%の条件の炉の中に 200時間お 、た後、 光学顕微鏡を使用して情報記録媒体の表面を 200倍に拡大して腐食を観測した。 結果を表 3に示す。
[0147] [表 3]
Figure imgf000032_0001
[0148] 耐湿性の判定基準は、実施例 2の場合と同様である。この結果によれば、透過率調 整層の材料として Bi Oまたは Nb Oと Bi Oとの混合物を用いた場合に、腐食の発
2 3 2 5 2 3
生が抑制できることがわ力つた (サンプノレ No. 3— 1〜3— 14)。また、実施例 2の結 果と同様に、 Nb Oの含有割合を9011101%以下(サンプル3— 1〜3— 12)とすること
2 5
によって、腐食がより確実に除けることも確認された。
[0149] (実施例 4)
実施例 4では、本発明の情報記録媒体における透過率調整層をスパッタリングによ つて成膜する際に用いられる材料について、それぞれ成膜効率および安定性を調べ た。実施例 4で調べたのは、 Nb Oと元素 Mの酸化物(Ti、 Zr、 Hf、 Y、 Cr、 Ζη、 Ga
2 5
、 Co、 Bi、 In、 Taおよび Ceの酸化物(M— O) )との混合物(ただし、モル比はすべて 50% : 50%でぁり、(?«) 0 ) (M-O) と表される)からなる直径 200mmのスパッタ
2 5 50 50
リングターゲットの成膜レートである。成膜レートの測定方法は実施例 1と同様である
[0150] 表 4には、透過率調整層に上記の各スパッタリングターゲットをスパッタリングした際 の、成膜レートを示す。
[0151] [表 4]
スパッタリング
サンプル ターゲットの組成 ポリカーボネート 成膜レート 成膜レート
No. (mol%) 基板のァ二-ル (nm/sec) 安定性
(Nb205)5。(M- O)50
4-1 有 4
(Nb2O5)50(TiO2)50 O
4-2 無 4
4-3 有 4
(Nb2O5)50(ZrO2)50
4-4 無 4
4-5 有 4
(Nb2O5)50(HfO2)50
4-6 無 4
4-7 有 3
(Nb2O5)50(Y2O3)50
4-8 無 3
4-9 有 3
(Nb2O5)50(Cr2O3)50 O
4-10 無 3
4-1 1 有 5
(Nb2O5)50(ZnO)50 O
4-12 無 5
4-13 有 5
(Nb2O5)50(Ga2O3)50
4-14 無 5
4-15 有 2
(Nb2O5)50(CoO)50
4-16 無 2
4-17 有 8
(Nb2O5)50(Bi2O3)50
4-18 無 8
4-19 有 6
(Nb2O5)50(In2O3)50 O
4-20 無 6
4-21 有 5
(Nb2O5)50(Ta2O5)50 O
4-22 無 5
4-23 有 2
(Nb2O5)50(CeO2)50 O
4-24 無 2
1-3 有 2
Ti02 X
1-4 無 1 なお、参考として実施例 1で調べた TiOのレートを表 4に併せて示す。 Nb Oと Ti、
2 2 5
Zr、 Hf、 Y、 Cr、 Ζη、 Ga、 Co、 Bi、 In、 Taおよび Ceの酸化物との混合物は、ポリ力 ーボネート基板のァニールの有無にかかわらず成膜レートが安定していることがわか つた。なお、本実施例における成膜レート安定性の判定は、ポリカーボネート基板の ァニールの有無で成膜レートが変わらなければ「〇」、変われば「 X」とした。 [0153] この結果によれば、成膜レートの観点からは、元素 Mは Ti、 Zr、 Hf、 Y、 Cr、 Ζη、 G a、 Bi、 Inおよび Taから選ばれる少なくとも 1つの元素であることが好ましぐより好まし くは元素 Mが Ti、 Zr、 Hf、 Zn、 Ga、 Bi、 Inおよび Taから選ばれる少なくとも 1つの元 素であり、さらに好ましくは元素 Mが Zn、 Ga、 Bi、 Inおよび Taから選ばれる少なくとも 1つの元素であり、さらに好ましくは元素 M力 Biおよび In力 選ばれる少なくとも 1つ の元素であることが確認された。
[0154] (実施例 5)
実施例 5では、本発明の情報記録媒体における透過率調整層をスパッタリングによ つて成膜する際に用いられる材料について、成膜効率および安定性を調べた。実施 例 5で調べたのは、 Nb O、 Ta Oまたは Nb Oと Ta Oとの混合物であり、組成が(
2 5 2 5 2 5 2 5
Nb O ) (Ta O ) (mol%) (ただし、 z = 0、 10、 20、 30、 40、 50、 60、 70、 80、 9
2 5 z 2 5 100- z
0、 100)と表される直径 200mmのスパッタリングターゲットの成膜レートである。成膜 レートの測定方法は実施例 1と同様である。
[0155] 表 5— Aに、透過率調整層に上記のスパッタリングターゲットをスパッタリングした際 の、成膜レートを示す。
[0156] [表 5-A]
スパッタリング スパッタリング
ターゲットの組成 ターゲットの組成
(原子%) ポリカーボネート成膜レート 成膜レート サンプル No. (mol%)
(Nb2O6)z(Ta2O5)10O_z 基板のァニ-ル (nm/sec 安定性 z X y
5A-1 有 2
0 0 28.6 X
5A-2 無 1
5A-3 有 3
10 2.9 25.7 Δ
5A-4 無 2
5A-5 有 4
20 5.7 22.9 Δ
5A-6 無 3
5A-7 有 4
30 8.6 20 O
5A-8 無 4
5A-9 有 4
40 11.4 17.1 〇
5 A- 10 無 4
5 A- 1 1 有 5
50 14.3 14.3 〇
5A-12 無 5
5A-13 有 5
60 17.1 1 1.4 O
5A-14 無 5
5A-15 有 5
70 20 8.6 o
5A-16 無 5
5A-17 有 6
80 22.9 5.7 o
5A-18 無 6
5A-19 有 6
90 25.7 2.9 o
5A-20 無 6
5 A- 21 有 6
100 28.6 0 o
5A-22 無 6 Nbが 2. 9原子%以上 (Nbの酸ィ匕物(Nb O )として 10mol%以上)含まれる材料
2 5
は、 Ta Oのみからなる材料(サンプル 5A—1、 5A— 2)と比較して、成膜レートが高
2 5
くなることが確認された。さらに、 Nbの含有割合が増加するに従い、ポリカーボネート 基板のァニールの有無による成膜レートの差が小さくなる、すなわち成膜レート比(( ァニール無しの成膜レート) / (ァニール有りの成膜レート) )が 1に近づくことが確認 された。さらに、 Nbが 8. 6原子%以上(Nbの酸化物(Nb O )として 30mol%以上)
2 5
含まれることによって、成膜レートがより高くなると共に、ポリカーボネート基板のァ- ールの有無による成膜レートの変動を十分に抑制できる (成膜レートを安定ィ匕できる) ことが確認された。なお、成膜レート安定性の判定は、ポリカーボネート基板のァニー ルの有無で成膜レートが変わらなければ「〇」、成膜レート比が 0. 5を超えていれば「
△」、成膜レート比が 0. 5以下であれば「X」とした。
[0158] また、元素 Mとして Tiを用いた場合についても同様に成膜効率および安定性を調 ベたところ、表 5— Bに示すような結果が得られた。この結果から、 Tiの場合も Taと同 様の効果が得られることが確認された。
[0159] [表 5- B]
Figure imgf000037_0001
(実施例 6)
実施例 6では、本発明の情報記録媒体における透過率調整層をスパッタリングによ つて成膜する際に用いられる材料について、それぞれ成膜効率および安定性を調べ た。実施例 6で調べたのは Nb Oと TiOと力もなる混合物、または、 Nb O、 TiOお
2 5 2 2 5 2 よび LaFとからなる混合物であり、組成が [ (Nb O ) (TiO ) ] (LaF ) (mol%)
3 2 5 80 2 20 100- a 3 a
(ただし、 a = 0、 5、 10、 15、 20)と表される直径 200mmのスパッタリングターゲットの 成膜レートである。成膜レートの測定方法は実施例 1と同様である。
[0161] 表 6には、上記の各スパッタリングターゲットをスパッタリングした際の、成膜レートお よび成膜レート安定性を示す。なお、成膜レート安定性の評価は実施例 5と同様であ る。
[0162] [表 6]
Figure imgf000038_0001
[0163] [ (Nb O ) (TiO ) ] (LaF ) (mol%)と表される組成で a≤ 10のときは、ポリ力
2 5 80 2 20 100-a 3 a
ーボネート基板のァニールの有無によって成膜レートが安定になることがわかった( サンプノレ 6—1〜6— 6)。
[0164] (実施例 7)
実施例 7では、図 2に示した情報記録媒体 2のうち第 1情報層 11と分離層 12を有せ ず、基板 1上に第 2情報層 13と透明層 3のみを形成したサンプルを製造し、透過率調 整層 131の屈折率 n、消衰係数 kおよび厚さ dと、第 2情報層 13の透過率 Tc, Taと t t
の関係を調べた。 [0165] サンプルは以下のようにして製造した。まず、基板 1として、レーザビームを導くため の案内溝が形成されたポリカーボネート基板 1 (直径 120mm、厚さ 1. 1mm)を用意 した。
[0166] そして、そのポリカーボネート基板上に、透過率調整層 131を、 Arと酸素の混合ガ ス 0. 5Paの雰囲気(酸素濃度は 3%)で、投入電力 2kWで DCスパッタリング法により 成膜した。ただし、透過率調整層 131の成膜前に 10時間の基板ァニール工程を実 施した。なお、作製した透過率調整層の組成は、表 7に示すとおりである。
[0167] 続いて、反射層 132として、 Ag— Pd— Cu層(厚さ: lOnm)を、 Arガス 0. 5Pa雰囲 気で、投入電力 0. 2kWで DCスパッタリング法により成膜した。第 1の誘電体層 133 として、 ZrO -SiO -In O層(厚さ: 12nm)を、 Arガス 0. 5Pa雰囲気で、投入電力
2 2 2 3
2kWで RFスパッタリング法により成膜した。記録層 135として、 Ge Sn Bi Te 層(
40 5 4 51 厚さ: 7nm)を、 Arガス 0. 5Pa雰囲気で、投入電力 0. 2kWで DCスパッタリング法に より成膜した。第 2の界面層 136として、 ZrO—SiO— Cr O層(厚さ: 5nm)を、 Ar
2 2 2 3
ガス 0. 5Pa雰囲気で、投入電力 0. 2kWで RFスパッタリング法により成膜した。第 2 の誘電体層 137として、 ZnS— SiO層(厚さ: 37nm)を、 Arガス 0. 5Pa雰囲気で、
2
投入電力 2kWで RFスパッタリング法により成膜した。このようにして、第 2情報層 13 を形成した。
[0168] 最後に、紫外線硬化性榭脂を第 2情報層 13上に塗布し、スピンコートした後、紫外 線を照射して榭脂を硬化させることによって、透明層 3 (厚さ 100 m)を形成した。
[0169] 以上のようにして、 6種類のサンプルを作製した。
[0170] これらのサンプルに対して透明層 3側力 レーザビームを照射し、記録層の一部を 初期化した。
[0171] 各サンプルについて、記録層 135が非晶質相である場合の透過率 Ta、さら〖こは記 録層が結晶相である場合の透過率 Tcを測定した。透過率の測定には分光器を用い 、波長 405nmの透過率を調べた。
[0172] 表 7に、透過率調整層 131の屈折率 n、消衰係数 kおよび第 2情報層 13の透過率 t t
Tc, Taの関係を示す。
[0173] [表 7] スノ ッタリング Tc Ta 透過率 サンプル No.
ターゲットの組成 (%) (%) 判定
7-1 Ta205 2.35 0.03 43 44 Δ
7-2 (Nb2O5)50(Ta2O5)50 2.41 0.04 45 46 〇
7-3 Nb205 2.52 0.05 47 48 Ο
7-4 (Nb2O5)50(TiO2)50 2.62 0.03 48 50 ο
7-5 Ti02 2.70 0.02 49 51 〇
7-6 (Nb2O5)50(Bi2O3)50 2.80 0.02 52 53 〇
[0174] 表 7に示したサンプルにおいては透過率調整層 131の膜厚はすべて 22nmであり 、材料としては Nb O、 Ta O、 TiO、(Nb O ) (Ta O ) (mol%)、(Nb O ) (Ti
2 5 2 5 2 2 5 50 2 5 50 2 5 50
O ) (mol%)または(Nb O ) (Bi O ) (mol%)の直径 200mmのスパッタリングタ
2 50 2 5 50 2 3 50
一ゲットを用いた。なお、屈折率および消衰係数は、エリプソメーターを用いて測定し た。
[0175] 情報記録媒体 2の構成の場合、第 2情報層 13は透過率 Taおよび透過率 Tcがとも に 45%以上であることが好ましぐ透過率は透過率調整層 131の屈折率が大きいほ ど高くなることがわ力つている。表 7より、本実施例で製造したサンプルの場合は、透 過率調整層 131の屈折率 nが 2. 4以上が好ましいことがわ力つた。透過率の判定は t
Ta、 Tcともに 45%以上であれば「〇」、いずれか一方が 35%以上 45%未満であれ ば「△」、何れか一方が 35%未満であれば「 X」とした。
[0176] また、透過率調整層 131の膜厚 dと透過率 Tc, Taとの関係も調べた。結果を表 8に 示す。なお、透過率の判定基準は表 7の場合と同様である。
[0177] [表 8] スパッタリング d Tc Ta 透過率 サンプル No. d
ターゲットの組成 (nm) (%) (%) 判定
8-1 λ /64nt 2 43 43 Δ
8-2 λ /32nt 5 46 47 Ο
8-3 (Nb2O5)50(Bi2O3)50 A /16nt 9 50 51 〇
8-4 nt = 2.8 A /8nt 18 54 56 Ο
8-5 A /4nt 36 45 47 〇
8-6 λ /3.5nt 42 43 44 Δ [0178] (表 8)に示したサンプルおいては透過率調整層 131の材料として(Nb O ) (Bi O
2 5 50 2
) (mol%)の直径 200mmのスパッタリングターゲットを用いて、膜厚を 2nm、 5nm
3 50
、 9nm、 18nm、 36nm、 42nmとして成膜した。表 8より、透過率調整層 131の膜厚 d が λ /32η〜 λ /4η ( λはレーザビームの波長であり、本実施例では λ =405nm t t
)の範囲内の場合 (膜厚 dが 5nm〜36nmの場合)に、透過率 Tc, Taが共に 45%以 上となり、良好な結果が得られた。特に、膜厚 dが λ Ζ8ηの時に、高い透過率が得ら t
れた。
[0179] (実施例 8)
実施例 8では、図 3に示した情報記録媒体 6の高温度高湿度の条件下における腐 食を調べた。情報記録媒体 6は 4個の情報層を備えて 、る。
[0180] 本実施例における情報記録媒体 6は以下のようにして製造した。まず、実施例 2の 手順と同様にして基板 1上に第 1情報層 21、分離層 12 (厚さ: 10 /z m)を形成した。 さらに、分離層 12上に、第 2情報層 23を形成した。なお、本実施例において作製し た第 2情報層 23は、図 2に示した情報記録媒体 2の第 2情報層 13と同様の膜構成な ので、各層の符号は情報記録媒体 2の第 2情報層 13を構成する各層の符号と同じに して、以下で第 2情報層 23の形成方法を説明する。
[0181] 分離層 12上に、透過率調整層 131 (厚さ: 22nm)をスパッタリングにより成膜した。
透過率調整層 131の材料は、 Nb O、 TiOまたは Nb Oと TiOとの混合物であり、
2 5 2 2 5 2
組成力 S (Nb O ) (TiO ) (mol%) (ただし、 z = 0、 10、 20、 30、 40、 50、 60、 70
2 5 z 2 100-z
、 80、 90、 100)と表される直径 200mmのスパッタリングターゲットを用いて成膜した 。ただし、透過率調整層 131の成膜前に 10時間の基板ァニール工程を実施した。
[0182] 続けて、反射層 132として Ag— Pd— Cu層(厚さ: 8nm)、第 1の誘電体層 133とし て ZrO—SiO—In O層(厚さ: 10nm)、記録層 135として Ge Sn Bi Te 層(厚さ:
2 2 2 3 40 5 4 51
6nm)、第 2の界面層 136として ZrO—SiO—Cr O層(厚さ: 5nm)、第 2の誘電体
2 2 2 3
層 137として ZnS— SiO層(厚さ: 33nm)をスパッタリングにより順次積層して、第 2
2
情報層 23を形成した。その後、第 2情報層 23上に分離層 12 (厚さ: 15 /z m)を形成 し、この分離層 12上に第 3情報層 24、分離層 12 (厚さ: 20 m)、第 4情報層 25を形 成した。作製された第 3情報層 24および第 4情報層 25は透過率調整層と反射層とを 有しておらず、記録層の厚さを 4nmと薄くすることで透過率を高めた力 それ以外の 膜構成は第 2情報層 23と同じであった。最後に、紫外線硬化性榭脂を第 4情報層 25 上に塗布し、スピンコートした後、紫外線を照射して榭脂を硬化させることによって、 透明層 3 (厚さ 55 μ m)を形成した。
[0183] 以上のようにして、本実施例の各サンプルを作製した。
[0184] 各サンプルに対して透明層 3側からレーザビームを照射し、記録層全面を初期化し た。
[0185] 製造したサンプルを温度 90°C、湿度 80%の条件の炉に 200時間置 、た後で、光 学顕微鏡を使用して情報記録媒体の表面を 200倍に拡大し、腐食を観測した。結果 は実施例 2で得られたものと同等であり、透過率調整層 131を Nb Oのみから作製し
2 5
た場合は腐食の発生が見られたが、 Nb Oに TiOを混ぜることで腐食の発生が抑制
2 5 2
できることがわかった。
[0186] (実施例 9)
実施例 9では、図 4に示した情報記録媒体 7について、高温度高湿度の条件下に おける腐食を調べた。図 4に示す情報記録媒体 7は N個の情報層を備えているが、 本実施例では N = 6の場合として、 6個の情報層を備えた情報記録媒体を作製した。
[0187] 本実施例のサンプルは以下のようにして製造した。まず、実施例 2の手順と同様に して基板 1上に第 1情報層 31、分離層 12 (厚さ: 10 /z m)を形成した。さらに、分離層 12上に、第 2情報層 33を形成した。なお、本実施例において作製した第 2情報層 33 を図 2に示した情報記録媒体 2の第 2情報層 13と同様の膜構成としたので、各層の 符号を情報記録媒体 2の第 2情報層 13を構成する各層の符号と同じにして、以下に 本実施例における第 2情報層 33の形成方法を説明する。
[0188] 分離層 12上に、透過率調整層 131 (厚さ: 22nm)をスパッタリングにより成膜した。
透過率調整層 131の材料は Nb O、 TiOまたは Nb Oと TiOとの混合物であり、組
2 5 2 2 5 2
成力 S (Nb O ) (TiO ) (mol%) (ただし、 z = 0、 10、 20、 30、 40、 50、 60、 70、 8
2 5 z 2 100-z
0、 90、 100)と表される直径 200mmのスパッタリングターゲットを用いて成膜した。 ただし、透過率調整層 131の成膜前に 10時間の基板ァニール工程を実施した。
[0189] 続けて、反射層 132として Ag— Pd— Cu層(厚さ: 7nm)、第 1の誘電体層 133とし て ZrO—SiO—In O層(厚さ: lOnm)、記録層 135として Ge Sn Bi Te 層(厚さ:
2 2 2 3 40 5 4 51
5nm)、第 2の界面層 136として ZrO—SiO—Cr O層(厚さ: 5nm)、第 2の誘電体
2 2 2 3
層 137として ZnS— SiO層(厚さ: 30nm)をスパッタリングにより順次積層し、第 2情
2
報層 33を形成した。その後、第 2情報層 33上に分離層 12 (厚さ: 12 /z m)を形成し、 分離層 12上に第 3情報層、分離層 12 (厚さ:14 m)、第 4情報層、分離層 12 (厚さ : 16 m)、第 5情報層、分離層 12 (厚さ: 18 m)、第 6情報層を形成した。この時、 第 3情報層、第 4情報層、第 5情報層および第 6情報層は透過率調整層と反射層とを 有しておらず、さらに、透過率を高めるために第 3情報層および第 4情報層の記録層 の厚さを 3nm、第 5情報層 38および第 6情報層 39の記録層の厚さを 2nmと薄くした 力 それ以外の膜構成は第 2情報層 23と同じであった。最後に、紫外線硬化性榭脂 を第 6情報層 39上に塗布し、スピンコートした後、紫外線を照射して榭脂を硬化させ ることによって、透明層 3 (厚さ 30 m)を形成した。
[0190] 以上のように作製した各サンプルに対して透明層 3側からレーザビームを照射し、 記録層全面を初期化した。
[0191] 製造したサンプルを温度 90°C、湿度 80%の条件の炉の中に 200時間置 、た後、 光学顕微鏡を使用して情報記録媒体の表面を 200倍に拡大し、腐食を観測した。結 果は実施例 2で得られたものと同等であり、透過率調整層 131が Nb Oのみから形
2 5
成された場合は腐食の発生が見られたが、 Nb O
2 5に TiO
2を混ぜることで腐食の発生 が抑制できることがわ力つた。
[0192] (実施例 10)
実施例 10では、図 2に示した情報記録媒体 2と同様の構成の情報記録媒体を作製 し、第 2情報層 13の透過率調整層 131の成膜前に行うァニール工程の実施時間と、 第 2情報層 13の透過性能との関係を調べた。具体的には、透過率調整層 131の組 成が TiOである情報記録媒体と (Nb O ) (Bi O ) (mol%)である情報記録媒体と
2 2 5 50 2 3 50
について、それぞれ、透過率調整層 131の成膜前にァニール工程を実施したものと 実施しな!、ものを作製し、すべての情報記録媒体につ!、て第 2情報層 13の透過性 能を確認した。ァニール工程の時間は 2時間、 5時間、 10時間および 24時間とした。 第 2情報層 13の透過性能は、第 1情報層 11の反射率および記録感度を調べること で確認した。第 1情報層 11の記録および再生は、第 2情報層 13を透過したレーザビ ームによって行われるため、第 1情報層の反射率および記録感度は第 2情報層 13の 透過性能によって変化するからである。
[0193] 本実施例における情報記録媒体の製造方法は実施例 2と同様である。ただし、第 2 情報層 13の透過率調整層 131のスパッタリング時の成膜レートは、 10時間のァニー ル工程を実施した場合のレートを使って!/、る。
[0194] 第 2情報層 13の透過性能の測定は、図 13に示す記録再生装置を用いて行った。
レーザビーム 502の波長は 405nm、対物レンズ 504の開口数は 0. 85、測定時の情 報記録媒体 506の線速度は 4. 9mZs、最短マーク長(2T)は 0. 149 μ mとした。
[0195] 反射率はレーザビーム 502を対物レンズ 504によって第 1情報層 11にフォーカスさ せ、第 1情報層 11からの反射光をフォトディテクター 507に入射させ信号強度を測定 することで調べた。なお、反射率は記録層 115が結晶相の場合の反射率を調べた。
[0196] 記録感度は図 14に示すようにレーザビームのパワーを 0〜Pp (mW)の間で変調し て、マーク長 0. 149 m (2T)力 0. 596 m (8T)までのランダム信号を記録し、 記録マークの前端ジッター (記録マーク前端部におけるマーク位置の誤差)、後端ジ ッター(記録マーク後端部におけるマーク位置の誤差)をタイムインターバルアナライ ザで測定することで評価した。なお、ジッター値は小さいほど記録性能が良い。 Pp、 Pe、 Pcおよび Pbは平均ジッター(前端ジッターと後端ジッターの平均値)が最小とな るように決定し、この時の最適 Ppを記録感度とした。
[0197] 表 9に、作製した情報記録媒体について第 1情報層 11の記録感度 (Pp)、反射率 R cおよび第 2情報層 13の反射率 Rc、透過率 Tcを示す。
[0198] [表 9] 成膜前の 第 1情報層 第 2情報層 サンプル No. 透過率調整層
ァニール 性能 の組成
時間 [hr] P Rc Rc Tc 安定性
[mW] [%] [%] [%]
9-1 24 9.2 4.8 4.5 54
9-2 10 9.2 4.8 4.5 54
9-3 (Nb205)50(Bi203)5o 5 9.2 4.8 4.5 54 〇
9-4 2 9.2 4.8 4.5 54
9-5 無 9.2 4.8 4.5 54
9-6 24 9.9 4.2 4.5 50
9-7 10 9.9 4.2 4.5 50
9-8 Ti02 5 10.1 4.0 4.4 49 X
9-9 2 10.3 3.9 4.3 48
9-10 無 12.4 2.8 4.1 40
[0199] ただし、 2層の情報層を持つ情報記録媒体 2では、第 2情報層 13の透過率を測定 することができないので、実施例 7のように基板 1上に第 2情報層 13と保護層 3のみを 形成したサンプルを製造し、透過率を調べた。
[0200] 反射率、透過率はすべて記録層が結晶相の場合の値である。また、測定は情報記 録媒体 2の中心から半径 40mmの円周上でおこなった。なお、性能安定性の判定は 基板ァニール工程の有無で情報記録媒体の性能が変わらなければ「〇」、変われば
「X」とした。
[0201] 透過率調整層 131が (Nb O ) (TiO ) (mol%)の場合は記録感度 (Pp)、反射
2 5 50 2 50
率および透過率に基板ァニール工程の有無で変化が無く性能が安定していることが 確認された(サンプル 9 1〜9 5)。 TiOの場合は、基板ァニール工程を 10時間
2
以上実施すれば性能が安定するが(サンプル 9 6, 9— 7)、基板ァニール工程時 間が 10時間未満では記録感度 (Pp)、反射率 Rcおよび透過率 Tcの全てで基板ァ- ール工程の有無による変化が見られ、性能が安定しな力つた (サンプル 9 7〜9 1 0)。
産業上の利用可能性
[0202] 本発明の情報記録媒体およびその製造方法は、透過率調整層が安定して効率よく 成膜できるため、記録再生特性が良好な多層情報記録媒体を効率よく得るために有 用である。

Claims

請求の範囲
[1] 基板上に N個の情報層(Nは 2以上の整数)が設けられており、レーザビームが照 射されることによって前記各情報層に対して情報の記録および再生が行われる情報 記録媒体であって、
前記 N個の情報層を、レーザビーム入射側と反対側から順に第 1情報層〜第 N情 報層とした場合、前記 N個の情報層に含まれる第 L情報層 (Lは、 2≤L≤Nを満たす 整数)は、少なくとも、レーザビームの照射によって相変化を起こしうる記録層と、反射 層と、透過率調整層とを、レーザビーム入射側からこの順で含んでおり、
前記透過率調整層が、 Ti、 Zr、 Hf、 Y、 Cr、 Ζη、 Ga、 Co、 Bi、 In、 Taおよび Ceか ら選ばれる少なくとも 1つの元素 Mと、 Nbと、酸素(O)とを含み、かつ、前記透過率調 整層における Nbの含有割合が 2. 9原子%以上である、情報記録媒体。
[2] 前記透過率調整層が、 Nbを 8. 6原子%以上含む、請求項 1に記載の情報記録媒 体。
[3] 前記透過率調整層が、下記の式:
Nb M O (原子%)
ΙΟΟ
(Xおよび yは、 x≥8. 6、 y>0、 x+y≤37を満たす。)
で表される材料を含む、請求項 2に記載の情報記録媒体。
[4] 前記透過率調整層が、 Nbの酸ィ匕物を 10mol%以上含む、請求項 1に記載の情報 記録媒体。
[5] 前記透過率調整層が、 Nbの酸ィ匕物を 30mol%以上含む、請求項 4に記載の情報 記録媒体。
[6] 前記透過率調整層が、 Nbの酸化物と、元素 Mの酸化物とを含み、下記の式:
(Nb O ) (M-O) (mol%)
2 5 z 100-z
(M— Oは、元素 Mの酸化物を示しており、 zは、 z≥ 30を満たす。)
で表される材料を含む、請求項 5に記載の情報記録媒体。
[7] 前記透過率調整層が、元素 M、 Nbおよび酸素 (O)を合計で 90原子%以上含む、 請求項 1に記載の情報記録媒体。
[8] 前記透過率調整層が、 Nbの酸ィ匕物および元素 Mの酸ィ匕物を合計で 90mol%以 上含む、請求項 1に記載の情報記録媒体。
[9] 前記記録層は、 Ge-Sb-Te, Ge— Bi— Teゝ Ge— Sn— Teゝ Ge— Sb— Sn— Te および Ge— Bi— Sn— Te力 選ばれる少なくとも何れか 1種の材料を含み、前記記 録層の厚さが Inn!〜 15nmの範囲内である、請求項 1に記載の情報記録媒体。
[10] 前記レーザビームの波長を λ、前記透過率調整層の屈折率を ηとする場合、前記
t
透過率調整層の厚さ dが、 λ /32η≤ά≤λ /4ηを満たす、請求項 1に記載の情報
t t
記録媒体。
[11] 前記透過率調整層の厚さ dが、 d= λ /8ηを満たす、請求項 10に記載の情報記
t
録媒体。
[12] 前記透過率調整層の厚さ dが、 5ηπ!〜 36nmの範囲内である、請求項 10に記載の 情報記録媒体。
[13] 前記透過率調整層に含まれる元素 Mが、 Ti、 Zr、 Hf、 Y、 Cr、 Ζη、 Ga、 Bi、 Inおよ び Ta力も選ばれる少なくとも 1つの元素である、請求項 1に記載の情報記録媒体。
[14] 前記透過率調整層に含まれる元素 Mが、 Ti、 Zr、 Hf、 Zn、 Ga、 Bi、 Inおよび Taか ら選ばれる少なくとも 1つの元素である、請求項 13に記載の情報記録媒体。
[15] 前記透過率調整層に含まれる元素 Mが、 Zn、 Ga、 Bi、 Inおよび Taから選ばれる少 なくとも 1つの元素である、請求項 14に記載の情報記録媒体。
[16] 前記透過率調整層に含まれる元素 Mが、 Biおよび Inから選ばれる少なくとも 1つの 元素である、請求項 15に記載の情報記録媒体。
[17] 前記反射層が、 Ag、 Au、 Cuおよび A1力 選ばれる少なくとも 1つの元素を含み、 前記反射層の厚さが、 Inn!〜 15nmの範囲内である、請求項 1に記載の情報記録媒 体。
[18] 前記反射層と前記記録層との間に配置された第 1の誘電体層をさらに含む、請求 項 1に記載の情報記録媒体。
[19] 前記第 1の誘電体層と前記記録層との間に配置された第 1の界面層をさらに含む、 請求項 18に記載の情報記録媒体。
[20] 前記記録層に対してレーザビーム入射側に配置された第 2の誘電体層をさらに含 む、請求項 1に記載の情報記録媒体。
[21] 前記記録層と前記第 2の誘電体層との間に配置された第 2の界面層をさらに含む、 請求項 20に記載の情報記録媒体。
[22] N= 2である、請求項 1に記載の情報記録媒体。
[23] N=4である、請求項 1に記載の情報記録媒体。
[24] 請求項 1に記載の情報記録媒体を製造する方法であって、
前記第 L情報層を製造する工程を含み、当該工程が、
(i) Ti、 Zr、 Hf、 Y、 Cr、 Ζη、 Ga、 Co、 Bi、 In、 Taおよび Ceから選ばれる少なくとも 1 つの元素 Mと、 Nbと、酸素(O)とを含み、かつ、 Nbの含有割合が 2. 9原子%以上で ある第 1のスパッタリングターゲットを用いて、透過率調整層を成膜する透過率調整 層成膜工程と、
(ii)反射層を成膜する反射層成膜工程と、
(iii)レーザビームの照射によって相変化を起こしうる記録層を成膜する記録層成膜 工程と、
を含んでおり、
前記工程 (i)〜 (iii) 1S 工程 (i)、工程 (ii)、工程 (iii)の順または工程 (iii)、工程 (ii) 、工程 (i)の順で行われる、情報記録媒体の製造方法。
[25] (I)第 1の基板上に、第 N情報層〜第 m情報層(mは、 2≤m≤Nを満たす整数)をこ の順に製造する工程と、
(II)第 2の基板上に、第 1情報層〜第 m— 1情報層をこの順に製造する工程と、
(III)第 m情報層と第 m— 1情報層とを互いに貼り合わせる工程と、
を含んでおり、
Lが m≤L≤Nを満たす場合は、前記工程 (I)が、第 L情報層を製造する工程にお ける前記工程 (i)〜 (iii)を、工程 (iii)、工程 (ii)、工程 (i)の順で含んでおり、
Lが 2≤L≤m— 1を満たす場合は、前記工程 (II)が、第 L情報層を製造する工程に おける前記工程 (i)〜 (iii)を、工程 (i)、工程 (ii)、工程 (m)の順で含んでいる、請求 項 24に記載の情報記録媒体の製造方法。
[26] 前記透過率調整層成膜工程にお!ヽて、前記透過率調整層を成膜する前に基板ァ ニール処理を行わな 、、請求項 24に記載の情報記録媒体の製造方法。
[27] 前記第 1のスパッタリングターゲットが、 Nbを 8. 6原子%以上含む、請求項 24に記 載の情報記録媒体の製造方法。
[28] 前記第 1のスパッタリングターゲットが、下記の式:
Nb M O (原子%)
ΙΟΟ
(Xおよび yは、 x≥8. 6、 y>0、 x+y≤37を満たす。)
で表される材料を含む、請求項 27に記載の情報記録媒体の製造方法。
[29] 前記第 1のスパッタリングターゲットが、 Nbの酸ィ匕物を 10mol%以上含む、請求項
24に記載の情報記録媒体の製造方法。
[30] 前記第 1のスパッタリングターゲットが、 Nbの酸ィ匕物を 30mol%以上含む、請求項
29に記載の情報記録媒体の製造方法。
[31] 前記第 1のスパッタリングターゲットが、 Nbの酸化物と、元素 Mの酸化物とを含み、 下記の式:
(Nb O ) (M-O) (mol%)
2 5 z 100-z
(M— Oは、元素 Mの酸化物を示しており、 zは、 z≥ 30を満たす。)
で表される材料を含む、請求項 30に記載の情報記録媒体の製造方法。
[32] 前記第 1のスパッタリングターゲットが、元素 M、 Nbおよび酸素(O)を合計で 90原 子%以上含む、請求項 24に記載の情報記録媒体の製造方法。
[33] 前記第 1のスパッタリングターゲットが、 Nbの酸化物および元素 Mの酸化物を合計 で 90mol%以上含む、請求項 24に記載の情報記録媒体の製造方法。
[34] 前記記録層成膜工程において、 Ge Sb Te、 Ge Bi—Te、 Ge Sn—Te、 Ge
Sb— Sn Teおよび Ge Bi— Sn Teから選ばれる少なくとも何れ力 1種の材料 を含む第 2のスパッタリングターゲットを用いて、厚さが Inn!〜 15nmの範囲内となる ように前記記録層を成膜する、請求項 24に記載の情報記録媒体の製造方法。
[35] 情報の記録および再生に用いられるレーザビームの波長をえとし、前記波長 λに おける前記第 1のスパッタリングターゲットの屈折率を ηとする場合、
t
前記透過率調整層成膜工程において、前記透過率調整層の厚さ dが λ /32η≤
t ά≤λ /4ηを満たすように前記透過率調整層を成膜する、請求項 24に記載の情報
t
記録媒体の製造方法。
[36] 前記透過率調整層成膜工程において、前記透過率調整層の厚さ dが d= λ /8η
t を満たすように前記透過率調整層を成膜する、請求項 35に記載の情報記録媒体の 製造方法。
[37] 前記透過率調整層成膜工程において、厚さが 5ηπ!〜 36nmの範囲内となるように 前記透過率調整層を成膜する、請求項 35に記載の情報記録媒体の製造方法。
[38] 前記反射層成膜工程において、 Ag、 Au、 Cuおよび A1から選ばれる少なくとも 1つ の元素を含む第 3のスパッタリングターゲットを用 、て、厚さが lnm〜 15nmの範囲内 となるように前記反射層を成膜する、請求項 24に記載の情報記録媒体の製造方法。
[39] 前記反射層成膜工程と前記記録層成膜工程との間に、第 1の誘電体層を成膜する 第 1の誘電体層成膜工程をさらに含む、請求項 38に記載の情報記録媒体の製造方 法。
[40] 前記第 1の誘電体層成膜工程と前記記録層成膜工程との間に、第 1の界面層を成 膜する第 1の界面層成膜工程をさらに含む、請求項 39に記載の情報記録媒体の製 造方法。
[41] 第 2の誘電体層を成膜する第 2の誘電体層成膜工程をさらに含み、
前記工程 (i)〜 (iii)が工程 (i)、工程 (ii)、工程 (iii)の順で行われる場合は、前記第
2の誘電体層成膜工程が工程 (iii)よりも後で行われ、
前記工程 (i)〜 (iii)が工程 (iii)、工程 (ii)、工程 (i)の順で行われる場合は、前記第
2の誘電体層成膜工程が工程 (iii)よりも先に行われる、請求項 24に記載の情報記録 媒体の製造方法。
[42] 前記記録層成膜工程と前記第 2の誘電体層成膜工程との間に、第 2の界面層を成 膜する第 2の界面層成膜工程をさらに含む、請求項 41に記載の情報記録媒体。
[43] N= 2である、請求項 24に記載の情報記録媒体の製造方法。
[44] N=4である、請求項 24に記載の情報記録媒体の製造方法。
PCT/JP2007/055597 2006-03-31 2007-03-20 情報記録媒体およびその製造方法 WO2007119439A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008510819A JP4750844B2 (ja) 2006-03-31 2007-03-20 情報記録媒体およびその製造方法
CN200780012407.4A CN101496104B (zh) 2006-03-31 2007-03-20 信息记录介质及其制造方法
US12/295,083 US8088464B2 (en) 2006-03-31 2007-03-20 Information recording medium and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-098816 2006-03-31
JP2006098816 2006-03-31

Publications (1)

Publication Number Publication Date
WO2007119439A1 true WO2007119439A1 (ja) 2007-10-25

Family

ID=38609227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/055597 WO2007119439A1 (ja) 2006-03-31 2007-03-20 情報記録媒体およびその製造方法

Country Status (5)

Country Link
US (1) US8088464B2 (ja)
JP (2) JP4750844B2 (ja)
CN (1) CN101496104B (ja)
TW (1) TW200805356A (ja)
WO (1) WO2007119439A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009096174A1 (ja) * 2008-01-31 2009-08-06 Panasonic Corporation 光学的情報記録媒体及びその製造方法
WO2009096165A1 (ja) * 2008-01-31 2009-08-06 Panasonic Corporation 光学的情報記録媒体とその製造方法、及びターゲット
WO2010110412A1 (ja) * 2009-03-27 2010-09-30 日鉱金属株式会社 Ti-Nb系酸化物焼結体スパッタリングターゲット、Ti-Nb系酸化物薄膜及び同薄膜の製造方法
WO2011024381A1 (ja) * 2009-08-31 2011-03-03 パナソニック株式会社 情報記録媒体とその製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090059758A1 (en) * 2005-04-07 2009-03-05 Matsushita Electric Industrial Co., Ltd. Optical information recording medium and method for manufacturing the same
JP5441586B2 (ja) * 2009-09-25 2014-03-12 Tdk株式会社 光記録媒体、光記録媒体の製造方法
WO2020031498A1 (ja) * 2018-08-09 2020-02-13 パナソニックIpマネジメント株式会社 情報記録媒体およびその製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0325922A (ja) * 1989-06-23 1991-02-04 Nec Kyushu Ltd 半導体製造装置
JPH11316981A (ja) * 1998-04-30 1999-11-16 Asahi Chem Ind Co Ltd 光学情報記録媒体の製造方法
JP2003013201A (ja) * 2001-06-26 2003-01-15 Kyocera Corp 酸化チタン系薄膜及びこれを用いた光記録媒体
JP2006045666A (ja) * 2004-06-29 2006-02-16 Pioneer Electronic Corp 薄膜形成用スパッタリングターゲット、誘電体薄膜、光ディスク及びその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1426939B1 (en) * 2001-09-12 2008-10-15 Matsushita Electric Industrial Co., Ltd. Optical information recording medium
US7449225B2 (en) * 2002-09-13 2008-11-11 Panasonic Corporation Information recording medium and method for manufacturing the same
US20060083150A1 (en) * 2002-12-13 2006-04-20 Yoshitaka Sakaue Optical information recording medium and method for manufacturing same
JP4141993B2 (ja) * 2003-08-07 2008-08-27 松下電器産業株式会社 光学的情報記録媒体
US7858290B2 (en) * 2003-10-02 2010-12-28 Panasonic Corporation Information recording medium and method for manufacturing the same
JP4442543B2 (ja) * 2005-10-13 2010-03-31 日本電気株式会社 光学的情報記録媒体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0325922A (ja) * 1989-06-23 1991-02-04 Nec Kyushu Ltd 半導体製造装置
JPH11316981A (ja) * 1998-04-30 1999-11-16 Asahi Chem Ind Co Ltd 光学情報記録媒体の製造方法
JP2003013201A (ja) * 2001-06-26 2003-01-15 Kyocera Corp 酸化チタン系薄膜及びこれを用いた光記録媒体
JP2006045666A (ja) * 2004-06-29 2006-02-16 Pioneer Electronic Corp 薄膜形成用スパッタリングターゲット、誘電体薄膜、光ディスク及びその製造方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009096174A1 (ja) * 2008-01-31 2009-08-06 Panasonic Corporation 光学的情報記録媒体及びその製造方法
WO2009096165A1 (ja) * 2008-01-31 2009-08-06 Panasonic Corporation 光学的情報記録媒体とその製造方法、及びターゲット
US8158233B2 (en) 2008-01-31 2012-04-17 Panasonic Corporation Optical information recording medium, method of manufacturing the same, and sputtering target
US8530140B2 (en) 2008-01-31 2013-09-10 Panasonic Corporation Optical information recording medium and method for manufacturing the same
JP5386374B2 (ja) * 2008-01-31 2014-01-15 パナソニック株式会社 光学的情報記録媒体及びその製造方法
WO2010110412A1 (ja) * 2009-03-27 2010-09-30 日鉱金属株式会社 Ti-Nb系酸化物焼結体スパッタリングターゲット、Ti-Nb系酸化物薄膜及び同薄膜の製造方法
JP5349583B2 (ja) * 2009-03-27 2013-11-20 Jx日鉱日石金属株式会社 Ti−Nb系酸化物焼結体スパッタリングターゲット、Ti−Nb系酸化物薄膜及び同薄膜の製造方法
TWI424074B (zh) * 2009-03-27 2014-01-21 Jx Nippon Mining & Metals Corp Ti-Nb-based sintered body sputtering target, Ti-Nb-based oxide thin film, and method for producing the same
WO2011024381A1 (ja) * 2009-08-31 2011-03-03 パナソニック株式会社 情報記録媒体とその製造方法
US8323763B2 (en) 2009-08-31 2012-12-04 Panasonic Corporation Information recording medium and method for producing the same

Also Published As

Publication number Publication date
CN101496104B (zh) 2010-12-01
US20090086608A1 (en) 2009-04-02
TW200805356A (en) 2008-01-16
JP4750844B2 (ja) 2011-08-17
JP2011081909A (ja) 2011-04-21
JPWO2007119439A1 (ja) 2009-08-27
CN101496104A (zh) 2009-07-29
JP5058346B2 (ja) 2012-10-24
US8088464B2 (en) 2012-01-03

Similar Documents

Publication Publication Date Title
JP5560261B2 (ja) 情報記録媒体
KR100531538B1 (ko) 광학적 정보기록매체와 그 제조방법
WO2006132076A1 (ja) 情報記録媒体とその製造方法
WO2007063687A1 (ja) 情報記録媒体とその製造方法
JP4996607B2 (ja) 情報記録媒体とその製造方法、及びスパッタリングターゲット
JP4834666B2 (ja) 情報記録媒体およびその製造方法
JP5058346B2 (ja) 情報記録媒体およびその製造方法
EP1542217A1 (en) Optical information recording medium and production method therefor
WO2009096165A1 (ja) 光学的情報記録媒体とその製造方法、及びターゲット
JP4316506B2 (ja) 光学的情報記録媒体およびその製造方法
WO2011024381A1 (ja) 情報記録媒体とその製造方法
JP5386374B2 (ja) 光学的情報記録媒体及びその製造方法
WO2006051645A1 (ja) 情報記録媒体とその製造方法
US8685518B2 (en) Information recording medium and method for producing same
WO2007088682A1 (ja) 情報記録媒体およびその製造方法、並びにその製造装置
WO2008053792A1 (fr) Support d'enregistrement d'informations, son procédé de fabrication, et cible de pulvérisation pour former un support d'enregistrement d'informations
JP5226537B2 (ja) 情報記録媒体およびその製造方法、スパッタリングターゲットならびに成膜装置
JP5838306B2 (ja) 情報記録媒体とその製造方法
WO2006112165A1 (ja) 光学的情報記録媒体とその製造方法
JP2007323743A (ja) 相変化型光記録媒体
KR20110086668A (ko) 정보 기록 매체, 기록 장치, 재생 장치 및 재생 방법
JP4086689B2 (ja) 光学的情報記録媒体とその製造方法
WO2006057116A1 (ja) 情報記録媒体とその製造方法
JP2007095235A (ja) 光記録媒体
JP2007310940A (ja) 相変化型光記録媒体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780012407.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07739040

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008510819

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12295083

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2176/MUMNP/2008

Country of ref document: IN

122 Ep: pct application non-entry in european phase

Ref document number: 07739040

Country of ref document: EP

Kind code of ref document: A1