WO2007116681A1 - 運動管理システム、運動管理方法、運動管理プログラム - Google Patents

運動管理システム、運動管理方法、運動管理プログラム Download PDF

Info

Publication number
WO2007116681A1
WO2007116681A1 PCT/JP2007/056194 JP2007056194W WO2007116681A1 WO 2007116681 A1 WO2007116681 A1 WO 2007116681A1 JP 2007056194 W JP2007056194 W JP 2007056194W WO 2007116681 A1 WO2007116681 A1 WO 2007116681A1
Authority
WO
WIPO (PCT)
Prior art keywords
movement
motion
variable
animal
walking
Prior art date
Application number
PCT/JP2007/056194
Other languages
English (en)
French (fr)
Inventor
Takashi Hirata
Ken Yasuhara
Kei Shimada
Original Assignee
Honda Motor Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co., Ltd. filed Critical Honda Motor Co., Ltd.
Priority to EP07739632A priority Critical patent/EP2011551B1/en
Priority to DE602007009078T priority patent/DE602007009078D1/de
Priority to DK07739632.3T priority patent/DK2011551T3/da
Priority to AT07739632T priority patent/ATE480308T1/de
Priority to US12/295,759 priority patent/US7771321B2/en
Publication of WO2007116681A1 publication Critical patent/WO2007116681A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B21/00Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
    • A63B21/00181Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices comprising additional means assisting the user to overcome part of the resisting force, i.e. assisted-active exercising
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02438Detecting, measuring or recording pulse rate or heart rate with portable devices, e.g. worn by the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/1036Measuring load distribution, e.g. podologic studies
    • A61B5/1038Measuring plantar pressure during gait
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/112Gait analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1124Determining motor skills
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H1/00Apparatus for passive exercising; Vibrating apparatus ; Chiropractic devices, e.g. body impacting devices, external devices for briefly extending or aligning unbroken bones
    • A61H1/02Stretching or bending or torsioning apparatus for exercising
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H3/00Appliances for aiding patients or disabled persons to walk about
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B21/00Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
    • A63B21/40Interfaces with the user related to strength training; Details thereof
    • A63B21/4001Arrangements for attaching the exercising apparatus to the user's body, e.g. belts, shoes or gloves specially adapted therefor
    • A63B21/4011Arrangements for attaching the exercising apparatus to the user's body, e.g. belts, shoes or gloves specially adapted therefor to the lower limbs
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B22/00Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
    • A63B22/02Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with movable endless bands, e.g. treadmills
    • A63B22/0235Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with movable endless bands, e.g. treadmills driven by a motor
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B69/00Training appliances or apparatus for special sports
    • A63B69/0028Training appliances or apparatus for special sports for running, jogging or speed-walking
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B71/00Games or sports accessories not covered in groups A63B1/00 - A63B69/00
    • A63B71/06Indicating or scoring devices for games or players, or for other sports activities
    • A63B71/0686Timers, rhythm indicators or pacing apparatus using electric or electronic means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5007Control means thereof computer controlled
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5058Sensors or detectors
    • A61H2201/5064Position sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5058Sensors or detectors
    • A61H2201/5069Angle sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5058Sensors or detectors
    • A61H2201/5079Velocity sensors
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/10Positions
    • A63B2220/16Angular positions
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/17Counting, e.g. counting periodical movements, revolutions or cycles, or including further data processing to determine distances or speed
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/30Speed
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/40Acceleration
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/50Force related parameters
    • A63B2220/56Pressure
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/80Special sensors, transducers or devices therefor
    • A63B2220/803Motion sensors
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2230/00Measuring physiological parameters of the user
    • A63B2230/04Measuring physiological parameters of the user heartbeat characteristics, e.g. ECG, blood pressure modulations
    • A63B2230/06Measuring physiological parameters of the user heartbeat characteristics, e.g. ECG, blood pressure modulations heartbeat rate only
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2230/00Measuring physiological parameters of the user
    • A63B2230/30Measuring physiological parameters of the user blood pressure
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2230/00Measuring physiological parameters of the user
    • A63B2230/40Measuring physiological parameters of the user respiratory characteristics
    • A63B2230/42Measuring physiological parameters of the user respiratory characteristics rate
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2230/00Measuring physiological parameters of the user
    • A63B2230/75Measuring physiological parameters of the user calorie expenditure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S482/00Exercise devices
    • Y10S482/901Exercise devices having computer circuitry

Definitions

  • Exercise management system exercise management method, exercise management program
  • the present invention relates to a system and method for managing the movement of an animal, and a program for providing the computer with the management function.
  • the present invention provides a system, method, and management function for managing the movement of the animal so that the movement can be induced with an appropriate scale and rhythm according to the physiological state of the animal such as a human being.
  • the problem to be solved is to provide a program for assigning a computer to a computer.
  • the exercise management system of the first invention for solving the above-described problem is a second exercise that induces the movement of the animal while adjusting the movement scale of the animal with a rhythm in harmony with the movement rhythm of the animal.
  • a control unit that controls the operation of the guidance device; a physiological variable measurement unit that measures a physiological variable that represents the physiological state of the animal; and a movement variable that represents one or both of the movement scale and movement rhythm of the animal.
  • the physiological variable measurement unit and the physiological variable measurement unit are controlled by the control unit so that the movement variable is changed and the movement of the animal is induced by the operation of the second movement induction device.
  • the measured physiological variable is an appropriate value in view of the activity of the animal's physical function or the reduction of the physical load.
  • a recommended value setting unit that sets the motion variable measured by the motion variable measurement unit as a recommended value of the motion variable.
  • the physiological variable and the exercise variable of the animal are measured in a state where the animal movement is induced by the operation of the second exercise induction device.
  • “Physical variables” represent the physiological state of an animal.
  • “Motor variables” represent one or both of the animal's motor scale and motor rhythm.
  • the value of the motor variable when the physiological variable is an appropriate value is set as the recommended value of the motor variable. The Thereby, the recommended value of the movement variable of the animal can be appropriately set in view of the activity of the body function of the animal.
  • the movement of the animal is induced based on the recommended value by the second movement induction device, so that the movement scale and movement rhythm of the animal are appropriate in view of the activity of the animal's physical function.
  • the induction scale and the induction rhythm can be appropriately controlled. That is, depending on the physiological state of the animal, the movement of the animal can be induced with an appropriate scale and rhythm in view of activation of physical functions and the like.
  • the exercise management system of the second invention is the exercise management system of the first invention, wherein the control unit includes the first and second exercise vibrations as parameters that periodically change according to the movement of the animal.
  • the motion oscillator measurement unit that measures each of the children and the first model that generates an output vibration signal that changes with time according to the angular velocity determined based on the natural angular velocity by mutually drawing the input vibration signal.
  • the first vibrator generation section that generates the first vibrator as the output vibration signal and the motion vibrator measurement section
  • a natural angular velocity setting unit for setting a new natural angular velocity based on the phase difference between the generated motion vibrator and the first vibrator generated by the first vibrator generating unit; and based on the input vibration signal.
  • the second motion oscillator measured by the motion oscillator measuring means is added to a second model that generates an output vibration signal that changes with time at an angular speed determined based on the natural angular speed set by the natural angular speed setting means.
  • an induction vibrator generating unit for generating an induction vibrator for specifying the scale and rhythm of the operation of the second motion induction device.
  • the movement rhythm of the animal and the movement rhythm (the rhythm that induces the movement of the animal) of the second exercise induction device are mutually compromised or harmonized.
  • the movement of the animal has an appropriate scale and rhythm in accordance with the physiological state of the animal in view of the activity of the body function. Can be induced.
  • the exercise management system of the third invention is the exercise management system of the first invention, wherein the physiological variable measurement unit includes oxygen intake, respiratory frequency, heart rate, pulse rate, blood pressure, blood in the animal. A part or all of saturated oxygen concentration, lactic acid level, myoelectric potential and consumed energy is measured as the physiological variable.
  • the exercise management system of the third invention according to the physiological state represented by the amount of oxygen intake of the animal and the like, the exercise of the animal has an appropriate scale in view of the activity of the body function. It can be induced by rhythm.
  • the exercise management system of the fourth invention is the exercise management system of the first invention, wherein the exercise variable measurement unit includes a first exercise variable measurement unit and a second exercise variable measurement unit.
  • the movement variable measuring unit measures the first movement variable based on the movement speed of the first movement induction device for guiding the movement of the animal while adjusting the movement speed of the animal, and the first movement variable is the first movement variable.
  • the movement variable representing the movement scale and movement rhythm of the animal whose movement is induced by the movement of the movement induction device, and the second movement variable measuring unit is configured to connect the first movement induction device and the animal.
  • a second movement variable is measured based on an interaction state or an operation state of the second movement induction device, and the second movement variable is the movement variable representing the movement rhythm or movement scale of the animal.
  • the "first motion variable” is measured based on the speed of operation of the first motion guide device.
  • the “second movement variable” is measured based on the interaction between the first movement induction device and the animal or the scale or rhythm induced by the second movement induction device.
  • the exercise management system of the fifth invention is the exercise management system of the fourth invention, wherein the first exercise variable measurement unit measures the walking or running speed of the animal as the first exercise variable, The second movement variable measuring unit measures a walking rate, which is the stride of the animal or the number of steps per unit time, as the second movement variable.
  • the recommended value of the exercise variable that is a function of the walking or running speed and the stride or walking rate of the animal is the activity of the body function of the animal. It can be set appropriately in view of reducing the load.
  • Walking or running speed represents the animal's movement scale and movement rhythm.
  • the stride represents the movement scale of the animal.
  • the walking rate represents the movement rhythm of animals.
  • the second motion induction device induces the animal's movement, so that the animal's stride or walking rate is appropriate in view of the activity of the animal's body function, etc.
  • the induction scale and rhythm can be appropriately controlled so that
  • the exercise management system of the sixth invention is the exercise management system of the fifth invention, wherein the exercise variable measuring unit is a step as the second exercise variable with respect to walking or running speed as the first exercise variable.
  • the walking ratio which is the ratio of the walking or running speed as the first movement variable to the square of the walking ratio as the second movement variable or the square of the walking rate as the second movement variable, is measured as the movement variable.
  • the recommended value of the walking ratio of the animal can be set appropriately in view of the activity of the body function of the animal and the reduction of the body load. Then, the movement of the animal is induced based on this recommended value by the second movement induction device, so that the walking ratio of the animal becomes appropriate in view of the activity of the body function of the animal, etc.
  • the induction scale and rhythm can be appropriately controlled.
  • the motion management system of the seventh invention is the motion management system of the fourth invention, wherein the first motion variable measuring unit is opposite to the circulation motion direction of the circulation motion body possessed by the first motion induction device.
  • the first movement variable of the animal in which movement in a direction is induced is measured based on a circulation movement speed of the circulation movement body.
  • the circulating motion body of the first motion guide device is Circulating movement induces the movement of the animal in contact with the circulating movement body and the body part in the direction opposite to the circulating movement direction of the circulating movement body.
  • “Circulating body” includes an endless belt stretched around a plurality of rollers, a sphere that is circulated around an axis that passes through the center or a point off the center, an elliptical sphere, a center axis, or a center axis that is separated from the center axis force Cylinders that circulate around an axis parallel to the cylinder, cylinders such as square cylinders, and other masses that circulate around any axis.
  • the setting space can be selected relatively freely.
  • the exercise management system of the eighth invention is the exercise management system of the fourth invention, wherein the first motion variable measurement unit is hung on a plurality of rollers of a treadmill as the first motion induction device.
  • the walking or running speed as the first motion variable representing the speed of the walking or running motion of the animal that is guided in the direction against the motion of the endless belt as the circulated moving body is given as the endless belt. Measured based on the driving speed of
  • the endless belt (circulation motion body) of the treadmill (first motion induction device) is circulated to make a direction opposite to the direction of circulation motion of the endless belt.
  • the animal's walking or running movement to is induced.
  • the movement of the animal accompanying the walking or running movement is offset by the endless belt's circulation movement.
  • Value setting is possible, and the setting space can be selected relatively freely.
  • the exercise management system of the ninth invention is the exercise management system of the first invention, wherein the recommended value setting unit recognizes an identifier for identifying a physical feature of each of the plurality of animals.
  • a plurality of the recommended values for each animal are preliminarily set, and the recommended values are newly set based on the preliminarily set recommended values for the recognized identifiers. It is characterized by constructing a database in which values are stored in association with each other.
  • the physical characteristics of each animal (body size, Includes weight, age, gender, etc. ), Standard recommended values are set.
  • the movement of the animal is induced based on the standard recommended value by the movement induction device, so that the movement variable of the animal becomes appropriate in view of the activity of the body function of the animal.
  • the induction scale and rhythm can be appropriately controlled.
  • a method of the tenth invention for solving the above-mentioned problem is a method for managing the movement of an animal, wherein the movement scale of the animal is adjusted with a rhythm in harmony with the movement rhythm of the animal.
  • Controls the movement of the second motion induction device that induces animal movement measures physiological variables that represent the physiological state of the animal, and measures movement variables that represent one or both of the animal's movement scale and movement rhythm
  • the movement variable is controlled by the control unit to change!
  • the movement of the animal is induced by the operation of the second movement induction device, and the physiological variable measured in the state is It is characterized in that the motor variable measured in an appropriate state in view of the activity of the body function of the animal or the reduction of the body load is set as a recommended value of the motor variable.
  • the exercise management method of the tenth invention similar to the exercise management system of the first invention, the recommended value of the animal's exercise variable is appropriately set in view of the activation of the body function of the animal, etc. The Then, the movement of the animal is induced based on the recommended value by the second movement induction device, so that the movement scale and movement rhythm of the animal become appropriate in view of the activation of the body function of the animal. As described above, the induction scale and the induction rhythm can be appropriately controlled.
  • a program according to an eleventh invention for solving the above-mentioned problem is a program for causing a computer to function as a system for managing the movement of an animal, wherein the movement of the animal is performed with a rhythm coordinated with the movement rhythm of the animal.
  • a control unit that controls the operation of the second motion induction device that induces the movement of the animal while adjusting the scale; a physiological variable measurement unit that measures a physiological variable that represents a physiological state of the animal;
  • a movement variable measuring unit that measures a movement variable representing one or both of movement rhythms, and the movement of the animal is controlled by the control unit so that the movement variable changes.
  • the physiological variable measured by the physiological variable measurement unit becomes an appropriate value in view of the activity of the body function of the animal or reduction of the body load.
  • the computer is caused to function as a system including a recommended value setting unit that sets the motion variable measured by the motion variable measuring unit as a recommended value of the motion variable.
  • the motion of the animal is managed so that the recommended value of the motion variable of the animal can be appropriately set in view of the activity of the physical function of the animal.
  • Functions are added to the computer. Note that all of the functions may be given to one computer, or the functions may be distributed to a plurality of computers.
  • FIG. 1 is a diagram illustrating the configuration of an exercise management system according to the present invention.
  • FIG. 2 is an explanatory diagram of the exercise management method of the present invention.
  • FIG. 3 is an explanatory diagram of the exercise management method of the present invention.
  • FIG. 6 is an explanatory diagram of the exercise management method of the present invention.
  • the motion management system 1 shown in FIG. 1 uses a treadmill (first motion guide device) 10 and a walking motion guide device (second motion guide device) 20 to make a user (human (animal) This is for setting an appropriate recommended walking ratio in view of the activity of physical functions in)). Also.
  • the motion management system 1 harmonizes the user's walking or running motion with the operation of the treadmill 10 and the operation of the walking motion guidance device 20, while maintaining a scale and a scale according to the recommended walking ratio. It is intended to train this user to walk in the rhythm.
  • the treadmill 10 spans a driving roller 11 having a width slightly larger than a standard human lateral width, a driven roller 12 having a width substantially the same as the driving roller 11, and the driving roller 11 and the driven roller 12.
  • the endless belt (circulating motion body) 13 and the tread 14 that supports the portion of the endless belt 13 on which the user rides also support the lower force.
  • the drive roller 11 is driven by a drive mechanism 101 including a motor, a transmission, and the like.
  • the driving roller 11 is driven clockwise in the figure, the belt 13 also rotates clockwise with the driven roller 12 being driven in the same direction. As a result, the user who walks on the belt 13 is guided to walk (or run) to the left in the figure.
  • a speed sensor 102 that outputs a signal corresponding to the moving speed of the belt 13 and a pressure sensor 104 that outputs a signal corresponding to the pressure received by the tread plate 14 are provided.
  • the body of the user is provided with a physiological variable sensor 106 that outputs a signal corresponding to the physiological variable b such as the heart rate.
  • the physiological variable sensor 106 is attached to the user's body in an appropriate manner depending on the contents of the physiological variable b.
  • the treadmill 10 a treadmill having any known configuration such as one that is generally sold!
  • the walking motion guidance device 20 includes a lumbar orthosis 21, a thigh orthosis 22, a force transmission member 23, a battery 24, an actuator (electric motor) 25, and a hip joint angle sensor 26.
  • the waist orthosis 21 is made of a combination of a rigid material and a flexible material, and is attached to the user's waist.
  • the thigh orthosis 22 is also made of a combination of a rigid material and a flexible material, and is attached to the front and back of the user's thigh.
  • the force transmission member 23 is made of a material having a fixed shape such as a lightweight hard plastic, and extends along the user's thigh from the side of the user's waist to the front and back of the thigh. The shape is divided into two forks, and is connected to each of the actuator 25 and the front and rear thigh devices 22.
  • the notch 24 is accommodated in the lumbar orthosis 21 (for example, fixed between a plurality of materials constituting the lumbar orthosis 21), and supplies power to the actuator unit 25 and the like.
  • the actuator 25 is attached to the waist orthosis 21 and applies a force to the user's thigh via the force transmission member 23 and the thigh orthosis 22.
  • the hip joint angle sensor 26 is connected to a rotary encoder or the like provided next to the user's waist. And outputs a signal corresponding to the hip joint angle.
  • the exercise management system 1 includes a first control unit 100 and a second control unit 200.
  • the first control unit 100 is configured by a computer such as a microcomputer attached to the treadmill 10 and controls the driving speed of the driving roller 11 by the driving mechanism 102.
  • the first control unit 100 includes a motion variable measurement unit 110, a physiological variable measurement unit 120, and a recommended walking ratio setting unit 130.
  • the motion variable measurement unit 110, physiological variable measurement unit 120, and recommended walk ratio setting unit 130 are each configured as a computer (CPU, ROM, RAM, IZO (input / output device), etc.) as hardware.
  • IZO input / output device
  • the motion variable measurement unit 110 includes a first motion variable measurement unit 111 and a second motion variable measurement unit 112.
  • the first motion variable measuring unit 111 measures the user's walking speed V as the first motion variable based on the output of the speed sensor 102. Since the walking speed V increases as the user's walking movement scale increases and the walking movement rhythm increases, the first movement variable corresponds to a movement variable that represents both the user's movement scale and movement rhythm.
  • the second motion variable measuring unit 112 measures the user's walking rate (steps per unit time) p as a second motion variable based on the output of the pressure sensor 104. Since the walking rate p increases as the user's walking rhythm increases, the second motion variable corresponds to a motion variable that represents the user's motion rhythm.
  • the physiological variable measuring unit 120 measures a physiological variable b representing the physiological state of the user 1 based on the output of the physiological variable sensor 106 attached to the user's body.
  • the recommended walking ratio setting unit 130 calculates the recommended walking ratio k based on the user's walking ratio k measured by the motion variable measuring unit 110 and the physiological variable b measured by the physiological variable measuring unit 120.
  • the second control unit (corresponding to the "control unit” of the present invention) 200 is a computer housed in the waist orthosis 21 of the walking motion guidance device 20, and a walking motion guidance device for this computer
  • the “exercise management program” of the present invention is software configured to provide 20 control functions and the like.
  • the second control unit 200 includes a motion transducer measurement unit 210, a first transducer generation unit 220, a natural angular velocity setting unit 230, a second transducer generation unit 240, and an induction transducer generation unit. With 250.
  • the motion vibrator measurement unit 210 measures the user's hip joint angle ⁇ as a “second motion vibrator” that periodically changes according to walking motion.
  • the hip joint angle ⁇ has a large user's walking movement scale (expressed by stride etc.).
  • the motion oscillator measurement unit 210 measures the hip joint angular velocity (1 ⁇ Zdt as the “first motion oscillator” based on the output of the hip joint angle sensor 26.
  • H H Zdt corresponds to a motion oscillator that represents the user's motion rhythm because the amplitude increases as the user's walking motion rhythm (expressed by walking rate, etc.) becomes faster.
  • the first transducer generation unit 220 is a hip joint angular velocity d measured by the motion transducer measurement unit 210.
  • first oscillator X is generated according to the first model
  • the “first model” is a model that generates an output vibration signal that changes with time at an angular velocity that is determined based on the natural angular velocity ⁇ by drawing it into the input vibration signal.
  • the intrinsic angular velocity setting unit 230 includes a first phase difference setting unit 231, a second phase difference setting unit 232, a correlation number setting unit 233, a first angular velocity setting unit 234, and a second angular velocity setting unit 235. It is equipped with.
  • the first phase difference setting unit 231 includes a hip joint angular velocity (an angular velocity ⁇ of 1 ⁇ Zdt and a fan 'del.
  • the first phase difference ⁇ ⁇ is set as the phase difference from the transducer X that reflects the intrinsic angular velocity ⁇ included in the equation.
  • the second phase difference setting unit 232 includes a virtual motion oscillator ⁇ and a virtual induction oscillator (virtual induction oscillator h
  • the correlation coefficient setting unit 233 has the second phase difference ⁇ ⁇ set by the second phase difference setting unit 232.
  • the first angular velocity setting unit 234 sets the angular velocity ⁇ of the virtual motion oscillator ⁇ based on the correlation coefficient ⁇ set by the correlation coefficient setting unit 233.
  • the second angular velocity setting unit 235 uses the second phase difference ⁇ h h set by the second phase difference setting unit 232 based on the angular velocity ⁇ of the virtual motion oscillator 0 set by the first angular velocity setting unit 234.
  • the ⁇ 1S target phase difference setting unit 212 temporarily approaches the target phase difference ⁇ ⁇ set by 212.
  • the angular velocity ⁇ of the imaginary induction oscillator 0 is set as a new natural angular velocity ⁇ .
  • the second oscillator generation unit 240 is based on the hip joint angle ⁇ measured by the motion oscillator measurement unit 210 and the natural angular velocity ⁇ set by the natural angular velocity setting unit 230.
  • the “second model” is a model that generates an output vibration signal that changes with time at an angular velocity determined based on the natural angular velocity ⁇ based on the input vibration signal.
  • the induction vibrator generation unit 250 includes a first induction vibrator generation unit 251 and a second induction vibrator generation unit 252.
  • the first induction oscillator generation unit 251 performs the first induction oscillation based on the second oscillator y generated by the second oscillator generation unit 240 and the natural angular velocity ⁇ set by the natural angular velocity setting unit 230. Generates the mover ⁇ .
  • the first induction oscillator ⁇ is a crotch measured by the motion oscillator measurement unit 210.
  • is its target value ⁇
  • the second induction vibrator generation section 252 Based on the second vibrator y generated by the second vibrator generation section 240 and the natural angular velocity ⁇ set by the natural angular speed setting section 230, the second induction vibrator generation section 252
  • the induction vibrator generation unit 250 acts on the user by the walking motion induction device 20 based on the first induction vibrator z and the second induction vibrator z.
  • the induction vibrator z is generated as an instruction signal of the torque T around the hip joint.
  • the first control unit 100 and the second control unit 200 are capable of wireless communication.
  • 210, 22 0, ... are arranged in an arbitrary pattern in the first control unit 100 and the second control unit 200. Also good.
  • the first control unit 100 and the second control unit 200 may be configured by the same computer. Communication between the first control unit 100 and the second control unit 200 is wired communication.
  • the first control unit 100 controls the operation of the treadmill 10 so that the speed of the belt 13 is constant, so that the user walks at a substantially constant speed in the direction opposite to the movement of the belt 13. Movement is induced.
  • the first model has a hip joint angular velocity (1 ⁇ Zdt etc.
  • This model expresses the correlation between multiple first elements, such as the left and right legs, using the van 'der Pol' equation expressed by the following equation (1).
  • “” is a coefficient (> 0) that is set so that the first oscillator ⁇ and its one-time derivative (dxZdt) draw a stable limit cycle in the X— (dx / dt) plane.
  • G is the first correlation coefficient representing the correlation between the left and right legs (first element) in the first model.
  • K is a feedback factor.
  • the natural angular velocity ⁇ may be arbitrarily set within the range of ⁇ / ⁇ that does not deviate significantly from the actual walking assist rhythm (walking induction rhythm) by the walking motion induction device 20.
  • the first oscillator ⁇ ( ⁇ , X) is calculated or generated according to the Runge's tatta method.
  • the components X and X of the transducer X represent the walking rhythm of the left and right legs, respectively. Also, R
  • Oscillator X is one of the properties of Van 'Dell-Pol equation, and ⁇ mutual entrainment' ', hip joint angular velocity that changes with time at almost the same rhythm or angular velocity as the actual walking motion rhythm 1 ⁇
  • hip joint angular velocity instead of or in addition to 1 ⁇ Zdt, hip joint angle ⁇ , knee joint,
  • the first oscillator X may be generated based on the oscillator.
  • hip joint angular velocity (1 ⁇ which may be expressed by the Van der Pol equation, which is different from the Van der Pol equation expressed by Equation (1).
  • the first model may be expressed by any equation that can generate oscillators with mutual entrainment effects, such as motions such as H Zdt.
  • the hip joint angular velocity compound whose output fluctuates according to the motion oscillator such as 1 ⁇ Zdt.
  • the first oscillator X is generated as the output of the first element (Equation (1), Fig. 2Zs020).
  • the qualitative relationship between the left and right legs, such as alternating back and forth, and leg movements around the hip joint The first oscillator X is generated in a way that reflects the qualitative relationship between the joints of the same leg, such as the period and phase difference with the leg motion around the knee joint. Accordingly, the rhythm and scale of the induction vibrator that induces the user's movement can be made appropriate in view of the relationship.
  • the natural angular velocity setting unit 230 generates a virtual 2 based on the target phase difference ⁇ 0 stored in the memory and the first transducer X generated by the first d transducer setting unit 210.
  • the natural angular velocity ⁇ is set according to a virtual model containing two oscillators (Fig. 2Zs030).
  • the first phase difference measurement unit 231 performs motion oscillators for the left and right components. Hip joint angular velocity measured by measuring section 210 (1 ⁇ Zdt phase ⁇ and first oscillator setting
  • phase difference 0 — ⁇ with respect to phase 0 of the first oscillator X generated by unit 210 is expressed as
  • the second phase difference setting unit 232 sets the first phase difference ⁇ ⁇ set by the first phase difference setting unit 23 1 to be constant over the past three walking cycles.
  • ⁇ ⁇ arcsin [(o> — ⁇ ) / 2 ⁇ ] ⁇ ⁇ (2 ⁇ 3)
  • m is the virtual induction oscillator 0
  • the correlation coefficient setting unit 233 uses the first phase difference ⁇ ⁇ set by the first phase difference setting unit 231 and the second phase difference ⁇ ⁇ set by the second phase difference setting unit 232. Difference from ⁇ ⁇
  • the correlation coefficient ⁇ is set so that 1 2 1 ⁇ is minimized (Fig. 2Zs033).
  • ⁇ (t) ⁇ (t)-r? ⁇ V (t) -V (t) ⁇
  • the first angular velocity setting unit 234 determines that the intrinsic angular velocity ⁇ of the virtual induction vibrator 0 is constant based on the correlation coefficient ⁇ set by the correlation coefficient setting unit 233. For each component on the right, set the angular velocity ⁇ of the virtual motion oscillator 0 according to the following equation (2.5) so that each component of the first and second phase difference ⁇ ⁇ — ⁇ ⁇ is minimized. (Fig. 2Zs 034) (
  • ⁇ (t) - ⁇ Jdt ([4 s (t) 2- ⁇ (t) — ⁇ (t) ⁇ ⁇ 2
  • the second angular velocity setting unit 235 determines the virtual induction oscillator 0 of the virtual induction oscillator 0 based on the angular velocity ⁇ of the virtual motion oscillator 0 set by the first angular velocity setting unit 234 for each of the left and right components.
  • the angular velocity ⁇ is set as the new natural angular velocity ⁇ (Fig. 2Zs035). Specifically, the second
  • ⁇ ( ⁇ ) ⁇ Jdf ([4 £ (t) 2 — (t) - ⁇ (t) ⁇ 2 )
  • Each component of R) is a coefficient representing the stability of the system.
  • the second vibrator generating unit 240 is based on the crotch joint angle ⁇ measured by the motion vibrator measuring unit 210 and the new natural angular velocity ⁇ set by the natural angular velocity setting unit 230.
  • the second oscillator y (y L +, y L ⁇ , y R +, y R ⁇ ) is generated (FIG. 2Z s040).
  • the second model is a compound whose output fluctuates according to the motion oscillator such as the hip joint angle ⁇ .
  • This model expresses the correlation between multiple second elements, such as a number of neural elements.
  • the movement variable u (i L +, L-, R +, R—) corresponding to fluctuations in the membrane potential of the neural elements R + and R ⁇ that govern the movement in the stretching direction and the adaptation of the neural element i
  • V self-suppression factor
  • is the time constant that defines the change characteristics of the motion variable u.
  • L R 2i is a time constant that defines the change characteristic of the self-inhibiting factor v. ⁇ W ( ⁇ 0) '' is multiple second
  • K is a feedback coefficient corresponding to the hip joint angle ⁇ .
  • hip joint angle ⁇ the hip joint angular velocity d ⁇ Zdt, the knee joint
  • the second oscillator y is generated ⁇ .
  • the second oscillator y takes 0 when the value of the motion variable u is less than the threshold u, and takes this u value when the value of the motion variable u is greater than or equal to the i i th i threshold u.
  • the second oscillator y is a sigmoid function th i i
  • L- R- also increases.
  • the forward or backward movement of the leg (thigh) is identified by, for example, the polarity of the hip joint angular velocity d ⁇ / dt.
  • the hip joint angular velocity compound whose output fluctuates depending on the motion oscillator such as 1 ⁇ Zdt.
  • a second oscillator y is generated as the output of the second element i according to the second model expressing the relationship between the second elements of the number (Equation (3), FIG. 2Zs040). This allows the second correlation coefficient w in the second model to reflect the relationship between the multiple second elements related to the user's actual motion.
  • an appropriate second vibrator V can be generated in view of the relationship between the plurality of actual elements.
  • the second vibration is reflected in a form that reflects the qualitative relationship between neurons that govern walking by the left and right legs. A child y ; is created. Therefore, the rhythm and scale of the induction vibrator that induces the user's movement can be made appropriate in view of the relationship.
  • the induction oscillator generation unit 250 generates the hip joint angle ⁇ and the hip joint angular velocity (1 ⁇ Zdt measured by the motion oscillator measurement unit 210 and the second oscillator generation unit 240.
  • the first induction vibrator z is generated according to the following equation (4) (Fig. 3Zs051).
  • the first induction oscillator ⁇ uses the first coefficient g and g as the panel coefficient (elastic coefficient), respectively.
  • is the target angle ⁇ (> 0) and ⁇ according to the target motion scale
  • the user's movement can be induced with a rhythm and scale reflecting the elastic elements of the user's body, such as the elastic force when the muscle is transitioned from the contracted state to the extended state.
  • the elastic force due to the virtual panel G is set to the hip joint angle ⁇ according to the panel coefficient g.
  • H is the target angle ⁇
  • H is the target angle ⁇
  • the elastic force due to 1+ is the hip joint angle ⁇
  • the elastic force generated by the other virtual panel G depends on the panel coefficient g and the hip joint angle ⁇
  • H is the target angle ⁇
  • the elastic force by H 0- 1- is the hip joint angle ⁇
  • hip joint angle ⁇ is less than target angle ⁇
  • the elastic force by the panel G increases the hip joint angle ⁇ ! ] Thigh in the direction (forward)
  • H is the front target angle ⁇
  • the hip joint angular velocity (sigmoid function fs with 1 ⁇ Zdt as a variable (see Eq. (3)) is the first relation.
  • Second oscillator y as output of multiple second elements i, depending on the forward and backward movement of the thigh
  • the first torque T may be generated in such a manner that a part of the torque is reflected in an eccentric manner.
  • the second induction vibrator ⁇ is set according to the following equation (5) (FIG. 2Zs052).
  • the second induction oscillator ⁇ uses the second coefficients g and g as damper coefficients (damping coefficients), respectively.
  • the second coefficients g and g increase the absolute value of the hip joint angle ⁇ according to the natural angular velocity ⁇ .
  • Equation (5.1) (5.2) the second induction oscillator ⁇ has a second coefficient g
  • g is a reduction coefficient (damper coefficient), and the hip joint angular velocity (hip joint angle according to 1 ⁇ Zdt)
  • the user's movement can be induced with a rhythm and scale that reflect the attenuation factors of the user's body, such as the viscous force when transitioning from the stretched state of the muscle to the bent state. Is its damper coefficient g and hip joint angular velocity
  • the force acting on the user's thigh is expressed (see equation (5)).
  • the damping force generated by the virtual damper G is large enough to suppress excessive movement of the thigh forward. Represents the force acting on the thigh.
  • the elastic force of the other virtual damper G is expressed by its damper coefficient g and the hip joint.
  • the damping force generated by the virtual damper G is designed to suppress excessive movement of the thigh backward.
  • the second induction oscillator z includes step functions H and H as a function of the hip joint angle ⁇ .
  • the motion variable measurement unit 110 measures the walking ratio k (Fig. 3Zsl lO ). Specifically, the first motion variable measurement unit 101 measures the user's walking speed V based on the output of the speed sensor 102 corresponding to the speed of the belt 13 of the treadmill 10 (FIG. 3 / sl ll). User's walking rate (steps per unit time) p based on the number of times per unit time that the output of the pressure sensor 104 shows a peak according to the pressure that the second motion variable measurement unit 112 receives on the treadmill 10 tread 14 Is measured (Fig. 2 ZS112).
  • the walking rate p may be measured based on the temporal change of the torque T around the hip joint that is applied to the user by the walking motion guidance device 20.
  • an acceleration sensor may be attached to the user's body, and the walking rate p may be measured based on the output of the acceleration sensor corresponding to the acceleration in the vertical direction of the user.
  • the physiological variable measuring unit 120 measures the organizing variable b based on the output of the physiological variable sensor 106 (FIG. 3Zsl20).
  • the physiological variable b includes some or all of the user's oxygen intake, respiratory frequency, heart rate, pulse rate, blood pressure, blood saturated oxygen concentration, lactate value, myoelectric potential, and energy consumption.
  • the walking motion guidance device 20 k + k— k + k— can be changed by setting or changing part or all of the coefficients a, a, b, and b.
  • the user's walking rate (target movement rhythm) p can be changed.
  • the physiological variable b is sequentially measured in a state where the walking motion of the user is induced so that the walking ratio k is sequentially changed by the walking motion guidance device 20.
  • the relationship between the walking ratio k and the physiological variable b is obtained, and the recommended walking ratio setting unit 130 sets the recommended walking ratio k based on this relationship (FIG. 3Zsl30).
  • the recommended walking ratio k is an appropriate walking ratio k in view of the reduction of the user's physical load.
  • Physiological variables b different from energy consumption such as heart rate, lactic acid level (representing the degree of fatigue of the body), muscle group activity (representing the degree of activity of the body function), etc. are measured and measured.
  • a recommended walking ratio k may be set based on the variable b.
  • the user's walking motion is induced according to the recommended walking ratio k by the walking motion guidance device 20.
  • the guiding method will be described with reference to FIG. Of the user's walking movement according to the recommended walking ratio k
  • the guidance method includes the guidance method of the user's walking movement when the recommended walking ratio k is set, and the guidance method.
  • the only difference is in the method of generating the conductor z (Fig. 3Zs050). Therefore, the measurement of the motion oscillator (Fig. 2Zs011, s012), the generation of the first oscillator X (Fig. 2Zs020), the setting of the natural angular velocity ⁇ (Fig. 2Zs030) and the generation of the second oscillator y (Fig. 2Zs040) The explanation is omitted.
  • the first motion variable measurement unit 111 measures the walking speed V of the user whose walking motion is induced by the operation of the treadmill 10 and the motion of the walking motion induction device 20! (Fig. 6Zsl 11)
  • the induction oscillator generation unit 250 generates the hip joint angle ⁇ and the hip joint angular velocity (1 ⁇ Zdt measured by the motion oscillator measurement unit 210 and the second oscillator generation unit 240.
  • the induction oscillator z is set based on the user's walking speed V measured by the first motion variable measuring unit 111 and the recommended walking ratio k measured by the recommended walking ratio setting unit 130.
  • the first induction vibrator z is generated according to the following equation (6) (Fig. 6Zs251).
  • the hip joint angle ⁇ depends on the recommended walking ratio k and walking speed V by the first induction oscillator ⁇ .
  • the user's walking motion can be induced to match 0 + 0 ⁇ .
  • the second induction vibrator Z is set according to the following equation (7) (Fig. 6Zs252).
  • the second induction oscillator z causes the hip joint angular velocity (the absolute value of the hip joint angle ⁇ to
  • the user's walking motion can be induced so that an increase in the 2 H H value is suppressed.
  • Inductive oscillator including moving element ⁇ Current I corresponding to ⁇ is transferred from battery 206 to left and right actuators 21
  • the force (torque around the hip joint) is applied to the user's thigh.
  • the walking ratio (motion variable) k in the state where the user's motion is induced by the operation of the walking motion induction device (second motion induction device) 20 k And the physiological variable b is measured (Fig. 3 Zsl 10, sl20) o and the physiological variable b is set to an appropriate value in view of the “activation of physical function” or “reduction of physical load” of this animal.
  • the walking ratio k is set as the recommended target ratio k. This makes the recommended walking ratio k 1S
  • the walking motion guidance device 20 induces the user's walking motion based on this recommended walking ratio k.
  • the guidance scale and rhythm are appropriately controlled so that the user's stride (exercise scale) q and walking rate (exercise rhythm) p are appropriate in view of the activity of the user's physical functions. sell.
  • the heart rate (physiological variable) when the same user walks at the same speed V depending on whether or not the walking motion induction device 20 induces walking motion. are different. That is, the heart rate when the user walks without wearing the walking assist device 20 is higher than the heart rate when the user walks with the walking motion induction device 20 and the walking motion induced. . This is because, as shown in FIG. 7, when the walking motion is induced to increase the user's stride, the heart rate is kept low, and the load on the body is reduced. !, Means that.
  • the walking motion induction device 20 can induce walking motion.
  • the muscle group activity (physiological variables) when the same user walks at the same speed V is different depending on the situation.
  • the muscle group activity around the hip joint when the user shown in Fig. 9 (b) walks with the walking motion induction device 20 and the walking motion induced is shown in Fig. 9 (a). It is higher than the muscle group activity at the same location when the user shown walks without wearing the walking assistance device 20. This means that, as shown in FIG. 7, the user's physical functions are activated when the walking motion is induced to increase the stride.
  • the exercise management system 1 is significant when it is used for exercise management of elderly people such as elderly people who have a reduced locomotor function. I understand that. That is, by using the exercise management system 1 of the present invention, it is possible to reduce the physical load of the elderly and the like while suppressing the decrease in the physical function and further promoting the activity.
  • the user's walking speed (first motion variable) V is measured based on the speed of the belt 13 of the treadmill 10 (Fig. 3 Zsl l l).
  • the user's walking rate (second motion variable) p is measured based on the pressure on the treadmill 10 that changes due to the user's repeated landing and leaving (Fig. 3Zsl2). This improves the measurement accuracy of walking ratio k, which is a function of walking speed V and walking rate p (Fig. 3ZsllO). Therefore, the recommended value of the appropriate exercise variable can be set more accurately in view of the activation of the user's physical functions and the reduction of the physical load.
  • the recommended walking ratio k is set when the user's walking movement is induced only by the device 20.
  • 0 may be set.
  • the exercise management system 1 may be used to set recommended values of motion variables that change with any motion other than the user's walking motion. For example, for the exercise of manually applying force to the left and right wheels of a wheelchair, the rhythm of both arms pushing the wheels, etc. It may be used to set recommended values for movement variables.
  • the exercise management system 1 is a horse running exercise etc.
  • a recommended value of the motion variable as an arbitrary function of the walking speed V and the walking rate p may be set.
  • This circulation is achieved by circulating a circular motion body such as a cylinder such as a cylinder or square tube that circulates around an axis parallel to the remote central axis, or a lump of objects that circulates around an arbitrary axis.
  • a device that induces movement of a body part such as a user's arm or leg that contacts the moving body may be employed as the first motion guiding device.
  • the second oscillator generation unit 240 of the second control unit 200 performs a period change of the hip joint angle ⁇ or the hip joint angular velocity (1 ⁇ Zdt (motion oscillator) measured by the motion oscillator measurement unit 210.
  • the angle of the hip joint angle ⁇ or the like measured by the motion vibrator measuring unit 210 is used instead of the new natural angular velocity ⁇ set by the natural angular velocity setting unit 230.
  • the induction vibrator z may be generated according to the method disclosed in Japanese Patent Application Laid-Open No. 2004-73649.
  • the induction vibrator z may be generated in the following manner.
  • the motion oscillator measurement unit 210 responds to the movement of two different body parts of the user.
  • the motion oscillators eg, shoulder joint angular velocity and hip joint angle
  • the motion oscillators are measured as “first motion oscillator” and “second motion oscillator”, respectively.
  • the first oscillator generation unit 220 generates the first oscillator X that is attracted to the first motion oscillator and reflects the natural angular velocity ⁇ .
  • the natural angular velocity setting unit 230 sets a new natural angular velocity ⁇ based on the phase difference between the first motion oscillator and the first oscillator X.
  • the second transducer generator 240 sets a new natural angular velocity ⁇ based on the phase difference between the first motion oscillator and the first oscillator X.
  • a second oscillator y that oscillates at a rhythm that reflects the new natural angular velocity ⁇ is generated. Then, in addition to the second vibrator y, the induction vibrator generation unit 250 is measured by the walking speed V (first motion variable) measured by the first motion variable measurement unit 101 and the second motion variable measurement unit 102. An induction oscillator z is generated based on one or both of the walking rate p (second motion variable).
  • the recommended walking ratio setting unit 130 identifies the physical characteristics of each of a plurality of users (including body size, weight, age, sex, etc.). Multiple recommended walking ratios k for each user after recognizing the identifier for
  • the user's walking motion is induced on the basis of the standard recommended value retrieved from the database power according to the identifier of the user and thus the physical characteristics.
  • the induction scale and rhythm can be appropriately controlled so that the walking ratio k of the user becomes appropriate in view of the activity of the user's physical function.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Dentistry (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Physiology (AREA)
  • Rehabilitation Therapy (AREA)
  • Pain & Pain Management (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Epidemiology (AREA)
  • Vascular Medicine (AREA)
  • Rehabilitation Tools (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Communication Control (AREA)
  • Selective Calling Equipment (AREA)
  • Cash Registers Or Receiving Machines (AREA)

Abstract

 人間等の動物の生理状態に応じて、その運動を適当なスケールおよびリズムで誘導しうるように当該動物の運動を管理するシステム等を提供する。  本発明の運動管理システム1によれば、歩行運動誘導装置20の動作によりユーザの歩行運動が誘導されている過程で、歩行比kおよび消費エネルギー等の生理変数が測定される。そして、このユーザの身体機能の活性化または身体負荷の軽減に鑑みて生理変数が適当な値となった状態における歩行比kが推奨歩行比k0として設定される。これにより、推奨歩行比k0がこのユーザの身体機能の活性化等に鑑みて適当に設定されうる。そして、歩行運動誘導装置20によりこの推奨歩行比k0に基づいて歩行運動が誘導されることで、歩幅qおよび歩行率pがこのユーザの身体機能の活性化等に鑑みて適当なものとなるように、当該誘導スケールおよびリズムが適当に制御されうる。

Description

明 細 書
運動管理システム、運動管理方法、運動管理プログラム
技術分野
[0001] 本発明は、動物の運動を管理するシステム、方法および当該管理機能をコンビュ ータに付与するプログラムに関する。
背景技術
[0002] ユーザの歩行訓練のレベルを設定する等の目的のため、このユーザの心電信号等 の生理指標に鑑みて適当な歩行速度を決定する手法が提案されている(たとえば、 特開 2003— 154029号公報参照)。
発明の開示
発明が解決しょうとする課題
[0003] しかし、ユーザの身体に力を作用させることで脚等の動きを誘導 (または補助)する 装置がユーザに装着されている場合、このユーザにとって適当な誘導スケールおよ びリズムを設定することは考慮されて ヽなかった。
[0004] そこで、本発明は、人間等の動物の生理状態に応じて、その運動を適当なスケー ルおよびリズムで誘導しうるように当該動物の運動を管理するシステム、方法、および 当該管理機能をコンピュータに付与するプログラムを提供することを解決課題とする 課題を解決するための手段
[0005] 前記課題を解決するための第 1発明の運動管理システムは、前記動物の運動リズ ムと調和したリズムで該動物の運動スケールを調節しながら該動物の運動を誘導す る第 2運動誘導装置の動作を制御する制御部と、前記動物の生理状態を表す生理 変数を測定する生理変数測定部と、前記動物の運動スケールおよび運動リズムのう ち一方または両方を表す運動変数を測定する運動変数測定部と、該制御部により該 運動変数が変化するように制御されて 、る該第 2運動誘導装置の動作によって前記 動物の運動が誘導されている状態で、該生理変数測定部により測定された該生理変 数が該動物の身体機能の活性ィ匕または身体負荷の軽減に鑑みて適当な値となった 状態で、該運動変数測定部により測定された該運動変数を該運動変数の推奨値とし て設定する推奨値設定部とを備えて ヽることを特徴とする。
[0006] 第 1発明の運動管理システムによれば、第 2運動誘導装置の動作により動物の運 動が誘導されている状態で当該動物の生理変数および運動変数が測定される。「生 理変数」は動物の生理状態を表して 、る。「運動変数」は動物の運動スケールおよび 運動リズムのうち一方または両方を表している。また、動物の「身体機能の活性化」ま たは「身体負荷の軽減」〖こ鑑みて生理変数が適当な値となった状態における運動変 数の値が当該運動変数の推奨値として設定される。これにより、動物の運動変数の 推奨値が、この動物の身体機能の活性ィ匕等に鑑みて適当に設定されうる。そして、 第 2運動誘導装置によりこの推奨値に基づいて動物の運動が誘導されることで、動 物の運動スケールおよび運動リズムがこの動物の身体機能の活性ィ匕等に鑑みて適 当なものとなるように、当該誘導スケールおよび当該誘導リズムが適当に制御されうる 。すなわち、動物の生理状態に応じて、当該動物の運動が身体機能の活性化等に 鑑みて適当なスケールおよびリズムで誘導されうる。
[0007] また、第 2発明の運動管理システムは、第 1発明の運動管理システムにおいて、前 記制御部が、前記動物の運動に応じて周期的に変化するパラメータとして第 1および 第 2運動振動子のそれぞれを測定する運動振動子測定部と、入力振動信号と相互 に引き込み合うことで固有角速度に基づいて定まる角速度で時間変化する出力振動 信号を生成する第 1モデルに、該運動振動子測定手段により測定された該第 1運動 振動子を該入力振動信号として入力することにより、該出力振動信号として第 1振動 子を生成する第 1振動子生成部と、該運動振動子測定部により測定された該運動振 動子と該第 1振動子生成部により生成された該第 1振動子との位相差に基づき、新た な該固有角速度を設定する固有角速度設定部と、入力振動信号に基づき、該固有 角速度設定手段により設定された該固有角速度に基づいて定まる角速度で時間変 化する出力振動信号を生成する第 2モデルに、該運動振動子測定手段により測定さ れた該第 2運動振動子を該入力振動信号として入力することにより、該出力振動信 号として第 2振動子を生成する第 2振動子生成部と、該第 2振動子生成部により生成 された該第 2振動子に加え、前記運動変数測定部により測定された運動変数に基づ いて前記第 2運動誘導装置の動作のスケールおよびリズムを特定する誘導振動子を 生成する誘導振動子生成部とを備えて!/ヽることを特徴とする。
[0008] 第 2発明の運動管理システムによれば、動物の運動リズムと、第 2運動誘導装置の 動作リズム (動物の運動を誘導するリズム)との相互の歩み寄りまたは調和が図られる 。これにより、動物の運動および第 2運動誘導装置の動作の調和を図りながら、動物 の生理状態に応じてこの動物の運動がその身体機能の活性ィ匕等に鑑みて適当なス ケールおよびリズムで誘導されうる。
[0009] さらに、第 3発明の運動管理システムは、第 1発明の運動管理システムにおいて、 前記生理変数測定部が、前記動物の酸素摂取量、呼吸周波数、心拍数、脈拍数、 血圧、血中飽和酸素濃度、乳酸値、筋電位および消費エネルギーのうち一部または 全部を前記生理変数として測定することを特徴とする。
[0010] 第 3発明の運動管理システムによれば、動物の酸素摂取量等により表される生理状 態に応じて、当該動物の運動が身体機能の活性ィ匕等に鑑みて適当なスケールおよ びリズムで誘導されうる。
[0011] また、第 4発明の運動管理システムは、第 1発明の運動管理システムにおいて、前 記運動変数測定部が第 1運動変数測定部と第 2運動変数測定部とを備え、該第 1運 動変数測定部は前記動物の運動速度を調節しながら当該動物の運動を誘導する第 1運動誘導装置の動作速度に基づいて第 1運動変数を測定し、該第 1運動変数は該 第 1運動誘導装置の動作により運動が誘導されている該動物の当該運動スケールお よび当該運動リズムを表す前記運動変数であり、該第 2運動変数測定部は前記第 1 運動誘導装置と前記動物との相互作用状態または前記第 2運動誘導装置の動作状 態に基づいて第 2運動変数を測定し、該第 2運動変数は前記動物の運動リズムまた は運動スケールを表す前記運動変数であることを特徴とする。
[0012] 第 4発明の運動管理システムによれば「第 1運動変数」が第 1運動誘導装置の動作 の速さに基づいて測定される。また「第 2運動変数」が第 1運動誘導装置と動物との 相互作用または第 2運動誘導装置による誘導スケールもしくはリズムに基づいて測定 される。これにより、第 1および第 2運動変数ひいてはこれらの関数である運動変数の 測定精度の向上が図られる。したがって、動物の身体機能の活性ィ匕等に鑑みてより 適当な運動変数の推奨値が設定されうる。
[0013] さらに、第 5発明の運動管理システムは、第 4発明の運動管理システムにおいて、 前記第 1運動変数測定部が前記動物の歩行または走行速度を前記第 1運動変数と して測定し、前記第 2運動変数測定部が前記動物の歩幅または単位時間当たりの歩 数である歩行率を前記第 2運動変数として測定することを特徴とする。
[0014] 第 5発明の運動管理システムによれば、動物の歩行または走行速度および歩幅ま たは歩行率の関数である運動変数の推奨値が、この動物の身体機能の活性ィ匕ゃ身 体負荷の軽減に鑑みて適当に設定されうる。歩行または走行速度は動物の運動スケ ールおよび運動リズムを表している。歩幅は動物の運動スケールを表している。歩行 率は動物の運動リズムを表している。そして、第 2運動誘導装置によりこの推奨値に 基づ!/、て動物の運動が誘導されることで、動物の歩幅または歩行率がこの動物の身 体機能の活性ィ匕等に鑑みて適当なものとなるように、当該誘導スケールおよびリズム が適当に制御されうる。
[0015] また、第 6発明の運動管理システムは、第 5発明の運動管理システムにおいて、前 記運動変数測定部が前記第 1運動変数としての歩行または走行速度に対する前記 第 2運動変数としての歩幅の二乗の比率、または前記第 2運動変数としての歩行率 の二乗に対する前記第 1運動変数としての歩行または走行速度の比率である歩行比 を前記運動変数として測定することを特徴とする。
[0016] 第 6発明の運動管理システムによれば、動物の歩行比の推奨値が、この動物の身 体機能の活性ィ匕ゃ身体負荷の軽減に鑑みて適当に設定されうる。そして、第 2運動 誘導装置によりこの推奨値に基づいて動物の運動が誘導されることで、動物の歩行 比がこの動物の身体機能の活性ィ匕等に鑑みて適当なものとなるように、当該誘導ス ケールおよびリズムが適当に制御されうる。
[0017] さらに、第 7発明の運動管理システムは、第 4発明の運動管理システムにおいて、 前記第 1運動変数測定部が、前記第 1運動誘導装置が有する循環運動体の循環運 動方向の反対方向への運動が誘導されている前記動物の前記第 1運動変数を、当 該循環運動体の循環運動速度に基づいて測定することを特徴とする。
[0018] 第 7発明の運動管理システムによれば、第 1運動誘導装置が有する循環運動体を 循環運動させることにより、循環運動体と身体部分が接触する動物の、循環運動体 の循環運動方向とは逆向きの運動が誘導される。「循環運動体」には、複数のローラ に掛け渡された無端ベルト、中心または中心から外れた点を通る軸回りに循環運動 される球体、楕円球体、中心軸または中心軸力 離れた中心軸に平行な軸回りに循 環運動する円筒、四角筒等の筒体、その他任意の軸回りに循環運動される一塊の物 体が含まれる。これにより、当該運動に伴う動物またはその身体部分の移動が循環 運動体の循環運動によって相殺されるので、第 1運動誘導装置の設置スペースさえ あれば動物の運動変数の推奨値設定が可能であり、当該設定スペースが比較的自 由に選択されうる。
[0019] また、第 8発明の運動管理システムは、第 4発明の運動管理システムにおいて、前 記第 1運動変数測定部が、前記第 1運動誘導装置としてのトレッドミルが有する複数 のローラに掛け渡された循環運動体としての無端ベルトの動きに逆らう方向に誘導さ れている前記動物の歩行または走行運動の速さを表す第 1運動変数としての歩行ま たは走行速度を、当該無端ベルトの駆動速度に基づ ヽて測定することを特徴とする
[0020] 第 8発明の運動管理システムによれば、トレッドミル (第 1運動誘導装置)の無端べ ルト (循環運動体)を循環運動させることにより、この無端ベルトの循環運動方向とは 反対方向への動物の歩行または走行運動が誘導される。これにより、当該歩行また は走行運動に伴う動物の移動が無端ベルトの循環運動によって相殺されるので、第 1運動誘導装置の設置スペースさえあれば動物の歩行または走行運動に伴う運動変 数の推奨値設定が可能であり、当該設定スペースが比較的自由に選択されうる。
[0021] さらに、第 9発明の運動管理システムは、第 1発明の運動管理システムにおいて、 前記推奨値設定部が、複数の前記動物のそれぞれの身体的特徴を識別するための 識別子を認識した上で各動物の複数の前記推奨値を予備的に設定し、認識した該 識別子ごとに予備的に設定済みの該推奨値に基づいて該推奨値を新たに設定する ことにより、該識別子および該推奨値が対応付けられて記憶されているデータベース を構築することを特徴とする。
[0022] 第 9発明の運動管理システムによれば、個々の動物の身体的特徴 (身体のサイズ、 ウェイト、年齢、性別等が含まれる。)に応じて標準的な推奨値が設定される。そして、
2運動誘導装置によりこの標準的な推奨値に基づいて動物の運動が誘導されること で、動物の運動変数がこの動物の身体機能の活性ィ匕等に鑑みて適当なものとなるよ うに、当該誘導スケールおよびリズムが適当に制御されうる。
[0023] 前記課題を解決するための第 10発明の方法は、動物の運動を管理する方法であ つて、前記動物の運動リズムと調和したリズムで該動物の運動スケールを調節しなが ら該動物の運動を誘導する第 2運動誘導装置の動作を制御し、前記動物の生理状 態を表す生理変数を測定し、前記動物の運動スケールおよび運動リズムのうち一方 または両方を表す運動変数を測定し、該制御部により該運動変数が変化するように 制御されて!、る該第 2運動誘導装置の動作によって前記動物の運動が誘導されて 、 る状態で測定された該生理変数が、該動物の身体機能の活性ィ匕または身体負荷の 軽減に鑑みて適当な値となった状態で測定された該運動変数を該運動変数の推奨 値として設定することを特徴とする。
[0024] 第 10発明の運動管理方法によれば、第 1発明の運動管理システムと同様に、動物 の運動変数の推奨値が当該動物の身体機能の活性化等に鑑みて適当に設定されう る。そして、第 2運動誘導装置によりこの推奨値に基づいて動物の運動が誘導される ことで、動物の運動スケールおよび運動リズムが、当該動物の身体機能の活性化等 に鑑みて適当なものとなるように、当該誘導スケールおよび誘導リズムが適当に制御 されうる。
[0025] 前記課題を解決するための第 11発明のプログラムは、動物の運動を管理するシス テムとしてコンピュータを機能させるプログラムであって、前記動物の運動リズムと調 和したリズムで該動物の運動スケールを調節しながら該動物の運動を誘導する第 2 運動誘導装置の動作を制御する制御部と、前記動物の生理状態を表す生理変数を 測定する生理変数測定部と、前記動物の運動スケールおよび運動リズムのうち一方 または両方を表す運動変数を測定する運動変数測定部と、該制御部により該運動変 数が変化するように制御されて 、る該第 2運動誘導装置の動作によって前記動物の 運動が誘導されている状態で、該生理変数測定部により測定された該生理変数が該 動物の身体機能の活性ィ匕または身体負荷の軽減に鑑みて適当な値となった状態で 、該運動変数測定部により測定された該運動変数を該運動変数の推奨値として設定 する推奨値設定部とを備えているシステムとして前記コンピュータを機能させることを 特徴とする。
[0026] 第 11発明の運動管理プログラムによれば、動物の運動変数の推奨値が、当該動 物の身体機能の活性ィヒ等に鑑みて適当に設定されうるように、動物の運動を管理す る機能がコンピュータに付与される。なお、当該機能のうちすべてが一のコンピュータ に付与されてもよぐ当該機能が複数のコンピュータに分散して付与されてもよい。 図面の簡単な説明
[0027] [図 1]本発明の運動管理システムの構成例示図
[図 2]本発明の運動管理方法の説明図
[図 3]本発明の運動管理方法の説明図
[図 4]歩行運動を誘導する仮想的なパネおよびダンバの説明図
[図 5]推奨歩行比の設定方法の説明図
[図 6]本発明の運動管理方法説明図
[図 7]本発明の運動管理システムの効果に関する実験結果の説明図
[図 8]本発明の運動管理システムの効果に関する実験結果の説明図
[図 9]本発明の運動管理システムの効果に関する実験結果の説明図
発明を実施するための最良の形態
[0028] 本発明の運動管理システム、運動管理方法および運動管理プログラムの実施形態 について図面を用いて説明する。以下、歩行者の脚体等について左右を区別するた めにパラメータに添字 L、 Rを添付する力 表記の簡単のため左右を区別する必要が 特にない場合には添字 L、 Rを省略する。
[0029] 本発明の運動管理システムの構成について図 1を用いて説明する。
[0030] 図 1に示されている運動管理システム 1は、トレッドミル (第 1運動誘導装置) 10およ び歩行運動誘導装置 (第 2運動誘導装置) 20を用いて、ユーザ (人間 (動物) )の身 体機能の活性ィ匕等に鑑みて適当な推奨歩行比を設定するためのものである。また。 運動管理システム 1は、ユーザの歩行または走行運動と、トレッドミル 10の動作と、歩 行運動誘導装置 20の動作との調和を図りながら、推奨歩行比に応じたスケールおよ びリズムで歩行するようにこのユーザを訓練するためのものである。
[0031] トレッドミル 10は、人間の標準的な横幅よりも若干広い程度の幅の駆動ローラ 11と 、駆動ローラ 11とほぼ同じ幅の従動ローラ 12と、駆動ローラ 11および従動ローラ 12 に掛け渡されている無端ベルト (循環運動体) 13と、無端ベルト 13のうちユーザが乗 る部分を下力も支える踏板 14とを備えている。駆動ローラ 11は、モータ、変速機等よ り構成される駆動機構 101によって駆動される。駆動ローラ 11が図中時計回りに駆 動されることにより、従動ローラ 12の同方格への従動を伴ってベルト 13も時計回りに 回る。これによりベルト 13に乗って 、るユーザの図中左への歩行 (または走行)が誘 導される。また、ベルト 13の移動速度に応じた信号を出力する速度センサ 102と、踏 板 14が受ける圧力に応じた信号を出力する圧力センサ 104とが設けられている。ュ 一ザの身体には、その心拍数等の生理変数 bに応じた信号を出力する生理変数セン サ 106が取り付けられている。生理変数センサ 106は生理変数 bの内容によって適 当な方法でユーザの身体に取り付けられる。なお、トレッドミル 10としては、一般に巿 販されて!/ヽるもの等、公知のあらゆる構成のトレッドミルが採用されてもよ!、。
[0032] 歩行運動誘導装置 20は、腰部装具 21と、大腿部装具 22と、力伝達部材 23と、バ ッテリ 24と、ァクチユエータ (電動モータ) 25と、股関節角度センサ 26とを備えている
[0033] 腰部装具 21は剛性のある素材と柔軟性のある素材とが組み合わせられて作られて おり、ユーザの腰部に装着される。大腿部装具 22も剛性のある素材と柔軟性のある 素材とが組み合わせられて作られており、ユーザの大腿部の前後それぞれに装着さ れる。力伝達部材 23は、軽量の硬質プラスチック等の定形性のある素材より作られて おり、ユーザの大腿部に沿って、ユーザの腰部の横から下方に延びた後で大腿部の 前後に向けて二股に分かれた形状であり、ァクチユエータ 25および前後の大腿部装 具 22のそれぞれに連結されている。ノ ッテリ 24は腰部装具 21に収納されており(た とえば、腰部装具 21を構成する複数枚の素材の間に固定されており)、ァクチユエ一 タ 25等に対して電力を供給する。ァクチユエータ 25は腰部装具 21に取り付けられて おり、力伝達部材 23および大腿部装具 22を介してユーザの大腿部に力を作用させ る。股関節角度センサ 26はユーザの腰部の横に設けられたロータリエンコーダ等に より構成され、股関節角度に応じた信号を出力する。
[0034] 運動管理システム 1は、第 1制御部 100と、第 2制御部 200とを備えている。
[0035] 第 1制御部 100は、トレッドミル 10に付属するマイクロコンピュータ等のコンピュータ により構成されており、駆動機構 102による駆動ローラ 11の駆動速度等を制御する。 第 1制御部 100は、運動変数測定部 110と、生理変数測定部 120と、推奨歩行比設 定部 130とを備えている。運動変数測定部 110、生理変数測定部 120および推奨歩 行比設定部 130はそれぞれハードウェアとしてのコンピュータ(CPU、 ROM, RAM 、 IZO (入出力装置)等により構成されている。)と、このコンピュータに機能を付与す るソフトウェアとしての本発明の「運動管理プログラム」の一部とにより構成されている
[0036] 運動変数測定部 110は第 1運動変数測定部 111と、第 2運動変数測定部 112とを 備えている。運動変数測定部 110は、歩行速度 Vおよび歩行率 ρの関数である運動 変数として歩行比 k ( =v/p2)を測定する。
[0037] 第 1運動変数測定部 111は、速度センサ 102の出力に基づいてユーザの歩行速 度 Vを第 1運動変数として測定する。歩行速度 Vはユーザの歩行運動スケールが大き くなるほど、また、歩行運動リズムが早くなるほど高くなるので、第 1運動変数はユー ザの運動スケールおよび運動リズムの両方を表す運動変数に該当する。
[0038] 第 2運動変数測定部 112は圧力センサ 104の出力に基づ 、てユーザの歩行率 (単 位時間当たりの歩数) pを第 2運動変数として測定する。歩行率 pはユーザの歩行リズ ムが早くなるほど高くなるので、第 2運動変数はユーザの運動リズムを表す運動変数 に該当する。
[0039] 生理変数測定部 120は、ユーザの身体に取り付けられた生理変数センサ 106の出 力に基づ 1、てこのユーザの生理状態を表す生理変数 bを測定する。
[0040] 推奨歩行比設定部 130は、運動変数測定部 110により測定されたユーザの歩行比 kと、生理変数測定部 120により測定された生理変数 bとに基づき、推奨歩行比 kを
0 設定する。
[0041] 第 2制御部 (本発明の「制御部」に該当する。 ) 200は、歩行運動誘導装置 20の腰 部装具 21に収納されたコンピュータと、このコンピュータに対して歩行運動誘導装置 20の制御機能等を付与するソフトウェアとしての本発明の「運動管理プログラム」とに より構成されている。
[0042] 第 2制御部 200は、運動振動子測定部 210と、第 1振動子生成部 220と、固有角速 度設定部 230と、第 2振動子生成部 240と、誘導振動子生成部 250とを備えている。
[0043] 運動振動子測定部 210は、股関節角度センサ 26の出力に基づき、ユーザの股関 節角度 Φ を歩行運動に応じて周期的に変化する「第 2運動振動子」として測定する
H
。股関節角度 φ は、ユーザの歩行運動スケール (歩幅などにより表される。)が大きく
H
なるほど振幅が大きくなるので、ユーザの運動スケールを表す運動振動子に該当す る。また、運動振動子測定部 210は、股関節角度センサ 26の出力に基づき、股関節 角速度 (1 φ Zdtを「第 1運動振動子」として測定する。股関節角速度 (1 φ
H H Zdtは、ュ 一ザの歩行運動リズム (歩行率などにより表される。)が早くなるほど振幅が大きくなる ので、ユーザの運動リズムを表す運動振動子に該当する。
[0044] 第 1振動子生成部 220は運動振動子測定部 210により測定された股関節角速度 d
Φ Zdtと、固有角速度 ω とに基づき、第 1モデルにしたがって第 1振動子 Xを生成
Η
する。「第 1モデル」は入力振動信号と相互に引き込み合うことで固有角速度 ω に基 づいて定まる角速度で時間変化する出力振動信号を生成するモデルである。
[0045] 固有角速度設定部 230は、第 1位相差設定部 231と、第 2位相差設定部 232と、相 関係数設定部 233と、第 1角速度設定部 234と、第 2角速度設定部 235とを備えてい る。
[0046] 第 1位相差設定部 231は股関節角速度 (1 φ Zdtの角速度 ω と、ファン 'デル.ポ
Η Η
ル方程式に含まれる固有角速度 ω が反映された振動子 Xとの位相差を第 1位相差 δ Θ として設定する。
1
[0047] 第 2位相差設定部 232は仮想運動振動子 Θ と仮想誘導振動子 (仮想誘導振動子 h
) Θ との関係を表す「仮想モデル」にしたがって、仮想運動振動子 Θ と仮想誘導振 m h
動子 0 との位相差を第 2位相差 δ θ (= θ - Θ )として設定する。
m 2 h m
[0048] 相関係数設定部 233は、第 2位相差設定部 232により設定された第 2位相差 δ Θ
2 力 第 1位相差設定部 231により設定された第 1位相差 δ Θ に近づくように仮想運
1
動振動子 Θ と仮想誘導振動子 Θ との相関係数 εを設定する。 [0049] 第 1角速度設定部 234は、相関係数設定部 233により設定された相関係数 εに基 づき、仮想運動振動子 Θ の角速度 ωを設定する。
h h
[0050] 第 2角速度設定部 235は、第 1角速度設定部 234により設定された仮想運動振動 子 0 の角速度 ω に基づき、第 2位相差設定部 232により設定された第 2位相差 δ h h
Θ 1S 目標位相差設定部 212により設定された目標位相差 δ Θ に近づくように仮
2 d
想誘導振動子 0 の角速度 ω を新たな固有角速度 ω として設定する。
m m
[0051] 第 2振動子生成部 240は、運動振動子測定部 210により測定された股関節角度 φ と、固有角速度設定部 230により設定された固有角速度 ω とに基づき第 2モデル
Η
にしたがって第 2振動子 yを生成する。「第 2モデル」は入力振動信号に基づき、固有 角速度 ω に基づいて定まる角速度で時間変化する出力振動信号を生成するモデ ルである。
[0052] 誘導振動子生成部 250は、第 1誘導振動子生成部 251と、第 2誘導振動子生成部 252とを備えて ヽる。
[0053] 第 1誘導振動子生成部 251は第 2振動子生成部 240により生成された第 2振動子 y と、固有角速度設定部 230により設定された固有角速度 ω とに基づき、第 1誘導振 動子 ζを生成する。第 1誘導振動子 ζは運動振動子測定部 210により測定された股
1 1
関節角度 Φ
Ηをその目標値 Φ
0に近付ける仮想的なパネ等の弾性要素の弾性力を表 している。第 2誘導振動子生成部 252は第 2振動子生成部 240により生成された第 2 振動子 yと、固有角速度設定部 230により設定された固有角速度 ω とに基づき、第
2誘導振動子 ζを生成する。運動振動子測定部 210により測定された股関節角速度
2
ά Zdtに応じて股関節角度 φ の絶対値の増大を抑制する仮想的なダンバ等の
H H
減衰要素の減衰力を表している。そして、誘導振動子生成部 250は、第 1誘導振動 子 zおよび第 2誘導振動子 zに基づき、歩行運動誘導装置 20によりユーザに作用さ
1 2
せられる股関節回りのトルク Tの指示信号としての誘導振動子 zを生成する。
[0054] 第 1制御部 100および第 2制御部 200は無線通信が可能とされている。なお、第 1 制御部 100に代えて第 2制御部 200が推奨歩行比設定部 130を備えている等、運 動管理システムを構成する複数の処理部 110 (111, 112) 1, 120, 130, 210, 22 0, · ·が、第 1制御部 100および第 2制御部 200に任意のパターンで配設されていて もよい。また、第 1制御部 100および第 2制御部 200は同一のコンピュータにより構成 されていてもよい。第 1制御部 100および第 2制御部 200の通信は有線通信であって ちょい。
[0055] 前記構成の運動管理システム 1の機能、特にユーザの推奨歩行比 (運動変数の推 奨値)の設定方法について図 2〜図 5を用いて説明する。
[0056] 第 1制御部 100により、ベルト 13の速度が一定になるようにトレッドミル 10の動作が 制御されることで、ベルト 13の動きとは逆方向へのほぼ一定速度でのユーザの歩行 運動が誘導される。
[0057] この状態で、運動振動子測定部 210は股関節角度センサ 26の出力に基づき、ュ 一ザの左右の股関節角度 φ = ( φ , )を測定する(図 2Zs011)。また、運動
H HL HR
振動子測定部 210は股関節角度センサ 26の出力に基づき、ユーザの左右の股関 節角速度1 φ Zdt= (d (i) /dt, ά Zdt)を測定する(図 2Zs012)。
H HL HR
[0058] さらに、第 1振動子生成部 220が、運動振動子測定部 210により測定された股関節 角速度1 φ Zdtおよびメモリに記憶されている最新の固有角速度 ω = ( ω , ω
Η ML MR
)に基づき、第 1モデルにしたがって第 1振動子 χ = (X , X )
し Rを設定する(図 2Zs020
)。第 1モデルは、股関節角速度 (1 φ Zdt等の運動振動子に応じて出力が変動する
H
左右の脚体等、複数の第 1要素の相関関係を、次式 (1)で表されるファン 'デル'ポ ル (van der Pol)方程式によって表現するモデルである。
[0059] (d2x /dt2) = 6 (1 -x 2) (dx /dt) ω 2x
L L L ML L
+g (x -x ) +Κ(ά Zdt) ,
L R HL
(d2x Zdt2) = 6 (1 -x 2) (dx Zdt)— ω 2x
R R R MR R
+ g (x - χ ) +Κ(ά Zdt) · ' (1)
R L HR
ここで「 」は第 1振動子 χおよびその 1回時間微分 (dxZdt)が X— (dx/dt)平面 で安定なリミットサイクルを描くように設定される係数(>0)である。「g」は第 1モデル における左右の脚体 (第 1要素)の相関関係を表す第 1相関係数である。「K」はフィ ードバック係数である。なお、固有角速度 ω は、歩行運動誘導装置 20による実際の 歩行補助リズム (歩行誘導リズム)から大きく外れな!/ヽ範囲で任意に設定されてよ ヽ。
[0060] 第 1振動子 χ= (χ , X )はルンゲ 'タッタ法にしたがって算定または生成される。第 1 振動子 Xの成分 Xおよび Xはそれぞれ左右の脚体の歩行補助リズムを表す。また、 し R
振動子 Xはファン 'デル.ポル方程式の 1つの性質である「相互引き込み」により、実際 の歩行運動リズムとほぼ同じリズムまたは角速度で時間変化する股関節角速度1 φ
Η
Zdtのリズムと調和しながらも、固有角速度 ω が反映された自律的なリズムまたは角 速度で振動または周期的に変化するという性質がある。
[0061] なお、股関節角速度 (1 φ Zdtに代えてまたは加えて、股関節角度 φ や、膝関節、
H H
足関節、肩関節、肘関節の角度や角速度、さらには歩行者の着地音、呼吸音、断続 的な発声音等、ユーザの歩行運動リズム (運動リズム)が反映されたリズムで変動する 種々の振動子に基づき、第 1振動子 Xが生成されてもよい。
[0062] また、式(1)で表現されるファン ·デル ·ポル方程式とは異なる形のファン ·デル 'ポ ル方程式によって第 1モデルが表現されてもよぐ股関節角速度 (1 φ
H Zdt等の運動 振動子と相互引き込み効果をもって振動子が生成されうるあらゆる方程式によって第 1モデルが表現されてもよ 、。
[0063] 前記のように股関節角速度 (1 φ Zdt等の運動振動子に応じて出力が変動する複
H
数の第 1要素 (左右の脚体)の関係を表現する第 1モデルにしたがって、第 1要素の 出力として第 1振動子 Xが生成される (式(1) ,図 2Zs020)。これにより、ユーザの実 際の運動に関係する複数の第 1要素の相関関係を第 1モデルにおける第 1相関係数 g等に反映させることで、複数の第 1要素の関係に鑑みて適当な第 1振動子 Xが生成 されうる。たとえば、複数の第 1要素として左右の脚体や同一脚体の複数の関節が想 定された場合、交互に前後に動く等の左右の脚体の定性的関係や股関節回りの脚 体運動と膝関節回りの脚体運動との周期や位相差等の同一脚体の関節間の定性的 関係等が反映された形で第 1振動子 Xが生成される。したがって、ユーザの運動を誘 導する誘導振動子のリズムおよびスケールを当該関係に鑑みて適当なものとすること ができる。
[0064] 続いて、固有角速度設定部 230がメモリに記憶されている目標位相差 δ 0 と、第 1 d 振動子設定部 210により生成された第 1振動子 Xとに基づき、仮想的な 2つの振動子 が含まれている仮想モデルにしたがって固有角速度 ω を設定する(図 2Zs030)。
[0065] 具体的には、まず、第 1位相差測定部 231が、左右各成分について、運動振動子 測定部 210により測定された股関節角速度 (1φ Zdtの位相 Θ と、第 1振動子設定
H H
部 210により生成された第 1振動子 Xの位相 0 との位相差 0 — Θ を、第 1位相差
H
δ Θ として設定する(図 2Zs031)。
1
[0066] 次に、第 2位相差設定部 232が、過去 3歩行周期にわたって第 1位相差設定部 23 1により設定された第 1位相差 δ Θ が一定であったことを要件として、左右各成分に
1
ついて、次式(2. 1)および(2.2)によって表される「仮想モデル」にしたがって、次 式 (2.3)によって表される仮想運動振動子 0 と仮想誘導振動子 0 との位相差 0
h m h
- Θ を第 2位相差 δ Θ として設定する(図 2Zs032)。
m 2
[0067] άθ /άί=ω + ε -sin(0 — θ ) · · (2. 1)
h h mし hし
άθ /άί=ω + ε -sin( θ — θ ) · · (2.2)
m m hL mL
δ Θ =arcsin[(o> — ω )/2 ε ] · · (2· 3)
2 h m
ここで、 ε =( ε , ε ) ルに
し Rは仮想モデ おける仮想運動振動子 0 =(θ , Θ
h hL hR )お よび仮想誘導振動子 0 =(θ , Θ )の左右成分ごとの相関係数である。また、 ω
m mし mR h は仮想運動振動子 0 の ω
h 角速度であり、 mは仮想誘導振動子 0 の
m 角速度である。
[0068] 続いて、相関係数設定部 233が、第 1位相差設定部 231により設定された第 1位相 差 δ Θ と、第 2位相差設定部 232により設定された第 2位相差 δ Θ との差 δ Θ
1 2 1 δ Θ が最小になるように、相関係数 εを設定する(図 2Zs033)。
2
[0069] 具体的には次式(2.4)にしたがって、左右各成分について、股関節角速度 (運動 振動子) (1φ Zdtが 0となる離散的な時間 t (d=l, 2, ··)における相関係数 εが
H id
逐次設定される。
[0070] ε (t ) = ε (t ) - r? {V (t ) -V (t ) }
id+1 id 1 id+1 1 id
/{ e (t )- e (t )},
id id-1
V(t )≡(1/2){δ Θ (t )— δ Θ (t )}2 - - (2.4)
id+1 1 id+1 2 id
ここで、 η =(η , η )の各成分は、第 1位相差 δ Θ の左右各成分と、第 2位相差 し R 1
δ Θ の左右各成分とを近づけるポテンシャル V= (V , V )の安定性を表す係数で
2 L R
ある。
[0071] 次に、第 1角速度設定部 234が、相関係数設定部 233により設定された相関係数 εに基づき、仮想誘導振動子 0 の固有角速度 ω が一定であるという条件下で、左 右各成分について、第 1および第 2位相差の差 δ Θ — δ Θ の各成分が最小となる よよううにに'仮想運動振動子 0 の角速度 ωを次式(2. 5)にしたがって設定する(図 2Zs 034) (
[0072] ω (t ) = -α Jdt([4 s (t )2-{ω (t)— ω (t )}ψ2
h id id h m id
Xsin[sin— ^(ω (t)— ω (t ))/2 ε (t )}
h m id - 1 id
δ Θ (t )]) - - (2. 5)
1 id
ここで、 a = , )の各成分は系の安定性を表す係数である。
し R
[0073] 続いて、第 2角速度設定部 235が、左右各成分について、第 1角速度設定部 234 により設定された仮想運動振動子 0 の角速度 ω に基づき、仮想誘導振動子 0 の
h h m 角速度 ω を新たな固有角速度 ω として設定する(図 2Zs035)。具体的には、第 2
m
角速度設定部 235が、左右各成分について、第 2位相差 δ Θ が目標位相差 δ Θ に近づくように、次式(2. 6)にしたがって仮想誘導振動子 0 の角速度 ω =(ω
mL ω )
mRを設定する。
[0074] ω (ί ) = β Jdf ([4 £ (t )2— (t )-ω (t)}2)
m id id h id m
Xsin[sin_1{(W (t ) ω (t))/2 ε (t )} - δ Θ ])
h id
(2. 6)
ここで、 β = (β , β
し R )の各成分は系の安定性を表す係数である。
[0075] 続いて、第 2振動子生成部 240が、運動振動子測定部 210により測定された股関 節角度 Φ と、固有角速度設定部 230により設定された新たな固有角速度 ω とに基
Η
づき、第 2モデルにしたがって、第 2振動子 y= (y L+ ,y L- ,y R+ ,y R- )を生成する(図 2Z s040)。第 2モデルは、股関節角度 φ 等の運動振動子に応じて出力が変動する複
H
数の神経要素等、複数の第 2要素の相関関係を表現するモデルである。具体的には 、第 2モデルは、左大腿部の屈曲方向(前方)および伸展方向(後方)のそれぞれへ の運動を支配する神経要素 L +および L一、並びに右大腿部の屈曲方向および伸 展方向のそれぞれへの運動を支配する神経要素 R+および R—の膜電位の変動に 対応する運動変数 u (i=L + , L-, R+, R— )と、神経要素 iの順応効果が反映され る自己抑制因子 Vとを含む、次の連立微分方程式(3)によって表現される。
[0076] τ #du zdt=— u +w v +w y — λ v f (ω )+f (ω )Κ( ),
•du /dt- u w y ― w y - λ V
L- L-/L+ L+ L-/R- -
(ω )+f (ω )Κ( ),
ML 2 ML L
•du /dt- u +w y +w y
R+ R+/L+ L+ R+/R- R-
(ω )+f (ω )Κ(φ ),
•du /dt- u 十 w y - w y — λ v
R- R-/L- L- R-/R+ R+ R R-
+ f (ω )+f (ω )Κ( ),
1 R 2 M R R
•dv/ dt=— v+y,
たは
Figure imgf000018_0001
ここで、 τ は運動変数 uの変化特性を規定する時定数であり、左右各成分につい
li i
て、次式(3. 1)によって表されているように、新たな固有角速度 ω への依存性を有 する。
[0077] τ ≡ί(ω )/ ω - y (i=L+,L— ) ,
li ML ML L
t(co )/ω - y (i=R+,R— ) · · (3. 1)
MR MR R
「 0))」は0)依存性を有する係数である。「γ = (γ , y ;)」は定数である。「τ 」
L R 2i は自己抑制因子 vの変化特性を規定する時定数である。「w (<0)」は複数の第 2
i i/j
要素 iおよび jの相関関係を表す第 2相関係数である。「え 」および 」は慣れ係数 し R
である。「K」は股関節角度 φ に応じたフィードバック係数である。
Η
[0078] 「f」および「 」はそれぞれ次式(3. 2)および(3. 3)により定義される関数である。
[0079] f (ω)≡ο·ω (ο>0) (3. 2)
1
I (ω)≡c +c ω +c ω * * (3. 3)
2 0 1 2
新たな固有角速度 ω の関数である f (ω )および f (ω )の係数 c, c , c , cは、
1 2 0 1 2 目標運動設定部 211によって設定された目標となる運動リズムに応じた係数として設 定されうる。
[0080] なお、股関節角度 Φ に代えてまたは加えて、股関節角速度 d φ Zdtや、膝関節、
H H
足関節、肩関節、肘関節の角度や角速度、さらには歩行者の着地音、呼吸音、意図 的な発声音等、歩行運動リズムと連関したリズムで変動する種々の振動子に基づき、 第 2振動子 y;が生成されてもょ ヽ。
[0081] 第 2振動子 yは、運動変数 uの値が閾値 u未満である場合は 0、運動変数 uの値が i i th i 閾値 u以上である場合はこの uの値をとる。或いは、第 2振動子 yは、シグモイド関数 th i i
fsによって定義されている (式 (3)参照)。これにより、大腿部の屈曲方向(前方)への 動きについてはこの動きを支配する第 2要素 (神経要素) L +および R+のそれぞれ の出力である第 2振動子 y および y 力 他の第 2要素の出力よりも大きくなる。また、
L+ R+
大腿部の伸展方向(後方)への動きについてはこの動きを支配する第 2素子 L一およ び R—のそれぞれの出力である第 2振動子 y および y 力 他の第 2要素の出力より
L- R- も大きくなる。脚体 (大腿部)の前方または後方への動きは、たとえば、股関節角速度 d φ /dtの極性によって識別される。
H
[0082] 前記のように股関節角速度 (1 φ Zdt等の運動振動子に応じて出力が変動する複
H
数の第 2要素の関係を表現する第 2モデルにしたがって、第 2要素 iの出力として第 2 振動子 yが生成される(式 (3) ,図 2Zs040)。これにより、ユーザの実際の運動に関 係する複数の第 2要素の関係を第 2モデルにおける第 2相関係数 w に反映させるこ i/j
とで、当該現実の複数の要素の関係に鑑みて適当な第 2振動子 Vが生成されうる。た とえば、現実の複数の要素としてユーザの複数の神経 (ニューロン)が想定された場 合、左右の脚体による歩行を支配するニューロン間の定性的関係等が反映された形 で第 2振動子 y;が生成される。したがって、ユーザの運動を誘導する誘導振動子のリ ズムおよびスケールを当該関係に鑑みて適当なものとすることができる。
[0083] 次に、誘導振動子生成部 250が運動振動子測定部 210によって測定された股関 節角度 Φ および股関節角速度 (1 φ Zdtと、第 2振動子生成部 240により生成され
H H
た第 2振動子 yと、固有角速度設定部 230によって設定された固有角速度 ω とに基 i
づき、誘導振動子 zを設定する(図 3Zs050)。
[0084] 具体的には、次式 (4)にしたがって第 1誘導振動子 zが生成される(図 3Zs051)。
1
[0085] z =g ( ω ) g ( φ )y —g ( ω ) g ( φ )y ,
1L 1+ mL + HL L+ 1- mL - HL L- z =g ( ω ) g ( φ )y — g ( ω ) g ( φ )y · · (4)
1R 1+ mR + HR R+ 1- mR - HR RR- ここで「g 」「g 」「8」ぉょび「8」は次式(4. 1)〜(4. 4)のそれぞれによって定義さ
1+ 1- + - れる関数である。 [0086] g (p, ω )≡∑ a ω (a :係数, k=0〜3) · · (4. 1)
1+ k k+ k+
g (p, ω )≡∑ a cok (a :係数, k=0〜3) · · (4. 2)
1- k k- k- g ( )≡0 ( φ— φ ) +C ( φ— φ ) 3
+ 1+ 0+ 2+ 0+
(c , c :係数, φ :屈曲方向の股関節角度 φ の目標値) · '(4. 3)
1+ 2; 0+ Η
g ( 0 )≡c ( φ— φ ) +c ( φ - φ ) 3
- 1- 0- 2- 0-
(c , c :係数, φ :伸展方向の股関節角度 Φ の目標値) · '(4. 4)
1- 2- 0- Η
第 1誘導振動子 ζは、第 1係数 g および g をそれぞれパネ係数 (弾性係数)とする
1 1+ 1 -
、図 4に示されている 2つの仮想的なパネ G および G の弾性力を表している。第 1
1+ 1- 係数 g および g は、固有角速度 ω に応じて、股関節角度 (ユーザの運動スケール
1+ 1- に応じた運動振動子) Φ を目標運動スケールに応じた目標角度 φ ( >0)および φ
Η 0+
(< 0)に近付ける第 1ポテンシャル (仮想的なパネ等の弾性要素のポテンシャル)の
0- グラディエントを表している(式 (4. 1) (4. 2)参照)。すなわち、第 1誘導振動子 ζは
1 第 1係数 g , g
1+ 1-を弾性係数 (パネ係数)とし、かつ、股関節角度 Φ の
Η 値を目標角度
Φ
0+および Φ
0-に復元させる仮想的な弾性要素による弾性力を表している。これにより
、筋肉の収縮状態から伸展状態への移行時の弾性力等、ユーザの身体の弾性要素 が反映されたリズムおよびスケールをもってユーザの運動が誘導されうる。
[0087] 仮想的なパネ G による弾性力は、パネ係数 g に応じて股関節角度 φ をその目標
1+ 1+ H 角度 Φ
0+に近付けるようにユーザの大腿部に作用する力を表して 、る(式 (4)参照)。 すなわち、股関節角度 Φ
Hが目標角度 φ
0+未満である場合、パネ G
1+による弾性力は
、股関節角度 φ を増加させる方向(前方)に大腿部を動かすようにこの大腿部に作
H
用する力を表している。また、股関節角度 φ
Hが目標角度 φ
0+を超えた場合、パネ G
1+ による弾性力は、股関節角度 Φ
Hを減少させる方向 (後方)に大腿部を動かすようにこ の大腿部に作用する力を表して 、る。
[0088] また、他の仮想的なパネ G による弾性力は、パネ係数 g に応じて、股関節角度 φ
1- 1- の
Hをこ 目標角度 Φ
0-に近付けるようにユーザの大腿部に作用する力を表している(式
(4)参照)。すなわち、股関節角度 φ が目標角度 φ を超えている場合、パネ G に
H 0- 1- よる弾性力は、股関節角度 Φ
Hを減少させる方向 (後方)に大腿部を動かすようにこの 大腿部に作用する力を表している。また、股関節角度 Φ が目標角度 Φ を下回った 場合、パネ G による弾性力は、股関節角度 φ を増力!]させる方向 (前方)に大腿部を
1 - H
動かすようにこの大腿部に作用する力を表して 、る。
[0089] また、前記のように大腿部の前方への動きおよび後方への動きの別に応じて、複数 の第 2要素 i (=L+ , L- , R+ , R-)のうち一部力も偏重的に出力があるので、 2つ の仮想的なパネ G および G のそれぞれの弾性力が相殺される事態が回避される。
1+ 1-
[0090] すなわち、左の大腿部が前方に動いているとき、この動きを支配する一方の第 2要 素 L +の出力としての第 2振動子 y の値が他方の第 2要素 L の出力としての第 2振
L+
動子 y の値より大きくなる。これにより、式 (4)により表されている第 1誘導振動 z 力 S
L- 1L 次式 (4a)のように近似的に表される。
[0091] z =g ( ω ) g ( )y · · (4a)
1L 1+ mL + HL L+
このため、左の大腿部が前方に動いているとき、 2つの仮想的なパネ G および G
1+ 1- のそれぞれの弾性力のうち、股関節角度 Φ
Hを前側の目標角度 Φ
0+に近付けるように ユーザの大腿部に作用するパネ G の弾性力が偏重的に反映されることとなる。これ
1+
により、 2つの仮想的なパネ G および G のそれぞれの弾性力が相殺される事態が
1+ 1- 回避される。
[0092] また、左の大腿部が後方に動いているとき、この動きを支配する一方の第 2要素 L 一の出力または第 2振動子 y の値が、他方の第 2要素 L +の出力または第 2振動子 y の値より大きくなる。これにより、式 (4)によって表されている第 1誘導振動子 z は
L+ 1L 次式 (4b)のように近似的に表される。
[0093] z = -g ( ω ) g ( φ )y · · (4b)
1L 1- mL - HL L- このため、左の大腿部が後方に動いているとき、 2つの仮想のバネ G および G の
1+ 1 - それぞれの弾性力のうち、股関節角度 Φ を後側の目標角度 Φ に近付けるようにュ
H 0- 一ザの大腿部に作用する仮想のパネ G の弾性力が偏重的に反映されることとなる。
1- これにより、 2つの仮想的なパネ G および G のそれぞれの弾性力が相殺される事態
1+ 1- が回避される。これは、右の脚体 (大腿部)の動きについても同様である。
[0094] なお、股関節角速度 (1 φ Zdtを変数とするシグモイド関数 fs (式 (3)参照)が第 1係
H
数 g , g に組み込まれ、これにより股関節角速度 (1 φ Zdtの極性により特定される
1+ 1- H
大腿部の前後への動きの別に応じて、複数の第 2要素 iの出力としての第 2振動子 y のうち一部が偏重的に反映された形で第 1トルク Tが生成されてもよい。これによつて
1
も、 2つの仮想的なパネ G および G のそれぞれの弾性力が相殺される事態が回避
1+ 1 - されうる。
[0095] さらに、次式 (5)にしたがって第 2誘導振動子 ζが設定される(図 2Zs052)。
2
[0096] z =-g (ω ) (ά /dt)H ( )y
2L 2+ mL HL + HL L+
+ g (ω ) (ά /dt)H ( )y ,
2- mL HL - HL L- z =-g (ω ) (άφ /dt)H (φ )y
2R 2+ mR HR + HR R+
+g (ω )(ά /dt)H (φ )y ·'(5)
2- mR HR - HR R- ここで「g 」「g 」「11」ぉょび「11」は次式(5.1)〜(5.4)のそれぞれによって定義
2+ 2- + - される関数である。
[0097] g (ω)≡∑ b cok (b :係数, k=0〜3) · · (5.1)
2+ k k+ K+
g (ω)≡∑ b cok (b :係数, k=0〜3)— (5.2)
2- k k- k-
Η ( )≡0( ≤0), 1( >0) - - (5.3)
H ( )≡0( >0), 1( ≤0) - - (5.4)
第 2誘導振動子 ζは、第 2係数 g および g をそれぞれダンバ係数 (減衰係数)とす
2 2+ 2- る、図 4に示されている 2つの仮想的なダンバ Gおよび G の減衰力として把握される
2; 2-
。第 2係数 g および g は、固有角速度 ω に応じて股関節角度 φ の絶対値の増大
2+ 2- Η を抑制する第 2ポテンシャル (仮想的なダンバ等の減衰要素のポテンシャル)のダラ ディェントを表す (式 (5. 1) (5.2)参照)。すなわち、第 2誘導振動子 ζは第 2係数 g
2 2+
, g を減数係数 (ダンバ係数)とし、かつ、股関節角速度 (1φ Zdtに応じて股関節角
2- H
度 Φ
Hの絶対値の増大を抑制する仮想的な減衰要素による減衰力として表現される
。これにより、筋肉の伸展状態から屈曲状態への移行時の粘性力等、ユーザの身体 の減衰要素が反映されたリズムおよびスケールをもってユーザの運動が誘導されうる 一方の仮想的なダンバ G による減衰力は、そのダンバ係数 g および股関節角速
2+ 2+
度 (1φ Zdtに応じて、前側 (屈曲側)への股関節角度 φ の絶対値の増大を抑制す
H H
るようにユーザの大腿部に作用する力を表している (式 (5)参照)。すなわち、仮想的 なダンバ G による減衰力は、大腿部の前方への過剰な動きを抑制するようにこの大 腿部に作用する力を表して 、る。
[0099] また、他方の仮想的なダンバ G による弾性力は、そのダンバ係数 g および股関節
2- 2- 角速度 (1 φ Zdtに応じて、後側 (伸展側)への股関節角度 φ の絶対値の増大を抑
H H
制するようにユーザの大腿部に作用する力を表している (式 (5)参照)。すなわち、仮 想的なダンバ G による減衰力は、大腿部の後方への過剰な動きを抑制するようにこ
2- の大腿部に作用する力を表して 、る。
[0100] また、第 2誘導振動子 zには、股関節角度 φ の関数としての階段関数 H , Hが含
2 H + まれている。したがって、 2つの仮想的なダンバ G および G のそれぞれの減衰力が
2+ 2- 相殺される事態が回避される。
[0101] そして、誘導振動子生成部 250により生成された第 1誘導振動子 z = (z , ζ )と、
1 1L 1R 第 2誘導振動子 ζ = (ζ , ζ )とを含む誘導振動子 ζ ( = ζ +ζ )に応じた電流 Ι (ζ) =
2 2L 2R 1 2
(I (ζ +ζ ) , 1 (ζ +ζ ) )が電池 206から左右のァクチユエータ 210にそれぞれ供 し 1し 2し R 1R 2R
給され、ユーザの大腿部に当該供給電流 Iに応じた力 (股関節回りのトルク) Τ(Ι)が 作用する。
[0102] 以後、前記処理(図 2Zs011, s012, · · , s040,図 3Zs050)が繰り返されること で、ユーザは歩行運動誘導装置 20の動作によって股関節回りのトルク Tが作用して いる状態で歩行運動する。
[0103] そして、ユーザが前記のようにトレッドミル 10および歩行運動誘導装置 20の動作に より歩行運動が誘導されている状態で、運動変数測定部 110が歩行比 kを測定する( 図 3Zsl lO)。具体的には、第 1運動変数測定部 101がトレッドミル 10のベルト 13の 速度に応じた速度センサ 102の出力に基づき、ユーザの歩行速度 Vを測定する(図 3 /sl l l) oまた、第 2運動変数測定部 112がトレッドミル 10の踏板 14が受ける圧力に 応じた圧力センサ 104の出力がピークを示す単位時間当たりの回数に基づき、ユー ザの歩行率 (単位時間当たりの歩数) pを測定する(図 2ZS112)。なお、歩行運動 誘導装置 20によりユーザに作用させられる股関節回りのトルク Tの時間変化に基づ いて歩行率 pが測定されてもよい。また、ユーザの身体に加速度センサが取り付けら れ、ユーザの鉛直方向の加速度に応じた加速度センサの出力に基づ 、て歩行率 p が測定されてもよい。そして、運動変数測定部 100が歩行速度 Vおよび歩行率 pの関 数としての歩行比 k=vZp2を測定する。
[0104] また、生理変数測定部 120が生理変数センサ 106の出力に基づいて整理変数 bを 測定する(図 3Zsl20)。生理変数 bには、ユーザの酸素摂取量、呼吸周波数、心拍 数、脈拍数、血圧、血中飽和酸素濃度、乳酸値、筋電位、および消費エネルギーの うち一部または全部が含まれる。
[0105] 生理変数 bが測定されるたび、股関節角度 φ の目標角度 φ および φ 、第 1係数
H
g ( ω )および g ( ω )のそれぞれに含まれる係数 a および a 、ならびに第 2係数 g
1+ 1- k+ k-
( ω )および g ( ω )のそれぞれに含まれる係数 b および b のうち一部または全
2+ 2- k+ k- 部が設定変更される。 目標角度 Φ 0+および Φ 0-が設定変更されることで歩行運動誘 導装置 20による誘導スケールが変化し、ユーザの歩幅 qが変更されうる。また、係数 a , a , b および b の一部または全部が設定変更されることで歩行運動誘導装置 20 k+ k— k+ k—
による誘導リズムが変化し、ユーザの歩行率(目標運動リズム) pが変更されうる。これ により、歩行運動誘導装置 20によって歩行比 kが逐次変化するようにユーザの歩行 運動が誘導されていく状態で、生理変数 bが逐次測定される。そして、歩行比 kおよ び生理変数 bの関係が求められ、推奨歩行比設定部 130がこの関係に基づいて推 奨歩行比 kを設定する(図 3Zsl30)。
0
[0106] たとえば、生理変数 bとしてユーザの消費エネルギーが測定され、図 5に丸(〇)で 示されているような歩行比 kおよび消費エネルギー(生理変数)の関係が得られた場 合を考える。この場合、当該関係は図 5に示されている歩行比 kの 2次曲線によって 近似表現され、この 2次曲線が最小値をとる歩行比 k=0. 075がこのユーザにとって の推奨歩行比 kとして設定される。ユーザの消費エネルギーが最小となるように設定
0
された推奨歩行比 kは、ユーザの身体負荷の軽減に鑑みて適当な歩行比 kである。
0
なお、心拍数、乳酸値 (身体の疲労度を表す。)、筋群活性度 (身体機能の活性ィ匕の 程度を表す。)等、消費エネルギーとは異なる生理変数 bが測定され、当該測定変数 bに基づいて推奨歩行比 kが設定されてもよい。
0
[0107] 次に、歩行運動誘導装置 20による推奨歩行比 kに応じたユーザの歩行運動の誘
0
導方法について図 6を用いて説明する。推奨歩行比 kに応じたユーザの歩行運動の
0
誘導方法は、推奨歩行比 kの設定時におけるユーザの歩行運動の誘導方法と、誘 導振動子 zの生成方法(図 3Zs050)において相違するのみである。そこで、運動振 動子の測定(図 2Zs011, s012)、第 1振動子 Xの生成(図 2Zs020)、固有角速度 ω の設定(図 2Zs030)および第 2振動子 yの生成(図 2Zs040)については説明を 省略する。
[0108] 第 1運動変数測定部 111が、トレッドミル 10の動作および歩行運動誘導装置 20の 動作により歩行運動が誘導されて!、るユーザの歩行速度 Vを測定する(図 6Zsl 11)
[0109] また、誘導振動子生成部 250が、運動振動子測定部 210により測定された股関節 角度 Φ および股関節角速度 (1φ Zdtと、第 2振動子生成部 240により生成された
H H
第 2振動子 yと、固有角速度設定部 230によって設定された固有角速度 ω とに加え i
、さらに、第 1運動変数測定部 111により測定されたユーザの歩行速度 Vと、推奨歩 行比設定部 130により測定された推奨歩行比 kとに基づき、誘導振動子 zを設定す
0
る(図 2Zs250)。
[0110] 具体的には、次式 (6)にしたがって第 1誘導振動子 zが生成される(図 6Zs251)。
1
[0111] z =g (ρ , ω )g (q
1L 1+ 0 mL + 0, φ )y
HL L+
— g (p , ω )g (q
1- 0 mL - 0, Φ )y
HL L-,
z =g (p
1R 1+ 0, ω )g (q
mR + 0, Φ )y
HR R+
— g (p , ω )g (q Φ )
1- 0 mR - 0, y
HR RR-,
p≡(vZk)1/2, q≡(vk)
0 .(6)
0 0 0
ここで「g 」「g 」「8」ぉょび「8」は次式(6. 1)〜(6. 4)のそれぞれによって定義さ
1+ 1- + - れる関数である。
[0112] g (ρ , ω)≡∑ a (ρ ) ω
(a (ρ ):係数, k= 0〜3) · · (6. 1)
g (p, ω)≡∑ a (p ) ω
(a (p ):係数, k= 0〜3) · · (6. 2)
g (q , φ)≡ο ( φ— φ (q )) +c ( φ— φ (q ))J
+ 0 1+ 0+ 0 2+ 0+ 0
(c , c :係数, φ :屈曲方向の股関節角度 φ の目標値) ·'(6. 3)
1+ 2; 0+ Η
g (q, 0)≡c ( φ— φ (q )) +c ( φ - φ (q ))J (c , c :係数, φ :伸展方向の股関節角度 φ の目標値) ·'(6.4)
1- 2- 0- Η
第 1誘導振動子 ζにより、股関節角度 φ が推奨歩行比 kおよび歩行速度 Vに応じ
1 H 0
た目標角度 Φ , Φ
0+ 0-に一致するようにユーザの歩行運動が誘導されうる。
[0113] さらに、次式 (7)にしたがって第 2誘導振動子 Zが設定される(図 6Zs252)。
2
[0114] z =-g (ρ
2L 2+ 0, ω ) (άφ /dt)H (φ )y
mL HL + HL L+
+g (P
2- 0, ω ) (άφ /dt)H (φ )y
mL HL - HL L-,
z =-g (p , ω ) (άφ /dt)H (φ )y
2R 2+ 0 mR HR + HR R+
+g (p , ω ) (ά /dt)H (φ )y --(7)
2- 0 mR HR - HR R- ここで「g 」「g 」は次式(7.1)〜(7.2)のそれぞれによって定義される関数である
[0115] (ρ , ω )≡∑ b (p ) ω
0 k k+ 0
(b (p)
K+ o 、 , k
(p , ω)≡∑ b (p ) ω
o k k- o
(b (p ):係数, k=0
k— 〜3) · · (5.2)
第 2誘導振動子 zにより、股関節角速度 (1φ Zdtに応じて股関節角度 φ の絶対
2 H H 値の増大が抑制されるようにユーザの歩行運動が誘導されうる。
[0116] 股関節角度 Φ の
H 目標角度 Φ (q)
0+ 0および φ (q)
0- 0は推奨歩行比 k
0および歩行速 度 Vに応じた推奨歩幅 q (=(vk) 12)
0 0 関数であり、ユーザの歩幅 q (=vZp)と推奨歩 幅 q
0との偏差 δ qに基づいて補正されうる。
[0117] また、第 1係数 g (ρ , ω ) , g (ρ , ω )に含まれる係数 a (p)および a (p )、第
1+ 0 1- 0 k+ 0 k- 0
2係数 g (p, ω ), g (p, ω )に含まれる係数 b (p)および b (p )は推奨歩行比
2+ 0 2- 0 k+ 0 k- 0 kおよび歩行速度 vに応じた推奨歩行率 p (= (vZk )1/2)の関数であり、ユーザの歩
0 0 0
行率 P (=vZq)と推奨補効率 p
0との偏差 δ ρに基づいて補正されうる。
[0118] そして、誘導振動子生成部 250により生成された第 1誘導振動子 ζと、第 2誘導振
1
動子 ζとを含む誘導振動子 ζに応じた電流 Iが電池 206から左右のァクチユエータ 21
2
0にそれぞれ供給され、ユーザの大腿部に力(股関節回りのトルク) Τが作用する。
[0119] 以後、前記処理(図 2Zs011, s012, ··, s040,図 6Zs250)が繰り返されること で、ユーザは歩行運動誘導装置 20の動作によって股関節回りのトルク Tが作用して いる状態で歩行する。
[0120] 前記機能を発揮する運動管理システム 1によれば、歩行運動誘導装置 (第 2運動誘 導装置) 20の動作によりユーザの運動が誘導されて 、る状態で歩行比 (運動変数) k および生理変数 bが測定される(図 3Zsl 10, sl20) oそして、この動物の「身体機能 の活性化」または「身体負荷の軽減」に鑑みて生理変数 bが適当な値となった状態に おける歩行比 kの値が推奨目標比 kとして設定される。これにより、推奨歩行比 k 1S
0 0 このユーザの身体機能の活性ィ匕等に鑑みて適当に設定されうる。そして、歩行運動 誘導装置 20によりこの推奨歩行比 kに基づいてユーザの歩行運動が誘導されること
0
で、ユーザの歩幅(運動スケール) qおよび歩行率 (運動リズム) pがこのユーザの身体 機能の活性ィ匕等に鑑みて適当なものとなるように、当該誘導スケールおよびリズムが 適当に制御されうる。
[0121] 運動管理システム 1の効果に関する実験結果について図 7〜図 9を用いて説明す る。
[0122] 図 7に示されて 、るように、歩行運動誘導装置 20による歩行運動の誘導の有無に 応じて同一のユーザが同一の速度 Vで歩行した場合の歩行比 kが異なる。すなわち、 ユーザが歩行補助装置 20を装着せずに歩行した場合の歩行比 kは約 0. 0065に制 御されている。これに対して、ユーザが歩行運動誘導装置 20を装着して歩行運動が 誘導された状態で歩行した場合の歩行比 kは、前記のように設定された推奨歩行比 k ( = 0. 0075)に制御されている。このユーザは、歩行運動誘導装置 20の動作によつ て歩行比 k、ひいては歩幅 qが大きくなるように歩行運動が誘導されている。
[0123] また、図 8に示されているように、歩行運動誘導装置 20による歩行運動の誘導の有 無に応じて同一のユーザが同一の速度 Vで歩行した場合の心拍数 (生理変数)が異 なる。すなわち、ユーザが歩行補助装置 20を装着せずに歩行した場合の心拍数は、 ユーザが歩行運動誘導装置 20を装着して歩行運動が誘導された状態で歩行した場 合の心拍数よりも高い。これは、図 7に示されているように、ユーザの歩幅が大きくな るように歩行運動が誘導されている状態で、その心拍数が低く抑えられており、身体 への負荷が軽減されて!、ることを意味する。
[0124] また、図 9に示されているように、歩行運動誘導装置 20による歩行運動の誘導の有 無に応じて同一のユーザが同一の速度 Vで歩行した場合の筋群活性度 (生理変数) が異なる。図 9 (b)に示されているユーザが歩行運動誘導装置 20を装着して歩行運 動が誘導された状態で歩行した場合のその股関節周囲の筋群活性度は、図 9 (a)に 示されているユーザが歩行補助装置 20を装着せずに歩行した場合の同じ箇所の筋 群活性度よりも高い。これは、図 7に示されているように、ユーザは歩幅が大きくなるよ うに歩行運動が誘導されることで、ユーザの身体機能が活性化されて ヽることを意味 する。
[0125] 図 7〜図 9に示されている実験結果から、たとえば、運動管理システム 1が高齢者等 、歩行運動機能が低下しているユーザの運動管理に利用された場合の意義が大き いことがわかる。すなわち、本発明の運動管理システム 1が利用されることで、高齢者 等の身体負荷を軽減しながら、その身体機能の低下抑制、さらには活性ィ匕を促すこ とがでさる。
[0126] また、ユーザの歩行速度 (第 1運動変数) Vがトレッドミル 10のベルト 13の速さに基 づいて測定される(図 3Zsl l l)。またユーザの歩行率 (第 2運動変数) pが、ユーザ の着床および離床の繰り返しにより変化するトレッドミル 10への圧力に基づいて測定 される(図 3Zsl l2)。これにより、歩行速度 Vおよび歩行率 pの関数である歩行比 kの 測定精度の向上が図られる(図 3ZsllO)。したがって、ユーザの身体機能の活性化 や身体負荷の軽減に鑑みて適当な運動変数の推奨値がより正確に設定されうる。
[0127] また、トレッドミル 10の無端ベルト (循環運動体) 13を循環運動させることにより、こ の無端ベルト 13の動きとは逆向きの歩行または走行運動が誘導される。これにより、 当該歩行または走行に伴うユーザの移動が無端ベルト 13の循環運動によって相殺 されるので、トレッドミル 10の設置スペースさえあればユーザの歩行または走行運動 に伴う推奨歩行比 kの設定が可能である。トレッドミル 10が省略され、歩行運動誘導
0
装置 20のみによってユーザの歩行運動が誘導されている状態で推奨歩行比 kが設
0 定されてもよい。
[0128] なお、運動管理システム 1は、ユーザの歩行運動以外のあらゆる運動に伴って変化 する運動変数の推奨値の設定に利用されてもよい。たとえば、車椅子の左右の車輪 に手で力を加える運動について、両腕が車輪を押すリズム等、他の運動についての 運動変数の推奨値設定に利用されてもよい。運動管理システム 1は馬の走行運動等
、人間以外の動物の運動についての運動変数の推奨値設定に利用されてもよい。ま た、歩行比 kのほか、歩行速度 Vおよび歩行率 pの任意の関数としての運動変数の推 奨値が設定されてもよい。
[0129] また、トレッドミル 10のほか、複数のローラに掛け渡された無端ベルト、中心または 中心から外れた点を通る軸回りに循環運動される球体、楕円球体、中心軸または中 心軸力 離れた中心軸に平行な軸回りに循環運動する円筒、四角筒等の筒体、そ の他任意の軸回りに循環運動される一塊の物体等の循環運動体を循環運動させる ことでこの循環運動体に接触するユーザの腕や脚などの身体部分の運動を誘導す る装置が第 1運動誘導装置として採用されてもよい。
[0130] 前記実施形態では誘導振動子 zに応じた左右の股関節回りのトルク Τ= (Τ , Τ ) し R がユーザの身体に作用させられたが、他の実施形態として膝関節、足関節、肩関節 、肘関節、手根関節等、種々の関節回りのトルクがユーザの身体に作用させされても よい。トルク作用対象となる関節の組合せは、ユーザに応じてさまざまに変更されても よい。
[0131] また、第 2制御部 200の第 2振動子生成部 240が、運動振動子測定部 210により測 定された股関節角度 φ または股関節角速度 (1 φ Zdt (運動振動子)の周期変化の
H H
大きさが閾値を超えた場合、固有角速度設定部 230により設定された新たな固有角 速度 ω に代えて、運動振動子測定部 210により測定された股関節角度 φ 等の角
Η
速度 (位相の時間変化)と、第 1振動子生成部 220により生成された第 1振動子 Xの 角速度とのうち一方または両方に基づいて定まるリズムまたは角速度で振動する第 2 振動子 yを生成してもよい。
[0132] 当該構成によれば、ユーザの運動リズムが急に変化した場合でも、この変化後の運 動リズムに応じた適当なリズムをもってユーザの運動が誘導されうる。
[0133] また、特開 2004— 73649号公報に開示されている方法にしたがって誘導振動子 z が生成されてもよい。
[0134] さらに、次のような形で誘導振動子 zが生成されてもよい。
[0135] すなわち、運動振動子測定部 210がユーザの 2つの異なる身体部分の動きに応じ た運動振動子 (たとえば肩関節角速度および股関節角度)のそれぞれを「第 1運動 振動子」および「第 2運動振動子」として測定する。また、第 1振動子生成部 220が第 1運動振動子と、固有角速度 ω が反映された形で相互に引き込み合う第 1振動子 X を生成する。さらに、固有角速度設定部 230が第 1運動振動子と第 1振動子 Xとの位 相差に基づき、新たな固有角速度 ω を設定する。また、第 2振動子生成部 240が第
2運動振動子に基づき、新たな固有角速度 ω が反映されたリズムで振動する第 2振 動子 yを生成する。そして、誘導振動子生成部 250が第 2振動子 yに加え、第 1運動 変数測定部 101により測定された歩行速度 V (第 1運動変数)と、第 2運動変数測定 部 102により測定された歩行率 p (第 2運動変数)とのうち一方または両方に基づいて 誘導振動子 zを生成する。
[0136] 当該構成によれば、ユーザの異なる身体部分のそれぞれの運動リズムと、この運動 を誘導するリズムとの調和を図りながら、ユーザの運動リズムが目標運動リズムに近づ くようにこの運動が誘導されうる。
[0137] さらに、本発明の運動管理システム 1は、推奨歩行比設定部 130が複数のユーザ のそれぞれの身体的特徴 (身体のサイズ、ゥヱイト、年齢、性別等が含まれる。)を識 別するための識別子を認識した上で各ユーザの複数の推奨歩行比 kを予備的に設
0
定し、認識した識別子ごとに予備的に設定済みの推奨歩行比 kに基づいて新たな
0
推奨歩行比 kを設定することにより、識別子および推奨値が対応付けられているデ
0
ータベースを構築してもよい。この場合、ユーザの識別子、ひいては身体的特徴に応 じてデータベース力 検索された標準的な推奨値に基づ 、て、ユーザの歩行運動が 誘導される。これにより、ユーザの歩行比 kがこのユーザの身体機能の活性ィ匕等に鑑 みて適当なものとなるように、当該誘導スケールおよびリズムが適当に制御されうる。

Claims

請求の範囲
[1] 動物の運動を管理するシステムであって、
前記動物の運動リズムと調和したリズムで該動物の運動スケールを調節しながら該 動物の運動を誘導する第 2運動誘導装置の動作を制御する制御部と、
前記動物の生理状態を表す生理変数を測定する生理変数測定部と、
前記動物の運動スケールおよび運動リズムのうち一方または両方を表す運動変数 を測定する運動変数測定部と、
該制御部により該運動変数が変化するように制御されている該第 2運動誘導装置 の動作によって前記動物の運動が誘導されている状態で、該生理変数測定部により 測定された該生理変数が該動物の身体機能の活性化または身体負荷の軽減に鑑 みて適当な値となった状態で、該運動変数測定部により測定された該運動変数を該 運動変数の推奨値として設定する推奨値設定部とを備えていることを特徴とする運 動管理システム。
[2] 請求項 1記載の運動管理システムにおいて、
前記制御部が、前記動物の運動に応じて周期的に変化するパラメータとして第 1お よび第 2運動振動子のそれぞれを測定する運動振動子測定部と、
入力振動信号と相互に引き込み合うことで固有角速度に基づいて定まる角速度で 時間変化する出力振動信号を生成する第 1モデルに、該運動振動子測定手段によ り測定された該第 1運動振動子を該入力振動信号として入力することにより、該出力 振動信号として第 1振動子を生成する第 1振動子生成部と、
該運動振動子測定部により測定された該運動振動子と該第 1振動子生成部により 生成された該第 1振動子との位相差に基づき、新たな該固有角速度を設定する固有 角速度設定部と、
入力振動信号に基づき、該固有角速度設定手段により設定された該固有角速度 に基づいて定まる角速度で時間変化する出力振動信号を生成する第 2モデルに、該 運動振動子測定手段により測定された該第 2運動振動子を該入力振動信号として入 力することにより、該出力振動信号として第 2振動子を生成する第 2振動子生成部と、 該第 2振動子生成部により生成された該第 2振動子に加え、前記運動変数測定部 により測定された運動変数に基づいて前記第 2運動誘導装置の動作のスケールおよ びリズムを特定する誘導振動子を生成する誘導振動子生成部とを備えていることを 特徴とする運動管理システム。
[3] 請求項 1記載の運動管理システムにおいて、
前記生理変数測定部が、前記動物の酸素摂取量、呼吸周波数、心拍数、脈拍数、 血圧、血中飽和酸素濃度、乳酸値、筋電位および消費エネルギーのうち一部または 全部を前記生理変数として測定することを特徴とする運動管理システム。
[4] 請求項 1記載の運動管理システムにおいて、
前記運動変数測定部が第 1運動変数測定部と第 2運動変数測定部とを備え、 該第 1運動変数測定部は前記動物の運動速度を調節しながら当該動物の運動を 誘導する第 1運動誘導装置の動作速度に基づいて第 1運動変数を測定し、該第 1運 動変数は該第 1運動誘導装置の動作により運動が誘導されている該動物の当該運 動スケールおよび当該運動リズムを表す前記運動変数であり、
該第 2運動変数測定部は前記第 1運動誘導装置と前記動物との相互作用状態また は前記第 2運動誘導装置の動作状態に基づいて第 2運動変数を測定し、該第 2運動 変数は前記動物の運動リズムまたは運動スケールを表す前記運動変数であることを 特徴とする運動管理システム。
[5] 請求項 4記載の運動管理システムにおいて、
前記第 1運動変数測定部が前記動物の歩行または走行速度を前記第 1運動変数 として測定し、
前記第 2運動変数測定部が前記動物の歩幅または単位時間当たりの歩数である 歩行率を前記第 2運動変数として測定することを特徴とする運動管理システム。
[6] 請求項 5記載の運動管理システムにおいて、
前記運動変数測定部が前記第 1運動変数としての歩行または走行速度に対する 前記第 2運動変数としての歩幅の二乗の比率、または前記第 2運動変数としての歩 行率の二乗に対する前記第 1運動変数としての歩行または走行速度の比率である歩 行比を前記運動変数として測定することを特徴とする運動管理システム。
[7] 請求項 4記載の運動管理システムにおいて、 前記第 1運動変数測定部が、前記第 1運動誘導装置が有する循環運動体の循環 運動方向の反対方向への運動が誘導されている前記動物の前記第 1運動変数を、 当該循環運動体の循環運動速度に基づいて測定することを特徴とする運動管理シ ステム。
[8] 請求項 4記載の運動管理システムにおいて、
前記第 1運動変数測定部が、前記第 1運動誘導装置としてのトレッドミルが有する 複数のローラに掛け渡された循環運動体としての無端ベルトの動きに逆らう方向に誘 導されている前記動物の歩行または走行運動の速さを表す第 1運動変数としての歩 行または走行速度を、当該無端ベルトの駆動速度に基づ!ヽて測定することを特徴と する運動管理システム。
[9] 請求項 1記載の運動管理システムにおいて、
前記推奨値設定部が、複数の前記動物のそれぞれの身体的特徴を識別するため の識別子を認識した上で各動物の複数の前記推奨値を予備的に設定し、認識した 該識別子ごとに予備的に設定済みの該推奨値に基づいて該推奨値を新たに設定す ることにより、該識別子および該推奨値が対応付けられて記憶されているデータべ一 スを構築することを特徴とする運動管理システム。
[10] 動物の運動を管理する方法であって、
前記動物の運動リズムと調和したリズムで該動物の運動スケールを調節しながら該動 物の運動を誘導する第 2運動誘導装置の動作を制御し、
前記動物の生理状態を表す生理変数を測定し、
前記動物の運動スケールおよび運動リズムのうち一方または両方を表す運動変数 を測定し、
該制御部により該運動変数が変化するように制御されている該第 2運動誘導装置 の動作によって前記動物の運動が誘導されている状態で測定された該生理変数が、 該動物の身体機能の活性ィ匕または身体負荷の軽減に鑑みて適当な値となった状態 で測定された該運動変数を該運動変数の推奨値として設定することを特徴とする運 動管理方法。
[11] 動物の運動を管理するシステムとしてコンピュータを機能させるプログラムであって、 前記動物の運動リズムと調和したリズムで該動物の運動スケールを調節しながら該 動物の運動を誘導する第 2運動誘導装置の動作を制御する制御部と、
前記動物の生理状態を表す生理変数を測定する生理変数測定部と、
前記動物の運動スケールおよび運動リズムのうち一方または両方を表す運動変数 を測定する運動変数測定部と、
該制御部により該運動変数が変化するように制御されている該第 2運動誘導装置 の動作によって前記動物の運動が誘導されている状態で、該生理変数測定部により 測定された該生理変数が該動物の身体機能の活性化または身体負荷の軽減に鑑 みて適当な値となった状態で、該運動変数測定部により測定された該運動変数を該 運動変数の推奨値として設定する推奨値設定部とを備えているシステムとして前記コ ンピュータを機能させることを特徴とする運動管理プログラム。
PCT/JP2007/056194 2006-04-06 2007-03-26 運動管理システム、運動管理方法、運動管理プログラム WO2007116681A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP07739632A EP2011551B1 (en) 2006-04-06 2007-03-26 Exercise management system
DE602007009078T DE602007009078D1 (de) 2006-04-06 2007-03-26 Trainingsmanagementsystem
DK07739632.3T DK2011551T3 (da) 2006-04-06 2007-03-26 Træningskontrolsystem
AT07739632T ATE480308T1 (de) 2006-04-06 2007-03-26 Trainingsmanagementsystem
US12/295,759 US7771321B2 (en) 2006-04-06 2007-03-26 Exercise management system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006105182A JP4138814B2 (ja) 2006-04-06 2006-04-06 運動管理システム
JP2006-105182 2006-04-06

Publications (1)

Publication Number Publication Date
WO2007116681A1 true WO2007116681A1 (ja) 2007-10-18

Family

ID=38580980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/056194 WO2007116681A1 (ja) 2006-04-06 2007-03-26 運動管理システム、運動管理方法、運動管理プログラム

Country Status (7)

Country Link
US (1) US7771321B2 (ja)
EP (1) EP2011551B1 (ja)
JP (1) JP4138814B2 (ja)
AT (1) ATE480308T1 (ja)
DE (1) DE602007009078D1 (ja)
DK (1) DK2011551T3 (ja)
WO (1) WO2007116681A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5588724B2 (ja) 2010-04-23 2014-09-10 本田技研工業株式会社 歩行運動補助装置
US8840527B2 (en) * 2011-04-26 2014-09-23 Rehabtek Llc Apparatus and method of controlling lower-limb joint moments through real-time feedback training
TWI409055B (zh) * 2011-05-17 2013-09-21 Univ Chang Gung 膝關節外骨骼步行復健設備
US20130198694A1 (en) * 2011-06-10 2013-08-01 Aliphcom Determinative processes for wearable devices
US9069380B2 (en) 2011-06-10 2015-06-30 Aliphcom Media device, application, and content management using sensory input
CN104010613B (zh) * 2011-12-21 2016-08-31 国立大学法人信州大学 动作辅助装置、及动作辅助装置的同步控制方法
US9539173B2 (en) * 2013-02-05 2017-01-10 Physio-Control, Inc. Fixation of device to back plate
US9603772B2 (en) * 2013-02-05 2017-03-28 Physio-Control, Inc. Beam mechanical compression device
US10265575B2 (en) * 2015-10-23 2019-04-23 Cheng I. Chou Exercise machine with analysis system
EP3636152A4 (en) * 2017-08-16 2020-10-14 Nippon Telegraph and Telephone Corporation INSTRUMENT FOR MEASURING SOLE PRESSURE, INFORMATION PROVIDING DEVICE AND INFORMATION PROVIDING METHOD
JP7181801B2 (ja) * 2019-01-30 2022-12-01 Cyberdyne株式会社 心臓リハビリテーション支援装置及びその制御プログラム
US20200260995A1 (en) * 2019-02-19 2020-08-20 Zwift, Inc. Physical movement tracking
JP7215442B2 (ja) * 2020-02-12 2023-01-31 トヨタ自動車株式会社 バランス訓練システム、その制御方法、及び、制御プログラム
JP6881811B1 (ja) * 2021-03-05 2021-06-02 株式会社Arblet 情報処理システム、管理サーバ、情報処理方法及びプログラム
WO2023017675A1 (ja) * 2021-08-10 2023-02-16 学校法人浪商学園 下肢制御能力測定装置、下肢制御能力測定システム、下肢制御能力測定プログラム、及び下肢制御能力測定方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003154029A (ja) 2001-11-19 2003-05-27 Omron Corp 歩行速度決定方法及び装置並びに運動機器
JP2004073649A (ja) 2002-08-21 2004-03-11 Honda Motor Co Ltd 歩行補助装置の制御システム

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0530779Y2 (ja) * 1987-04-15 1993-08-06
IT1232308B (it) * 1989-08-28 1992-01-28 Consiglio Nazionale Ricerche Metodo per l'analisi automatica della energetica della locomozione umana.
JPH0745239Y2 (ja) * 1991-03-28 1995-10-18 日本光電工業株式会社 トレッドミル
JPH0535160A (ja) 1991-07-31 1993-02-12 Mita Ind Co Ltd 廃トナーの回収装置
JPH0615658U (ja) * 1992-08-04 1994-03-01 オージー技研株式会社 免荷歩行訓練装置
JPH06296705A (ja) * 1993-04-15 1994-10-25 Nec San-Ei Instr Co Ltd 生体機能制御装置
JPH08141026A (ja) * 1994-11-18 1996-06-04 Hitachi Ltd 歩行訓練装置
US5961541A (en) * 1996-01-02 1999-10-05 Ferrati; Benito Orthopedic apparatus for walking and rehabilitating disabled persons including tetraplegic persons and for facilitating and stimulating the revival of comatose patients through the use of electronic and virtual reality units
IT1281584B1 (it) * 1996-01-02 1998-02-20 Benito Ferrati Apparecchiatura ortopedica per la deambulazione e riabilitazione di persone motu-lese con l'impiego di unita' elettroniche e di realta'
JPH1043327A (ja) * 1996-07-31 1998-02-17 Hitachi Techno Eng Co Ltd 運動訓練装置
JPH1099389A (ja) * 1996-09-27 1998-04-21 Hitachi Ltd 歩行訓練機
JP3528462B2 (ja) * 1996-09-30 2004-05-17 株式会社日立製作所 歩行訓練装置
US6162151A (en) * 1996-09-30 2000-12-19 Hitachi, Ltd. Ambulatory exercise machine and ambulatory exercise system
JPH10113368A (ja) * 1996-10-15 1998-05-06 Hitachi Techno Eng Co Ltd 歩行訓練装置
EP1137378B1 (de) 1998-11-13 2003-08-27 Hocoma AG Vorrichtung und verfahren zur automatisierung der laufbandtherapie
JP2000166997A (ja) * 1998-12-10 2000-06-20 Nsk Ltd 歩行補助装置
JP2001037908A (ja) * 1999-07-29 2001-02-13 Hitachi Techno Eng Co Ltd 歩行訓練装置
JP2001238982A (ja) * 2000-02-28 2001-09-04 Mitsubishi Electric Engineering Co Ltd 歩行訓練装置
JP2001346906A (ja) * 2000-06-06 2001-12-18 Sony Corp 歩行訓練方法、歩行訓練装置、歩行訓練情報提供方法、並びに歩行訓練情報提供装置
DE60142399D1 (de) 2000-08-25 2010-07-29 Healthsouth Corp Motorisierte gehortese
JP2002126152A (ja) * 2000-10-26 2002-05-08 Matsushita Electric Works Ltd 運動ピッチ計
US7065408B2 (en) * 2001-01-11 2006-06-20 Herman Richard M Method for restoring gait in individuals with chronic spinal cord injury
JP3833921B2 (ja) * 2001-10-18 2006-10-18 本田技研工業株式会社 歩行状態判定装置及び方法
US6605020B1 (en) * 2002-04-16 2003-08-12 Chia-Shen Huang Treadmill whose speed is controlled by music
JP2005006751A (ja) * 2003-06-17 2005-01-13 Yaskawa Electric Corp 歩行訓練装置
KR100601932B1 (ko) * 2003-09-04 2006-07-14 삼성전자주식회사 바이오피드백을 이용한 훈련제어방법 및 장치

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003154029A (ja) 2001-11-19 2003-05-27 Omron Corp 歩行速度決定方法及び装置並びに運動機器
JP2004073649A (ja) 2002-08-21 2004-03-11 Honda Motor Co Ltd 歩行補助装置の制御システム

Also Published As

Publication number Publication date
EP2011551A1 (en) 2009-01-07
US20090137366A1 (en) 2009-05-28
ATE480308T1 (de) 2010-09-15
DK2011551T3 (da) 2010-11-29
JP4138814B2 (ja) 2008-08-27
JP2007275283A (ja) 2007-10-25
EP2011551B1 (en) 2010-09-08
EP2011551A4 (en) 2009-07-08
DE602007009078D1 (de) 2010-10-21
US7771321B2 (en) 2010-08-10

Similar Documents

Publication Publication Date Title
WO2007116681A1 (ja) 運動管理システム、運動管理方法、運動管理プログラム
KR101112497B1 (ko) 운동 관리 시스템
JP4008464B2 (ja) 運動誘導装置
US7880552B2 (en) Control system for walking assist device
EP1932567B1 (en) Motion guide device and its control system
JP3950149B2 (ja) 運動補助装置
JP2009095577A (ja) 運動補助装置
JP2011240048A (ja) 歩行運動補助装置
US20100132464A1 (en) Motion assisting device
JP2009095426A (ja) 運動補助装置
JP2008253804A (ja) 運動管理システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07739632

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 12295759

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007739632

Country of ref document: EP

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)