JP2004073649A - 歩行補助装置の制御システム - Google Patents

歩行補助装置の制御システム Download PDF

Info

Publication number
JP2004073649A
JP2004073649A JP2002240699A JP2002240699A JP2004073649A JP 2004073649 A JP2004073649 A JP 2004073649A JP 2002240699 A JP2002240699 A JP 2002240699A JP 2002240699 A JP2002240699 A JP 2002240699A JP 2004073649 A JP2004073649 A JP 2004073649A
Authority
JP
Japan
Prior art keywords
walking
oscillator
pedestrian
state
phase difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002240699A
Other languages
English (en)
Other versions
JP3930399B2 (ja
Inventor
Ken Yasuhara
安原 謙
Yoshihiro Miyake
三宅 美博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2002240699A priority Critical patent/JP3930399B2/ja
Priority to PCT/JP2003/009918 priority patent/WO2004017890A1/ja
Priority to US10/515,557 priority patent/US7880552B2/en
Priority to AU2003254807A priority patent/AU2003254807A1/en
Priority to EP03792649A priority patent/EP1547567B1/en
Priority to DE60330692T priority patent/DE60330692D1/de
Publication of JP2004073649A publication Critical patent/JP2004073649A/ja
Application granted granted Critical
Publication of JP3930399B2 publication Critical patent/JP3930399B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H3/00Appliances for aiding patients or disabled persons to walk about
    • A61H3/008Appliances for aiding patients or disabled persons to walk about using suspension devices for supporting the body in an upright walking or standing position, e.g. harnesses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/112Gait analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1121Determining geometric values, e.g. centre of rotation or angular range of movement
    • A61B5/1122Determining geometric values, e.g. centre of rotation or angular range of movement of movement trajectories
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H1/00Apparatus for passive exercising; Vibrating apparatus; Chiropractic devices, e.g. body impacting devices, external devices for briefly extending or aligning unbroken bones
    • A61H1/02Stretching or bending or torsioning apparatus for exercising
    • A61H1/0237Stretching or bending or torsioning apparatus for exercising for the lower limbs
    • A61H1/0244Hip
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H3/00Appliances for aiding patients or disabled persons to walk about
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/0006Exoskeletons, i.e. resembling a human figure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1602Programme controls characterised by the control system, structure, architecture
    • B25J9/161Hardware, e.g. neural networks, fuzzy logic, interfaces, processor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/45For evaluating or diagnosing the musculoskeletal system or teeth
    • A61B5/4528Joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H1/00Apparatus for passive exercising; Vibrating apparatus; Chiropractic devices, e.g. body impacting devices, external devices for briefly extending or aligning unbroken bones
    • A61H1/02Stretching or bending or torsioning apparatus for exercising
    • A61H1/0237Stretching or bending or torsioning apparatus for exercising for the lower limbs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H1/00Apparatus for passive exercising; Vibrating apparatus; Chiropractic devices, e.g. body impacting devices, external devices for briefly extending or aligning unbroken bones
    • A61H1/02Stretching or bending or torsioning apparatus for exercising
    • A61H1/0237Stretching or bending or torsioning apparatus for exercising for the lower limbs
    • A61H1/024Knee
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H1/00Apparatus for passive exercising; Vibrating apparatus; Chiropractic devices, e.g. body impacting devices, external devices for briefly extending or aligning unbroken bones
    • A61H1/02Stretching or bending or torsioning apparatus for exercising
    • A61H1/0237Stretching or bending or torsioning apparatus for exercising for the lower limbs
    • A61H1/0255Both knee and hip of a patient, e.g. in supine or sitting position, the feet being moved together in a plane substantially parallel to the body-symmetrical plane
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H1/00Apparatus for passive exercising; Vibrating apparatus; Chiropractic devices, e.g. body impacting devices, external devices for briefly extending or aligning unbroken bones
    • A61H1/02Stretching or bending or torsioning apparatus for exercising
    • A61H1/0237Stretching or bending or torsioning apparatus for exercising for the lower limbs
    • A61H1/0266Foot
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H3/00Appliances for aiding patients or disabled persons to walk about
    • A61H2003/007Appliances for aiding patients or disabled persons to walk about secured to the patient, e.g. with belts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/16Physical interface with patient
    • A61H2201/1602Physical interface with patient kind of interface, e.g. head rest, knee support or lumbar support
    • A61H2201/1628Pelvis
    • A61H2201/163Pelvis holding means therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/16Physical interface with patient
    • A61H2201/1602Physical interface with patient kind of interface, e.g. head rest, knee support or lumbar support
    • A61H2201/164Feet or leg, e.g. pedal
    • A61H2201/1642Holding means therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/16Physical interface with patient
    • A61H2201/1602Physical interface with patient kind of interface, e.g. head rest, knee support or lumbar support
    • A61H2201/165Wearable interfaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/16Physical interface with patient
    • A61H2201/1657Movement of interface, i.e. force application means
    • A61H2201/1664Movement of interface, i.e. force application means linear
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/16Physical interface with patient
    • A61H2201/1657Movement of interface, i.e. force application means
    • A61H2201/1676Pivoting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5007Control means thereof computer controlled
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5058Sensors or detectors
    • A61H2201/5069Angle sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5058Sensors or detectors
    • A61H2201/5079Velocity sensors
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B69/00Training appliances or apparatus for special sports
    • A63B69/0028Training appliances or apparatus for special sports for running, jogging or speed-walking
    • A63B2069/0031Speed-walking
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/10Positions
    • A63B2220/16Angular positions
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/30Speed
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/40Acceleration
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/80Special sensors, transducers or devices therefor
    • A63B2220/803Motion sensors
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2230/00Measuring physiological parameters of the user
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2230/00Measuring physiological parameters of the user
    • A63B2230/04Measuring physiological parameters of the user heartbeat characteristics, e.g. ECG, blood pressure modulations
    • A63B2230/06Measuring physiological parameters of the user heartbeat characteristics, e.g. ECG, blood pressure modulations heartbeat rate only
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2230/00Measuring physiological parameters of the user
    • A63B2230/20Measuring physiological parameters of the user blood composition characteristics
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2230/00Measuring physiological parameters of the user
    • A63B2230/40Measuring physiological parameters of the user respiratory characteristics
    • A63B2230/42Measuring physiological parameters of the user respiratory characteristics rate

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Pain & Pain Management (AREA)
  • Epidemiology (AREA)
  • Rehabilitation Therapy (AREA)
  • Dentistry (AREA)
  • Robotics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Physiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Automation & Control Theory (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Mechanical Engineering (AREA)
  • Artificial Intelligence (AREA)
  • Geometry (AREA)
  • Evolutionary Computation (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Rehabilitation Tools (AREA)
  • Manipulator (AREA)

Abstract

【課題】歩行者の歩行リズムの変化に追従しながらも、自律性を持った歩行補助リズムを制御し得るシステムを提供する。
【解決手段】本発明の制御システム100によれば、固有角速度が反映された形で歩行振動子(股関節角速度)φH ’と相互に引き込み合う第1振動子xが生成される。また、第1振動子xと歩行振動子φH ’との第1位相差θHMと、最適位相差θd との偏差に基づいて新たな固有角速度ωm g決定される。さらにこの固有角速度ωm が反映された形で歩行振動子φH ’と相互に引き込み合い、第1位相差θHMよりも最適位相差θd に近い第2位相差θhmを歩行振動子φH ’に対して有する第2振動子yが生成される。そして、第2振動子yと歩行振動子(股関節角度)φH とに基づき、歩行補助振動子(歩行補助装置200による歩行者への付与トルク)Tが生成される。
【選択図】 図2

Description

【0001】
【発明の属する技術分野】
本発明は、歩行補助装置の制御システムに関する。
【0002】
【従来の技術】
歩行者に対して脚体関節(股関節、膝関節、足関節)回りのトルクを付与することでその歩行を補助する装置が知られている。
【0003】
歩行補助装置において、歩行補助リズム(歩行者へのトルク付与リズム)が予めプログラムされている場合、歩行者はそのプログラムされた歩行補助リズムに従った歩行リズムを強制される。このため、歩行者が歩行リズムを速めたいにも関わらず歩行補助リズムが遅ければゆっくりと歩行せざるを得ない。また、歩行者が歩行リズムを遅らせたいにもかかわらず歩行補助リズムが速ければ速く歩行せざるを得ない。従って、歩行者が意思にそぐわない歩行を強制されているとの不快感を抱く可能性が高い。
【0004】
一方、歩行補助リズムを歩行者の歩行リズムに完全に追従させる場合、歩行者はその意思に従った歩行リズムで歩行することが可能となる。
【0005】
即ち、歩行者が歩行リズムを速めようとして脚体の動きを速めたとき、歩行補助リズムがこの脚体の動きの変化に追従して速く制御されれば、歩行者はその意思通りに速く歩行することができる。また、歩行者が歩行リズムを遅らせようとして脚体の動きを遅らせたとき、歩行補助リズムがこの脚体の動きの変化に追従して遅く制御されれば、歩行者はその意思通りにゆっくりと歩行することができる。
【0006】
【発明が解決しようとする課題】
しかし、歩行補助装置を装着している歩行者にとっては、歩行補助装置を利用しているからにはその歩行が補助されているとの感覚が得られることも重要である。従って、歩行者の完全主導による歩行補助では歩行者がその意図通りのリズムで歩行することができても、かかる感覚の薄れにより歩行補助装置を用いた歩行に違和感を覚えるおそれがある。
【0007】
また、歩行者が自ら生み出す歩行リズムが急激に変化した場合や、通常の歩行に鑑みて不自然であるような場合、その歩行リズムに従った歩行が助成されてしまい、歩行者の心身負担が増大するおそれがある。
【0008】
そこで、本発明は歩行者の歩行リズムの変化に追従しながらも、自律性を持った歩行補助リズムを制御し得るシステムを提供することを解決課題とする。
【0009】
【課題を解決するための手段】
前記課題を解決するための本発明の歩行補助装置の制御システムは、歩行補助装置により歩行が補助されている歩行者の歩行振動子を測定する歩行振動子測定手段と、固有角速度が反映された形で歩行振動子測定手段により測定された歩行振動子と相互に引き込み合う第1振動子を生成する第1振動子生成手段と、第1振動子と歩行振動子との第1位相差と、最適位相差との偏差に基づいて新たな固有角速度を決定する決定手段と、決定手段により決定された固有角速度が反映された形で歩行振動子測定手段により測定された歩行振動子と相互に引き込み合い、第1位相差よりも最適位相差に近い第2位相差を歩行振動子に対して有する第2振動子を生成する第2振動子生成手段と、第2振動子と、歩行振動子測定手段により測定された歩行振動子とに基づき、歩行補助装置の歩行補助振動子を生成する歩行補助振動子生成手段とを備えていることを特徴とする。
【0010】
本発明によれば、歩行リズムが反映された歩行振動子に対し、歩行補助の観点から適切な位相差を持った振動子を生成した上で、当該振動子に基づいて歩行補助振動子を生成することで歩行補助リズムの最適化を図ることができる。
【0011】
なお、本発明において用いられる「振動子」とは、あるリズム(角速度)で振動(時間変化)する現実的な又は仮想的なパラメータを意味する。例えば「歩行振動子」とは、歩行リズムが反映されたリズムで振動する歩行者の脚体関節角度や脚体関節角速度等を意味する。また「歩行補助振動子」とは、歩行補助リズムが反映されたリズムをもって振動する歩行者への脚体関節回りの付与トルク等を意味する。
【0012】
詳細にはまず、▲1▼「固有角速度」が反映された形で歩行振動子と相互に引き込み合う「第1振動子」が生成される。第1振動子は「相互引き込み」の効果により歩行振動子のリズムと調和しながらも「固有角速度」が反映された自律的なリズムをもって振動する。
【0013】
但し、第1振動子は歩行振動子のリズムと調和するものの、歩行振動子に対する第1位相差が歩行補助に適切な位相差であるとは限らない。このため、第1振動子に基づき歩行補助振動子が決定されると歩行リズムと歩行補助リズムとが歩行補助に不適切な位相差(〜第1位相差)を持ち、歩行補助を伴う歩行が不適切となるおそれがある。従って、第1振動子に基づき、歩行振動子に対して歩行補助に適切な位相差を有する新たな振動子が生成される必要がある。
【0014】
そこで、▲2▼新たな「固有角速度」が決定され上で、この固有角速度が反映された形で歩行振動子と相互に引き込み合い、第1位相差よりも「最適位相差」に近い「第2位相差」を歩行振動子に対して有する「第2振動子」が生成される。
【0015】
第2振動子のリズムは歩行リズム(〜歩行振動子のリズム)に対して「最適位相差」又はこれに近い位相差(〜第2位相差)を有する。従って、第2振動子に基づき歩行補助振動子が決定されれば、歩行リズムと歩行補助リズムとの位相差が最適位相差に近くなる。
【0016】
そこで、▲3▼第2振動子及び歩行振動子に基づき歩行補助振動子が生成される。これにより、歩行リズムと最適位相差を実現し得るように歩行補助振動子が生成される。また、歩行振動子及び歩行リズムに反映される歩行状態に応じたリズムで当該歩行者の歩行が補助され得る。
【0017】
従って、本発明によれば▲1▼歩行者の歩行リズム(〜歩行振動子のリズム)の変化に追従しながらも、▲2▼この歩行リズムと「最適位相差」を有するような自律性を持ち、且つ、▲3▼歩行者の歩行状態に応じた円滑な歩行補助が実現されるような歩行補助リズムを実現することができる。
【0018】
このように、歩行リズムが変動したとき歩行補助リズムがこれに調和しながら追従し、歩行リズムもこの歩行補助リズムに調和するといったように歩行者(人体)と歩行補助装置(機械)との調和(相互の歩み寄り)を図り得る。従って、歩行者に歩行補助装置によりその歩行が補助されていることを程よい加減で実感させながらも、適切な歩行補助を実現できる。また、歩行リズムが急激に変動しても、歩行補助リズムがこれに完全追従しないので、歩行者の心身に負担を与えるような歩行補助及び歩行が助成される事態を回避し得る。
【0019】
また、本発明は、歩行振動子測定手段により測定される歩行振動子に基づいて歩行者の歩行状態を判定する歩行状態判定手段と、歩行状態判定手段により判定された歩行者の歩行状態に応じて最適位相差を決定する最適位相差決定手段とを備えていることを特徴とする。
【0020】
さらに本発明は、歩行者の生理状態を表す生理パラメータを測定する生理パラメータ測定手段と、生理パラメータ測定手段により測定される生理パラメータに基づいて歩行者の歩行状態を判定する歩行状態判定手段と、歩行状態判定手段により判定された歩行者の歩行状態に応じて最適位相差を決定する最適位相差決定手段とを備えていることを特徴とする。
【0021】
本発明によれば、歩行リズムと歩行補助リズムとの位相差が歩行者の歩行状態に応じて変動する最適位相差に近づけられることで、歩行状態の変動に応じた適切な歩行補助を伴う歩行を実現することができる。
【0022】
また、本発明は、歩行状態判定手段が歩行者の歩行状態として平地歩行状態と、上昇歩行状態と、下降歩行状態とを判定し、最適位相差決定手段が基本的に平地歩行状態では0、上昇歩行状態では−、下降歩行状態では+となるように最適位相差を決定することを特徴とする。
【0023】
本発明によれば、最適位相差が+に決定されることで、歩行リズムと歩行補助リズムとが当該決定値(>0)又はこれに近い位相差を有し、歩行者は歩行補助装置を先導する形で歩行し得る。一方、最適位相差が−に決定されることで、歩行リズムと歩行補助リズムとが当該決定値(<0)又はこれに近い位相差を有し、歩行者は歩行補助装置に先導される形で歩行し得る。
【0024】
従って、歩行者は負担が比較的小さい「下降歩行状態」では歩行補助装置を先導し、負担が比較的大きい「上昇歩行状態」では歩行補助装置に先導される形で歩行し得る。なお、最適位相差は歩行状態に応じて0、+、−に固定されるわけではなく、歩行者の意思や他の要因に応じて変更され得る。
【0025】
また、本発明は、歩行状態判定手段が歩行状態として歩行の緩急を判定し、最適位相差決定手段が基本的に歩行が急であれば−、歩行が緩やかであれば+となるように最適位相差を決定することを特徴とする。
【0026】
本発明によれば、歩行者は負担が比較的小さい「緩やかな歩行」に際しては歩行補助装置を先導し、負担が比較的大きい「急な歩行」では歩行補助装置に先導される形で歩行し得る。
【0027】
さらに本発明は、歩行者の生理状態を表す生理パラメータを測定する生理パラメータ測定手段と、生理パラメータ測定手段により測定される生理パラメータに基づいて歩行者の生理状態を表す判定する生理状態判定手段と、生理状態判定手段により判定された歩行者の生理状態に応じて最適位相差を決定する最適位相差決定手段とを備えていることを特徴とする。
【0028】
本発明によれば、歩行リズムと歩行補助リズムとの位相差が歩行者の生理状態に応じて変動する最適位相差に近づけられることで、生理状態の変動に応じた適切な歩行補助を伴う歩行を実現することができる。
【0029】
また、本発明は、生理状態判定手段が歩行者の生理状態として該歩行者の疲労度を判定し、最適位相差決定手段が基本的に歩行者の疲労度が小さければ+、歩行者の疲労度が大きければ−となるように最適位相差を決定することを特徴とする。
【0030】
本発明によれば、歩行者はその疲労度が小さい場合は歩行補助装置を先導し、疲労度が大きい場合は歩行補助装置に先導される形で歩行し得る。
【0031】
さらに本発明は、第1振動子生成手段が仮想的な複数の物体間の相関が反映された形で、該複数の物体の運動に対応する複数の第1振動子を生成し、第2振動子生成手段が仮想的な複数の物体間の相関が反映された形で、該複数の物体の運動に対応する複数の第2振動子を生成することを特徴とする。
【0032】
本発明によれば、仮想的な複数の物体間の相関強度の調節を通じて歩行者の実際の歩行により適合した形で歩行補助振動子が生成されるように第1及び第2振動子を生成することができる。
【0033】
具体的には、仮想的な複数の物体として例えば左右の脚体や同一脚体の複数の関節が想定された場合、交互に前後に動く等の左右の脚体の定性的相関や股関節回りの脚体運動と膝関節回りの脚体運動との周期や位相差等の同一脚体の関節間の定性的相関等が反映された形で「第1振動子」及び「第2振動子」ひいては「歩行補助振動子」が生成される。従って、生成された歩行補助振動子に応じた歩行補助リズムを当該定性的な相関に基づいた歩行者に適切なリズムに調節することができる。
【0034】
また、本発明は、歩行振動子測定手段により測定される歩行振動子に基づいて歩行者の歩行状態を判定する歩行状態判定手段と、歩行状態判定手段により判定された歩行者の歩行状態に応じ第1及び第2振動子の生成に係る仮想的な複数の物体間の相関を調節する第1相関調節手段とを備えていることを特徴とする。
【0035】
さらに本発明は、歩行者の生理状態を表す生理パラメータを測定する生理パラメータ測定手段と、生理パラメータ測定手段により測定される生理パラメータに基づいて歩行者の歩行状態を判定する歩行状態判定手段と、歩行状態判定手段により判定された歩行者の歩行状態に応じ、第1及び第2振動子の生成に係る仮想的な複数の物体間の相関を調節する第1相関調節手段とを備えていることを特徴とする。
【0036】
本発明によれば、上記のように仮想的な複数の物体として想定された左右の脚体等の定性的相関に基づき、歩行補助リズムが適切に調節され得ることに加え、当該定性的相関が歩行者の「歩行状態」の変動に応じて変動するという事情を反映させた形で、歩行状態に応じた最適なリズムでの歩行補助をリアルタイムで実現することができる。
【0037】
さらに本発明は、歩行者の生理状態を表す生理パラメータを測定する生理パラメータ測定手段と、生理パラメータ測定手段により測定される生理パラメータに基づいて歩行者の生理状態を判定する生理状態判定手段と、生理状態判定手段により判定された歩行者の生理状態に応じ、第1及び第2振動子の生成に係る仮想的な複数の物体間の相関を調節する第1相関調節手段とを備えていることを特徴とする。
【0038】
本発明によれば、上記のように仮想的な複数の物体として想定された左右の脚体等の定性的相関に基づき、歩行補助リズムが適切に調節され得ることに加え、当該定性的相関が歩行者の「生理状態」の変動に応じて変動するという事情を反映させた形で、生理状態に応じた最適なリズムでの歩行補助をリアルタイムで実現することができる。
【0039】
また、本発明は、決定手段が仮想歩行振動子と仮想歩行補助振動子との位相関係を表す内部モデルに従い、第1振動子と歩行振動子との第1位相差よりも、第2振動子と歩行振動子との第2位相差を最適位相差に近づける固有角速度を決定することを特徴とする。
【0040】
さらに本発明は、決定手段が、内部モデルに従い、仮想歩行振動子及び仮想歩行補助振動子の第2位相差が第1位相差に近づくように仮想歩行振動子及び仮想歩行補助振動子の相関係数を決定する相関係数決定手段と、該相関係数に基づき仮想歩行振動子の角速度を決定する第1角速度決定手段と、該仮想歩行振動子の角速度に基づき、第2位相差が最適位相差に近づくように第2振動子生成に係る固有角速度としての仮想歩行補助振動子の角速度を決定する第2角速度決定手段とを備えていることを特徴とする。
【0041】
本発明によれば、仮想歩行リズム及び仮想歩行補助リズムの位相差(〜第2位相差)が第1位相差よりも「最適位相差」に近づけられ、これにより実際の歩行補助リズムと実際の歩行リズムとの位相差を歩行補助を伴う歩行に適した「最適位相差」に近づけることができる。
【0042】
また、本発明は、歩行補助振動子生成手段が仮想的な複数の神経素子間の相関が反映された形で、該複数の神経素子の挙動に対応する歩行補助振動子を生成することを特徴とする。
【0043】
本発明によれば、仮想的な複数の神経素子の相関強度の調節を通じて歩行者の実際の歩行により適合した形での歩行補助を実現することができる。
【0044】
また、本発明は、歩行振動子測定手段により測定される歩行振動子に基づいて歩行者の歩行状態を判定する歩行状態判定手段と、歩行状態判定手段により判定された歩行者の歩行状態に応じ歩行補助振動子の生成に係る仮想的な複数の神経素子間の相関を調節する第2相関調節手段とを備えていることを特徴とする。
【0045】
さらに本発明は、歩行者の生理状態を表す生理パラメータを測定する生理パラメータ測定手段と、生理パラメータ測定手段により測定される生理パラメータに基づいて歩行者の歩行状態を判定する歩行状態判定手段と、歩行状態判定手段により判定された歩行者の歩行状態に応じ、歩行補助振動子の生成に係る仮想的な複数の神経素子間の相関を調節する第2相関調節手段とを備えていることを特徴とする。
【0046】
本発明によれば、上記のように仮想的な複数の神経素子の相関強度の調節を通じ、歩行補助リズムが適切に調節され得ることに加え、当該相関強度が歩行者の「歩行状態」の変動に応じて変動するという事情を反映させた形で、歩行状態に応じた最適なリズムでの歩行補助をリアルタイムで実現することができる。
【0047】
また、本発明は、歩行者の生理状態を表す生理パラメータを測定する生理パラメータ測定手段と、生理パラメータ測定手段により測定される生理パラメータに基づいて歩行者の生理状態を判定する生理状態判定手段と、歩行状態判定手段により判定された歩行者の歩行状態に応じ、歩行補助振動子の生成に係る仮想的な複数の神経素子間の相関を調節する第2相関調節手段とを備えていることを特徴とする。
【0048】
本発明によれば、上記のように仮想的な複数の神経素子の相関強度の調節を通じ、歩行補助リズムが適切に調節され得ることに加え、当該相関強度が歩行者の「生理状態」の変動に応じて変動するという事情を反映させた形で、生理状態に応じた最適なリズムでの歩行補助をリアルタイムで実現することができる。
【0049】
さらに本発明は、歩行状態とn個の歩行振動子がn次元空間に描くトレースのパターンとの対応関係を記憶する記憶手段を備え、歩行状態判定手段が記憶手段により記憶されている対応関係と、歩行振動子測定手段により測定される該n個の歩行振動子がn次元空間に描くトレースのパターンとに基づき歩行状態を判定することを特徴とする。
【0050】
本発明によれば、歩行状態とn個の歩行振動子がn次元空間に描くトレースとの間の一定関係(本願発明者の得た知見)に基づき、歩行状態を高精度で判定することができる。
【0051】
また、本発明は、さらに本発明は、第1及び第2振動子生成手段が、歩行振動子測定手段により測定された歩行振動子を含むファン・デル・ポル方程式により表現される非線形振動子モデルに従って第1及び第2振動子を生成することを特徴とする。
【0052】
本発明によれば、ファン・デル・ポル方程式に含まれる項の調節を通じ、歩行振動子と第1及び第2振動子との相互引き込みを調節することができる。
【0053】
さらに本発明は、歩行振動子測定手段が第1振動子、第2振動子及び歩行補助振動子の生成用の歩行振動子として歩行リズムに対応するリズムで周期的に変動する歩行者の関節角度及び角速度を含む種々の振動子のうち少なくともいずれか1つを測定することを特徴とする。
【0054】
本発明によれば、実際の歩行リズムが正確に反映された形で振動する関節角速度及び角度(歩行振動子)に基づいて第1振動子、第2振動子及び歩行補助振動子を生成することができる。
【0055】
また、本発明は、歩行補助振動子生成手段が歩行補助振動子として、歩行者に付与される脚体関節回りのトルク、又はトルク及びトルクの変動に対応して歩行者が知覚可能な形態で周期的に変動する振動子を生成することを特徴とする。
【0056】
本発明によれば、歩行者に対し、その歩行リズムと最適位相差をもって調和したリズムで脚体関節回りのトルク等を付与することができる。
【0057】
さらに本発明は、歩行振動子測定手段が歩行状態判定用の歩行振動子として、歩行者の脚体関節角度、脚体関節角速度、脚体関節角加速度、及び脚体の一部の位置のうち少なくともいずれかを測定することを特徴とする。
【0058】
本発明によれば、歩行状態と密接に関連する脚体関節角速度等に基づいて歩行状態が判定されるので、当該判定精度の向上を図ることができる。
【0059】
【発明の実施の形態】
本発明の歩行補助装置の制御システムの実施形態について図面を用いて説明する。図1は本発明の制御システムの一実施形態の構成説明図であり、図2は本発明の制御システムの一実施形態の機能説明図であり、図3は2つの振動子の相関の説明図であり、図4〜図9は本発明の制御システムの一実施形態による歩行補助機能の説明図であり、図10は本発明の制御システムの他の実施形態の神経振動子モデルの説明図である。
【0060】
なお、以下の説明において変数(丸付き数字を除く。)に付されているダッシュ(’)及びダブルダッシュ(”)はそれぞれ当該変数の時間による1回微分及び2回微分を表す。また、歩行者の脚体等について左右の別を明確にするためパラメータに添字L、Rを付するが、左右を区別する必要がないときは添字L、Rを適宜省略する。
【0061】
図1に示す制御システム100の制御対象である歩行補助装置200は、歩行者の腹部及び左右の大腿部に装着されるサポーター202と、サポーター202と一体とされた剛体部材204と、歩行者の腰部の横にあってサポーター202及び剛体部材204を介して歩行者に股関節回りのトルクを付与するアクチュエータ210と、左右の股関節角度に応じた信号を出力する角度センサ220と、歩行者の背中に担がれたバックパック230に内蔵され、アクチュエータ210等の電源となる電池240とを備えている。
【0062】
制御ユニット100はバックパック230に内蔵されたCPU(演算処理ユニット)、ROM、RAM等の記憶装置(図示略)により構成されている。また、制御ユニット100は歩行振動子測定ユニット110と、第1振動子生成ユニット120と、第1位相差測定ユニット130と、歩行状態判定ユニット140と、最適位相差決定ユニット150と、決定ユニット160と、第2振動子生成ユニット170と、神経振動子生成ユニット180と、歩行補助振動子生成ユニット190とを備えている。
【0063】
歩行振動子測定ユニット110は股関節角速度測定ユニット112と、股関節角度測定ユニット114とを備えている。股関節角速度測定ユニット112は角度センサ220の出力に基づいて股関節角速度φH ’を測定する。股関節角度測定ユニット114は角度センサ220の出力に基づいて股関節角度φH を測定する。
【0064】
第1振動子生成ユニット120は股関節角速度測定ユニット112により測定された角速度ωH で変化する股関節角速度φH ’と、固有角速度ωM が反映された形で相互に引き込み合う第1振動子(後述)xを生成する。第1振動子xは後述のファン・デル・ポル方程式により表現される非線形振動子モデルに従って生成される。
【0065】
第1位相差測定ユニット130は角速度ωH で変化する股関節角速度φH ’と、ファン・デル・ポル方程式に含まれる固有角速度ωM が反映された第1振動子xとの第1位相差θHMを測定する。
【0066】
歩行状態判定ユニット140は「歩行状態」と、股関節角速度φH ’を含むn個の歩行振動子が「n次元空間(平面)に描くトレースのパターン」との対応関係を記憶する記憶装置(図示略)を備えている。また、歩行状態判定ユニット140は記憶装置により記憶されている「対応関係」と、歩行振動子測定ユニット110により測定される「当該n個の歩行振動子がn次元空間に描くトレースのパターン」とに基づき「歩行状態」を判定する。
【0067】
最適位相差決定ユニット150は歩行状態判定ユニット140により判定された「歩行状態」に応じ、最適位相差θd を決定する。
【0068】
決定ユニット160は第2位相差決定ユニット162と、相関係数決定ユニット164と、第1角速度決定ユニット166と、第2角速度決定ユニット168とを備えている。
【0069】
第2位相差測定ユニット162は仮想歩行振動子(位相)θh と仮想歩行補助振動子(位相)θm との位相関係を表す「内部モデル」に従って、仮想歩行振動子θh と仮想歩行補助振動子θm との第2位相差θhm(=θh −θm )を決定する。
【0070】
相関係数決定ユニット164は第2位相差θhm(=θh −θm )が第1位相差θHMに近づくように仮想歩行振動子θh と仮想歩行補助振動子θm との相関係数εを決定する。
【0071】
第1角速度決定ユニット166は相関係数εに基づき、仮想歩行振動子θh の角速度ωh を決定する。
【0072】
第2角速度決定ユニット168は仮想歩行振動子θh の角速度ωh に基づき、第2位相差θhmが最適位相差決定ユニット150により決定された最適位相差θd に近づくように仮想歩行補助振動子θm の角速度ωm を決定する。
【0073】
第2振動子生成ユニット170は股関節角速度測定ユニット112により測定された股関節角速度(歩行振動子)φH ’と、第2角速度決定ユニット166により決定された仮想歩行補助振動子θm の角速度ωm が固有角速度(ωM )として反映された形で相互に引き込み合う第2振動子(後述)yを生成する。第2振動子yは、第1振動子xと同様にファン・デル・ポル方程式により表現される非線形振動子モデルに従って生成される。
【0074】
神経振動子生成ユニット180は第2振動子yと、股関節角度測定ユニット114により測定された股関節角度(歩行振動子)φH とに基づき、歩行に関する複数の神経素子(ニューロン)の振舞いを表す神経振動子モデル(後述)に従い、各神経素子の出力(神経振動子)zを生成する。
【0075】
歩行補助振動子生成ユニット190は各神経素子の出力zに基づき、歩行補助装置200による歩行者への付与トルク(歩行補助振動子)Tを生成するトルク生成ユニット192を備えている。
【0076】
次に、歩行補助装置200の制御システム100の機能について図2、図3を用いて説明する。
【0077】
まず、角度センサ220の出力に基づき(図2矢印▲1▼参照)、股関節角速度測定部112により歩行者の左右の股関節回りの角速度φHL’、φHR’が測定される(図2s1)。
【0078】
次に、第1振動子生成ユニット120により、股関節角速度φHL’、φHR’に基づき(図2矢印▲1▼−1参照)、次式(1a)(1b)で表されるファン・デル・ポル(van der Pol)方程式に従って第1振動子xL 、xR が決定される(図2s2)。
【0079】
Figure 2004073649
【0080】
ここでξは第1振動子x及びその時間による1回微分x’がx−x’平面で安定なリミットサイクルを描くように決定される係数(>0)である。ωM は固有角速度である。gは左右の脚体の相関係数である。c1 はフィードバック係数である。固有角速度ωM は、歩行補助装置200による実際の歩行補助リズムから大きく外れない範囲で任意に設定されてよい。
【0081】
第1振動子xL 、xR はルンゲ・クッタ法により決定される。第1振動子xL 、xR はそれぞれ左右の脚体に関する仮想的な歩行補助リズムを表す。また、第1振動子xL 、xR はファン・デル・ポル方程式の1つの性質である「相互引き込み」により、股関節角速度(歩行振動子)φHL’、φHR’のリズムと調和しながらも「固有角速度」ωML、ωMRが反映された自律的なリズムをもって振動するという性質がある(図3参照)。また、股関節角速度(歩行振動子)φHL’、φHR’は実際の歩行リズムと略同等のリズムで振動する(図3参照)。
【0082】
続いて、位相差測定ユニット130により股関節角速度(歩行振動子)φHL’、φHR’(位相θHL、θHR/図2矢印▲1▼−2参照)と、第1振動子xL 、xR (位相θML、θMR/図2矢印▲2▼参照)との第1位相差θHML (=θHL−θML)、θHMR (=θHR−θMR)が決定される(図2s3)。具体的には、図3に示すようにφH ’=0且つφH ”>0となる時点(‥、tid、tid+1、‥)と、x=0且つx’>0となる時点との時間差に応じ、股関節角速度φH ’の位相θH と、第1振動子xの位相θM との位相差θHM(=θH −θM )が決定される。
【0083】
また、歩行状態判定ユニット140により、歩行状態判定ユニット110により測定される股関節角速度φH ’を含むn(n=1、2、‥)個の歩行振動子(図2矢印▲1▼−3参照)に基づき歩行状態が判定される(s4)。
【0084】
具体的には、まず、歩行状態判定ユニット140により記憶装置(図示略)から「歩行状態」と「n個の歩行振動子がn次元空間に描くトレースのパターン」との対応関係が読み取られる。この上で、歩行状態判定ユニット140により、当該対応関係と、歩行振動子測定ユニット110により測定されるn個の歩行振動子がn次元空間に描くトレースのパターンとに基づき「歩行状態」が判定される。
【0085】
なお、歩行状態判定用の歩行振動子として、歩行者の股関節角度φH や、膝関節、足関節、肩関節、肘関節の角度や角速度、角加速度、脚体の一部の位置、さらには歩行者の着地音、呼吸音、意図的な発声音等、歩行リズムと連関したリズムで変動する種々のパラメータが歩行振動子測定ユニット110により測定されてもよい。また、歩行状態判定ユニット140により判定される歩行者の歩行状態としては「平地歩行状態」、「上昇歩行状態」、「下降歩行状態」が挙げられる。
【0086】
さらに最適位相差決定ユニット150により、歩行状態判定ユニット140により判定された「歩行状態」(図2矢印▲4▼)に基づき、最適位相差θd が決定される(図2s5)。具体的には、最適位相差決定ユニット150により、基本的に平地歩行状態では0、上昇歩行状態では−(例えば−0.5[rad]以下)、下降歩行状態では+(例えば+0.3[rad]以上)となるように最適位相差θd が決定される。
【0087】
ここで、位相差測定ユニット130により測定される第1位相差θHMが過去3歩行周期にわたって一定の場合、第2位相差決定ユニット162により次式(2a)(2b)で表される「内部モデル」に従って、仮想歩行振動子θh と仮想歩行補助振動子θm との第2位相差θhm(=θh −θm )が決定される。
【0088】
θh ’=ωh +ε・sin(θm −θh )‥(2a)
θm ’=ωm +ε・sin(θh −θm )‥(2b)
【0089】
ここで、εは内部モデルにおける仮想歩行振動子θh 及び歩行補助振動子θm の相関係数である。また、ωh は仮想歩行振動子θh の固有角速度であり、ωm は仮想歩行補助振動子θm の固有角速度である。
【0090】
具体的には、第2位相差決定ユニット162により仮想歩行振動子θh と仮想歩行補助振動子θm との第2位相差θhm(=θh −θm )が次式(3)に従って決定される。
【0091】
θhm=sin−1[(ωh −ωm )/2ε] ‥(3)
【0092】
続いて、相関係数決定ユニット164により第1位相差θHMと(図2矢印▲3▼参照)、第2位相差θhmとの差θHM−θhmが最小になるように相関係数εが決定される(図2s6.1)。
【0093】
具体的には次式(4a)(4b)に従って股関節角速度(歩行振動子)φH ’が0となる離散的な時間(‥、tid−1、tid、tid+1、‥/図3参照)における相関係数εが逐次決定される。
【0094】
Figure 2004073649
【0095】
ここで、ηは第1位相差θHMと第2位相差θhmとを近づけるポテンシャルV1 の安定性を表す係数である。
【0096】
次に、第1角速度決定ユニット166により相関係数ε(図2矢印▲4▼−1参照)に基づき、仮想歩行補助振動子θm の固有角速度ωm が時間変化せずに一定であるという条件下で、第1及び第2位相差の差θHM−θhmが最小となるように仮想歩行振動子θh の固有角速度ωh が次式(5a)(5b)に従って決定される(図2s6.2)。
【0097】
Figure 2004073649
【0098】
ここでαは系の安定性を表す係数である。
【0099】
続いて第2角速度決定ユニット168により仮想歩行振動子θh の固有角速度ωh (図2矢印▲4▼−2参照)に基づき、第2位相差θHMが、最適位相差決定ユニット150により決定された最適位相差θd (図2矢印▲5▼参照)に近づくように仮想歩行補助振動子θm の固有角速度ωm が次式(6a)(6b)に従って決定される(図2s6.3)。
【0100】
Figure 2004073649
【0101】
ここでβは系の安定性を表す係数である。
【0102】
次に、第2振動子生成ユニット170により股関節角速度φHL’、φHR’に基づき(図2矢印▲1▼−4参照)、第2角速度決定ユニット168により決定された固有角速度ωmL、ωmR(図2矢印▲4▼−3参照)が含まれた次式(7a)(7b)で表されるファン・デル・ポル方程式に従って第2振動子yL 、yR が決定される(図2s7)。
【0103】
Figure 2004073649
【0104】
第2振動子yL 、yR も第1振動子xL 、xR と同様にルンゲ・クッタ法により決定される。第2振動子yL 、yR はそれぞれ左右の脚体に関する仮想的な歩行補助リズムを表す。また、第2振動子yL 、yR はファン・デル・ポル方程式の1つの性質である「相互引き込み」により、股関節角速度(歩行振動子)φHL’、φHR’のリズムと調和しながらも「固有角速度」ωmL、ωmRが反映された自律的なリズムをもって振動する(図3参照)。
【0105】
続いて、神経振動子生成ユニット180により第2振動子yL 、yR (図2矢印▲7▼参照)と股関節角度測定ユニット114により測定された左右の股関節角度φL 、φR (図2矢印▲1▼’参照)とに基づき「神経振動子モデル」に従って神経振動子zが生成される(図2s8)。なお、歩行者の左右の股関節角度φL 、φR は、股関節角速度測定ユニット112による股関節角速度φH ’の測定と並行して股関節角度測定ユニット114により測定されている(図2s1’)。
【0106】
具体的には、左大腿部の屈曲方向(前方)及び伸展方向(後方)への運動を支配する神経素子L+ 、L− の出力zL+、zL−、右大腿部の屈曲方向及び伸展方向への運動を支配する神経素子R+ 、R− の出力zR+、zR−が次式(8a)〜(8f)に従って決定される。
【0107】
Figure 2004073649
【0108】
ここで、ui は神経素子iの膜電位の変動に対応する状態変数、vi は神経素子iの順応効果が反映される自己抑制因子、τi 、σi は状態変数ui 、自己抑制因子vi の時定数、wi/j (<0)は神経素子i及びjの結合定数、λは慣れ係数、k+ 、k− はフィードバック係数、cはバイアス係数である。
【0109】
次にトルク生成ユニット192により、神経素子iの出力yi (図2矢印▲8▼参照)に基づき、左右のアクチュエータ220により歩行者に付与される股関節回りのトルク(歩行補助振動子)TL 、TR が次式(9a)(9b)に従って生成される(図2s9)。
【0110】
L =  p+ L+−p− L− ‥(9a)
R =−p+ R++p− R− ‥(9b)
【0111】
ここで、p+ 、p− は活性化係数を表す。
【0112】
そして、生成トルクTL 、TR に応じた電力が電池230から左右のアクチュエータ210にそれぞれ供給され、トルクTL 、TR がアクチュエータ210により歩行者に付与される(図2矢印▲9▼参照)。
【0113】
以後、上記処理(図2s1〜s9)が繰り返されることで、歩行者は歩行補助装置200による歩行補助を伴って歩行する。
【0114】
制御システム100によれば、歩行リズムが反映された股関節角速度(歩行振動子)φH ’に対し、歩行補助の観点から適切な位相差(〜最適位相差θd )を持った第2振動子yを生成した上で、当該第2振動子yに基づきトルク(歩行補助振動子)Tを生成することで歩行補助リズムの最適化を図ることができる。
【0115】
詳細にはまず、(1)固有角速度ωM が反映された形で股関節角速度(歩行振動子)φH ’と相互に引き込み合う第1振動子xが生成される(図2s2)。第1振動子xは「相互引き込み」の効果により股関節角速度(歩行振動子)φH ’のリズムと調和しながらも固有角速度ωM が反映された自律的なリズムをもって振動する。
【0116】
但し、第1振動子xは股関節角速度(歩行振動子)φH ’のリズム(〜歩行リズム)と調和するものの、股関節角速度φH ’に対する第1位相差θHMが歩行補助に適切な最適位相差θd に近いとは限らない。このため、第1振動子xに基づきトルク(歩行補助振動子)Tが決定されると歩行リズムと歩行補助リズムとが歩行補助に不適切な位相差(〜第1位相差θHM)を持ち、歩行補助を伴う歩行が不適切となるおそれがある。従って、第1振動子xに基づき、股関節角速度(歩行振動子)φH ’に対して歩行補助に適切な位相差を有する新たな振動子が生成される必要がある。
【0117】
そこで(2)「内部モデル」に従って仮想歩行補助振動子θm の角速度(新たな固有角速度)ωm が決定される(図2s6.1〜s6.3)。また、この固有角速度ωm が反映された形で股関節角速度(歩行振動子)φH ’と相互に引き込み合い、第1位相差θHMよりも最適位相差θd に近い第2位相差θhmを歩行振動子に対して有する第2振動子yが生成される(図2s7)。
【0118】
第2振動子yの生成は、第1位相差θHMが最適位相差θd に近づくように固有角速度ωM (上式(1a)(1b)参照)が新たな固有角速度ωm に補正された上で、当該補正後の固有角速度ωm が反映された形で第1振動子xが再生成されることに相当する(上式(7a)(7b)参照)。
【0119】
こうして生成された第2振動子yのリズムは歩行リズム(〜歩行振動子φH のリズム)に対して最適位相差θd 又はこれに近い位相差(〜第2位相差θhm)を有する。従って、第2振動子yに基づきトルク(歩行補助振動子)Tが決定されれば、歩行リズムと歩行補助リズムとの位相差が最適位相差θd に近くなる。
【0120】
そこで(3)第2振動子y及び股関節角度(歩行振動子)φH に基づき「神経素子モデル」に従って神経素子iの出力(神経振動子)zi が生成され(図2s8)、この上で各出力zi に基づきトルク(歩行補助振動子)Tが生成される(図2s9)。これにより、歩行リズム(〜歩行振動子φH ’のリズム)と最適位相差θd を実現し得るようにトルク(歩行補助振動子)Tが生成される。また、歩行リズムに反映される歩行状態に応じたリズムで当該歩行者の歩行が補助され得る。
【0121】
従って、本発明によれば(1)歩行者の歩行リズム(〜歩行振動子φH ’のリズム)の変化に追従しながらも、(2)この歩行リズムと最適位相差θd を有するような自律性を持ち、且つ、(3)歩行者の歩行状態に応じた円滑な歩行補助が実現されるような歩行補助リズムを実現することができる。
【0122】
このように、歩行リズムが変動したとき歩行補助リズムがこれに調和しながら追従し、歩行リズムもこの歩行補助リズムに調和するといったように歩行者(人体)と歩行補助装置(機械)200との調和(相互の歩み寄り)を図り得る。従って、歩行者に歩行補助装置200によりその歩行が補助されていることを程よい加減で実感させながらも、適切な歩行補助を実現できる。また、歩行リズムが急激に変動しても、歩行補助リズムがこれに完全追従しないので、歩行者の心身に負担を与えるような歩行補助及び歩行が助成される事態を回避し得る。
【0123】
また、歩行リズムと歩行補助リズムとの位相差が歩行者の歩行状態(図2矢印▲4▼参照)に応じて変動する最適位相差θd に近づけられる(図2s5等参照)。これにより、歩行者の歩行状態の変動に応じた適切な歩行補助を伴う歩行が実現され得る。
【0124】
さらに最適位相差θd が+に決定されることで(図2s5参照)、歩行リズムと歩行補助リズムとが当該決定値(>0)又はこれに近い位相差を有し、歩行者は歩行補助装置200を先導する形で歩行し得る(歩行者先導型の歩行)。一方、最適位相差θd が−に決定されることで(図2s5参照)、歩行リズムと歩行補助リズムとが当該決定値(<0)又はこれに近い位相差を有し、歩行者は歩行補助装置200に先導される形で歩行し得る(歩行補助装置先導型の歩行)。
【0125】
従って、歩行者は負担が比較的小さい「下降歩行状態」では歩行補助装置200を先導し、負担が比較的大きい「上昇歩行状態」では歩行補助装置200に先導される形で歩行し得る。なお、最適位相差は歩行状態に応じて0、+、−に固定されるわけではなく、歩行者の意思や他の要因に応じて変更され得る。
【0126】
続いて、制御システム100により制御される歩行補助装置200の装着歩行実験の結果について図4〜図9を用いて説明する。
【0127】
図4、図5、図6には最適位相差θd が0.0[rad]、−0.2[rad]、−0.5[rad]に設定された場合、股関節角速度(歩行振動子)φH ’とトルク(歩行補助振動子)Tとの位相差がそれぞれどのように変化するかが示されている。なお、実線は右脚、破線は左脚についての位相差をそれぞれ表している。
【0128】
図4〜図6に示されているように歩行補助開始時刻t0 から間もなくは位相差が比較的大きく変動するが、次第にそれぞれ設定された最適位相差θd に収束していく。これからも明らかなように制御システム100によれば、歩行リズム(〜股関節角速度φH ’の振動リズム)と歩行補助リズム(〜トルクTの振動リズム)との位相差を、適切なリズムでの歩行補助という観点から決定される最適位相差θd に近づけることができる。
【0129】
図7、図8には歩行周期TH (実線)と歩行補助周期TM (破線)との変化が示されている。図7に示すように時刻t1 で歩行者が歩行速度を急に上げて歩行周期TH が短くなったとき、歩行補助周期TM もこれに追従して短くなる。また、時刻t2 で歩行者が歩行速度を急に下げて歩行周期TH が長くなったとき、歩行補助周期TM もこれに追従して長くなる。但し、歩行補助周期TM が歩行周期TH に完全に追従するのではなく、やや歩行補助周期TM が変動され、歩行周期TH が当該変動後のTM に追従するように変化しているのがわかる。
【0130】
これから明らかなように、制御システム100によれば、歩行リズムが変動したとき歩行補助リズムがこれに調和しながら追従し、歩行リズムもこの歩行補助リズムに調和するといったように歩行者(人体)と歩行補助装置(機械)200との調和(相互の歩み寄り)を図り得る。従って、歩行者に歩行補助装置200によりその歩行が補助されていることを程よい加減で実感させながらも、適切な歩行補助を実現できる。また、歩行リズムが急激に変動しても、歩行補助リズムがこれに完全追従しないので、歩行者の心身に負担を与えるような歩行補助及び歩行が助成される事態を回避し得ると期待される。
【0131】
これは図8に示すように歩行周期TH (実線)が急激に変動することなく緩やかに変動する場合においても同様である。
【0132】
図9には一方の脚におもり(〜11kg)を付し、制御システム100による歩行補助装置200の制御が断続的にON/OFFされ、且つ、時刻t3 で歩行者がUターンした場合、左右の脚の運びの対称性を表す歩行対称性パラメータAがどのように変化するかが示されている。歩行対称性パラメータAは、一方の脚の着地周期と他方の脚の着地周期との差により表される。歩行対象性パラメータAは、両方の脚が同等の着地周期で動いている場合は0に近くなる一方、片脚を引きずる等、両脚の着地周期に差が生じるような場合には0からずれる。
【0133】
図9から明らかなように制御システム100による歩行補助装置200の制御がONになっているときは歩行対称性パラメータAは、当該制御がOFFになっているときよりもその絶対値が全体的に小さい。これは、片脚に重りを付すことで本来的には当該片脚を引きずるように歩行するため、両脚の着地周期の差が大きくなるところ、制御システム100によれば両脚の着地リズムの調和が図られていることを示している。
【0134】
このように両脚の着地リズムの調和が図られているのは、左右の脚体の相関係数gを含む項が上式(1a)(1b)(7a)(7b)のファン・デル・ポル方程式に含まれているためである。即ち、仮想的な左右の運動に対応する第1振動子xL 及びxR が相互に引き込み合い、また、同じく仮想的な左右の運動に対応する第2振動子yL 及びyR が相互に引き込み合うからである。従って、当該相関係数gの調節により、片脚のみに(けが等による)負荷を抱えている場合でも、歩行対称性パラメータAの絶対値のさらなる減少、ひいては左右両脚の着地リズムが同等の通常歩行に近い歩行を実現することができる。
【0135】
本実施形態では股関節角度φH 及び角速度φH ’が測定された上で股関節回りにトルクTが付与されたが、他の実施形態として膝関節角度及び角速度が測定された上で膝関節回りにトルクが付与されてもよく、足関節角度及び角速度が測定された上で足関節回りにトルクが付与されてもよい。
【0136】
また、本実施形態では歩行者に対して一対の関節回りのトルクが付与されたが、他の実施形態として歩行者に対して複数対の関節(左右の股+膝関節、左右の股+足関節、左右の膝+足関節、左右の股+膝+足関節)回りのトルクが付与されてもよい。例えば左右の脚体の全ての関節(股+膝+足関節)回りにトルクが付与される場合、図10に示すように相互に作用しながら関節ごとに伸展及び屈曲に関する複数対の神経素子の振舞いを表す神経振動子モデルに従って、各関節回りの付与トルクが決定されてもよい。
【0137】
測定される歩行振動子が多くなるほど、ファン・デル・ポル方程式等の第1及び第2振動子x、yの生成に係る非線形微分方程式(上式(1a)(1b)(7a)(7b)参照)や、神経振動子の生成に係る非線形微分方程式(上式(8a)〜(8f)参照)中の相関項は多くなるが、当該相関係数の調節によって歩行者の身体の様々な部分の動きに鑑みた一層緻密な歩行補助が実現可能となる。
【0138】
本実施形態では第1振動子x及び第2振動子yが式(1a)(1b)(7a)(7b)により表されるファン・デル・ポル方程式に従って生成されたが、他の実施形態として第1振動子x及び第2振動子yがこれらの式とは異なる形のファン・デル・ポル方程式や、複数振動子間の相互引き込みを実現可能なあらゆる形の非線形微分方程式に従って生成されてもよい。
【0139】
本実施形態では第1及び第2振動子x、yの生成に係る「歩行振動子」として股関節角速度φH ’が測定されたが(図2矢印▲1▼−1、▲1▼−4参照)、他の実施形態として第1及び第2振動子x、yの生成に係る「歩行振動子」として股関節角度φH や、膝関節、足関節、肩関節、肘関節の角度や角速度、さらには歩行者の着地音、呼吸音、意図的な発声音等、歩行リズムと連関したリズムで変動する種々のパラメータが測定されてもよい。
【0140】
本実施形態ではトルク(歩行補助振動子)Tの生成に係る「歩行振動子」として股関節角度φH が測定されたが(図2矢印▲6▼参照)、他の実施形態としてトルクTの生成に係る「歩行振動子」として股関節角速度φH ’や、膝関節、足関節、肩関節、肘関節の角度や角速度、さらには歩行者の着地音、呼吸音、意図的な発声音等、歩行リズムと連関したリズムで変動する種々のパラメータが測定されてもよい。
【0141】
本実施形態では「歩行補助振動子」としてアクチュエータ210を介して歩行者に付与される関節回りのトルクTが生成されたが(図2s8参照)、他の実施形態として「歩行補助振動子」としてトルクTのほかにヘッドホン等の聴覚装置(図示略)を介して歩行者が聴覚的に知覚可能な周期的な音や、ゴーグル等の視覚装置(図示略)を介して知覚可能な周期的な光又は標識や、装置等により歩行者が背中や肩等の身体の一部の触覚を介して知覚可能な周期的な叩き(ノック)等が生成されてもよい。
【0142】
本実施形態では歩行振動子ユニット100により測定される歩行振動子に基づいて歩行状態が判定されたが、他の実施形態として、生理パラメータ測定ユニット(図示略)により、歩行者の生理状態を表す生理パラメータ(歩行に伴い動く筋肉の筋電位等)が測定された上で、歩行状態判定ユニット140により当該生理パラメータのパターンに基づいて「歩行状態」が判定されてもよい。
【0143】
本実施形態では「歩行状態」として「上昇歩行状態」、「平地歩行状態」及び「下降歩行状態」の別が判定されたが、他の実施形態としてこれとは別に又はこれに加えて「歩行状態」として歩行の緩急が判定されてもよい。また、当該実施形態において最適位相差決定ユニット150により基本的に歩行が急であれば−(例えば−0.2[rad]以下)、歩行が緩やかであれば+(例えば+0.5[rad]以上)となるように最適位相差θd が決定されてもよい。
【0144】
当該実施形態によれば、歩行者は負担が比較的小さい「緩やかな歩行」に際しては歩行補助装置200を先導し、負担が比較的大きい「急な歩行」では歩行補助装置200に先導される形で歩行し得る。
【0145】
なお、最適位相差θd が基本的に+に決定される「下降歩行状態」で、且つ、最適位相差θd が基本的に−に決定される「急な歩行」である場合、両者の整合を図り得るファジー制御により基本的な最適位相差θd が決定されてもよい。
【0146】
また、本発明の制御システム100の他の実施形態として、歩行状態判定ユニット140により判定された「歩行状態」に応じ、第1及び第2振動子x、yの生成に係る左右の脚体(仮想的な複数の物体間)の相関係数g(上式(1a)(1b)(7a)(7b)参照)を調節する「第1相関調節ユニット」を備えていてもよい。
【0147】
当該実施形態によれば、左右の脚体の定性的相関に基づき、歩行補助リズムが適切に調節され得ることに加え、当該定性的相関が歩行状態の変動に応じて変動するという事情を反映させた形で、歩行状態に応じた最適なリズムでの歩行補助をリアルタイムで実現することができる。
【0148】
さらに本発明の制御システム100の他の実施形態として、歩行状態判定ユニット140により判定された「歩行状態」に応じ、トルクT等の歩行補助振動子の生成に係る仮想的な複数の神経素子i、j(図2参照)間の相関係数wi/j (上式(8a)〜(8d)参照)を調節する「第2相関調節ユニット」を備えていてもよい。
【0149】
当該実施形態によれば、仮想的な複数の神経素子の相関強度の調節を通じ、歩行補助リズムが適切に調節され得ることに加え、当該相関強度が歩行状態の変動に応じて変動するという事情を反映させた形で、歩行状態に応じた最適なリズムでの歩行補助をリアルタイムで実現することができる。
【0150】
本発明の制御システム100の他の実施形態として、歩行者の生理状態を表す生理パラメータ(歩行者の心拍数、呼吸回数、血中の乳酸や酸素等の濃度、発汗量、まばたきの回数等)を測定する「生理パラメータ測定ユニット」と、生理パラメータ測定ユニットにより測定される生理パラメータに基づきこの歩行者の「生理状態」を判定する「生理状態判定ユニット」とを備え、生理状態判定ユニットにより判定された「生理状態」に応じ、最適位相差決定ユニット150によって最適位相差θd が決定されてもよい。
【0151】
当該実施形態によれば、歩行リズムと歩行補助リズムとの位相差が歩行者の生理状態に応じて変動する最適位相差θd に近づけられることで、生理状態の変動に応じた適切な歩行補助を伴う歩行を実現することができる。
【0152】
また、「生理状態判定ユニット」により歩行者の「疲労度」が判定され、「最適位相差決定ユニット」により基本的に平地生理状態では0、上昇生理状態では−(例えば−0.5[rad]以下)、下降生理状態では+(例えば+0.3[rad]以上)となるように最適位相差θd が決定されてもよい。
【0153】
当該実施形態によれば、歩行者はその疲労度が小さい場合は歩行補助装置200を先導し、その疲労度が大きい場合は歩行補助装置200に先導される形で歩行し得る。なお、最適位相差は生理状態に応じて+、−に固定されるわけではなく、歩行者の意思や他の要因に応じて変更され得る。
【0154】
また、本発明の制御システム100の他の実施形態として、歩行状態判定ユニット140により判定された「歩行状態」に応じ第1及び第2振動子x、yの生成に係る左右の脚体(仮想的な複数の物体間)の相関係数g(上式(1a)(1b)(7a)(7b)参照)を調節する「第1相関調節ユニット」とを備えていてもよい。
【0155】
さらに本発明の制御システム100の他の実施形態として、歩行者の生理状態を表す生理パラメータ(歩行者の心拍数、呼吸回数、血中の乳酸や酸素等の濃度、発汗量、まばたきの回数等)を測定する「生理パラメータ測定ユニット」と、生理パラメータ測定ユニットにより測定される生理パラメータに基づきこの歩行者の「生理状態」を判定する「生理状態判定ユニット」と、生理状態判定ユニットにより判定された「生理状態」に応じ第1及び第2振動子x、yの生成に係る左右の脚体(仮想的な複数の物体間)の相関係数g(上式(1a)(1b)等参照)を調節する「第1相関調節ユニット」とを備えていてもよい。
【0156】
当該実施形態によれば、左右の脚体の定性的相関に基づき、歩行補助リズムが適切に調節され得ることに加え、当該定性的相関が生理状態の変動に応じて変動するという事情を反映させた形で、生理状態に応じた最適なリズムでの歩行補助をリアルタイムで実現することができる。
【0157】
また本発明の制御システム100の他の実施形態として、歩行状態判定ユニット140により判定された「歩行状態」に基づき「歩行補助振動子」の生成に係る仮想的な複数の神経素子i、j(図2参照)間の相関係数wi/j (上式(8a)〜(8d)参照)を調節する「第2相関調節ユニット」を備えていてもよい。
【0158】
さらに本発明の制御システム100の他の実施形態として、歩行者の生理状態を表す生理パラメータ(歩行者の心拍数、呼吸回数、血中の乳酸や酸素等の濃度、発汗量、まばたきの回数等)を測定する「生理パラメータ測定ユニット」と、生理パラメータ測定ユニットにより測定される生理パラメータに基づきこの歩行者の「生理状態」を判定する「生理状態判定ユニット」と、生理状態判定ユニットにより判定された「生理状態」に基づき「歩行補助振動子」の生成に係る仮想的な複数の神経素子i、j(図2参照)間の相関係数wi/j (上式(8a)〜(8d)参照)を調節する「第2相関調節ユニット」を備えていてもよい。
【0159】
当該実施形態によれば、仮想的な複数の神経素子の相関強度の調節を通じ、歩行補助リズムが適切に調節され得ることに加え、当該相関強度が生理状態の変動に応じて変動するという事情を反映させた形で、生理状態に応じた最適なリズムでの歩行補助をリアルタイムで実現することができる。
【0160】
なお、本発明の制御システム100の他の実施形態として次のような構成が採用されてもよい。即ち、まず決定ユニット160及び第2振動子生成ユニット170の機能が一時停止される。次に、第1振動子xが神経振動子生成ユニット180に直接入力され(図2矢印▲2▼から▲7▼への直接移行)、神経振動子z及びトルクTが決定される(図2s8、s9)。続いて、第3位相差決定ユニット(図示略)により、股関節角速度(歩行振動子)φH ’と、トルク(歩行補助振動子)Tとの位相差が測定される。さらに、最適位相差決定ユニット150により、当該位相差と同一又は近似するような最適位相差θd が決定される。この上で、決定ユニット160及び第2振動子生成ユニット170の機能が回復され、最新の最適位相差θd (図2矢印▲5▼参照)に基づき第2振動子yが生成される(図2s6.1〜s6,3、s7参照)。また、第2振動子y(図2矢印▲7▼参照)に基づき神経振動子z及びトルクTが生成される(図2s8、s9参照)。
【0161】
当該実施形態によれば、決定ユニット160及び第2振動子生成ユニット170の機能が一時停止されることで、一般には股関節角速度(歩行振動子)φH ’と、トルク(歩行補助振動子)Tとの位相差がそれまでの最適位相差θd から外れていく。また、当該位相差は歩行者と歩行補助装置200との調和による最適な位相差に収束する。そして、この位相差と同一又は近似するように最適位相差θd が新たに決定され、決定ユニット160及び第2振動子生成ユニット170の機能が回復されることで、歩行と歩行補助とが当該新たな最適位相差θd に近づくようにトルク(歩行補助振動子)Tが制御される。
【0162】
上述のように当該新たな最適位相差θd は歩行者と歩行補助装置200との調和の観点から最適な位相差(又はこれに近似する位相差)である。従って、歩行者は歩行補助装置200の歩行補助により、歩行補助リズムと最適に調和したリズムで歩行することができる。
【図面の簡単な説明】
【図1】本発明の制御システムの一実施形態の構成説明図
【図2】本発明の制御システムの一実施形態の機能説明図
【図3】2つの振動子の相関に関する説明図
【図4】本発明の制御システムの一実施形態による歩行補助機能の説明図(その1)
【図5】本発明の制御システムの一実施形態による歩行補助機能の説明図(その2)
【図6】本発明の制御システムの一実施形態による歩行補助機能の説明図(その3)
【図7】本発明の制御システムの一実施形態による歩行補助機能の説明図(その4)
【図8】本発明の制御システムの一実施形態による歩行補助機能の説明図(その5)
【図9】本発明の制御システムの一実施形態による歩行補助機能の説明図(その6)
【図10】本発明の制御システムの他の実施形態の神経振動子モデルの説明図
【符号の説明】
100‥制御システム、110‥歩行振動子測定ユニット、112‥股関節角速度測定ユニット、114‥股関節角度測定ユニット、120‥第1振動子生成ユニット、130‥第1位相差測定ユニット、140‥歩行状態判定ユニット、150‥最適位相差決定ユニット、160‥決定ユニット、162‥第2位相差決定ユニット、164‥相関係数決定ユニット、166‥第1角速度決定ユニット、168‥第2角速度決定ユニット、170‥第2振動子生成ユニット、180‥神経振動子生成ユニット、190‥歩行補助振動子生成ユニット、192‥トルク生成ユニット、200‥歩行補助装置、210‥アクチュエータ、220‥角度センサ

Claims (22)

  1. 歩行補助装置により歩行が補助されている歩行者の歩行振動子を測定する歩行振動子測定手段と、
    固有角速度が反映された形で歩行振動子測定手段により測定された歩行振動子と相互に引き込み合う第1振動子を生成する第1振動子生成手段と、
    第1振動子と歩行振動子との第1位相差と、最適位相差との偏差に基づいて新たな固有角速度を決定する決定手段と、
    決定手段により決定された固有角速度が反映された形で歩行振動子測定手段により測定された歩行振動子と相互に引き込み合い、第1位相差よりも最適位相差に近い第2位相差を歩行振動子に対して有する第2振動子を生成する第2振動子生成手段と、
    第2振動子と、歩行振動子測定手段により測定された歩行振動子とに基づき、歩行補助装置の歩行補助振動子を生成する歩行補助振動子生成手段とを備えていることを特徴とする制御システム。
  2. 歩行振動子測定手段により測定される歩行振動子に基づいて歩行者の歩行状態を判定する歩行状態判定手段と、歩行状態判定手段により判定された歩行者の歩行状態に応じて最適位相差を決定する最適位相差決定手段とを備えていることを特徴とする請求項1記載の制御システム。
  3. 歩行者の生理状態を表す生理パラメータを測定する生理パラメータ測定手段と、生理パラメータ測定手段により測定される生理パラメータに基づいて歩行者の歩行状態を判定する歩行状態判定手段と、歩行状態判定手段により判定された歩行者の歩行状態に応じて最適位相差を決定する最適位相差決定手段とを備えていることを特徴とする請求項1記載の制御システム。
  4. 歩行状態判定手段が歩行者の歩行状態として平地歩行状態と、上昇歩行状態と、下降歩行状態とを判定し、
    最適位相差決定手段が基本的に平地歩行状態では0、上昇歩行状態では−、下降歩行状態では+となるように最適位相差を決定することを特徴とする請求項2又は3記載の制御システム。
  5. 歩行状態判定手段が歩行状態として歩行の緩急を判定し、
    最適位相差決定手段が基本的に歩行が急であれば−、歩行が緩やかであれば+となるように最適位相差を決定することを特徴とする請求項2又は3記載の制御システム。
  6. 歩行者の生理状態を表す生理パラメータを測定する生理パラメータ測定手段と、生理パラメータ測定手段により測定される生理パラメータに基づいて歩行者の生理状態を表す判定する生理状態判定手段と、
    生理状態判定手段により判定された歩行者の生理状態に応じて最適位相差を決定する最適位相差決定手段とを備えていることを特徴とする請求項1記載の制御システム。
  7. 生理状態判定手段が歩行者の生理状態として該歩行者の疲労度を判定し、
    最適位相差決定手段が基本的に歩行者の疲労度が小さければ+、歩行者の疲労度が大きければ−となるように最適位相差を決定することを特徴とする請求項6記載の制御システム。
  8. 第1振動子生成手段が仮想的な複数の物体間の相関が反映された形で、該複数の物体の運動に対応する複数の第1振動子を生成し、
    第2振動子生成手段が仮想的な複数の物体間の相関が反映された形で、該複数の物体の運動に対応する複数の第2振動子を生成することを特徴とする請求項1、2、3、4、5、6又は7記載の制御システム。
  9. 歩行振動子測定手段により測定される歩行振動子に基づいて歩行者の歩行状態を判定する歩行状態判定手段と、
    歩行状態判定手段により判定された歩行者の歩行状態に応じ、第1及び第2振動子の生成に係る仮想的な複数の物体間の相関を調節する第1相関調節手段とを備えていることを特徴とする請求項8記載の制御システム。
  10. 歩行者の生理状態を表す生理パラメータを測定する生理パラメータ測定手段と、生理パラメータ測定手段により測定される生理パラメータに基づいて歩行者の歩行状態を判定する歩行状態判定手段と、
    歩行状態判定手段により判定された歩行者の歩行状態に応じ、第1及び第2振動子の生成に係る仮想的な複数の物体間の相関を調節する第1相関調節手段とを備えていることを特徴とする請求項8記載の制御システム。
  11. 歩行者の生理状態を表す生理パラメータを測定する生理パラメータ測定手段と、生理パラメータ測定手段により測定される生理パラメータに基づいて歩行者の生理状態を判定する生理状態判定手段と、
    生理状態判定手段により判定された歩行者の生理状態に応じ、第1及び第2振動子の生成に係る仮想的な複数の物体間の相関を調節する第1相関調節手段とを備えていることを特徴とする請求項8記載の制御システム。
  12. 決定手段が仮想歩行振動子と仮想歩行補助振動子との位相関係を表す内部モデルに従い、第1振動子と歩行振動子との第1位相差よりも、第2振動子と歩行振動子との第2位相差を最適位相差に近づける固有角速度を決定することを特徴とする請求項1〜11のうちいずれか1つ記載の制御システム。
  13. 決定手段が、内部モデルに従い、仮想歩行振動子及び仮想歩行補助振動子の第2位相差が第1位相差に近づくように仮想歩行振動子及び仮想歩行補助振動子の相関係数を決定する相関係数決定手段と、
    該相関係数に基づき仮想歩行振動子の角速度を決定する第1角速度決定手段と、該仮想歩行振動子の角速度に基づき、第2位相差が最適位相差に近づくように第2振動子生成に係る固有角速度としての仮想歩行補助振動子の角速度を決定する第2角速度決定手段とを備えていることを特徴とする請求項12記載の制御システム。
  14. 歩行補助振動子生成手段が仮想的な複数の神経素子間の相関が反映された形で、該複数の神経素子の挙動に対応する歩行補助振動子を生成することを特徴とする請求項1〜13のうちいずれか1つ記載の制御システム。
  15. 歩行振動子測定手段により測定される歩行振動子に基づいて歩行者の歩行状態を判定する歩行状態判定手段と、
    歩行状態判定手段により判定された歩行者の歩行状態に応じ、歩行補助振動子の生成に係る仮想的な複数の神経素子間の相関を調節する第2相関調節手段とを備えていることを特徴とする請求項14記載の制御システム。
  16. 歩行者の生理状態を表す生理パラメータを測定する生理パラメータ測定手段と、生理パラメータ測定手段により測定される生理パラメータに基づいて歩行者の歩行状態を判定する歩行状態判定手段と、
    歩行状態判定手段により判定された歩行者の歩行状態に応じ、歩行補助振動子の生成に係る仮想的な複数の神経素子間の相関を調節する第2相関調節手段とを備えていることを特徴とする請求項14記載の制御システム。
  17. 歩行者の生理状態を表す生理パラメータを測定する生理パラメータ測定手段と、生理パラメータ測定手段により測定される生理パラメータに基づいて歩行者の生理状態を判定する生理状態判定手段と、
    歩行状態判定手段により判定された歩行者の歩行状態に応じ、歩行補助振動子の生成に係る仮想的な複数の神経素子間の相関を調節する第2相関調節手段とを備えていることを特徴とする請求項14記載の制御システム。
  18. 歩行状態とn個の歩行振動子がn次元空間に描くトレースのパターンとの対応関係を記憶する記憶手段を備え、歩行状態判定手段が記憶手段により記憶されている対応関係と、歩行振動子測定手段により測定される該n個の歩行振動子がn次元空間に描くトレースのパターンとに基づき歩行状態を判定することを特徴とする請求項2、9又は15記載の制御システム。
  19. 第1及び第2振動子生成手段が、歩行振動子測定手段により測定された歩行振動子を含むファン・デル・ポル方程式により表現される非線形振動子モデルに従って第1及び第2振動子を生成することを特徴とする請求項1〜18のうちいずれか1つ記載の制御システム。
  20. 歩行振動子測定手段が第1振動子、第2振動子及び歩行補助振動子の生成用の歩行振動子として歩行リズムに対応するリズムで周期的に変動する歩行者の関節角度及び角速度を含む種々の振動子のうち少なくともいずれか1つを測定することを特徴とする請求項1〜19のうちいずれか1つ記載の制御システム。
  21. 歩行補助振動子生成手段が歩行補助振動子として、歩行者に付与される脚体関節回りのトルク、又はトルク及びトルクの変動に対応して歩行者が知覚可能な形態で周期的に変動する振動子を生成することを特徴とする請求項1〜20のうちいずれか1つ記載の制御システム。
  22. 歩行振動子測定手段が歩行状態判定用の歩行振動子として、歩行者の脚体関節角度、脚体関節角速度、脚体関節角加速度、及び脚体の一部の位置のうち少なくともいずれかを測定することを特徴とする請求項2、9、15又は18記載の制御システム。
JP2002240699A 2002-08-21 2002-08-21 歩行補助装置 Expired - Fee Related JP3930399B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2002240699A JP3930399B2 (ja) 2002-08-21 2002-08-21 歩行補助装置
PCT/JP2003/009918 WO2004017890A1 (ja) 2002-08-21 2003-08-05 歩行補助装置の制御システム
US10/515,557 US7880552B2 (en) 2002-08-21 2003-08-05 Control system for walking assist device
AU2003254807A AU2003254807A1 (en) 2002-08-21 2003-08-05 Control system for walking assist device
EP03792649A EP1547567B1 (en) 2002-08-21 2003-08-05 Control system for walking assist device
DE60330692T DE60330692D1 (de) 2002-08-21 2003-08-05 Kontrollsystem für eine gehhilfe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002240699A JP3930399B2 (ja) 2002-08-21 2002-08-21 歩行補助装置

Publications (2)

Publication Number Publication Date
JP2004073649A true JP2004073649A (ja) 2004-03-11
JP3930399B2 JP3930399B2 (ja) 2007-06-13

Family

ID=31943941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002240699A Expired - Fee Related JP3930399B2 (ja) 2002-08-21 2002-08-21 歩行補助装置

Country Status (6)

Country Link
US (1) US7880552B2 (ja)
EP (1) EP1547567B1 (ja)
JP (1) JP3930399B2 (ja)
AU (1) AU2003254807A1 (ja)
DE (1) DE60330692D1 (ja)
WO (1) WO2004017890A1 (ja)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005076091A1 (ja) * 2004-02-10 2005-08-18 The Circle For The Promotion Of Science And Engineering 非線形制御器及び非線形的制御方法
JP2005305615A (ja) * 2004-04-23 2005-11-04 Sony Corp 2足歩行移動装置
JP2006020697A (ja) * 2004-07-06 2006-01-26 Honda Motor Co Ltd 歩行状態を判定する装置又は方法
JP2006102156A (ja) * 2004-10-05 2006-04-20 Rikogaku Shinkokai 歩行介助システム
WO2006064657A1 (ja) * 2004-12-16 2006-06-22 Honda Motor Co., Ltd. 外力制御方法、外力制御システム及び外力制御プログラム
WO2006080134A1 (ja) * 2005-01-26 2006-08-03 Yoshiyuki Sankai 装着式動作補助装置及び制御用プログラム
JP2006289602A (ja) * 2005-03-17 2006-10-26 Sony Corp ロボット装置及びその制御方法
JP2006340852A (ja) * 2005-06-08 2006-12-21 Natl Rehabilitation Center For The Disabled 着用形関節駆動装置
WO2007026472A1 (ja) 2005-08-29 2007-03-08 Honda Motor Co., Ltd. 運動誘導装置、並びにその制御システムおよび制御プログラム
WO2007029418A1 (ja) 2005-09-02 2007-03-15 Honda Motor Co., Ltd. 運動誘導装置、並びにその制御システムおよび制御プログラム
WO2007029419A1 (ja) 2005-09-02 2007-03-15 Honda Motor Co., Ltd. 運動補助装置、並びにその制御システムおよび制御プログラム
JP2007130172A (ja) * 2005-11-09 2007-05-31 Toyohashi Univ Of Technology 歩行補助制御方法とその歩行補助制御装置
WO2007116682A1 (ja) 2006-04-06 2007-10-18 Honda Motor Co., Ltd. 運動管理システム、運動管理方法、運動管理プログラム
WO2007116681A1 (ja) 2006-04-06 2007-10-18 Honda Motor Co., Ltd. 運動管理システム、運動管理方法、運動管理プログラム
JP2008253804A (ja) * 2008-07-10 2008-10-23 Honda Motor Co Ltd 運動管理システム
WO2009050838A1 (ja) 2007-10-15 2009-04-23 Honda Motor Co., Ltd. 運動補助装置
JP2010509010A (ja) * 2006-11-15 2010-03-25 コミツサリア タ レネルジー アトミーク 生物の動きを追うためのデバイス及び方法
JP2010264320A (ja) * 2010-09-01 2010-11-25 Tokyo Institute Of Technology 歩容評価システム及び歩容評価方法
JP2011036376A (ja) * 2009-08-10 2011-02-24 Honda Motor Co Ltd トレーニング装置
JP2011036375A (ja) * 2009-08-10 2011-02-24 Honda Motor Co Ltd トレーニング装置
US8034005B2 (en) 2007-10-02 2011-10-11 Honda Motor Co., Ltd. Motion assist device
US8048008B2 (en) 2007-10-02 2011-11-01 Honda Motor Co., Ltd. Motion assist device
JP2011240048A (ja) * 2010-05-20 2011-12-01 Honda Motor Co Ltd 歩行運動補助装置
JP2012132851A (ja) * 2010-12-22 2012-07-12 Fujitsu Ltd 旋回検出装置、端末装置及びプログラム
US8298164B2 (en) 2007-10-19 2012-10-30 Honda Motor Co., Ltd. Motion assisting device
US8562691B2 (en) 2009-08-10 2013-10-22 Honda Motor Co., Ltd. Training device
JP2015044240A (ja) * 2013-08-27 2015-03-12 国立大学法人信州大学 ロボティックスーツの制御方法
US9289345B2 (en) 2011-11-30 2016-03-22 Honda Motor Co., Ltd. Walking assist device
US9314394B2 (en) 2009-10-21 2016-04-19 Honda Motor Co., Ltd. Motion assisting device, control method therefor, and rehabilitation method
US10786416B2 (en) 2014-11-26 2020-09-29 Samsung Electronics Co., Ltd. Assisting torque setting method and apparatus

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004017872A1 (en) 2002-08-22 2004-03-04 Victhom Human Bionics Inc. Actuated leg prosthesis for above-knee amputees
US7736394B2 (en) 2002-08-22 2010-06-15 Victhom Human Bionics Inc. Actuated prosthesis for amputees
US7815689B2 (en) 2003-11-18 2010-10-19 Victhom Human Bionics Inc. Instrumented prosthetic foot
US20060184280A1 (en) * 2005-02-16 2006-08-17 Magnus Oddsson System and method of synchronizing mechatronic devices
US7896927B2 (en) 2004-02-12 2011-03-01 össur hf. Systems and methods for actuating a prosthetic ankle based on a relaxed position
JP4426432B2 (ja) * 2004-12-17 2010-03-03 本田技研工業株式会社 脚体運動補助装具の補助モーメント制御方法
EP1848380B1 (en) 2004-12-22 2015-04-15 Össur hf Systems and methods for processing limb motion
JP3985001B2 (ja) * 2005-05-17 2007-10-03 本田技研工業株式会社 歩行補助装置用大腿部装具
DE102005059342A1 (de) * 2005-12-09 2007-06-14 Eberhard P. Prof. Dr. Hofer Mechanismus, Vorrichtung und Verfahren zur Erzeugung von physiologisch relevanten Kraftsignalen für die Stimulation der unteren Extremitäten
US7751142B2 (en) * 2006-03-22 2010-07-06 Nvidia Corporation Portable device with freefall detection or audio processing subsystem and freefall detection or audio processing method
WO2007138930A1 (ja) * 2006-05-29 2007-12-06 Sharp Kabushiki Kaisha 疲労推定装置及びそれを搭載した電子機器
US8435309B2 (en) 2007-01-05 2013-05-07 Victhom Human Bionics Joint actuation mechanism for a prosthetic and/or orthotic device having a compliant transmission
CA2676067C (en) 2007-01-19 2017-06-20 Victhom Human Bionics, Inc. Reactive layer control system for prosthetic and orthotic devices
JP5224506B2 (ja) * 2008-03-04 2013-07-03 国立大学法人九州工業大学 制御システム、振動制御装置及び制御信号生成方法
CN102036626B (zh) 2008-03-24 2014-07-02 奥瑟Hf公司 经股的假肢系统和用于操作该系统的方法
US8096965B2 (en) * 2008-10-13 2012-01-17 Argo Medical Technologies Ltd. Locomotion assisting device and method
US20100132464A1 (en) * 2008-12-01 2010-06-03 Honda Motor Co., Ltd. Motion assisting device
FR2943527B1 (fr) * 2009-03-31 2012-07-06 Movea Systeme et procede d'observation d'une activite de marche d'une personne
WO2011055428A1 (ja) * 2009-11-04 2011-05-12 トヨタ自動車株式会社 歩行補助装置
WO2011058641A1 (ja) 2009-11-13 2011-05-19 トヨタ自動車株式会社 歩行補助装置
US9060884B2 (en) 2011-05-03 2015-06-23 Victhom Human Bionics Inc. Impedance simulating motion controller for orthotic and prosthetic applications
US9532877B2 (en) 2011-11-11 2017-01-03 Springactive, Inc. Robotic device and method of using a parallel mechanism
US10543109B2 (en) 2011-11-11 2020-01-28 Össur Iceland Ehf Prosthetic device and method with compliant linking member and actuating linking member
EP2796123B1 (en) * 2011-12-21 2019-03-13 Shinshu University Movement assistance device
TWI474173B (zh) * 2012-02-21 2015-02-21 Hon Hai Prec Ind Co Ltd 行走輔助系統及行走輔助方法
US9044346B2 (en) 2012-03-29 2015-06-02 össur hf Powered prosthetic hip joint
WO2014109799A1 (en) 2012-09-17 2014-07-17 President And Fellows Of Harvard College Soft exosuit for assistance with human motion
US9610209B2 (en) * 2012-11-01 2017-04-04 Honda Motor Co., Ltd. Walking motion assist device
TR201816406T4 (tr) 2013-02-26 2018-11-21 Oessur Hf Gelişmiş stabilitesi ve esnek enerji dönüşü olan prostetik ayak.
EP2967920B1 (en) 2013-03-14 2021-04-21 Ossur Hf Prosthetic ankle: a method of controlling based on adaptation to speed
US10843332B2 (en) 2013-05-31 2020-11-24 President And Fellow Of Harvard College Soft exosuit for assistance with human motion
CN103519971B (zh) * 2013-10-15 2015-01-07 东南大学常州研究院 基于患者步态测量下肢康复训练机构自适应升降控制方法
EP4104757A3 (en) 2013-12-09 2023-01-04 President and Fellows of Harvard College Assistive flexible suits, flexible suit systems, and methods for making and control thereof to assist human mobility
KR102186859B1 (ko) * 2014-01-09 2020-12-04 삼성전자주식회사 보행 보조 기구 및 보행 보조 기구의 제어 방법
US10278883B2 (en) 2014-02-05 2019-05-07 President And Fellows Of Harvard College Systems, methods, and devices for assisting walking for developmentally-delayed toddlers
EP3128963A4 (en) 2014-04-10 2017-12-06 President and Fellows of Harvard College Orthopedic device including protruding members
CN106456339B (zh) 2014-04-11 2020-02-07 奥索有限责任公司 具有可去除柔性构件的义肢脚
KR102250265B1 (ko) 2014-09-01 2021-05-10 삼성전자주식회사 토크 패턴을 조정하기 위한 장치 및 방법
CN111568701B (zh) 2014-09-19 2024-03-15 哈佛大学校长及研究员协会 用于人类运动辅助的软外套
KR102342072B1 (ko) * 2014-10-14 2021-12-22 삼성전자주식회사 보행 보조를 제어하기 위한 장치 및 그 방법
KR102365191B1 (ko) 2014-10-20 2022-02-18 삼성전자주식회사 사용자의 동작을 인식하기 위한 장치 및 방법
JP5938124B1 (ja) * 2015-05-19 2016-06-22 本田技研工業株式会社 歩行補助装置
KR102133933B1 (ko) 2015-07-27 2020-07-21 삼성전자주식회사 보행 보조 방법 및 이를 수행하는 장치
KR102452632B1 (ko) 2015-08-17 2022-10-07 삼성전자주식회사 운동 보조 장치 및 그 제어 방법
KR102496574B1 (ko) * 2015-11-11 2023-02-06 삼성전자주식회사 토크 출력 타이밍 조정 방법 및 장치
EP3429512A4 (en) 2016-03-13 2019-10-30 President and Fellows of Harvard College FLEXIBLE ELEMENTS FOR ANCHORING THE BODY
US11498203B2 (en) 2016-07-22 2022-11-15 President And Fellows Of Harvard College Controls optimization for wearable systems
KR20180076759A (ko) 2016-12-28 2018-07-06 삼성전자주식회사 센서 장치 및 센서 장치를 이용하는 보행 보조 장치
KR102655665B1 (ko) 2016-12-28 2024-04-09 삼성전자주식회사 보행 보조 장치 및 그 동작 방법
US11014804B2 (en) 2017-03-14 2021-05-25 President And Fellows Of Harvard College Systems and methods for fabricating 3D soft microstructures
KR20200094519A (ko) * 2019-01-30 2020-08-07 삼성전자주식회사 정보 처리 장치 및 이의 동작 방법
US11093794B1 (en) * 2020-02-13 2021-08-17 United States Of America As Represented By The Secretary Of The Navy Noise-driven coupled dynamic pattern recognition device for low power applications
CN111685772B (zh) * 2020-05-29 2021-07-09 清华大学 外骨骼机器人测量系统、行走步态建模分析方法和设备
DE102020120161A1 (de) 2020-07-30 2022-02-03 Deutsches Zentrum für Luft- und Raumfahrt e.V. Medizinisches System zur Laufunterstützung sowie Verfahren zur Regelung eines medizinisches System zur Laufunterstützung
US20230301864A1 (en) * 2022-03-22 2023-09-28 David Barwick Technologies for improving the gait of individuals with parkinson's disease

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58163364A (ja) * 1982-03-23 1983-09-28 工業技術院長 下肢障害者用動力装具
JPS58163384A (ja) 1982-03-24 1983-09-28 シチズン時計株式会社 携帯用テニス練習機のパイプネツト
GB9222732D0 (en) 1992-10-29 1992-12-09 Andrews Brian Improvements in or relating to orthoses and prosthesis
IL105034A (en) * 1993-03-12 1998-03-10 Sate Of Israel Ministry Of Def Exoskeletal system
US5399154A (en) 1993-06-30 1995-03-21 Empi, Inc. Constant torque range-of-motion splint
JP3530959B2 (ja) 1993-12-13 2004-05-24 株式会社東京アールアンドデー 平地歩行、階段歩行の電動補助装置
US5645077A (en) * 1994-06-16 1997-07-08 Massachusetts Institute Of Technology Inertial orientation tracker apparatus having automatic drift compensation for tracking human head and other similarly sized body
JPH08278786A (ja) 1995-04-07 1996-10-22 Matsushita Electric Ind Co Ltd ホロニック・リズム・ジェネレータ装置
JP2000107213A (ja) 1998-10-07 2000-04-18 Shigeki Toyama 超音波モータを用いた関節補助器
JP2000166997A (ja) * 1998-12-10 2000-06-20 Nsk Ltd 歩行補助装置
JP2002301124A (ja) * 2001-04-06 2002-10-15 Honda Motor Co Ltd 歩行補助装置
JP4611580B2 (ja) * 2001-06-27 2011-01-12 本田技研工業株式会社 トルク付与システム
JP3833921B2 (ja) * 2001-10-18 2006-10-18 本田技研工業株式会社 歩行状態判定装置及び方法
JP4060573B2 (ja) 2001-11-07 2008-03-12 本田技研工業株式会社 歩行補助装置
JP3917432B2 (ja) * 2002-01-29 2007-05-23 株式会社日立製作所 動作支援装置
JP3950149B2 (ja) * 2005-09-02 2007-07-25 本田技研工業株式会社 運動補助装置

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7778726B2 (en) 2004-02-10 2010-08-17 Tokyo Institute Of Technology Nonlinear controller and nonlinear control method
WO2005076091A1 (ja) * 2004-02-10 2005-08-18 The Circle For The Promotion Of Science And Engineering 非線形制御器及び非線形的制御方法
JP2005305615A (ja) * 2004-04-23 2005-11-04 Sony Corp 2足歩行移動装置
JP4512406B2 (ja) * 2004-04-23 2010-07-28 ソニー株式会社 2足歩行移動装置
JP2006020697A (ja) * 2004-07-06 2006-01-26 Honda Motor Co Ltd 歩行状態を判定する装置又は方法
US8460219B2 (en) 2004-10-05 2013-06-11 Tokyo Institute Of Technology Walking aid system
JP2006102156A (ja) * 2004-10-05 2006-04-20 Rikogaku Shinkokai 歩行介助システム
JP4686681B2 (ja) * 2004-10-05 2011-05-25 国立大学法人東京工業大学 歩行介助システム
US7860562B2 (en) 2004-12-16 2010-12-28 Honda Motor Co., Ltd. External force control method, external force control system and external force control program
WO2006064657A1 (ja) * 2004-12-16 2006-06-22 Honda Motor Co., Ltd. 外力制御方法、外力制御システム及び外力制御プログラム
JP2006167223A (ja) * 2004-12-16 2006-06-29 Honda Motor Co Ltd 外力制御方法、外力制御システム及び外力制御プログラム
JP4541867B2 (ja) * 2004-12-16 2010-09-08 本田技研工業株式会社 外力制御方法、外力制御システム及び外力制御プログラム
WO2006080134A1 (ja) * 2005-01-26 2006-08-03 Yoshiyuki Sankai 装着式動作補助装置及び制御用プログラム
US9427373B2 (en) 2005-01-26 2016-08-30 University Of Tsukuba Wearable action-assist device and control program
US8932241B2 (en) 2005-01-26 2015-01-13 University Of Tsukuba Wearable action-assist device and control program
EP1842518A1 (en) * 2005-01-26 2007-10-10 Yoshiyuki Sankai Wearing-type motion assistance device and program for control
EP1842518A4 (en) * 2005-01-26 2010-01-20 Univ Tsukuba MOTION SUPPORT FROM PORTABLE TYPE AND CONTROL PROGRAM
EP2392305A1 (en) * 2005-01-26 2011-12-07 University of Tsukuba Wearable action-assist device and control program
US7857774B2 (en) 2005-01-26 2010-12-28 University Of Tsukuba Wearing-type motion assistance device and program for control
JP2006289602A (ja) * 2005-03-17 2006-10-26 Sony Corp ロボット装置及びその制御方法
JP2006340852A (ja) * 2005-06-08 2006-12-21 Natl Rehabilitation Center For The Disabled 着用形関節駆動装置
KR100951854B1 (ko) * 2005-08-29 2010-04-12 혼다 기켄 고교 가부시키가이샤 운동 유도 장치, 그 제어 시스템 및 제어 프로그램
US8202233B2 (en) 2005-08-29 2012-06-19 Honda Motor Co., Ltd. Motion guide device, its control system and control program
WO2007026472A1 (ja) 2005-08-29 2007-03-08 Honda Motor Co., Ltd. 運動誘導装置、並びにその制御システムおよび制御プログラム
KR100979663B1 (ko) 2005-09-02 2010-09-02 혼다 기켄 고교 가부시키가이샤 운동 유도 장치, 그 제어 시스템 및 제어 프로그램
WO2007029419A1 (ja) 2005-09-02 2007-03-15 Honda Motor Co., Ltd. 運動補助装置、並びにその制御システムおよび制御プログラム
KR100941115B1 (ko) * 2005-09-02 2010-02-10 혼다 기켄 고교 가부시키가이샤 운동 보조 장치
US7942833B2 (en) 2005-09-02 2011-05-17 Honda Motor Co., Ltd. Motion guide device, and its control system and control program
WO2007029418A1 (ja) 2005-09-02 2007-03-15 Honda Motor Co., Ltd. 運動誘導装置、並びにその制御システムおよび制御プログラム
US8287473B2 (en) 2005-09-02 2012-10-16 Honda Motor Co., Ltd. Motion assist device
JP2007130172A (ja) * 2005-11-09 2007-05-31 Toyohashi Univ Of Technology 歩行補助制御方法とその歩行補助制御装置
JP4724832B2 (ja) * 2005-11-09 2011-07-13 国立大学法人豊橋技術科学大学 歩行補助制御方法とその歩行補助制御装置
EP2011551A4 (en) * 2006-04-06 2009-07-08 Honda Motor Co Ltd EXERCISE MANAGEMENT SYSTEM, EXERCISE MANAGEMENT METHOD, AND EXERCISE MANAGEMENT PROGRAM
EP2011552A4 (en) * 2006-04-06 2009-07-08 Honda Motor Co Ltd TRAINING MANAGEMENT SYSTEM, TRAINING MANAGEMENT PROCEDURE AND TRAINING MANAGEMENT PROGRAM
WO2007116682A1 (ja) 2006-04-06 2007-10-18 Honda Motor Co., Ltd. 運動管理システム、運動管理方法、運動管理プログラム
JP2007275282A (ja) * 2006-04-06 2007-10-25 Honda Motor Co Ltd 運動管理システム、運動管理方法、運動管理プログラム
US7771321B2 (en) 2006-04-06 2010-08-10 Honda Motor Co., Ltd. Exercise management system
JP2007275283A (ja) * 2006-04-06 2007-10-25 Honda Motor Co Ltd 運動管理システム、運動管理方法、運動管理プログラム
WO2007116681A1 (ja) 2006-04-06 2007-10-18 Honda Motor Co., Ltd. 運動管理システム、運動管理方法、運動管理プログラム
JP2010509010A (ja) * 2006-11-15 2010-03-25 コミツサリア タ レネルジー アトミーク 生物の動きを追うためのデバイス及び方法
US8048008B2 (en) 2007-10-02 2011-11-01 Honda Motor Co., Ltd. Motion assist device
US8034005B2 (en) 2007-10-02 2011-10-11 Honda Motor Co., Ltd. Motion assist device
US8317732B2 (en) 2007-10-15 2012-11-27 Honda Motor Co., Ltd. Motion assist device
WO2009050838A1 (ja) 2007-10-15 2009-04-23 Honda Motor Co., Ltd. 運動補助装置
US8298164B2 (en) 2007-10-19 2012-10-30 Honda Motor Co., Ltd. Motion assisting device
JP2008253804A (ja) * 2008-07-10 2008-10-23 Honda Motor Co Ltd 運動管理システム
US8562691B2 (en) 2009-08-10 2013-10-22 Honda Motor Co., Ltd. Training device
JP2011036375A (ja) * 2009-08-10 2011-02-24 Honda Motor Co Ltd トレーニング装置
JP2011036376A (ja) * 2009-08-10 2011-02-24 Honda Motor Co Ltd トレーニング装置
US9314394B2 (en) 2009-10-21 2016-04-19 Honda Motor Co., Ltd. Motion assisting device, control method therefor, and rehabilitation method
JP2011240048A (ja) * 2010-05-20 2011-12-01 Honda Motor Co Ltd 歩行運動補助装置
JP2010264320A (ja) * 2010-09-01 2010-11-25 Tokyo Institute Of Technology 歩容評価システム及び歩容評価方法
JP2012132851A (ja) * 2010-12-22 2012-07-12 Fujitsu Ltd 旋回検出装置、端末装置及びプログラム
US9289345B2 (en) 2011-11-30 2016-03-22 Honda Motor Co., Ltd. Walking assist device
JP2015044240A (ja) * 2013-08-27 2015-03-12 国立大学法人信州大学 ロボティックスーツの制御方法
US10786416B2 (en) 2014-11-26 2020-09-29 Samsung Electronics Co., Ltd. Assisting torque setting method and apparatus
US11957636B2 (en) 2014-11-26 2024-04-16 Samsung Electronics Co., Ltd. Assisting torque setting method and apparatus

Also Published As

Publication number Publication date
AU2003254807A1 (en) 2004-03-11
EP1547567A4 (en) 2008-07-23
DE60330692D1 (de) 2010-02-04
US20050177080A1 (en) 2005-08-11
WO2004017890A8 (ja) 2004-08-19
EP1547567B1 (en) 2009-12-23
EP1547567A1 (en) 2005-06-29
WO2004017890A1 (ja) 2004-03-04
JP3930399B2 (ja) 2007-06-13
US7880552B2 (en) 2011-02-01

Similar Documents

Publication Publication Date Title
JP2004073649A (ja) 歩行補助装置の制御システム
JP4008464B2 (ja) 運動誘導装置
EP1932567B1 (en) Motion guide device and its control system
JP4185108B2 (ja) 運動管理システム
JP3950149B2 (ja) 運動補助装置
US7771321B2 (en) Exercise management system
US20110288453A1 (en) Walking motion assisting device
US20100132464A1 (en) Motion assisting device
JP4744585B2 (ja) 運動補助装置
JP4815486B2 (ja) 運動補助装置
JP2008253804A (ja) 運動管理システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041129

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20060721

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20060818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070308

R150 Certificate of patent or registration of utility model

Ref document number: 3930399

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140316

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees