WO2007138930A1 - 疲労推定装置及びそれを搭載した電子機器 - Google Patents

疲労推定装置及びそれを搭載した電子機器 Download PDF

Info

Publication number
WO2007138930A1
WO2007138930A1 PCT/JP2007/060443 JP2007060443W WO2007138930A1 WO 2007138930 A1 WO2007138930 A1 WO 2007138930A1 JP 2007060443 W JP2007060443 W JP 2007060443W WO 2007138930 A1 WO2007138930 A1 WO 2007138930A1
Authority
WO
WIPO (PCT)
Prior art keywords
fatigue
level
activity
estimation
user
Prior art date
Application number
PCT/JP2007/060443
Other languages
English (en)
French (fr)
Inventor
Motoki Sone
Katsuya Nakagawa
Yoshiharu Yamamoto
Zbigniew Struzik
Toru Nakamura
Original Assignee
Sharp Kabushiki Kaisha
The University Of Tokyo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha, The University Of Tokyo filed Critical Sharp Kabushiki Kaisha
Priority to US12/302,768 priority Critical patent/US8926531B2/en
Priority to JP2008517864A priority patent/JP4819887B2/ja
Publication of WO2007138930A1 publication Critical patent/WO2007138930A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1118Determining activity level
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/681Wristwatch-type devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6887Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient mounted on external non-worn devices, e.g. non-medical devices
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/02Alarms for ensuring the safety of persons
    • G08B21/06Alarms for ensuring the safety of persons indicating a condition of sleep, e.g. anti-dozing alarms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0219Inertial sensors, e.g. accelerometers, gyroscopes, tilt switches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7253Details of waveform analysis characterised by using transforms
    • A61B5/726Details of waveform analysis characterised by using transforms using Wavelet transforms

Definitions

  • the present invention relates to an apparatus and a method for realizing estimation of a fatigue level from body movement of a subject.
  • the estimation of psychosomatic diseases can be realized to some extent by measuring hormones in the brain or using a device for measuring blood flow. It can also be realized by conducting various tests and questionnaires.
  • the estimation of fatigue can be realized by, for example, the ATMT method (Advanced Trial Making Test method).
  • ATMT method Advanced Trial Making Test method
  • numbers appearing on the display are touched in order, and the level of fatigue is measured from the time required at that time.
  • Questionnaires are often used as a method of estimating psychosomatic disorders including fatigue.
  • Patent Document 1 Japanese Patent Laid-Open No. 7-178073 (published July 18, 1995)
  • the present invention has been made in view of the above-described conventional problems, and is a fatigue estimation device, a fatigue warning device, an electronic device, a fatigue estimation method, and a fatigue level that can be estimated inexpensively and easily. It is an object to provide a fatigue estimation program and a computer-readable recording medium.
  • the fatigue estimation apparatus of the present invention includes activity level detection means for continuously detecting the frequency of user activity as the activity level, and is detected by the activity level detection means.
  • the activity level is output to a fatigue level estimation means for estimating the user's fatigue level based on the activity level.
  • the activity level of the user can be automatically detected by the activity level detection means.
  • the fatigue level estimation means estimates the user's fatigue level based on the activity level.
  • the fatigue level is automatically determined based on the activity level automatically detected by the activity level detection means. Bell is estimated.
  • the activity level of the user is automatically detected by the activity level detection unit, and the fatigue level is automatically detected from the detected activity level by the fatigue level estimation unit. Estimated. Therefore, the user's fatigue level can be easily estimated.
  • the user's fatigue level can be estimated with a simple configuration of the activity level detection means and the fatigue level estimation means, the user's fatigue level can be estimated at low cost.
  • FIG. 1 is a block diagram showing a configuration according to an embodiment of the present invention.
  • FIG. 2 (a) is a graph showing typical body movement data when a person is tired.
  • [2 (b)] is a graph showing typical body movement data when a person is tired.
  • [2] (c)] is a graph showing body movement data of a patient with chronic fatigue syndrome.
  • [2 (d)] is a graph showing the difference of the body motion data shown in FIG. 2 (c).
  • [3 (a)] is a graph showing typical body movement data when a person is not tired.
  • [3 (b)] This is a graph showing typical body movement data when a person is not tired.
  • [3 (c)] This is a graph showing typical body movement data when a person does not feel tired.
  • [3 (d)] This is a graph showing body motion data obtained by removing the trend from the body motion data shown in FIG. 3 (c).
  • [4 (a)] is a diagram showing a state in which a person moves small when awakened.
  • [4 (b)] is a diagram showing a state where a person is stationary when fatigued.
  • FIG. 4 (c) is a diagram showing a state in which a person is freely active.
  • [4 (d)] is a diagram showing a state in which a person is freely active.
  • FIG. 5 is a diagram showing data after passing a one-axis output that can also obtain the force of an acceleration sensor attached to the wrist through a no-pass filter in order to see a change in acceleration.
  • FIG. 6 (a) A table comparing five samples with respect to the skewness and average of body motion data and the fatigue level.
  • FIG. 6 (b) This is a diagram showing the correlation between the estimated fatigue level and the numerical value that quantitatively shows the actual fatigue level obtained as a result of the questionnaire.
  • FIG. 7 is a diagram showing a sigmoid function and an arctangent function.
  • FIG. 8 (a) A diagram showing a result of measuring a 3-axis output of acceleration sensor force attached to the wrist for a certain period of time.
  • FIG. 8 (b) is a diagram showing the output after passing the vector sum of the three-axis output through a no-pass filter.
  • FIG. 9 (b) is a flowchart showing a specific process for calculating a fatigue level.
  • ⁇ 10 (a)] is a diagram showing an example of the appearance of a mobile phone equipped with the fatigue warning device of the present invention.
  • ⁇ 10 (b)] is a diagram showing an example of the appearance of a mobile phone equipped with the fatigue warning device of the present invention.
  • FIG. 10 (c) is a diagram showing an example of the appearance of a mobile phone equipped with the fatigue warning device of the present invention.
  • FIG. 11 (a) is a diagram showing a state in which the wristwatch equipped with the body motion detection unit in FIG. 1 is attached to the arm.
  • FIG. 11 (b) is a diagram showing an image in which the product of the present invention is usually used.
  • FIG. 12 (a) is a diagram showing a warning message displayed on a mobile phone equipped with the fatigue warning device of the present invention.
  • FIG. 12 (b) is a diagram showing a warning message displayed on a mobile phone equipped with the fatigue warning device of the present invention.
  • FIG. 12 (c) is a diagram showing a warning message displayed on a mobile phone equipped with the fatigue warning device of the present invention.
  • FIG. 12 (d) is a diagram showing a warning message displayed on a mobile phone equipped with the fatigue warning device of the present invention.
  • FIG. 12 (e) is a diagram showing a warning message displayed on a mobile phone equipped with the fatigue warning device of the present invention.
  • FIG. 12 (£) is a diagram showing a warning message displayed on a mobile phone equipped with the fatigue warning device of the present invention.
  • Fig. 2 (a) and Fig. 2 (b) show typical body movement data when a person is tired.
  • Figures 3 (a) to 3 (c) show typical body movement data when a person does not feel tired. Both The horizontal axis shows the elapsed time, and the vertical axis shows the body movement data obtained from the acceleration sensor force attached to the wrist.
  • the body movement data is data that quantitatively indicates the frequency of human activity (activity), and a specific measurement method will be described later.
  • body movement data with a low value compared to the surroundings only for a short time there is often no tendency to obtain body movement data with a low value compared to the surroundings only for a short time.
  • body movement data with a lower value than the surroundings may be obtained for a short time, or body movement data with a higher value than the surroundings may be obtained for a short time.
  • Body movement data may be widely distributed.
  • the human fatigue level can be estimated from the body motion data. More specifically, the fatigue level can be estimated by detecting relatively low body motion data.
  • FIG. Figure 5 shows the data after passing through a high-pass filter to see the change in acceleration for a single axis output that can also obtain the acceleration sensor force attached to the wrist!
  • the body motion data shown in Fig. 2 (a), Fig. 3 (a), etc. has a threshold value of the output sensor (acceleration data) force 0.01G after passing the high-pass filter shown in Fig. 5.
  • This data records the number of passes per unit time.
  • the output of the acceleration sensor has passed the threshold value four times, so the body motion data is measured as 4.
  • the body motion data measured in this way is generally called zero crossing data, and is used for sleep / wake detection, life rhythm analysis, and the like.
  • the data shown in FIG. 5 is a force that allows the output of the acceleration sensor to pass through the noise-pass filter in order to efficiently see changes in the body motion data. Absent. For example, by subtracting the moving average value related to the output value of the acceleration sensor from the output value of the acceleration sensor itself, the change in the body motion data can be seen efficiently.
  • the difference in human activity indicated by the body movement data shown in Fig. 2 (a), Fig. 3 (a), and Fig. 3 (c) can be estimated by taking the method described below.
  • the trend of body motion data is removed.
  • the trend can be removed as described below, for example.
  • “Trend” means the tendency of long-term fluctuations in body movement data.
  • the body motion data is further divided into shorter times, and the regression curve of the body motion data is obtained by calculating the first order approximation of the data of each section using the least square method.
  • the trend of body movement data can be grasped from this regression curve.
  • the data y (t) can be expressed as follows.
  • t is the time of each data.
  • the body movement data shown in Fig. 2 (b) is obtained from the body movement data shown in Fig. 2 (a), and the body movement data shown in Fig. 3 (a).
  • the body motion data shown in Fig. 3 (b) is obtained from Fig. 3 (b), and the body motion data shown in Fig. 3 (d) is obtained from the body motion data shown in Fig. 3 (c).
  • the skewness of the body movement data from which the trend at the time of fatigue is removed is negative 0.0118, whereas the skewness of the body movement data from which the trend at the time of non-fatigue is removed is larger than that. Indicates a positive value. That is, it can be said that the skewness is greatly related to fatigue.
  • the fact that the degree of distortion is small means that the data is prominently low in value and prominently larger than the large value.
  • the fact that the degree of distortion decreases when the fatigue level is high agrees well with the tendency of fatigue shown by the body motion data in Fig. 2 (a), Fig. 3 (a), and Fig. 3 (c). ing.
  • Fig. 6 (a) shows a table comparing five samples regarding the skewness and average of body motion data and the fatigue level.
  • the “actual fatigue level” shown in FIG. 6 (a) is information that quantitatively indicates the fatigue level obtained as a result of the questionnaire and can also be expressed as actual fatigue level information.
  • Figure 6 (b) shows the correlation between the fatigue level estimated by the above formula and the numerical value that quantitatively shows the actual fatigue level obtained as a result of the above questionnaire.
  • Figure 6 (c) shows the correlation between the output value obtained by inputting the estimated fatigue level into the sigmoid function and the numerical value that quantitatively shows the actual fatigue level.
  • the fatigue level can be estimated with higher accuracy by using the following calculation formula.
  • Fatigue 0.732 X Mean + 58.321 X Skew-4.028 X Mean X Skew + 33.370 where Mean indicates the average value of the body motion data, and Skew indicates the skewness of the body motion data with the trend removed. .
  • the fatigue level can be estimated by a simple calculation formula. Therefore, the fatigue level can be estimated with a small load, but by combining statistical analysis methods, fatigue can be accurately performed. The level can be estimated. Also, statistical analysis methods are not limited to methods using average and skewness.
  • the fatigue level can be estimated with higher accuracy by using the standard deviation or kurtosis of the body motion data.
  • Fatigue 3.436 X mean + 16.392 X sd + (-62.426) X skew
  • kurtosis The kurtosis of Zero Crossing Data in the past 30 minutes after removing the trend
  • coefficients of the calculation formulas mentioned here and the statistical values to be used are merely examples, and it is needless to say that there is a possibility that they may vary depending on the measurement device, the subject, and the body part to be measured.
  • the body motion data used for fatigue estimation does not necessarily need to be continuous.
  • FIG. 2 (c) is a diagram showing body movement data of a patient with chronic fatigue syndrome.
  • the inventors' earnest attention is that the body movement data of patients with chronic fatigue syndrome show relatively more rapid decline and slower and more powerful rise compared to normal subjects. The results of the study were found.
  • FIG. 2 (d) is a graph showing the difference between the body motion data shown in FIG. 2 (c), and the long-term fluctuation component of the body motion data shown in FIG. 2 (c) is removed. It is assumed that the data shows.
  • the difference value when the body motion data falls abruptly, the difference value shows a negative value for a short time, and when the body motion data rises slowly, the difference value shows a small positive value for a long time. Indicates the value.
  • Such characteristics of body motion data can also be grasped by statistically analyzing the difference values of the body motion data. For example, if the body movement data shows a rapid decline and a gradual rise, the degree of distortion of the body movement data becomes small.
  • the fatigue level can be estimated by the above formulas. However, if the above formula is maintained, the estimated fatigue level may be below the minimum value ⁇ or the maximum value may exceed 100. For example, among the five samples shown in FIG. 6 (a), the estimated fatigue level when the actual fatigue level is 0 is 0.306, which is below 0.
  • a shaping process may be performed so that the fatigue level falls within a predetermined range (in the present embodiment, between 0 and 100).
  • the sigmoid function has a slope that becomes closer to 50 near 50 and becomes gentler as it goes away from 50, and can be kept from 0 to 100 for any value. Has characteristics.
  • the sigmoid function has the steepest slope near 50 and the highest sensitivity, so that a subtle change in characteristics near 50 can be clarified.
  • the force also has a positive slope throughout, so the magnitude of the value does not reverse.
  • the fatigue level is 0 as described above.
  • the fatigue level can be corrected to a positive value close to 0, that is, 7.48.
  • the fatigue level calculated as 30.07 and 50.17 is 26.96 and 50.22, respectively, as shown in Fig. 6 (a). And it is not much different from the previous value using the sigmoid function.
  • Functions other than the sigmoid function may be used according to the purpose of use. If one is selected other than the sigmoid function, the arctangent function shown by the broken line in Fig. 7 can be listed. When the sigmoid function shown in Fig. 7 is used, values of 100 or more and 0 or less approach 100 or 0, respectively, but arc tangent is required to clarify the difference in fatigue level even when the value is 100 or 0 or less. It is better to use a function.
  • the portion for increasing the sensitivity need not be limited to about 50, and the portion for which the sensitivity is to be increased may be changed according to the application.
  • the alternate long and short dash line in FIG. 7 indicates the following sigmoid function. According to this sigmoid function, the sensitivity around 80 to 90 is enhanced.
  • Body motion data used to estimate fatigue levels need not be limited to zero crossing data, and there is no need to set a single threshold.
  • the output data (acceleration data) of the acceleration sensor force shown in Fig. 8 (a) or Fig. 8 (b) may be used as it is.
  • Fig. 8 (a) shows the measurement of the triaxial output from the acceleration sensor attached to the wrist for a certain period of time.
  • the vertical axis is acceleration in units of 1G. If there is no movement, the vector sum of the 3-axis output is 1G, which is the same as the Earth's gravitational acceleration.
  • FIG. 8 (b) is a diagram showing an output after passing the vector sum of the three-axis outputs through a noise pass filter. Normally, if there is no movement, the acceleration data shown in Fig. 8 (b) is a constant value of 0. A value other than 0 is output according to the wrist movement.
  • Estimating the fatigue level using the acceleration data shown in Fig. 8 (a) or Fig. 8 (b) can be realized, for example, by taking the following method.
  • a plurality of threshold values are provided in the calorie velocity data shown in FIGS. 8 (a) and 8 (b), for example, in increments of 0.05G.
  • the elapsed time from the time when acceleration data changes from a value exceeding the threshold value to a value below the threshold value to the time when the acceleration data changes from a value below the threshold value to a value exceeding the threshold value. (The part indicated by the arrow in the figure) is calculated. Then, for example, mean and variance are analyzed as statistics of this elapsed time.
  • the activity status changes depending on whether or not the subject is fatigued, and this change is due to the appearance of relatively low body motion data in continuously measured body motion data.
  • the method of discriminating changes in body motion data is not limited to a statistical method, but can also be performed by DFA (Detrend Fluctiation Analysis) to vWTMM (Wavelet Transform Modulus Maxima) to evaluate the fractal. In some cases, changes in body motion data can be identified. However, using these methods increases the amount of computation, so when assessing fatigue level with a mobile device, etc., a method of estimating the fatigue level from about two statistical values (for example, average and skewness) Judging from accuracy and calculation amount, it is most suitable. Therefore, in the following, an example of a fatigue warning device equipped with a function to estimate the fatigue level using two statistical values, average and skewness, will be described.
  • the fatigue estimation device 1 of the present embodiment includes a body motion detection unit (activity detection means) 2 and a fatigue detection unit (fatigue level estimation means) 3.
  • the fatigue warning device 10 of the present embodiment includes a fatigue estimation device 1, a fatigue warning determination unit (fatigue warning determination unit) 11, a fatigue presentation unit (fatigue presentation unit) 12, Is included.
  • the body motion detection unit 2 detects the movement of the user's body (body motion) and has a wristwatch type shape that can be attached to the wrist.
  • the body motion detection unit 2 includes an acceleration sensor (activity detection means) 4, a first data accumulation unit (activity detection means) 5, and a data transmission unit (activity detection means) 6. .
  • the acceleration sensor 4 senses wrist acceleration.
  • the acceleration sensor 4 The acceleration data obtained by the above is accumulated in the first data accumulation unit 5 for a certain period of time. Then, the data stored in the first data storage unit 5 is transmitted to the fatigue detection unit 3 via the data transmission unit 6. By accumulating acceleration data in the first data accumulation unit 5 in this way, even if the transmission of acceleration data by the data transmission unit 6 is interrupted for a short time, the acceleration data corresponding to the interruption time is stored in the first data accumulation unit 5.
  • the acceleration data can be transmitted from the data transmission unit 6 to the fatigue detection unit 3 without interruption.
  • the fatigue detection unit 3 is preferably realized by a portable small device and provided inside the mobile phone.
  • the fatigue detection unit 3 includes a data reception unit (fatigue level estimation unit) 7, a second data storage unit (fatigue level estimation unit) 8, and a fatigue level calculation unit (fatigue level estimation unit) 9. .
  • the data receiving unit 7 receives acceleration data transmitted from the data transmitting unit 6 of the body motion detecting unit 2.
  • the acceleration data received by the data receiving unit 7 is accumulated in the second data accumulating unit 8.
  • the fatigue level calculation unit 9 calculates the fatigue level (Fatigue) using the acceleration data stored in the second data storage unit 8 and the calculation formula described above.
  • the fatigue warning determination unit 11 determines whether or not to issue a warning to the user based on the fatigue level (Fatigue) calculated by the fatigue level calculation unit 9. The determination process in the fatigue warning determination unit 11 will be described later.
  • the fatigue warning determination unit 11 determines that it is necessary to issue a warning to the user, the information is sent to the fatigue presentation unit 12, and the fatigue level is set to the user as described later. Corresponding warnings and messages are communicated.
  • the configuration shown in FIG. 1 is merely an example for realizing the present invention, and may be another configuration.
  • the body motion detection unit 2, the fatigue warning determination unit 11, and the fatigue presentation unit 12 are separated from each other. This is to prevent the burden on the user as much as possible. This is to reduce the size of the body motion detection unit 2 and increase the size of the fatigue presentation unit 12 so that as much information as possible can be transmitted to the user.
  • the body motion detection unit 2, the fatigue warning determination unit 11 and the fatigue presentation unit 12 may be integrated.
  • the first data storage unit 5, the data transmission unit 6, and the data reception unit 7 may be omitted.
  • the fatigue warning determination unit 11 and the fatigue presentation unit 12 and the fatigue level calculation unit 9 the fatigue detection unit 3
  • the fatigue warning determination unit 11 and the fatigue presentation unit 12 can be realized by separate devices.
  • a configuration may be adopted in which the fatigue presentation unit 12 is omitted, and the fatigue level and risk level are transmitted to a medical institution or user administrator via a network.
  • the fatigue level is estimated from the activity of a part of the body (wrist), but a similar sensor is worn not only on the wrist but also on the whole body to determine the fatigue level. It is of course possible to estimate. Since the wrist is often moved, it is suitable for measuring body movement data. However, it often moves due to external factors such as riding on a vehicle. In that case, the accuracy of estimating the fatigue level decreases.
  • the wrist essentially does not move when sleeping, but may move according to the shaking of the vehicle when riding, and the fatigue level is estimated based on the acceleration caused by the shaking. It doesn't make sense.
  • the acceleration of the whole body for example, the waist, legs, trunk, head, etc.
  • the vibration caused by the movement of the vehicle It is better to cancel the vibration with the acceleration force of the whole body.
  • the fatigue level cannot be estimated from the wrist acceleration! /
  • the second and third candidates such as the waist, legs, trunk, or head
  • the fatigue level It is also possible to estimate the fatigue level.
  • health care workers are concerned about infections when they wash their hands and need to remove their wristwatches and wash their hands up to their wrists. In some situations, they may not wear their wrist watches for a while. In that case, it is possible to correctly estimate the fatigue without interruption by measuring the activity at the part other than the wrist and estimating the activity / power fatigue level.
  • the force using the acceleration sensor 4 as the sensor of the body motion detection unit 2 is a method for detecting the tendency of the body motion data during fatigue described with reference to FIGS. 2, 3, and 4. Is not limited to the method using an acceleration sensor.
  • the position information output from the position information sensor attached to the user's body is received using, for example, UWB (Ultra Wide Band) communication means.
  • UWB Ultra Wide Band
  • the user's position information can be detected quickly.
  • the fatigue level may be estimated in the same procedure as when using the acceleration sensor.
  • body motion data is measured by the acceleration sensor 4 in that the fatigue level can be easily estimated with higher accuracy.
  • FIG. 9 (a) shows a flowchart relating to a fatigue estimation method realized by the fatigue estimation device 1 or the fatigue warning device 10 described above.
  • acceleration sensor 4 First, measurement of acceleration data is started by the acceleration sensor 4 (Sl). Thereafter, the acceleration sensor 4 continues to acquire the acceleration data (S2), and determines whether or not the force has passed a certain time (for example, 30 minutes) from the start of the acceleration data measurement. In this way, the acceleration data force measured by the acceleration sensor 4 is accumulated in the first data accumulating unit 5 until a certain time has elapsed since the start of measurement.
  • a certain time for example, 30 minutes
  • the acceleration data stored in the first data storage unit 5 is stored in the second data storage unit 8 via the data transmission unit 6 and the data reception unit 7 as described above.
  • the level calculation unit 9 calculates the fatigue level based on the above-described calculation formula using the acceleration data stored in the second data storage unit 8 (S4).
  • FIG. 9 (b) shows a processing flow for calculating the fatigue level.
  • the fatigue level calculation unit 9 acquires acceleration data stored in the second data storage unit 8 (S 11), and removes the influence of gravity from this acceleration data using a high-pass filter (S 12 ).
  • the fatigue level calculation unit 9 counts the number of times that the acceleration data from which the influence of gravity has been removed in S12 passes a predetermined threshold (S13), so that zero crossing data, that is, the body Get dynamic data.
  • the fatigue level calculation unit 9 calculates a mean value (Mean) of body motion data (S 1
  • the fatigue level calculator 9 calculates the fatigue level Fatigue based on the following equation using the mean value calculated in S 14a and the skewness Skew calculated in S 14c (S15).
  • Fatigue 0.732 X Mean + 58.321 X Skew-4.028 X Mean X Skew + 33.370
  • the fatigue warning determination unit 11 sets the calculated fatigue level Fatigue to a constant value (for example, 7
  • the fatigue presentation unit 12 displays a warning that the user is tired on a predetermined screen (S7). In addition, if “No” is determined in either S5 or S6, the fatigue presentation unit 12 does not issue the above warning.
  • the next fatigue level cannot be estimated until the acceleration data necessary for estimating the fatigue level is accumulated in the second data accumulation unit 8. Yes.
  • the fatigue level at an arbitrary time can be estimated to some extent.
  • the fatigue level may be output according to the user's request.
  • the number of fatigue levels referred to by the user is large and the fatigue levels are similar, the tendency to determine whether the fatigue is accumulated or whether the fatigue has recovered May not be accurately communicated.
  • the specification is such that no warning is issued until a certain time (2 hours) elapses after the warning is once issued. This is because once a fatigue warning is issued, the user is likely to take measures to recover from fatigue (such as a break). Also, fatigue is not expected to recover immediately after taking a break, and repeated fatigue warnings before fatigue recovers do not make much sense.
  • a coefficient in an arithmetic expression for obtaining a fatigue level and an algorithm for estimating the fatigue level can be dynamically calibrated and corrected to improve the estimation accuracy of the fatigue level. It is even better to ask the patient's subjective symptoms and correlate with the estimated fatigue level.
  • the process of associating the inquiry result with the fatigue level can be specifically realized as follows. First, when the fatigue level is estimated intermittently or continuously, the estimated fatigue level is recorded in the second data storage unit 8 together with the time information at that time.
  • the fatigue presentation unit 12 displays a screen for determining the degree of subjective symptoms. And Acquires the degree of subjective symptoms of fatigue input by the user via the operation input unit (not shown) in the fatigue warning device 10, and provides information (actual fatigue level information) about the acquired subjective symptoms. Then, it is stored in the second data storage unit 8 together with the time information at that time.
  • the estimated fatigue level information related to the estimated fatigue level and the actual fatigue level information can be correlated with respect to time.
  • FIG. 10 and FIG. 11 show examples of wearing the fatigue estimation device and fatigue warning device according to the present embodiment.
  • FIG. 10 (a) to FIG. 10 (c) are examples of the appearance of a mobile phone equipped with the fatigue warning device described with reference to FIG.
  • this will be referred to as “mobile phone with product of the present invention”
  • product of the present invention for distinction.
  • the contents of the description of the mobile phone with the product of the present invention it was understood that all the contents except the description about the phone were described as the description of the configuration of the product of the present invention.
  • the cellular phone 201 with a product of the present invention is of a folding type, and includes a main body 202 and a lid 203.
  • the mobile phone 201 with the present invention it is generally different from the mobile phone that is generally distributed except that the fatigue estimation device 1 and the fatigue warning device 10 of the present embodiment are installed.
  • the main body 202 has a cell phone operation key array, and the display unit 203a of the lid unit 203 displays various functions of the cell phone. Do.
  • a fatigue warning for the user can be given by the screen display on the display unit 203a.
  • the fatigue warning can be confirmed with almost the same operation as when receiving a call or receiving / sending mail. That is, from the state shown in FIG. 10 (a) to the state shown in FIG. 10 (c) through the state shown in FIG. 10 (b).
  • the method of giving a fatigue warning using the cellular phone 201 with the present invention is not limited to the method described above.
  • the lid 203 has a small display unit
  • the fatigue state may be displayed on the display unit.
  • the fatigue state can be confirmed without opening the cellular phone 201 with the product of the present invention.
  • the fatigue state can be displayed in detail on a large screen rather than using a small display unit using the display unit 203a, the fatigue state can be accurately communicated to the user.
  • the display unit 203a is not limited to the screen display, and the fatigue state can be transmitted to the user by sound or vibration, or a combination thereof, or the fatigue state can be presented to the user by various methods.
  • a short beep may be sounded and a message prompting for a break may be displayed on the display unit 203a.
  • a message confirmation process by the user is detected, such as detecting the opening of the lid 203 from the folded state of the cellular phone 201 with the present invention.
  • fatigue warnings may be continued using beeps and vibrations. As a result, it is possible to reliably issue a warning to the user.
  • Fig. 11 (a) is a diagram showing a state in which the wristwatch equipped with the body motion detection unit 2 in Fig. 1 is worn on the arm.
  • a wristwatch equipped with the body motion detector 2 is not significantly different from a normal wristwatch at first glance, and the time can be confirmed.
  • a wristwatch equipped with the body motion detection unit 2 is different from a normal wristwatch in that the acceleration sensor 4, the first data storage unit 5, and the data transmission unit 6 shown in FIG. Different.
  • FIG. 11 (b) shows an image diagram in which the product of the present invention is usually used.
  • the mobile phone 201 with the product of the present invention is put in a trouser pocket or the like and carried close to the user, and the body motion detector 2 is installed. Always wear the wristwatch 204 on your wrist.
  • the cellular phone 201 with the product of the present invention and the wristwatch 204 communicate frequently. There must be a communication range between the two.
  • the body motion detection unit 2 includes a first data storage unit 5. Therefore, while the first data storage unit 5 can store acceleration data, even if communication between the mobile phone 201 with the present invention and the wristwatch 204 is interrupted, user acceleration data can be acquired without interruption. Can do.
  • These two configurations do not necessarily have to be separated.
  • the functions related to the fatigue warning device of the present invention can be realized only by the mobile phone, and the advantage of reducing the number of parts can be obtained. It is done.
  • the wrist acceleration is used, the user's fatigue level can be estimated with the highest accuracy. Therefore, in the present embodiment, a configuration in which the mobile phone 201 with the product of the present invention and the arm watch 204 are separated may be adopted.
  • the mobile phone with the product of the present invention If the fatigue level calculated by the fatigue level calculation unit 9 is determined to be, for example, 70% or more by the fatigue warning determination unit 11, the mobile phone with the product of the present invention generates the same ringing tone as when a call is received. And a message prompting for a break is displayed on the display unit 203a as shown in FIG. 12 (a).
  • a plurality of fatigue warning levels may be set. For example, if the fatigue warning calculation unit 11 determines that the fatigue level calculated by the fatigue level calculation unit 9 is 90% or more, a message with a higher degree of urgency is displayed as shown in Fig. 12 (b). May be.
  • Fig. 12 (c) a message that suggests a break to the user according to the fatigue level is displayed before the closing time, so that the user can calm down and respond to the message. Later actions can also be judged.
  • a graph showing the temporal transition of the fatigue level is displayed on the display unit 20.
  • the user can confirm the time transition of his fatigue level.
  • the person who reports the result of fatigue estimation is not necessary for the person who reports the result of fatigue estimation to be a person wearing the product of the present invention.
  • the product of the present invention is not limited to being mounted only on a mobile phone. An example in which the result of fatigue estimation is transmitted to a person other than the wearer will be described below.
  • FIG. 12 (e) An example in which the wearer of the present invention is a sports player and the result of fatigue estimation is transmitted to the manager of the player will be described with reference to FIG. 12 (e).
  • the wearer of the present invention is a sports player and the result of fatigue estimation is transmitted to the manager of the player
  • FIG. 12 (e) As shown in Fig. 12 (e), by displaying a message informing that the athlete is tired in Fig. 12 (e), the manager can directly ask the athlete whether he is tired or not. Players can be replaced at the right time without relying on experience or intuition.
  • the fatigue presentation unit 12 need not be limited to the display unit of the mobile phone.
  • a fatigue presentation unit 12 may be provided in an electronic device having a notification function, and the fatigue presentation unit 12 may be used to convey the result of fatigue estimation to the supervisor.
  • the environment of use is a stadium, the effects of water and dust are unavoidable, and there may be cases where it is not appropriate to install the fatigue presentation section 12 on electronic equipment. In such a case, the result of fatigue estimation may be transmitted by voice.
  • transmission means for transmitting fatigue level information indicating the fatigue level estimation result to the outside via a network as described later may be provided in the product of the present invention.
  • a message indicating that the fatigue estimation result determined by the fatigue warning determination unit 11 is informed to the medical institution may be displayed on the display unit 203a.
  • the display unit 203a may be displayed on the display unit 203a.
  • the electronic device having the function of the present invention is not limited to a mobile phone, but may be an in-vehicle device.
  • a personal computer with a function to estimate the fatigue level in the business, if it is determined that the user feels fatigue during the work, the user is encouraged to take a break from the fatigue presentation section 12 provided in the computer. Can avoid overwork problems it can.
  • the fatigue presentation unit 12 provided in the in-vehicle device can inform the user of overdriving and the timing of breaks, preventing accidents in advance. be able to.
  • the estimation of the fatigue level using the product of the present invention is not necessarily performed in real time.
  • data indicating the result of estimating the fatigue level may be accumulated for a certain period, and the fatigue level may be estimated using, for example, a home PC based on the accumulated data.
  • the change in fatigue level over time over a certain period in the past can be grasped afterwards.
  • the program for executing the flowchart for estimating the fatigue level should be able to follow up the processing steps later so that the fatigue level can be estimated with higher accuracy in the future. desirable.
  • the program for estimating the fatigue level can be updated by simply downloading the program using the original communication function of the mobile phone. This is suitable for adding processing steps later.
  • Fatigue is a common symptom of various nervous system diseases such as depression and chronic fatigue syndrome. Moreover, in recent years, accidents associated with fatigue and diseases that cause overwork have become a problem. Therefore, if it is possible to easily detect fatigue at any time, it will be possible to detect neurological diseases as described above early and judge the degree of symptoms, and to prevent accidents associated with fatigue. It is significant.
  • the fatigue level is calculated on the mobile phone side!
  • body motion data may be acquired and stored using a mobile phone, and the acquired body motion data may be transmitted to a specified server, and the fatigue level may be calculated at the server or a workstation connected to the server. .
  • the fatigue level may be displayed on the mobile phone, or the mobile phone power may issue a fatigue warning.
  • the fatigue level calculated by the server may be sent to other than the user, such as a medical institution, a user administrator, a user's relative or friend.
  • the fatigue estimation method executed by the fatigue estimation apparatus of the present embodiment can be recorded as a fatigue estimation program on a computer-readable recording medium in which a program executed by a computer is recorded.
  • a portable recording medium on which a program for performing the fatigue estimation method of the present embodiment is recorded.
  • a program reading device as an external storage device is provided, which is not shown in the figure because it is processed by a microcomputer, for example, a program medium such as ROM. It can also be a program medium that can be read by inserting a recording medium into it! /.
  • V in case of misalignment, may be configured such that the program stored and accessed by the microprocessor is executed, and the program read out and read out is Alternatively, the program may be downloaded to a program storage area (not shown) of the microcomputer and executed. In this case, it is assumed that the download program is stored in the main unit in advance.
  • the program medium is a recording medium configured to be separable from the main body, and includes a tape system such as a magnetic tape and a cassette tape, a magnetic disk such as a floppy (registered trademark) disk and a hard disk, and a CD— ROMZMOZMDZDVD and other optical disk systems, IC cards (including memory cards) Z optical cards and other card systems, mask ROM, EPROM (Erasable Programmable Read Only Memory), EEPROM (Electricaly Erasable Programmable Read Only Memory), flash It may be a medium that carries a fixed program including semiconductor memory such as ROM.
  • the system configuration that can connect to a communication network including the Internet may be a medium that dynamically carries the program so as to download the communication network power program.
  • the download program may be stored in advance in the receiver, or may be installed on another recording medium capability.
  • the fatigue estimation apparatus of the present invention includes activity level detection means for continuously detecting the frequency of user activity as the activity level, and the activity detected by the activity level detection means.
  • the mobility is output to a fatigue level estimation means that estimates the user's fatigue level based on this activity.
  • the activity level of the user can be automatically detected by the activity level detection means.
  • the fatigue level estimation means estimates the user's fatigue level based on the activity level.
  • the fatigue level is automatically determined based on the activity level automatically detected by the activity level detection means. Bell is estimated.
  • the activity level is automatically detected by the activity level detection means, and the fatigue level is automatically detected from the detected activity level by the fatigue level estimation means. Estimated. Therefore, the user's fatigue level can be easily estimated.
  • the user's fatigue level can be estimated at a low cost because the user's own fatigue level can be estimated with a simple configuration of activity level detection means and fatigue level estimation means.
  • the fatigue estimation device is characterized in that the fatigue level estimation means is such that the activity level showing a continuously high value is lower by a short time than the time showing the high value. It is preferable to estimate the fatigue level by judging the tendency to show the ⁇ value ⁇
  • the activity level that continuously shows a high value tends to show a low value for a short time compared to the time that shows a high value.
  • the fatigue level estimation means judges this tendency and estimates the fatigue level. Therefore, it is possible to accurately grasp the user's fatigue and accurately estimate the fatigue level.
  • the fatigue level estimation means determine the tendency of the activity level by statistically analyzing the activity level.
  • the tendency that appears in the activity level during fatigue can be accurately grasped by performing a statistical analysis of the activity level, for example, by calculating the skewness or average of the activity level. Therefore, if the activity is analyzed statistically, the user's fatigue level can be estimated more accurately. It can be done with certainty.
  • the fatigue level estimation means removes a long-term fluctuation component of the activity and determines the tendency in the activity from which the fluctuation component is removed.
  • the fatigue level estimation means removes the long-term fluctuation component of the activity level and judges the tendency in the activity level from which the fluctuation component has been removed, so that the fatigue of the chronic fatigue syndrome patient can also be grasped. it can.
  • the fatigue level estimating means can remove long-term fluctuation components of the activity by differentiating the activity with respect to time.
  • the long-term fluctuation component of the activity level may be removed by obtaining a difference value in the activity level.
  • a regression curve of the activity level may be obtained, and the regression curve may be removed from the activity level as a long-term fluctuation component of the activity level!
  • the fatigue level estimation means corrects a range that the fatigue level can take to a predetermined range.
  • the range force that the fatigue level estimated by the fatigue level estimation means can take is corrected to a predetermined range. Therefore, the estimated fatigue level value is more appropriate by matching the predetermined range after this correction with the range that can be taken by the value that quantitatively indicates the level of fatigue that the user actually feels. Can be.
  • the fatigue level estimation means is a function that changes the output value with sensitivity higher than the sensitivity to the input value, not near the specific value, with respect to the change in the input value near the specific value. It is preferable that the range that the fatigue level can take is set to a predetermined range using.
  • the specific numerical value is a numerical value that clearly grasps the change in the fatigue level
  • the input value of the function is the estimated fatigue level itself
  • the output value of this function The change in the vicinity of the numerical value for which the change in the fatigue level should be clearly understood will change greatly. Therefore, if the output value of the function is determined, the fatigue level can be determined more accurately.
  • An example of such a function is a sigmoid function.
  • the activity level detection means preferably detects the activity level based on the acceleration of motion in a part of the whole body of the user! /.
  • the activity detection means detects the activity as the number of times the acceleration has changed.
  • the activity detection means detects the number of times the acceleration has changed as the number of times the acceleration passes a predetermined threshold value.
  • the activity detection means may detect the acceleration based on a temporal change in position information of all or part of the user's body.
  • the acceleration may be a three-dimensionally obtained acceleration of movement in all or part of the user's body.
  • the acceleration may be an acceleration obtained in the one-dimensional direction of motion in the whole or a part of the user's body.
  • one-dimensional motion refers to the X-axis' y-axis ⁇ ⁇ -axis when the user's motion is defined in the direction of the three axes X-axis * y-axis ⁇ ⁇ -axis.
  • the user s direction to the axis It means exercise.
  • To evaluate one-dimensional motion it is sufficient to use a single-axis output acceleration sensor.
  • the acceleration is preferably an acceleration of the user's wrist movement.
  • the activity level detection means is preferably provided in a wristwatch.
  • the wrist acceleration can be accurately detected by providing the activity level detection means in the wrist watch. This makes it possible to accurately detect the activity and estimate the fatigue level more accurately.
  • the activity level detection means may detect the activity level based on positional information of all or part of the user's body! /.
  • the tendency for the user's body movement to decrease during fatigue can also be detected by judging the user's position information. In other words, if body movement decreases, the user's position will naturally not change much. Therefore, the user's fatigue can be detected by detecting the tendency that the position does not change based on the position information.
  • the user's position can be determined, so that the user's position can be grasped together with the user's fatigue level.
  • the activity level detection means may detect the activity level based on image information obtained by photographing all parts of the user's body! /.
  • the actual fatigue level information related to the user's fatigue obtained as a result of the inquiry to the user is associated with the estimated fatigue level information related to the fatigue level estimated by the fatigue level estimation means. That is, the actual fatigue level information regarding the user's fatigue obtained as a result of the inquiry to the user is the most reliable information indicating the user's fatigue. Therefore, by associating this information with the estimated fatigue level information related to the fatigue level estimated by the fatigue level estimating means, the user's fatigue level can be determined more accurately, and an appropriate treatment can be performed.
  • the fatigue level estimation means is preferably provided in a server separated from the fatigue estimation device.
  • the process of estimating the fatigue level of the user based on the activity level executed in the fatigue level estimation means is realized in the server, so that the configuration of the fatigue estimation device itself can be made compact.
  • the fatigue level estimated in the server can be sent to a person other than the user, even if the user himself / herself cannot cope with his / her fatigue, Can deal with fatigue.
  • the fatigue warning device of the present invention determines the degree of fatigue level estimated by the fatigue estimation device having the above-described configuration and the fatigue level estimation means, and determines whether or not to issue a warning about user fatigue.
  • the fatigue warning determination unit determines whether or not to issue a warning about the user's fatigue by the fatigue warning determination unit, and a fatigue warning is presented from the fatigue presentation unit based on the determination result.
  • the user and others can easily know the user's fatigue level by judging the fatigue warning presented by the fatigue presentation means. This avoids troubles caused by fatigue.
  • the fatigue presenting means is characterized by presenting the warning at every predetermined timing.
  • the fatigue presentation unit may present the warning to a person other than the subject whose fatigue level is estimated by the fatigue level estimation unit.
  • an electronic device of the present invention is characterized by including the fatigue estimation device having the above-described configuration or the fatigue warning device having the above-described configuration.
  • the fatigue level can be estimated without a sense of incongruity in daily life.
  • the electronic device preferably includes transmission means for transmitting estimated fatigue level information indicating the fatigue level estimated by the fatigue level estimation means to the outside.
  • the user's fatigue level can be known at the transmission destination of the estimated fatigue level information. Therefore, even if one user cannot cope with his / her fatigue, the person who has confirmed the information at the destination of the estimated fatigue level information can cope with the fatigue.
  • the electronic device is preferably a mobile phone. Since a mobile phone is generally carried by a user without leaving his / her body, the activity level can be accurately detected if the activity level detection means is provided in the mobile phone.
  • the fatigue estimation method of the present invention solves the above-described problem, and activity level detection in which the frequency of user activity is continuously detected as activity level by activity level detection means provided in the fatigue estimation device. And a fatigue level output step for outputting the activity level detected in the activity level detection step to a fatigue level estimation means for estimating a user's fatigue level. . [0203] According to the fatigue estimation method, it is possible to obtain the same operational effects as the fatigue estimation device of the present invention.
  • the fatigue estimation program of the present invention is a fatigue estimation program for executing the fatigue estimation method of the present invention to solve the above-described problem, and causes a computer to execute each of the above steps.
  • the fatigue level can be estimated using any computer.
  • the fatigue estimation program can be executed on any computer.
  • the fatigue estimation device of the present invention continuously detects a user's activity status and based on the detected activity status! / It may be configured to detect fatigue.
  • the fatigue estimation device configured as described above, it is preferable to detect fatigue based on a relatively low activity state during a continuous activity state. It is also preferable to obtain a relatively low activity status by removing long-term fluctuation components from a continuous activity status.
  • a relatively low activity status may be obtained by statistically analyzing the detected activity status. As a method of removing long-term fluctuation components in this way, it is only necessary to obtain a minute or difference value of the activity status.
  • the calculated fatigue level is processed within a predetermined range.
  • the activity status is preferably acquired by acceleration of all or part of the body.
  • the activity status may be acquired from position information of all or part of the body, or may be acquired from image information of all or part of the body.
  • the activity status is preferably acquired based on the change in acceleration.
  • the acceleration may be acquired based on a change in the position information.
  • the change in acceleration may be obtained by counting the number of times the acceleration crosses a predetermined value.
  • the acceleration is preferably a one-dimensional acceleration.
  • the electronic apparatus of the present invention may have a configuration in which the fatigue estimation device having the above configuration is mounted.
  • This electronic device is more preferable if it is a mobile phone that preferably has a communication function.
  • a fatigue estimation program can be added later.
  • the state estimation device of the present invention is preferably configured as a wristwatch having a function of acquiring a wrist activity state.
  • the fatigue level can be estimated easily at low cost. Therefore, according to the present invention, it is possible to detect various symptoms caused by fatigue in recent years! Or prevent accidents associated with fatigue.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Physiology (AREA)
  • Dentistry (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

 ユーザーの活動の頻度を活動度として継続的に検知する体動検知部(2)を備え、体動検知部(2)により検知された活動度を、この活動度に基づきユーザーの疲労レベルを推定する疲労検知部(3)に出力する。

Description

明 細 書
疲労推定装置及びそれを搭載した電子機器
技術分野
[0001] 本発明は、被験者の体動から疲労レベルを推定することを実現する装置および方 法に関する。
背景技術
[0002] 生活行動を常時計測することで、生体リズムの乱れを含めたさまざまな生体情報を 分析することができる。たとえば、特許文献 1に記載された技術では、腰部中央の定 められた方向に体動解析装置を取り付け、被験者の行動情報を取り込む。つまり、特 許文献 1に記載された技術は、 3軸の加速度センサが搭載された体動解析装置を腰 部の定められた方向に取り付けることで、腰の向きが判り、屈んでいるのか横になつ ているのかが判別できるようになつている。さらに、特許文献 1に記載された技術では 、加速度センサの出力信号における AC成分の周波数と振幅とから、被験者が歩行 または走行の 、ずれの状態にあるのか区別も可能として 、る。
[0003] また、被験者の体に取り付けた加速度センサの情報から、身体運動の激しさを割り 出し、被験者が睡眠または起床の 、ずれにあるのかを推定する方法も従来力 行わ れている。さら〖こ、最もよく知られたものに歩数計も挙げられる。
[0004] さらに、心身疾患の推定は、脳内のホルモンを測定したり、血流を測定する機器を 用いたりすることでも、ある程度実現可能である。また、さまざまなテストやアンケート を行うことでも実現可能である。
[0005] たとえば、疲労の推定は、たとえば ATMT法(Advanced Trial Making Test法)によ り実現することができる。この ATMT法は、ディスプレイ上に現れた数字を順にタツチ し、その時に要した時間から疲労のレベルを計測するものである。また、疲労を含め た心身疾患を推定する方法として、アンケートがよく用いられる。
特許文献 1:特開平 7— 178073号公報(1995年 7月 18日公開)
発明の開示
[0006] し力しながら、疲労に起因する生体情報の変化については、十分研究されていな 力つた。このため、従来技術では、被験者の生活行動を常時計測することで、被験者 の疲労を直接検出することができなかった。また、従来技術で疲労を検出しょうとする と、コストがかかったりあるいは疲労検出に手間が力かったりして、手軽に疲労を検出 することができな力つた。
[0007] 本発明は、上記従来の問題点に鑑みなされたものであって、疲労レベルの推定を 安価で手軽に行うことが可能な疲労推定装置、疲労警告装置、電子機器、疲労推定 方法、疲労推定プログラム、およびコンピュータ読取可能な記録媒体を提供すること を目的とする。
[0008] 本発明の疲労推定装置は、上記課題を解決するために、ユーザーの活動の頻度 を活動度として継続的に検知する活動度検知手段を備え、上記活動度検知手段に より検知された活動度を、この活動度に基づきユーザーの疲労レベルを推定する疲 労レベル推定手段に出力することを特徴としている。
[0009] 本発明者らは、鋭意研究の結果、人が疲労を感じている際には、活動度に一定の 傾向が現れるという知見を得た。本発明の疲労推定装置によれば、活動度検知手段 により、ユーザーの活動度を自動的に検知できる。そして、疲労レベル推定手段は、 活動度に基づきユーザーの疲労レベルを推定するので、この疲労レベル推定手段 によれば、活動度検知手段が自動的に検知する活動度に基づき、自動的に疲労レ ベルが推定される。
[0010] このように、本発明の疲労推定装置では、活動度検知手段によりユーザーの活動 度が自動的に検知されるとともに、疲労レベル推定手段により、検知された活動度か ら疲労レベルが自動的に推定される。よって、手軽にユーザーの疲労レベルを推定 することができる。
[0011] また、活動度検知手段および疲労レベル推定手段という簡易な構成により、ユーザ 一の疲労レベルを推定することができるので、安価にユーザーの疲労レベルを推定 することができる。
図面の簡単な説明
[0012] [図 1]本発明の一実施形態に係る構成を示すブロック図である。
[図 2(a)]人が疲労感を伴うときの典型的な体動データを示すグラフである。 圆 2(b)]人が疲労感を伴うときの典型的な体動データを示すグラフである。
圆 2(c)]慢性疲労症候群患者の体動データを示すグラフである。
圆 2(d)]図 2 (c)に示す体動データの差分を示すグラフである。
圆 3(a)]人が疲労感を伴わないときの典型的な体動データを示すグラフである。 圆 3(b)]人が疲労感を伴わないときの典型的な体動データを示すグラフである。 圆 3(c)]人が疲労感を伴わないときの典型的な体動データを示すグラフである。 圆 3(d)]図 3 (c)に示す体動データからトレンドを除去した体動データを示すグラフで ある。
圆 4(a)]人が覚醒時に小さく動く状態を示す図である。
圆 4(b)]人が疲労時に静止する状態を示す図である。
[図 4(c)]人が自由に活動する状態を示す図である。
圆 4(d)]人が自由に活動する状態を示す図である。
[図 5]手首に取り付けた加速度センサ力も得られる 1軸の出力を、加速度の変化を見 るためにノ、ィパスフィルタを通過させた後のデータを示す図である。
[図 6(a)]体動データの歪度および平均と、疲労レベルとに関して、 5つのサンプルを 比較した表である。
[図 6(b)]推定された疲労レベルと、アンケートの結果得られた実際の疲労レベルを定 量的に示した数値との相関関係を示す図である。
圆 6(c)]推定された疲労レベルをシグモイド関数に入力することで得られる出力値と、 実際の疲労レベルを定量的に示した数値との相関関係を示す図である。
[図 7]シグモイド関数およびアークタンジェント関数を示す図である。
[図 8(a)]手首に取り付けた加速度センサ力 の 3軸出力を、一定時間測定した結果を 示す図である。
[図 8(b)]3軸出力のベクトル和をノ、ィパスフィルタに通過させた後の出力を示す図で ある。
圆 9(a)]本発明の疲労推定方法の一実施形態を示すフローチャートである。
[図 9(b)]疲労レベルを演算するための具体的な処理を示すフローチャートである。 圆 10(a)]本発明の疲労警告装置を搭載した携帯電話の外観の一例を示す図である 圆 10(b)]本発明の疲労警告装置を搭載した携帯電話の外観の一例を示す図である
[図 10(c)]本発明の疲労警告装置を搭載した携帯電話の外観の一例を示す図である
[図 11(a)]図 1における体動検知部が搭載された腕時計を、腕に装着した状態を示す 図である。
[図 11(b)]本発明品を普段使用するイメージを示す図である。
[図 12(a)]本発明の疲労警告装置を搭載した携帯電話において表示される警告メッセ ージを示す図である。
[図 12(b)]本発明の疲労警告装置を搭載した携帯電話において表示される警告メッセ ージを示す図である。
[図 12(c)]本発明の疲労警告装置を搭載した携帯電話において表示される警告メッセ ージを示す図である。
[図 12(d)]本発明の疲労警告装置を搭載した携帯電話において表示される警告メッセ ージを示す図である。
[図 12(e)]本発明の疲労警告装置を搭載した携帯電話において表示される警告メッセ ージを示す図である。
[図 12(£)]本発明の疲労警告装置を搭載した携帯電話において表示される警告メッセ ージを示す図である。
符号の説明
1 疲労推定装置
2 体動検知部 (活動度検知手段)
3 疲労検知部 (疲労レベル推定手段)
4 加速度センサ (活動度検知手段)
5 第 1データ蓄積部 (活動度検知手段)
6 データ送信部 (活動度検知手段)
7 データ受信部 (疲労レベル推定手段) 8 第 2データ蓄積部 (疲労レベル推定手段)
9 疲労レベル演算部 (疲労レベル推定手段)
10 疲労警告装置
11 疲労警告判定部 (疲労警告判定手段)
12 疲労提示部 (疲労提示手段)
201 発明品付き携帯電話
202 体咅
203 蓋体部
203a 表示咅
204 腕時計
発明を実施するための最良の形態
[0014] 〔1.疲労時の活動の変化について〕
まず、疲労時における人の活動の変化について説明する。人は、疲労を感じると動 作を減らそうとする。しかし、その人が置かれている状況や本人の意思から、活動を やめることができない場合が多い。したがって、疲労時に人が継続的に活動しようと する状況においても、その人が無意識のうちに、動作が単発的に減る現象が見られ る。
[0015] また、疲労時に動作が減少する現象は体のあらゆる部分で起こるが、手首について は、疲労時における動作の減少を効果的に取得できる。特に、単位時間内に手首を 動力した回数を数えると、疲労時における動作の減少を少な 、データ数で効率的に 取得できる。
[0016] この疲労時における動作の減少は、動作を平均的に見ても明確にはわ力 ないも のであった。しかしながら、発明者らの鋭意研究により、人の動作を細かく分析すると 、疲労時と非疲労時との間で、人の動作に違いが生じていることが判明した。
[0017] このような疲労時における動作の減少について、図 2、図 3、および図 4を用いてより 具体的に説明する。
[0018] 図 2 (a)および図 2 (b)に、人が疲労感を伴うときの典型的な体動データを示し、図 3
(a)〜図 3 (c)に人が疲労感を伴わないときの典型的な体動データを示す。いずれも 、横軸が経過した時間を示し、縦軸は手首に取り付けた加速度センサ力 得た体動 データを示す。
[0019] なお、体動データとは、人の活動の頻度 (活動度)を定量的に示すデータであり、そ の具体的な測定方法につ!、ては後述する。
[0020] これらの図面の縦軸については、値が大きいほど体動データが高いことを示し、値 力 S小さいほど体動データが低いことを示している。また、体動データの値が 0であれ ば、人がまったく動いていないことを意味している。程度の差こそあれ、人は、安静に していても覚醒時には小さく動くので(図 4 (a)参照)、体動データはある程度高くなる 。一方、人は、睡眠時にはほとんど動かないため、体動データは 0に近づく。
[0021] そして、発明者らは、鋭意研究の結果、覚醒時で疲労時には、図 2 (a)に示すように 、ある程度高い値の体動データが継続する中で、短時間だけ周囲(直前'直後の時 間)に比べて低 、値の体動データが得られる傾向があることを発見した。
[0022] さらに、覚醒時で疲労をあまり感じないときは、図 3 (a)に示すように、短時間だけ周 囲と比べて低い値の体動データが得られる傾向が現れないことが多い。あるいは、図 3 (c)に示すように、短時間だけ周囲に比べて低い値の体動データが得られることも あれば、短時間だけ周囲に比べて高い値の体動データが得られ、体動データが幅 広く分布することちある。
[0023] このような体動データの傾向が得られるのは、次のように理論づけられる。
[0024] 覚醒時においては、人はある程度の活動をしているために、その活動に応じた体動 データが得られる。しかし、疲労時において、人は、その活動を継続する意思があつ ても、実際は維持することができないためしばしば静止し(図 4 (b)参照)、図 2 (a)お よび図 2 (b)において破線の〇印で囲った部分に示されるように、体動データが周囲 に比べて短時間だけ低くなる現象が見られる。これは、たとえば、マラソンなど長時間 の運動を行った場合、運動開始時には連続して運動し続けられるが、長時間続ける と疲れて頻繁に休憩したくなることと類似している。
[0025] また、疲労を感じないときには、本人の意思どおり活動を継続することができるため 、疲労時のように短時間だけ体動データが低くなる現象は見られない。あるいは、そ の人が置かれて 、る状況によって、自由に活動することができるため(図 4 (c)および 図 4 (d)参照)、体動データが幅広く分布する。
[0026] 以上のように、体動データには疲労のレベルが強く反映されるため、体動データか ら、人の疲労レベルを推定できる。より具体的に説明すれば、相対的に低い体動デ ータを検出することで、疲労レベルを推定できる。
[0027] [2.疲労度の推定方法について〕
次に、上述の疲労時における活動の変化に基づいて、人の疲労の度合い (疲労レ ベル)を推定するための具体的な方法について説明する。
[0028] [2- 1.体動データの測定方法について〕
まず、体動データの測定方法について、図 5を用いて説明する。図 5は、手首に取 り付けた加速度センサ力も得られる 1軸の出力を、加速度の変化を見るためにハイパ スフィルタを通過させた後のデータを示して!/、る。ハイパスフィルタに加速度センサの 出力を通すことで、常に現れる重力方向の成分をキャンセルすることができる。
[0029] ここで、図 2 (a)、図 3 (a)等で示した体動データは、図 5で示すハイパスフィルタ通 過後の加速度センサの出力(加速度データ)力 0. 01Gの閾値を通過した単位時間 当たりの回数を記録したデータである。
[0030] たとえば、図 5のグラフにおける左端力も右端までの時間が単位時間であるとすれ ば、加速度センサの出力は閾値を 4回通過しているので、体動データは 4と計測され る。このように測定された体動データは、一般に zero crossing dataと呼ばれ、睡眠.覚 醒の検出や生活リズムの分析等に使用される。
[0031] なお、図 5に示すデータは、体動データの変化を効率的に見るために、加速度セン サの出力をノヽィパスフィルタに通過させている力 必ずしもハイパスフィルタを通過さ せる必要はない。たとえば、加速度センサの出力値そのものから、加速度センサの出 力値に関する移動平均値を引くことで、同じく体動データの変化を効率的に見ること ちでさる。
[0032] また、疲労レベルを推定するためには、必ずしも zero crossing dataを測定する必要 はない。詳細は後述するが、加速度センサ力 得られる 3軸出力のベクトル和力 体 動データを求めると、軸の偏りがない、より精度の高い体動データが得られる。なお、 加速度センサの 1軸出力で評価しても十分精度の高い体動データを得ることができ、 複雑な計算が不要で安価に疲労レベルを推定することができる。よって、本実施形 態では、加速度センサの 1軸出力力 体動データを得る実施形態を中心に説明する
[0033] [2- 2.疲労レベルの演算方法について〕
図 2 (a) ,図 3 (a) ,および図 3 (c)に示す体動データにより示される人の活動の違い は、次に説明する方法を取ることで、推定することができる。
[0034] まず、体動データのトレンドを除去する。トレンドの除去は、たとえば以下に説明す るように行うことができる。なお、「トレンド」とは、体動データの長期的な変動の傾向を 意味する。
[0035] すなわち、体動データをさらに短時間に区切り、それぞれの区間のデータの 1次近 似を最小 2乗法を用いて算出することで、体動データの回帰曲線を求める。この回帰 曲線により、体動データのトレンドを把握することができる。
[0036] そして、図 2 (a) ,図 3 (a) ,および図 3 (c)の体動データにより示される値 x(t)に対し て、体動データの回帰曲線における値を X (t)とすると、トレンドを除去した体動デー
tr i
タ y(t)は、次のようにして表せる。
[0037] y(t) = x(t) - x (t)
i i tr i
ただし、 t;は各データの時刻である。
[0038] このようにしてトレンドを除去すると、図 2 (a)に示す体動データからは、図 2 (b)に示 す体動データが得られ、図 3 (a)に示す体動データからは、図 3 (b)に示す体動デー タが得られ、図 3 (c)に示す体動データからは、図 3 (d)に示す体動データが得られる
[0039] そして、トレンドを除去すると、体動データの変化がより顕著となる。さらに、体動デ ータの変化は、体動データの歪度 Skewを次の式に従い計算することにより、明確に 見ることができる。
[0040] [数 1]
Figure imgf000010_0001
[0041] たとえば、疲労時のトレンドを除去した体動データの歪度は 0. 0118と負である のに対して、非疲労時のトレンドを除去した体動データの歪度はそれよりも大きぐ正 の値を示す。すなわち、歪度は、疲労と大きく関係しているといえる。
[0042] ここで、歪度が小さいということは、データの中で突出して低い値力 突出して大き い値よりも多いことを意味している。つまり、疲労レベルが高いときに歪度が小さくなる ということは、図 2 (a)、図 3 (a)、および図 3 (c)の体動データにより示される疲労の傾 向とよく一致している。
[0043] そして、体動データの歪度および平均と、疲労レベルとに関して、 5つのサンプルを 比較した表を図 6 (a)に示す。なお、図 6 (a)に示す「実際の疲労レベル」は、アンケ ートの結果得られた疲労のレベルを定量的に示す情報であり、実疲労レベル情報と しても表現できる。
[0044] また、歪度 (Skew)から直接疲労度のレベル (Fatigue)を計算するには、以下に示す 計算式に当てはめれば、そこそこの傾向が得られる。
[0045] Fatigue = 50- 50 X Skew
上記計算式により推定された疲労レベルと、上述したアンケートの結果得られた実 際の疲労レベルを定量的に示した数値との相関関係を図 6 (b)に示す。また、上記推 定された疲労レベルをシグモイド関数に入力することで得られる出力値と、実際の疲 労レベルを定量的に示した数値との相関関係を図 6 (c)に示す。
[0046] 図 6 (b)および図 6 (c)を参照すると、 5つのサンプルのうち 4つのサンプルについて は、計算式により推定された疲労レベルと、実際の疲労レベルとが良好な相関関係 を示していることがわかる。一方で、 1つのサンプルについてはそれほど相関関係が ないことがわ力る。
[0047] なお、 Fatigue = 50— 50 X Skewという計算式に従って疲労レベルを推定すると、精 度良く疲労レベルを推定できないことがある。これは、体動データの平均の大きさに よって歪度への影響に差があるためで、体動データの平均が、歪度の次に重要なフ アクターとなる。
[0048] そこで、たとえば、以下に示す計算式を用いること、さらに高い精度で疲労レベルを 推定できる。 [0049] Fatigue = 0.732 X Mean + 58.321 X Skew-4.028 X Mean X Skew + 33.370 ここで、 Meanは体動データの平均値を示し、 Skewはトレンドが除去された体動デー タの歪度を示す。
[0050] 歪度だけで疲労を推定すると、単純な計算式で疲労レベルを推定できるので、少 な 、負荷で疲労レベルの推定ができるが、統計的な解析方法を組み合わせることで 、精度よく疲労レベルを推定することができる。また、統計的な解析方法は、平均と歪 度を用いる方法だけに限らな 、。
[0051] たとえば、以下に示すように、体動データの標準偏差や尖度などを用いることで、さ らに高い精度で疲労レベルを推定することができる。
[0052] Fatigue = 3.436 X mean+ 16.392 X sd+ (-62.426) X skew
+4.409 X kurtosis + (-0.615) X mean X sd
+ 1.199 X mean X skew + (-0.173) X mean X kurtosis
+(-35.000)
ただし、
mean:過去 30分の Zero Crossing Dataの平均値
sd:トレンドを除去した過去 30分の Zero Crossing Dataの標準偏差
skew:トレンドを除去した過去 30分の Zero Crossing Dataの歪度
kurtosis:トレンドを除去した過去 30分の Zero Crossing Dataの尖度
また、ここで挙げた計算式の係数や使用する統計値は、あくまで一例であり、計測 機器や対象者、計測する身体の部位によって異なる可能性が生じることは 、うまでも ない。
[0053] さらに、疲労推定に使用する体動データは必ずしも連続している必要は無ぐ途中 ある程度途切れて ヽても問題な ヽ。
[0054] [2- 3.慢性疲労症候群患者の体動データの傾向〕
また、図 2 (c)は、慢性疲労症候群患者の体動データを示す図である。図 2 (c)に示 すように、慢性疲労症候群患者の体動データに関しては、健常者に比べて早い落ち 込みと緩や力な立ち上がりが比較的多く見られることが、発明者らの鋭意研究の結果 判明した。 [0055] ここで、図 2 (d)は、図 2 (c)に示す体動データの差分を示すグラフであり、図 2 (c) に示す体動データの長期的な変動成分を取り除 、たデータを示すものと 、える。図 2 (d)に示すように、体動データが急に落ち込む部分は、差分値が短時間だけ負の値 を示し、体動データが緩やかに立ち上がる部分は、差分値は長時間小さな正の値を 示す。このような体動データの特徴も、体動データの差分値を統計的に解析すること で把握することができる。たとえば、体動データが早い落ち込みと緩やかな立ち上が りを示す場合、体動データの歪度は小さくなる。
[0056] なお、図 2 (a)および図 2 (c)に示す体動データの特徴は一見したところ異なるが、 差分を除去することで類似した特長が見られるため、いずれも疲労時の体動の特徴 を現しているといえる。
[0057] 以上に説明した疲労力 来る体動データの変化湘対的に低い活動状況に基づい た変化)は、統計的手法以外でも把握することができ、たとえば、周波数解析のひと つであるウェーブレット解析を行い、特異的な波形を見る方法 (WTMM法: Wavelet Transform Modulus Maxima)を用いて よい。
[0058] [2-4.推定された疲労レベルの整形処理〕
以上で挙げた計算式により疲労レベルを推定できるが、上記計算式のままだと、推 定された疲労レベルの最低値力^を下回る場合や、最高値が 100を上回る場合が起 こりうる。たとえば、図 6 (a)に示す 5つのサンプルのうちでは、実際の疲労レベルが 0 の場合の推定された疲労レベルが 0. 306となっており、 0を下回っている。
[0059] こう 、つた状況が生じた場合、疲労レベルの推定に支障をきたす場合がある。そこ で、疲労レベルの推定を行う場合には、決められた範囲 (本実施形態の場合は、 0か ら 100の間)内に疲労レベルを収める整形処理を行えばよい。
[0060] さらに、その処理にあたっては、特定の数値付近 (たとえば 50付近)に高い感度を 持たせた関数を用いると、ユーザーの疲労の変化を明確に見ることができる。そのよ うな処理に適しているのが、シグモイド関数の出力を利用する方法である。以下に、 シグモイド関数の一例を示す。
[0061] [数 2] F(x) = 100
1 + ex (- 0.05 x (x - 50))
[0062] シグモイド関数は、図 7の実線で示すとおり、 50付近は傾きが 1に近ぐ 50から離れ るにしたがって傾きが緩やかになり、いかなる値に対しても 0から 100に収めることが できる特徴を有する。
[0063] このように、シグモイド関数は、 50付近の傾きが最も急で感度が高 、ので、 50付近 の微妙な特徴の変化を明確にできる。し力も、全体にわたって傾きが正になつている ので、値の大小が逆転することもない。
[0064] このような特徴を持つシグモイド関数を用いると、先ほどのように疲労レベルが 0.
306と算出されても、 0に近い正の値、すなわち 7. 48に疲労レベルを補正することが できる。同様のシグモイド関数を用いた補正により、 30. 07, 50. 17と算出された疲 労レべノレは、図 6 (a)に示すように、それぞれ 26. 96, 50. 22とネ甫正され、シグモイド 関数を用いる前の値と大きく相違することもな 、。
[0065] このような特徴を持つ関数はシグモイド関数以外にも挙げればきりが無ぐ用途に 応じて使い分ければよい。シグモイド関数以外にひとつ選ぶとすると、図 7において 破線で示すアークタンジェント関数を挙げることができる。図 7に示すシグモイド関数 を用いた場合は、 100以上又は 0以下の値は、それぞれかなり 100又は 0に近づくが 、 100以上又は 0以下でも疲労レベルの違いを明確にしたい場合は、アークタンジェ ント関数を使うほうが適して 、る t 、える。
[0066] また 50付近の感度を上げる手法について説明したが、当然ながら感度を高める部 分は 50付近に限る必要は無ぐ用途に応じて感度を高めたい部分を変えればよい。
[0067] たとえば、図 7における一点鎖線は、下記のシグモイド関数を示している。このシグ モイド関数によれば、 80〜90付近の感度が高められる。
[0068] [数 3]
Figure imgf000015_0001
[0069] また、このようなフィルタ(シグモイド関数、アークタンジェント関数等)を用いると計算 に負荷が力かるのであれば、 0から 100の範囲に収める方法として、一律的に、 0以 下の値は 0とし、 100以上の値は 100にする方法を用いてもよ!、。
[0070] [2- 5.体動データの変形例〕
疲労レベルを推定するために用いる体動データは、 zero crossing dataに限る必要 はなぐ閾値を 1つに定める必要もない。たとえば、 zero crossing dataとは別のデータ として、図 8 (a)や図 8 (b)に示す加速度センサ力もの出力データ (加速度データ)を そのまま使ってもよい。
[0071] ここで、図 8 (a)は、手首に取り付けた加速度センサからの 3軸出力を、一定時間測 定したものである。縦軸は 1Gを単位とする加速度で、動きが全く無ければ、 3軸出力 のベクトル和は、地球の重力加速度と同じ 1Gとなる。
[0072] 図 8 (b)は、この 3軸出力のベクトル和をノヽィパスフィルタに通過させた後の出力を 示す図である。通常、動きが無ければ、図 8 (b)に示す加速度データは 0で一定であ る力 手首の動きに応じて 0以外の値が出力される。
[0073] 図 8 (a)や図 8 (b)に示す加速度データを用いて疲労レベルを推定することは、たと えば次に述べる手法をとることで実現できる。すなわち、図 8 (a)や図 8 (b)に示すカロ 速度データに、たとえば 0. 05G刻みという具合で複数の閾値を設ける。そして、それ ぞれの閾値について、加速度データが、当該閾値を超える値から当該閾値を下回る 値に変化した時刻から、当該閾値を下回る値から当該閾値を超える値に変化した時 刻までの経過時間(図の矢印で示した部分)を算出する。そして、この経過時間の統 計量として、たとえば平均や分散を解析する。
[0074] 人が活発な動きをする場合は、高い閾値に関する上記経過時間の平均が短くなり 、分散も小さくなる。一方、人の動きが活発でなくなると、高い閾値に関する上記経過 時間が長くなる傾向があり、分散も大きくなる。 [0075] よって、図 2に示すような疲労時には、加速度センサの出力が高い閾値を超えること が多ぐ上記経過時間の平均が短くなる。一方で、短時間だけ周囲に比べて低い値 の出力が加速度センサ力 得られるため、分散が大きくなる。加速度センサの出力に 設けた各閾値について、同様の分析を行うことで、より高い精度で疲労のレベルを見 ることがでさる。
[0076] [2-6.まとめ〕
以上で挙げたように、被験者が疲労している力否かによって活動状況は変化し、そ の変化は、継続的に測定された体動データにおける、相対的に低い体動データの現 れ方にみられる。この体動データの変化を判別する方法は、統計的手法に限らず、 DFA(Detrend Fluctiation Analysis)~vWTMM(Wavelet Transform Modulus Maxima )と 、つたフラクタルを評価する方法でも可能であり、より高 、精度で体動データの変 化を判別できる場合もある。しかし、これらの方法を用いると計算量が増えるため、携 帯機器などで疲労レベルを評価する場合は、 2つ程度の統計値 (たとえば、平均と歪 度)から疲労レベルを推定する方法が、精度と計算量とから判断して最も適して 、る。 そこで、以下では、平均と歪度という 2つの統計値を用いて、疲労レベルを推定する 機能を搭載した疲労警告装置の例について説明する。
[0077] 〔3.装置構成について〕
まず、図 1を用いて、本発明の疲労推定装置の一実施形態に係る構成について説 明する。本実施形態の疲労推定装置 1は、図 1に示すように、体動検知部 (活動度検 知手段) 2と、疲労検知部 (疲労レベル推定手段) 3とを備えている。そして、本実施形 態の疲労警告装置 10は、図 1に示すように、疲労推定装置 1と、疲労警告判定部 (疲 労警告判定手段) 11と、疲労提示部 (疲労提示手段) 12とを含むことにより構成され る。
[0078] 体動検知部 2は、ユーザーの体の動き(体動)を検知するものであり、手首に取り付 ける腕時計型の形状を有している。そして、体動検知部 2は、加速度センサ (活動度 検知手段) 4と、第 1データ蓄積部 (活動度検知手段) 5と、データ送信部 (活動度検 知手段) 6とを備えている。
[0079] 加速度センサ 4は、手首の加速度をセンシングするものであり、この加速度センサ 4 により得られた加速度データは、一定時間、第 1データ蓄積部 5に蓄積される。そして 、第 1データ蓄積部 5に蓄積されたデータは、データ送信部 6を介して疲労検知部 3 に送信される。このように第 1データ蓄積部 5に加速度データを一旦蓄積することで、 データ送信部 6による加速度データの送信が短時間途絶えても、途絶えた時間に対 応する加速度データを第 1データ蓄積部 5から読み出し、加速度データを途切れるこ となくデータ送信部 6から疲労検知部 3に送信することができる。
[0080] 疲労検知部 3は、携帯可能な小型機器により実現され、携帯電話の内部に設けら れることが好ましい。そして、疲労検知部 3は、データ受信部 (疲労レベル推定手段) 7と、第 2データ蓄積部 (疲労レベル推定手段) 8と、疲労レベル演算部 (疲労レベル 推定手段) 9とを備えている。
[0081] データ受信部 7は、体動検知部 2のデータ送信部 6から送信された加速度データを 受信するものである。このデータ受信部 7が受信した加速度データは、第 2データ蓄 積部 8に蓄積される。そして、疲労レベル演算部 9は、第 2データ蓄積部 8に蓄積され た加速度データおよび上述した計算式を用いて、疲労レベル (Fatigue)を演算する。
[0082] そして、疲労警告判定部 11は、疲労レベル演算部 9により演算された疲労レベル( Fatigue)に基づき、ユーザーに警告を発するか否かを判定する。この疲労警告判定 部 11における判定処理については、後述する。
[0083] もし、疲労警告判定部 11でユーザーに警告を発する必要があると判定された場合 、疲労提示部 12にその情報が送られ、後述するように、ユーザーに対して疲労のレ ベルに応じた警告やメッセージが伝えられる。
[0084] なお、図 1で示す構成は、あくまで本発明を実現するための一例であり、他の構成 であってもよい。たとえば、図 1においては、体動検知部 2と、疲労警告判定部 11お よび疲労提示部 12とが分離された構成とされているが、これはユーザーにできるだ け負担をかけないために体動検知部 2を小型化し、かつ、ユーザーにできるだけ豊 富な情報が伝えられるよう、疲労提示部 12を大きくするためである。しかし、体動検 知部 2と、疲労警告判定部 11および疲労提示部 12とは、一体ィ匕してもよい。
[0085] また、体動検知部 2および疲労検知部 3が同一の機器内において実現される場合 は、第 1データ蓄積部 5、データ送信部 6、およびデータ受信部 7は省略してもよい。 また、疲労警告判定部 11および疲労提示部 12と、疲労レベル演算部 9との間に、デ ータ送受信の構成を設けることで、疲労検知部 3と、疲労警告判定部 11および疲労 提示部 12とを別々の機器で実現することも可能である。また、疲労提示部 12を省略 し、ネットワークを介して医療機関やユーザーの管理者に疲労のレベルや危険度を 送信する構成を採用してもよい。
[0086] 以上で示した実施形態は、身体の一部(手首)の活動度から疲労レベルを推定す るものであるが、同様のセンサを手首のみならず全身に装着して、疲労レベルを推定 することも、もちろん可能である。手首は、比較的動かすことが多いため、体動データ を測定することに適するが、乗り物に乗るなど外的要因で動くことも多ぐその場合、 疲労レベルの推定精度が低下する。
[0087] たとえば、手首は、睡眠中であれば、本来ほとんど動きがないが、乗り物に乗ってい ると乗り物のゆれに応じて動くことがあり、そのゆれによる加速度を元に疲労レベルを 推定しても意味がない。このように、外的要因による振動を活動度と誤って判断しな いためには、全身 (たとえば、腰部や脚部や体幹や頭部など)の加速度を測定し、乗 り物のゆれによる振動を、全身の加速度力 相殺するのが良い。
[0088] また、手首の加速度から疲労レベルの推定ができな!/、場合、加速度測定位置に関 する第 2·第 3の候補 (腰部や脚部や体幹や頭部など)の動きから、疲労レベルを推 定することも考えられる。たとえば、医療従事者は、手洗い時に感染症を懸念して、 腕時計をはずして手首まで手を洗う必要があり、状況によっては、その後しばらく腕 時計を装着しないことも考えられる。その場合は、手首以外の部分における活動度を 測定し、その活動度力 疲労レベルの推定を行うことで、途切れることなく正しく疲労 の推定を行うことできる。
[0089] また、図 1では、体動検知部 2のセンサとして加速度センサ 4を使用している力 図 2 、図 3、および図 4で説明した疲労時の体動データの傾向を検出する方法は、加速度 センサを用いる方法に限定されな 、。
[0090] たとえば、位置情報を検出することで、疲労時の体動データの傾向を検出すること も可能である。この場合は、ユーザーの体に取り付ける位置情報センサから出力され る位置情報を、たとえば UWB (Ultra Wide Band)による通信手段を用いて受信すれ ば、迅速にユーザーの位置情報を検出することができる。このように位置情報を検出 する場合は、時系列に位置情報の変化を求めることで、各時間におけるユーザーの 速度情報に変換でき、さらにその速度情報の変化を取ることで、ユーザーの加速度 の情報に変換することができる。
[0091] また、ビデオカメラ等の撮像手段を用いて、ユーザーの体動を撮影した画像情報を 取得することでも、原理的にユーザーの疲労を検出することが可能である。このように 画像情報を用いる場合は、画像認識処理により、まず被験者の体の一部(たとえば 腕や頭部)の動きを常に監視する。そして、加速度センサの出力を疲労レベルの推 定に用いる場合と同様に、体の一部の移動変化量を時間で 2回微分することにより、 該当する身体の一部の加速度を取ることができる。画像情報から加速度を取得した 後は、加速度センサを用いる場合と同様の手順にて疲労レベルを推定すればよい。
[0092] このようにカメラを用いると、ユーザーを拘束することなくユーザーの体動を把握で きる点にメリットはある力 ユーザーはカメラの周辺に常に居る必要があり、画像情報 力も体動データを得るために膨大な計算量が必要となる場合がある。また、 UWBを 用いると、迅速にユーザーの体動を撮影した画像情報を取得することができ、効率的 に疲労レベルを推定することが可能となる。
[0093] 本実施形態の疲労推定装置 1では、より高い精度で簡易に疲労レベルを推定でき るという点で、加速度センサ 4により体動データを測定している。
[0094] 〔4.処理フロー〕
図 9 (a)に、上述した疲労推定装置 1または疲労警告装置 10により実現される疲労 推定方法に関するフローチャートを示す。
[0095] 先ず、加速度センサ 4により、加速度データの計測が開始される(Sl)。その後、加 速度センサ 4は、加速度データを取得し続ける一方で (S2)、加速度データの測定開 始から一定時間(たとえば 30分)経過している力否かを判断する。このようにして、測 定開始から一定時間経過するまでに加速度センサ 4により測定された加速度データ 力 第 1データ蓄積部 5に蓄積される。
[0096] この第 1データ蓄積部 5に蓄積された加速度データは、上述したとおり、データ送信 部 6およびデータ受信部 7を介して、第 2データ蓄積部 8に蓄積される。そして、疲労 レベル演算部 9は、第 2データ蓄積部 8に蓄積された加速度データを用いて、上述し た計算式に基づき、疲労レベルを演算する(S4)。
[0097] 疲労レベルを演算するための処理フローを、図 9 (b)に示す。先ず、疲労レベル演 算部 9は、第 2データ蓄積部 8に蓄積された加速度データを取得し (S 11)、この加速 度データから、ハイパスフィルタを用いて重力による影響を除去する(S 12)。
[0098] そして、疲労レベル演算部 9は、 S 12において重力による影響が除去された加速度 データが、所定の閾値を通過する回数を数えることで(S 13)、 zero crossing data,す なわち体動データを取得する。
[0099] その後、疲労レベル演算部 9は、体動データの平均値 (Mean)を算出する処理 (S 1
4a)と、体動データからトレンドを除去する処理(S 14b)および体動データの歪度 Ske wを算出する処理 (S 14c)とを、並行して行う。
[0100] そして、疲労レベル演算部 9は、 S 14aで算出した平均値 Mean、および S 14cで算 出した歪度 Skewを用いて、下式に基づき疲労レベル Fatigueを算出する(S15)。
[0101] Fatigue = 0.732 X Mean + 58.321 X Skew-4.028 X Mean X Skew + 33.370
以上のステップを踏むことによって、疲労レベル Fatigueの演算が完了する(S 16)。
[0102] そして、疲労警告判定部 11は、演算された疲労レベル Fatigueが一定値 (たとえば 7
0%)以上あり(S5)、かつ、最後に警告を発してから一定時間(たとえば 2時間)以上 経過しているかを判断する(S6)。なお、ここにいう「警告」とは、ユーザーが疲労して いることを、画面表示等によりユーザーやその関係者に伝えることを意味しており、詳 細については後述する。
[0103] そして、疲労提示部 12は、 S5および S6のいずれにおいても「Yes」の判断がなさ れた場合に、所定の画面にユーザーが疲労している旨の警告を表示する(S7)。ま た、 S5および S6のいずれか一方において「No」の判断がなされた場合、疲労提示 部 12は、上記警告を発しない。
[0104] そして、加速度センサ 4は、 S7における警告画面の表示が終了したら、加速度デー タの計測を終了する(S8)。
[0105] なお、以上に説明したフローに従うと、疲労レベルの推定に必要な加速度データが 第 2データ蓄積部 8に蓄積されるまで、次回の疲労レベルの推定を行うことができな い。し力しながら、第 2データ蓄積部 8に過去に蓄積された加速度データを用いること で、任意の時刻における疲労レベルを、ある程度推定することができる。
[0106] また、精度の良い疲労レベル推定に必要な時間より、短い間隔で疲労レベルを推 定すると、ユーザーの要求に応じて疲労レベルが出力できてよい。しかしながら、ュ 一ザ一が参照する疲労レベルの数が多くなつて、しかもその疲労レベルが似通った ものになるので、疲労が蓄積されている力、あるいは疲労が回復しているかという傾 向力 ユーザーに的確に伝わらない場合がある。
[0107] そこで、本実施形態では、一旦警告を発してから一定時間(2時間)が経過するまで は、警告を発しない仕様としている。これは、一旦疲労警告を発すれば、ユーザーは 疲労回復のための対応 (休憩等)を講じると考えられるためである。また、休憩を取つ たところですぐに疲労が回復するとは考えられず、疲労が回復するまでの間に疲労 警告を繰り返してもそれほど意味がな 、からである。
[0108] また、ユーザーへ警告を行うだけでなぐユーザーに対して問診を行うようにしても 好適である。
[0109] たとえば、体動データの傾向力 ユーザーが疲労していると判断された場合、ユー ザ一が疲労を自覚している力否力 すなわち症状を伴うものであるの力否かに関して 、問診の結果得られた実疲労レベル情報を、疲労レベル演算部 9により推定された 疲労レベルを示す推定疲労レベル情報に対応づけてもよい。これ〖こより、医師がュ 一ザ一の疲労を診断する上で、意義深 、データを収集することが可能となる。
[0110] あるいは、疲労レベルを求めるための演算式における係数や、疲労レベルを推定 するためのアルゴリズムを、動的に較正'補正し、疲労レベルの推定精度を向上させ ることができる。さらに、患者の自覚症状の程度も問診し、推定された疲労レベルに 対応付けるとなお良い。
[0111] この場合、問診結果を疲労レベルに対応付ける処理は、具体的には次のようにして 実現可能である。まず、疲労レベルの推定を、間欠的あるいは継続的に行う際に、推 定された疲労レベルをその時の時刻情報とともに第 2データ蓄積部 8に記録する。
[0112] そして、疲労警告判定部 11により所定レベル(70%)以上の疲労レベルが検出さ れた場合、疲労提示部 12により、自覚症状の程度を求める画面表示を行う。そして、 疲労警告装置 10における操作入力部(図示せず)を介してユーザーに入力された疲 労の自覚症状の程度を取得し、その取得された自覚症状の程度に関する情報 (実疲 労レベル情報)を、その時の時刻情報とともに第 2データ蓄積部 8に蓄積する。
[0113] このようなデータ蓄積を行うことで、推定された疲労レベルに関する推定疲労レべ ル情報と、実疲労レベル情報とを、時刻に関して対応づけることができる。
[0114] [5.疲労推定装置および疲労警告装置の装着例〕
次に図 10および図 11を用いて、本実施形態に係る疲労推定装置および疲労警告 装置の装着例を示す。
[0115] 図 10 (a)〜図 10 (c)は、図 1を用いて説明した疲労警告装置を搭載した携帯電話 の外観の一例である。以後、これを「本発明品付き携帯電話」と呼び、本発明の機能 を持った電子機器全般を「本発明品」と称して区別する。本発明品付き携帯電話の 記載内容に関しては、電話に関する記載を除く全ての内容について、本発明品の構 成を説明する記載として理解された ヽ。
[0116] 本発明品付き携帯電話 201は、図 10 (a)に示すように、折り畳み式のものであり、 本体部 202と蓋体部 203とにより構成される。本発明品付き携帯電話 201に関しては 、本実施形態の疲労推定装置 1および疲労警告装置 10が搭載されている点以外は 、一般に流布して 、る携帯電話と大きく異なったところはな 、。
[0117] 本体部 202は、図 10 (c)に示すように、携帯電話操作用のキーが配列されたもの であり、蓋体部 203の表示部 203aは、携帯電話の各種機能の表示を行う。
[0118] 通常、本発明品付き携帯電話 201を使用しないとき、ユーザーは、本発明品付き携 帯電話 201を図 10 (a)に示すように折り畳まれた状態とし、ズボンなどのポケットなど にしまっておく。そして、ユーザーが、本発明品付き携帯電話 201を使用するときは、 図 10 (a)の状態から、図 10 (b)の状態を経て図 10 (c)の状態まで本発明品付き携帯 電話 201を開く。
[0119] この本発明品付き携帯電話 201では、表示部 203aにおける画面表示により、ユー ザ一に対する疲労警告を行うことができる。この疲労警告をユーザーが確認する際に は、電話着信時や、メール受信 ·送信時とほとんど同じ動作で疲労警告を確認するこ とができる。すなわち、図 10 (a)の状態から、図 10 (b)の状態を経て図 10 (c)の状態 まで本発明品付き携帯電話 201を開き、表示部 203aにおける画面表示を視認する ことで、自分の疲労状態を知ることができる。
[0120] なお、本発明品付き携帯電話 201で疲労警告を行う方法は、上述の方法に限定さ れるものではない。たとえば蓋体部 203に小型の表示部があれば、その表示部に疲 労の状態を表示してもよい。これにより、本発明品付き携帯電話 201を開くことなく疲 労状態を確認することができる。ただし、表示部 203aを用いる方力 小型の表示部を 用いるよりも、大きな画面に疲労の状態を詳細に表示できるので、疲労状態を正確に ユーザーに伝えることができる。
[0121] もちろん、表示部 203aにおける画面表示に限らず、音やバイブレーションで疲労 の状態をユーザーに伝えたり、あるいはそれらを組み合わせたり、さまざまな方法で 疲労の状態をユーザーに提示することができる。
[0122] たとえば、 70%の疲労レベルが検出された場合は、短いビープ音を鳴らすと共に、 表示部 203aに休憩を促すメッセージ表示を行ってもよい。そして、 90%以上の高い 疲労レベルが検出された場合は、本発明品付き携帯電話 201の折り畳み状態から 蓋体部 203が開かれる動作を検出する等、ユーザーによるメッセージの確認処理が 検出されるまで、ビープ音やバイブレーションを用いて疲労警告を継続するようにし てもよい。これにより、確実にユーザーへの拾う警告を行うことができる。
[0123] また、図 11 (a)は、図 1における体動検知部 2が搭載された腕時計を、腕に装着し た状態を示す図である。
[0124] 体動検知部 2を搭載した腕時計の外観は、一見通常の腕時計と大きく違わず、時 刻の確認も可能である。しかし、体動検知部 2を搭載した腕時計は、その内部に図 1 で示した加速度センサ 4、第 1データ蓄積部 5、およびデータ送信部 6が搭載されて いる点において、通常の腕時計とは異なる。
[0125] 図 11 (b)に、本発明品を普段使用するイメージ図を示す。本発明品を使用する際 には、図 11 (b)に示すように、本発明品付き携帯電話 201をズボンのポケットなどに 入れてユーザーの身近に携帯しておき、体動検知部 2を搭載した腕時計 204を常に 手首に装着する。
[0126] 基本的に、本発明品付き携帯電話 201と腕時計 204とは、頻繁に通信を行うため 両者間は通信ができる範囲内に無ければならない。しかしながら、体動検知部 2には 、第 1データ蓄積部 5が備わっている。よって、第 1データ蓄積部 5が加速度データを 蓄積しうる間は、本発明品付き携帯電話 201と腕時計 204との間における通信が途 絶えても、途切れることなくユーザーの加速度データを取得することができる。
[0127] なお、図 11 (b)では、本発明品付き携帯電話 201と腕時計 204とが分離した構成 を示している力 必ずしもこれら 2つの構成は分離させなくてもよい。たとえば、加速 度センサを搭載した携帯電話をユーザーに普段力 携帯させれば、本発明の疲労 警告装置に係る機能を、その携帯電話のみで実現することができ、部品点数を減ら すメリットが得られる。ただし、手首の加速度を用いれば、最も高い精度でユーザー の疲労レベルの推定できるので、本実施形態では本発明品付き携帯電話 201と腕 時計 204とを分離する構成を採用して ヽる。
[0128] [6.警告処理について〕
本発明品付き携帯電話は、疲労レベル演算部 9で演算された疲労レベルが、たと えば 70%以上であると疲労警告判定部 11により判定された場合は、電話着信時と 同様の呼び出し音を発するとともに、図 12 (a)に示すように休憩を促すメッセージを 表示部 203aに表示する。
[0129] 疲労の警告レベルについては、複数設定してもよい。たとえば、疲労レベル演算部 9で演算された疲労レベルが 90%以上であると疲労警告判定部 11により判定された 場合は、図 12 (b)に示すように、さらに緊急度の高いメッセージを表示してもよい。
[0130] なお、疲労は、休憩を取ってもすぐに回復するものではない。よって、疲労レベルの 推定をたとえば 30分間隔で行うとともに、疲労警告のメッセージを一度表示したら、 同じレベルの疲労警告は 2時間程度表示しな 、ようにすることが好ま 、。これにより 、ユーザーが何度も疲労警告を確認することの煩雑さを解消することができる。
[0131] さらに、疲労警告は、常に緊急性を要するものでもない。たとえば、図 12 (c)に示す ように、疲労レベルに応じて、休憩をそれとなくユーザーに提案するようなメッセージ を終業時刻前に表示することで、ユーザーは、そのメッセージに応じて落ち着いてそ の後の行動を判断することもできる。
[0132] また、図 12 (d)に示すように、疲労レベルの時間的な推移を示すグラフを表示部 20 3aに表示することで、ユーザーは、自分の疲労レベルの時間的推移を確認すること ができる。
[0133] さらに、疲労推定の結果を伝える者は、何も本発明品を装着している者に限る必要 はない。また、本発明品は、携帯電話のみに搭載が限られるものでもない。装着者以 外に疲労推定の結果を伝える実施例について、以下に説明する。
[0134] 本発明品の装着者をスポーツ選手とし、疲労推定の結果をその選手の監督に伝え る実施例について、図 12 (e)を用いて説明する。図 12 (e)に示すように、選手が疲労 していることを伝えるメッセージを図 12 (e)に表示することで、監督は、疲労している か否かを、直接選手に問い合わせたり、経験や勘に頼ることなぐ適切なタイミングで 選手を交代させることができる。
[0135] このように疲労推定の結果を監督に伝える場合、疲労提示部 12は携帯電話の表 示部に限定しなくてもよい。すなわち、通知機能のある電子機器に疲労提示部 12を 設け、この疲労提示部 12を用いて疲労推定の結果を監督に伝えればよい。また、使 用環境が競技場であるという点から、水やホコリの影響が避けられず、疲労提示部 1 2を電子機器に設けることがふさわしくない場合も考えられる。このような場合は、疲 労推定の結果を、音声により伝達すればよい。
[0136] また、装着者以外に疲労推定の結果を伝える別の例として、疲労レベルの推定結 果を示す疲労レベル情報を、後述するようにネットワークを介して外部に送信する送 信手段(図示せず)を、本発明品に設けてもよい。
[0137] たとえば、図 12 (f)に示すように、疲労警告判定部 11が判定した疲労推定の結果 を医療機関に連絡していることを示すメッセージを、表示部 203aに表示してもよい。 このように、即座に疲労レベルの推定結果を示す疲労レベル情報を医療機関に送信 することで、重大な結果を引き起こす前にユーザーの疲労に対処でき、ユーザーの 負担を低減することができる。
[0138] また、本発明の機能を持った電子機器は、携帯電話に限られるものでなぐバソコ ンゃ車載機器としてもょ ヽ。疲労レベルを推定する機能を持ったパソコンを業務で使 うことで、業務中にユーザーが疲労を感じていると判断されれば、ノ ソコンに設けられ た疲労提示部 12からユーザーに休憩を促すことができ、過労の問題を避けることが できる。また、車載機器に疲労レベルを推定する機能を持たせることで、車載機器に 設けられた疲労提示部 12から運転のし過ぎや休憩のタイミングをユーザーに知らせ ることができ、事故を未然に防ぐことができる。
[0139] また、本発明品を用いた疲労レベルの推定は、必ずしもリアルタイムに行う必要は ない。たとえば、疲労レベルを推定した結果を示すデータを一定期間だけ蓄積して おき、その蓄積されたデータを基に、たとえば家庭用 PCを用いて疲労レベルの推定 を行ってもよい。これにより、過去の一定期間における、疲労レベルの経時的な推移 を事後的に把握することができる。
[0140] また、疲労レベルを推定するためのフローチャートを実行するためのプログラムは、 将来的により高精度な疲労レベルの推定ができるように、処理ステップを後から追カロ できるようにしておくことが望ましい。特に、本実施形態で示したような携帯電話を用 いれば、携帯電話本来の通信機能によりサーバー力 簡単にプログラムをダウン口 ードして、疲労レベルを推定するためのプログラムを更新することができるので、処理 ステップを後から追加するのに好適である。
[0141] 疲労は、うつ病や慢性疲労症候群などさまざまな神経系疾患に共通した症状であ る。また、近年、疲労に伴う事故や過労力も来る疾患が問題となっている。そのため、 いつでも手軽に疲労を検出することができると、上記で挙げたような神経疾患の早期 発見や症状の程度の判断が可能となり、また疲労に伴う事故を未然に防ぐことが出 来、非常に意義深いことである。
[0142] 上記の実施形態では、疲労レベルの演算を携帯電話側で行って!/ヽた。しかし、疲 労レベルの演算は複雑な計算を含むため、携帯電話で行うには負荷が大きい場合も ある。そのため、体動データの取得および蓄積を携帯電話で行うとともに、取得した 体動データを定められたサーバーに送信し、そのサーバーもしくはそのサーバーに 接続されたワークステーションで疲労レベルを演算してもよい。そして、演算された疲 労レベルをユーザーの携帯電話に送信することで、疲労レベルを携帯電話にお 、て 表示したり、携帯電話力も疲労警告を発したりしても良い。また、サーバーで演算され た疲労レベルを、医療機関やユーザーの管理者、ユーザーの親戚や友人など、ユー ザ一以外に送っても良い。 [0143] [7.補足〕
さらに、本実施形態の疲労推定装置により実行される疲労推定方法は、コンビユー タにて実行されるプログラムを記録したコンピュータ読み取り可能な記録媒体に、疲 労推定プログラムとして記録することもできる。この結果、本実施形態の疲労推定方 法を行うプログラムを記録した記録媒体を持ち運び自在に提供することができる。
[0144] 記録媒体としては、マイクロコンピュータで処理が行われるために図示しないメモリ、 たとえば ROMのようなプログラムメディアであってもよぐ図示しな 、外部記憶装置と してのプログラム読取装置が設けられ、そこに記録媒体を挿入することで読み取り可 能なプログラムメディアであってもよ!/、。
[0145] V、ずれの場合にお!、ても、格納されて 、るプログラムはマイクロプロセッサがァクセ スして実行させる構成であってもよいし、プログラムを読み出し、読み出されたプログ ラムは、マイクロコンピュータの図示されていないプログラム記憶エリアにダウンロード されて、そのプログラムが実行される方式であってもよい。この場合、ダウンロード用 のプログラムは予め本体装置に格納されているものとする。
[0146] ここで、上記プログラムメディアは、本体と分離可能に構成される記録媒体であり、 磁気テープやカセットテープ等のテープ系、フロッピー(登録商標)ディスクやハード ディスク等の磁気ディスク並びに CD— ROMZMOZMDZDVD等の光ディスクの ディスク系、 ICカード (メモリカードを含む) Z光カード等のカード系、あるいはマスク R OM、 EPROM (Erasable Programmable Read Only Memory)、 EEPROM (Electrica lly Erasable Programmable Read Only Memory)、フラッシュ ROM等による半導体メ モリを含めた固定的にプログラムを担持する媒体であってもよい。
[0147] また、この場合、インターネットを含む通信ネットワークを接続可能なシステム構成で あること力 、通信ネットワーク力 プログラムをダウンロードするように流動的にプログ ラムを担持する媒体であってもよい。なお、このように通信ネットワーク力 プログラム をダウンロードする場合には、そのダウンロード用のプログラムは予め受信機に格納 しておくか、あるいは別の記録媒体力 インストールされるものであってもよい。
[0148] このように、本発明の疲労推定装置は、ユーザーの活動の頻度を活動度として継 続的に検知する活動度検知手段を備え、上記活動度検知手段により検知された活 動度を、この活動度に基づきユーザーの疲労レベルを推定する疲労レベル推定手 段に出力する。
[0149] 本発明者らは、鋭意研究の結果、人が疲労を感じている際には、活動度に一定の 傾向が現れるという知見を得た。本発明の疲労推定装置によれば、活動度検知手段 により、ユーザーの活動度を自動的に検知できる。そして、疲労レベル推定手段は、 活動度に基づきユーザーの疲労レベルを推定するので、この疲労レベル推定手段 によれば、活動度検知手段が自動的に検知する活動度に基づき、自動的に疲労レ ベルが推定される。
[0150] このように、本発明の疲労推定装置では、活動度検知手段によりユーザーの活動 度が自動的に検知されるとともに、疲労レベル推定手段により、検知された活動度か ら疲労レベルが自動的に推定される。よって、手軽にユーザーの疲労レベルを推定 することができる。
[0151] また、活動度検知手段および疲労レベル推定手段という簡易な構成により、ユーザ 一の疲労レベルを推定することができるので、安価にユーザーの疲労レベルを推定 することができる。
[0152] 本発明の疲労推定装置は、上記構成の疲労推定装置において、上記疲労レベル 推定手段は、継続的に高い値を示す活動度が、この高い値を示す時間に比べて短 時間だけ低 ヽ値を示す傾向を判断することで、疲労レベルを推定することが好まし ヽ
[0153] すなわち、人が疲労を感じていると、継続的に高い値を示す活動度が、この高い値 を示す時間に比べて短時間だけ低い値を示す傾向が顕著にあらわれる。疲労レべ ル推定手段においては、この傾向を判断して疲労レベルを推定するので、ユーザー の疲労を的確に捉え、疲労レベルの推定を的確に行うことができる。
[0154] また、上記疲労レベル推定手段は、上記活動度を統計的に解析することで、上記 活動度の傾向を判断することが好ましい。
[0155] すなわち、疲労時において活動度に表れる傾向は、たとえば活動度の歪度や平均 を計算するというように、活動度の統計的な解析を行うことで的確に捉えることができ る。よって、活動度を統計的に解析すれば、ユーザーの疲労レベルの推定をより的 確に行うことができる。
[0156] また、上記疲労レベル推定手段は、上記活動度の長期的な変動成分を取り除き、 この変動成分が取り除かれた活動度における上記傾向を判断することが好ましい。
[0157] すなわち、健常者の疲労時における活動度の傾向と、慢性疲労症候群患者の疲労 時における活動度の傾向は、活動度の長期的な変動成分を取り除くことで類似した 特徴が表れる。よって、上記構成では、疲労レベル推定手段が、活動度の長期的な 変動成分を取り除き、この変動成分が取り除かれた活動度における傾向を判断する ので、慢性疲労症候群患者の疲労も把握することができる。
[0158] なお、上記疲労レベル推定手段は、上記活動度を時間で微分することで、この活 動度の長期的な変動成分を取り除くことができる。または、上記活動度の時間におけ る差分値を求めることで、この活動度の長期的な変動成分を取り除いてもよい。また は、上記活動度の回帰曲線を求め、この回帰曲線を、当該活動度の長期的な変動 成分として上記活動度から取り除!/ゝてもよ ヽ。
[0159] さらに、上記疲労レベル推定手段は、上記疲労レベルが取り得る範囲を所定の範 囲に補正することが好まし 、。
[0160] 上記構成によれば、疲労レベル推定手段により推定される疲労レベルの取り得る範 囲力 所定の範囲に補正される。よって、この補正後の所定の範囲を、ユーザーが実 際に感じている疲労のレベルを定量的に示す値が取り得る範囲と一致させることによ り、推定された疲労レベルの値をより適切なものとすることができる。
[0161] さらに、上記疲労レベル推定手段は、特定の数値付近における入力値の変化に対 して、特定の数値付近でな 、入力値に対する感度よりも高 、感度で出力値を変化さ せる関数を用いて、上記疲労レベルが取り得る範囲を所定の範囲とすることが好まし い。
[0162] 上記構成によれば、上記特定の数値を、疲労レベルの変化を明確に把握した 、数 値とし、上記関数の入力値を推定された疲労レベルそのものとすれば、この関数の 出力値は、疲労レベルの変化を明確に把握したい数値付近の変化に関して、大きく 変化することとなる。よって、当該関数の出力値を判断すれば、疲労レベルをより的 確に判断することができる。 [0163] なお、このような関数としては、たとえばシグモイド関数を一例として挙げることがで きる。
[0164] また、上記活動度検知手段は、上記活動度を、ユーザーの身体の全部ある!/、は一 部における運動の加速度に基づ 、て検知することが好ま 、。
[0165] すなわち、ユーザーが疲労している際には、ユーザーの身体の運動が減少する。よ つて、ユーザーの身体の全部あるいは一部における運動の加速度を検知すれば、ュ 一ザ一の疲労時における運動の減少を的確に検知することができ、より的確に疲労 レベルを推定することが可能となる。
[0166] さらに、上記活動度検知手段は、上記活動度を、上記加速度が変化した回数として 検知することが好ましい。
[0167] また、上記活動度検知手段は、上記加速度が変化した回数を、加速度が所定の閾 値を通過する回数として検知することが好ましい。
[0168] すなわち、加速度が所定の閾値を通過する回数により加速度が変化した回数を検 知すれば、少ないデータ量で、加速度が変化した回数を把握することができる。よつ て、効率的にユーザーの活動度を検知し、疲労レベルを推定することが可能となる。
[0169] さらに、上記活動度検知手段は、上記加速度を、ユーザーの身体の全部あるいは 一部の位置情報の時間的な変化に基づ 、て検知してもょ 、。
[0170] さらに、上記加速度は、ユーザーの身体の全部あるいは一部における運動の、 3次 元的に得られた加速度であってもよ 、。
[0171] 上記構成によれば、より精度の高い加速度を得ることができる。よって、より精度良く 疲労レベルを推定することができる。
[0172] また、上記加速度は、ユーザーの身体の全部あるいは一部における運動の 1次元 方向につ 、て得られた加速度であってもよ 、。
[0173] ユーザーの運動の 1次元方向につ!、ての加速度に基づ!/、て活動度を検知すること で、活動度を示すデータ量を少なくすることができる。よって、効率的にユーザーの 活動度を検知し、疲労レベルを推定することが可能となる。
[0174] なお、「1次元方向の運動」とは、 X軸 * y軸 · ζ軸の 3軸に関する方向でユーザーの運 動を定義した場合における、 X軸 ' y軸 · ζ軸のうち 1軸に関する方向へのユーザーの 運動を意味する。 1次元方向の運動を評価するためには、 1軸出力の加速度センサ を用いれば十分である。
[0175] また、上記加速度は、ユーザーの手首の運動についての加速度であることが好まし い。
[0176] すなわち、疲労時に運動が減少する傾向は、手首において顕著に現れる。よって、 ユーザーの手首の運動についての加速度を検知することで、活動度を的確に検知し
、より的確に疲労レベルを推定することが可能となる。
[0177] さらに、上記活動度検知手段は、腕時計内に設けられていることが好ましい。
[0178] すなわち、腕時計は、通常手首に取り付けられるものなので、活動度検知手段を腕 時計内に設けることで、手首の加速度を的確に検知することができる。これにより、活 動度を的確に検知し、より的確に疲労レベルを推定することが可能となる。
[0179] また、上記活動度検知手段は、上記活動度を、ユーザーの身体の全部あるいは一 部の位置情報に基づ!/、て検知してもよ!、。
[0180] すなわち、疲労時においてユーザーの身体の運動が減少する傾向は、ユーザーの 位置情報を判断することでも検知することができる。すなわち、身体の運動が減少す れば、当然にユーザーの位置もそれほど変化しなくなる。よって、この位置が変化し なくなる傾向を位置情報に基づいて検知することで、ユーザーの疲労を検知すること ができる。
[0181] また、位置情報によれば、ユーザーの位置を判断することができるので、ユーザー の疲労レベルとともにユーザーの位置も把握することができる。
[0182] また、上記活動度検知手段は、上記活動度を、ユーザーの身体の全部ある!/、は一 部を撮影した画像情報に基づ!、て検知してもょ 、。
[0183] すなわち、ユーザーの身体の全部ある!/、は一部を撮影した画像情報は、ユーザー を拘束することなぐたとえばビデオカメラ等の撮影手段により取得することができる。 よって、ユーザーに不快感を与えることなぐ疲労レベルの推定を行うことができる。
[0184] さらに、ユーザーに対する問診の結果得られた、ユーザーの疲労に関する実疲労 レベル情報を、上記疲労レベル推定手段により推定される疲労レベルに関する推定 疲労レベル情報と対応付けることが好まし 、。 [0185] すなわち、ユーザーに対して問診を行った結果得られる、ユーザーの疲労に関す る実疲労レベル情報は、ユーザーの疲労を示す情報として信頼性が最も高いもので ある。よって、この情報を、疲労レベル推定手段により推定される疲労レベルに関す る推定疲労レベル情報と対応付けることで、より的確にユーザーの疲労レベルを判 断でき、的確な処置を行うことができる。
[0186] さらに、上記疲労レベル推定手段は、疲労推定装置と分離されたサーバー内に設 けられていることが好ましい。
[0187] すなわち、疲労レベル推定手段において実行される、活動度に基づきユーザーの 疲労レベルを推定する処理をサーバー内で実現することにより、疲労推定装置自体 の構成をコンパクトにすることができる。
[0188] また、サーバー内で推定された疲労レベルを、ユーザー以外の者に送信することが できるので、ユーザー本人が自分の疲労に対処できなくても、疲労レベルの送信を 受けた者がその疲労に対処することができる。
[0189] また、本発明の疲労警告装置は、上記構成の疲労推定装置と、上記疲労レベル推 定手段により推定された疲労レベルの程度を判定し、ユーザーの疲労に関する警告 を発するか否かを判定する疲労警告判定手段と、上記疲労警告判定手段の判定結 果に基づき、上記警告を提示する疲労提示手段とを備えて 、ることを特徴として!、る
[0190] 上記構成によれば、疲労警告判定手段によりユーザーの疲労に関する警告を発す るか否かが疲労警告判定手段により判定され、その判定結果に基づき、疲労提示手 段から疲労警告が提示される。
[0191] よって、ユーザーやそれ以外の者は、疲労提示手段により提示された疲労警告を 判断することで、手軽にユーザーの疲労レベルを知ることができる。これにより、疲労 が原因で生じるトラブルを回避できる。
[0192] また、上記疲労提示手段は、所定のタイミング毎に、上記警告を提示することを特 徴としている。
[0193] すなわち、ユーザーが疲労を回復するための処置を講じても、ある程度の時間が経 過しなければ、疲労は回復しない。よって、疲労が完全に回復していない状態で疲 労提示手段力も疲労警告を発しても、ユーザーにとっては煩わしい警告となりかねな い。
[0194] よって、疲労回復のために十分な時間を所定タイミングとし、所定タイミング毎に疲 労警告を疲労提示手段から発することで、ユーザーの煩わしさを低減することができ る。
[0195] さらに、上記疲労提示手段は、上記疲労レベル推定手段により疲労レベルが推定 される対象者以外の者に対して、上記警告を提示してもよい。
[0196] 上記構成によれば、ユーザー本人が自分の疲労に対処できなくても、疲労提示手 段により提示される疲労警告を確認した者が、その疲労に対処することができる。
[0197] また、本発明の電子機器は、上記構成の疲労推定装置、または上記構成の疲労警 告装置を備えて 、ることを特徴として 、る。
[0198] 上記構成の疲労推定装置または疲労警告装置を電子機器に設ければ、日常生活 の中で違和感無く疲労レベルの推定を行うことができる。
[0199] また、上記電子機器は、上記疲労レベル推定手段により推定された疲労レベルを 示す推定疲労レベル情報を、外部に送信する送信手段を備えていることが好ましい
[0200] 上記構成によれば、推定疲労レベル情報が外部に送信されるので、その推定疲労 レベル情報の送信先にてユーザーの疲労レベルを知ることができる。よって、ユーザ 一本人が自分の疲労に対処できなくても、推定疲労レベル情報の送信先で、当該情 報を確認した者が、その疲労に対処することができる。
[0201] また、上記電子機器は、携帯電話であることが好ましい。携帯電話は、一般的にュ 一ザ一が肌身離さず携帯するものであるので、活動度検知手段を携帯電話内に設 ければ、活動度を正確に検知することができる。
[0202] また、本発明の疲労推定方法は、上記課題を解決するため、疲労推定装置に設け られた活動度検知手段により、ユーザーの活動の頻度を活動度として継続的に検知 する活動度検知ステップと、上記活動度検知ステップにお!、て検知された活動度を、 ユーザーの疲労レベルを推定する疲労レベル推定手段に出力する疲労レベル出力 ステップとを備えて 、ることを特徴として 、る。 [0203] 上記疲労推定方法によれば、本発明の疲労推定装置と同様の作用効果を得ること ができる。
[0204] また、本発明の疲労推定プログラムは、上記課題を解決するため、本発明の疲労 推定方法を実行するための疲労推定プログラムであって、コンピュータに上記の各ス テツプを実行させることを特徴とする。
[0205] 本発明の疲労推定プログラムをインストールすることで、任意のコンピュータを用い て疲労レベルを推定することができる。
[0206] さらに、疲労推定プログラムをコンピュータ読み取り可能な記録媒体に記憶させるこ とにより、任意のコンピュータ上で疲労推定プログラムを実行させることができる。
[0207] なお、本発明の疲労推定装置は、ユーザーの活動状況を継続的に検知し、検知さ れた活動状況に基づ!/ヽて疲労を検出する構成であってもよ ヽ。
[0208] 上記構成の疲労推定装置においては、継続的な活動状況中に相対的に低い活動 状況に基づいて疲労を検出することが好ましい。また、相対的に低い活動状況は、 継続的な活動状況より長期的な変動成分を取り除くことで得ることが好ましい。
[0209] さらに、相対的に低い活動状況は、検知された活動状況を統計的に解析すること で得てもよい。このように長期的な変動成分を取り除く方法としては、活動状況の微 分又は差分値を求めればょ ヽ。
[0210] また、長期的な変動成分としては、回帰曲線を用いることが好ましい。
[0211] さらに、算出された疲労度は、所定の範囲内に収める処理が行われることが好まし い。このように算出された疲労度を所定の範囲に収める処理においては、特定の数 値周辺に高 、感度を持たせることが好ま 、。
[0212] また、活動状況は、身体の全部あるいは一部の加速度により取得されることが好ま しい。なお、活動状況は、身体の全部あるいは一部の位置情報により取得されてもよ いし、身体の全部あるいは一部の画像情報により取得されてもよい。
[0213] さらに、活動状況は、上記加速度の変化に基づいて取得されることが好ましい。ま た、上記加速度は、上記位置情報の変化に基づいて取得されてもよい。
[0214] さらに、上記加速度の変化は、該加速度が所定値と交差する回数をカウントするこ とで取得されてもよい。 [0215] また、上記身体の一部として、手首の活動状況を取得することが好ましい。また、上 記加速度は、 1次元の加速度であることが好ま 、。
[0216] さらに、所定の疲労を検出すると、ユーザーに通知することが好ましい。この通知は 、定められたタイミングで行われることが好ましい。また、所定の疲労を検出すると、疲 労を検出したユーザーとは別のユーザーに対して通知することが好ましい。
[0217] また、本発明の電子機器は、上記構成の疲労推定装置を搭載した構成であっても よい。この電子機器は、通信機能を持つことが好ましぐ携帯電話であればより好まし い。さらに、疲労推定プログラムを後から追加することが可能であれば好ましい。なお 、本発明の状態推定装置は、手首の活動状況を取得する機能を持った腕時計として 構成することが好ましい。
産業上の利用の可能性
[0218] 本発明によれば、疲労レベルの推定を安価で手軽に行うことができる。よって、本 発明によれば、近年問題となって!/、る疲労が原因で生じる種々の症状を早期発見し たり、疲労に伴う事故を未然に防いだりすることができる。

Claims

請求の範囲
[1] ユーザーの活動の頻度を活動度として継続的に検知する活動度検知手段を備え、 上記活動度検知手段により検知された活動度を、この活動度に基づきユーザーの 疲労レベルを推定する疲労レベル推定手段に出力することを特徴とする疲労推定装 置。
[2] 上記疲労レベル推定手段は、継続的に高い値を示す活動度が、この高い値を示 す時間に比べて短時間だけ低い値を示す傾向を判断することで、疲労レベルを推定 することを特徴とする請求項 1に記載の疲労推定装置。
[3] 上記疲労レベル推定手段は、上記活動度を統計的に解析することで、上記活動度 の傾向を判断することを特徴とする請求項 2に記載の疲労推定装置。
[4] 上記疲労レベル推定手段は、上記活動度の長期的な変動成分を取り除き、この変 動成分が取り除かれた活動度における上記傾向を判断することを特徴とする請求項
2に記載の疲労推定装置。
[5] 上記疲労レベル推定手段は、上記活動度を時間で微分することで、この活動度の 長期的な変動成分を取り除くことを特徴とする請求項 2に記載の疲労推定装置。
[6] 上記疲労レベル推定手段は、上記活動度の時間における差分値を求めることで、 この活動度の長期的な変動成分を取り除くことを特徴とする請求項 2に記載の疲労 推定装置。
[7] 上記疲労レベル推定手段は、上記活動度の回帰曲線を求め、この回帰曲線を、当 該活動度の長期的な変動成分として上記活動度力 取り除くことを特徴とする請求 項 2に記載の疲労推定装置。
[8] 上記疲労レベル推定手段は、上記疲労レベルが取り得る範囲を所定の範囲に補 正することを特徴とする請求項 1な 、し 7の 、ずれか 1項に記載の疲労推定装置。
[9] 上記疲労レベル推定手段は、特定の数値付近における入力値の変化に対して、特 定の数値付近でない入力値に対する感度よりも高い感度で出力値を変化させる関 数を用いて、上記疲労レベルが取り得る範囲を所定の範囲とすることを特徴とする請 求項 8に記載の疲労推定装置。
[10] 上記活動度検知手段は、上記活動度を、ユーザーの身体の全部あるいは一部に おける運動の加速度に基づ 、て検知することを特徴とする請求項 1な 、し 9の 、ずれ 力 1項に記載の疲労推定装置。
[11] 上記活動度検知手段は、上記活動度を、上記加速度が変化した回数として検知す ることを特徴とする請求項 10に記載の疲労推定装置。
[12] 上記活動度検知手段は、上記加速度が変化した回数を、加速度が所定の閾値を 通過する回数として検知することを特徴とする請求項 11に記載の疲労推定装置。
[13] 上記活動度検知手段は、上記加速度を、ユーザーの身体の全部あるいは一部の 位置情報の時間的な変化に基づいて検知することを特徴とする請求項 10ないし 12 の 、ずれか 1項に記載の疲労推定装置。
[14] 上記加速度は、ユーザーの身体の全部あるいは一部における運動の、 3次元的に 得られた加速度であることを特徴とする請求項 10ないし 13のいずれか 1項に記載の 疲労推定装置。
[15] 上記加速度は、ユーザーの身体の全部あるいは一部における運動の 1次元方向に つ!、て得られた加速度であることを特徴とする請求項 10な 、し 13の 、ずれか 1項に 記載の疲労推定装置。
[16] 上記加速度は、ユーザーの手首の運動についての加速度であることを特徴とする 請求項 10な 、し 15の 、ずれか 1項に記載の疲労推定装置。
[17] 上記活動度検知手段が腕時計内に設けられていることを特徴とする請求項 16に記 載の疲労推定装置。
[18] 上記活動度検知手段は、上記活動度を、ユーザーの身体の全部あるいは一部の 位置情報に基づ ヽて検知することを特徴とする請求項 1な 、し 9の 、ずれか 1項に記 載の疲労推定装置。
[19] 上記活動度検知手段は、上記活動度を、ユーザーの身体の全部あるいは一部を 撮影した画像情報に基づ 、て検知することを特徴とする請求項 1な!、し 9の 、ずれか 1項に記載の疲労推定装置。
[20] ユーザーに対する問診の結果得られた、ユーザーの疲労に関する実疲労レベル 情報を、上記疲労レベル推定手段により推定される疲労レベルに関する推定疲労レ ベル情報と対応付けることを特徴とする請求項 1ないし 19のいずれ力 1項に記載の 疲労推定装置。
[21] 上記疲労レベル推定手段は、疲労推定装置と分離されたサーバー内に設けられて
V、ることを特徴とする請求項 1な 、し 20の 、ずれか 1項に記載の疲労推定装置。
[22] 請求項 1ないし 21のいずれか 1項に記載の疲労推定装置と、
上記疲労レベル推定手段により推定された疲労レベルの程度を判定し、ユーザー の疲労に関する警告を発するか否かを判定する疲労警告判定手段と、
上記疲労警告判定手段の判定結果に基づき、上記警告を提示する疲労提示手段 とを備えて ヽることを特徴とする疲労警告装置。
[23] 上記疲労提示手段は、所定のタイミング毎に、上記警告を提示することを特徴とす る請求項 22に記載の疲労警告装置。
[24] 上記疲労提示手段は、上記疲労レベル推定手段により疲労レベルが推定される対 象者以外の者に対して、上記警告を提示することを特徴とする請求項 22または 23に 記載の疲労警告装置。
[25] 請求項 1ないし 21のいずれか 1項に記載の疲労推定装置、または請求項 22ないし 24の ヽずれか 1項に記載の疲労警告装置を備えて!/ヽることを特徴とする電子機器。
[26] 上記疲労レベル推定手段により推定された疲労レベルを示す推定疲労レベル情 報を、外部に送信する送信手段を備えて ヽることを特徴とする請求項 25に記載の電 子機器。
[27] 携帯電話であることを特徴とする請求項 25または 26に記載の電子機器。
[28] 疲労推定装置に設けられた活動度検知手段により、ユーザーの活動の頻度を活動 度として継続的に検知する活動度検知ステップと、
上記活動度検知ステップにお!/、て検知された活動度を、ユーザーの疲労レベルを 推定する疲労レベル推定手段に出力する疲労レベル出力ステップとを備えているこ とを特徴とする疲労推定方法。
[29] 請求項 28に記載の疲労推定方法を実行するための疲労推定プログラムであって、 コンピュータに上記の各ステップを実行させるための疲労推定プログラム。
[30] 請求項 29に記載の疲労推定プログラムを記録したことを特徴とするコンピュータ読 取可能な記録媒体。
PCT/JP2007/060443 2006-05-29 2007-05-22 疲労推定装置及びそれを搭載した電子機器 WO2007138930A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/302,768 US8926531B2 (en) 2006-05-29 2007-05-22 Fatigue estimation device and electronic apparatus having the fatigue estimation device mounted thereon
JP2008517864A JP4819887B2 (ja) 2006-05-29 2007-05-22 疲労推定装置及びそれを搭載した電子機器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006148987 2006-05-29
JP2006-148987 2006-05-29

Publications (1)

Publication Number Publication Date
WO2007138930A1 true WO2007138930A1 (ja) 2007-12-06

Family

ID=38778449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/060443 WO2007138930A1 (ja) 2006-05-29 2007-05-22 疲労推定装置及びそれを搭載した電子機器

Country Status (3)

Country Link
US (1) US8926531B2 (ja)
JP (2) JP4819887B2 (ja)
WO (1) WO2007138930A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090221937A1 (en) * 2008-02-25 2009-09-03 Shriners Hospitals For Children Activity Monitoring
JP2011183005A (ja) * 2010-03-10 2011-09-22 Nec Corp 携帯端末
JP2012024449A (ja) * 2010-07-27 2012-02-09 Omron Healthcare Co Ltd 歩行変化判定装置
JP2014121410A (ja) * 2012-12-20 2014-07-03 National Institute Of Advanced Industrial & Technology 疲労判定装置、疲労判定方法、及びそのプログラム
JP2015150150A (ja) * 2014-02-13 2015-08-24 富士ゼロックス株式会社 情報提供装置及びプログラム
CN106781281A (zh) * 2016-12-28 2017-05-31 珠海市魅族科技有限公司 一种车辆的提示信息生成方法及车载终端
JP2017108977A (ja) * 2015-12-17 2017-06-22 株式会社イトーキ 業務支援システム
EP2486516A4 (en) * 2009-10-07 2018-03-28 iOnRoad Technologies Ltd. Automatic content analysis method and system
US10147004B2 (en) 2011-05-03 2018-12-04 Ionroad Technologies Ltd. Automatic image content analysis method and system
JP2019524287A (ja) * 2016-08-08 2019-09-05 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 被験者の運動を支援するシステムおよび方法
US11197633B2 (en) 2013-10-09 2021-12-14 Resmed Sensor Technologies Limited Fatigue monitoring and management system

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9084550B1 (en) 2007-10-18 2015-07-21 Innovative Surgical Solutions, Llc Minimally invasive nerve monitoring device and method
US8343065B2 (en) * 2007-10-18 2013-01-01 Innovative Surgical Solutions, Llc Neural event detection
US8343079B2 (en) 2007-10-18 2013-01-01 Innovative Surgical Solutions, Llc Neural monitoring sensor
US8942797B2 (en) * 2007-10-18 2015-01-27 Innovative Surgical Solutions, Llc Neural monitoring system
US10572721B2 (en) 2010-08-09 2020-02-25 Nike, Inc. Monitoring fitness using a mobile device
US8810413B2 (en) * 2010-10-15 2014-08-19 Hewlett Packard Development Company, L.P. User fatigue
US9977874B2 (en) 2011-11-07 2018-05-22 Nike, Inc. User interface for remote joint workout session
US9283429B2 (en) 2010-11-05 2016-03-15 Nike, Inc. Method and system for automated personal training
US9457256B2 (en) 2010-11-05 2016-10-04 Nike, Inc. Method and system for automated personal training that includes training programs
CA2816589A1 (en) 2010-11-05 2012-05-10 Nike International Ltd. Method and system for automated personal training
US9223936B2 (en) 2010-11-24 2015-12-29 Nike, Inc. Fatigue indices and uses thereof
US9852271B2 (en) 2010-12-13 2017-12-26 Nike, Inc. Processing data of a user performing an athletic activity to estimate energy expenditure
US10420982B2 (en) 2010-12-13 2019-09-24 Nike, Inc. Fitness training system with energy expenditure calculation that uses a form factor
US9380978B2 (en) * 2011-06-29 2016-07-05 Bruce Reiner Method and apparatus for real-time measurement and analysis of occupational stress and fatigue and performance outcome predictions
US9811639B2 (en) 2011-11-07 2017-11-07 Nike, Inc. User interface and fitness meters for remote joint workout session
US9301711B2 (en) 2011-11-10 2016-04-05 Innovative Surgical Solutions, Llc System and method for assessing neural health
US8983593B2 (en) 2011-11-10 2015-03-17 Innovative Surgical Solutions, Llc Method of assessing neural function
DE102012000629A1 (de) 2012-01-14 2013-07-18 Volkswagen Aktiengesellschaft Verfahren, Vorrichtung und Mobilgerät zur Müdigkeitserkennung eines Fahrers eines Fahrzeugs
US8855822B2 (en) 2012-03-23 2014-10-07 Innovative Surgical Solutions, Llc Robotic surgical system with mechanomyography feedback
WO2013184679A1 (en) 2012-06-04 2013-12-12 Nike International Ltd. Combinatory score having a fitness sub-score and an athleticism sub-score
US9039630B2 (en) 2012-08-22 2015-05-26 Innovative Surgical Solutions, Llc Method of detecting a sacral nerve
US8892259B2 (en) 2012-09-26 2014-11-18 Innovative Surgical Solutions, LLC. Robotic surgical system with mechanomyography feedback
FI124068B (en) * 2013-05-03 2014-02-28 Jyvaeskylaen Yliopisto Procedure for improving driving safety
JP6131706B2 (ja) * 2013-05-10 2017-05-24 オムロンヘルスケア株式会社 歩行姿勢計およびプログラム
US10478097B2 (en) 2013-08-13 2019-11-19 Innovative Surgical Solutions Neural event detection
US10478096B2 (en) 2013-08-13 2019-11-19 Innovative Surgical Solutions. Neural event detection
US9622684B2 (en) 2013-09-20 2017-04-18 Innovative Surgical Solutions, Llc Neural locating system
US20150119732A1 (en) * 2013-10-24 2015-04-30 JayBird LLC System and method for providing an interpreted recovery score
US20160058378A1 (en) * 2013-10-24 2016-03-03 JayBird LLC System and method for providing an interpreted recovery score
US9848828B2 (en) * 2013-10-24 2017-12-26 Logitech Europe, S.A. System and method for identifying fatigue sources
WO2016040281A1 (en) 2014-09-09 2016-03-17 Torvec, Inc. Methods and apparatus for monitoring alertness of an individual utilizing a wearable device and providing notification
US10535024B1 (en) 2014-10-29 2020-01-14 Square, Inc. Determining employee shift changes
KR102072788B1 (ko) 2015-04-30 2020-03-12 삼성전자주식회사 휴대 장치 및 휴대 장치의 콘텐트 화면 변경방법
DE102015217365A1 (de) * 2015-09-11 2017-03-16 Continental Automotive Gmbh Verfahren zum Ermitteln eines Gesamt-Aufmerksamkeitsgrads eines Fahrzeugführers, zugehörige Vorrichtung und Datenübergabeeinrichtung
JP2019510550A (ja) 2016-02-18 2019-04-18 カーイージス テクノロジーズ,インコーポレイティド 注意力予測システム及び方法
US10321833B2 (en) 2016-10-05 2019-06-18 Innovative Surgical Solutions. Neural locating method
KR102395293B1 (ko) 2017-07-04 2022-05-09 현대자동차주식회사 무선통신시스템, 차량, 스마트 장치 및 무선통신시스템의 제어방법
KR102532412B1 (ko) * 2018-02-13 2023-05-16 삼성전자주식회사 생체 정보에 기반한 건강 정보를 제공하기 위한 전자 장치 및 그 제어 방법
DE102018208060B3 (de) 2018-05-23 2019-07-04 Robert Bosch Gmbh Verfahren und Vorrichtung zum Erkennen einer Müdigkeit eines Fahrers eines Fahrzeugs in einem Mobilgerät
US10869616B2 (en) 2018-06-01 2020-12-22 DePuy Synthes Products, Inc. Neural event detection
US11903712B2 (en) * 2018-06-08 2024-02-20 International Business Machines Corporation Physiological stress of a user of a virtual reality environment
CN110680332B (zh) * 2018-07-05 2024-08-02 博世汽车部件(苏州)有限公司 用于确定手指疲劳状态的装置和方法
US10870002B2 (en) 2018-10-12 2020-12-22 DePuy Synthes Products, Inc. Neuromuscular sensing device with multi-sensor array
US11399777B2 (en) 2019-09-27 2022-08-02 DePuy Synthes Products, Inc. Intraoperative neural monitoring system and method
TWI745812B (zh) * 2019-12-25 2021-11-11 財團法人工業技術研究院 智慧即時運動疲勞偵測系統及方法、及智慧即時運動疲勞偵測裝置
EP4101376A4 (en) * 2020-02-06 2023-06-21 Takenaka Civil Engineering&Construction Co., Ltd. POSTURE DETERMINING DEVICE AND POSTURE CONTROL DEVICE

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07295715A (ja) * 1994-04-20 1995-11-10 Mitsubishi Electric Corp Vdt使用状況警告装置
WO2002094091A1 (fr) * 2001-05-22 2002-11-28 Kazuyoshi Sakamoto Dispositif de controle de fatigue et procede d'evaluation de fatigue
JP2005013385A (ja) * 2003-06-25 2005-01-20 Sony Corp 生体情報適応制御装置、生体情報適応制御方法、プログラム、記録媒体
JP2005312868A (ja) * 2004-04-30 2005-11-10 Cci:Kk 瞬きを用いた覚醒度計測法
JP2006271893A (ja) * 2005-03-30 2006-10-12 Toshiba Corp 運動計測装置、運動計測方法および運動計測プログラム

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4545385A (en) * 1982-03-23 1985-10-08 Siemens Aktiengesellschaft Ultrasound examination device for scanning body parts
US4943986A (en) * 1988-10-27 1990-07-24 Leonard Barbarisi Mammography compression apparatus for prosthetically augmented breast
EP0553246B1 (en) * 1990-10-19 2000-09-13 St. Louis University Surgical probe locating system for head use
US5409497A (en) * 1991-03-11 1995-04-25 Fischer Imaging Corporation Orbital aiming device for mammo biopsy
US5197489A (en) * 1991-06-17 1993-03-30 Precision Control Design, Inc. Activity monitoring apparatus with configurable filters
JPH07178073A (ja) 1993-12-24 1995-07-18 Shimadzu Corp 体動解析装置
US5855554A (en) * 1997-03-17 1999-01-05 General Electric Company Image guided breast lesion localization device
US6176837B1 (en) * 1998-04-17 2001-01-23 Massachusetts Institute Of Technology Motion tracking system
US6675037B1 (en) * 1999-09-29 2004-01-06 Regents Of The University Of Minnesota MRI-guided interventional mammary procedures
US6254614B1 (en) * 1999-10-18 2001-07-03 Jerry M. Jesseph Device and method for improved diagnosis and treatment of cancer
US6449508B1 (en) * 1999-10-21 2002-09-10 Medtronic, Inc. Accelerometer count calculation for activity signal for an implantable medical device
US6513532B2 (en) * 2000-01-19 2003-02-04 Healthetech, Inc. Diet and activity-monitoring device
AU2001231117A1 (en) * 2000-01-24 2001-07-31 Ambulatory Monitoring, Inc. System and method of monitoring and modifying human activity-based behavior
FR2804596B1 (fr) * 2000-02-04 2002-10-04 Agronomique Inst Nat Rech Procede d'analyse d'irregularites de locomotion humaine
EP1195139A1 (en) * 2000-10-05 2002-04-10 Ecole Polytechnique Féderale de Lausanne (EPFL) Body movement monitoring system and method
SE0004298D0 (sv) * 2000-11-23 2000-11-23 Siemens Elema Ab Röntgendiagnostikapparat
US7171256B1 (en) * 2001-11-21 2007-01-30 Aurora Imaging Technology, Inc. Breast magnetic resonace imaging system with curved breast paddles
FI115605B (fi) * 2001-12-21 2005-06-15 Newtest Oy Anturiyksikkö, laitejärjestely ja laitejärjestelyä hyödyntävä menetelmä kehoon kohdistuvien voimien mittaamiseksi ja arvioimiseksi
JP3930399B2 (ja) * 2002-08-21 2007-06-13 本田技研工業株式会社 歩行補助装置
US6883194B2 (en) * 2002-11-08 2005-04-26 Art Advanced Research And Technology Inc. Method and apparatus for positioning a patient on a table for a medical procedure on a breast
US7771360B2 (en) * 2003-04-09 2010-08-10 Techniscan, Inc. Breast scanning system
US7387611B2 (en) * 2003-04-10 2008-06-17 Matsushita Electric Industrial Co., Ltd. Physical movement analyzer and physical movement analyzing method
US20040210159A1 (en) * 2003-04-15 2004-10-21 Osman Kibar Determining a psychological state of a subject
US7828744B2 (en) * 2003-04-23 2010-11-09 Boston Scientific Scimed, Inc. Method and assembly for breast immobilization
US7330566B2 (en) * 2003-05-15 2008-02-12 Microsoft Corporation Video-based gait recognition
EP1651106A4 (en) * 2003-07-09 2009-05-27 Medical Technologies Unltd Inc COMPLETE NEUROMUSCULAR PROFILER
AU2003904336A0 (en) * 2003-08-15 2003-08-28 Medcare Systems Pty Ltd An automated personal alarm monitor
JP2005095307A (ja) * 2003-09-24 2005-04-14 Matsushita Electric Ind Co Ltd 生体センサおよびこれを用いた支援システム
JP2005095408A (ja) * 2003-09-25 2005-04-14 Matsushita Electric Ind Co Ltd 生体状態判断装置及び支援システム
US20060155175A1 (en) * 2003-09-02 2006-07-13 Matsushita Electric Industrial Co., Ltd. Biological sensor and support system using the same
US7379769B2 (en) * 2003-09-30 2008-05-27 Sunnybrook Health Sciences Center Hybrid imaging method to monitor medical device delivery and patient support for use in the method
US7771371B2 (en) * 2004-08-11 2010-08-10 Andante Medical Devices Ltd Sports shoe with sensing and control
US7297110B2 (en) * 2004-08-27 2007-11-20 Goyal Muna C Systems and methods for remote monitoring of fear and distress responses
US20060089538A1 (en) * 2004-10-22 2006-04-27 General Electric Company Device, system and method for detection activity of persons
JP2008011865A (ja) 2004-10-27 2008-01-24 Sharp Corp 健康管理装置及びこれを機能させるためのプログラム
KR100601981B1 (ko) * 2005-01-14 2006-07-18 삼성전자주식회사 활동패턴 감시 방법 및 장치
US20060167387A1 (en) * 2005-01-27 2006-07-27 Horst Buchholz Physical activity monitor
US7427924B2 (en) * 2005-02-11 2008-09-23 Triodyne Inc. System and method for monitoring driver fatigue
US20060282021A1 (en) * 2005-05-03 2006-12-14 Devaul Richard W Method and system for fall detection and motion analysis
EP1893086B1 (en) * 2005-05-24 2013-04-17 St. Jude Medical AB A method and a medical device for evaluating the prevalence of different postures of a patient and a computer readable medium for bringing a computer to performing the method
WO2007117402A2 (en) * 2006-04-01 2007-10-18 U.S. Government As Represented By The Secretary Of The Army Human biovibrations method
US7558622B2 (en) * 2006-05-24 2009-07-07 Bao Tran Mesh network stroke monitoring appliance
US9763597B2 (en) * 2007-05-03 2017-09-19 Wisconsin Alumni Research Foundation Local MRI breast coil and method of use
US8152745B2 (en) * 2008-02-25 2012-04-10 Shriners Hospitals For Children Activity monitoring

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07295715A (ja) * 1994-04-20 1995-11-10 Mitsubishi Electric Corp Vdt使用状況警告装置
WO2002094091A1 (fr) * 2001-05-22 2002-11-28 Kazuyoshi Sakamoto Dispositif de controle de fatigue et procede d'evaluation de fatigue
JP2005013385A (ja) * 2003-06-25 2005-01-20 Sony Corp 生体情報適応制御装置、生体情報適応制御方法、プログラム、記録媒体
JP2005312868A (ja) * 2004-04-30 2005-11-10 Cci:Kk 瞬きを用いた覚醒度計測法
JP2006271893A (ja) * 2005-03-30 2006-10-12 Toshiba Corp 運動計測装置、運動計測方法および運動計測プログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OHASHI K. ET AL.: "Shintai Katsudo Choki Jikeiretsu no Kaiseki to Seishin Shogai Shinshinsho", DAI 18 KAI ANNUAL SYMPOSIUM ON BIOLOGICAL AND PHYSIOLOGICAL ENGINEERING, 6 October 2003 (2003-10-06), pages 265 - 268, XP003019811 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8152745B2 (en) * 2008-02-25 2012-04-10 Shriners Hospitals For Children Activity monitoring
US20090221937A1 (en) * 2008-02-25 2009-09-03 Shriners Hospitals For Children Activity Monitoring
US9970774B2 (en) 2009-10-07 2018-05-15 Ionroad Technologies Ltd. Automatic content analysis method and system
EP2486516A4 (en) * 2009-10-07 2018-03-28 iOnRoad Technologies Ltd. Automatic content analysis method and system
JP2011183005A (ja) * 2010-03-10 2011-09-22 Nec Corp 携帯端末
JP2012024449A (ja) * 2010-07-27 2012-02-09 Omron Healthcare Co Ltd 歩行変化判定装置
US10147004B2 (en) 2011-05-03 2018-12-04 Ionroad Technologies Ltd. Automatic image content analysis method and system
JP2014121410A (ja) * 2012-12-20 2014-07-03 National Institute Of Advanced Industrial & Technology 疲労判定装置、疲労判定方法、及びそのプログラム
US11197633B2 (en) 2013-10-09 2021-12-14 Resmed Sensor Technologies Limited Fatigue monitoring and management system
US12070325B2 (en) 2013-10-09 2024-08-27 Resmed Sensor Technologies Limited Fatigue monitoring and management system
JP2015150150A (ja) * 2014-02-13 2015-08-24 富士ゼロックス株式会社 情報提供装置及びプログラム
JP2017108977A (ja) * 2015-12-17 2017-06-22 株式会社イトーキ 業務支援システム
JP2019524287A (ja) * 2016-08-08 2019-09-05 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 被験者の運動を支援するシステムおよび方法
CN106781281A (zh) * 2016-12-28 2017-05-31 珠海市魅族科技有限公司 一种车辆的提示信息生成方法及车载终端

Also Published As

Publication number Publication date
JPWO2007138930A1 (ja) 2009-10-01
US8926531B2 (en) 2015-01-06
JP4819887B2 (ja) 2011-11-24
US20100137748A1 (en) 2010-06-03
JP2011251137A (ja) 2011-12-15
JP5433905B2 (ja) 2014-03-05

Similar Documents

Publication Publication Date Title
JP5433905B2 (ja) 疲労推定装置及びそれを搭載した電子機器
US11564623B2 (en) Food intake monitor
US20200170548A1 (en) Automated near-fall detector
CN107256329B (zh) 用于检测用户的移动数据的整体式装置和非瞬时计算机可读介质
CN102687152B (zh) Copd恶化预测系统
JP4617154B2 (ja) 携帯電話、生活活動解析方法、プログラム、および記録媒体
JP4633374B2 (ja) 生体センサ装置
JP2008011865A (ja) 健康管理装置及びこれを機能させるためのプログラム
JP2008067892A (ja) 生体解析装置及びプログラム
JP2019004924A (ja) システム及び方法
US11478189B2 (en) Systems and methods for respiratory analysis
US20120101399A1 (en) Respiratory Monitoring System
US20170325718A1 (en) Neuropathic Diagnosis and Monitoring Using Earpiece Device, System, and Method
US20190069829A1 (en) Method and apparatus for monitoring urination of a subject
WO2004026138A1 (ja) 身体運動評価装置、及び身体運動評価システム
CN114080180A (zh) 检测和测量打鼾
Ahanathapillai et al. Assistive technology to monitor activity, health and wellbeing in old age: The wrist wearable unit in the USEFIL project
TWI582728B (zh) 疲勞警示系統
JP4494843B2 (ja) ペット管理システム
US20200210689A1 (en) A system and a method for analyzing a behavior or an activity of an object
JP2000245718A (ja) 精神状態評価装置
EP3967225B1 (en) Respiratory cessation detection system and storage medium
JP2015112152A (ja) 体動検知通知装置及びシステム
KR102015444B1 (ko) 배변징후 알림 웨어러블 장치
WO2019193160A1 (en) Method and apparatus for monitoring a subject

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07743877

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2008517864

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12302768

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07743877

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)