WO2007116047A1 - Verfahren zum laminieren eines elektrobandes für transformatorenkerne - Google Patents

Verfahren zum laminieren eines elektrobandes für transformatorenkerne Download PDF

Info

Publication number
WO2007116047A1
WO2007116047A1 PCT/EP2007/053444 EP2007053444W WO2007116047A1 WO 2007116047 A1 WO2007116047 A1 WO 2007116047A1 EP 2007053444 W EP2007053444 W EP 2007053444W WO 2007116047 A1 WO2007116047 A1 WO 2007116047A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrical
core
strip
insulating
Prior art date
Application number
PCT/EP2007/053444
Other languages
English (en)
French (fr)
Inventor
Jochen Christian
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to BRPI0709987-8A priority Critical patent/BRPI0709987A2/pt
Priority to CA 2649201 priority patent/CA2649201A1/en
Priority to US12/297,087 priority patent/US20090280338A1/en
Priority to MX2008013085A priority patent/MX2008013085A/es
Priority to JP2009504713A priority patent/JP2009533855A/ja
Priority to EP07727912A priority patent/EP2005451A1/de
Publication of WO2007116047A1 publication Critical patent/WO2007116047A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0233Manufacturing of magnetic circuits made from sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • H01F1/18Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/245Magnetic cores made from sheets, e.g. grain-oriented
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal

Definitions

  • the invention relates to a process for the production of ferromagnetic core laminations for electrical machines.
  • an electromagnetic machine such as a power transformer or a throttle
  • the cores of power and distribution transformers therefore often consist of grain-oriented, ferromagnetic silicon steel. This is necessary because of the wide, magnetic ⁇ from time-dependent flow in the core also produces electrical losses.
  • reverse magnetization losses are generated by the cyclical reversal of the direction of magnetization in the core.
  • eddy currents are induced in the core, which are oriented perpendicular to the propagating magnetic flux. To reduce the eddy current losses, therefore, transformer cores are not made solid, but instead from layered individual sheets of a grain-oriented ferromagnetic silicon steel.
  • the core sheets in the way are treated to a verbes ⁇ serte grain orientation and surface treatment of the E- lektrobleche to form a vitreous insulating layer such.
  • B. Fosterit is formed. Grain-oriented electrical steel is produced from cold-rolled hot strip. ⁇ glow cold rolling with intermediate decarbonization, crystallization and relaxation produces a regular metallurgical crystal structure with a distinct structural ⁇ preferred direction of magnetization. A surface treatment with magnesium oxide leads to the formation of an insulating, glassy covering layer (fosterite) during the crystallization annealing. The subsequent application of a phosphorus solution with subsequent drying forms a final insulating layer of (phosphate). The insulating coating is usually applied to both surfaces of the grain-oriented electrical steel.
  • a reduction of the core losses is systematically ensured by an improved grain orientation and domain refinement by laser, etching or mechanical treatment.
  • the reduction in the eddy current loss is influenced sentlich we ⁇ by the magnetically effective thickness of the core sheet. The thinner the core sheet, the lower the eddy current losses. To avoid the eddy current losses no massive transformer core is used, but the core of correspondingly thin electrical steel sheets constructed in layers.
  • the manufacturing process is designed so that a core-oriented electrical steel is manufactured as a sometimes more cold ⁇ cold rolled hot strip and with ⁇ lichlich decarburization, crystallization and flash annealing a metallurgically modified crystal structure is generated with a pronounced preferred direction of magnetization.
  • the surface treatment described above produces the iso-regulating ⁇ glassy cover layer (forsterite and phosphate).
  • Such material used and treated electrical steel is hernit as invitation-independent role in a slitting line in Part roles ⁇ th. This is followed by a cross-division or punching the final laminations for the transformer core.
  • the stamping process is carried out either within the Pro ⁇ zessline the longitudinal pitch of the electric tape or under a separate punching process.
  • the core sheets thus punched are then stacked manually or automatically in a core laying apparatus to form a transformer core.
  • US 2002/0158744 A1 describes an apparatus and a method for producing large transformers with layered core sheets.
  • US Pat. No. 6,416,879 B1 discloses a corresponding iron-containing material composition as starting material for the production of core laminations in order to minimize the magnetization losses and the eddy current losses in a core layered with this material.
  • the object of the present invention is therefore to provide a method which makes it possible to produce core sheets of lesser thickness, which are also suitable for a mechanical requirement. Stress such as As in Kernlege shareholders not reduce their electro ⁇ magnetic properties.
  • a first electrical strip and at least one second electrical strip made of a ferromagnetic material are at least partially enveloped by at least one insulating layer and the insulating layer of the first electrical strip of the insulating strip Layer of the second electrical steel by means of a compound ⁇ layer are interconnected.
  • the use of a bonding layer between the individual electrical tapes has the advantage that the core sheets produced in this way have a layered structure and thus significantly reduce the eddy current losses in a core layered with the core laminates according to the invention.
  • the core sheets produced by the method according to the invention are constructed from a layer of electrical tapes.
  • the bonding layer ensures that the layered structure of the electrical steel strips of a core sheet also withstands the mechanical stress of the core sheet, such as in the manufacturing process or in the stress and thus mechanical stress of the core.
  • the insulating layer is a layer deck ⁇ metallurgically produced, in particular of forsterite or fayalite. It is considered an advantage that the bonding layer between the insulating layers is an adhesive layer.
  • the use of a fixing substance between the individual electrical tapes ensures on the one hand a permanent connection between the insulation layers and thus the individual electrical tapes. The eddy current losses can be significantly reduced.
  • the core sheets a high mechanical stability ⁇ formality own and can be used in the production process without any restrictions.
  • the bonding layer must permanently resistant to mine ⁇ ralöl, midel and silicone, temperature resistant in the range - 75 0 C to +200 0 C and highly adhesive to be electrical steel.
  • Lami ⁇ nate of fixed electrical steel sheets must be flexible and workable in the generally usual longitudinal and cross cutting process. The hardness of the fixing layer must not lead to increased signs of wear on the core sheet cutting tools.
  • the compound layer is a metallurgically forth ⁇ asked layer between the insulating layers, which is generated in particular by temporarily crystallization annealing.
  • An insulating layer on an electrical steel sheets core for conventionally by a metallurgical Be ⁇ the surface of the electrical steel strip, for example, processing by pickling or etching the surface produced. Since heat treatments of the electrical tapes are also necessary for the formation of an insulation layer on the surface, the previous production methods can also be used for the production of a bonding layer between the individual insulation layers.
  • the insulating layer and / or the compound layer know to a mechanical structure to me chanical stability contributes ⁇ of the core sheet.
  • the mechanical stability of the Ver ⁇ binding layer can be increased. This also applies to the Use of different materials as a fixing substance for forming a bonding layer.
  • the insulating layer can also be mechanically reinforced by the addition of a further grid layer and / or by location-dependent surface treatment of the electrode walls.
  • the first electrical steel strip is covered with an insulation layer, then a bonding layer is applied to the insulation layers on the top and bottom side of the electrical strip and a second electrical strip is applied to the top and bottom of the insulation layers of the electrical strip is with enveloping insulation ⁇ layer on the first electrical steel by means of press rollers being ⁇ suppressed.
  • the magnetic strip and / or the insulating layer and / or the call ⁇ varied in the core sheet layer, so that structural and / or electromechanical conditions can be taken into account in the layer structure of the Kernble ⁇ surface.
  • Lamination can be used to tare into existing manufacturing processes integ ⁇ . Either as a lamination of two or more single-ply rolls to a laminated full roll, with the laminated roll serving as the starting material for the split process. Alternatively, the lamination of two or more single-ply width-cut part-width rolls into a laminated part-width roll may be performed, the laminated part-width roll being the starting material for the subsequent cross-cut process (punching process). It is also conceivable that the lamination of two or more punched individual sheets to form a laminated core sheet.
  • the method according to the invention offers the advantage that a smaller sheet thickness than conventionally used (sheet metal thickness ⁇ 0.23 mm) is usable. This makes it possible Errei ⁇ chen a systematic reduction of the eddy currents in the core at constant design and manufacturing effort. Moreover, the method according to the invention requires no change in the previous core sheet manufacturing processes and the existing core laying processes.
  • the core sheet (60) is constructed from individual electrical strips, wherein the electrical strips each have an insulation layer and the insulation layers are interconnected by a bonding layer.
  • the bonding layer is an adhesive layer.
  • the bonding layer is a metallurgical bond between the respective insulation layers of the electrical tapes. Combinations of different types of connection for different bonding layers of the core sheet are possible.
  • Fig. 1 is a schematic representation of the manufacturing method according to the invention for laminated electric ⁇ bands
  • FIG. 2 a schematic representation of the lamination process of already punched core sheets
  • 3 is a schematic layer structure of three metallurgically treated electrical strips with isolati- ons slaughter, which are connected by an adhesive layer with ⁇ each other;
  • Fig. 4 shows a schematic structure of a core sheet according to the invention with three parallel E lektrob selectedn, which are connected by means of a metallurgical compound as a connecting layer with ⁇ each other.
  • FIG. 1 shows a schematic view of the OF INVENTION ⁇ to the invention the manufacturing method of laminated electric bands 10, 11, 12.
  • a mid-electric band 10 the entwe ⁇ the already has a metallurgically treated surface or otherwise deposited insulating layer 20 (not shown) is sprayed with a fixing medium 50.
  • This applied to the outer insulation of the middle E lektrobandes 10 adhesive substance forms a Ver ⁇ binding layer 30, on the top and bottom side relative to the middle electrical strip 10 more electrical strips 11, 12 are applied.
  • the connecting layer 30 thus formed is compressed by pressure rollers 40 and thus provides a permanent and durable compound ⁇ layer 30, between the individual electrical tapes 10, 11, 12 ago.
  • the layered structure of the electrical tapes 10, 11, 12 to a core plate 60 reduces the previous manufacturing limit of 0.23 mm for the core plates 60, so that the eddy current losses in this case can be further reduced.
  • the figure Fig. 2 shows the application of the method according to the invention in the production of already-stamped electrical tapes 10, 11, 12, the starting point for the production of Core sheets 60 are.
  • an insulating layer 20 of a punched electrical tape 10 on both sides of a croqussub ⁇ substance applied 50, which forms a bonding layer.
  • this bonding layer 30 can be punched to elec- ROBAND 10 corresponding additional electrical strips 11, 12 arranged o- BER and below the electric strip 10 and pressed by means of press rollers ⁇ 40th
  • the entspre ⁇ sponding core sheet 60 receives a layered structure.
  • FIGS. 3 and 4 show a schematic structure of a core sheet 60 produced in this way.
  • the individual electrical tapes 10, 11, 12 of the core sheet 60 are glued together by means of a fixing substance 50.
  • the adhesive bonding layer an additional insulating effect of the Ver ⁇ 30 provides, it is possible to Iso ⁇ lations Mrs 20 of the electric bands are to dispense, since the insulating property dung layer exclusively by the Verbin ⁇ 30 and the insulation layers are ensured 21 and 22nd Alternatively, the connecting layer 30 between ⁇ tween the electrical tapes 10, 11, 12 of the core sheets 60 by a metallurgical process such. B. annealing of the individual electrical tapes 10, 11, 12 are guaranteed to each other. In this case, the individual insulation layers 20, 21, 22 enter into a metallurgical connection with one another.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Soft Magnetic Materials (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung von ferromagnetischen Kernblechen für elektrische Maschinen. Ebenfalls bezieht sich die Erfindung auf ein ferromagnetisches Kernblech (60). Durch einen aus Elektrobändern (10, 11, 12) geschichteten Aufbau und der Verbindung der Elektrobänder mittels einer Verbindungsschicht (30), insbesondere einer Klebeschicht, sind Kernbleche mit sehr geringen Schichtdicken der einzelnen Elektrobänder herstellbar. Hierdurch ist es mit möglich, aus den Kernblechen geschichtete Kerne für elektromagnetische Maschinen bereitzustellen, die verminderte Wirbelstromverluste aufweisen.

Description

Beschreibung
Verfahren zum Laminieren eines Elektrobandes für Transforma¬ torenkerne
Die Erfindung betrifft ein Verfahren zur Herstellung von fer- romagnetischen Kernblechen für elektrische Maschinen.
Der Betrieb einer elektromagnetischen Maschine, wie z. B. ein Leistungstransformator oder eine Drossel, erfordert eine ge¬ nau abgestimmte Konzeption der elektrischen Maschine hinsichtlich der Bauform und der verwendeten Materialien. Die Kerne von Leistungs- und Verteilungstransformatoren bestehen daher häufig aus kornorientierten, ferromagnetischen Silizi- umstahl. Dies ist deshalb notwendig, da der im Kern sich aus¬ breitende zeitabhängige magnetische Fluss auch elektrische Verluste erzeugt. Zum einen werden Ummagnetisierungsverluste durch die zyklische Umkehrung der Magnetisierungsrichtung im Kern generiert. Ebenfalls werden in dem Kern Wirbelströme in- duziert, die senkrecht zum sich ausbreitenden magnetischen Fluss orientiert sind. Zur Verminderung der Wirbelstromverluste werden daher Transformatorkerne nicht massiv, sondern aus geschichteten Einzelblechen eines kornorientierten ferro- magnetischen Siliziumstahls hergestellt.
Zur Vermeidung von Ummagnetisierungsverlusten werden die Kernbleche in der Art und Weise behandelt, dass eine verbes¬ serte Kornorientierung und eine Oberflächenbehandlung der E- lektrobleche zu einer glasartigen Isolationsschicht, wie z. B. Fosterit, ausgebildet wird. Kornorientiertes Elektroband entsteht aus kaltgewalztem Warmband. Kaltwalzen mit zwischenzeitlichem Entkohlungs-, Kristallisations- und Entspannungs¬ glühen erzeugt eine regelmäßige metallurgische Kristallstruk¬ tur mit ausgeprägter Vorzugsrichtung der Magnetisierbarkeit. Eine Oberflächenbehandlung mit Magnesiumoxid führt während des Kristallisationsglühens zur Ausbildung einer isolierenden, glasartigen Deckschicht (Fosterit) . Das nachfolgende Aufbringen einer Phosphorlösung mit anschließender Trocknung bildet eine abschließende Isolierschichtlage aus (Phosphat) . Die Isolierbeschichtung wird meist auf beiden Oberflächen des kornorientierten Elektrobandes aufgebracht.
Eine Reduktion der Ummagnetisierungsverluste wird systema- tisch durch eine verbesserte Kornorientierung und Domänenverfeinerung per Laser, Ätzen oder mechanische Behandlung gewährleistet. Die Minderung der Wirbelstromverluste wird we¬ sentlich durch die magnetisch effektive Dicke des Kernblechs beeinflusst. Je dünner das Kernblech ist, desto geringer sind die Wirbelstromverluste. Zur Vermeidung der Wirbelstromverluste wird kein massiver Transformatorkern verwendet, sondern der Kern aus entsprechend dünnen Elektroblechen schichtweise aufgebaut .
Herkömmlicherweise ist der Fertigungsprozess so gestaltet, dass ein kernorientiertes Elektroband als ein zum Teil mehr¬ fach kalt gewalztes Warmband gefertigt und mit zwischenzeit¬ lichem Entkohlungs-, Kristallisations- und Entspannungsglühen eine metallurgisch veränderte Kristallstruktur mit einer aus- geprägten Vorzugsrichtung der Magnetisierung erzeugt wird.
Die Oberflächenbehandlung erzeugt die oben beschriebene iso¬ lierende glasartige Deckschicht (Fosterit und Phosphat) .
Das so gefertigte und behandelte Elektroband wird als einla- gige Rolle in einer Längsteilanlage in Teilrollen geschnit¬ ten. Anschließend erfolgt eine Querteilung beziehungsweise das Stanzen der endgültigen Kernbleche für den Transformatorkern. Der Stanzprozess erfolgt entweder innerhalb der Pro¬ zesslinie der Längsteilung des Elektrobandes oder im Rahmen eines separaten Stanzprozesses. Die so gestanzten Kernbleche werden anschließend in einer Kernlegevorrichtung manuell oder automatisch zu einem Transformatorkern geschichtet.
So beschreibt die US 2002/0158744 Al eine Vorrichtung und ein Verfahren zur Herstellung von großen Transformatoren mit geschichteten Kernblechen.
Des Weiteren offenbart die US 6,416,879 Bl eine entsprechende eisenhaltige Materialzusammensetzung als Ausgangsmaterial für die Herstellung von Kernblechen um somit die Ummagnetisie- rungsverluste und die Wirbelstromverluste in einem mit diesem Material geschichteten Kern zu minimieren.
Gleiches gilt für die DE 43 37 605 Al, die ein Verfahren zur Erzeugung von kornorientierten Elektrobändern und daraus hergestellte Magnetkerne offenbart.
Nachteilig bei allen Verfahren und verwendeten Kernblech- Strukturen im Stand der Technik sind, dass die Breite der so herstellten Kernbleche eine minimale Dicke von 0, 23 mm nicht unterschreiten darf, da sonst im Kernfertigungsprozess das Material mechanisch zu stark beansprucht werden würde. Dies würde zu einer Verminderung der elektromagnetischen Eigen- Schäften der so mechanisch beanspruchten Kernbleche führen. Aufgrund dieser fertigungstechnischen Beschränkungen ist es daher bisher nicht möglich, die mit dieser Breite der Kernbleche verbundenen Wirbelstromverluste in entsprechend mit diesen Kernblechen geschichteten Transformatorkernen weiter zu reduzieren.
Aufgabe der vorliegenden Erfindung ist es daher ein Verfahren bereitzustellen, was die Fertigung von Kernblechen geringerer Dicke bereitzustellen, die auch bei einer mechanischen Bean- spruchung wie z. B. beim Kernlegeprozess, nicht ihre elektro¬ magnetischen Eigenschaften vermindern.
Die Aufgabe der Erfindung wird gelöst durch die Merkmale des Patentanspruchs 1. Erfindungsgemäß ist vorgesehen, dass ein erstes Elektroband und zumindest ein zweites Elektroband aus einem ferromagnetischen Material mit jeweils mindestens einer Isolationsschicht zumindest teilweise umhüllt ist und die I- solationsschicht des ersten Elektrobandes der Isolations- schicht des zweiten Elektrobandes mittels einer Verbindungs¬ schicht miteinander verbunden sind. Durch die Verwendung einer Verbindungsschicht zwischen den einzelnen Elektrobändern ergibt sich der Vorteil, dass die so hergestellten Kernbleche einen schichtweisen Aufbau besitzen und damit die Wirbel- Stromverluste in einem mit den erfindungsgemäßen Kernblechen geschichteten Kern deutlich verringert werden. Im Gegensatz zu herkömmlichen nur aus einem Elektroband aufgebauten Kernblech sind die nach dem erfindungsgemäßen Verfahren hergestellten Kernbleche aus einer Schicht von Elektrobändern auf- gebaut. Die Verbindungsschicht stellt dabei sicher, dass das geschichtete Gefüge der Elektrobänder eines Kernbleches auch der mechanischen Beanspruchung des Kernbleches, wie z.B. beim Fertigungsprozess oder bei der Spannungsbelastung und damit auch mechanischen Belastung des Kerns, standhält.
In einer vorteilhaften Ausgestaltung des Verfahrens ist die Isolationsschicht eine metallurgisch hergestellte Deck¬ schicht, insbesondere aus Fosterit oder Fayalit. Es wird als Vorteil angesehen, dass die Verbindungsschicht zwischen den Isolationsschichten eine Klebeschicht ist. Die Verwendung einer Fixiersubstanz zwischen den einzelnen Elektrobändern gewährleistet zum einen eine permanente Verbindung zwischen den Isolationsschichten und damit den einzelnen Elektrobändern. Die Wirbelstromverluste können deutlich reduziert werden. Gleichzeitig gewährleistet dieser geschichtete Aufbau der Kernbleche, dass die Kernbleche eine hohe mechanische Stabi¬ lität besitzen und im Fertigungsprozess ohne Einschränkungen einsetzbar sind.
Die Verbindungsschicht muss dauerhaft beständig gegen Mine¬ ralöl, Midel und Silikon, temperaturbeständig im Bereich - 750C bis +2000C und stark haftend an Elektroband sein. Lami¬ nate aus fixierten Elektroblechen müssen biegsam und im all- gemein üblichen Längs- und Querteilprozess bearbeitbar sein. Die Härte der Fixierschicht darf zu keinen erhöhten Verschleißerscheinungen an den Kernblechschneidewerkzeugen führen .
In einer vorteilhaften Ausgestaltung des Verfahrens ist vorgesehen, dass die Verbindungsschicht eine metallurgisch her¬ gestellte Schicht zwischen den Isolationsschichten ist, die insbesondere durch zeitweises Kristallisationsglühen erzeugt wird. Eine Isolationsschicht auf einem Elektroband für Kern- bleche wird herkömmlicherweise durch eine metallurgische Be¬ arbeitung der Oberfläche des Elektrobandes, z.B. durch Beizen oder Ätzen der Oberfläche, erzeugt. Da auch Wärmebehandlungen der Elektrobänder zur Ausbildung einer Isolationsschicht auf der Oberfläche notwendig sind, können die bisherigen Ferti- gungsmethoden auch für die Herstellung einer Verbindungsschicht zwischen den einzelnen Isolationsschichten genutzt werden .
Vorteilhafterweise weißt die Isolationsschicht und/oder die Verbindungsschicht eine mechanische Struktur auf, die zur me¬ chanischen Stabilität des Kernbleches beiträgt. Durch die Einlage einer Gitterstruktur, wie z.B. im Flugzeugbau, in die Verbindungsschicht kann die mechanische Stabilität der Ver¬ bindungsschicht erhöht werden. Dies gilt ebenfalls für die Verwendung von unterschiedlichen Materialien als Fixiersubstanz zur Ausbildung einer Verbindungsschicht. Auch die Isolationsschicht ist durch Zusatz einer weiteren Gitterschicht und/oder durch ortsabhängige Oberflächenbehandlung der Elekt- robänder mechanisch verstärkbar.
Es wird als Vorteil angesehen, dass das erste Elektroband mit einer Isolationsschicht umhüllt wird, anschließend auf der Ober- und Unterseite des Elektrobandes auf den Isolations- schichten eine Verbindungsschicht aufgetragen und auf der O- ber- und Unterseite der Isolationsschichten des Elektrobandes jeweils ein zweites Elektroband mit umhüllender Isolations¬ schicht auf das erste Elektroband mittels Pressrollen ange¬ drückt wird. Vorteilhafterweise variiert das Elektroband und/oder die Isolationsschicht und/oder die Verbindungs¬ schicht im Kernblech, so dass auch bauliche und/oder elektro- mechanische Gegebenheiten bei dem Schichtaufbau der Kernble¬ che berücksichtigt werden können.
Die Laminierung kann in bestehende Fertigungsprozesse integ¬ riert werden. Entweder als Laminierung von zwei oder mehreren einlagigen Vollrollen zur einer laminierten Vollrolle, wobei die laminierte Vollrolle als Ausgangsmaterial für den Längs- teilprozess dient. Alternativ kann die Laminierung von zwei oder mehreren einlagigen, auf Breite geschnittenen Teilbreitenrollen zu einer laminierten Teilbreitenrolle erfolgen, wobei die laminierte Teilbreitenrolle Ausgangsmaterial für den nachfolgenden Querteilprozess (Stanzprozess) ist. Ebenfalls ist denkbar, dass die Laminierung von zwei oder mehreren ge- stanzten Einzelblättern zu einem laminierten Kernblatt erfolgt .
Das erfindungsgemäße Verfahren bietet den Vorteil, dass eine geringere Blechdicke als herkömmlicherweise verwendet (Blech- dicken < 0,23 mm) verwendbar ist. Hierdurch lässt sich eine systematische Verringerung der Wirbelströme im Kern bei gleich bleibenden Konstruktions- und Fertigungsaufwand errei¬ chen. Das erfindungsgemäße Verfahren benötigt darüber hinaus keine Änderung der bisherigen Kernblechfertigungsprozesse und der bestehenden Kernlegeverfahren.
Die Aufgabe wird ebenfalls durch die Merkmale des Anspruchs 14 gelöst. Erfindungsgemäß ist vorgesehen, dass das Kernblech (60) aus einzelnen Elektrobändern aufgebaut ist, wobei die Elektrobänder jeweils eine Isolationsschicht aufweisen und die Isolationsschichten durch eine Verbindungsschicht miteinander verbunden sind. In einer vorteilhaften Ausgestaltung des ferromagnetischen Kernblechs ist vorgesehen, dass die Verbindungsschicht eine Klebeschicht ist. Alternativ ist die Verbindungsschicht eine metallurgische Verbindung zwischen den jeweiligen Isolationsschichten der Elektrobänder. Auch Kombinationen von unterschiedlichen Verbindungsarten für verschiedene Verbindungsschichten des Kernblechs sind möglich.
Weitere vorteilhafte Maßnahmen sind in den übrigen Unteransprüchen beschrieben; die Erfindung wird anhand von Ausführungsbeispielen und den nachfolgenden Figuren näher beschrieben :
Fig. 1 schematische Darstellung des erfindungsgemäßen Herstellungsverfahrens für laminierte Elektro¬ bänder;
Fig. 2 schematische Darstellung des Laminierungspro- zesses von bereits gestanzten Kernblechen;
Fig. 3 schematischer Schichtaufbau von drei metallurgisch behandelten Elektrobändern mit Isolati- onsschicht, die durch eine Klebeschicht mit¬ einander verbunden sind;
Fig. 4 schematischer Aufbau eines erfindungsgemäßen Kernbleches mit drei parallel angeordneten E- lektrobändern, die mittels einer metallurgischen Verbindung als Verbindungsschicht mit¬ einander verbunden sind.
Die Figur Fig. 1 zeigt eine schematische Ansicht des erfin¬ dungsgemäßen Herstellungsverfahrens von laminierten Elektro- bändern 10, 11, 12. Ein mittleres Elektroband 10, das entwe¬ der schon eine metallurgisch behandelte Oberfläche aufweist oder eine anderweitig aufgetragene Isolationsschicht 20 (nicht dargestellt) aufweist, wird mit einem Fixiermedium 50 besprüht. Diese auf der äußeren Isolation des mittleren E- lektrobandes 10 aufgetragene Klebesubstanz bildet eine Ver¬ bindungsschicht 30, auf die ober- und unterseitig bezogen auf das mittlere Elektroband 10 weitere Elektrobänder 11, 12 auf- getragen werden. Zwischen den Isolationsschichten 20 ,21 22 der jeweiligen Elektrobänder 10, 11, 12 wird die so gebildete Verbindungsschicht 30 durch Anpressrollen 40 verdichtet und stellt somit eine permanente und langlebige Verbindungs¬ schicht 30, zwischen den einzelnen Elektrobändern 10, 11, 12 her. Hierdurch wird zum einen eine mechanische Stabilität der so herstellten Kernbleche 60 erreicht. Weiterhin reduziert der schichtweise Aufbau der Elektrobänder 10, 11, 12 zu einem Kernblech 60 die bisherige fertigungstechnische Grenze von 0,23 mm für die Kernbleche 60, so dass die Wirbelstromverlus- te in diesem Falle weiter reduzierbar sind.
Die Figur Fig. 2 zeigt die Anwendung des erfindungsgemäßen Verfahrens bei der Herstellung von bereits gestanzten Elektrobändern 10, 11, 12, die Ausgangspunkt für die Fertigung der Kernbleche 60 sind. Wie beim Verfahren gemäß Figur Fig. 1 wird auf einer Isolationsschicht 20 (nicht dargestellt) eines gestanzten Elektrobandes 10 beidseitig eine Verbindungssub¬ stanz 50 aufgetragen, die eine Verbindungsschicht ausbildet. Auf diese Verbindungsschicht 30 werden zum gestanzten Elekt- roband 10 korrespondierende weitere Elektrobänder 11, 12 o- ber- und unterhalb des Elektrobandes 10 angeordnet und mit¬ tels Pressrollen 40 verpresst. Hierdurch erhält das entspre¬ chende Kernblech 60 einen geschichteten Aufbau.
In den Figuren Fig. 3 und Fig. 4 ist ein schematischer Aufbau eines so hergestellten Kernbleches 60 gezeigt. Bei der Figur Fig. 3 sind die einzelnen Elektrobänder 10, 11, 12 des Kernbleches 60 mittels einer Fixiersubstanz 50 miteinander ver- klebt.
Da der Kleber eine zusätzliche isolierende Wirkung der Ver¬ bindungsschicht 30 bereitstellt, ist es möglich, auf die Iso¬ lationsschicht 20 der Elektrobänder zu verzichten werden, da die Isolationseigenschaft ausschließlich durch die Verbin¬ dungsschicht 30 und die Isolationsschichten 21 und 22 gewährleistet sind. Alternativ kann die Verbindungsschicht 30 zwi¬ schen den Elektrobändern 10, 11, 12 der Kernbleche 60 auch durch ein metallurgisches Verfahren wie z. B. einem Verglühen der einzelnen Elektrobänder 10, 11, 12 miteinander gewährleistet werden. Hierbei gehen die einzelnen Isolationsschichten 20, 21, 22 eine metallurgische Verbindung miteinander ein .

Claims

Patentansprüche
1. Verfahren zur Herstellung von ferromagnetischen Kernblechen (60) für elektrische Maschinen, d a d u r c h g e k e n n z e i c h n e t , dass ein erstes Elektroband (10) und zumindest ein zweites Elekt- roband (11) aus einem ferromagnetischen Material mittels ei¬ ner Verbindungsschicht (30) miteinander verbunden sind.
2. Verfahren nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , dass die Elektrobänder (10,11) zumindest teilweise von einer Iso¬ lationsschicht (20,21) umhüllt und die Isolationsschicht (20) des ersten Elektrobandes (10) mit der Isolationsschicht (21) des zweiten Elektrobandes (11) mittels einer Verbindungs¬ schicht (30) miteinander verbunden sind.
3. Verfahren nach einem der Ansprüche 1 oder 2, d a d u r c h g e k e n n z e i c h n e t , dass die Isolationsschicht (20) eine metallurgisch hergestellte Deckschicht, insbesondere aus Fosterit oder Fayalit ist.
4. Verfahren nach einem der Ansprüche 1 bis 3, d a d u r c h g e k e n n z e i c h n e t , dass die Verbindungsschicht (30) zwischen den Isolationsschichten (20, 21, 22) eine Klebeschicht ist.
5. Verfahren nach Anspruch 4, d a d u r c h g e k e n n z e i c h n e t , dass die Verbindungsschicht (30) hoch adhäsiv an Elektroband haf¬ tet.
6. Verfahren nach einem der Ansprüche 4 oder 5, d a d u r c h g e k e n n z e i c h n e t , dass die Verbindungsschicht (30), mechanisch schneidbar und fle¬ xibel ist.
7. Verfahren nach einem der Ansprüche 4 bis 6, d a d u r c h g e k e n n z e i c h n e t , dass die Verbindungsschicht (30) temperaturbeständig in einem Tem¬ peraturbereich von - 750C bis +2000C ist.
8. Verfahren nach einem der Ansprüche 4 bis 7, d a d u r c h g e k e n n z e i c h n e t , dass die Verbindungsschicht (30) beständig gegen Mineralöl, Midel (Ester) und/oder Silikone ist.
9. Verfahren nach einem der Ansprüche 1 bis 3, d a d u r c h g e k e n n z e i c h n e t , dass die Verbindungsschicht (30) eine metallurgisch hergestellte Schicht zwischen den Isolationsschichten (20, 21, 22) ist, die insbesondere durch zeitweises Kristallisationsglühen erzeugt wird.
10. Verfahren nach einem der Ansprüche 1 bis 9, d a d u r c h g e k e n n z e i c h n e t , dass das Elektroband (10) eine Kornorientierung aufweist.
11. Verfahren nach einem der Ansprüche 1 bis 10, d a d u r c h g e k e n n z e i c h n e t , dass die Isolationsschicht (20) und/oder die Verbindungsschicht (30) eine mechanische Struktur aufweist und somit zur mecha¬ nischen Stabilität des Kernbleches (60) beiträgt.
12. Verfahren nach einem der Ansprüche 1 bis 11, d a d u r c h g e k e n n z e i c h n e t , dass das erste Elektroband (10) mit einer Isolationsschicht (20) umhüllt wird, anschließend auf der Ober- und Unterseite des Elektrobandes (10) eine Verbindungsschicht (30) aufgetragen und auf der Ober- und Unterseite des Elektrobandes (10) je¬ weils ein zweites Elektroband (11, 12) mit umhüllender Isola¬ tionsschicht (21, 22) auf das erste Elektroband (10) mittels Pressrollen (40) angedrückt wird.
13. Verfahren nach einem der Ansprüche 1 bis 12, d a d u r c h g e k e n n z e i c h n e t , dass das Elektroband (10) und/oder die Isolationsschicht (20) und/oder die Verbindungsschicht (30) im Kernblech (60) vari¬ ieren .
14. Ferromagnetisches Kernblech (60) für elektrische Maschi¬ nen, dadurch gekennzeichnet, dass ein Kernblech (60) aus ein- zelnen Elektrobändern (10,11,12) aufgebaut ist, wobei die E- lektrobänder (10,11,12) jeweils eine Isolationsschicht (20,21,22) aufweisen und die Isolationsschichten (20,21,22) durch eine Verbindungsschicht (30) miteinander verbunden sind.
15. Ferromagnetisches Kernblech (60) nach Anspruch 14, da¬ durch gekennzeichnet, dass die Verbindungsschicht (30) eine Klebeschicht ist.
16. Ferromagnetisches Kernblech (60) nach Anspruch 14, da¬ durch gekennzeichnet, dass die Verbindungsschicht (30) eine metallurgische Verbindung zwischen den jeweiligen Isolationsschichten (20,21,22) der Elektrobänder (10,11,12) ist.
17. Ferromagnetisches Kernblech (60) nach einem der Ansprüche 15 oder 16, dadurch gekennzeichnet, dass unterschiedliche Verbindungsarten als Verbindungsschicht (30) verwendbar sind.
PCT/EP2007/053444 2006-04-12 2007-04-10 Verfahren zum laminieren eines elektrobandes für transformatorenkerne WO2007116047A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BRPI0709987-8A BRPI0709987A2 (pt) 2006-04-12 2007-04-10 processo para a laminação de um tira elétrica para núcleos de transformador
CA 2649201 CA2649201A1 (en) 2006-04-12 2007-04-10 Method for lamination of an electrical strip for transformer cores
US12/297,087 US20090280338A1 (en) 2006-04-12 2007-04-10 Method for Lamination of an Electrical Strip for Transformer Cores
MX2008013085A MX2008013085A (es) 2006-04-12 2007-04-10 Procedimiento para laminar una banda electrica para nucleos de transformadores.
JP2009504713A JP2009533855A (ja) 2006-04-12 2007-04-10 変圧器鉄心用電磁鋼帯の積層方法
EP07727912A EP2005451A1 (de) 2006-04-12 2007-04-10 Verfahren zum laminieren eines elektrobandes für transformatorenkerne

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200610017762 DE102006017762B4 (de) 2006-04-12 2006-04-12 Verfahren zum Laminieren eines Elektrobandes für Transformatorenkerne
DE102006017762.2 2006-04-12

Publications (1)

Publication Number Publication Date
WO2007116047A1 true WO2007116047A1 (de) 2007-10-18

Family

ID=38229877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/053444 WO2007116047A1 (de) 2006-04-12 2007-04-10 Verfahren zum laminieren eines elektrobandes für transformatorenkerne

Country Status (9)

Country Link
US (1) US20090280338A1 (de)
EP (1) EP2005451A1 (de)
JP (1) JP2009533855A (de)
CN (1) CN101438358A (de)
BR (1) BRPI0709987A2 (de)
CA (1) CA2649201A1 (de)
DE (1) DE102006017762B4 (de)
MX (1) MX2008013085A (de)
WO (1) WO2007116047A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102027227A (zh) * 2008-04-17 2011-04-20 森克罗尼公司 带有低损耗金属转子的高速永磁体电动机和发电机
WO2016033630A1 (de) * 2014-09-05 2016-03-10 Voestalpine Stahl Gmbh Coil und verfahren zur herstellung eines zu einem coil aufgehaspelten elektrobandlaminats
EP3206213A1 (de) 2016-02-15 2017-08-16 Voestalpine Stahl GmbH Banddurchlaufverfahren zur herstellung eines zu einem coil aufgehaspelten elektrobandlaminats

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102017369B (zh) 2008-04-18 2013-11-13 森克罗尼公司 带有集成电子设备的磁性推力轴承
US9583991B2 (en) 2009-06-24 2017-02-28 Synchrony, Inc. Systems, devices, and/or methods for managing magnetic bearings
DE102009060170A1 (de) * 2009-12-23 2011-06-30 Volkswagen AG, 38440 Verfahren zur Herstellung von Blechpaketen für elektrische Maschinen
DE102010002003A1 (de) * 2010-02-16 2011-08-18 Efficient Energy GmbH, 82054 Elektromotorkörper und Verfahren zur Herstellung eines Elektromotorkörpers
EP2586121B1 (de) 2010-06-23 2019-12-11 Synchrony, Inc. Geteiltes magnetisches axialdrucklager
DE102012000705A1 (de) * 2011-02-11 2012-08-23 Heidelberger Druckmaschinen Ag Verfahren zum Herstellen von beschichteten Magnetkernen
WO2012155967A1 (de) * 2011-05-18 2012-11-22 Siemens Aktiengesellschaft Geräuscharmer transformator
CN102922810A (zh) * 2012-11-15 2013-02-13 曾庆赣 一种电工钢片及其制作方法
TWI592957B (zh) * 2014-06-23 2017-07-21 乾坤科技股份有限公司 具有分散式氣隙的磁芯部件的製作方法
CN104576024A (zh) * 2014-12-19 2015-04-29 淮安威灵电机制造有限公司 变压器铁芯及其制造方法、变压器及其制造方法
JP6273239B2 (ja) 2015-09-04 2018-01-31 Jfeスチール株式会社 積層鉄心製造装置および積層鉄心製造方法
DE102015217470A1 (de) * 2015-09-11 2017-03-16 Mahle International Gmbh Verfahren zum Herstellen eines Wärmeübertragers
CN108231316A (zh) * 2016-12-14 2018-06-29 上海量子绘景电子股份有限公司 一种非晶纳米晶模块化叠合片、磁元件及其制备方法
CZ201791A3 (cs) * 2017-02-17 2018-04-25 Vysoké Učení Technické V Brně Skelet jádra tvořeného pruty z feromagnetického materiálu
IT201700059495A1 (it) * 2017-05-31 2018-12-01 L A E Lughese Attrezzature Per L Elettromeccanica S R L Processo, sistema di alimentazione nastro e impianto per la produzione di nuclei lamellari per trasformatori
CN113765237A (zh) * 2021-09-14 2021-12-07 首钢智新迁安电磁材料有限公司 一种电机定子铁心的加工方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2261983A (en) * 1940-04-10 1941-11-11 Westinghouse Electric & Mfg Co Bonding of transformer laminations
US3836389A (en) * 1966-06-09 1974-09-17 Westinghouse Electric Corp Glass coated electrical steel sheet and articles prepared therefrom
US4025379A (en) 1973-05-03 1977-05-24 Whetstone Clayton N Method of making laminated magnetic material
JPS5941808A (ja) * 1982-08-31 1984-03-08 Kawasaki Steel Corp 重ね合わせ方向性珪素鋼板
US4591529A (en) * 1983-09-14 1986-05-27 Stahlwerke Bochum Ag Sheet for laminated iron cores including woven or non-woven fabrics
CH668331A5 (en) * 1985-11-11 1988-12-15 Studer Willi Ag Magnetic head core mfr. from stack of laminations - involves linear machining of patterns from adhesively bonded and rolled sandwich of permeable and non-permeable layers
DE4337605A1 (de) 1993-11-01 1995-05-04 Eko Stahl Gmbh Verfahren zur Erzeugung von kornorientiertem Elektroband und daraus hergestellte Magnetkerne
US6416879B1 (en) 2000-11-27 2002-07-09 Nippon Steel Corporation Fe-based amorphous alloy thin strip and core produced using the same
US20020158744A1 (en) 2001-04-25 2002-10-31 Ngo Dung A. Apparatus and method for the manufacture of large transformers having laminated cores, particularly cores of annealed amorphous metal alloys

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE761728C (de) * 1942-02-15 1954-08-16 Siemens Schuckertwerke A G Verfahren zum gegenseitigen Isolieren der einzelnen Blechlamellen von Magnetblechpaketen fuer elektrische Geraete
CA999404A (en) * 1973-05-03 1976-11-09 Clayton N. Whetstone Laminated magnetic material and method of making same
US4277530A (en) * 1979-09-10 1981-07-07 Allegheny Ludlum Steel Corporation Electrical steel lamination
JPS6163004A (ja) * 1984-09-05 1986-04-01 Kawasaki Steel Corp 接着ラミネート方向性けい素鋼板
JPS62218036A (ja) * 1986-03-19 1987-09-25 Mitsubishi Electric Corp 電磁鋼板の切断方法
JP2731312B2 (ja) * 1992-01-16 1998-03-25 川崎製鉄株式会社 電磁鋼板絶縁被膜の均一形成用予備処理方法
JPH06349657A (ja) * 1993-06-10 1994-12-22 Kobe Steel Ltd 積層鉄心の製造方法
JP2766448B2 (ja) * 1993-08-24 1998-06-18 川崎製鉄株式会社 高磁束密度を有する方向性けい素鋼板の製造方法
JP2984195B2 (ja) * 1995-04-20 1999-11-29 川崎製鉄株式会社 磁気特性および被膜特性に優れる方向性けい素鋼板およびその製造方法
JPH08311428A (ja) * 1995-05-23 1996-11-26 Sekisui Chem Co Ltd 湿気硬化型反応性ホットメルト接着剤を用いた接着方法
WO1998046803A1 (fr) * 1997-04-16 1998-10-22 Nippon Steel Corporation Tole d'acier electromagnetique unidirectionnelle presentant d'excellentes caracteristiques de film et d'excellentes caracteristiques magnetiques, son procede de production et installation de recuit par decarburation a cet effet
JP4192282B2 (ja) * 1997-12-01 2008-12-10 Jfeスチール株式会社 焼鈍分離剤用MgOの製造方法
JP2000173815A (ja) * 1998-12-09 2000-06-23 Sumitomo Metal Ind Ltd 積層鉄心用接着鋼板
WO2003003385A2 (en) * 2001-06-26 2003-01-09 Johns Hopkins University Magnetic devices comprising magnetic meta-materials
JP4598320B2 (ja) * 2001-07-12 2010-12-15 新日本製鐵株式会社 方向性電磁鋼板の製造方法
JP2005297393A (ja) * 2004-04-13 2005-10-27 Nippon Steel Corp 低鉄損複数層電磁鋼板とその製造方法及び装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2261983A (en) * 1940-04-10 1941-11-11 Westinghouse Electric & Mfg Co Bonding of transformer laminations
US3836389A (en) * 1966-06-09 1974-09-17 Westinghouse Electric Corp Glass coated electrical steel sheet and articles prepared therefrom
US4025379A (en) 1973-05-03 1977-05-24 Whetstone Clayton N Method of making laminated magnetic material
JPS5941808A (ja) * 1982-08-31 1984-03-08 Kawasaki Steel Corp 重ね合わせ方向性珪素鋼板
US4591529A (en) * 1983-09-14 1986-05-27 Stahlwerke Bochum Ag Sheet for laminated iron cores including woven or non-woven fabrics
CH668331A5 (en) * 1985-11-11 1988-12-15 Studer Willi Ag Magnetic head core mfr. from stack of laminations - involves linear machining of patterns from adhesively bonded and rolled sandwich of permeable and non-permeable layers
DE4337605A1 (de) 1993-11-01 1995-05-04 Eko Stahl Gmbh Verfahren zur Erzeugung von kornorientiertem Elektroband und daraus hergestellte Magnetkerne
US6416879B1 (en) 2000-11-27 2002-07-09 Nippon Steel Corporation Fe-based amorphous alloy thin strip and core produced using the same
US20020158744A1 (en) 2001-04-25 2002-10-31 Ngo Dung A. Apparatus and method for the manufacture of large transformers having laminated cores, particularly cores of annealed amorphous metal alloys

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102027227A (zh) * 2008-04-17 2011-04-20 森克罗尼公司 带有低损耗金属转子的高速永磁体电动机和发电机
WO2016033630A1 (de) * 2014-09-05 2016-03-10 Voestalpine Stahl Gmbh Coil und verfahren zur herstellung eines zu einem coil aufgehaspelten elektrobandlaminats
US10755842B2 (en) 2014-09-05 2020-08-25 Voestalpine Stahl Gmbh Method for producing an electric strip laminate wound as a coil
EP3206213A1 (de) 2016-02-15 2017-08-16 Voestalpine Stahl GmbH Banddurchlaufverfahren zur herstellung eines zu einem coil aufgehaspelten elektrobandlaminats
WO2017140747A1 (de) 2016-02-15 2017-08-24 Voestalpine Stahl Gmbh Banddurchlaufverfahren zur herstellung eines zu einem coil aufgehaspelten elektrobandlaminats
KR20180114090A (ko) * 2016-02-15 2018-10-17 뵈스트알파인 스탈 게엠베하 코일로 권취된 전기 스트립 적층체 제조용 스트립 통과 방법
US11090920B2 (en) 2016-02-15 2021-08-17 Voestalpine Stahl Gmbh Continuous strip method for producing an electric strip laminate which is wound as a coil
KR102649427B1 (ko) 2016-02-15 2024-03-19 뵈스트알파인 스탈 게엠베하 코일로 권취된 전기 스트립 적층체 제조용 스트립 통과 방법

Also Published As

Publication number Publication date
CA2649201A1 (en) 2007-10-18
CN101438358A (zh) 2009-05-20
DE102006017762A1 (de) 2007-10-18
MX2008013085A (es) 2008-10-27
JP2009533855A (ja) 2009-09-17
US20090280338A1 (en) 2009-11-12
BRPI0709987A2 (pt) 2011-08-02
DE102006017762B4 (de) 2010-07-08
EP2005451A1 (de) 2008-12-24

Similar Documents

Publication Publication Date Title
WO2007116047A1 (de) Verfahren zum laminieren eines elektrobandes für transformatorenkerne
EP1905047B1 (de) Verfahren zur herstellung eines weichmagnetischen kerns für generatoren sowie generator mit einem derartigen kern
DE102017208719A1 (de) Weichmagnetisches Blechpaket und Verfahren zur Herstellung eines weichmagnetischen Blechpakets für einen Stator und/oder Rotor einer elektrischen Maschine
WO1999016092A1 (de) Verfahren und vorrichtung zur herstellung von aus blechlamellen bestehenden paketen für magnetkerne
DE102018131473A1 (de) Schnelles spannungsfreiglühen für elektrostahl
EP3503134B1 (de) Haltevorrichtung zum halten eines weichmagnetischen transformatorenstapelkerns sowie transformator
DE2009171A1 (de) Verfahren zum Herstellen von lamellierten Blechpaketen für elektrotechnische Zwecke
WO2021185398A1 (de) Verfahren zur herstellung einer schichtanordnung aus elektroblech, danach hergestellte schichtanordnung, rotor oder stator sowie elektromotor
JPS59181522A (ja) 誘導磁気鉄心の製造方法
EP4082772A1 (de) Elektroblech, verwendung eines elektroblechs und verfahren zur herstellung eines elektroblechs
DE102021111981A1 (de) Geschichteter stator und verfahren zur herstellung eines geschichteten stators eines axialflussmotors
DE730186C (de) Schaltanordnung fuer Unterbrechungseinrichtungen
DE4437307A1 (de) Herstellung von Kernblechen
DE102019132543A1 (de) Magnetkern aus nanokristallinem laminat für ein induktives bauelement
EP3607569A1 (de) Elektroisoliertes elektrisches leitungsband, insbesondere für elektromotoren und transformatoren
DE1613654A1 (de) Eisenkern fuer elektrische Induktionsapparate
EP2845208A2 (de) Kupfer-flachwicklung zur erzeugung magnetischer felder in elektrischen energiewandlern mit hohen füllfaktoren
EP2434499A1 (de) Laminierter Schichtaufbau zur Herstellung eines Isolationsmaterials
DE1439897A1 (de) Aus Einzelblechen geformter,z.B. geschichteter oder gewickelter Magnetkern
AT510819B1 (de) Magnetischer kern mit randisolation und verfahren zu dessen herstellung
DE10133872A1 (de) Langstatorblechpaket für einen Linearmotor
DE113741C (de)
DE102022120602A1 (de) Verfahren zum Herstellen eines Blechs aus einer weichmagnetischen Legierung für ein Blechpaket
DE2821120C3 (de) Verfahren zur Herstellung geblechter Eisenkerne für Transformatoren, Drosselspulen u. dgl.
WO2022069503A1 (de) Elektrische maschine und anlage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07727912

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007727912

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/a/2008/013085

Country of ref document: MX

Ref document number: 2009504713

Country of ref document: JP

Ref document number: 2649201

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 4154/KOLNP/2008

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 200780016392.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 12297087

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0709987

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20081010