WO2007115857A2 - Gebervorrichtung für eine elektrische maschine - Google Patents

Gebervorrichtung für eine elektrische maschine Download PDF

Info

Publication number
WO2007115857A2
WO2007115857A2 PCT/EP2007/051673 EP2007051673W WO2007115857A2 WO 2007115857 A2 WO2007115857 A2 WO 2007115857A2 EP 2007051673 W EP2007051673 W EP 2007051673W WO 2007115857 A2 WO2007115857 A2 WO 2007115857A2
Authority
WO
WIPO (PCT)
Prior art keywords
yoke
sensor
yoke portion
machine component
magnets
Prior art date
Application number
PCT/EP2007/051673
Other languages
English (en)
French (fr)
Other versions
WO2007115857A3 (de
Inventor
Roland Finkler
Zeljko Jajtic
Markus Knorr
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to JP2009503511A priority Critical patent/JP5014415B2/ja
Priority to CN2007800125734A priority patent/CN101416029B/zh
Priority to US12/296,352 priority patent/US8063628B2/en
Publication of WO2007115857A2 publication Critical patent/WO2007115857A2/de
Publication of WO2007115857A3 publication Critical patent/WO2007115857A3/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/204Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils
    • G01D5/2046Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils by a movable ferromagnetic element, e.g. a core
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/147Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the movement of a third element, the position of Hall device and the source of magnetic field being fixed in respect to each other
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D2205/00Indexing scheme relating to details of means for transferring or converting the output of a sensing member
    • G01D2205/40Position sensors comprising arrangements for concentrating or redirecting magnetic flux

Definitions

  • the present invention relates to a donor device for an electrical machine, which has a machine component provided with pole teeth, for detecting a movement relative to the machine component ⁇ re ⁇ .
  • the encoder device is provided with a U- or E-shaped yoke and a sensor arranged to detect a magnetic quantity in / on the yoke.
  • Encoder devices of this type can be used for any electrical machines, such as DC motors, AC motors and AC motors. Here again, they can be used both in rotary motors and linear motors. Specifically, in order to approach certain angles of rotation in rotary motors or in certain distances of linear motors, it is necessary to measure the current angle of rotation or the current path. The measurement should be as precise as possible, so that the corresponding angle of rotation or the corresponding distance can be approached by means of a suitable control device precisely and quickly. The knowledge of the position is necessary for synchronous machines for correct energization of the motor.
  • optical measuring systems For determining the position of linear motors usually optical measuring systems are used.
  • a disadvantage of an optical measurement is that it is expensive to implement and that the optical measurement is very easily impaired by soiling in the linear motor or in its surroundings, or rendered impossible, so that in many cases the control device fails.
  • the primary part and the secondary part form a Li ⁇ near motor, and the measuring head is connected firmly to the primary part ver ⁇ .
  • the secondary part is designed as a rack, is made of ferromagnetic material and has equidistant teeth in a preferred direction.
  • the measuring head is movable in the preferred direction and opposite thereto. Is located between the measuring head and the rack, an air ⁇ gap, and the measuring head has at least one sensor, can be measured by means of the magnetic fields for position determination.
  • the measuring head can with a reluctance or "static" magnetic field sensors can be realized as Hall sensors, or field plates. This is needed for the generation ⁇ supply of a preferably at least approximately sinusoidal track signal with zero crossing two differentially connected probes, as the signal of a measuring head no comprises zero crossing. Rather, the signal varies only between a po ⁇ sitiven minimum value and a positive maximum value.
  • the object of the present invention is to provide an inexpensive sensor system for a moving electric Ma ⁇ machine propose in which a signal is provided with zero-crossing as a function of position.
  • a donor device for an electrical machine which has a teeth provided with Pol ⁇ teeth machine component for detecting a position or a movement relative to the machine component with a U-shaped yoke or yoke portion and a sensor, the is arranged for detecting a magnetic variable in / on the yoke portion, wherein at a free end of the yoke portion two oppositely directed or directional magnets are arranged depending on the Posi ⁇ tion of the magnets against one of the pole teeth of the machine component oppositely directed by the sensor detek- tierbare, magnetic fluxes in the yoke section gen to erzeu ⁇ .
  • yoke in this document and an entire yoke can be understood. According to the invention it is thus achieved that inside the yoke or yoke section in the method of the dispensing device relative to the machine component changes the direction of the magneti flux in the yoke ⁇ rule. Therefore, a signal can be obtained with zero crossing, from which the position can be determined more precisely.
  • An optionally recovered sine-cosine Singalcru is also suitable for a conventional sine / Kosi ⁇ nus encoder evaluation.
  • Such a signal pair can be generated, for example, with the aid of two encoder devices according to the invention, which are offset in the direction of movement by a quarter pole pair length or electrical period of the secondary part.
  • the sensor for detecting the magnetic quantity may be, for example, a Hall sensor or a measuring coil. With these sensors, the flow or flux change in the yoke can be determined with sufficient accuracy.
  • the magnets can be permanent magnets at the free end of the yoke or yoke section. Thus it is not necessary for the Positionsbestim ⁇ tion the magnetic flux to generate electricity.
  • the magnets at the free end of the yoke or yoke section can be alternating current-carrying He ⁇ control coils. Then AC s are in the / measuring coil voltage / induced, which are advantageously first demodulated in ge ⁇ suitable manner.
  • two oppositely directed or directional magnets are arranged at both free ends of the U-shaped yoke portion.
  • the magnetic flux is amplified in the yoke accordingly.
  • the yoke portion another leg may be formed, so that there is an E-shaped yoke. In this way, the symmetry of the signal can be increased.
  • the sensor is preferably arranged in / on the middle limb of the E-shaped yoke or yoke section.
  • the donor device according to the invention can also be utilized for a transverse flow machine by the U-shaped yoke portion is arranged transversely to the direction of movement.
  • the magnets at the free ends of the yoke section must be arranged one behind the other in the direction of movement of the encoder device, so that the direction of the magnetic flux in the yoke section or in the sensor air gap changes during the movement of the encoder device (analogous to the longitudinal flow arrangement of the encoder device illustrated in FIG. ,
  • a donor device for an electric machine which has a Polzähnen provided Maschinenkomponen ⁇ te, for detecting a position or a movement relative to the machine component with a U-shaped yoke portion, in or on the yoke portion arranged magnetic means for generating a magnetic flux in the yoke portion and a sensor which is arranged to detect a magnetic quantity in / on the yoke portion, wherein the sensor at a free end of the yoke portion has two sensor elements which at the same magnetic flux through the Jochabites effect in both sensor elements differently directed voltages to generate depending on the position of the sensor elements relative to one of the pole teeth of the machine component correspondingly high and directed voltages to the sensor elements.
  • the ratio of the magnetic fluxes in the two magnetic coils changes at one of the free ends of the yoke. Because of the differently directed stresses in the sensor elements corresponding to a precise position signal may be ⁇ NEN optionally Won with zero crossing.
  • the two sensor elements can be configured as Hall sensors or measuring coils. They are inexpensive to buy and yet sufficiently accurate.
  • another leg can be molded onto the yoke section, so that an E-shaped yoke results and, in addition, two sensor elements of the aforementioned type can also be arranged at the free end of the further leg. With this arrangement, two signals phase-shifted by 90 ° can be obtained with zero crossing.
  • a dispensing device for an electrical machine having a shipping with pole teeth ⁇ hene machine component, like E-to the machine component with a for detecting a positi ⁇ on or a movement relative symmetrically transversely divided to the movement direction into two yoke parts yoke, one between the two
  • Yoke parts arranged sensor and arranged at the ends of both yoke parts, directed or directional magnet.
  • This embodiment enables the realization of the inventive principle with only a single magnet. Therefore, only a single magnet tolerance is included in the measurement.
  • FIG. 1 shows a longitudinal section through an inventive donor ⁇ device according to a first embodiment
  • FIG. 2 shows a longitudinal section through a donor device according to a second embodiment with E-shaped yoke.
  • 3 shows a longitudinal section through a donor device according to a third embodiment with a single permanent magnet;
  • FIG. 4 shows a longitudinal section through an inventive donor ⁇ device according to a fourth embodiment
  • 5 shows a transformation diagram for inventive arrangements of encoder devices
  • FIG. 6 shows a longitudinal section through a fifth embodiment of a donor device according to the invention.
  • FIG. 7 shows a 3D view of a sixth embodiment and FIG. 8 shows a front view of the embodiment of FIG. 7.
  • the embodiments relate to linear motors, but can, mutatis mutandis, also on factors rotational Mo ⁇ , in particular torque motors are transmitted.
  • FIG. 1 longitudinal section of a portion of a linear motor shows a scanning head 1 and a portion of a primary part and a secondary part 2.
  • the primary part 1 has a yoke 3, which is configured substantially U-shaped.
  • At the free ends 4 and 5 of the yoke 3 by ⁇ are manentmagnete 6, 7, 8 and 9 arranged as pole teeth.
  • Alleli ⁇ che permanent magnets 6 to 9 are magnetized in the direction of the scanning head 1 to the secondary part 2 or vice versa.
  • At each of the free ends 4, 5 are each two permanent magnets 6, 7 and 8, 9, which are magnetized in parallel, but opposite.
  • the Hall sensor 10 divides the yoke 3 into two halves.
  • the secondary part 2 here consists of a rack with the teeth 11, 12 and 13.
  • the teeth of the secondary part 2 have the same distance as the teeth 6 and 8 or 7 and 9 of the spacer head first
  • the yoke 3 and the secondary part 2 consist of a ferromagnetic material. Preferably, they are formed being laminated ⁇ .
  • the Hall sensor 10 In the position shown in FIG. 1, in which the permanent magnets 6 and 8 of the primary part stand over the teeth 11 and 12 of the secondary part 2, the Hall sensor 10 is penetrated by a magnetic field or magnetic flux 101 from "left to right" If the scanning head 1, ie the encoder device, moves farther to the left in the direction of movement 18, the magnetic field continues to decrease through the Hall sensor 10 until it becomes 0.
  • FIG 2 shows a modified embodiment of the exporting ⁇ approximately example of FIG 1.
  • carried conversion steps which are also individually or may be performed in several combinations of two waste.
  • the first modification step consists in that permanent magnets 6, 7 are arranged only at a single free end of the yoke. Since the permanent magnet 6 is generated, and in FIG 2 upwardly directed magnetic field over a ⁇ pole tooth of Se secondary part 2 is arranged, the drawn by the Hall sensor 10 results in flow 102. If, however, the perma- Magnet magnet 7 is directed downward, over a pole tooth of the secondary part 2, the magnetic flux is directed by the Hall sensor 10 opposite.
  • a second modification step consists in that the Hall sensor is not arranged in the connecting leg between the two free-ending legs of the U-shaped yoke, but in one of the free-ending legs.
  • a third modification step is that to the
  • Yoke a third freely ending leg is attached. In the case of ⁇ game of FIG 2, this results in a one-piece, E-shaped yoke 14.
  • the decisive for the movement or position determination flow passes through but essentially only a U-shaped yoke portion, unless the position sensor is located in one symmetrical position to the pole teeth of the secondary part. 2
  • FIG. 3 shows a further embodiment of the inventive donor device with an E-shaped yoke.
  • the yoke is symmetrically divided into two yoke halves 15 and 16. Between them is an air gap in which the Hall sensor 10 is arranged.
  • the middle leg 17 thus consists of two parallel leg halves, which are separated by the air gap in which the Hall sensor 10 is located.
  • a single permanent magnet is 19.
  • this Per ⁇ manentmagnet 19 magnetized upward, so the drawn ⁇ a flow 103 that yields. Since the left half of the leg 17 det 2 befin ⁇ over the pole tooth 11 of the secondary part, the magnetic flux extends in the left thigh ⁇ half to top and from left to right by the Hall sensor 10.
  • the measurement principle according to the invention can also be transferred to an inductive measuring head according to the reluctance resolver principle by replacing the permanent magnets and the Hall sensor with corresponding coils.
  • the alternative donor device 20 at the free ends of its yoke 21 with excitation coils 22, 23, 24, 25 is provided. Since the electromagnets thus formed must have different magnetization directions at the free ends of the yoke 21, they are correspondingly electrically connected.
  • the excitation coils 22 to 25 maral ⁇ tet in series.
  • the coils 22 to 25 of these coils are connected in series in the same Wicklungssinnen that the lower terminal of the coil 22 to the lower terminal of the coil 23, the upper terminal of the coil 23 to the lower An ⁇ conclusion the coil 24 and the upper terminal of the coil 24 is connected to the upper terminal of the coil 25.
  • An excitation signal is applied to the (still free) upper terminal of the coil 22 and the (thus still free) lower terminal of the coil 25.
  • a measuring coil 26 is wound. At it can be tapped a voltage which is generated by the magnetic flux flowing in the yoke 21.
  • the secondary part 27 of the linear drive has the same shape as that of the secondary part 2 of FIG. 1.
  • the geometry of the primary part or the encoder device 20 is the same as that of the part 1 of FIG. 1.
  • the mode of operation of the encoder device of FIG. 4 corresponds in principle to that of the device of FIG. 1.
  • the permanent magnets are here only provided by excitation coils and the Hall effect. Sensor replaced by a measuring coil. Since the electromagnets 22 to 25 are operated with alternating current, the equivalence with the above-described embodiment according to FIG. 1 applies only in correspondingly small time windows. This means that in this small time window, the direction of the magnetic flux in the yoke depends directly on the position of the magnetic coils with respect to the pole teeth of the machine component.
  • the coils used in the embodiment of FIG 2 can also operate with the reverse function.
  • the coil 26 can be used as the exciting coil and the coils 22 to 25 at the free ends of the yoke 21 as measuring coils.
  • the measurement signals of the individual coils add up to a resulting measurement signal.
  • this ER extends its maximum values when the teeth of the Se ⁇ exceed those secondary part 27th In between, zero crossings result as in the exemplary embodiment of FIG. 1.
  • an arrangement A4 is obtained according to the reluctance resolver principle, as shown by way of example in FIG. 4 with excitation coils 22 to 25 and the measuring coil 26. If the measuring coils are replaced by a Hall sensor and the excitation coils by permanent magnets of this arrangement A4, it returns to the arrangement Al. The It is of course also possible to exchange the components in reverse order.
  • the term "Hall sensor” generally stands for a (static) magnetic field sensor and the term “permanent magnet” for a device for generating a time-constant magnetic field. If, when replacing or exchanging, arrangements with several Hall sensors occur, their output signals must be added or subtracted accordingly.
  • FIG 6 A further embodiment of a Ge ⁇ invention is shown in FIG 6 bervorraum.
  • This transmitter device it is possible not only one but two 90 ° phase-shifted signals, center with zero crossing to generate ⁇ each.
  • an exciting coil 31 is wound around the middle leg of an E-shaped yoke 30.
  • a cosine signal are located to produce at the free end of the left leg of the yoke 30, two sensing coils 32 and 33.
  • ⁇ SEN are located at the end of the right leg of the yoke 30 for generating a sine wave signal, two sensing coils 34 and 35.
  • the Measuring coils 32 and 33 are connected in series with the same sense of winding, that the lower terminals of both coils are connected. The same applies to the measuring coils 34 and 35.
  • the center distance of the outer legs of the yoke 30 is 2.25 PPL.
  • the embodiment of the encoder device according to the invention shown in FIG 6 can be modified according to the principle of FIG 5. However, only the transformations in the vertical direction can be carried out here because two measuring signals are generated here from one excitation.
  • the arrangements described in connection with FIGS. 1 to 6 are suitable for secondary parts of so-called longitudinal flow machines, ie for machines in which the flow generated by the motor in the secondary part closes in the direction of movement.
  • the secondary part of such longitudinal flow machines is characterized in that the individual teeth of the secondary part are magnetically connected to each other.
  • cross-flow machines in which the flux generated by the motor closes transversely to the direction of movement and thus within each tooth, the teeth 40 must therefore not be magnetically connected to each other.
  • FIG 7 shows a top view of an arrangement for such a secondary part of mutually magnetically insulated teeth 40.
  • FIG 8 shows a corresponding front view.
  • the yoke 41 or the yoke section is designed here also substantially U-shaped. At the free ends of the yoke 41 are each two permanent magnets 42, 43 and 44, 45.
  • the Magneti ⁇ s istscardien of the magnets 42 and 43 are also directed entge ⁇ gen set, as the magnetization directions of the magnets 44 and 45.
  • a Hall sensor 46th in the middle of the yoke 41 registers the magnetic flux. Moves the yoke 41 with its magnet in the direction of travel 15 over the pole teeth 40 of the secondary part, then changes the direction of flux ⁇ tion through the Hall sensor 46th
  • the sine wave of the sensor signal can be optimized. Not only the shape of the pole teeth, but also their distance plays a role.
  • the encoder device is achieved a cost reduction compared to the prior art, the inventive Ges ⁇ taltung.
  • Anord ⁇ voltages are possible with a single sensor, but a sensor signal can be provided with zero crossing.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Linear Motors (AREA)

Abstract

Es soll ein kostengünstiges Gebersystem für eine bewegliche elektrische Maschine zur Positionsbestimmung bereitgestellt werden, wobei das Gebersignal über Nulldurchgänge verfügt. Dies wird z.B. erreicht, durch eine Gebervorrichtung (1) mit einem U-förmigen Joch (3) und einem Sensor (10), der zur Erfassung einer magnetischen Größe in/an dem Joch (3) angeordnet ist. An einem freien Ende des Jochs (3) sind entgegengesetzt gerichtete oder richtbare Magnete (6 bis 9) angeordnet Abhängig von der Position der Magnete (6 bis 9) gegenüber einem der Polzähne (11,12,13) einer Maschinenkomponente (2) können entgegengesetzt gerichtete, von dem Sensor (10) detektierbare, magnetische Flüsse in dem Joch (3) erzeugt werden. Hieraus lassen sich in etwa sinusförmige Sensorsignale beispielsweise zur Regelung eines Linearmotors gewinnen, ohnemehrere Messsensoren einsetzen zu müssen.

Description

Beschreibung
Gebervorrichtung für eine elektrische Maschine
Die vorliegende Erfindung betrifft eine Gebervorrichtung für eine elektrische Maschine, die eine mit Polzähnen versehene Maschinenkomponente aufweist, zum Erfassen einer Bewegung re¬ lativ zu der Maschinenkomponente. Die Gebervorrichtung ist mit einem U- oder E-förmigen Joch und einem Sensor, der zur Erfassung einer magnetischen Größe in/an dem Joch angeordnet ist, ausgestattet.
Gebervorrichtungen dieser Art können für beliebige elektrische Maschinen, wie beispielsweise Gleichstrommotoren, Wech- selstrommotoren und Drehstrommotoren eingesetzt werden. Hier wiederum können sie sowohl bei rotatorischen Motoren als auch bei Linearmotoren Verwendung finden. Speziell ist es nämlich zum Anfahren bestimmter Drehwinkel bei rotatorischen Motoren bzw. bestimmter Wegstrecken bei Linearmotoren nötig, den ak- tuellen Drehwinkel bzw. die aktuelle Wegstreckte zu messen. Die Messung soll dabei möglichst präzise erfolgen, damit der entsprechende Drehwinkel bzw. die entsprechende Wegstrecke mittels einer geeigneten Regelungseinrichtung präzise und schnell angefahren werden kann. Die Kenntnis der Position ist bei Synchronmaschinen auch zur richtigen Bestromung des Motors notwendig.
Zur Positionsbestimmung für Linearmotoren werden üblicherweise optische Messsysteme eingesetzt. Nachteilig an einer opti- sehen Messung ist aber, dass diese teuer zu realisieren ist und dass die optische Messung sehr leicht durch Verschmutzungen im Linearmotor oder in dessen Umgebung beeinträchtigt o- der unmöglich gemacht wird, so dass es vielfach zu einem Versagen der Regelungseinrichtung kommt.
Aus der nachveröffentlichten Patentanmeldung 10 2005 045 374.0 ist ferner eine Messvorrichtung mit einem Messkopf zur Positionsbestimmung eines Primärteils auf einem Sekundärteil bekannt. Das Primärteil und das Sekundärteil bilden einen Li¬ nearmotor, und der Messkopf ist fest mit dem Primärteil ver¬ bunden. Das Sekundärteil ist als Zahnstange ausgebildet, ist aus ferromagnetischem Material hergestellt und besitzt in ei- ner Vorzugsrichtung äquidistante Zähne. Der Messkopf ist in der Vorzugsrichtung und entgegengesetzt dazu bewegbar. Zwischen dem Messkopf und der Zahnstange befindet sich ein Luft¬ spalt, und der Messkopf weist zumindest einen Sensor auf, mittels dem Magnetfelder zwecks Positionsbestimmung messbar sind. Der Messkopf kann mit einem Reluktanzresolver oder mit „statischen" Magnetfeldsensoren, wie Hall-Sensoren, oder Feldplatten realisiert werden. Dabei braucht man zur Erzeu¬ gung eines vorzugsweise wenigstens annähernd sinusförmigen Spursignals mit Nulldurchgang zwei in Differenz geschaltete Messköpfe, da das Signal eines Messkopfs keinen Nulldurchgang aufweist. Vielmehr schwankt das Signal nur zwischen einem po¬ sitiven Minimalwert und einem positiven Maximalwert.
Die Aufgabe der vorliegenden Erfindung besteht darin, ein kostengünstiges Gebersystem für eine bewegte elektrische Ma¬ schine vorzuschlagen, bei dem ein Signal mit Nulldurchgang in Abhängigkeit von der Position bereitgestellt wird.
Erfindungsgemäß wird diese Aufgabe gelöst durch eine Geber- Vorrichtung für eine elektrische Maschine, die eine mit Pol¬ zähnen versehene Maschinenkomponente aufweist, zum Erfassen einer Position oder einer Bewegung relativ zu der Maschinenkomponente mit einem U-förmigen Joch bzw. Jochabschnitt und einem Sensor, der zur Erfassung einer magnetischen Größe in/an dem Jochabschnitt angeordnet ist, wobei an einem freien Ende des Jochabschnitts zwei entgegengesetzt gerichtete oder richtbare Magnete angeordnet sind, um abhängig von der Posi¬ tion der Magnete gegenüber einem der Polzähne der Maschinenkomponente entgegengesetzt gerichtete, von dem Sensor detek- tierbare, magnetische Flüsse in dem Jochabschnitt zu erzeu¬ gen. Unter dem Begriff „Jochabschnitt" kann im vorliegenden Dokument auch ein gesamtes Joch verstanden werden. Erfindungsgemäß wird somit erreicht, dass sich innerhalb des Jochs bzw. Jochabschnitts beim Verfahren der Gebervorrichtung gegenüber der Maschinenkomponente die Richtung des magneti¬ schen Flusses im Joch ändert. Daher kann ein Signal mit NuIl- durchgang gewonnen werden, woraus sich die Position präziser bestimmen lässt. Ein gegebenenfalls gewonnenes Sinus-Kosinus- Singalpaar eignet sich außerdem für eine übliche Sinus/Kosi¬ nus-Geberauswertung. Ein solches Signalpaar lässt sich z.B. mit Hilfe von zwei erfindungsgemäßen Gebervorrichtungen er- zeugen, die in Bewegungsrichtung um eine viertel Polpaarlänge bzw. elektrische Periode des Sekundärteils versetzt sind.
Der Sensor zur Erfassung der magnetischen Größe kann beispielsweise ein Hall-Sensor oder eine Messspule sein. Mit diesen Sensoren lässt sich der Fluss bzw. die Flussänderung im Joch hinreichend genau bestimmen.
Im Falle eines Hall-Sensors als Sensor können die Magnete am freien Ende des Jochs bzw. Jochabschnitts Permanentmagnete sein. Damit ist es nicht notwendig, für die Positionsbestim¬ mung den magnetischen Fluss elektrisch zu erzeugen. Im Falle einer Messspule als Sensor können die Magnete am freien Ende des Jochs bzw. Jochabschnittes wechselstromdurchflossene Er¬ regerspulen sein. In der/den Messspulen werden dann Wechsel- spannung/en induziert, die vorteilhafterweise zunächst in ge¬ eigneter Weise demoduliert werden.
Vorzugsweise sind an beiden freien Enden des U-förmigen Jochabschnitts jeweils zwei entgegengesetzt gerichtete oder richtbare Magnete angeordnet. Damit ist der magnetische Fluss im Joch entsprechend verstärkt.
An den Jochabschnitt kann ein weiterer Schenkel angeformt sein, so dass sich ein E-förmiges Joch ergibt. Auf diese Wei- se lässt sich die Symmetrie des Signals erhöhen. Dabei ist der Sensor vorzugsweise in/an dem mittleren Schenkel des E-förmigen Jochs bzw. Jochabschnitts angeordnet. Darüber hinaus kann die erfindungsgemäße Gebervorrichtung auch für eine Querflussmaschine ausgenutzt werden, indem der U-förmige Jochabschnitt quer zur Bewegungsrichtung angeordnet wird. Die Magnete an den freien Enden des Jochabschnitts müs- sen in Bewegungsrichtung der Gebervorrichtung hintereinander angeordnet sein, damit beim Verfahren der Gebervorrichtung sich die Richtung des magnetischen Flusses im Jochabschnitt bzw. im Sensorluftspalt ändert (analog wie bei Längsflussan- ordnung der in FIGl dargestellten Gebervorrichtung) .
Ferner ist erfindungsgemäß zur Lösung der oben genannten Aufgabe vorgesehen, eine Gebervorrichtung für eine elektrische Maschine, die eine mit Polzähnen versehene Maschinenkomponen¬ te aufweist, zum Erfassen einer Position oder einer Bewegung relativ zu der Maschinenkomponente mit einem U-förmigem Jochabschnitt, einer in oder an dem Jochabschnitt angeordneten Magneteinrichtung zum Erzeugen eines magnetischen Flusses in dem Jochabschnitt und einem Sensor, der zur Erfassung einer magnetischen Größe in/an dem Jochabschnitt angeordnet ist, wobei der Sensor an einem freien Ende des Jochabschnitts zwei Sensorelemente aufweist, die beim gleichen magnetischen Fluss durch den Jochabschnitt in beiden Sensorelementen unterschiedlich gerichtete Spannungen bewirken, um abhängig von der Position der Sensorelemente gegenüber einem der Polzähne der Maschinenkomponente entsprechend hohe und gerichtete Spannungen an den Sensorelementen zu erzeugen.
Bei dieser Ausführungsform ändert sich das Verhältnis der magnetischen Flüsse in den beiden Magnetspulen an einem der freien Enden des Jochs. Wegen der unterschiedlich gerichteten Spannungen in den Sensorelementen kann ein entsprechend präzises Positionssignal gegebenenfalls mit Nulldurchgang gewon¬ nen werden.
Auch hier können die beiden Sensorelemente als Hall-Sensoren oder Messspulen ausgestaltet sein. Sie sind kostengünstig in der Anschaffung und dennoch ausreichend genau. An den Jochabschnitt kann auch bei dieser Ausgestaltung ein weiterer Schenkel angeformt sein, so dass sich ein E-förmiges Joch ergibt und außerdem an dem freien Ende des weiteren Schenkels ebenfalls zwei Sensorelemente der genannten Art an- geordnet sein. Mit dieser Anordnung lassen sich zwei um 90° phasenverschobene Signale mit Nulldurchgang gewinnen.
Auch bei dieser Ausführungsform ist es vorteilhaft, wenn an beiden frei endenden Schenkeln des Jochabschnitts jeweils zwei Sensorelemente angeordnet sind, die die entsprechend ge¬ richteten Spannungen liefern. In diesem Fall treten insbesondere z.B. durch Hintereinanderschaltung der Sensorelemente höhere Spannungen auf.
Erfindungsgemäß ist außerdem vorgesehen eine Gebervorrichtung für eine elektrische Maschine, die eine mit Polzähnen verse¬ hene Maschinenkomponente aufweist, zum Erfassen einer Positi¬ on oder einer Bewegung relativ zu der Maschinenkomponente mit einem E-förmigen, symmetrisch quer zur Bewegungsrichtung in zwei Jochteile geteilten Joch, einem zwischen den beiden
Jochteilen angeordneten Sensor und einem an den Enden beider Jochteile angeordneten, gerichteten oder richtbaren Magneten.
Diese Ausführungsform ermöglicht die Realisierung des erfin- dungsgemäßen Prinzips mit nur einem einzigen Magneten. Daher geht in die Messung nur eine einzige Magnettoleranz ein.
Insbesondere ist es vorteilhaft, die vorliegende Erfindung bei einem Linearmotor einzusetzen, wobei die oben genannte Maschinenkomponente dem Sekundärteil entspricht und die Ge¬ bervorrichtung an dem Primärteil befestigt oder Teil des Primärteils ist. Somit lässt sich kostengünstig eine Positions¬ regelung des Linearmotors bewerkstelligen.
Die vorliegende Erfindung wird nun anhand der beigefügten Zeichnungen näher erläutert, in denen zeigen: FIG 1 einen Längsschnitt durch eine erfindungsgemäße Geber¬ vorrichtung gemäß einer ersten Ausführungsform;
FIG 2 einen Längsschnitt durch eine Gebervorrichtung gemäß einer zweiten Ausführungsform mit E-förmigem Joch; FIG 3 einen Längsschnitt durch eine Gebervorrichtung gemäß einer dritten Ausführungsform mit einem einzigen Permanentmagneten;
FIG 4 einen Längsschnitt durch eine erfindungsgemäße Geber¬ vorrichtung gemäß einer vierten Ausführungsform; FIG 5 ein Transformationsdiagramm für erfindungsgemäße Anordnungen von Gebervorrichtungen;
FIG 6 einen Längsschnitt durch eine fünfte Ausführungsform einer erfindungsgemäßen Gebervorrichtung;
FIG 7 eine 3D-Ansicht einer sechsten Ausführungsform und FIG 8 eine Vorderansicht der Ausführungsform von FIG 7.
Die nachfolgend näher geschilderten Ausführungsbeispiele stellen bevorzugte Ausführungsformen der vorliegenden Erfindung dar. Die Ausführungsbeispiele beziehen sich auf Linear- motoren, sie können aber sinngemäß auch auf rotatorische Mo¬ toren, insbesondere Torquemotoren übertragen werden.
Der in FIG 1 wiedergegebene Längsschnitt eines Teils eines Linearmotors zeigt einen Abtastkopf 1 bzw. einen Abschnitt eines Primärteils und ein Sekundärteil 2. Das Primärteil 1 verfügt über ein Joch 3, das im Wesentlichen U-förmig ausgestaltet ist. An den freien Enden 4 und 5 des Jochs 3 sind Per¬ manentmagnete 6, 7, 8 und 9 als Polzähne angeordnet. Sämtli¬ che Permanentmagnete 6 bis 9 sind in Richtung vom Abtastkopf 1 zum Sekundärteil 2 oder umgekehrt magnetisiert . An jedem der freien Enden 4, 5 befinden sich jeweils zwei Permanentmagnete 6, 7 bzw. 8, 9, die parallel, aber entgegengesetzt magnetisiert sind.
Zwischen den beiden freien Enden 4 und 5 befindet sich in dem Joch 3 ein Hall-Sensor 10. Gegebenenfalls teilt der Hall- Sensor 10 das Joch 3 in zwei Hälften. Das Sekundärteil 2 besteht hier aus einer Zahnstange mit den Zähnen 11, 12 und 13. Die Zähne des Sekundärteils 2 besitzen den gleichen Abstand wie die Zähne 6 und 8 bzw. 7 und 9 des Abstandkopfs 1.
Das Joch 3 und das Sekundärteil 2 bestehen aus einem ferro- magnetischen Material. Vorzugsweise sind sie geblecht ausge¬ bildet.
In der in FIG 1 dargestellten Position, in der die Permanentmagnete 6 und 8 des Primärteils über den Zähnen 11 und 12 des Sekundärteils 2 stehen, wird der Hall-Sensor 10 von einem Magnetfeld bzw. Magnetfluss 101 von „links nach rechts" durchsetzt. Bewegt sich nun der Abtastkopf 1, d.h. die Geber- Vorrichtung, weiter nach links in Bewegungsrichtung 18, so nimmt das Magnetfeld durch den Hall-Sensor 10 immer weiter ab, bis es zu Null wird. Bei der weiteren Bewegung wechselt die Richtung des Magnetfelds und es nimmt schließlich einen Maximalwert an. Dies ist dann der Fall, wenn der Abtastkopf so steht, dass die Permanentmagnete 7 und 9 über den Zähnen 11 und 12 des Sekundärteils stehen. Bei weiterer Bewegung nach links sinkt das Magnetfeld wieder, wechselt die Richtung und nimmt schließlich wieder einen Maximalwert an, wenn die Permanentmagnete 6 und 8 über den Zähnen 13 und 11 stehen. Bei dieser Bewegung um eine Zahnteilung wird somit genau einer Gebersignalperiode mit Nulldurchgängen durchlaufen.
FIG 2 zeigt eine abgewandelte Ausführungsform des Ausfüh¬ rungsbeispiels von FIG 1. Bei der Abwandlung sind mehrere Ab- wandlungsschritte vorgenommen, die auch einzeln oder in Zweierkombinationen durchgeführt werden können.
Der erste Abwandlungsschritt besteht darin, dass nur an einem einzigen freien Ende des Jochs Permanentmagnete 6, 7 angeord- net sind. Da der Permanentmagnet 6 ein in der FIG 2 nach oben gerichtetes Magnetfeld erzeugt und über einem Polzahn des Se¬ kundärteils 2 angeordnet ist, ergibt sich der durch den Hall- Sensor 10 eingezeichnete Fluss 102. Steht hingegen der Perma- nentmagnet 7, dessen Magnetisierung nach unten gerichtet ist, über einem Polzahn des Sekundärteils 2, so ist der Magnet- fluss durch den Hall-Sensor 10 entgegengesetzt gerichtet.
Ein zweiter Abwandlungsschritt besteht darin, dass der Hall- Sensor nicht im Verbindungsschenkel zwischen den beiden frei endenden Schenkeln des U-förmigen Jochs, sondern in einem der frei endenden Schenkel angeordnet ist.
Ein dritter Abwandlungsschritt besteht darin, dass an das
Joch ein dritter frei endender Schenkel angefügt ist. Im Bei¬ spiel der FIG 2 ergibt sich damit ein einteiliges, E-förmiges Joch 14. Der für die Bewegungs- bzw. Positionsbestimmung maßgebliche Fluss durchläuft im Wesentlichen aber nur einen U-förmigen Jochabschnitt, es sei denn, der Positionssensor befindet sich in einer symmetrischen Position zu den Polzähnen des Sekundärteils 2.
FIG 3 zeigt eine weitere Ausführungsform der erfindungsgemä- ßen Gebervorrichtung mit einem E-förmigen Joch. Das Joch ist symmetrisch in zwei Jochhälften 15 und 16 geteilt. Zwischen ihnen befindet sich ein Luftspalt, in dem der Hall-Sensor 10 angeordnet ist. Der mittlere Schenkel 17 besteht somit aus zwei parallelen Schenkelhälften, die durch den Luftspalt, in welchem sich der Hall-Sensor 10 befindet, getrennt sind. Am freien Ende beider Schenkelhälften befindet sich ein einziger Permanentmagnet 19. In dem Beispiel von FIG 3 ist dieser Per¬ manentmagnet 19 nach oben magnetisiert , so dass sich der ein¬ gezeichnete Fluss 103 ergibt. Da sich die linke Hälfte des Schenkels 17 über dem Polzahn 11 des Sekundärteils 2 befin¬ det, verläuft der magnetische Fluss in der linken Schenkel¬ hälfte nach oben und von links nach rechts durch den Hall- Sensor 10. Wenn sich die rechte Hälfte des mittleren Schenkels 17 über dem Polzahn 11 oder einem anderen Polzahn befin- det, verläuft der magnetisch Fluss im Wesentlichen in der rechten Hälfte und durchläuft den Hall-Sensor 10 von rechts nach links. In diesem Fall ergibt sich eine Messspannung umgekehrten Vorzeichens. Der Vorteil dieser Ausführungsform be- steht darin, dass lediglich ein Permanentmagnet für die Ge¬ bervorrichtung vorzusehen ist.
Das erfindungsgemäße Messprinzip lässt sich auch auf einen Induktivmesskopf nach dem Reluktanzresolverprinzip übertragen, indem die Permanentmagnete und der Hall-Sensor durch entsprechende Spulen ersetzt werden. Demnach ist gemäß FIG 4 die alternative Gebervorrichtung 20 an den freien Enden ihres Jochs 21 mit Erregerspulen 22, 23, 24, 25 versehen. Da die so gebildeten Elektromagnete an den freien Enden des Jochs 21 unterschiedliche Magnetisierungsrichtungen aufweisen müssen, sind sie entsprechend elektrisch verschaltet. Im vorliegenden Beispiel sind die Erregerspulen 22 bis 25 in Serie geschal¬ tet. Um die entgegengesetzten Magnetisierungsrichtungen zu erzielen, sind bei gleichen Wicklungssinnen der Spulen 22 bis 25 dieser Spulen derart in Reihe geschaltet, dass der untere Anschluss der Spule 22 mit dem unteren Anschluss der Spule 23, der obere Anschluss der Spule 23 mit dem unteren An¬ schluss der Spule 24 und der obere Anschluss der Spule 24 mit dem oberen Anschluss der Spule 25 verbunden ist. Ein Erregersignal wird an den (von daher noch freien) oberen Anschluss der Spule 22 und den (von daher noch freien) unteren Anschluss der Spule 25 gelegt.
Um den Verbindungsschenkel, der die beiden Schenkel mit den freien Enden des Jochs 21 verbindet, ist eine Messspule 26 gewickelt. An ihr lässt sich eine Spannung abgreifen, die durch den im Joch 21 fließenden magnetischen Fluss erzeugt wird.
Das Sekundärteil 27 des Linearantriebs besitzt die gleiche Form, wie die des Sekundärteils 2 von FIG 1. Ebenso ist die Geometrie des Primärteils bzw. der Gebervorrichtung 20 die gleiche, wie die des Teils 1 von FIG 1.
Die Funktionsweise der Gebervorrichtung von FIG 4 entspricht im Prinzip der der Vorrichtung von FIG 1. Die Permanentmagnete sind hier lediglich durch Erregerspulen und der Hall- Sensor durch eine Messspule ersetzt. Da die Elektromagnete 22 bis 25 mit Wechselstrom betrieben werden, gilt die Äquivalenz mit dem oben geschilderten Ausführungsbeispiel gemäß FIG 1 nur in entsprechend kleinen Zeitfenstern. Dies bedeutet, dass in diesem kleinen Zeitfenster die Richtung des magnetischen Flusses im Joch unmittelbar von der Position der Magnetspulen gegenüber den Polzähnen der Maschinenkomponente abhängt.
Die in dem Ausführungsbeispiel von FIG 2 eingesetzten Spulen lassen sich auch mit umgekehrter Funktion betreiben. So können die Spule 26 als Erregerspule und die Spulen 22 bis 25 an den freien Enden des Jochs 21 als Messspulen verwendet werden. In diesem Fall addieren sich die Messsignale der Einzelspulen zu einem resultierenden Messsignal. Auch dieses er- reicht seine Maximalwerte, wenn die Zähne über denen des Se¬ kundärteils 27 liegen. Dazwischen ergeben sich Nulldurchgänge wie in dem Ausführungsbeispiel von FIG 1.
Wie oben angedeutet ist, kann man eine Anordnung mit HaIl- Sensoren und Permanentmagneten in eine Anordnung nach dem Re- luktanzresolverprinzip überführen. Ebenso können Mess- und Erregerspulen untereinander vertauscht werden. Generell kann diese Variation der Anordnungen durch das Bild von FIG 5 beschrieben werden. Ausgehend von einer Anordnung Al mit einem Hall-Sensor und Permanentmagneten gemäß FIG 1 kann durch Vertauschen des Hall-Sensors und der Permanentmagnete die Anord¬ nung A2 erreicht werden, bei der die Hall-Sensoren an den freien Enden des Jochs angeordnet sind und ein Permanentmag¬ net sich im Joch befindet. Werden von dieser Anordnung A2 die Hall-Sensoren durch Messspulen und der Permanentmagnet durch eine Erregerspule ersetzt, so gelangt man zur Anordnung A3. Vertauscht man nun von der Anordnung A3 die Messspulen und Erregerspulen erhält man eine Anordnung A4 nach dem Reluk- tanzresolverprinzip, wie sie exemplarisch in FIG 4 mit Erre- gerspulen 22 bis 25 und der Messspule 26 wiedergegeben ist. Werden von dieser Anordnung A4 die Messspulen durch einen Hall-Sensor und die Erregerspulen durch Permanentmagnete ersetzt, so gelangt man wieder zu der Anordnung Al. Der Aus- tausch der Komponenten kann selbstverständlich auch in umgekehrter Reihenfolge durchgeführt werden. Der Begriff „Hall- Sensor" steht hier allgemein für einen (statischen) Magnetfeldsensor und der Begriff „Permanentmagnet" für eine Ein- richtung zur Erzeugung eines zeitlich konstanten Magnetfelds. Wenn beim Ersetzen bzw. Tauschen Anordnungen mit mehreren Hall-Sensoren entstehen, so sind deren Ausgangssignale entsprechend zu addieren bzw. zu subtrahieren.
Ein weiteres Ausführungsbeispiel einer erfindungsgemäßen Ge¬ bervorrichtung ist in FIG 6 dargestellt. Mit dieser Gebervorrichtung ist es möglich, nicht nur eines sondern zwei um 90° phasenverschobene Signale jeweils mit Nulldurchgang zu gene¬ rieren. Hierzu ist um den mittleren Schenkel eines E-förmigen Jochs 30 eine Erregerspule 31 gewickelt. An dem freien Ende des linken Schenkels des Jochs 30 befinden sich zur Erzeugung eines Kosinus-Signals zwei Messspulen 32 und 33. Gleicherma¬ ßen befinden sich am Ende des rechten Schenkels des Jochs 30 zur Erzeugung eines Sinus-Signals zwei Messspulen 34 und 35. Die Messspulen 32 und 33 sind bei gleichem Wicklungssinn derart in Reihe geschaltet, dass die unteren Anschlüsse beider Spulen verbunden sind. Das Gleiche gilt für die Messspulen 34 und 35.
Zur Optimierung der Messsignale ist die Dimension des Jochs 30 auf die Polpaarlänge PPL bzw. elektrische Periode des Se¬ kundärteils 2 abgestimmt. Demnach beträgt der Mittenabstand der äußeren Schenkel des Jochs 30 2,25 PPL. Somit lassen sich mit einem einzigen Kopf ein Sinus- und ein Kosinus-Signal je- weils mit Nulldurchgang zur Positionsbestimmung gewinnen.
Auch die in FIG 6 dargestellte Ausführungsform der erfindungsgemäßen Gebervorrichtung lässt sich nach dem Prinzip von FIG 5 abwandeln. Allerdings können hier nur die Transformati- onen in senkrechter Richtung durchgeführt werden, weil hier aus einer Erregung zwei Messsignale erzeugt werden. Die im Zusammenhang mit den FIG 1 bis 6 geschilderten Anordnungen eignen sich für Sekundärteile von sogenannten Längs- flussmaschinen, d.h. für Maschinen, bei denen sich der vom Motor erzeugte Fluss im Sekundärteil in Bewegungsrichtung schließt. Das Sekundärteil solcher Längsflussmaschinen zeichnet sich dadurch aus, dass die einzelnen Zähne des Sekundärteils magnetisch leitend miteinander verbunden sind. Bei Querflussmaschinen hingegen, bei denen sich der vom Motor erzeugte Fluss quer zur Bewegungsrichtung und damit innerhalb jeweils eines Zahns schließt, müssen die Zähne 40 demzufolge nicht magnetisch leitend miteinander verbunden sein. FIG 7 zeigt in der Draufsicht eine Anordnung für ein solches Sekun¬ därteil aus voneinander magnetisch isolierten Zähnen 40. FIG 8 zeigt eine entsprechende Vorderansicht. Das Joch 41 bzw. der Jochabschnitt ist auch hier im Wesentlichen U-förmig ausgestaltet. An den freien Enden des Jochs 41 befinden sich jeweils zwei Permanentmagnete 42, 43 und 44, 45. Die Magneti¬ sierungsrichtungen der Magnete 42 und 43 sind ebenso entge¬ gengesetzt gerichtet, wie die Magnetisierungsrichtungen der Magnete 44 und 45. Ein Hall-Sensor 46 in der Mitte des Jochs 41 registriert den magnetischen Fluss. Verfährt das Joch 41 mit seinen Magneten in Verfahrrichtung 15 über den Polzähnen 40 des Sekundärteils, so ändert sich auch hier die Flussrich¬ tung durch den Hall-Sensor 46.
Durch eine entsprechende Gestaltung des Abtastkopfs bzw. der Gebervorrichtung 1, 20 und eventuell des Sekundärteils 2, 27 lässt sich die Sinusförmigkeit des Sensorsignals optimieren. Dabei spielt nicht nur die Gestalt der Polzähne, sondern auch deren Abstand eine Rolle.
Zur Realisierung der Erfindung genügt es, wenn nur an einem freien Ende eines Jochs 3, 21 Permanentmagnete oder Spulen angeordnet sind. Das andere freie Ende des Jochs 3, 21 muss nicht zwangsläufig auch mit Magneten besetzt sein. Bei dieser Ausführungsform sinkt jedoch die Qualität des Sensorsignals. In vorteilhafter Weise wird durch die erfindungsgemäße Ges¬ taltung der Gebervorrichtung eine Aufwandsreduzierung gegenüber dem Stand der Technik erreicht. Insbesondere sind Anord¬ nungen mit einem einzigen Sensor möglich, wobei dennoch ein Sensorsignal mit Nulldurchgang bereitgestellt werden kann.

Claims

Patentansprüche
1. Gebervorrichtung (1) für eine elektrische Maschine, die eine mit Polzähnen (11,12,13) versehene Maschinenkomponente (2) aufweist, zum Erfassen einer Position oder einer Bewegung relativ zu der Maschinenkomponente mit
- einem U-förmigen Jochabschnitt (3,30,41) und
- einem Sensor (10,26), der zur Erfassung einer magnetischen Größe in/an dem Jochabschnitt (3,30,41) angeordnet ist, d a d u r c h g e k e n n z e i c h n e t , dass
- an einem freien Ende des Jochabschnitts (3,30,41) zwei entgegengesetzt gerichtete oder richtbare Magnete (6 bis
9, 22 bis 25) angeordnet sind, um abhängig von der Positi¬ on der Magnete gegenüber einem der Polzähne (11,12,13) der Maschinenkomponente (2) entgegengesetzt gerichtete, von dem Sensor (10,26) detektierbare, magnetische Flüsse in dem Jochabschnitt (3,30,41) zu erzeugen.
2. Gebervorrichtung nach Anspruch 1, wobei der Sensor (10, 26) ein Hall-Sensor oder eine um den Jochabschnitt gewickelte Messspule ist.
3. Gebervorrichtung nach Anspruch 1 oder 2, wobei an beiden freien Enden (4,5) des Jochabschnitts (3,30,41) jeweils zwei entgegengesetzt gerichtete oder richtbare Magnete (6 bis 9, 22 bis 25) angeordnet sind.
4. Gebervorrichtung nach einem der vorhergehenden Ansprüche, wobei die Magnete (6 bis 9) am freien Ende (4,5) des Jochab- Schnitts (3,41) Permanentmagnete sind.
5. Gebervorrichtung nach Anspruch 1, 2 oder 4, wobei an den Jochabschnitt ein weiterer Schenkel angeformt ist, so dass sich ein E-förmiges Joch (14) ergibt.
6. Gebervorrichtung nach Anspruch 5, wobei der Sensor (10) in/an dem mittleren Schenkel des E-förmigen Jochs (14) angeordnet ist.
7. Gebevorrichtung nach einem der vorhergehenden Ansprüche, wobei die Magnete an dem freien Ende des Jochabschnitts (41) in Bewegungsrichtung (18) der Gebervorrichtung hintereinander angeordnet sind.
8. Gebervorrichtung (20) für eine elektrische Maschine, die eine mit Polzähnen versehene Maschinenkomponente (27) auf¬ weist, zum Erfassen einer Position oder einer Bewegung relativ zu der Maschinenkomponente (27) mit — einem U-förmigen Jochabschnitt (21),
- einer in oder an dem Jochabschnitt (21) angeordneten Magneteinrichtung (26) zum Erzeugen eines magnetischen Flusses in dem Jochabschnitt (21) und
- einem Sensor (22 bis 25), der zur Erfassung einer magneti- sehen Größe in/an dem Jochabschnitt angeordnet ist, d a d u r c h g e k e n n z e i c h n e t , dass
- der Sensor (22 bis 25) an einem freien Ende des Jochabschnitts zwei Sensorelemente aufweist, die beim gleichen magnetischen Fluss durch den Jochabschnitt (21) in beiden Sensorelementen unterschiedlich gerichtete Spannungen bewirken, um abhängig von der Position der Sensorelemente gegenüber einem der Polzähne der Maschinenkomponente ent¬ sprechend hohe und gerichtete Spannungen an den Sensorele¬ menten zu erzeugen.
9. Gebervorrichtung nach Anspruch 8, wobei die beiden Sensorelemente Hall-Sensoren oder Messspulen sind.
10. Gebevorrichtung nach Anspruch 8 oder 9, wobei an den Jochabschnitt ein weiterer Schenkel angeformt ist, so dass sich ein E-förmiges Joch (30) ergibt, und an dem freien Ende des weiteren Schenkels ebenfalls zwei Sensorelemente (32,33) der genannten Art angeordnet sind.
11. Gebervorrichtung nach einem der Ansprüche 8 bis 10, wobei an beiden frei endenden Schenkeln des Jochabschnitts (21) jeweils zwei der genannten Sensorelemente angeordnet sind.
12. Gebervorrichtung für eine elektrische Maschine, die eine mit Polzähnen versehene Maschinenkomponente (2) aufweist, zum Erfassen einer Position oder einer Bewegung relativ zu der Maschinenkomponente mit - einem E-förmigen, symmetrisch quer zur Bewegungsrichtung (18) in zwei Jochteile (15,16) geteilten Joch,
- einem zwischen den beiden Jochteilen (15,16) angeordneten Sensor (10) und
- einem an den Enden beider Jochteile angeordneten, gerichte- ten oder richtbaren Magneten (19) .
13. Gebervorrichtung nach Anspruch 12, wobei der Sensor (10) ein Hall-Sensor oder eine um den Jochabschnitt gewickelte Messspule ist.
14. Gebervorrichtung nach Anspruch 12 oder 13, wobei der Magnet (19) an den Enden beider Jochteile (15,16) ein Permanent¬ magnet ist.
15. Elektrische Maschine mit einer Gebervorrichtung (1,20) nach einem der vorhergehenden Ansprüche.
16. Elektrische Maschine nach Anspruch 15, die als Linearmo¬ tor ausgestaltet ist, wobei die Maschinenkomponente (2,27) mit den Polzähnen dem Sekundärteil entspricht und die Geber¬ vorrichtung (1,20) an dem Primärteil befestigt oder Teil des Primärteils ist.
PCT/EP2007/051673 2006-04-07 2007-02-21 Gebervorrichtung für eine elektrische maschine WO2007115857A2 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009503511A JP5014415B2 (ja) 2006-04-07 2007-02-21 電気機械用検出装置
CN2007800125734A CN101416029B (zh) 2006-04-07 2007-02-21 用于电机的传感装置
US12/296,352 US8063628B2 (en) 2006-04-07 2007-02-21 Sensor device for an electric machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006016503.9 2006-04-07
DE102006016503A DE102006016503A1 (de) 2006-04-07 2006-04-07 Gebervorrichtung für eine elektrische Maschine

Publications (2)

Publication Number Publication Date
WO2007115857A2 true WO2007115857A2 (de) 2007-10-18
WO2007115857A3 WO2007115857A3 (de) 2007-12-27

Family

ID=38050281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/051673 WO2007115857A2 (de) 2006-04-07 2007-02-21 Gebervorrichtung für eine elektrische maschine

Country Status (5)

Country Link
US (1) US8063628B2 (de)
JP (1) JP5014415B2 (de)
CN (1) CN101416029B (de)
DE (1) DE102006016503A1 (de)
WO (1) WO2007115857A2 (de)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7868511B2 (en) * 2007-05-09 2011-01-11 Motor Excellence, Llc Electrical devices using disk and non-disk shaped rotors
FR2936307B1 (fr) * 2008-09-24 2010-09-17 Moving Magnet Tech Mmt Capteur de position lineaire ou rotatifa aimant permanent pour la detection d'une cible ferromagnetique
US7868508B2 (en) 2008-11-03 2011-01-11 Motor Excellence, Llc Polyphase transverse and/or commutated flux systems
US8222786B2 (en) 2010-03-15 2012-07-17 Motor Excellence Llc Transverse and/or commutated flux systems having phase offset
CN102986115A (zh) 2010-03-15 2013-03-20 电扭矩机器股份有限公司 用于电动自行车的横向和/或换向通量系统
US8053944B2 (en) 2010-03-15 2011-11-08 Motor Excellence, Llc Transverse and/or commutated flux systems configured to provide reduced flux leakage, hysteresis loss reduction, and phase matching
EP2390676B1 (de) * 2010-05-28 2015-11-11 Tyco Electronics Belgium EC BVBA Elektromagnetische Spulenstruktur mit einer ebenen leitfähigen Spur, Magnetkern und magnetoelektronischer Winkelsensor
WO2012067895A2 (en) 2010-11-17 2012-05-24 Motor Excellence, Llc Transverse and/or commutated flux system coil concepts
US8405275B2 (en) 2010-11-17 2013-03-26 Electric Torque Machines, Inc. Transverse and/or commutated flux systems having segmented stator laminations
WO2012067896A2 (en) 2010-11-17 2012-05-24 Motor Excellence, Llc Transverse and/or commutated flux systems having laminated and powdered metal portions
US8531191B2 (en) * 2010-11-22 2013-09-10 General Electric Company Sensor assembly and methods of measuring a proximity of a machine component to a sensor
US8508220B2 (en) 2011-02-11 2013-08-13 Siemens Energy, Inc. Fault detection for laminated core
CN102410806B (zh) * 2011-08-09 2013-08-14 万向钱潮(上海)汽车系统有限公司 磁感应检测abs齿圈节距误差的装置
JP6042694B2 (ja) * 2012-10-23 2016-12-14 オリンパス株式会社 慣性駆動アクチュエータ
CN103280292A (zh) * 2013-06-08 2013-09-04 无锡隆盛科技股份有限公司 开关型霍尔传感器用磁性组件
JP5870973B2 (ja) * 2013-07-29 2016-03-01 株式会社安川電機 リニアモータ
EP2908097B1 (de) * 2014-02-13 2016-11-16 iwis antriebssysteme GmbH & Co. KG Reluktanz-Kettensensor sowie Verfahren zur Messung der Kettenlängung
JP6561914B2 (ja) * 2016-05-20 2019-08-21 株式会社デンソー 位置センサ
US20180094463A1 (en) * 2016-10-05 2018-04-05 Huf North America Automotive Parts Mfg. Corp. Door handle assembly with a magnetic field detector
US10620017B2 (en) * 2017-01-31 2020-04-14 Rockwell Automation Technologies, Inc. Curvilinear encoder system for position determination
FR3070914B1 (fr) * 2017-09-14 2019-09-06 Faurecia Sieges D'automobile Mecanisme de reglage de siege de vehicule automobile
GB2580117A (en) * 2018-12-21 2020-07-15 Bombardier Primove Gmbh An antenna arrangement and a method of operating an antenna arrangement
US10829201B2 (en) * 2019-03-20 2020-11-10 Pratt & Whitney Canada Corp. Blade angle position feedback system with extended markers
WO2020215040A1 (en) * 2019-04-19 2020-10-22 Inteva Products, Llc Metal traces for hall-effect sensor activation in a vehicle latch
JP7492664B2 (ja) * 2019-04-29 2024-05-30 ミネベア アクセスソリューションズ サウス アメリカ リミターダ 車両ドアの開閉装置
CN110277889B (zh) * 2019-05-28 2021-11-02 安徽大学 一种定子永磁式旋转变压器
DE102021212186A1 (de) 2021-10-28 2023-05-04 Mahle International Gmbh Transversalflussmaschine, insbesondere für ein Kraftfahrzeug
CN115343501B (zh) * 2022-10-18 2023-03-24 四川新川航空仪器有限责任公司 一种变磁通式转速传感器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3206738A (en) * 1961-02-01 1965-09-14 Gen Electric Co Ltd Electrical position-encoding apparatus and systems including such apparatus
US3457482A (en) * 1967-10-30 1969-07-22 Bruce A Sawyer Magnetic positioning device
DE3218298A1 (de) * 1981-05-15 1982-12-23 Fuji Jukogyo K.K., Tokyo Vorrichtung zum messen einer position
DE3147819A1 (de) * 1981-12-03 1983-06-16 Herbert Prof. Dr.-Ing. 3300 Braunschweig Weh Erfassung der fahrzeugposition durch abzaehlen von nuten
US4935676A (en) * 1987-04-17 1990-06-19 General Signal Corporation Method of moving head to correct for hysteresis
US5880541A (en) * 1997-06-19 1999-03-09 Northern Magnetics, Inc. Sensing and controlling the location of elements of a linear motor
DE19941860A1 (de) * 1999-09-02 2001-03-29 Siemens Ag Verbesserungen an einem mit Magnetfeld-Sonde arbeitenden Magnetfeldsensor
DE10103478A1 (de) * 2000-01-27 2001-08-02 Vladimir Vladimirovich Sharski Positionssensor für den Anker eines elektromagnetischen Schrittmotors

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1217085B (de) 1957-04-25 1966-05-18 Siemens Ag Induktiver Messfuehler zur Umsetzung insbesondere linearer Bewegungen in elektrische Groessen
GB1302507A (de) * 1970-10-16 1973-01-10
US4075551A (en) * 1974-11-14 1978-02-21 Robert Bosch Gmbh Inductive displacement sensor
US3961214A (en) * 1975-06-18 1976-06-01 International Telephone & Telegram Corporation Velocity pick-off with noise cancellation
JPH0726857B2 (ja) * 1989-04-03 1995-03-29 サンケン・エアパクス株式会社 移動物体の移動状態検出器
JPH0415518A (ja) * 1990-05-10 1992-01-20 Matsushita Electric Ind Co Ltd 移動検出装置
JP3064293B2 (ja) * 1997-02-18 2000-07-12 トヨタ自動車株式会社 回転センサ
JPH10300763A (ja) * 1997-04-28 1998-11-13 Murata Mfg Co Ltd 磁気センサ
US5880547A (en) * 1997-07-17 1999-03-09 Reliance Electric Industrial Company Internal torque tube for superconducting motor
JPH1138030A (ja) * 1997-07-18 1999-02-12 Toyota Motor Corp 回転検出装置
JP2001264346A (ja) * 2000-03-16 2001-09-26 Shinano Kenshi Co Ltd 回転体の回転数若しくは位置検出装置とリラクタンスモータ
DE10117460A1 (de) 2001-04-06 2002-11-07 Siemens Ag Impulsgekoppelter Transmissionsantrieb
US6992476B2 (en) 2001-05-11 2006-01-31 Siemens Aktiengesellschaft Transmitter system for a ferraris motion transmitter
DE10139379A1 (de) * 2001-08-10 2003-03-06 Siemens Ag Vorrichtung zum Erfassen einer Bewegung
DE10149794B4 (de) * 2001-10-09 2005-10-20 Siemens Ag Vorrichtung zum Erfassen einer Bewegung
DE10156782C1 (de) 2001-11-19 2003-04-17 Siemens Ag Gebersystem für einen Ferraris-Bewegungsgeber
DE10216635B4 (de) 2002-04-15 2008-03-13 Siemens Ag Bewegungsdetektor nach dem Ferrarisprinzip
DE10219091A1 (de) 2002-04-29 2003-11-20 Siemens Ag Drehbewegungsdetektor
US6873152B2 (en) * 2002-12-30 2005-03-29 General Electric Company Differential sensor apparatus and method for laminated core fault detection
DE10329150A1 (de) 2003-06-27 2005-01-20 Siemens Ag Elektrische Maschine
DE10329651A1 (de) 2003-07-01 2005-02-10 Siemens Ag Polygonartige Bauform eines Linearmotors mit Ringwicklung
DE102004045992A1 (de) * 2004-09-22 2006-04-06 Siemens Ag Elektrische Maschine
DE102004046824B4 (de) * 2004-09-27 2016-06-16 Siemens Aktiengesellschaft Geschwindigkeitsmessung bei einer elektrischen permanenterregten Synchronmaschine
DE102006035678A1 (de) * 2006-07-31 2008-02-14 Siemens Ag Linearmotor mit Kraftwelligkeitsausgleich

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3206738A (en) * 1961-02-01 1965-09-14 Gen Electric Co Ltd Electrical position-encoding apparatus and systems including such apparatus
US3457482A (en) * 1967-10-30 1969-07-22 Bruce A Sawyer Magnetic positioning device
DE3218298A1 (de) * 1981-05-15 1982-12-23 Fuji Jukogyo K.K., Tokyo Vorrichtung zum messen einer position
DE3147819A1 (de) * 1981-12-03 1983-06-16 Herbert Prof. Dr.-Ing. 3300 Braunschweig Weh Erfassung der fahrzeugposition durch abzaehlen von nuten
US4935676A (en) * 1987-04-17 1990-06-19 General Signal Corporation Method of moving head to correct for hysteresis
US5880541A (en) * 1997-06-19 1999-03-09 Northern Magnetics, Inc. Sensing and controlling the location of elements of a linear motor
DE19941860A1 (de) * 1999-09-02 2001-03-29 Siemens Ag Verbesserungen an einem mit Magnetfeld-Sonde arbeitenden Magnetfeldsensor
DE10103478A1 (de) * 2000-01-27 2001-08-02 Vladimir Vladimirovich Sharski Positionssensor für den Anker eines elektromagnetischen Schrittmotors

Also Published As

Publication number Publication date
US8063628B2 (en) 2011-11-22
US20090284253A1 (en) 2009-11-19
JP5014415B2 (ja) 2012-08-29
WO2007115857A3 (de) 2007-12-27
JP2009532689A (ja) 2009-09-10
DE102006016503A1 (de) 2007-10-18
CN101416029A (zh) 2009-04-22
CN101416029B (zh) 2011-02-09

Similar Documents

Publication Publication Date Title
WO2007115857A2 (de) Gebervorrichtung für eine elektrische maschine
EP3376166B1 (de) Verfahren zur bestimmung der absolutposition eines läufers eines linearmotors
DE19634281C2 (de) Meßvorrichtung zur berührungslosen Erfassung eines Drehwinkels bzw. einer linearen Bewegung
EP2225142B1 (de) Absolut messende lenkwinkelsensoranordnung
WO2006072472A1 (de) Geschwindigkeitsmessung bei einer elektrischen permanenterregten synchronmaschine
WO2008019988A1 (de) Elektromotor mit messsystem für position oder bewegung
WO2017042273A1 (de) Magnetanordnung für einen elektrischen motor
DE102005045374A1 (de) Messvorrichtung mit einem Messkopf zur Positionsbestimmung eines Primärteils auf einem Sekundärteil und Verfahren zur Positionsbestimmung eines Primärteils auf einem Sekundärteil mit einem Messkopf
EP2860496A2 (de) Linearmotor
DE102017108471A1 (de) Sensorkopf, Kombinationssensor, Drehmomentmessanordnung und Verfahren zum Messen von Drehmoment und Drehzahl
DE10138908B4 (de) Magnetische Erfassungsvorrichtung
EP3936828A1 (de) Gebersystem für einen antrieb
WO2007135006A1 (de) Planarer direktantrieb und dazugehöriger sensoreinheit
EP2834601B1 (de) Verfahren und anordnung zur positionsbestimmung eines bauteils
DE19612422C2 (de) Potentiometereinrichtung mit einem linear verschiebbaren Stellelement und signalerzeugenden Mitteln
WO2010063712A1 (de) Magnetischer encoder
EP2474090B1 (de) Verfahren und vorrichtung zur bestimmung einer rotorlage einer synchronmaschine
DE10123513A1 (de) Elektrische Meßtechnik, speziell Weg- und Winkelaufnehmer mit magnetoresistiven Sensorelementen
EP3557188B1 (de) Magnetisierte kolbenstange zur wegmessung
WO2013013855A1 (de) Vorrichtung zur ermittlung von bewegungsparametern
DE102022100486B4 (de) Verfahren zur Rekalibrierung einer Stellung eines von einem Stellantrieb angetriebenen Bauteils
WO2013013854A1 (de) Magnetsensor zum messen eines magnetfelds eines magnetischen multipols und zugehörige vorrichtung zur ermittlung von bewegungsparametern
WO2011047932A1 (de) Absolutwert-winkelmesssystem
DE19800403C2 (de) Verschiebungssensor
DE10150936A1 (de) Verfahren zur Bestimmung der Position eines beweglichen Objekts

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07712272

Country of ref document: EP

Kind code of ref document: A2

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2009503511

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12296352

Country of ref document: US

Ref document number: 200780012573.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07712272

Country of ref document: EP

Kind code of ref document: A2