WO2007113357A1 - Motor magnético - Google Patents

Motor magnético Download PDF

Info

Publication number
WO2007113357A1
WO2007113357A1 PCT/ES2007/000181 ES2007000181W WO2007113357A1 WO 2007113357 A1 WO2007113357 A1 WO 2007113357A1 ES 2007000181 W ES2007000181 W ES 2007000181W WO 2007113357 A1 WO2007113357 A1 WO 2007113357A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
rotor
magnet
magnetic
magnets
Prior art date
Application number
PCT/ES2007/000181
Other languages
English (en)
French (fr)
Other versions
WO2007113357B1 (es
Inventor
Ramon Freixas Vila
Original Assignee
Ramon Freixas Vila
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38458346&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2007113357(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to EP07730421.0A priority Critical patent/EP2003766A4/en
Priority to AU2007233590A priority patent/AU2007233590B2/en
Priority to JP2008551807A priority patent/JP2009525021A/ja
Priority to BRPI0709574-0A priority patent/BRPI0709574A2/pt
Priority to CA002645571A priority patent/CA2645571A1/en
Application filed by Ramon Freixas Vila filed Critical Ramon Freixas Vila
Priority to CN2007800088523A priority patent/CN101401286B/zh
Publication of WO2007113357A1 publication Critical patent/WO2007113357A1/es
Publication of WO2007113357B1 publication Critical patent/WO2007113357B1/es
Priority to US12/202,449 priority patent/US20090001833A1/en
Priority to HK09105183.7A priority patent/HK1127530A1/xx
Priority to US14/012,266 priority patent/US20130342063A1/en
Priority to US14/460,183 priority patent/US20140354099A1/en
Priority to US14/803,385 priority patent/US20150326079A1/en
Priority to US15/149,221 priority patent/US20160254709A1/en
Priority to US15/451,066 priority patent/US20170179778A1/en
Priority to US15/784,668 priority patent/US20180041079A1/en
Priority to US16/157,406 priority patent/US20190044398A1/en
Priority to US16/518,084 priority patent/US20190348875A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/17Stator cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2786Outer rotors
    • H02K1/2787Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/2789Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2791Surface mounted magnets; Inset magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K53/00Alleged dynamo-electric perpetua mobilia
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • H02N11/008Alleged electric or magnetic perpetua mobilia
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S74/00Machine element or mechanism
    • Y10S74/09Perpetual motion gimmicks

Definitions

  • the object is located within the technical sector of engines and more specifically in the field of magnetic motors.
  • motors whose mobile rotor is constituted by permanent magnets and in the stator are the windings through which the electric current circulates; In these motors there is only one area with the magnetic material (magnets), generally located in the rotor.
  • the purpose of the device is to create rotation only with the magnetic power of the magnets, without the intervention of any other energy.
  • the device consists of a stator and a mobile rotor where the magnets that provide the force for rotation are located, since a magnetic attraction is produced between the rotor and the stator.
  • the rotor :
  • It can be composed of high magnetic permeability materials, magnets only, or combination of both, depending on the material that forms the stator.
  • a magnet located in the rotor can rotate in an arm around its axis describing a circle.
  • the magnet may be inclined at an angle or without too much inclination, and may have a cut at the nearest end of the stator. Additionally, on some faces, the magnet may be shielded by a material with high magnetic permeability that prevents excessive flow, by redirecting it to other parts, closing the magnetic circuit.
  • the movement of the rotor is produced by the magnetic attraction between the face of the unshielded magnet and the stator. If the rotor magnet is not shielded the interaction occurs between the magnetic pole that rotates closest to the stator.
  • the rotor components are formed only of materials of high magnetic permeability without any magnet, since these materials have very strong attraction for the magnets that form the stator.
  • the stator is a stator
  • the magnets that form the grouping may be rectangular magnets or rings, may have an angled cut on the face facing the rotor, and may or may not be slightly inclined at an acute angle between them. and with respect to the axis of symmetry of the stator.
  • the magnets are arranged quite parallel and close in attraction mode, in a scaled arrangement where the outer poles of each magnet are increasingly farther from the stator axis and increasingly closer to the rotor component, up to a maximum limit or top magnet after which a screen of high magnetic permeability material is placed to cancel the flow outlet at one end of the stator block ('fig. 1).
  • a screen of high magnetic permeability material is placed to cancel the flow outlet at one end of the stator block ('fig. 1).
  • a suitable geometry of the screen is the one that allows to direct the flow again, once towards all the magnets and the opposite pole of the stator closing a magnetic circuit.
  • Stator magnets furthest from the movement of the rotor component may be tilted slightly to prevent the rotor from noticing. ' repulsion upon entering the stator end furthest from rotation.
  • stator-shaped arrangement have the direction of axial magnetization, they have on the face facing the rotor the two magnetic poles on a surface parallel to the stator axis (fig. 2), or if this surface is tilted the pole "The closest of the two to the rotor is. The one that attracts him.
  • the grouping of many magnets in the stator creates an acceleration of the rotor.
  • One of the ways of having the rotational movement occurs, when the magnet / rotor component enters , through the end of smaller surface of the stator, which has the same magnetic pole as the face that enters the rotor, and is attracted to the magnets of the top and the screen of the other end, because there is a magnetic attraction towards the last pole of the top magnet closest to the screen and the rotor, and after passing the screen to absorb: the flow in 1 the end of greater surface ; of the stator, the rotor no longer experiences magnetic interaction with the stator, producing a torque.
  • the direction of rotation of the rotor depends on where it is produced, the attraction of the rotor, which is why in some figures. we see that the rotor turns upside down, first entering the screen through the screen (fig. 3 and 4). example in figure 5 if we use angled angled magnets for the stator, the rotor will first be attracted to the screen and then by the opposite pole of the top magnet.
  • stator is only with magnets; we have the magnets of identical characteristics as before, quite parallel and close to each other in attractive mode, decreasing progressively in distance from the rotor component, in ascending progression to a maximum or top magnet with inclination and interaction surface with cut in angle parallel to the stator axis; to then be able to place a magnet or group of magnets in repulsion mode with " ' the top magnet (fig. 5), or magnets cut at an angle in descending progression after the top magnet, or a combination of both.
  • Another more classical arrangement to form the motor is that the rotor components rotate with respect to an axis and a stator block is placed on a side near the rotation (fig. 7) «A way that in a classical arrangement between the rotor well it is with cut and arranged magnets growing like saw teeth, showing the pole that attracts it closer to the rotor.
  • the two magnetic poles are always necessary that look closer and closer to the rotor, although they are not in the same magnet, for example in magnets that only show a pole arranged on both sides of the rotor pass (fig. 8) that It also creates an attraction to the end screens.
  • FIG. 1 The stator is formed by magnets (1) in ascending progression, with an angle cut. On the face c: on larger surface there is the material of high magnetic permeability (2) forming the screen, qu ⁇ "- extends towards the other end of the stator by The axis of symmetry.
  • the rotor has a magnet shielded by a high permeability majterial ('2).
  • Figure 2. The-, magnets (vi) of the 1 stator * do not have a cut. At both ends of the stator there is the 02X high permeability material forming the screens.
  • the magnet (3) of the rotor has no shield.
  • Figures 3 and 4 -.- The magnet (3X of the rotor, unshielded, enters first through the end where there is the material (2) of the screen and is attracted by the magnets. (I) 'of the stator.
  • Figure 5 Increasing arrangement, of magnets (l) to the inclined top magnet and then decreasing with magnets (5) cut at an angle or magnet ( ' 6) in repulsion.
  • Figure 6 - The components of the rotor rotate in planes parallel to the axis of symmetry of the stator, hugging the ends that have the top magnet.
  • FIG 7 The magnet (1) of the stator has a cut but progressively approaches the rotor.
  • the material (2) of ⁇ the screen is placed after the top magnet.
  • the magnets (3) of the rotor are in helical arms.
  • Figure 8 - Magnets (l) of the stator showing a single pole alternately, each time closer and arranged on both sides of the component] (7) of the rotor, which attract it to the top and the material (2) of the slab screens
  • a motor that will have a rotor with magnets (3) and a ⁇ single stator (fig. 6).
  • To form the stator we have magnets (l) separated by a small distance to avoid eddy currents, quite parallel in attraction mode and ascending progression on both sides of the stator axis, forming a prism with two ends of different surface, up to a maximum limit or top magnet that will be the magnet closest to the rotation of the rotor component.
  • Gercano to that top magnet we place a screen of material of high magnetic permeability (2) quite parallel to the face with the last pole, to prevent the flow of flow through that end of the stator.
  • magnets (l) with axial magnetization direction we have., The face with the two poles on its surface facing the magnet (3) of the rotor and with the pole that is attracted to the rotor component located closest to the screen and the top magnet.
  • the rotor can be formed by magnets (3) and high magnetic permeability materials (2), the distance of that shielding material from the magnet can vary.
  • the rotor can also be formed only by magnets (3) without any shielding, but if there are magnets with axial magnetization direction, the stator and the rotor form the pole of the magnet (3) c
  • the rotor that. First, it enters the magnets XL) of the stator and the one with the same polarity, complaining about the end where it enters and that is attached to the pole of the top magnet with polarity. opposite located more. next to the other end of the stator.
  • the first pole of the rotor magnet (3) enters first through the end of the screen and is attracted to the opposite pole of the closest top magnet of the other end of the stator, for this it is necessary that the surface with the two magnetic poles of the stator that The rotor is shown to be parallel to the axis of symmetry of the stator, generally parallel to the tangent line of the circle described by the rotor at the point of the screen, because if this surface is oblique there is no force for attraction.
  • the components that form the rotor are arranged in arms that can rotate with respect to the same axis describing concentric circles around the stator of a prismatic shape.
  • the rotor components must embrace the stator being closer to the magnets.
  • the top and the screen gives one end of the stator that not the other end, rotating in planes parallel to the axis of symmetry of the only stator we have in the motor.
  • the magnetic screens of. shielding work attracting the flow of the magnet.
  • the patent more; coincident with this document is : JIP 561104-83;
  • This patent shows: an oblique magnet in the stator which attracts equally the oblique magnet of the rotor when it is. near the stator, which- to the screen when it moves away from the stator, since the. screens, magnetic are attracted - by magnets, so you can't; escape the. screen outside the field of the stator magnet.
  • the advantage that; provides this patent document is ⁇ creating a stator with many magnets in increasing willingness to pole it: it attracts; to the rotor always closer to it, so that the rotor can reach the top magnet with an acceleration and overcome the attraction of the screen.
  • the correct arrangement of the poles is very important since it cannot; there is rotation with respect to a grouping of more than one magnet if the rotor pole that enters the stator first is: of opposite sign to the pole of / that end of the stator (because they are attracted at the end), or if the pole that is shows on each magnet of the stator 'closer: the rotor is. of the same magnetic sign that; the rotor pole (because, it is; repel).
  • stator-fixed and the mobile rotor that revolves around.
  • the rotor rotates with respect to its axis and on the next sides the stator components are located, but if we have magnets on the rotor and the stator since the magnets project fluxes: magnetic must find an optimal way that: allows the rotation to the entrances.
  • magnets / components ⁇ of the rotor to a stator that: also has magnets and the best way is for the rotor components to rotate in * the same axis in parallel planes, to the axis of symmetry of the stator, describing concentric circles. around 1 of the stator, hugging the end closer with the prism-shaped top magnet of the prism, (fig.
  • the magnets project flows that create effects at a distance between them, if two magnets are close their magnetic fluxes add up and do not have the same effect as each one separately, so make a motor with a multitude of magnet stators in the same plane as JP 561104-83 patent is impossible, unless we arrange the stators, in different planes with respect to a very long rotor axis separated, by the ⁇ distance in which their flows no longer interact.
  • the advantage provided by this patent document is the arrangement of magnets to create a single block of: stator in the motor and then if more compaction is desired in the motor that has a prism shape, so we will no longer have undesirable sums between several stators , which invalidate the rotation, nor need to prolong the rotor shaft.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

El objetivo es crear un par mediante magnetismo. Motor compuesto de rotor y un solo estator, donde encontramos imanes y materiales de elevada permeabilidad magnética(2). El estator es formado por imanes(l) con polos magnéticos en disposición escalonada cada vez más próximos al imán(3) del rotor, que crean Ia atracción del rotor produciendo una rotación. Varios imanes(3) del rotor abrazando el extremo del estator al girar respecto un eje crearán el motor. Lo usamos para ayudar al par de rotación en bicicleta.

Description

MOTOR MAGNÉTICO
El objeto se sitúa dentro del sector técnico de motores y más concretamente en el relativo a motores magnéticos.
ESTADO DE LA TÉCNICA
Como es sabido, existen motores cuyo rotor móvil es constituido por imanes permanentes y en el estator se encuentran los bobinados por los que circula la corriente eléctrica; en estos motores sólo hay una zona con el material magnético (imanes), generalmente situados en el rotor.
Algunos dispositivos incorporan imanes en el rotor y el estator para crear un par de giro, el objeto de la memoria estaría dentro de estos últimos. Si hemos de citar ejemplos diremos las patentes JP56110483 y EP 256152.
^EXPLICACIÓN
El dispositivo tiene como objeto crear rotación solamente con el poder magnético que poseen los imanes, sin intervención de cualquier otra energía.
El dispositivo consta de un estator y un rotor móvil donde se encuentran los imanes que suministran la fuerza para la rotación, pues entre el rotor y el estator se produce una atracción magnética. El rotor:
Puede estar compuesto por materiales de elevada permeabilidad magnética, imanes solamente, o combinación de ambos, dependiendo del material que forme el estator.
Un imán situado en el rotor podrá girar en un brazo alrededor de su eje describiendo un círculo. El imán puede estar inclinado en ángulo o sin demasiada inclina- ción, y puede presentar un corte en el extremo más cercano del estator. Adicionalmente en algunas caras el imán puede estar blindado por un material de elevada permeabilidad magnética que evita la salida excesiva del flujo, al reorientarlo hacia otras partes, cerrando el circuito magnético.
El movimiento del rotor se produce por la atracción magnética entre la cara del imán sin blindar y el estator. Si el imán del rotor no está blindado la interacción se produce entre el polo magnético que gira más cercano del estator.
Es posible que los componentes del rotor se formen sólo de materiales de elevada permeabilidad magnética sin ningún imán, pues estos materiales presentan atracción muy fuerte por los imanes que forman el estator.
El estator:
Es formado por un agrupamiento de imanes y un material de elevada permeabilidad magnética, o formado el estator solamente por imanes. Los imanes que forman el agrupamiento pueden ser imanes rectangulares o anillos, pueden presentar un corte en ángulo en la cara que mira al rotor, y pueden estar o no ligeramente inclinados en ángulo agudo entre ellos y respecto al eje de simetría del estator.
Los imanes se arreglan bastante paralelos y próximos en modo atracción, en una disposición escalada donde los polos exteriores de cada imán se hallan cada vez más lejanos del eje del estator y cada vez más próximos al componente del rotor, hasta un límite máximo o imán cima después del cual se sitúa una pantalla de material de elevada permeabilidad magnética parai anular la salida de flujo en un extremo del bloque estator ('fig. 1). De esta forma tenemos un extremo del estator que muestra un polo magnético y el otr.o extremo muestra el polo.' opuesto pero blindado por la pantalla. Una geometría adecuada de la pantalla es la que permite direccionar el flujo otra, vez hacia todos los imanes y el polo opuesto del estator cerrando un circuito magnético. Para cerrar mejor el circuito magnético en el estator podemos prolongar el material de elevada permeabilidad por el eje del estator más allá del imán del extremo (fig. 1) o también situar otra pantalla en ese extremo (fig. 2), mostrando entonces dos pantallas de diferente superficie en los extremos, del estator. Adicionalmente, si la pantalla no blinda suficientemente el flujo magnético de la cara mayor del estator, o si no queremos blindar el imán del rotor, podemos situar un imán delgado muy próximo tras, ella para repeler al rotor después de haber pasado.
Los imanes del estator más lejanos al movimiento del componente del rotor pueden inclinarse levemente para evitar que el rotor note.' repulsión al entrar por el extremo del estator más alejado de la rotación.
Si los imanes en disposición escalada del estator poseen la dirección de magnetización axial, tienen en la cara que mira al rotor los dos polos magnéticos en una superficie paralela al eje del estator (fig. 2), o si esta superficie está en inclinación el polo"' más cercano de los dos al rotor es. el que se atrae a él.
El agrupamiento de muchos imanes en el estator crea una aceleración del rotor. Una de las maneras de tener el movimiento de rotación se produce, cuando el imán/componente del rotor entra, por el extremo de menor superficie del estator, que presenta el mismo polo magnético que la cara que entra del rotor, y es atraído hacia los imanes de la cima y la pantalla del otro extremo, porque hay una atracción magnética hacia el último polo del imán cima más próximo a la pantalla y al rotor, y después de pasar la pantalla que absorber: el flujo en1 el extremo de mayor superficie; del estator, el rotor ya no experimenta interacción magnética con el estator, produciéndose un par de- giro.
El sentido de rotación del rotor depende de hacia- donde se produzca, la atracción del rotor-, por eso en algunas figuraa. vemos que el rotor- gira al revés , entrando primero por la zx>na da la pantalla, (fig. 3 y 4)¡ por. ejemplo en la figura 5 si usamos para el estator imanes cortados en ángulo con inclinación, el rotor primero será atraído hacia la pantalla y después, por el polo opuesto del imán de lai cima. La otra manera de formar el estator es solamente con imanes; disponemos los imanes de idénticas característir- cas como anteriormente, bastante paralelos y próximos unos a otros en modo atracción, decreciendo en distancia progresivamente respecto al componente del rotor, en progresión ascendente hasta un máximo o imán cima con inclinación y superficie de interacción con corte en ángulo paralela al eje del estator; para después poder situar un imán o grupo de imanes en modo repulsión con"' el imán cima (fig.5), o imanes cortados en ángulo en progresión descendente después del imán cima, o una combinación de ambos. Así podremos repeler al rotor después del imán cima del estator creando el par de giro. En esta variante- el movimiento del rotor sin blindar se. produce cuando, al entrar por un extremo del estator se' acelera, hacia los imanes de la cima, y después de esta cima otros imanes situados en el otro extremo del estator le efectúan repulsión. Ahora el movimiento se ha producido en una interacción magnética primero de atracción y después repulsión.
Después de definir el rotor y las dos clases de estator que podemos formar, describimos la disposición en que pueden encontrarse, los dos elementos. La• mejor manera de que entren bien los flujos del rotor al estator y notar poca repulsión o tener perfectas superficies de interacción magnética sería que los componentes del rotor abrazen los extremos que poseen el imán cima del estator, girando en planos paralelos al eje de simetría del estator ('fig.6') ; es muy importante esta disposición entre el rotor y el estator aunque parezca muy evidente , por tratarse de imanes que proyectan flujos. Además podemos minimizar usar muchos bloques de estator para formar el motor, para no tener sumas de flujos entre estatores, por lo que generalmente sólo ponemos un estator en forma de prisma en el motor. Otra disposición más clásica para formar el motor es que los componentes del rotor giren respecto a un eje y en un lateral próximo a la rotación se coloque un bloque de estator (fig.7)« Una manera que en una disposición clásica entre bien el rotor es con imanes cortados y dispuestos crecientes como dientes de sierra, mostrando más cerca al rotor el polo que se atrae a él.
En el estator siempre son necesarios los dos polos magnéticos que miran cada vez más cerca del rotor, aunque no estén en el mismo imán, por ejemplo en imanes que solo muestran un polo dispuestos a ambos lados del pase del rotor (fig. 8) que crea también una atracción hasta las pantallas del extremo.
DESCRIPCIÓN DE LAS FIGURAS
Figura 1.- El estator es formado por imanes (1) en progresión ascendente, con corte en ángulo. En la cara c:on mayor superficie hay el material de elevada permeabilidad magnética (2) formando la pantalla, quβ"- se prolonga hacia el otro extremo del estator por el eje de simetría. El rotor posee- un imán blindado por un majterial de elevada permeabilidadi ('2). Figuiαa 2.- Los-, imanes (vi) del1 estator* no presentan corte. Enj amboa extremos- del estator hay el material de elevada permeabilidad 02X formando laa pantallas.
Después de la pantalla de mayor superficie hay un imán delgado (4-). El imán (3) del rotor no tienes blindaje. Figuras 3 y 4-.- El imán (3X del rotor, sin blindar, entra primero por el extremo donde hay el material (2) de la pantalla y es atraído por loa imanes. (I)' del estator.
Figura 5«- Disposición creciente, de imanes(l) hasta el imán cima inclinado y después decreciente con imanes(5) cortados en ángulo o imán('6) en repulsión. Figura 6,- Loa componentes, del rotor giran en planos paralelos al eje de simetría del estator, abrazando los extremos que poseen el imán cima.
Figura 7«- Loa imanea(l) del estator presentan un corte pero se acercjan progresivamente aiL rotor. El ma1rerial(2) de~ la pantalla se sitúa después del imán cima. Loa imanes(3) del rotor se hallan en brazos helicoidalmente. Figura 8,- Imanes(l) del estator que muestran un solo polo alternadamente, cada vez máa cercanos y dispueatos a ambos, lados del componente](7) del rotor, que lo atraen hasta la cima y el material(2) de laa pantallas.
MODO DE REALIZACIÓN
Para explicar el modo de realización fabricaremos un motor que tendrá un rotor con imanes(3) y un< solo estator (fig. 6). Para formar el estator disponemos imanes(l) separados por una pequeña distancia para evitar corrientes de Foucault, bastante paralelos en modo atracción y progresión ascendente por ambos lados del eje del estator, formando un prisma con dos extremos de diferente superficie, hasta un límite máximo o imán cima que será el imán más cercano al giro del componente del rotor. Gercano a ese imán cima le colocamos una pantalla de material de elevada permeabilidad magnética (2) bastante paralela a la cara con el último polo, para evitar la salida del flujo por ese extremo del estator. Si usamos imanes(l) con dirección de magnetización axial, disponemos., la cara con los dos polos en su superficie mirando al imán(3) del rotor y con el polo que se atrae al componente del rotor situado el más cerca de la pantalla y el imán cima.
El rotor puede estar formado por imanes(3) y materiales de elevada permeabilidad magnética (2), la distancia de ese material de blindaje al imán puede variar. El rotor también puede estar formado solamente por imanes(3) sin ningún blindaje, pero si existen imanes con dirección de magnetización axial que- forman el estator y el rotor el polo del imán(3) cLel rotor que. entra primero en los imanesXl) del estator ea el que tiene la misma polaridad, quej el extremo por donde entra y que se atírae al polo del imán cima con polaridadi opuesta situado más. próximo del otro extremo del estator.
Según la inclinación del imán(3) del rotor podremos tener diferente sentido de rotación; por ejemplo en las, figuras 1 y 2 el imán(3) del rotor está levemente inclinado hacia el extremo de menor superficie del estator por donde entrará primero en su rotación; o también como en las figuras 3 J 4- en que. el primer polo del imán(3) del rotor entra primero por el extremo de la pantalla y se atrae al polo opuesto del imán cima más próximo del otro extremo del estator, para ello es necesario que la superficie con los dos polos magnéticos del estator que se muestran al rotor sea paralela al eje de simetría del estator, en general paralela a la recta tangente del círculo descrito por el rotor en el punto de la pantalla, porque si esta superficie es oblicua no hay la fuerza para la atracción.
Los componentes que forman el rotor se disponen en brazos que pueden girar respecto a un mismo eje describiendo círculos concéntricos alrededor del estator deo forma prismática. Los componentes del rotor deben abrazar al estator situándose más próximos a los, imanes de. la cima y la pantalla da un extremo del estator que no del otro extremo, girando en planos paralelos al eje de simetría del único estator que tenemos en el motor. Arte previo
Las pantallas magnéticas de. blindaje funcionan atrayendo el flujo del imán.
La patenta: más; coincidente con este documento es: la JIP 561104-83; en esta patente se: muestra un imán oblicuo en el estator quei atrae por igual al imán oblicuo del rotor cuando se. acerca al estator, que- a la pantalla cuando se aleja del estator, puesto que las. pantallas, magnéticas son atraídas- por los imanes, así no puede; escapar la. pantalla fuera del campo del imán estator. Para solucionar/ este: problema la ventaja, que; aporta este documento de patente es^ crear un estator con multitud de imanes en disposición creciente con el polo que se: atrae; al rotor siempre más próximo a él, para que el rotor pueda llegar hasta el último imán cima con una aceleración y superar la atracción d:e la pantalla. La disposición correcta de los polos es, muy importante puesto que no puede; haber rotación respecto una agrupación de más de un imán si el polo del rotor que entra primero al estator es: de signo contrario al polo de/ ese extremo del estator ( porque s.e¿- atraen en el extremo), o si el polo que se muestra en cada imán del estator' más cerca: del rotor es. del mismo signo magnético que; el polo del rotor (porque, se; repelen) .
En la patente; JP56110483 parece quev sólo es^ un polo, magnético en el imán del rotor que se muestra al estator, porque si hubieran dos polos:, habría una repulsión al entrar el imán del rotor al estator, y además si hubieran dos_ polos en el imán del rotor la. pantalla inclinada taparía el polo que. se? atrae al estator, porque las pantallas atraen el flujo del imán más próximo. Si cambiamos la disposición de los polos aparece que no puede girar un imán respecto a otro si. los polos que se hallan más cerca son del mismo signo. Si el sentido de giro de la patente JP56110483 fuera el contrario entrando primero por la zona de la pantalla ya se ha mencionado que la superficie con los dos polos magnéticos ha de ser paralela al eje de simetría del estator como la patente de este documento, el polo al que se atrae, con polaridad opuesta situado más próximo del otro extremo del estator debe estar en una superficie paralela a la recta tangente, dial círculo descrito por el rotor, porque si esta superficie es oblicua no hay fuerza de atracción hacia el polo opuesto situado en el otro extremo de donde primero entra, pues, el polo opuesto esté más bajo.
Para crear un motor disponemos el estator- fijo y el rotor móvil que gira alrededor. En una disposición clásica el rotor gira respecto a su eje y en los laterales próximos se sitúan los componentes del estator, pero si disponemos imanes en el rotor y el estator puesto que los imanes proyectan flujos: magnéticos ha de encontrarsje una manera óptima que: permita la rotación al entracr los. imanes/componentes^ del rotor a un estator que: también posee imanes y la mejor manera es que loa componentes del rotor giren en* un mismo eje en planos paralelos, al eje de simetría del estator, describiendo círculos concéntricos. alrededor1 del estator, abrazando más cerca el extremo con el imán cima del extátor con forma de prisma, (fig.6} Esta disposición aunque parezca muy evidente para el experto crea una rotación con perfecta superficie de interacción magnética entre rotor y estator, porque otras disposiciones reducen a la mitad el par de fuerza de la> interacción, así pues es una de las ventabas más importantes de este documento de patente en relación a la fabricación de un motor magnético con imanes en el rotor y el estator.
Los imanes proyectan flujos que crean efectos a distancia entre ellos, si dos imanes están cerca se suman sus flujos magnéticos y no tienen el mismo efecto como cada uno por separado, por elLo fabricar un motor con multitud de estatores de imán en el mismo plano como la patente JP 561104-83 es- imposible, a no ser que, dispongamos los estatores, en diferentes planos respecto a un eje del rotor muy largo separados, por la< distancia en que ya no interaccionan sus flujos. lía ventaja que aporta este documento de patente es la disposición de imanes para crear un solo bloque de: estator en el motor y entonces si se desea mayor compactación en el motor que tenga forma de prisma, así ya no tendremos, sumas indeseables entre varios estatores, que invalidan la rotación, ni necesidad de prolongar el eje del rotor.
APLICACIÓN INDUSTRIAL
Actualmente el motor no funciona todo lo deseable que quisiéramos, se le ha de ayudar para que gire, quizás más adelante se puedan encontrar las potencias exactas de los imanes que permitan una rotación más autónoma, además del aumento de temperatura y encontrar el grado de carga que pueden soportar los imanes para que no se desmagnetizen rápidamente; todo ello ha de ser resuelto en un futuro.
Seria un dispositivo ayudador del par de rotación puesto que actualmente no funciona como motor autónomo pues cuesta pasar el rotor por encima de los imanes del estator y se le ha de ayudar en el pase, por tal característica se define un dispositivo que podría usarse en el pedaleo de una bicicleta pues ya ayudamos, con el pedal. Por el momento se puede obtener un par dificultoso después de notar un frenazo en la rotación, a muy bajas revoluciones, como el efecto de un imán que un polo atrae pero el otro recliaza.

Claims

REIVINDICACIONES
1. Motor magnético, que usa.1» energía de:- campos:- magnéticos de imanes que: forman; el rotor, y el estator; el rotor gira con respecto al estator alrededor de un eje. El rotor puede estar compuesto solamente, por imanes(3)» o solamente por materiales de elevada permeabilidad magnética(2) , o una combinación de' ambos. Los imanes del rotor y del estator poseen polos magnéticos separados por una distancia próxima produciendo una interacción magnética entre ambos- que primero es de atracción, creando el par de giro; caracterizado porque en el motor hay al menos, un solo estator en forma de prisma con los dos extremos opuestos de diferente distancia al imán(3)/componente del rotor, y donde una, primera zona del estator es.. formada- por un agrupamiento de imanes(l) en disposición escalada respecto a¡ un eje de simetría^ en modo atracción y bastante paralelos entre ellos hasta un imán cima del estator que es el que posee la superficie de interacción magnética más próxima, al imán(;3)/componente del rotor. Una segunda zona del estator se encuentra en el otro extremo del estator después del imán cima y es formada por imanes(6)) o materiales, de elevada permeabilidad magnética('2) .
2. Motor, magnético, según reivindicación 1, caracterizado porque: si la segundai zona del est&tor es; formada por imanea, el imán cima se encuentra oblicuo con la- superficie de interacción con el rotor muy. paralela al eje de simetría del estator y después del imán cima en la segunda zona del estator se encuentran imanes(51) cortados en ángulo en progresión descendente respecto al componente del rotor, o al menos un imán(6) en> modo repulsión con el imán cima, o una combinación de ambos.
3. Motor magnético, según reivindicación 1, caracterizado porque si la segunda zona del estator se- forma de materiales de elevada permeabilidad. magnética(2) se disponen estos materiales, coni la superficie mayor muy peuralelai y próxima al polo del imán cima paa?» formar al menos una pantalla á& blindaba qua evite; la proyección del flujo' más allá de es& extremo.
4. Motor magnético, según reivindicaciones- 1,3» caracterizado porque si el material de elevada permeabilidad) magnética(2) no blinda suficientemente, el flujo magnético del estator o se necesita mayor interacción magnética entre rotor y estator situamos un imán(Λ) delgado muy cercano a la pantalla en la segunda zona del estator, será ese imán(4-) al extremo final del estator y actuando como el imán cima.
5. Motor magnético, según reivindicación 1, caracterizado porqua si los imanes(l) que- forman la primera zona del estétor tienen la dirección da magnetización axial tienen en¡ la cara que mira al componente del rotor los, dos polos magnéticos en una superficie- paralela al eje de simetría del estator con el polo que se atrae al componente del rotor más carca del imán cima, o si esta superficie es oblicua el polo más próximo de los dos al rotor es el que se atrae a él,
6. Motor magnético, según reivindicaciones 1,5» caracterizado porque el polo del imán(3) del rotor que entra primero al estator es el que tiene la misma polaridad que el polo del imán(l) situado en el extremo del estator por donde entra.
7. Motor magnético, según reivindicaciones 1,2,3,5,6, caracterizado porque el movimiento de rotación se produce por una atracción cuando el polo del imán(3) del rotor que entra primero en un extremo del estator se atrae al polo opuesto del imán cima situado más próximo del otro extremo.
8. Motor magnético, según reivindicaciones 1,3,6,7, caracterizado 'porque si el polo del imán(3) del rotor en su rotación entra primero por el extremo donde" hay la pantalla y se atrae al polo opuesto del imán cima, la superficie, de interacción del imán cima del estator con los dos polos magnéticos que se mues-tran al rotor es paralela al eje de simetría del estator; en general paralela a la recta tangente al círculo descrito por el rotor cuando su radio coincide con el imán cima.
9. Motor magnético, según reivindicaciones 1,2,4,5,6,7, caracterizado porque los imanesX3)/componentes- del rotor giran sobre- los imanes(l) del estator con una superficie de interacción más próxima al extremo con los imanes de la cima que no al otro extremo del estator.
10. Motor magnético, según reivindicaciones- anteriores-, caracterizado porque una realización preferida para compactar el motor es con" un solo estator; disponiendo los componentes que forman el rotor en brazos en diferentes planos sobre, un mismo eje. de rotación, describiendo estos componentes al girar círculos concéntricos en diferentes planos, paralelos, al eje de simetría del estator, abrazando un único estator1 deí forma prismática.
PCT/ES2007/000181 2006-04-04 2007-03-30 Motor magnético WO2007113357A1 (es)

Priority Applications (16)

Application Number Priority Date Filing Date Title
CN2007800088523A CN101401286B (zh) 2006-04-04 2007-03-30 磁力发动机
AU2007233590A AU2007233590B2 (en) 2006-04-04 2007-03-30 Magnetic motor
JP2008551807A JP2009525021A (ja) 2006-04-04 2007-03-30 磁気モータ
BRPI0709574-0A BRPI0709574A2 (pt) 2006-04-04 2007-03-30 motor magnético
CA002645571A CA2645571A1 (en) 2006-04-04 2007-03-30 Motor utilizing staggered permanent magnets technical field
EP07730421.0A EP2003766A4 (en) 2006-04-04 2007-03-30 Magnetic motor
US12/202,449 US20090001833A1 (en) 2006-04-04 2008-09-02 Magnetic motor
HK09105183.7A HK1127530A1 (en) 2006-04-04 2009-06-10 Magnetic motor
US14/012,266 US20130342063A1 (en) 2006-04-04 2013-08-28 Magnetic motor
US14/460,183 US20140354099A1 (en) 2006-04-04 2014-08-14 Magnetic motor
US14/803,385 US20150326079A1 (en) 2006-04-04 2015-07-20 Magnetic motor
US15/149,221 US20160254709A1 (en) 2006-04-04 2016-05-09 Magnetic motor
US15/451,066 US20170179778A1 (en) 2006-04-04 2017-03-06 Magnetic motor
US15/784,668 US20180041079A1 (en) 2006-04-04 2017-10-16 Magnetic motor
US16/157,406 US20190044398A1 (en) 2006-04-04 2018-10-11 Magnetic motor
US16/518,084 US20190348875A1 (en) 2006-04-04 2019-07-22 Magnetic motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200600872A ES2281300B1 (es) 2006-04-04 2006-04-04 Motor magnetico.
ESP200600872 2006-04-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/202,449 Continuation-In-Part US20090001833A1 (en) 2006-04-04 2008-09-02 Magnetic motor

Publications (2)

Publication Number Publication Date
WO2007113357A1 true WO2007113357A1 (es) 2007-10-11
WO2007113357B1 WO2007113357B1 (es) 2007-11-22

Family

ID=38458346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2007/000181 WO2007113357A1 (es) 2006-04-04 2007-03-30 Motor magnético

Country Status (14)

Country Link
US (9) US20090001833A1 (es)
EP (1) EP2003766A4 (es)
JP (1) JP2009525021A (es)
KR (2) KR20080108437A (es)
CN (1) CN101401286B (es)
AU (1) AU2007233590B2 (es)
BR (1) BRPI0709574A2 (es)
CA (1) CA2645571A1 (es)
ES (1) ES2281300B1 (es)
HK (1) HK1127530A1 (es)
MA (1) MA30461B1 (es)
RU (1) RU2008133157A (es)
WO (1) WO2007113357A1 (es)
ZA (1) ZA200809303B (es)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2277575B1 (es) * 2006-12-04 2009-04-01 Ramon Freixas Vila Rotor de motor magnetico.
CN101610051B (zh) * 2009-07-20 2014-10-15 张峰 负引磁动机
ES2346732B1 (es) * 2010-04-16 2011-09-05 Ramon Freixas Vila Motor.
CN103493347B (zh) 2011-02-22 2017-05-31 创新能量解决方案有限责任公司 用于能量转换的装置、系统及方法
US20170237305A1 (en) * 2014-09-30 2017-08-17 Bahram Raeen Electric generator
WO2020125826A1 (de) * 2018-12-18 2020-06-25 Kontos Jannik AUFBAU EINES RÜCKSTOß-MAGNETMOTORS UND VERFAHREN ZU DESSEN FUNKTIONSPRINZIP
CN113014013B (zh) * 2019-12-20 2023-06-09 新疆金风科技股份有限公司 转子支架、转子、电机及风力发电机组
CN110994945A (zh) * 2020-01-03 2020-04-10 鲍广德 一种双翼型磁力发动机

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56110483A (en) 1980-02-06 1981-09-01 Kohei Minato Principle of structure for magnetically powered rotary movement means
JPS57149654A (en) * 1981-03-10 1982-09-16 Shintaro Oshima Transmission device
EP0256132A1 (en) 1986-01-24 1988-02-24 MINATO, Kohei Magnetic rotary device
WO1988005976A1 (en) * 1987-02-04 1988-08-11 Franklin's Magnetic Generator Corp. Dynamomagnetic machine
US5304881A (en) * 1989-03-13 1994-04-19 Magnetic Revolutions, Inc. Means for producing rotary motion
US5594289A (en) * 1993-09-16 1997-01-14 Minato; Kohei Magnetic rotating apparatus
DE29909293U1 (de) * 1998-10-31 1999-08-26 Weinzierl, Johann, 90584 Allersberg Elektromagnetisch betriebener Motor
WO2000007285A1 (en) * 1998-07-31 2000-02-10 Magnetic Revolutions Limited, L.L.C. Methods for controlling the path of magnetic flux from a permanent magnet and devices incorporating the same
WO2002013359A1 (en) * 2000-08-04 2002-02-14 Pinto Luis Antonio Marta Magnetic-powered engine

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2577080A1 (fr) * 1985-02-07 1986-08-08 Martin Michel Principe de moteur magnetique
US4662644A (en) * 1985-04-03 1987-05-05 Nelson Victor H Means for cyclically enhancing driving torque
JPS61277365A (ja) * 1985-05-30 1986-12-08 Yoshimatsu Wakabayashi 永久磁石による回転機
FR2586147A1 (fr) * 1985-08-07 1987-02-13 Macheda Carmelo Moteur magnetique a ailettes a vitesse variable
US5002296A (en) * 1990-04-23 1991-03-26 Chiu Ying Tung Driving device for bicycle
JPH0496667A (ja) * 1990-08-14 1992-03-30 Motoo Kuninaka 永久磁石による連続運転機構
DE19705565A1 (de) * 1997-02-13 1998-08-20 Ilija Uher Magnetenabschirmung Maschine
AU2000262051A1 (en) * 2000-06-30 2002-01-14 Donald E. Rounds Amplifying mechanical energy with magnetomotive force
US6356000B1 (en) * 2001-02-02 2002-03-12 Chun-Yuan Ho Magnetically augmented rotation system
JP2004129353A (ja) * 2002-10-01 2004-04-22 Terumasa Yamaguchi 磁石による連続回転装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56110483A (en) 1980-02-06 1981-09-01 Kohei Minato Principle of structure for magnetically powered rotary movement means
JPS57149654A (en) * 1981-03-10 1982-09-16 Shintaro Oshima Transmission device
EP0256132A1 (en) 1986-01-24 1988-02-24 MINATO, Kohei Magnetic rotary device
WO1988005976A1 (en) * 1987-02-04 1988-08-11 Franklin's Magnetic Generator Corp. Dynamomagnetic machine
US5304881A (en) * 1989-03-13 1994-04-19 Magnetic Revolutions, Inc. Means for producing rotary motion
US5594289A (en) * 1993-09-16 1997-01-14 Minato; Kohei Magnetic rotating apparatus
WO2000007285A1 (en) * 1998-07-31 2000-02-10 Magnetic Revolutions Limited, L.L.C. Methods for controlling the path of magnetic flux from a permanent magnet and devices incorporating the same
DE29909293U1 (de) * 1998-10-31 1999-08-26 Weinzierl, Johann, 90584 Allersberg Elektromagnetisch betriebener Motor
WO2002013359A1 (en) * 2000-08-04 2002-02-14 Pinto Luis Antonio Marta Magnetic-powered engine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2003766A4

Also Published As

Publication number Publication date
EP2003766A2 (en) 2008-12-17
US20180041079A1 (en) 2018-02-08
US20150326079A1 (en) 2015-11-12
WO2007113357B1 (es) 2007-11-22
US20190348875A1 (en) 2019-11-14
ES2281300B1 (es) 2009-04-01
EP2003766A4 (en) 2017-05-17
CN101401286A (zh) 2009-04-01
JP2009525021A (ja) 2009-07-02
ES2281300A1 (es) 2007-09-16
US20190044398A1 (en) 2019-02-07
US20160254709A1 (en) 2016-09-01
BRPI0709574A2 (pt) 2011-07-19
KR100970807B1 (ko) 2010-07-16
ZA200809303B (en) 2009-11-25
US20140354099A1 (en) 2014-12-04
CA2645571A1 (en) 2007-10-11
EP2003766A9 (en) 2009-04-15
RU2008133157A (ru) 2010-02-20
US20130342063A1 (en) 2013-12-26
KR20080108437A (ko) 2008-12-15
KR20080108603A (ko) 2008-12-15
CN101401286B (zh) 2012-03-07
US20170179778A1 (en) 2017-06-22
AU2007233590A1 (en) 2007-10-11
HK1127530A1 (en) 2009-09-25
US20090001833A1 (en) 2009-01-01
AU2007233590B2 (en) 2011-03-31
MA30461B1 (fr) 2009-06-01

Similar Documents

Publication Publication Date Title
WO2007113357A1 (es) Motor magnético
ES2765192T3 (es) Motor con imanes permanentes interiores
JP6423991B2 (ja) ローター及び駆動モータ
ES2302434B1 (es) Rotor de maquina electrica de imanes permanentes de baja inercia.
JP4193685B2 (ja) アキシャルギャップモータ構造
WO2006040368A1 (es) Dispositivo magnético rotatorio
JP2012105480A (ja) ロータ、及びモータ
EP0996216A3 (en) Permanent magnet motor and rotor thereof
ES2394101T3 (es) Motor de rotor de campo único
ES2200580T3 (es) Maquina electrica giratoria con imanes permanentes y resistencia magnetica con propiedades de atenuacion de flujo mejoradas.
ES2881755T3 (es) Estructura de motor eléctrico
WO2008068362B1 (es) Rotor de motor magnetico
JP2012023855A (ja) 永久磁石埋込型回転子及び回転電機
JP4599860B2 (ja) ブラシレスモータ
JP2019041530A (ja) モータ
JP2014087229A (ja) 磁石埋込型ロータ
JP5077369B2 (ja) ブラシレスモータ
ES2683891B1 (es) Rotor de imanes permanentes para motor trifasico sincrono
RU2002119739A (ru) Двигатель на постоянных магнитах
ES2304082A1 (es) Maquina electrica giratoria, de bajo rizado de par.
ES2346732B1 (es) Motor.
JP2014176249A (ja) スイッチドリラクタンスモータ
JPS6318976A (ja) モ−タ−
KR20040020563A (ko) 영구자석의 반발력을 이용한 동력장치
RU2001128477A (ru) Магнитный двигатель

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07730421

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008551807

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2008133157

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2007730421

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 7235/DELNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1020087021318

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2645571

Country of ref document: CA

Ref document number: 200780008852.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 571349

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 2007233590

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 12008502223

Country of ref document: PH

Ref document number: MX/A/2008/012746

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2007233590

Country of ref document: AU

Date of ref document: 20070330

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020087026983

Country of ref document: KR

ENP Entry into the national phase

Ref document number: PI0709574

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20081003