WO2007104607A1 - Magnetresonanzanlage mit supraleitender ganzkörper-empfangsanordnung - Google Patents

Magnetresonanzanlage mit supraleitender ganzkörper-empfangsanordnung Download PDF

Info

Publication number
WO2007104607A1
WO2007104607A1 PCT/EP2007/051005 EP2007051005W WO2007104607A1 WO 2007104607 A1 WO2007104607 A1 WO 2007104607A1 EP 2007051005 W EP2007051005 W EP 2007051005W WO 2007104607 A1 WO2007104607 A1 WO 2007104607A1
Authority
WO
WIPO (PCT)
Prior art keywords
arrangement
receiving
magnetic resonance
resonance system
receiving arrangement
Prior art date
Application number
PCT/EP2007/051005
Other languages
English (en)
French (fr)
Inventor
Volker Matschl
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to US11/919,894 priority Critical patent/US8013605B2/en
Priority to CN2007800004655A priority patent/CN101322041B/zh
Publication of WO2007104607A1 publication Critical patent/WO2007104607A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • G01R33/345Constructional details, e.g. resonators, specially adapted to MR of waveguide type
    • G01R33/3453Transverse electromagnetic [TEM] coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • G01R33/34046Volume type coils, e.g. bird-cage coils; Quadrature bird-cage coils; Circularly polarised coils
    • G01R33/34076Birdcage coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • G01R33/341Constructional details, e.g. resonators, specially adapted to MR comprising surface coils
    • G01R33/3415Constructional details, e.g. resonators, specially adapted to MR comprising surface coils comprising arrays of sub-coils, i.e. phased-array coils with flexible receiver channels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/36Electrical details, e.g. matching or coupling of the coil to the receiver
    • G01R33/3628Tuning/matching of the transmit/receive coil
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/36Electrical details, e.g. matching or coupling of the coil to the receiver
    • G01R33/3642Mutual coupling or decoupling of multiple coils, e.g. decoupling of a receive coil from a transmission coil, or intentional coupling of RF coils, e.g. for RF magnetic field amplification
    • G01R33/3657Decoupling of multiple RF coils wherein the multiple RF coils do not have the same function in MR, e.g. decoupling of a transmission coil from a receive coil
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • G01R33/34015Temperature-controlled RF coils
    • G01R33/34023Superconducting RF coils

Definitions

  • the present invention relates to a magnetic resonance system
  • a base body has an examination area which is axially open on both sides with respect to a central axis of the examination area and is bounded radially by an inner wall of the base body,
  • the inner wall of the base body is radially spaced from the central axis of the examination area in such a way that a transport couch together with a person lying on the transport couch can be conveyed through the examination area
  • the transport table is associated with a transport table drive by means of which the transport table can be conveyed through the examination area together with the person lying on the transport table, wherein an at least substantially homogeneous basic static magnetic field can be generated by means of a basic magnet in the examination area,
  • a radially surrounding, relatively fixed to the examination area arranged transmitting arrangement is present, by means of which an at least substantially homogeneous high-frequency excitation field can be generated in the entire examination area, so that the human, as far as he is in the examination area, excited to emit magnetic resonance signals becomes,
  • Such magnetic resonance systems are well known. With them is usually the transmission arrangement with the Receiving arrangement identical. Often this is combined
  • Reception arrangement designed as birdcage resonator.
  • EP 1 626 286 A1 a system of superconducting resonators for magnetic resonance applications is known.
  • the resonators can cause a current distribution which is almost identical to that of a conventional birdcage resonator.
  • the system can be dimensioned to allow whole-body magnetic resonance measurements. It is used both in the transmission case and in the reception case.
  • the object of the present invention is to provide a magnetic resonance system, which is relatively simple and by means of which a high-quality "screening" of a person is relatively quickly feasible.
  • the object is achieved by a magnetic resonance system with the features of claim 1.
  • the receiving arrangement is thus designed such that it is in the case that the high-frequency excitation field is generated by means of the transmission arrangement, as resistive
  • Reception arrangement acts, and in the case that excited magnetic resonance signals are received by means of the receiving arrangement acts as a superconducting receiving arrangement.
  • the receiving arrangement has receiving elements in which in a current flow direction in the case of reception a receiving current and in the transmitting case an excitation current oscillates.
  • the receiving elements have, viewed transversely to the direction of current flow, a superconducting partial cross section and a non-superconducting partial cross section.
  • the superconducting partial cross sections have a current carrying capacity which lies between the receiving current and the excitation current. Due to this configuration, the receiving current oscillates in the superconducting partial cross section and the excitation current in the non-superconducting partial cross section.
  • the transmission arrangement is an arrangement different from the reception arrangement.
  • the receiving arrangement has a current carrying capacity which is smaller than an induced current induced in the receiving arrangement by the high-frequency excitation field.
  • the receiving arrangement preferably comprises a number of superconducting receiving coils. Due to the relatively low current carrying capacity of the receiving coils, in this case, ie when the superconducting receiving coils are also used to emit the high-frequency excitation field, it may be advantageous if the receiving coils have several turns. Because then the receiver coils with generate a high frequency excitation field at a relatively low current. But it is also possible that the receiving arrangement is designed differently. In particular, it can be designed as a birdcage resonator.
  • the transmitting device is a different arrangement from the receiving device, the receiving device may comprise a number of superconductive receiving coils.
  • the transmission arrangement can be designed in a conventional manner. For example, it may be formed as a birdcage resonator.
  • the superconducting receiving arrangement has a relatively low current carrying capacity. It is therefore possible that only the transmission arrangement is associated with a detuning circuit, the receiving arrangement, however, has no detuning circuit.
  • the transmission arrangement can be cooled. In this case, more accurate excitation pulses can be delivered.
  • the receiving coils are thermally shielded together with respect to the examination area and with respect to gradient coils. However, it is currently preferred to thermally shield the receiving coils individually with respect to the examination area and with respect to the gradient coils.
  • the base magnet may be a permanent magnet or an electromagnet.
  • the master magnet is an electromagnet, it is preferably superconducting.
  • the base magnet and the receiving coil can be assigned a common cooling device.
  • a received by the receiving arrangement magnetic resonance signal is coupled out of line from the receiving arrangement and transmitted to an evaluation device. Because this makes it possible to completely encapsulate a cooling container in which the receiving arrangement is arranged.
  • the decoupling of the received magnetic resonance signal can For example, via coupling elements, which are arranged inside and outside the cooling tank.
  • the receiving arrangement is usually one
  • Subordinate preamplifier device Preferably, the preamplifier device is also cooled. This allows the signal-to-noise ratio to be optimized.
  • FIG. 2 shows a section through the magnetic resonance system of FIG. 1 along a line II - II in FIG. 1, FIG.
  • FIG. 8 shows a transmitting arrangement and a receiving arrangement.
  • a magnetic resonance system has a main body 1.
  • the base body 1 has an examination area 2.
  • the examination area 2 is generally formed substantially symmetrically about a central axis 3 around. He is in relation to the central axis 3 axially (ie in the direction of the central axis 3) open on both sides. Radially to the central axis 3 (that is, away from the central axis 3 or toward the central axis 3), it is bounded by an inner wall 4 of the main body 1. Tangentially to the central axis 3 (that is to say around the central axis 3), the inner wall 4 is generally at least substantially closed.
  • the inner wall 4 has a distance a from the central axis 3.
  • the distance a can be constant.
  • the examination region 2 is strictly circular in cross-section with respect to the central axis 3.
  • the distance a may be constant and between 25 and 35 cm. This case is shown in FIG.
  • the distance a could also be position-dependent.
  • the examination area 2 would be, for example, elliptical or oval in cross section with respect to the central axis 3. If, for example, the examination region 2 is elliptical or oval in cross-section to the central axis 3, the distance a can be horizontal, for example at approximately 35 cm, vertically at approximately 25 cm.
  • the distance a is determined in such a way that a transport bed 5 together with a person 6 lying on the transport bed 5 can be conveyed through the examination area 2.
  • the transport berth 5 is associated with a transport table drive 7 according to FIG.
  • the magnetic resonance system furthermore has a basic magnet 8.
  • a static magnetic field B can be generated, which within the Examination area 2 is at least substantially homogeneous.
  • the basic magnet 8 is designed, for example, as a system of ring magnets 9, which is arranged concentrically with respect to the central axis 3. Also elliptical or oval around the central axis 3 encircling ring magnets 9 are known. In these cases, the basic magnetic field B is parallel to the central axis 3. However, other embodiments are possible in which the
  • Basic magnetic field B is perpendicular to the central axis 3.
  • the basic magnet 8 can in principle be designed in any desired manner, for example as a permanent magnet or as an electromagnet. Preferably, it is designed as a superconducting magnet 8.
  • the basic magnet 8 is therefore associated with a cooling device 10, by means of which a cooling medium 11 - usually liquid air or liquid nitrogen - is cooled.
  • a transmitting arrangement 12 and a receiving arrangement 13 are arranged. They surround the examination area 2 radially outward. Both the transmitting arrangement 12 and the receiving arrangement 13 are arranged stationary relative to the examination area 2.
  • the receiving arrangement 13 is designed as a superconducting receiving arrangement 13.
  • a high-frequency excitation field HF can be generated, which in the entire
  • Examination area 2 is at least substantially homogeneous.
  • the human 6 insofar as it is located in the examination area 2, can be excited to emit magnetic resonance signals M.
  • the excited magnetic resonance signals M can by means of
  • Reception arrangement 13 are received. The reception is possible within the examination area 2 regardless of the exact location at which the magnetic resonance signals M be stimulated. By means of the receiving arrangement 13, it is thus possible to receive excited magnetic resonance signals M from the entire examination area 2.
  • the transmitting arrangement 12 and the receiving arrangement 13 are shown only schematically in FIGS. 1 and 2. It can be seen from FIGS. 3 and 4 that the receiving arrangement 13 is not designed as a uniform resonance structure, but has a number of receiving coils 14. Each one of the receiving coils 14 receives from a part of the
  • Examination area 2 a magnetic resonance signal M.
  • the receiving coils 14 cover the entire examination area 2, with a substantially uniform sensitivity.
  • the receiving arrangement 13 could also be designed differently, for example as a birdcage resonator or as a TEM.
  • the receiver coils 14 are formed as superconducting receiver coils 14 according to FIGS. 3 and 4. Preferably, they are even formed as a high-temperature superconductor, ie as a superconductor with a critical temperature above 77 Kelvin or minus 196 ° C. They are surrounded according to FIG. 5 by a cooling medium 15, as a rule liquid air or liquid nitrogen.
  • the receiving coils 14 may have a common shielding. In the preferred
  • each receiving coil 14 has its own shield 16.
  • the receiving coils 14 are thermally shielded with respect to their surroundings, in particular with respect to the examination area 2 and with respect to gradient coils (not shown).
  • the receiving coils 14 are therefore preferably thermally shielded with respect to the examination area 2 and with respect to the gradient coils.
  • a suitable shielding 16 is described for example in DE-C-196 39 924.
  • the receiving coil 14 is assigned a separate cooling circuit.
  • the basic magnet 8 is formed superconducting, is preferably the Basic magnet 8 and the receiving coil 14 associated with a common cooling device, here the cooling device 10.
  • the transmitting arrangement 12 is identical to the receiving arrangement 13.
  • the receiving arrangement 13 also serves to send out the high-frequency excitation field, it may be useful if the receiving coils 14 have multiple turns 17. This is shown in FIG. 3 for one of the receiver coils 14. Because this is a stronger radio frequency excitation field HF can be generated.
  • the receiving coils 14 have only a single conductor loop 18. This is shown in FIG. 3 for another of the receiver coils 14.
  • the remaining receiver coils 14 are shown only schematically in FIG.
  • the transmitting arrangement 12 is a different arrangement from the receiving arrangement 13.
  • the receiving arrangement 13 preferably has a number of superconducting receiving coils 14.
  • the receiving coils 14 may alternatively have a plurality of turns 17 or consist of a single conductor loop 18 as needed.
  • the transmitting arrangement 12 may be formed in the embodiment according to FIG 4 in a conventional manner. For example, as indicated in FIG. 4, it may be formed as a birdcage resonator 12.
  • the receiving arrangement 13 has receiving elements.
  • the receiving arrangement 13 comprises a number of superconducting receiving coils 14, the
  • Receiving elements for example, with the receiving coils 14 identical.
  • a receiving current I which is called forth by the received magnetic resonance signals M, oscillates in the receiving elements 14 in a current flow direction x.
  • the receiving arrangement 13 is identical to the transmitting arrangement 12, oscillates in the receiving elements 14 in the transmission case in the current flow direction x further an excitation current I ', which generates the high-frequency excitation field HF.
  • constellation may be an embodiment of advantage, which will be explained in more detail in conjunction with FIG 7 below.
  • the receiving elements 14 seen transversely to the current flow direction x each have a superconducting partial cross section 19 and a non-superconducting partial cross section 20.
  • the two partial cross sections 19, 20 may be connected to each other, for example, similar to a bimetallic strip.
  • the superconducting partial cross section 19 has a current carrying capacity that is greater than the receiving current I. Due to this fact, the receiving current I oscillates almost completely in the superconducting partial cross section 19, since this partial cross section 19 has a considerably lower resistance than the non-superconducting partial cross section 20 due to its superconductivity. However, the current carrying capacity of the superconducting partial cross section 19 is smaller than the excitation current I '.
  • the superconducting partial cross section 19 is thus not superconducting.
  • the resistance of the superconducting partial cross-section 19 for the excitation current I ' is considerably greater than the resistance of the non-superconducting partial cross-section 20.
  • the excitation current I' therefore oscillates almost completely non-superconducting partial cross section 20.
  • the receiving arrangement 13 is designed such that its maximum current carrying capacity is greater than the receiving current I. However, the maximum current carrying capacity is chosen to be smaller than an induced current I "which is induced in the receiving elements 14 by the radio-frequency excitation field HF. compare FIG. 8 - the receiving arrangement 13 does not have to have any tuning circuit. Only for the transmission arrangement 12 a detuning circuit 21 is needed so that the transmission arrangement 12 does not affect the reception of the magnetic resonance signals M.
  • FIG. 8 shows a further advantageous embodiment, which can be implemented independently of whether the receiving arrangement 13 has a detuning circuit or not. Because according to FIG 8, the transmitting assembly 12 is also cooled. It is thus located in a cooling tank 22 in which it is kept at a temperature which is below the boiling point of nitrogen, ie below -196 ° C.
  • the FIG 8 also shows two further advantageous
  • Embodiments of the inventive magnetic resonance system can also be realized independently of whether the transmitting arrangement 12 is identical to the receiving arrangement 13 or not. Also, these two embodiments are independent of each other feasible.
  • the receiving arrangement 13 according to FIG. 8 is completely encapsulated in the cooling container 22.
  • Evaluation device 23 takes place via first coupling elements 24 and second coupling elements 25.
  • the first coupling elements 24 are arranged in the cooling container 22 and connected to the receiving arrangement 13.
  • the second coupling elements 25 are arranged outside of the cooling tank 22 and connected to the evaluation device 23.
  • the first coupling elements 24 interact with the second coupling elements 25 inductively and / or capacitively together. Through them, it is possible for the magnetic resonance signal M received by the receiving arrangement 13 to be coupled out of the receiving arrangement 13 without cables and transmitted to the evaluation device 23.
  • the receiving arrangement 13 is followed by a preamplifier device 26.
  • the preamplifier device 26 is also arranged in the cooling container 22. Also, it is thus kept at a temperature which is below the boiling point of nitrogen.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

Ein Grundkörper (1) einer Magnetresonanzanlage weist einen Untersuchungsbereich (2) auf, der in Bezug auf eine Zentralachse (3) des Untersuchungsbereichs (2) axial beidseitig offen ist und radial von einer Innenwand (4) des Grundkörpers (1) begrenzt ist. Die Innenwand (4) ist radial derart von der Zentralachse (3) des Untersuchungsbereichs (2) beabstandet, dass eine Transportliege (5) zusammen mit einem auf der Transportliege (5) liegenden Menschen (6) durch den Untersuchungsbereich (2) förderbar ist. Der Transportliege (5) ist ein Transportliegenantrieb (7) zugeordnet, mittels dessen die Transportliege (5) zusammen mit dem auf der Transportliege (5) liegenden Menschen (6) durch den Untersuchungsbereich (2) förderbar ist. Mittels eines Grundmagneten (8) ist im Untersuchungsbereich (2) ein zumindest im Wesentlichen homogenes statisches Grundmagnetfeld (B) generierbar. Es ist eine Sendeanordnung (12) vorhanden, die relativ zum Untersuchungsbereich (2) ortsfest angeordnet ist und mittels derer im gesamten Untersuchungsbereich (2) ein zumindest im wesentlichen homogenes Hochfrequenz-Anregungsfeld erzeugbar ist, so dass der Mensch (6), soweit er sich im Untersuchungsbereich (2) befindet, zum Aussenden von Magnetresonanzsignalen angeregt wird. Es ist ferner eine Empfangsanordnung (13) vorhanden, die relativ zum Untersuchungsbereich (2) ortsfest angeordnet ist und mittels derer aus dem gesamten Untersuchungsbereich (2) angeregte Magnetresonanzsignale empfangbar sind. In dem Fall, dass das Hochfrequenz-Anregungsfeld (HF) mittels der Sendeanordnung (12) erzeugt wird, wirkt die Empfangsanordnung (13) als widerstandsbehaftete Empfangsanordnung (13) . In dem Fall, dass angeregte Magnetresonanzsignale (M) mittels der Empfangsanordnung (13) empfangen werden, wirkt die Empfangsanordnung (13) als supraleitende Empfangsanordnung (13).

Description

Beschreibung
Magnetresonanzanlage mit supraleitender Ganzkörper- Empfangsanordnung
Die vorliegende Erfindung betrifft eine Magnetresonanzanlage,
- wobei ein Grundkörper einen Untersuchungsbereich aufweist, der in Bezug auf eine Zentralachse des Untersuchungsbereichs axial beidseitig offen ist und radial von einer Innenwand des Grundkörpers begrenzt ist,
- wobei die Innenwand des Grundkörpers radial derart von der Zentralachse der Untersuchungsbereichs beabstandet ist, dass eine Transportliege zusammen mit einem auf der Transportliege liegenden Menschen durch den Untersuchungsbereich förderbar ist,
- wobei der Transportliege ein Transportliegenantrieb zugeordnet ist, mittels dessen die Transportliege zusammen mit dem auf der Transportliege liegenden Menschen durch den Untersuchungsbereich förderbar ist, - wobei mittels eines Grundmagneten im Untersuchungsbereich ein zumindest im Wesentlichen homogenes statisches Grundmagnetfeld generierbar ist,
- wobei eine den Untersuchungsbereich radial umgebende, relativ zum Untersuchungsbereich ortsfest angeordnete Sendeanordnung vorhanden ist, mittels derer im gesamten Untersuchungsbereich ein zumindest im wesentlichen homogenes Hochfrequenz-Anregungsfeld erzeugbar ist, so dass der Mensch, soweit er sich im Untersuchungsbereich befindet, zum Aussenden von Magnetresonanzsignalen angeregt wird,
- wobei eine den Untersuchungsbereich radial umgebende, relativ zum Untersuchungsbereich ortsfest angeordnete Empfangsanordnung vorhanden ist, mittels derer aus dem gesamten Untersuchungsbereich angeregte Magnetresonanzsignale empfangbar sind.
Derartige Magnetresonanzanlagen sind allgemein bekannt. Bei ihnen ist in der Regel die Sendeanordnung mit der Empfangsanordnung identisch. Oftmals ist diese kombinierte
Sende-/
Empfangsanordnung als Birdcage-Resonator ausgebildet.
Mittels derart ausgebildeter Magnetresonanzanlagen ist eine homogene Anregung des im Untersuchungsbereich befindlichen Menschen zu Magnetresonanzen möglich. Auch ist ein homogener Empfang von angeregten Magnetresonanzen aus dem gesamten Untersuchungsbereich möglich. Etwaige dreidimensionale Rekonstruktionen, die anhand der empfangenen
Magnetresonanzsignale ermittelt werden, sind bei Verwendung der Ganzkörperempfangsanordnung aber nur in minderwertiger Qualität möglich. Für den Empfang von Magnetresonanzsignalen werden daher oftmals Lokalspulen eingesetzt. Mittels Lokalspulen sind oftmals qualitativ erheblich höherwertige Rekonstruktionen möglich. Lokalspulen weisen jedoch den Nachteil auf, dass sie manuell am Menschen appliziert werden müssen und auch manuell wieder entfernt werden müssen. Ihr Einsatz ist daher relativ zeitaufwändig. Weiterhin ist mittels einer einzelnen Lokalspule ein Empfang von
Magnetresonanzsignalen nur aus einem kleinen Teil des gesamten Untersuchungsbereichs möglich. Der Mensch muss daher großflächig mittels vieler Lokalspulen abgedeckt („mumifiziert") werden. Dies wird subjektiv oftmals als unangenehm empfunden.
Bei Magnetresonanzanwendungen ist ferner die bei Empfang auftretende Signalstärke relativ gering. Es werden daher erhebliche Anstrengungen unternommen, um das Rauschen möglichst gering zu halten, das Signal-Rausch-Verhältnis (SNR = signal-noise-ratio) also zu maximieren. Eine Möglichkeit zur Minimierung des Rauschens ist die Verwendung gekühlter Lokalspulen. Eine weitere Möglichkeit ist die Verwendung supraleitender Spulen. Supraleitende Spulen sind beispielweise beschrieben in der WO-A-01/94964 sowie in folgenden Fachaufsätzen: - "Superconducting RF Coils for Clinical MR Imaging at Low Field" von Q. Y. Ma et al . , Academic Radiology, Vol. 10, Nr. 9, September 2003, Seiten 978 bis 987;
- "Superconducting and CoId Copper MRI Coils" von L. C. Bourne, erschienen in ISMRM 5th (1997), Seite 1527;
- "Superconducting Coil Array for Parallel Imaging" von J. Wosik et al . , erschienen in Proc. Intl. Soc. Mag. Reson. Med. 13 (2005), Seite 678;
- „High Temperature Superconducting Surface Coils with Liquid Nitrogen or Pulse Tube Refrigeration" von Markus Vester et al., erschienen in ISMRM 5th (1997), Seite 1528;
- "Superconducting MR Surface Coils for Human Imaging" von Q. Y. Ma et al . , eingestellt ins Internet und abrufbar unter http : //www. supertron . com/Product/Publications/pub-S .htm.
In allen oben genannten Publikationen werden als Spulen stets kleine Spulen verwendet. In einer der Publikationen ist sogar explizit ausgesagt, dass eine nennenswerte Verbesserung der SNR nur bei Spulendurchmessern von maximal 12 cm zu erwarten ist. Derartige Abmessungen sind somit erheblich kleiner als der typische Durchmesser einer Ganzkörper-Sende- und - Empfangsanordnung. Denn diese Durchmesser betragen in der Regel 50 bis 65 cm.
Aus der EP 1 626 286 Al ist ein System von supraleitenden Resonatoren für Magnetresonanzanwendungen bekannt. Die Resonatoren können eine Stromverteilung bewirken, die mit der eines konventionellen Birdcage-Resonators nahezu identisch ist. Das System kann derart dimensioniert werden, dass Magnetresonanz-Ganzkörpermessungen möglich sind. Es wird sowohl im Sendefall als auch im Empfangsfall eingesetzt.
Die Aufgabe der vorliegenden Erfindung besteht darin, eine Magnetresonanzanlage zu schaffen, die relativ einfach ausgebildet ist und mittels derer relativ schnell ein qualitativ hochwertiges „Screening" eines Menschen durchführbar ist. Die Aufgabe wird durch eine Magnetresonanzanlage mit den Merkmalen des Anspruchs 1 gelöst. Erfindungsgemäß ist die Empfangsanordnung also derart ausgebildet, dass sie in dem Fall, dass das Hochfrequenz-Anregungsfeld mittels der Sendeanordnung erzeugt wird, als widerstandsbehaftete
Empfangsanordnung wirkt, und in dem Fall, dass angeregte Magnetresonanzsignale mittels der Empfangsanordnung empfangen werden, als supraleitende Empfangsanordnung wirkt.
Es ist möglich, dass die Sendeanordnung mit der
Empfangsanordnung identisch ist. In diesem Fall weist die Empfangsanordnung Empfangselemente auf, in denen in einer Stromflussrichtung im Empfangsfall ein Empfangsstrom und im Sendefall ein Anregungsstrom oszilliert. Die Empfangselemente weisen quer zur Stromflussrichtung gesehen einen supraleitenden Teilquerschnitt und einen nicht supraleitenden Teilquerschnitt auf. Die supraleitenden Teilquerschnitte weisen eine Stromtragfähigkeit auf, die zwischen dem Empfangsstrom und dem Anregungsstrom liegt. Auf Grund dieser Ausgestaltung oszilliert der Empfangsstrom im supraleitenden Teilquerschnitt und der Anregungsstrom im nicht supraleitenden Teilquerschnitt.
Es ist alternativ möglich, dass die Sendeanordnung eine von der Empfangsanordnung verschiedene Anordnung ist. In diesem
Fall weist die Empfangsanordnung eine Stromtragfähigkeit auf, die kleiner als ein induzierter Strom ist, der in der Empfangsanordnung durch das Hochfrequenz-Anregungsfeld induziert wird.
Wenn die Sendeanordnung mit der Empfangsanordnung identisch ist, weist die Empfangsanordnung vorzugsweise eine Anzahl supraleitender Empfangsspulen auf. Auf Grund der relativ geringen Stromtragfähigkeit der Empfangsspulen kann es in diesem Fall, also wenn die supraleitenden Empfangsspulen auch zum Aussenden des Hochfrequenz-Anregungsfeldes verwendet werden, von Vorteil sein, wenn die Empfangsspulen mehrere Windungen aufweisen. Denn dann können die Empfangsspulen mit einem relativ geringen Strom ein hohes Hochfrequenz- Anregungsfeld erzeugen. Es ist aber auch möglich, dass die Empfangsanordnung anders ausgebildet ist. Insbesondere kann sie als Birdcage-Resonator ausgebildet sein.
Auch wenn die Sendeanordnung eine von der Empfangsanordnung verschiedene Anordnung ist, kann die Empfangsanordnung eine Anzahl supraleitender Empfangsspulen aufweisen. Die Sendeanordnung kann auf konventionelle Art und Weise ausgebildet sein. Beispielsweise kann sie als Birdcage- Resonator ausgebildet sein.
Wie bereits erwähnt, weist die supraleitende Empfangsanordnung eine relativ geringe Stromtragfähigkeit auf. Es ist daher möglich, dass nur der Sendeanordnung eine Verstimmschaltung zugeordnet ist, die Empfangsanordnung hingegen keine Verstimmschaltung aufweist. Die Sendeanordnung kann gekühlt sein. In diesem Fall sind genauere Anregungspulse abgebbar.
Es ist möglich, dass die Empfangsspulen gegenüber dem Untersuchungsbereich und gegenüber Gradientenspulen gemeinsam thermisch geschirmt sind. Bevorzugt wird zurzeit aber, die Empfangsspulen gegenüber dem Untersuchungsbereich und gegenüber den Gradientenspulen einzeln thermisch zu schirmen.
Der Grundmagnet kann ein Permanentmagnet oder ein Elektromagnet sein. Wenn der Grundmagnet ein Elektromagnet ist, ist er bevorzugt supraleitend. Insbesondere in diesem Fall kann dem Grundmagneten und den Empfangsspulen eine gemeinsame Kühleinrichtung zugeordnet sein.
Bevorzugt wird ein von der Empfangsanordnung empfangenes Magnetresonanzsignal leitungslos aus der Empfangsanordnung ausgekoppelt und an eine Auswertungseinrichtung übermittelt. Denn dadurch ist es möglich, einen Kühlbehälter, in dem die Empfangsanordnung angeordnet ist, vollständig zu kapseln. Das Auskoppeln des empfangenen Magnetresonanzsignals kann beispielsweise über Koppelelemente erfolgen, die innerhalb und außerhalb des Kühlbehälters angeordnet sind. Der Empfangsanordnung ist in der Regel eine
Vorverstärkereinrichtung nachgeordnet. Vorzugsweise ist auch die Vorverstärkereinrichtung gekühlt. Dadurch kann das Signal-Rausch-Verhältnis optimiert werden.
Weitere Vorteile und Einzelheiten ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen in Verbindung mit den Zeichnungen. Dabei zeigen in Prinzipdarstellung :
FIG 1 schematisch eine Magnetresonanzanlage von der Seite,
FIG 2 einen Schnitt durch die Magnetresonanzanlage von FIG 1 längs einer Linie II-II in FIG 1,
FIG 3 eine erste mögliche Ausgestaltung einer
Sendeanordnung und einer Empfangsanordnung,
FIG 4 eine zweite mögliche Ausgestaltung einer
Sendeanordnung und einer Empfangsanordnung,
FIG 5 schematisch mehrere Empfangsspulen,
FIG 6 schematisch einen Kühlkreislauf,
FIG 7 schematisch einen Querschnitt durch ein
Empfangselement und
FIG 8 eine Sendeanordnung und eine Empfangsanordnung.
Gemäß den FIG 1 und 2 weist eine Magnetresonanzanlage einen Grundkörper 1 auf. Der Grundkörper 1 weist einen Untersuchungsbereich 2 auf. Der Untersuchungsbereich 2 ist in der Regel im Wesentlichen um eine Zentralachse 3 herum symmetrisch ausgebildet. Er ist in Bezug auf die Zentralachse 3 axial (das heißt in Richtung der Zentralachse 3) beidseitig offen. Radial zur Zentralachse 3 (das heißt von der Zentralachse 3 weg bzw. auf die Zentralachse 3 zu) ist er von einer Innenwand 4 des Grundkörpers 1 begrenzt. Tangential zur Zentralachse 3 (das heißt um die Zentralachse 3 herum) ist die Innenwand 4 in der Regel zumindest im Wesentlichen geschlossen .
Die Innenwand 4 weist von der Zentralachse 3 einen Abstand a auf. Der Abstand a kann konstant sein. In diesem Fall ist der Untersuchungsbereich 2 im Querschnitt zur Zentralachse 3 gesehen streng kreisförmig. Beispielsweise kann der Abstand a konstant sein und zwischen 25 und 35 cm liegen. Dieser Fall ist in FIG 2 dargestellt.
Der Abstand a könnte aber auch positionsabhängig sein. In diesem Fall wäre der Untersuchungsbereich 2 im Querschnitt zur Zentralachse 3 gesehen beispielsweise elliptisch oder oval. Wenn der Untersuchungsbereich 2 im Querschnitt zur Zentralachse 3 beispielsweise elliptisch oder oval ist, kann der Abstand a horizontal beispielsweise bei ca. 35 cm liegen, vertikal bei ca. 25 cm.
Unabhängig von der Konstanz bzw. Nichtkonstanz des Abstands a ist der Abstand a derart bestimmt, dass eine Transportliege 5 zusammen mit einem auf der Transportliege 5 liegenden Menschen 6 durch den Untersuchungsbereich 2 förderbar ist.
Der Transportliege 5 ist gemäß FIG 1 ein Transportliegenantrieb 7 zugeordnet. Mittels des
Transportliegenantriebs 7 ist die Transportliege 5 - selbstverständlich zusammen mit dem Menschen 6 - durch den Untersuchungsbereich 2 förderbar.
Die Magnetresonanzanlage weist weiterhin einen Grundmagneten 8 auf. Mittels des Grundmagneten 8 ist ein statisches Grundmagnetfeld B generierbar, das innerhalb des Untersuchungsbereichs 2 zumindest im Wesentlichen homogen ist.
Gemäß der Darstellung in den FIG 1 und 2 ist der Grundmagnet 8 beispielsweise als System von Ringmagneten 9 ausgebildet, das konzentrisch zur Zentralachse 3 angeordnet ist. Auch elliptisch oder oval um die Zentralachse 3 umlaufende Ringmagnete 9 sind bekannt. In diesen Fällen verläuft das Grundmagnetfeld B parallel zur Zentralachse 3. Es sind aber auch andere Ausgestaltungen möglich, bei denen das
Grundmagnetfeld B senkrecht zur Zentralachse 3 verläuft.
Der Grundmagnet 8 kann prinzipiell auf beliebige Weise ausgebildet sein, beispielsweise als Permanentmagnet oder als Elektromagnet. Vorzugsweise ist er als supraleitender Magnet 8 ausgebildet. Dem Grundmagneten 8 ist daher eine Kühleinrichtung 10 zugeordnet, mittels derer ein Kühlmedium 11 - in der Regel flüssige Luft oder flüssiger Stickstoff - gekühlt wird.
Radial außen an die Innenwand 4 angrenzend sind eine Sendeanordnung 12 und eine Empfangsanordnung 13 angeordnet. Sie umgeben den Untersuchungsbereich 2 radial außen. Sowohl die Sendeanordnung 12 als auch die Empfangsanordnung 13 sind relativ zum Untersuchungsbereich 2 ortsfest angeordnet. Die Empfangsanordnung 13 ist als supraleitende Empfangsanordnung 13 ausgebildet.
Mittels der Sendeanordnung 12 ist ein Hochfrequenz- Anregungsfeld HF erzeugbar, das im gesamten
Untersuchungsbereich 2 zumindest im Wesentlichen homogen ist. Mittels des Hochfrequenz-Anregungsfeldes HF ist daher der Mensch 6, soweit er sich im Untersuchungsbereich 2 befindet, zum Aussenden von Magnetresonanzsignalen M anregbar. Die angeregten Magnetresonanzsignale M können mittels der
Empfangsanordnung 13 empfangen werden. Der Empfang ist dabei innerhalb des Untersuchungsbereichs 2 unabhängig von dem genauen Ort möglich an dem die Magnetresonanzsignale M angeregt werden. Mittels der Empfangsanordnung 13 ist es somit möglich, aus dem gesamten Untersuchungsbereich 2 angeregte Magnetresonanzsignale M zu empfangen.
Die Sendeanordnung 12 und die Empfangsanordnung 13 sind in den FIG 1 und 2 nur schematisch dargestellt. Aus den FIG 3 und 4 ist ersichtlich, dass die Empfangsanordnung 13 nicht als einheitliche Resonanzstruktur ausgebildet ist, sondern eine Anzahl vom Empfangsspulen 14 aufweist. Jede einzelne der Empfangsspulen 14 empfängt aus einem Teil des
Untersuchungsbereichs 2 ein Magnetresonanzsignal M. In ihrer Gesamtheit decken die Empfangsspulen 14 aber den gesamten Untersuchungsbereich 2 ab, und zwar mit einer im Wesentlichen gleichmäßigen Sensitivität . Die Empfangsanordnung 13 könnte auch anders ausgebildet sein, beispielsweise als Birdcage- Resonator oder als TEM.
Die Empfangsspulen 14 sind gemäß den FIG 3 und 4 als supraleitende Empfangsspulen 14 ausgebildet. Vorzugsweise sind sie sogar als Hochtemperatursupraleiter ausgebildet, also als Supraleiter mit einer Sprungtemperatur oberhalb 77 Kelvin bzw. minus 196°C. Sie sind gemäß FIG 5 von einem Kühlmedium 15 umgeben, in der Regel flüssiger Luft oder flüssigem Stickstoff. Die Empfangsspulen 14 können eine gemeinsame Schirmung aufweisen. In der bevorzugten
Ausgestaltung gemäß FIG 5 weist jede Empfangsspule 14 eine eigene Schirmung 16 auf. Mittels der Schirmung 16 sind die Empfangsspulen 14 gegenüber ihrer Umgebung, insbesondere gegenüber dem Untersuchungsbereich 2 sowie gegenüber nicht dargestellten Gradientenspulen, thermisch geschirmt. Die Empfangsspulen 14 sind also vorzugsweise gegenüber dem Untersuchungsbereich 2 und gegenüber den Gradientenspulen einzeln thermisch geschirmt. Eine geeignete Schirmung 16 ist beispielsweise in der DE-C-196 39 924 beschrieben.
Es ist möglich, dass den Empfangsspulen 14 ein eigener Kühlkreislauf zugeordnet ist. Wenn auch der Grundmagnet 8 supraleitend ausgebildet ist, ist vorzugsweise dem Grundmagneten 8 und den Empfangsspulen 14 eine gemeinsame Kühleinrichtung zugeordnet, hier die Kühleinrichtung 10. Dies ist schematisch in FIG 6 dargestellt. Gemäß FIG 3 ist die Sendeanordnung 12 mit der Empfangsanordnung 13 identisch. Insbesondere in diesem Fall, wenn also die Empfangsanordnung 13 auch dem Aussenden des Hochfrequenz-Anregungsfeldes dient, kann es sinnvoll sein, wenn die Empfangsspulen 14 mehrere Windungen 17 aufweisen. Dies ist in FIG 3 für eine der Empfangsspulen 14 dargestellt. Denn dadurch ist ein stärkeres Hochfrequenz-Anregungsfeld HF generierbar. Je nach Lage des Einzelfalls kann es aber auch ausreichen, wenn die Empfangsspulen 14 nur eine einzige Leiterschleife 18 aufweisen. Dies ist in FIG 3 für eine andere der Empfangsspulen 14 dargestellt. Die übrigen Empfangsspulen 14 sind in FIG 3 nur schematisch dargestellt.
Gemäß FIG 4 ist die Sendeanordnung 12 eine von der Empfangsanordnung 13 verschiedene Anordnung. Auch in diesem Fall weist die Empfangsanordnung 13 vorzugsweise eine Anzahl supraleitender Empfangsspulen 14 auf. Die Empfangsspulen 14 können je nach Bedarf alternativ mehrere Windungen 17 aufweisen oder aus einer einzigen Leiterschleife 18 bestehen. Die Sendeanordnung 12 kann bei der Ausgestaltung gemäß FIG 4 auf konventionelle Weise ausgebildet sein. Beispielsweise kann sie, wie in FIG 4 angedeutet, als Birdcage-Resonator 12 ausgebildet sein.
Die Empfangsanordnung 13 weist Empfangselemente auf. In dem Fall, dass die Empfangsanordnung 13 eine Anzahl supraleitender Empfangsspulen 14 aufweist, sind die
Empfangselemente beispielsweise mit den Empfangsspulen 14 identisch.
Im Empfangsfall oszilliert in den Empfangselementen 14 in einer Stromflussrichtung x ein Empfangsstrom I, der durch die empfangenen Magnetresonanzsignale M hervor gerufen ist. Wenn die Empfangsanordnung 13 mit der Sendeanordnung 12 identisch ist, oszilliert in den Empfangselementen 14 im Sendefall in der Stromflussrichtung x ferner ein Anregungsstrom I', der das Hochfrequenz-Anregungsfeld HF erzeugt. Bei dieser Fallkonstellation kann eine Ausgestaltung von Vorteil sein, die nachfolgend in Verbindung mit FIG 7 näher erläutert wird.
Gemäß FIG 7 weisen die Empfangselemente 14 quer zur Stromflussrichtung x gesehen jeweils einen supraleitenden Teilquerschnitt 19 und einen nicht supraleitenden Teilquerschnitt 20 auf. Die beiden Teilquerschnitte 19, 20 können beispielsweise ähnlich einem Bimetallstreifen miteinander verbunden sein. Der supraleitende Teilquerschnitt 19 weist eine Stromtragfähigkeit auf, die größer als der Empfangsstrom I ist. Auf Grund dieses Umstands oszilliert der Empfangsstrom I nahezu vollständig im supraleitenden Teilquerschnitt 19, da dieser Teilquerschnitt 19 auf Grund seiner Supraleitung einen erheblich geringeren Widerstand aufweist als der nicht supraleitende Teilquerschnitt 20. Die Stromtragfähigkeit des supraleitenden Teilquerschnitts 19 ist aber kleiner als der Anregungsstrom I' . Bezüglich des Anregungsstroms I' ist der supraleitende Teilquerschnitt 19 somit nicht supraleitend. Er verhält sich für den Anregungsstrom I' also wie ein „normaler", widerstandsbehafteter Leiter. Der Widerstand des supraleitenden Teilquerschnitts 19 für den Anregungsstrom I' ist erheblich größer als der Widerstand des nicht supraleitenden Teilquerschnitts 20. Der Anregungsstrom I' oszilliert daher nahezu vollständig im nicht supraleitenden Teilquerschnitt 20.
Wenn die Sendeanordnung von der Empfangsanordnung 13 verschieden ist, kann ein analoger Effekt ausgenutzt werden. In diesem Fall wird die Empfangsanordnung 13 derart ausgelegt, dass ihre maximale Stromtragfähigkeit zwar größer als der Empfangsstrom I ist. Die maximale Stromtragfähigkeit wird aber kleiner gewählt als ein induzierter Strom I", der in den Empfangselementen 14 durch das Hochfrequenz-Anregungsfeld HF induziert wird. Dadurch kann erreicht werden, dass - vergleiche FIG 8 - die Empfangsanordnung 13 keine VerStimmschaltung aufweisen muss. Lediglich für die Sendeanordnung 12 wird eine Verstimmschaltung 21 benotigt, damit die Sendeanordnung 12 den Empfang der Magnetresonanzsignale M nicht beeinträchtigt.
Die FIG 8 zeigt eine weitere vorteilhafte Ausgestaltung, die unabhängig davon realisierbar ist, ob die Empfangsanordnung 13 eine Verstimmschaltung aufweist oder nicht. Denn gemäß FIG 8 ist die Sendeanordnung 12 ebenfalls gekühlt. Sie befindet sich also in einem Kühlbehälter 22 in dem sie auf einer Temperatur gehalten wird, die unter dem Siedepunkt von Stickstoff liegt, also unter -196°C.
Die FIG 8 zeigt auch zwei weitere vorteilhafte
Ausgestaltungen der erfindungsgemaßen Magnetresonanzanlage. Auch diese beiden Ausgestaltungen sind unabhängig davon realisierbar, ob die Sendeanordnung 12 mit der Empfangsanordnung 13 identisch ist oder nicht. Auch sind diese beiden Ausgestaltungen unabhängig voneinander realisierbar .
Zum einen ist die Empfangsanordnung 13 gemäß FIG 8 in dem Kühlbehälter 22 vollständig gekapselt. Das Übermitteln eines empfangenen Magnetresonanzsignals M an eine
Auswerteeinrichtung 23 erfolgt über erste Koppelelemente 24 und zweite Koppelelemente 25. Die ersten Koppelelemente 24 sind im Kühlbehälter 22 angeordnet und mit der Empfangsanordnung 13 verbunden. Die zweiten Koppelelemente 25 sind außerhalb des Kühlbehälters 22 angeordnet und mit der Auswerteeinrichtung 23 verbunden. Die ersten Koppelelemente 24 wirken mit den zweiten Koppelelementen 25 induktiv und/oder kapazitiv zusammen. Durch sie wird ermöglicht, dass das von der Empfangsanordnung 13 empfangene Magnetresonanzsignal M leitungslos aus der Empfangsanordnung 13 ausgekoppelt und an die Auswerteeinrichtung 23 übermittelt wird. Zum anderen ist der Empfangsanordnung 13 eine Vorverstärkereinrichtung 26 nachgeordnet. Auch die Vorverstärkereinrichtung 26 ist im Kühlbehälter 22 angeordnet. Auch sie wird somit auf einer Temperatur gehalten, die unter dem Siedpunkt von Stickstoff liegt.
Mittels der erfindungsgemäß ausgebildeten Magnetresonanzanlage ist somit auf einfache Weise ein qualitativ hochwertiger Ganzkörperempfang möglich, ohne am Menschen 6 eine Vielzahl von Lokalspulen applizieren zu müssen. Somit ist insbesondere auf einfache Weise analog zu CT-Anlagen eine sogenanntes „Screening" des Menschen 6 möglich .

Claims

Patentansprüche
1. Magnetresonanzanlage,
- wobei ein Grundkörper (1) einen Untersuchungsbereich (2) aufweist, der in Bezug auf eine Zentralachse (3) des
Untersuchungsbereichs (2) axial beidseitig offen ist und radial von einer Innenwand (4) des Grundkörpers (1) begrenzt ist,
- wobei die Innenwand (4) des Grundkörpers (1) radial derart von der Zentralachse (3) des Untersuchungsbereichs (2) beabstandet ist, dass eine Transportliege (5) zusammen mit einem auf der Transportliege (5) liegenden Menschen (6) durch den Untersuchungsbereich (2) förderbar ist,
- wobei der Transportliege (5) ein Transportliegenantrieb (7) zugeordnet ist, mittels dessen die Transportliege (5) zusammen mit dem auf der Transportliege (5) liegenden Menschen (6) durch den Untersuchungsbereich (2) förderbar ist,
- wobei mittels eines Grundmagneten (8) im Untersuchungsbereich (2) ein zumindest im Wesentlichen homogenes statisches Grundmagnetfeld (B) generierbar ist,
- wobei eine relativ zum Untersuchungsbereich (2) ortsfest angeordnete Sendeanordnung (12) vorhanden ist, mittels derer im gesamten Untersuchungsbereich (2) ein zumindest im wesentlichen homogenes Hochfrequenz-Anregungsfeld (HF) erzeugbar ist, so dass der Mensch (6), soweit er sich im Untersuchungsbereich (2) befindet, zum Aussenden von Magnetresonanzsignalen (M) angeregt wird,
- wobei eine relativ zum Untersuchungsbereich (2) ortsfest angeordnete Empfangsanordnung (13) vorhanden ist, mittels derer aus dem gesamten Untersuchungsbereich (2) angeregte Magnetresonanzsignale (M) empfangbar sind,
- wobei die Empfangsanordnung (13) derart ausgebildet ist. dass sie in dem Fall, dass das Hochfrequenz-Anregungsfeld (HF) mittels der Sendeanordnung (12) erzeugt wird, als widerstandsbehaftete Empfangsanordnung (13) wirkt, und in dem Fall, dass angeregte Magnetresonanzsignale (M) mittels der Empfangsanordnung (13) empfangen werden, als supraleitende Empfangsanordnung (13) wirkt.
2. Magnetresonanzanlage nach Anspruch 1, dadurch gekennzeichnet, dass die Sendeanordnung (12) mit der Empfangsanordnung (13) identisch ist, dass die Empfangsanordnung (13) Empfangselemente (14) aufweist, in denen in einer Stromflussrichtung (x) im Empfangsfall ein Empfangsstrom (I) und im Sendefall ein Anregungsstrom (I') oszilliert, dass die Empfangselemente (14) quer zur Stromflussrichtung (x) gesehen einen supraleitenden Teilquerschnitt (19) und einen nicht supraleitenden Teilquerschnitt (20) aufweisen und dass die supraleitenden Teilquerschnitte (19) eine Stromtragfähigkeit aufweisen, die zwischen dem Empfangsstrom (I) und dem Anregungsstrom (I') liegt, so dass der Empfangsstrom (I) im supraleitenden Teilquerschnitt (19) und der Anregungsstrom (I') im nicht supraleitenden Teilquerschnitt (20) oszilliert.
3. Magnetresonanzanlage nach Anspruch 2, dadurch gekennzeichnet, dass die Empfangsanordnung (13) eine Anzahl supraleitender Empfangsspulen (14) aufweist.
4. Magnetresonanzanlage nach Anspruch 3, dadurch gekennzeichnet, dass die Empfangsspulen (14) mehrere Windungen (17) aufweisen .
5. Magnetresonanzanlage nach Anspruch 2, dadurch gekennzeichnet, dass die Sendeanordnung (12) als Birdcage-Resonator (12) ausgebildet ist.
6. Magnetresonanzanlage nach Anspruch 1, dadurch gekennzeichnet, dass die Sendeanordnung (12) eine von der Empfangsanordnung (13) verschiedene Anordnung ist und dass die Empfangsanordnung (13) eine Stromtragfähigkeit aufweist, die kleiner als ein induzierter Strom (I") ist, der in der Empfangsanordnung (13) durch das Hochfrequenz-Anregungsfeld (HF) induziert wird.
7. Magnetresonanzanlage nach Anspruch 6, dadurch gekennzeichnet, dass die Empfangsanordnung (13) eine Anzahl supraleitender Empfangsspulen (14) aufweist.
8. Magnetresonanzanlage nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass die Sendeanordnung (12) als Birdcage-Resonator (12) ausgebildet ist.
9. Magnetresonanzanlage nach Anspruch 6, 7 oder 8, dadurch gekennzeichnet, dass der Sendeanordnung (12) eine Verstimmschaltung (21) zugeordnet ist und dass die Empfangsanordnung (13) keine
Verstimmschaltung aufweist.
10. Magnetresonanzanlage nach einem der Ansprüche 6 bis 9, dadurch gekennzeichnet, dass die Sendeanordnung (12) gekühlt ist.
11. Magnetresonanzanlage nach einem der obigen Ansprüche, dadurch gekennzeichnet, dass die Empfangsspulen (14) gegenüber dem
Untersuchungsbereich (2) und gegenüber Gradientenspulen einzeln thermisch geschirmt sind.
12. Magnetresonanzanlage nach einem der obigen Ansprüche, dadurch gekennzeichnet, dass der Grundmagnet (8) supraleitend ist.
13. Magnetresonanzanlage nach Anspruch 12, dadurch gekennzeichnet, dass dem Grundmagneten (8) und den Empfangsspulen (14) eine gemeinsame Kühleinrichtung (10) zugeordnet ist.
14. Magnetresonanzanlage nach einem der obigen Ansprüche, dadurch gekennzeichnet, dass das von der Empfangsanordnung (13) empfangene Magnetresonanzsignal (M) leitungslos aus der
Empfangsanordnung (13) ausgekoppelt und an eine Auswerteeinrichtung (23) übermittelt wird.
15. Magnetresonanzanlage nach einem der obigen Ansprüche, dadurch gekennzeichnet, dass der Empfangsanordnung (13) eine Vorverstärkereinrichtung (26) nachgeordnet ist und dass die Vorverstärkereinrichtung (26) gekühlt ist.
PCT/EP2007/051005 2006-03-10 2007-02-02 Magnetresonanzanlage mit supraleitender ganzkörper-empfangsanordnung WO2007104607A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/919,894 US8013605B2 (en) 2006-03-10 2007-02-02 Magnetic resonance system having a superconducting whole-body receiving arrangement
CN2007800004655A CN101322041B (zh) 2006-03-10 2007-02-02 具有超导全身接收装置的磁共振设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006011254.7 2006-03-10
DE102006011254A DE102006011254B4 (de) 2006-03-10 2006-03-10 Magnetresonanzanlage mit supraleitender Ganzkörper-Empfangsanordnung

Publications (1)

Publication Number Publication Date
WO2007104607A1 true WO2007104607A1 (de) 2007-09-20

Family

ID=37968787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/051005 WO2007104607A1 (de) 2006-03-10 2007-02-02 Magnetresonanzanlage mit supraleitender ganzkörper-empfangsanordnung

Country Status (4)

Country Link
US (1) US8013605B2 (de)
CN (1) CN101322041B (de)
DE (1) DE102006011254B4 (de)
WO (1) WO2007104607A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102394383A (zh) * 2010-07-16 2012-03-28 西门子公司 用于磁共振应用的天线装置
DE102010043134A1 (de) 2010-10-29 2012-05-03 Siemens Aktiengesellschaft Magnetresonanzgerät

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8253416B2 (en) * 2009-03-10 2012-08-28 Time Medical Holdings Company Limited Superconductor magnetic resonance imaging system and method (super-MRI)
WO2012155002A1 (en) * 2011-05-10 2012-11-15 Time Medical Holding Company Limited Cryogenically cooled whole-body rf coil array and mri system having same
DE102012209754B4 (de) * 2012-06-12 2016-09-22 Siemens Healthcare Gmbh Spuleneinrichtung für einen Kernspintomographen
JP2015085185A (ja) * 2013-09-25 2015-05-07 株式会社東芝 磁気共鳴イメージング装置
DE102016221161A1 (de) * 2016-10-27 2018-05-03 Bruker Biospin Ag HF-Resonator-Anordnung
DE102016225793B3 (de) 2016-12-21 2018-02-08 Siemens Healthcare Gmbh Kalibrierung einer Magnetresonanzvorrichtung
CN116559743A (zh) * 2023-06-13 2023-08-08 中国科学院深圳先进技术研究院 一种用于磁共振成像的射频信号接收系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0347180A2 (de) * 1988-06-15 1989-12-20 Btg International Limited Elektrische Oberflächenspulenanordnungen
DE4309370A1 (de) * 1993-03-23 1994-09-29 Siemens Ag Hochfrequenz-Einrichtung einer Anlage zur Kernspintomographie mit einer Empfangsschleife und einem Vorverstärker
DE19513231A1 (de) * 1995-04-07 1996-10-10 Siemens Ag Antenne für Kernspintomographie
EP0895092A1 (de) * 1997-08-02 1999-02-03 Bruker AG Supraleitender Hybrid-Resonator für dem Empfang von NMR-Signalen
WO2001094964A1 (en) * 2000-06-08 2001-12-13 Varian, Inc. Superconducting birdcage coils
WO2005078468A2 (en) * 2004-01-20 2005-08-25 The University Of Houston System Superconducting loop, saddle and birdcage mri coils comprising built-in capacitors
EP1626286A1 (de) * 2004-07-23 2006-02-15 Bruker BioSpin AG System von supraleitenden Rf-Resonatoren für die magnetische Resonanz

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5655533A (en) * 1994-06-30 1997-08-12 Picker International, Inc. Actively shielded orthogonal gradient coils for wrist imaging
DE19639924C1 (de) * 1996-09-27 1998-04-30 Siemens Ag Wärmestrahlungsschild und seine Verwendung bei einer supraleitenden Antenne
DE19720677C1 (de) * 1997-05-16 1998-10-22 Spectrospin Ag NMR-Meßvorrichtung mit gekühltem Meßkopf
US6961604B1 (en) * 2001-10-09 2005-11-01 Koninklijke Philips Electroncis N.V. Wireless controller and application interface for an MRI system
JP4122833B2 (ja) * 2002-05-07 2008-07-23 株式会社日立製作所 二ホウ化マグネシウムを用いたnmr装置用プローブ
JP4938423B2 (ja) * 2006-11-24 2012-05-23 株式会社日立製作所 核磁気共鳴プローブ
DE102006058316B4 (de) * 2006-12-11 2010-10-14 Siemens Ag Verfahren zur Aufnahme von Bilddaten einer Gefäßwand und Magnet-Resonanz-Gerät hierzu
DE102009020000B4 (de) * 2009-05-05 2020-03-12 Siemens Healthcare Gmbh Verfahren und Steuereinrichtung zum Betrieb einer Magnetresonanzanlage

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0347180A2 (de) * 1988-06-15 1989-12-20 Btg International Limited Elektrische Oberflächenspulenanordnungen
DE4309370A1 (de) * 1993-03-23 1994-09-29 Siemens Ag Hochfrequenz-Einrichtung einer Anlage zur Kernspintomographie mit einer Empfangsschleife und einem Vorverstärker
DE19513231A1 (de) * 1995-04-07 1996-10-10 Siemens Ag Antenne für Kernspintomographie
EP0895092A1 (de) * 1997-08-02 1999-02-03 Bruker AG Supraleitender Hybrid-Resonator für dem Empfang von NMR-Signalen
WO2001094964A1 (en) * 2000-06-08 2001-12-13 Varian, Inc. Superconducting birdcage coils
WO2005078468A2 (en) * 2004-01-20 2005-08-25 The University Of Houston System Superconducting loop, saddle and birdcage mri coils comprising built-in capacitors
EP1626286A1 (de) * 2004-07-23 2006-02-15 Bruker BioSpin AG System von supraleitenden Rf-Resonatoren für die magnetische Resonanz

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHAN KC ET AL: "Non-diode decoupling technique for HTS coil imaging", PROCEEDINGS OF THE INTERNATIONAL SOCIETY FOR MAGNETIC RESONANCE IN MEDICINE, 10TH SCIENTIFIC MEETING AND EXHIBITION, HONULULU, HAWAII, USA, 18-24 MAY 2002, 18 May 2002 (2002-05-18), pages 896, XP002432266 *
WOSIK J ET AL: "Superconducting single and phased-array probes for clinical and research MRI", IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, vol. 13, no. 2, June 2003 (2003-06-01), pages 1050 - 1055, XP002432267 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102394383A (zh) * 2010-07-16 2012-03-28 西门子公司 用于磁共振应用的天线装置
US8664956B2 (en) 2010-07-16 2014-03-04 Siemens Aktiengesellschaft Antenna arrangement for magnetic resonance applications
CN102394383B (zh) * 2010-07-16 2014-05-07 西门子公司 用于磁共振应用的天线装置
DE102010043134A1 (de) 2010-10-29 2012-05-03 Siemens Aktiengesellschaft Magnetresonanzgerät
DE102010043134B4 (de) * 2010-10-29 2014-05-08 Siemens Aktiengesellschaft Magnetresonanzgerät
US8841910B2 (en) 2010-10-29 2014-09-23 Siemens Aktiengesellschaft Magnetic resonance device including an antenna arrangement

Also Published As

Publication number Publication date
DE102006011254A1 (de) 2007-10-18
CN101322041A (zh) 2008-12-10
US8013605B2 (en) 2011-09-06
CN101322041B (zh) 2011-08-10
DE102006011254B4 (de) 2009-01-29
US20090219024A1 (en) 2009-09-03

Similar Documents

Publication Publication Date Title
DE102006011254B4 (de) Magnetresonanzanlage mit supraleitender Ganzkörper-Empfangsanordnung
EP1021730B1 (de) MR-Bildgebungssystem und Vena-Cava-Filter zur Verwendung in diesem System
DE4038106C2 (de) Oberflächenresonator für einen Kernspintomographen
DE102016204620B4 (de) MR-Körperspule
DE102012205333B4 (de) Magnetresonanztomograph
EP0200078B1 (de) Kernspin-Tomographiegerät
DE102012207722B3 (de) MR- Antenne mit Kompensation für variablen Abstand zum Schirm
DE102010041202B4 (de) Magnetresonanzgerät, Reflektor-Array und Hochfrequenzschirmsystem für ein Magnetresonanzgerät
EP1275972A2 (de) Hochfrequenz-Spulenanordnung für ein MR-Gerät
DE102010043134B4 (de) Magnetresonanzgerät
DE112010004900T5 (de) 0pen-Bore-Magnet zur Verwendung bei Magnetresonanztomographie
DE102013217555B3 (de) Kombinierte Shim- und HF-Spulenelemente
DE102010027295B4 (de) Trommel-Mantelwellensperre
EP2413155B1 (de) Modulare MRI Phased Array Antenne
DE102013213377B3 (de) Erweiterte Verstimmung bei Lokalspulen
DE102013214307A1 (de) Lokale Sendespulen / Sendespulenarray in der Wirbelsäulenbildgebung in einem MRI
DE102010012393B4 (de) Magnetresonanzeinrichtung mit einer wenigstens einen Sperrkreis aufweisenden Koaxialleitung
EP4118444A1 (de) Doppeltresonante spule sowie array von doppeltresonanten spulen und deren verwendung
DE10211567C1 (de) Hochfrequenzantenne für eine Magnetresonanzanlage
WO2007101741A1 (de) Zirkulator und magnet-resonanz-gerät
DE102009001984A1 (de) Vorrichtung zur Überwachung eines Lebewesens während eines Magnetresonanz-Experimentes
EP3134745B1 (de) Vorrichtung und verfahren zur elektrischen anbindung von elektronischen baugruppen mittels symmetrischer abgeschirmter leitung
DE102013217012B4 (de) Lokal-SAR-Reduzierung für z.B. Patienten mit metallischen Implantaten
DE102010063724B4 (de) Lokalspule und Verfahren zum Verändern des Innendurchmessers einer Lokalspule
DE102009012107B4 (de) HF Stripline Antenne mit Impedanzanpassung für MR-Bildgebung

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780000465.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07726282

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11919894

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 07726282

Country of ref document: EP

Kind code of ref document: A1